

REST API Service Middleware

A dissertation submitted for the Degree of

Master of Information Technology

D. P. D. Dissanayake

University of Colombo School of Computing

2018

i

Declaration

This thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute. To the best of my knowledge, it does not contain any material

published or written by another person, except as acknowledged in the text.

Student name: D. P. D. Dissanayake

Registration number: 2015/MIT/013

Index Number: 15550138

………………………………… …………………………..

 Signature Date

This is to certify that this thesis is based on the work of Mr D. P. D. Dissanayake under my

supervision. The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Certified by:

Supervisor name: Dr D.A.S. Atukorale

………………………………… …………………………..

 Signature Date

ii

Abstract

Today world moves into smart world and IOT. For this transition, we have to use lots of web

services. Web services are the major methodology of communicating data over the network.

Web applications and Mobile apps communicate with API web services. REST API represents

over 70% of public APIs. That means the importance of the REST API management system.

These API services transfer secret and confidential data. Nowadays these web services are used

for communication, security alerts, news broadcasting, social media and many more things. A

device calls to several servers at once. All the service calls go to many destination servers. All

the services are working like a mesh. Sometimes some services down without aware of a

responsible party that only the users identified that their requesting service is not working. After

the user complains the responsible party get the action for that failure. This happens because of

the lack of resources to monitor that kind of services. We need a proper management system to

handle these services. Otherwise, data will be exposed to unauthorized parties, hard to rectify

bugs, lack of logging facility and slow response.

All the services all over the world could not feasible to monitor a single party. This is feasible

to do by the developer parties of the web services. There are lots of web service developer

companies in the world. They are developing services for not only other companies but also for

themselves. They need some web services for their internal usage. If there is a way to manage

this kind of services as a developing company it will be a positive action for the company. Then

they could minify previously mentioned issues. But the main problem is services are deployed

on several servers. They are working with deferent ports and different URLs. There should be

a centralized middleware system to manage those things. If they are worked with the uniform

format, then it will be easy to monitor. Then all the services should be going through that

middleware. All the filtrations and monitoring could be done by that middleware system. REST

API service middleware is for that kind of management functionalities.

This system is a complete REST API managing middleware as a solution for these issues. From

this system admin and other web service, developers can do their functionalities by the using

the backend panel. The developer can register their services in the system and assign into their

applications later. This assigning is called subscription of services. After that services are using

the middleware with the new URL. All the services work with the bearer token which use to

authenticate. In here OAuth 2 used as the authorization framework for the services. If

developers need to reuse the same API for another application then they have to just subscribe

the APIs for a new application. If there was a failure in the system, that can be identified easily

by the referring the log files. This provides a very attractive and simple interface to manage

whole the system. Since this system is the free and open source, any company can use this

without a cost.

iii

Acknowledgements

There are many people who have helped me in preparing this dissertation. First I need to thank,

Dr D. A. S. Atukorale for supervising my project. Then people who have contributed to the

previous versions and others who have given feedback. I would like to thank all the past students

of the BIT program who took this course and helped me fine tune this document. My mother and

my father always helped me to complete my thesis. My university friends and my office friends

always encourage me to do the things better. I need to thanks to my company for the giving me

projects which using web services. That was the root cause to identify this kind of systems.

iv

Table of Content

Declaration .. i

Abstract ... ii

Acknowledgements ... iii

Table of Content .. iv

List of Tables .. vii

List of Abbreviation .. viii

Chapter 1 : Introduction .. 1

1.1 Overview .. 1

1.2 Motivation .. 1

1.3 Statement of the Problem ... 2

1.4 Objectives ... 2

1.5 Scope .. 3

1.6 List of deliverables ... 4

1.7 Limitations .. 4

1.8 Structure of the thesis ... 4

Chapter 2 : Background and Literature Review ... 5

2.1 Background ... 5

2.2 Related projects of previous students ... 6

2.3 Similar systems available in productions ... 7

Chapter 3 : Analysis and Design .. 9

3.1 Functional Requirements .. 9

3.2 Non Functional Requirements .. 11

3.3 Use Case Diagram .. 12

3.4 Use Case Scenario .. 13

3.5 Database ER Diagram .. 16

3.6 Wireframes ... 17

3.7 Tools and Technologies Used for Design... 18

3.8 Implementation of backend logic ... 19

Chapter 4 : Implementation .. 21

4.1 Introduction .. 21

4.2 Development Tools .. 21

4.3 Frameworks .. 22

4.4 Implementation Details .. 23

v

4.5 License .. 28

Chapter 5 : Evaluation and Testing .. 29

5.1 Introduction .. 29

5.2 Evaluation ... 29

5.3 Testing .. 35

5.4 Testing Scenarios for the application ... 36

Chapter 6 : Conclusion and Future works .. 38

6.1 Conclusion .. 38

6.2 Future works ... 38

References .. 39

Appendix .. 40

A: Download and setup the application .. 40

B: The Use Case Scenario .. 41

C: Implementation of the user interface ... 44

vi

List of Figures

Figure 1 - Normal System .. 2

Figure 2 - REST API Middleware System ... 2

Figure 3 - OAuth2.0 abstract flow .. 6

Figure 4 - Use case diagram ... 12

Figure 5 - Database ER diagram... 16

Figure 6 - Wireframes .. 17

Figure 7 - Service Request Diagram .. 20

Figure 8 - Laravel migration file .. 23

Figure 9 - Laravel data seed file ... 24

Figure 10 - Database in phpMyAdmin ... 25

Figure 11 - Login Screen .. 25

Figure 12 - Register screen ... 26

Figure 13 - Dashboard view of Admin ... 27

Figure 14 - User list view of Admin ... 27

Figure 15 - Google Evaluation Form Page 1 .. 30

Figure 16 - Google Evaluation Form Page 2 .. 31

Figure 17 - Google Evaluation Form Page 3 .. 32

Figure 18 - Evaluation result - Application setup .. 33

Figure 19 - Evaluation result - Backend panel performance .. 33

Figure 20 - Evaluation result - Functionality ... 33

Figure 21 - Evaluation result - Service Response time .. 34

Figure 22 - Evaluation result - Overall performance .. 34

Figure 23 - Selenium IDE test case result .. 36

Figure 24 - JMeter Load Test result ... 37

Figure 25 - User create view of Admin .. 44

Figure 26 - User update view of Admin ... 44

Figure 27 - Application list view of Admin ... 45

Figure 28 - Service group list view of Admin .. 45

Figure 29 - Service list view of Admin .. 46

Figure 30 - Confirmation Modal .. 46

file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285769
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285770
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285771
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285775
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285776
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285777
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285778
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285780
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285781
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285782
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285784
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285786
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285787
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285788
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285789
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285790
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285792
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285795
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285797
file:///D:/MIT/SEMESTER%204/MIT%203101%20Individual%20Project/Report/Final%20version/Final%20Submition/V2/Final%2015550138%20v2.0.docx%23_Toc519285798

