
True Randomness using the
Randomness in Natural

Phenomenon

A dissertation submitted for the Degree of
Master of Information Security

H.K.R.K. Senadheera
University of Colombo School of Computing

Abstract

Patterns and ability to discover them, makes a system predictable. All of the modern
day computers are finite state machines, which make them quite predictable in their
nature. Yet, there are certain applications and cases which require a high level of un-
predictability. This unpredictability, or sometimes referred to as non determinism, is
characterised by Randomness of a system. Randomness attributes to the lack of knowl-
edge on the causality behind a specific output, even if the system is known to fine details.
Randomness is a key requirement in certain critical applications such as cryptography,
simulations and so forth.

Randomness at the most abstract level is bi-fold. They are namely true randomness
and pseudo randomness. True randomness is the ideal form, which is existing in the
surrounding as various phenomenon, such as lightning, thermal noise, Brownian motion
of particles and so forth. Even though these are available and truly random, most of the
times they are far from practicality within the environment of a computing device, due
to various reasons such as difficulty to measure and feed to the device, very low rates of
change, generated bit strings being inadequate in size and so on. Often, capturing true
randomness that is existing in the surroundings requires expensive hardware devices
which are not feasible in the context of personal computing. Therefore, true random
sources are mostly used to provide the initial seeds to a pseudo random generator.

Pseudo randomness on the other hand is the method of generating randomness by
deterministically transforming an initial state called a seed). Often these systems gener-
ate randomness which has equal statistical qualities as true randomness, at much faster
rates. Yet, output of the pseudo random generators almost all the times, repeat after a
certain number of iterations. This is known as the period of a pseudo random generator
and considered a weakness that is inherent in pseudo random generators.

This research study focuses on using the random variables within a typical sys-
tem environment to generate randomness which is void of the inherent weaknesses of
pseudo randomness and close to true randomness in terms of statistical quality. In order
to achieve the said, feasibility of using Floating point, an existing number represen-
tation scheme was evaluated. Initially, a conceptual model was composed to address
the different issues in generating randomness that is close to true randomness. Then
each of the stage in the conceptual model was addressed with different possible strate-
gies. For the generation of bits, a new generator is proposed which uses the concepts of
floating point representation at its core. Then, the performance of the proposed model
was tested using the Statistical Test Suite for Randomness provided by National Insti-
tute for Standards and Technology (NIST) by bench marking the results against some
commonly used and recent pseudo random generators.

i

Acknowledgements

First and foremost, I would like to convey my sincere gratitude to Dr. Kasun de
Zoysa, the coordinator of the Master of Information Security degree programme and
Dr. Chamath Keppitiyagama, my supervisor assigned from the UCSC. Dr. Kasun
deserves all the credit for allowing me to undertake this research project, among dif-
ferent regulations, and the guidelines given to us throughout out academic tenure of
the masters. I fondly remind the kind guidance given by Dr. Chamath regarding the
undertaking of this research project and how he put me on the right track where and
whenever I have deviated from the right course. Most of all, Dr. Chamath was a great
influence to awaken my eyes of wisdom towards having an own philosophy. Without
the immense support of these two gentlemen, this research study would have been a far
distant reality.

At the same time, I must remind and convey my sincere gratitude to my parents, who
have been there for me every time no matter what. Their support and them tolerating
my absence in important matters was immense. Who I am today, is primarily because
of them. Also I would like to remind the moral support given by my brother.

Kasun Vimukthi Dissanayake, who happened to be my supervisor at my office front,
has also been a great mentor to me. I fondly remind his support in various ways such
as allowing me to take day offs where necessary, giving guidelines on how to complete
this tedious task, putting me on the right track in certain cases and by encouraging me
to complete the task. His immense support was a great influence for me to successfully
complete the task.

Last, but not the least, each and every single person including but not limited to
the Director and all the staff members of the UCSC, my batchmates of the MIS degree
programme, my colleagues at hSenid Software International, my friends and my rela-
tives who has been so much generous to offer me their helping hand in various aspects
of successfully concluding this research project, are hereby reminded with my sincere
gratitude. Thank you very much for being there for me. Every bit of their help was
essential for this research study to be a fruitful one.

Kanchana Senadheera

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Prologue . 1
1.2 Background . 1

1.2.1 Randomness . 2
1.2.2 Existence of Randomness . 3
1.2.3 Forms of Randomness . 3

1.3 Motivation . 4
1.4 Objectives and Scope . 5
1.5 Structure of the Thesis . 6

2 Literature Review 9
2.1 Terminology . 9

2.1.1 Randomness . 9
2.1.2 Non-deterministic Behaviour 10
2.1.3 Non-deterministic nature of Randomness 10
2.1.4 Existence of Randomness . 10
2.1.5 Attributes of Randomness - Summary 11
2.1.6 Forms of Randomness . 11
2.1.7 Random Generators . 12
2.1.8 Quality Attributes of Randomness 13

2.2 True-Random Generators . 13
2.2.1 Limitations of TRNGs . 14

2.3 Pseudo-Random Generators . 15
2.3.1 Linear Feedback Shift Register 17
2.3.2 Mersenne Twister . 18
2.3.3 Xoroshiro128+ . 22

2.4 Environmental Randomness . 23
2.5 Evaluation of Randomness . 23

2.5.1 BSI Evaluation Criteria . 24
2.5.2 Unpredictability . 25
2.5.3 Statistical Tests Suite of NIST 25

2.6 Testing Strategy of NIST Statistical Test Suite 27

v

vi CONTENTS

2.7 Common Sources of Bit Strings . 28
2.8 Encryption . 29

2.8.1 Advanced Encryption Standard 30
2.8.2 Block Cipher Modes of Operation 30

2.9 Conceptual Framework . 32
2.9.1 Elaboration of the Concept . 33

3 Methodology 35
3.1 Computational Device as an Environment 35
3.2 Extraction and Visual Inspection . 36
3.3 Distillation . 37
3.4 Transformation . 37

3.4.1 Floating Point Representation System 37
3.4.2 Normalisation of the Binary Number and Exponent 38
3.4.3 Analysis on Attributes of Floating Point 38

3.5 Hardening . 40
3.5.1 Symmetric vs. Asymmetric Key Encryption 40
3.5.2 Message Digest and Hashing 42
3.5.3 Use of Hashing within the Context 42

4 Implementation 43
4.1 Capturing of Data . 43
4.2 Distillation and Transformation . 45

4.2.1 Floating Point Conversion Algorithm 47
4.2.2 Proposed Algorithm - FloatRAND 48

5 Evaluation 51
5.1 Initial Random String Test - Observations 51

5.1.1 Visual Inspection . 51
5.1.2 Statistical Testing on Bitmaps 55
5.1.3 Performance during Testing 56

5.2 Visual Inspections . 58
5.3 Test Results . 60
5.4 Statistical Summarising of Test Results 63

6 Conclusion 67
6.1 Lessons Learnt . 68
6.2 Critical Evaluation . 68
6.3 Future Work . 69

Appendices 71

A Floating Point Converter - Python 71

CONTENTS vii

B CPU Metrics Collector Routine 73

C CPU Metrics Data Insertion Routine 77

D Sequence Differentiation Routine 79

E View Plot Routine 83

F Sample of NIST Test Summary - Initial (S0001) 85

G Sample of NIST Test Summary - Initial (S0500) 89

H Sample of NIST Test Summary - IDLE 93

List of Tables

2.1 Conclusions on Each Hypothesis[34] 26

4.1 Tabulation of CPU statistics within a 10 second window for observation
(Idle Device) . 46

5.1 Total number of Instances per Test Class 62
5.2 Summary of Statistical Measures . 64

ix

List of Figures

2.1 Linear Feedback Shift Register - Tap Positions [16] 18
2.2 Rotation in Xoroshiro . 22
2.3 Electronic Code Book (ECB) Encryption 31
2.4 Cipher Block Chaining (CBC) Encryption 31
2.5 Cipher Feedback (CBF) Encryption 32
2.6 Output Feedback (OBF) Encryption 32
2.7 Conceptual Framework . 33

3.1 Abstract Schematic of a System . 36
3.2 Television Noise generated, during absence of a Signal 39
3.3 Work flow of a Hash Function . 41

4.1 FloatRAND - Generation . 49

5.1 Bitmap of Random String - 1 Digit Seed 52
5.2 Bitmap of Random String - 3 Digit Seed 52
5.3 Bitmap of Random String - 5 Digit Seed (Left) and 7 Digit Seed (Right) 53
5.4 Bitmap of Random String - 8 Digit Seed 54
5.5 Bitmap of Random String - 10 Digit Seed 54
5.6 Variation of the MSE of the Samples in Initial Random String Test (Up

to 10 Digits) . 55
5.7 Variation of the MSE of the Samples in Initial Random String Test . . . 56
5.8 Variation of the Pass Rate of NIST Test Suite of Samples in Initial Ran-

dom String Test (Samples 1 - 500) . 57
5.9 Variation of the Pass Rate of NIST Test Suite of Samples in Initial Ran-

dom String Test (Samples 1 - 6) . 58
5.10 Variation of the Total Hardware Interrupts Count (Between 1500th and

2000th seconds - IDLE System) . 59
5.11 Variation of the Total Software Interrupts Count (Between 1500th and

2000th seconds - IDLE System) . 59
5.12 Variation of the Ratio between the Hardware and Software Interrupts

Count (Between 1500th and 2000th seconds - IDLE System) 60
5.13 Variation of the Ratio between Total Hardware and Software Interrupts

Count (Between 1500th and 2000th seconds - WORKING System) . . . 60
5.14 Variation of the Total Hardware and Software Interrupts Count (Be-

tween 1500th and 2000th seconds - WORKING System) 61

xi

xii LIST OF FIGURES

5.15 Variation of the Pass Rate of NIST Test Suite for Proposed Algorithm,
MT and Xoroshiro128+ . 63

5.16 Variation of the Pass Rate of NIST Test Suite of the bit string generated
by MT and Xoroshiro128+ . 64

Abbreviations

AES Advanced Encryption Standard.

API Application Programming Interface.

CBC Cipher Block Chaining.

CBF Cipher Feedback.

CPU Central Processing Unit.

DRBG Deterministic Random Bit Generator.

ECB Electronic Code Book.