vii

List of Tables

Table 1 - Use Case 1 ... 13

Table 2 - Use Case 2 ... 14

Table 3 - Use Case 3 ... 14

Table 4 - Use Case 4 ... 15

Table 5 - Use Case 5 ... 15

Table 6 - Evaluation result - Rating count .. 32

Table 7 - Test Cases ... 36

Table 8 - Use Case 6 ... 41

Table 9 - Use Case 7 ... 42

Table 10 - Use Case 8 ... 43

viii

List of Abbreviation

Abbreviation Definition

API Application Programming Interface

CRUD Create, Read, Update and Delete

GUI Graphical User Interface

HA High Availability

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

IoT Internet of Things

MIFE Mobile Internet & Fulfillment Exchange

OAuth Open Authorization

ORM Object Relational Mapping

OS Operating System

PHP PHP: Hypertext pre-processor

REST Representational State Transfer

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

WWW World Wide Web

XML eXtensible Markup Language

1

Chapter 1 : Introduction

1.1 Overview

There are many different systems in the world. Many of these systems need to exchange data

with each other. We use web services for facilitating this task. A web service is a service offered

by an electronic device to another electronic device, communicating with each other via the

WWW. In a Web service, Web technology such as HTTP, originally designed for human-to-

machine communication, is utilized for machine-to-machine communication, more specifically

for transferring machine-readable file formats such as XML and JSON. A Web service, in very

broad terms, is a method of communication between two applications or electronic devices over

the WWW. Mainly web services are of two kinds SOAP and REST. REST API represents the

major part of the industry. For one application, there are many different REST API services.

Another application might need the same API services. Multiple services to multiple servers

for a single application is complex the system architecture.

If we handle a mechanism to call these services through a common middleware then we can

easily manage these things. This project would try to define that common abstract layer for the

REST API services. Any admin developer can deploy this application on their servers with

basic project deployment knowledge. This gives additional authentication for the public web

services. The developer can monitor the services by the panel.

1.2 Motivation

Most of the mobile apps and Front-end web applications use REST APIs for communication.

REST APIs are more developer friendly, more flexible and faster than SOAP. I am working as

a back-end developer who develops web services for web frontends and mobile applications. I

am working with this kind of RESTful web services. I have to work with similar systems in the

industry and I have to face several problems with them. That system has many problems. Less

flexibility, slowness and lack of user-friendly, unreliable responses give me encouragement to

develop this kind of manageable system. Since this happen we need a proper manageable

environment to handle those things. There are some similar systems in Sri Lanka but they are

not an open source and free. This system is open source and free. Our company developers also

encourage me to develop this kind of system to manage all the services developed by our

company. There are few similar Java applications in the production environment. They are very

hard to configure and they required another third-party application. Then need to purchase that

additional application also. But there is no any PHP application related to this functionality.

That is the reason for developing this application using PHP language.

2

1.3 Statement of the Problem

Software development companies create a different kind of REST API services for different

kind of applications. Sometimes they use the same service for many apps. It is hard to manage

all these services separately. According to the Figure1, it shows how complex the unmanaged

systems. Service request goes to multiple servers. This project aim is to solve the above

complexity and manage these services allocation and monitoring.

1.4 Objectives

The objective of this system is to provide a proxy middleware and panel to manage all these

RESTful APIs in a single place. Technically this kind of system is called an API ecosystem.

This is shown in Figure 2. This can easily identify any issue in services. Give analytical results

to the all the services and developers can identify the usage of all the services.

In this system, first of all, administrators should register the APIs in the API store through the

backend panel. The web or mobile app developers need to register first in the system. It is not

Figure 1 - Normal System

Figure 2 - REST API Middleware System

3

only as an individual person, they can register as their company. When they going to build a

new app using RESTful APIs, they can use already registered services or they can register new

APIs in the API store with the approval of administrators. Then developers need to register the

app on the system. The system automatically issues sandbox and live unique app keys and app

secret keys which can identify the app services here. Then developers have to subscribe required

API services which app needs. Admin panel approves this subscription after checking the app

specification. After the approval developers can use this APIs for their apps.

 That middleware log all the services. It can easily identify any issue in the services. Monitor

all the services and do analytics. This system help in protecting services back-end systems from

overexposure.

• Providing middleware proxy for RESTful API service calls

• Increase the security of services using a proxy.

• Providing logging facility API requests and responses.

• Providing analytics for services.

• Providing a backend panel for users (developers) and app registrations.

• After the app register, Users can subscribe API services for their apps.

• Providing sample RESTful API services

1.5 Scope

This system is developed for Rest API service developers to manage their services. Anyone can

download this application from GitHub and change according to their environments. All the

users can log in to the system once it is hosted on a web server with PHP 7.0.0 or higher version.

The database has been created using Eloquent ORM. Therefore admin can change the database

to MySQL, PostgreSQL, SQLite or SQL server as he required. Admin can do all the

administration functionalities by using the back-end panel. They can create all the other

developer accounts. Developer accounts need to be active before login. Developers need to

register their services using a backend panel. That services use in applications which can be a

mobile or web application. This application must have the approval of the system admin.

Middleware proxy works only for the registered RESTful API service calls. That services group

into related categories. This grouping is used to identify the services easily. Logging facility

provides for only user preferences.

I have to assume that there were not any hardware problems in the system. Because I am not

going to consider network hardware. There must be a load balance server and high availability

servers for this kind of system. It is good for the reliability and the best performance of the

services. This system is for web service developers, not for the general users. Then there is no

better user-guided documentation available for the user. All the guides available in the GitHub

repository Wiki. This application is the free and open source with the covering of MIT license.

4

1.6 List of deliverables

 Finalized Middleware proxy

 Finalized Backend panel (Admin panel and developer panel)

 Complete GitHub repository with the public access.

 Few samples RESTful API services working through middleware

Middleware proxy and the backend panel are consists of this application. Other RESTful API

services are created on a separate application.

1.7 Limitations

This system most suitable for JSON content type RESTful web services. The speed of the

system depends on the server specifications. This system should be suitable for HA servers.

Otherwise if the main system failure cause to full system failure. There should be a method to

minimize the network traffic. Otherwise, the response will be a delay. Need a little Laravel

framework knowledge to deploy. Working database types are MySQL, PostgreSQL, SQLite or

SQL. For Oracle Database, there should be to install an additional library to the application.

There is only one admin account for the system. Other accounts are developer accounts. If new

developer user register, then admin must active the developer account. After that, the developer

can use the account. Applications also need to approve by the admin. This restriction is for the

security of the system.

1.8 Structure of the thesis

The second chapter will be the background and literature review. This gives background

information with references to published material in research papers, URLs, magazine articles.

The third chapter, the design and the methodology of the project. The fourth chapter describes

the implementation of the application. Then the fifth chapter describes the test cases and

conclusions of the project.

5

Chapter 2 : Background and Literature Review

The background technologies and related projects are going to discuss in this chapter. Those

technologies are mostly used in the industry. There are few similar applications in the industry.

2.1 Background

REST API

REST or RESTful [1] web services is a method of providing interoperability between computer

systems on the Internet. This kind of web services allows requesting systems to manipulate and

access textual representations of web resources using a predefined and uniform set of stateless

operations. “REST” was coined by Roy Fielding in his PhD dissertation [2] to describe a design

pattern for implementing networked systems. REST stands for Representational State Transfer,

an architectural style for designing distributed systems. It’s not a standard, but rather a set of

constraints. It’s not tied to HTTP but is associated most commonly with it.

Web Service Middleware

Web services middleware consists of supporting products that work with primary Web services

application or facilitate the functionality of an application and an OS. Sometimes Web services

middleware is also known as Web services management. Web services middleware plays the

"middleman" role in the overall web architecture. This layer can manage things like security or

cross-platform data communications. Web services middleware works like a client and server

architecture where the Web services application is the client and the middleware is the server,

that is, it provides services to the client. This is how many engineers and developers think about

the process when they add Web services middleware to a particular application.

OAuth 2.0

OAuth 2.0 [3] is the industry-standard protocol for authorization. OAuth 2.0 supersedes the

work done on the original OAuth protocol created in 2006. OAuth 2.0 focuses on client

developer simplicity while providing specific authorization flows for web applications, desktop

applications, mobile phones, and living room devices. This OAuth2.0 token issue abstract flow

shown in Figure 3.

6

2.2 Related projects of previous students

REST Data Services and API Manager Framework for PHP (PHPDS)

There was an API manager framework to build REST data services called “REST Data Service

& API Manager Framework for PHP” in 2014 as the MIT project. This project short name was

PHPDS. According to its final report, it was very lightweight, fast, free and open source

framework, which allowed developers to create a web service from databases in a few seconds

without writing any single PHP code. It provides a very attractive interface and user experience

to generate services. The universal SQL was used if developers need custom services other than

create, retrieve, update and delete operations. Different types of authentication mechanisms can

be applied to created data services including social networking authentications such as

Facebook, Twitter and Google authentication. APIs finally can be managed by its versions

using this framework. Developers can host it in their own environment to ensure data security.

It also facilitates developers to concentrate more on end user experience rather than taking their

mind to think out complex backend logic. The main advantage of this framework is it can be

hosted in even a shared hosting environment, which is very low cost than expensive cloud

hosting solutions. Since it is free and open source anyone can use this software without any

cost.

Figure 3 - OAuth2.0 abstract flow

7

Access Control for RESTful Web Services

There was a project called “Access Control for RESTful Web Services” in 2014 as Master of

Science in Information Security project.

Web services are the prominent methodology of communicating data over the network. A web

service accepts an XML based or JSON based request and returns a response according to the

request. RESTful form of web services is a mechanism of exchanging data in compliance with

HTTP protocol. These services may or may not supply confidential information. Information

security has three main aspects – Confidentiality, Integrity and Availability. The data services

which give out potentially secretive information need to be secure from any unauthorized

access. These services can be restricted to a user, a group of users, based on time, etc. This

study is about defining and implementing an extensible access control framework for RESTful

web services. There are quite a number of security frameworks that provide access control

systems in the market. But none of them can be connected to authorize a RESTful web service

out of the box. This framework should be able to connect to any authentication, authorization

and accounting service. This study will further benchmark the new access control framework's

performance in order to position it with the other access control systems in the market.

2.3 Similar systems available in productions

IDEABIZ

IDEABIZ [4] is an online digital enablement API Platform provided by Dialog Axiata PLC,

through which business entities can create applications using the given “API” toolkits or publish

“API”s to enable the use of other services. IDEABIZ is a product of Ideamart under Dialog

Axiata PLC. The Ideamart is a company which tries to promote the latest technology among

schools and universities students. They build a new platform called IDEABIZ which helps to

use Telco web services for newcomers for the developing. This platform is gathered many web

services and users can use them by subscribing to their applications.

MIFE

WSO2.Telco builds on technologies first applied to the successful API-driven solution

developed at Dialog, and Axiata’s have launched Mobile Internet & Fulfillment Exchange

(MIFE) [5], which connects all Axiata OpCos to a central hub, both powered by WSO2

middleware. The overall solution deployed in Sri Lanka has generated huge interest from

thousands of developers whose products and services offered to Dialog’s 9 million customers

have realized a new revenue stream, which is growing 20% every month.

These two systems are in a production environment. IDEABIZ is used by developers and non-

developers for creating simple apps by using its available APIs. MIFE is used by developers

who create internal applications of Dialog Axiata PLC. But there are some issues with them.

When considering in IDEABIZ, the backend panel has some UX and functionality issues. Users

8

hard to find what to do and how to proceed. Some links are broken. When considering in MIFE,

it’s not reliable. MIFE backend panel is the very slow system. It is hard to use waste lots of

time. Many times gives a proxy error for the services and lack of documentation. There is no

any logging mechanism. It is hard to rectify a trouble. These two systems are not the free and

open source.

REST Data Services and API Manager Framework for PHP (PHPDS) is a framework which

can create REST API service by using a panel. It is a simple way to build web service. My

project is not exactly matching with this project because I am not going to create web services.