HTTP Hypertext Transer Protocol.

IV Initialisation Vector.

JSON JavaScript Object Notation.

LCG Linear Congruential Generator.

LFSR Linear Feedback Shift Register.

MSE Mean Squared Error.

MT Mersenne Twister.

NIST National Institute for Standards and Technology.

OBF Output Feedback.

PC Personal Computer/Computing.

PRNG Pseudorandom Number Generator.

RAM Random Access Memory.

SFMT SIMD-oriented Fast Mersenne Twister.

SIMD Single-Instruction-Multiple-Data.

xiii

xiv Abbreviations

TRNG True Random Number Generator.

WELL Well Equidistributed Long-period Linear.

WLAN Wireless Local Area Network.

Chapter 1

Introduction

In this introductory chapter, it is focused on elaborating the overview and developing
the rationale behind this study. This chapter is intended to introduce the reader to the
concept of randomness, its need and the absolute purpose of this research study. Further,
structure of this thesis is elaborated toward the latter part of this chapter.

1.1 Prologue

Human brain is known and identified to be an extraordinary organ among all of the
known living beings to date. It has been identified to be capable of doing many different
things and among them pattern recognition ability is known to be one of the most
prominent, and also one of the prominent obsession. This ability and the obsession has
led the human being to further expand the attempts to discover knowledge with the use
of patterns and correlations.

Patterns and ability to discover them, makes a system predictable. This was abso-
lutely necessary for most cases and applications. The availability and discover-ability of
patterns in different systems, has paved the way to discover vast amounts of knowledge,
causing many different advancements in each discipline. However on the contrary, this
has led to some other systems to be less reliable. Certain areas in computing especially
cryptography, relies on the attribute of the system being unpredictable. For the case
of cryptographic systems, more the system is predictable, more vulnerable it would be.
This, and some other applications requirements such as in simulations and so forth have
craved for systems to be random in their behaviour.

1.2 Background

Throughout the early parts of the known history of mankind, chance and randomness
were knitted together with fate. There are number of historic evidences that suggests
that people threw dice to decide the fate which later has evolved into games of chance.
Some of these games are spanned even to date. Also, evidences also suggest that various
methods existed in most cultures which are attempts to circumvent randomness and fate.

Perhaps, the earliest people to formalise odds and chance are believed to be Chi-
nese people, 3000 years ago. Historic evidences from Greece suggests that the Greek

1

2 CHAPTER 1. INTRODUCTION

philosophers had dived deep in discussions on randomness, nonetheless only in sub-
jective forms. It took time until the 16th century to initiate formalisation of the odds
associated with various games of chance, by the Italian mathematicians. In the 19th

century the concept of Entropy was introduced. With this and the invention of cal-
culus was highly positive impact on the study of randomness. Then during the early
part of the 20th century, formal analysis on the randomness has started to grow rapidly
and steadily with proper mathematical foundations based on probability. In parallel,
quantum mechanics changed the scientific perspective on determinacy and ideas of al-
gorithmic randomness started to surface.

Due to the lack of scientific knowledge it has been long believed that randomness
is comprehended to be an obstacle. Since deliberate introduction of randomness into
computations was understood as an effective way for designing better algorithms, this
has started to change. Ironically in certain cases, the best deterministic methods were
outperformed by the randomisation algorithms.

There is a large number of applications such as cryptography, gaming, sampling,
simulations and so forth, mainly in the domains of computing and statistics. Specially in
cryptography, security of certain algorithms are entirely dependent on the seeds which
are used as inputs and these seeds are generated using some form of randomness. At
the same time, certain statistical applications which include but not limited to sampling
and Monte-Carlo simulations needs some random data which are of heavy volumes.
An parallel to these, it is also quite important that any form or generation be as fast as
possible. However, it is generally accepted that generating complex and purely random
numbers in large volumes at high speeds it the ideal combination which is far less
feasible because these are conflicting requirements.

1.2.1 Randomness

Randomness in general sense could be comprehended as absence of pattern or pre-
dictability in events. In fact, a sequence of symbols or events which is deemed random
does not stick to any tangible patterns. Popular examples of random events include
flipping a fair coin and rolling a fair dice. The output of such events are believed to
be truly random, hence provides the base for many cases and experiments. Apart from
that, there are certain other phenomena which could be observed in our surroundings
are also widely accepted to be random. Brownian motion, thermal noise and so forth
could be considered as examples for such. Most other microscopic phenomena also
are widely being used in different levels of abstractions, to generate certain forms of
randomness.

Lack of patterns is believed to be true for most of the cases which are taken individ-
ually yet, in most of the cases as the process that generates the aforesaid randomness
is repeated over a large number of iterations, the sequence starts to appear to be more
and more predictable. When rolling two dice for an instance, the occurrence of any
particular event is unpredictable, yet a sum of 7 will occur twice as often as 4. This is

1.2. BACKGROUND 3

a prime example that highlights the fact that predictability of a system is dependent on
the amount of information that is available regarding the system. With this perspective
it could be concluded that randomness not mere Haphazardness, but a measure of out-
comes. In fact, randomness is closely tied with concepts of Probability and Information
Entropy.