I am trying to do manage the already created web services. Access Control for RESTful Web

Services project is considered about the only the security of the web service. REST API service

middleware system has a security module, but it is not only targeting the security matter. The

scope is bigger than the previous project.

9

Chapter 3 : Analysis and Design

All the analysis and design methodologies are discussed in this chapter. All the functional and

non-functional requirements are mentioned in this chapter.

3.1 Functional Requirements

Multiple user roles

There are two main roles for the backend panel. They are developer user role and admin user

role. Admin user accounts are predefined user accounts. Admin user should create developer

user accounts. Also, the developer user should have a facility to self-register to the system. Then

admin user should approve the self-registered developer accounts. After that developer users

could log in to the backend panel.

Services

Services mean the REST API services in here. The developer and admin user should have

permissions to register these services in the backend panel by using a URL. After services

registered on the backend, the admin user should have permission to approve the registered

service. Hereafter services should be worked on the system.

Service Group

Set of services related to one single app should be defined as a service group. The user should

have to create a service group before register a service. When registering the services, the user

should assign a service group to the service. The purpose of this service group is easy the control

of services. Every service under one service group should be able to activate and deactivate

using service group.

Application

This system could use for multiple applications. The user should have created an application in

the backend panel for use the services. Then the admin user should approve before using the

created application. Then the user should subscribe required services to that application.

Subscription

The user should assign the service to an application before use it. That is called a subscription.

This subscription should be approved by an admin user. This subscription could be used to

identify which services are used in an application.

10

Create middleware for the services

Services should be managed by this middleware. Authentication mechanism and the log should

be done by this layer. All the limitations and restrictions should be done by this layer according

to the admin approval.

Create backend panel

Admin and developers should use this panel to manage services. Users should log in to this

panel. Then they can easily identify the main things what they have to do by navigating side

menu. This panel should be created very user-friendly manner even the users are developers.

Admin and developers could communicate with each other by using messages on the panel.

Sandbox mode for API services

All the services should have sandbox mode for the development purposes. So testing could be

done by using sandbox mode without affecting the production environment.

Applying security for each service

The services should be authenticated with OAuth2.0. This will increase the security of all the

services.

Log the services

All the services should be log and that data should be accessed easily. All the logs could access

through the panel, no need to login to the server separately. Logs should have written in a

human-readable manner. It will be easy to identify an issue in the services.

Do analyze using logs

Well, formatted log entries should be used for the data analyzing part. This also managed by

the admin panel. Charts will display it clearly.

11

3.2 Non Functional Requirements

User friendliness

This backend panel should have a nice and clear user interface, which provides a great user

experience for all the users. All the CRUD parts should be easy to identify with the related

icons/symbols.

Performance

This system should be created using Laravel 5.5 framework. This is the best framework for the

PHP web industry and it is fast and reliable. PHP 7.1(latest stable version) use in the system.

That is double the speed than PHP 5.6(previous stable version).

Extensibility

This system could be managed by a huge number of applications and services. Not only for

few applications. If the user needs to expand the database using PostgreSQL, SQLite or SQL

server then the user could easily do that changing the database driver of the system because

system this created on Laravel Eloquent ORM.

Maintainability

This system source should in the GitHub version control system. Then all the versions should

be tagged. GitHub is free for open source projects. Fixing bugs and adding new features of the

system should be made easy by branching the source repository and fix them separately and

later merge it with master repository.

Platform compatibility

This system should run on major operating systems including Linux, Windows, Macintosh

and Solaris.

Response Time

The final overall response time of APIs through the middleware should be minimal. This can

be achieved using best practices of the software development by reducing the complexity of

the code.

12

3.3 Use Case Diagram

Figure 4 - Use case diagram

In this system, admin and developer are the main actors of the project. Both of them has the

same tasks except few functionalities. This Figure 4 diagram shows the high-level use case

activities of these actors. Admin can create all the user accounts. Developers could not create

their own accounts because that could be an opportunity for unauthorized parties to access the

system. Admin and developer have a different dashboard to do their functionalities. Admin has

the full responsibility to manage the system.

13

3.4 Use Case Scenario

Following detail, scenarios describe all use cases in the diagram.

Use Case number 1

Use Case Name Login

Purpose Log in to the system

Priority High

Actors Admin, Developer

Precondition -

Basic Flow 1. The user enters username and password.

2. System validate admin username and password.

3. User login to the system.

4. User redirect to their dashboard according to user role

Alternative Flows 2.1 The system rejects to log in to the system.

2.2 Login error message is shown.

Postcondition -
Table 1 - Use Case 1

Use Case number 2

Use Case Name Manage User

Purpose Manage user accounts in the system

Priority High

Actors Admin

Precondition Admin must log in to the system

Basic Flow 1. Create User

1. Admin select “USERS” menu inside the menu.

2. Click on “CREATE NEW USER” button.

3. Fill the user creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new user data.

2. Show User

1. Admin select “USERS” menu inside the menu.

2. Click on created user show button in the list.

3. Show user data.

3. Update User

1. Admin select “USERS” menu inside menu.

2. Click on created user edit button in the list.

3. Fill the user update form.

4. Click on “UPDATE” button.

5. Validate the form data.

6. Update user data.

4. Delete User

1. Admin select “USERS” menu inside menu.

2. Click on “DELETE” button of the user in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. User delete from the system

Alternative Flows 1.5.1 Validation errors in the form.

14

1.5.2 Validation errors are shown in the create form.

3.5.1 Validation errors in the form.

3.5.2 Validation errors are shown in the update form.

Postcondition -
Table 2 - Use Case 2

Use Case number 3

Use Case Name Update Profile

Purpose Update current user profile

Priority Low

Actors Admin, Developer

Precondition Admin must log in to the system

Basic Flow 1. User select “My Account” from the user top menu.

2. Fill the profile update form.

3. Click on “UPDATE” button.

4. Validate the form data.

5. Save profile data.

Alternative Flows 4.1 Validation errors in the form.