The fields of mathematics, probability, and statistics use formal definitions of ran-
domness. In statistics, a random variable is an assignment of a numerical value to each
possible outcome of an event space. This association facilitates the identification and
the calculation of probabilities of the events. Random variables can appear in random
sequences. A random process is a sequence of random variables whose outcomes do
not follow a deterministic pattern, but follow an evolution described by probability dis-
tributions. These and other constructs are extremely useful in probability theory and the
various applications of randomness.

1.2.2 Existence of Randomness

The question Does randomness truly exist? is arguably one of the most popular question
among scholars from many different disciplines. There seem to have different distinct
philosophical strongholds which are considering different perspectives on randomness.
However it is widely accepted that randomness is an attribution to the property of lack
of knowledge on the causality of a phenomenon. Randomness is not a cause that results
in different effects. Yet it is erroneously stated more often. In that sense, it could be
safely concluded that as long as there exists some phenomena which the human being
possess no knowledge of, there exists randomness. This could also be defined and
portrayed using the relativity.

1.2.3 Forms of Randomness

Modern day, there are mainly two different forms of randomness, which are based on
different sources. Those are namely True Random Number Generator (TRNG)s and
Pseudorandom Number Generator (PRNG)s. Comparison between these two could be
easily done by considering a simple flipping of a fair coin. It is widely accepted that flip-
ping a fair coin demonstrates random behaviour. There are two approaches to use these
flips as random. First, the coin could be flipped whenever there is a need of random
binary result. Here, the source of randomness is provoked on-demand and the result is
used. This is how the TRNGs theoretically function. That mimics getting the generator
to flip the coin on-demand. However, it is physically infeasible to bring such macro-
scopic phenomenon to computers. Hence, additional hardware devices and sophisti-
cated computer programs are utilised in capturing certain microscopic phenomenon
and using those metrics to generate random numbers.

The other approach is to have the coin flipped a large number of times previously
and their records are collected into a collection. Now, whenever there is a requirement

4 CHAPTER 1. INTRODUCTION

of a random binary result, one could query the data set for the next random bit. This
approach very closely mimic the behaviour of a PRNG. Instead of a large finite data
set, almost all modern PRNGs have an algorithm which is switching between a very
large number of states, which are determined by and highly sensitive to the initial con-
dition/input (also known as seed).

1.3 Motivation

It is experimentally proved that PRNGs are performing quite well. In fact in certain
aspects, PRNGs appear to have outperformed most of the TRNGs. Yet there are cer-
tain inherent weaknesses are known to be associated with them. One such is that they
are periodic i.e. after a certain number of iterations, the sequence that is generated is
repeated. Even though these numbers are ranging from 2127−1 to 219937−1 and even
beyond that. Still, it is important to take into account the fact that computational power
is also advancing at exponential rates. There is a growing argument that binary comput-
ers based on finite state machines are reaching their limits of performance envelopes.
Still it is uncertain that it would occur in the near future. At the same time, there are
new advancements in computing such as Quantum Computing. These at the moment
are theoretically promising a new, powerful breed of computational devices. There is a
chance that, PRNGs might fall short of the revised statistical requirements and testing
criteria, based on the advancements of computing.

Being Cryptographically Secure is another important attribute of a better RNG.
Even though there is a number of PRNGs available, most of them fall short in testing for
cryptographic security. The reason why this is quite important is that random numbers
are used in many cryptographic applications quite often. These include key genera-
tion, nonce values, salts in certain signature schemes and so forth. Also, the quality
requirements that each application demands would be different from one application to
another. Only a handful is being used and available in cryptographic applications. This
is another major problem that PRNGs suffer from.

On the contrary, the counterpart TRNG is also suffering from known lapses and
weaknesses. Even though the TRNGs provide statistically high-quality random bits,
performance have been a major issue. Due to the high-end technological requirements
and the portability issues introduced by such hardware devices, it is quite difficult to
effectively employ the TRNGs specially in the context of personal computing, where
compactness is deemed to be quite important. Apart from that, since TRNGs are based
on physical phenomena, TRNGs in most of the cases are suffering from falling short
of the volume requirements. It is quite time consuming to generate large volumes of
random data, due to the fact that effective generation rate of the TRNGs are actually the
rate of change in the physical phenomenon which is being monitored by the particular
TRNG. Since these are mostly microscopic phenomena, the rates that which they are
changing are quite low, giving a low frequency of change.

Therefore it is essential to look for sustainable options which offer better flexibility

1.4. OBJECTIVES AND SCOPE 5

to suite the environment and the task being performed, while preserving the prime at-
tributes and requirements of randomness. Also it is quite important to take the property
of being cryptographically secure, into account during the discovery of alternatives.
This research is intended to attempt to discover opportunities to fill that gap, by eval-
uating the system environments for possible alternatives, under the scope mentioned
below.

1.4 Objectives and Scope

The primary objectives of this research study are

1. to explore and identify the possible sources of randomness within the system and
its surroundings.

2. to identify and establish transformation strategies (hereafter referred to as Distil-
lation) which are required to improve the complexity and volume.

3. to identify and establish the encryption strategies (hereafter referred to as Hard-
ening) which are required to meet the cryptographic security requirements.

4. to identify evaluation strategies to assess the quality of the outputs.