4.2 Validation errors are shown in the update form.

Postcondition -
Table 3 - Use Case 3

Use Case number 4

Use Case Name Manage Application

Purpose Manage application in the system

Priority High

Actors Admin

Precondition Admin must log in to the system

Basic Flow 1. Create Application

1. User select “APPLICATIONS” menu on the side menu.

2. Click on “CREATE NEW APPLICATION” button.

3. Fill the application creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new application data.

2. Show Application

1. User select “APPLICATIONS” menu on the side menu.

2. Click on created application show button in the list.

3. Show application data.

3. Update Application

1. User select “APPLICATIONS” menu on the side menu.

2. Click on created application edit button in the list.

3. Fill the application update form.

4. Click on “UPDATE” button.

5. Validate the form data.

6. Update application data.

4. Delete Application

1. User select “APPLICATIONS” menu on the side menu.

2. Click on “DELETE” button of the application in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. Application delete from the system

15

Alternative Flows 1.5.1 Validation errors in the form.

1.5.2 Validation errors are shown in the create form.

3.5.1 Validation errors in the form.

3.5.2 Validation errors are shown in the update form.

Postcondition -
Table 4 - Use Case 4

Use Case number 5

Use Case Name Manage Service Groups

Purpose Manage Service Groups in the system

Priority High

Actors Admin, Developer

Precondition The user must log in to the system

Basic Flow 1. Create Service Group

1. User select “API GROUPS” menu on the side menu.

2. Click on “CREATE NEW SERVICE GROUP” button.

3. Fill the service group creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new service group data.

2. Show Service Group

1. User select “API GROUPS” menu on the side menu.

2. Click on created service group show button in the list.

3. Show service group data.

3. Update Service Group

1. User select “API GROUPS” menu on the side menu.

2. Click on created service group edit button in the list.

3. Fill the service group update form.

4. Click on “UPDATE” button.

5. Validate the form data.

6. Update service group data.

4. Delete Service Group

1. User select “API GROUPS” menu on the side menu.

2. Click on “DELETE” button of the service group in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. Service group delete from the system

Alternative Flows 1.5.3 Validation errors in the form.

1.5.4 Validation errors are shown in the create form.

3.5.3 Validation errors in the form.

3.5.4 Validation errors are shown in the update form.

Postcondition -
Table 5 - Use Case 5

Rest of the use case scenarios in Appendix B.

16

3.5 Database ER Diagram

ER diagram was designed by MySQL workbench tool. That diagram is shown in Figure 5

Figure 5 - Database ER diagram

One service group has many services. One service has many subscriptions. One application

has many subscriptions.

17

3.6 Wireframes

Created some wireframes in Figure 6.

Figure 6 - Wireframes

18

3.7 Tools and Technologies Used for Design

Draw.io

Draw.io [6] is a free online diagram editor for making flowcharts, UML diagrams, ER diagrams,

network diagrams mockups and more. That diagrams can be shared with Google Drive, One

Drive, Dropbox, GitHub and Trello. Not only that but also diagram can be exported as images.

I have created my network diagram using Draw.io website. Network diagrams have more

variety of objects to design the best diagram.

Microsoft Visio

Microsoft Visio [7] is also a software for drawing a variety of design diagrams. This application

is more flexible with Microsoft office packages. I have created my use case diagram and

wireframe using Microsoft Visio.

MySQL Workbench

MySQL workbench [8] is a unified visual tool for database developers. This is a simple

graphical user interface to do the database administrations easily. This provides data modelling,

SQL query development, administration tools and much more. MySQL Workbench is available

for Windows, Linux and Mac OS. This tool can use not only for forwarding engineering but

also reverse engineering. I have created the database ER diagram using MySQL Workbench

software.

19

3.8 Implementation of backend logic

Laravel developments based on MVC pattern. This method is the most used method for

application development. MVC architectural pattern divides an application into major three

interconnected parts. This is done to divide internal representations of information from the

ways information is presented to and accepted by the user. This allowing for efficient code

reuse and parallel development.

1. Models

2. Views

3. Controllers

Models

Models have been created for fetching data from the database. There are models for each and

every table. For example, the user table has Users model. Table relationship is also managed

by the models. These models are used inside of the controllers. Models directly communicate

with the database through the database connection. Every table needs a model. Table names

should be in plural and model names should be in the singular. For example, the “users” table

model name is “User”.

Views

Views are user presentation part. The user can see this part of the code. Laravel blade

template engine used to build this part. All the JavaScript are executed in this layer. CSS and

styling part is also done by views. View are grouped in a folder according to their module

functionality.

Controllers

Controllers are done the middleware functionality of the code. Fetching data from models and

pass them to views by using controllers. User submitted data processed here and transfer them

to models to store or update. All the UI functionalities are categorized into groups and create a

controller. For example user CRUD in the separate file called “UserController”.

In Laravel, there is another functionality called routing. This is done by route file. There are

two route files for web and API. The major functionality of this is mapping the URLs with the

controller. It identifies the request URL and directs that request to the relevant controller. This

request flow described by the Figure 7. The backend panel web request or external API

service request first come into route module and then go to the controller module. Then

request goes to model for fetch data from the database. Then request goes to view or external

web services.

20

Between routes and controller, there is another functionality called middleware in Laravel.

This middleware filters the request and creates the log entries for every route.

Figure 7 - Service Request Diagram

21

Chapter 4 : Implementation

4.1 Introduction

In this chapter discussed the development tools and what are the frameworks used to develop

this REST API service middleware application. It has been much faster and easier to change

the developments by using the following tools.

4.2 Development Tools

Following software tools had been identified to develop the REST API service middleware

application.

1. Apache 2 Web server

2. PHP 7.1

3. MariaDB 10.1

4. PHPMyAdmin

5. PHP extensions : OpenSSL, PDO, Mbstring, Tokenizer, XML

6. PhpStorm IDE

7. Git Version control system

XAMPP

The XAMPP [9] stands for Cross-Platform (X), Apache (A), MariaDB (M), PHP (P) and Perl

(P). It is a simple, lightweight Apache distribution that makes it extremely easy for developers

to create a local web server for testing and deployment purposes. This is very easy to set up the

environment without any installation overhead.

PhpStorm IDE

JetBrains PhpStorm [10] is a commercial, cross-platform IDE for PHP built on JetBrains'

IntelliJ IDEA platform. PhpStorm provides an editor for PHP, HTML and JavaScript with on-

the-fly code analysis, error prevention and automated refactoring for PHP and JavaScript code.

PhpStorm's code completion supports latest PHP versions (modern and legacy projects),

including generators, co-routines, the final keyword, list of foreach, namespaces, closures, traits

and short array syntax. It includes a full-fledged SQL editor with editable query results.