5. to assess the quality of the outputs based on the complexity and volume require-
ments in order to determine the performance of the system.

It is important to take note on the following points regarding the scope of the study,
as there are heaps of studies which are based on different perspectives, which have
opened up a number of different paths to proceed.

• The domain of the study is restricted to Computing. There also, the primary focus
is on the context of Personal Computing.

• The system being evaluated is as established in the latter part of the study. To
briefly elaborate, the term System refers to the computational device being taken
into consideration.

• The behaviour of the system is considered and activities such as network data
flow, Random Access Memory (RAM) usage and so forth are monitored to ob-
server their behaviour in terms of randomness. Along with that, natural effects of
such behaviour is also monitored for the same.

• It is focused on possible sources of randomness that could be found in the near
vicinity of a majority of computational devices. Also, a selected set of device
related metrics also taken into consideration, as sources of randomness. Their
suitability is also evaluated here

6 CHAPTER 1. INTRODUCTION

• Evaluation criteria for the randomness is fixed at the "Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applica-
tions" published by National Institute for Standards and Technology (NIST) un-
der SP 800-22 Rev. 1a. This was chosen due to its wider acceptance among the
community.

• Implementations of any sort are done using the language Python. Python was
chosen as the implementation language due to its expressive syntax and native
support for certain large-date operations.

• Possible options to make the output cryptographically secure by hardening, are
taken into account and evaluated. There the main focus will be on stream ciphers
and asymmetric encryption schemes.

1.5 Structure of the Thesis

This thesis is comprised of the following chapters from this point forth. The content of
each chapter is briefly summarised against each chapter name.

Chapter 2 - Literature Review

This chapter is dedicated to review the current literature and related work, in
order to establish the foundation of the research. Related aspects such as formal
definitions, terminology, existence of randomness, forms and sources of ran-
domness, testing for randomness and so forth are addressed in fine detail in this
chapter.

Chapter 3 - Methodology

Here it is focused on the methodology that the research is undertaken. Formal
establishment of the scope, flow of work in the research, choices of different
strategies for distillation and hardening and the justifications of those choices,
choice of the testing strategy along with the justifications are discussed in this
chapter.

Chapter 4 - Implementation

This chapter is including the details of the implementation of the above method-
ology. Different code snippets used along with their flow of activity and perfor-
mance, other aspects related to implementation are addressed in this chapter.

Chapter 5 - Evaluation

All the details of the test execution results and the interpretation of those results
are summarised in this chapter. It also includes a weighing of merits and demer-

1.5. STRUCTURE OF THE THESIS 7

its of the implementations which would be supportive to the conclusions that
could be arrived at.

Chapter 6 - Conclusion

This chapter is a complete retrospect of the research which has taken three main
perspectives into consideration. Initially, it is focused on the lessons learnt by
the author during the research project. Then, the initial plan and the output
artefacts are compared to determine and scale the success of the research project.
Finally, it has enumerated various possible routes to proceed for future work
related to this research.

Apart from the main body enumerated and elaborated above, the thesis also has the
supplementary documents and written artefacts attached as appendices.

Chapter 2

Literature Review

This chapter is intended to explore the knowledge that is available in the related lit-
erature. The chapter begins with defining the concepts and the terminology. Then,
the existing knowledge is taken into consideration, to explored the related facts and to
develop the background of the study. Based on the knowledge gathered here, the con-
ceptual framework for the research study is formulated and the methodology and the
structure of the study is elaborated, towards the latter part of the chapter.

2.1 Terminology

Here, it is attempted to define and clarify the related terminology which there are a few
yet, they are important. There are many different terms which are alternatively in use
out there hence, it is crucial to clarify each terms, if they are synonymous, related or
not.

2.1.1 Randomness

Randomness is defined in many different ways, taking many different aspects into con-
sideration.

1. Cambridge English Dictionary defines randomness as

(a) "happening, done, or chosen by chance rather than according to a plan"[15].

(b) "by chance, or without being chosen intentionally"[15].

2. According to the Oxford English Dictionary, randomness is "made, done, or hap-
pening without method or conscious decision"[28].

As per the second definition provided by the Cambridge dictionary, the phrase with-
out being chosen intentionally emphasises the fact that, there should not be some entity,
that influences the choice made by the system. Further, the definition given by the Ox-
ford dictionary also emphasises on the fact that absolute lack of bias should be a definite
characteristic of randomness.

It is also worth noting that randomness is not a cause, but an attribute. There
are common misconceptions such as "this was caused by random events" or "this is
attributable to random variation" and so forth, which are ideally false. Randomness is

9

10 CHAPTER 2. LITERATURE REVIEW

a term which is coined to attribute when the cause(s) of a particular phenomenon is not
known, at least yet.

2.1.2 Non-deterministic Behaviour

Behaviour of a system are said to be non-deterministic, even if everything that can be
known about a system at a given time is known with all available details about the
system, it is still not possible to predict the state at a future time. As per the Cambridge
dictionary, "deterministic" is an adjective, which means "Relating to the philosophical
doctrine that all events, including human action, are ultimately determined by causes
regarded as external to the will"[27].

Some of the problems which demonstrate non-deterministic behaviours are mod-
elled and examined in mathematics and computing related applications. According to
Robert W. Floyd, a non-deterministic algorithm is "a conceptual device to simplify the
design of backtracking algorithms"[18]. An arbitrary non deterministic algorithm hav-
ing f (n) levels may not be returning same outcome in different runs. Further, such
algorithm might not complete its execution due to the size of the fixed height tree is
potentially infinite. [18][5]. A prime example of a non-deterministic problem is Prime
Factorisation or Integers [21] i.e. there is no algorithm that demonstrates determinis-
tic behaviour, to derive the prime factors of a given integer [11][20]. Primality test is
an extension of this problem. When both these problems are taken into consideration,
even though we can easily predict the behaviour for small inputs, the system becomes
unpredictable, as the inputs grow in their magnitude. There is no known deterministic
algorithm that would determine if a given number is a prime or not, other than some
repetitive and exhaustive methods.

2.1.3 Non-deterministic nature of Randomness

It is quite evident that the above two subsections 2.1.1 and 2.1.2 describes concepts
which are going hand-in-hand. In fact, for a system to be random, one should not be able
to precisely predict a future state of the system, even if everything is known about the
system to the perfect detail. This leads to the fact that randomness is non-deterministic
i.e. being non-deterministic is an attribute of randomness. More precisely, we could
conclude that randomness implies non determinism[32]. However, the vice versa is not
always true.

2.1.4 Existence of Randomness

"Is randomness really there?" has been a cause of fascination among scientists, philoso-
phers and so forth. Previously we have established the fact that randomness should es-
sentially have absolute lack of bias, which in other words means that there cannot exists
variables that one could manipulate or influence, so that the output becomes predictable.
This could also be interpreted as randomness is not something that would cause another.

2.1. TERMINOLOGY 11

Instead, randomness denotes that we are unaware of what causes the particular effect
that we are taking into consideration. In other terms, either we are unaware of, or there
is no access to variables that determines the effect of the cause in consideration, mak-
ing those variables hidden. If the previous examples such as Brownian motion, chaotic
behaviour of double rod pendulum and so forth, this fact applies on those cases as well.
In that sense, we could conclude that randomness exists[32].

Another perspective one could look at this is that as per Feynman suggests, all
interactions are actually taking place across all possible paths, without being ruled out
by any other criteria. So there is no randomness involved, nevertheless the experimenter
does not have access to absolutely all the information that might affect the set of possible
routes to an outcome[10].

2.1.5 Attributes of Randomness - Summary

Based on the facts which have been discussed up to now regarding defining randomness,
the attributes that true randomness should possess could be itemised as below.

• Unpredictable [15]

• Absolute lack of bias - This is bi-fold

– System should not demonstrate any bias towards a particular state [15]

– It should be infeasible for an outside observer to influence and manipulate
the system to be bias to a particular state. This is feasible as long as an
outside observer lacks in the knowledge of the system. [9]

• Absence of patterns [28]

• Non deterministic[32]

2.1.6 Forms of Randomness

Randomness exists in a variety of forms. It is generally accepted that, randomness could
primarily be sourced by the origins described below.

Environmental Randomness

This form of randomness exists in the surroundings of a system. Certain phe-
nomenon such as Brownian Motion and Noise in signal processing are prime ex-
amples for this form of randomness. Since these systems are either completely
immune to external influences, or even under external influences the system is
not considerably deviated from its non-deterministic state of behaviour, these
systems are ideal in terms of the quality of the randomness. [8]

12 CHAPTER 2. LITERATURE REVIEW

Randomness based on Initial Conditions

The behaviour of certain systems tend to demonstrate an extreme sensitivity to
the initial conditions. For an instance we could consider Double-rod Pendulum.
This is a rod which is rigidly hinged from one end, and has another rod hinged
to the other end of the first rod. The farthest edge of the system which is free
to move, will form a trajectory when the system is given with an external force.
[8]

What is so fascinating about this system is that, a subtle variation of the
initial conditions would cause the final trajectory to be drastically different from
the previous. This behaviour is known as Chaotic behaviour in Chaos Theory.
This system could be used as a source of randomness, as it demonstrates non-
deterministic behaviour. Different initial conditions combined with temporal
separation, will yield metrics which are non-deterministic.

Randomness generated Intrinsically

Randomness could also be generated intrinsically. This refers to the behaviour
of certain algorithms, routines and so forth, which appears to demonstrate non-
deterministic behaviour, given that the initial state of the system is concealed.
Pseudorandom Number Generator (PRNG)s which are in use in most of the
modern day applications, are falling under this classification. This form of ran-
domness is much closely reviewed in later chapters, to determine their perfor-
mance in terms of complexity, volume and quality. [8]

2.1.7 Random Generators

Random generators are machines or systems that would generate a specific type of
an output that which it is random. A prominent example of a random generator is a
Lottery Ball Selector[4] which shuffles the fair light weight balls using a high-speed air
flow streamed into an enclosed chamber. It will output a type Ball which is said to be
random. In most of the cases, the ball being taken out at random is replaced and the
process is repeated. This is considered to have the absolute lack of bias, given that balls
are fair.