PhpStorm is built on IntelliJ IDEA, which is written in Java. Users can extend the IDE by

installing plugins created for the IntelliJ Platform or write their own plugins.

22

Git

Git [11] [12] is a free and open source distributed version control system designed to handle all

from small to very large projects with speed and efficiency. Git is very easy to learn and also

has a tiny footprint with lightning fast performance. Every Git working directory is a full-

fledged repository with complete history and full version tracking capabilities, not dependent

on network access or a central server.

4.3 Frameworks

Laravel 5.5

Laravel [13], [14] is a free, open-source PHP web framework and intended for the development

of web applications following the model-view-controller (MVC) architectural pattern. Some of

the features of Laravel are a modular packaging system with a dedicated dependency manager,

different ways for accessing relational databases it called Eloquent ORM, utilities that aid in

application deployment and maintenance, and its orientation toward syntactic sugar. Laravel

framework can create amazing layouts with dynamic content, owing to its lightweight templates

and widgets including JavaScript & CSS Code with solid structures. Laravel framework offers

numerous inbuilt functions, which simplifies the development process making it quick and

accessible.

Bootstrap 3

Bootstrap [15] is a free and open-source web front-end library for designing websites and web

applications. Bootstrap's responsive CSS adjusts to phones, tablets, and desktops. It contains

HTML and CSS based design templates for typography, forms, buttons, navigation and other

interface components, as well as optional JavaScript extensions.

jQuery

jQuery [16] is a lightweight, "write less, do more", JavaScript library. The purpose of jQuery is

to make it much easier to use JavaScript on the website. jQuery takes a lot of common tasks

that require many lines of JavaScript code to accomplish and wraps them into methods that you

can call with a single line of code. jQuery also simplifies a lot of the complicated things from

JavaScript, like AJAX calls and DOM manipulation.

23

4.4 Implementation Details

Implementation was started after the designing phase. The code was written in PHP language.

Laravel is the best framework for PHP language which use to develop this application. Database

creation has done by Laravel migrations. The view was created using Laravel blade template

engine. I have used Bootstrap 3 to create the site responsiveness. Then customize the style of

Bootstrap classes. It was developed and tested using XAMPP. Once the module was completed,

source code was committed to GitHub using Git.

4.4.1 Implementation of the database

According to the ER diagram which created using MySQL Workbench, created the Laravel

database migrations. Then run the migrations and create tables in the database. Testing data

seeded by using Laravel seeder files. Then phpMyAdmin was used to view the database while

developing. Figure 8 shows the user table migration file.

Figure 8 - Laravel migration file

24

After table migration test data can be inserted by the seed files. I have created some data seed

files. Figure 9 shows the user table seed file. For the seeding, first of all, truncate the table and

then insert data by using an array. “bcrypt” hash function used for password encryption. Carbon

library which builds in Laravel framework used for date time format.

Created databases were changed by using the phpMyAdmin tool when I needed for developing.

Figure 10 shows the database architecture in the phpMyAdmin tool. It is very flexible Graphical

User Interface (GUI) tool for manage databases. The database has been created type is InnoDB

and collation is utf8mb4_unicode_ci which support Unicode characters with emoji icons.

Figure 9 - Laravel data seed file

25

4.4.2 Implementation of the user interface

HTML, JavaScript and CSS were used to create basic user interfaces. Bootstrap and jQuery

used to extend the design and implement a more user-friendly way. AJAX was used to do

requests without browser refreshments

The Login page has shown in Figure 11 registered and approved users can log in to the backend

panel by using username and password. New developers can register to the system by using the

register button. It directs the user to register page.

Figure 11 - Login Screen

Figure 10 - Database in phpMyAdmin

26

New user registration page screen is in Figure 12. First name, last name, username, email,

mobile number, password and password confirmation are the registration details. The user can

add own avatar image also.

Successfully registered users cannot login to the system at once. The admin must active the

registered user. After that user can log in to the system.

The admin can login to the system by using his credentials at the login page. When admin user

login to the system, he will direct to Dashboard which shows in Figure 13. The admin dashboard

is completed with pending items. Then the admin can easily identify what he wants to do first.

Figure 12 - Register screen

27

All the users are listed in this user list page. Admin user can manage all the developer user

accounts by using the user list view page in Figure 14. There is an active button for each user

to activate the account. If the new user in the pending list then admin can activate their accounts

by click on active switch button. Admin can create a new developer account by the using

“CREATE NEW USER” button on the top of the user list view.

Rest of the user interfaces in Appendix C.

Figure 14 - User list view of Admin

Figure 13 - Dashboard view of Admin

28

4.5 License

This application is free and open source. Any person can get the source code and modify

according to their usage. The MIT License is a permissive free software license originating at

the Massachusetts Institute of Technology (MIT). As a permissive license, it puts only very

limited restriction on reuse and has, therefore, an excellent license compatibility.

MIT License

Copyright (c) 2017 Dasun Dissanayake

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

29

Chapter 5 : Evaluation and Testing

5.1 Introduction

The REST API middleware system evaluation is done by the sharing the system with my co-

workers. There was 23 people have participated in my evaluation. The REST API middleware

system was tested by the black box and white box testing. White box testing was done at the

time of the source code was written including the unit and integration testing. Black box testing

was done using test scenarios.

5.2 Evaluation

A user evaluation is carried out after the completing the project. Following results have been

identified by the users who are working as developers in my office, evaluation which was done

in recent. Application setup, Service Response time, Backend panel performance, Functionality

and Overall performance evaluated by the evaluation form.

I informed my co-workers about the system and I have shared the GitHub link with them and

inform them to use it. Then I create a form for gathering evaluation results from the users. That

form consists of some evaluation questions which can identify the user experience. After

collection the real user data, I came to a conclusion about the system.

Evaluation form structure

 REST API Service Middleware System Evaluation Form

Name: …………………………………………………………………….

Designation: ……………………………………………………………..

Industry Working experience: ……………..

Please rate the following questions in regards to this evaluation. Scale 1-5;

(1)-bad, (2)-poor, (3)-average, (4)-good, (5)-excellent

 1 2 3 4 5

Easy to the download the source code

Easy of the installation

Operating System Compatibility

Backend panel loading time

The consistency of interface of backend panel

User friendliness of interfaces

30

Overall backend panel appearance

Easy of the use of backend panel

The response time of the backend panel

The overall functionality of backend panel

The response time of the services which use the middleware

The overall idea of the system

Comments

…………………………………………………………………………………………………

Finally, I have created a Google form [17] for the getting the evaluation results using 23 user

results. The evaluation form is shown in Figure 15, 16 and 17. That was easy to collecting

results than a printed form.