In applications related to computing, this is slightly more complex. According to
National Institute for Standards and Technology (NIST) USA, one could comprehend
generating a random bit sequence, as flipping an unbiased coin successively with each
side labelled as 0 and 1 respectively. Due to the coin is unbiased, every flip has a
probability of 0.5 of producing either 0 or 1[34]. Further it is worth noting that these
flips are independent of each other, i.e. previous flip has no influence whatsoever on the
next flip. This is outlined in NIST-SP-800-22 as a perfect random bit generator due to
the facts that,

1. Values are selected independently at each flip. [34]

2.2. TRUE-RANDOM GENERATORS 13

2. Probability on each outcome of the sample space is uniformly distributed, i.e.
there is absolute lack of bias. [34]

It is obvious that this model would not be practical in a cryptographic application.
Yet, the hypothetical output of this idealised generator serves the purpose of a bench-
mark to evaluate the quality of Random Number Generators in general.

2.1.8 Quality Attributes of Randomness

Previously we have arrived at a conclusion that randomness is an attribute of a system.
We are leveraging that attribute to be used in certain other systems. For this goal to be
attained, we mush essentially look for the following quality attributes of randomness.

1. Complexity: Complexity of a RNG is a bi folded attribute. On an attacker’s per-
spective, it should be computationally infeasible to determine the next bit. In that
sense, it should be above a predetermined threshold, and higher the complexity,
better the system would be. On an owner’s perspective, the system should be less
complex to implement and maintain. With the least possible effort, the owners
should be able to implement and utilise the system.

2. Volume: Here it focuses on the amount of random data that could be generated
within a given unit time duration. Higher the volume, better the generator would
be.

3. Performance: Under this attribute, there is a multitude of aspects that need to be
taken into consideration. These aspects would include computational complexity
in terms of time and space, resource usage, security and so forth. This is also
closely related to the volume requirements.

2.2 True-Random Generators

One type of sequence generator is a True Random Number Generator (TRNG). A
TRNG is primarily composed of two main modules. Primarily there is an entropy
source at its core. This source is usually some sort of a microscopic phenomenon that
generate "noise" signals which are of low-level and having statistical random properties.
Examples of such are thermal noise of an electric circuit, the photoelectric effect, in-
volving a beam splitter, timing of user activities or interactions with input devices (e.g.
key strokes or mouse movements) of a computer, quantum effects in a semiconductor
and so forth. Even combination of such could be effectively used. Other component is
there to eliminate or mitigate the weaknesses and to improve the quality of the random
bits. This process is called "distillation process". This distillation process is essen-
tial to eliminate possible flaws of the entropy source which could result in producing
non-random numbers (e.g. very long strings of zeros or ones). [8]

14 CHAPTER 2. LITERATURE REVIEW

The outputs of a TRNG could be used out of the box as a random value. Also, could
be fed into a PRNG as a seed. To be directly usable without any further processing
or transformations, the output of any TRNG should comply with Strict Randomness
Criteria as evaluated by statistical assessments to determine if the actual sources of the
TRNG inputs demonstrate adequate randomness. For an instance, an entropy source
(e.g. electronic noise) might sometimes contain certain regular and repetitive struc-
tures, (e.g. waves, other periodic phenomena) which might have the appearance of
randomness, yet would fall short during statistical tests. [8]

2.2.1 Limitations of TRNGs

Even though TRGNs are promising, in terms of quality and randomness, there are sev-
eral different limitations that would yield them far from usability in applied scenarios.
Some of these limitations could be identified as follows.

To be used in cryptographic applications, unpredictability of the outputs is a must.
However, certain commonly available sources (e.g. date time vectors) are predictable.
Problems as such could be avoided by combining a variety of outputs of different forms
of random sources to be used as the source of a TRNG. However, the resultant might
still be low quality when assessed by statistical tests. Apart from that, generation of
random numbers which are of high-quality might be excessively laborious, leaving such
production unsuitable in cases where a the quantity of required random numbers is quite
large. Hence, PRNGs may be preferred over TRNGs for generation of large quantities
of randomness. [8][7]

On the other hand, most of the phenomenon that has been taken into consideration
above, are microscopic. Hence, it is computationally expensive in most of the cases to
achieve the performance requirements and most of the times fall short in front of volume
requirements. Therefore the required quality attributes are not achieved and they would
not be suitable for certain applications such as Monte-Carlo Simulations and so forth,
which would require large volumes of data. [8]

Another major drawback in TRNG is the requirement of additional hardware which
might introduce new dimensions of problems including costs, compatibility and com-
pactness. Almost all of the personal computing is rapidly floating towards leaner and
more compact form factors. For an instance we could consider a mobile phone. Plug-
ging in a Hardware RNG to such a device could be far from practicality due to vari-
ous reasons including size, power supply, processing power required, portability and
so forth. So, if there is an RNG which targets at Personal Computer/Computing (PC)
devices, these factors should essentially be taken into consideration.

Following is an itemisation of the companies that manufacture the commonly found
TRNGs in modern applications. [3]

• Araneus Alea

• ComScire

2.3. PSEUDO-RANDOM GENERATORS 15

• Entropy Key

• Fox-IT Fox RandomCard

• ID Quantique

• OneRNG

• BitBabbler

• ProtegoST

• ubld.it TrueRN

• Real Random EaaS

Detailed and in-depth examination on these generators are left out from this point
forth so as to confine the scope of this study.