Figure 15 - Google Evaluation Form Page 1

31

Figure 16 - Google Evaluation Form Page 2

32

Figure 17 - Google Evaluation Form Page 3

The evaluation results as follows. Table 9 shows the total rating count of the evaluation

results. Figure 18, 19, 20, 21 and 22 show the percentage value of the evaluation results.

Questions Rating

 1 2 3 4 5

Easy to the download the source code 0 0 2 3 18

Easy of the installation 0 0 1 4 18

Operating System Compatibility 0 0 2 4 17

Backend panel loading time 0 0 1 6 16

Consistency of interface of backend panel 0 0 2 3 18

User friendliness of interfaces 0 0 0 6 17

Overall backend panel appearance 0 0 1 5 17

Easy of the use of backend panel 0 0 0 7 16

Response time of the backend panel 0 0 1 5 17

Overall functionality of backend panel 0 0 1 5 17

The response time of the services which use the middleware 0 0 2 4 17

Overall idea of the system 0 0 1 6 16

Total 0 0 14 58 204

Average 0% 0% 5% 21% 74%

Table 6 - Evaluation result - Rating count

33

Figure 19 - Evaluation result - Application setup

Figure 18 - Evaluation result - Backend panel performance

Figure 20 - Evaluation result - Functionality

34

Figure 21 - Evaluation result - Service Response time

Figure 22 - Evaluation result - Overall performance

35

5.3 Testing

Introduction

Testing is a very important part of system development methodology. The objective of testing

executes a program with the intention of finding present errors in the system which has not

been discovered, in a minimum time and effort. It also helps to identify the correctness,

completeness, security and quality of the developed software.

Unit Testing

Unit testing is the method which smallest testable parts of an application, called units, are

individually and independently scrutinized for proper operation. This can be done manually or

automated. Unit testing is a component of test-driven development. Test-driven development

requires that developers first write failing unit tests. Then they write code and refactor the

application until the test passes.

White box Testing

White box testing is a software testing method in which the internal structure, design,

implementation of the item being tested is known to the tester. It focuses primarily on

strengthening security, the flow of inputs and outputs through the application, and improving

design and usability. White box testing is also known as Clear Box testing, Open Box testing,

Structural testing, Transparent Box testing, Code-Based testing, and Glass Box testing.

Black box Testing

This testing method is known as behavioural testing. That examines the functionality of an

application based on the specifications. It is also known as Specifications based testing.

Independent Testing team usually performs the black box testing. This method of test can be

applied virtually to every level of software testing. Testing, either functional or non-

functional, without reference to the internal structure of the component or system.

 Unit testing

 Integration Testing

 System Testing

 Acceptance Testing

Load Testing

It’s a type of performance testing that simulates real-world load on any software, application,

or website. It examines how the system behaves during normal and high loads and determines

if a system, piece of software, or computing device can handle high loads given a high

demand of end users.

36

5.4 Testing Scenarios for the application

Test cases

Selenium [18] is the best tool for the web application test automation. Then I decided to use it

for the test automation functionalities. Selenium IDE used in the automation testing. It is very

easy to use. Then I have executed the following test cases in Table 8 by using Selenium IDE.

One of the test results is shown in Figure 23.

Test case Test case description Status

1 Register Register a new user Pass

2 Login Log in to the system as a registered user Pass

3 Show dashboard Show dashboard for the logged in user. Pass

4 CRUD Users Create/View/Update/Delete users Pass

5 CRUD Applications Create/View/Update/Delete applications Pass

6 CRUD Service groups Create/View/Update/Delete service groups Pass

7 CRUD Service Create/View/Update/Delete services Pass

8 CRUD Subscriptions Create/View/Update/Delete subscriptions Pass
Table 7 - Test Cases

Figure 23 - Selenium IDE test case result

37

Sample REST API could not test using Selenium IDE. For that, there should be a tool to

create request. REST Client applications can generate requests. Advanced REST Client and

Postman REST client are popular rest client tools available in the software field. Then

Postman REST Client software was used for the API testing. It is a very flexible tool to create

a request.

Load Test

This application mainly works with REST API web services. Then the load test is the most

important test scenario for the web services. Then run a load test using JMeter tool. I have

started the number of threads 50. Then gradually increase the number of treats until 80. It

works fine without any issue for all the scenarios. This test is done on my local machine.

Actually, this load test depends on the server which the application deploy. My local machine

the last result is in Figure 24.

Number of threads (users): 80

Ramp-up Period (seconds): 1

Loop count: 1

Result:

Error percentage: 0%

Throughput: 10.4/sec

This means the system can handle 80 user request within 1 second without any issue. But the

actual throughput is 10.4/sec.

Figure 24 - JMeter Load Test result

38

Chapter 6 : Conclusion and Future works

6.1 Conclusion

The main objective of this project is given a manageable middleware application for

unmanageable REST API web services. That target was achieved by developing REST API

service Middleware. This application is not developed for a single client. This project is a

narrow one. This solution is for all the web service developing companies who wish to organize

their web services. This application is now available in the GitHub repository as a public

repository. Anyone can download the application, hosted on any web hosting server and then

use it. Not only that they can customize the application as they preferred.

This system gives additional security for the public RESTful web services. Log all the request

through the middleware proxy. Then the developers no need to worry about the web services

monitoring.

6.2 Future works

This application needs more optimization for performance required web services. This will be

available with the future release. Report generation is still not a function of this application.

That also will be available in next release. Web service lives monitoring system is a more

effective way to identify the system failures. There are many tools available in the market.

Nagios [19] application is one of the best tools for that kind of tasks. These future releases can

be added to the same GitHub repository. And the users can easily update their repositories.

39

References

[1] S. Patni, Pro RESTful APIs, Apress Media, 2017.

[2] R. T. Fielding, 2000. [Online].

Available: https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[3] "oauth.net," [Online]. Available: https://oauth.net/2/.

[4] IDEABIZ. [Online]. Available: http://docs.ideabiz.lk/welcome.

[5] WSO2. [Online]. Available: https://wso2.com/about/news/

wso2-and-axiata-launch-radical-new-open-source-digital-enablement-platform-for-

mobile-network-operators-wso2-telco/.

[6] "Draw.io," [Online]. Available: https://www.draw.io/.

[7] "Microsoft Visio," [Online]. Available: https://en.wikipedia.org/wiki/Microsoft_Visio.

[8] "MySQL Workbench," [Online]. Available: https://dev.mysql.com/doc/workbench/en.

[9] "XAMPP," [Online]. Available: https://en.wikipedia.org/wiki/XAMPP.

[10] "PhpStorm," [Online]. Available: https://www.jetbrains.com/phpstorm/.

[11] "Git," [Online]. Available: https://git-scm.com/.

[12] S. Chacon, Pro Git, Apress Media, 2009.

[13] "Laravel," [Online]. Available: https://laravel.com/docs/5.5.

[14] M. Stauffer, "Laravel Book," in Laravel: Up and Running:

A Framework for Building Modern PHP Apps, O'Reilly Media, 2016.

[15] "Bootstrap 3," [Online]. Available: https://getbootstrap.com/docs/3.3/.

[16] "JQuery," [Online]. Available: https://jquery.com/.

[17] D. Dissanayake, "Google form of evaluation," [Online].

Available:https://docs.google.com/forms/d/e/1FAIpQLSex22UCWc3m

UPqhSKjxTNnImvIjdTK9fi7G4zLr98hWX1NsdA/viewform.

[18] "Selenium," [Online]. Available: https://www.seleniumhq.org.

[19] "Nagios," [Online]. Available: https://www.nagios.org/.

40

Appendix

A: Download and setup the application

REST API Middleware can be checked out at GitHub following link

https://github.com/dasun4u/rest-api-middleware

The binary releases of the product can be download from the following link

https://github.com/dasun4u/rest-api-middleware/releases

After downloading the product then setup in apache server with PHP and MySQL. Then

download and setup composer using this link https://getcomposer.org/. Then go to the root

folder and run “composer install” command. Then it will download all the dependency

packages.

Then create a new “.env” file by coping “.env.example” file. Then setup the DB connection

and do the configuration in that file. Then run “php artisan migrate”. This command will

create all the tables in the database. Then you should change the database seed files inside

“database/seeds” folder and run “php artisan db:seed” command to insert default data to the

database tables.

https://github.com/dasun4u/rest-api-middleware
https://github.com/dasun4u/rest-api-middleware/releases
https://getcomposer.org/

41

B: The Use Case Scenario

Use Case number 6

Use Case Name Manage Service

Purpose Manage Service in the system

Priority High

Actors Admin, Developer

Precondition The user must log in to the system

Basic Flow 1. Create Service

1. User select “SERVICES” menu on the side menu.

2. Click on “CREATE NEW SERVICE” button.

3. Fill the service creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new service data.

2. Show Service

1. User select “SERVICES” menu on the side menu.

2. Click on created service show button in the list.

3. Show service data.

3. Update Service

1. User select “SERVICES” menu on the side menu.

2. Click on created service edit button in the list.

3. Fill the service update form.

4. Click on “UPDATE” button.

5. Validate the form data.

6. Update service data.

4. Delete Service

1. User select “SERVICE” menu on the side menu.

2. Click on “DELETE” button of the service in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. Service delete from the system

Alternative Flows 1.5.5 Validation errors in the form.

1.5.6 Validation errors are shown in the create form.

3.5.5 Validation errors in the form.

3.5.6 Validation errors are shown in the update form.

Postcondition -
Table 8 - Use Case 6

42

Use Case number 7

Use Case Name Manage Subscription

Purpose Manage Subscription in the system

Priority High

Actors Admin, Developer

Precondition The user must log in to the system

Basic Flow 1. Create Subscription

1. User select “SUBSCRIPTION” menu on the side menu.

2. Click on “CREATE NEW SUBSCRIPTION” button.

3. Fill the subscription creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new subscription data.

2. Show Subscription

1. User select “SUBSCRIPTION” menu on the side menu.

2. Click on created subscription show button in the list.

3. Show subscription data.

3. Update Subscription

1. User select “SUBSCRIPTION” menu on the side menu.

2. Click on created subscription edit button in the list.

3. Fill the subscription update form.

4. Click on “UPDATE” button.

5. Validate the form data.

6. Update subscription data.

4. Delete Subscription

1. The user selects “SUBSCRIPTION” menu on the side

menu.

2. Click on “DELETE” button of the subscription in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. Subscription delete from the system

Alternative Flows 1.5.7 Validation errors in the form.

1.5.8 Validation errors are shown in the create form.

3.5.7 Validation errors in the form.

3.5.8 Validation errors are shown in the update form.

Postcondition -
Table 9 - Use Case 7

43

Use Case number 8

Use Case Name Send Messages

Purpose Communication between the user accounts in the system

Priority Medium

Actors Admin, Developer

Precondition The user must log in to the system

Basic Flow 1. Create Message

1. User select “MESSAGES” menu on the side menu.

2. Click on “CREATE NEW MESSAGE” button.

3. Fill the message creation form.

4. Click on “CREATE” button.

5. Validate the form data.

6. Save new message data.

7. Send to others

2. Show Message

1. User select “MESSAGES” menu on the side menu.

2. Click on received message show button in the list.

3. Show message data.

3. Delete Message

1. The user select “MESSAGES” menu on the side menu.

2. Click on “DELETE” button of the message in the list.

3. Show delete confirmation message

4. Click on “DELETE” Button

5. Message delete from the system

Alternative Flows 1.5.9 Validation errors in the form.

1.5.10 Validation errors are shown in the create form.

Postcondition -
Table 10 - Use Case 8

44

C: Implementation of the user interface

Admin user creation page is shown in Figure 25. Admin can create a developer user using

“Create User” page.

Figure 25 - User create view of Admin

Admin can update created users by using the page in Figure 26. Password reset also can do this

page. If the admin does not need to change the user password then he can leave it blank and

submit.

Figure 26 - User update view of Admin

45

Application list view is shown in Figure 27.

Service group list view is shown in Figure 28

Figure 28 - Service group list view of Admin

Figure 27 - Application list view of Admin

46

Service list in Figure 29.

A confirmation message is shown in Figure 30.

Figure 29 - Service list view of Admin

Figure 30 - Confirmation Modal