2.3 Pseudo-Random Generators

The other type of generators is Pseudorandom Number Generator (PRNG)(also referred
to as Deterministic Random Bit Generator (DRBG))[12]. This at the core is an algo-
rithm that outputs sequences of numbers whose properties approximate the attributes of
random sequences. A PRNG generates multiple “pseudorandom” numbers with the use
of one or more inputs which are also referred to as seeds. The seed should essentially be
unpredictable for this to be utilised in contexts that demands unpredictability. Hence,
by default, a TRNG should be coupled with PRNGs. [8].

The outputs of a PRNG are a deterministic function of the seed being used. This
causes the ideal randomness of the generator to be confined to the seed generator be-
ing used. The term pseudorandom is derived from the deterministic behaviour of the
process. Since each element of a pseudorandom sequence could be regenerated using
the initial seed, saving the seed is adequate and necessary if it is required to validate or
regenerate a previous random sequence [8].

A key weakness of PRNGs is repetition and patterns. Almost all the PRNGs would
repeat their sequence after some n number of outputs. Lower the value for n, more the
system is vulnerable and predictable. For the PRNG to be considered Cryptographically
Secure, the value of n should be higher. This property is inherent to all the PRNGs.
This is why a common form of attack of keeping track of the numbers of the PRNG is
possible. However, when the value of n becomes extremely large (e.g. a power of two),
it would become temporally infeasible to keep track of each number. Hence it would
generate outputs with the required robustness.

In practice, the output from most of the commonly used PRNGs demonstrate certain
errors causing them to fail statistical pattern-detection tests. These include [8]:

16 CHAPTER 2. LITERATURE REVIEW

• Shorter periods than expected for certain initial states (also known as weak seeds)

• Inconsistent degree of distribution, when larger quantities are generated

• Existence of correlation among successive values

• Outputs with poorly distributed dimensions

• The distribution of the distances between where certain values occur vastly differ
from those in a distribution of a random sequence.

However, pseudorandom numbers in most often cases appear to demonstrate better
randomness than random numbers obtained from physical random sources. If a pseu-
dorandom generator is constructed with adequate care, each value in the sequence will
contribute to add more randomness to the subsequent value. Such transformations in
series are capable of eliminating the statistical auto-correlation shared among input and
output. Thus, the outputs of a PRNG may tend to demonstrate better statistical qualities
while being faster in generation, than a TRNG. [8]

There are many different PRNG algorithms and systems which are in use in the
modern day computing applications. Some of these could be enumerated as follows
[3].

• Middle-square method (1946)

• Lehmer generator (1951)

• Linear Congruential Generator (LCG) (1958)

• Lagged Fibonacci Generator (LFG) (1958)

• Linear Feedback Shift Register(LFSR) (1965)

• Wichmann–Hill generator (1982)

• Rule 30 (1983)

• Inversive Congruential Generator (ICG) (1986)

• Park-Miller generator (1988)

• MIXMAX generator (1991)

• Add-with-carry (AWC) (1991)

• Subtract-With-Borrow (SWC) (1991)

• Maximally periodic reciprocals (1992)

• KISS (1993)

2.3. PSEUDO-RANDOM GENERATORS 17

• Multiply-with-carry(MWC) (1994)

• Complementary-Multiply-With-Carry(CMWC) (1997)

• Mersenne Twister(MT) (1998)

• Xorshift (2003)

• Well Equidistributed Long-period Linear(WELL) (2006)

• A small noncryptographic PRNG (JSF) (2009)

• Advanced Randomization System (ARS) (2011)

• Threefry (2011)

• Philox (2011)

• SplitMix (2014)

• Permuted Congruential Generator (PCG) (2014)

• Random Cycle Bit Generator (RCB) (2016)

• Xoroshiro128+ (2018)

Out of these, Linear Feedback Shift Register (LFSR) (1965), Mersenne Twister
(1998) and its selected varieties and Xoroshiro128+ (2018) are considered in the fol-
lowing subsections for detailed analysis. These choices are justified under the corre-
sponding subsection.

2.3.1 Linear Feedback Shift Register

In the simplest form, a Linear Feedback Shift Register (LFSR) (also known as Taus-
worthe generator) is a Shift Register, that will derive its next state based on the im-
mediate previous state. Even though this is susceptible to many vulnerabilities and
deviations from the standards of true randomness with cryptographic security, this con-
cept has paved way to many different implementations and innovations in PRNGs such
as Linear Congruential Generator (LCG)s [16].

Basic Implementation

The absolute fundamental implementation is based on the most common bit-wise op-
erator XOR. A popular and simple variety of LFSR is Fibonacci LFSR. Here, certain
bit positions are predetermined to be affecting the next state. These predetermined
positions are called Taps. Current bit at each tap is sequentially XORed together,
would be the next bit, which will prepended after shifting the whole register by one
bit position[16]. This could be graphically depicted as follows (figure 2.1).

The same implemented using Python is as follows.

18 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Linear Feedback Shift Register - Tap Positions [16]

import numpy as np

class LSFR:
def __init__(self, seed, l = 16):

seedBin = format(seed, '0{0}b'.format(l))
regTmp = [int(e.encode('ascii')) for e in seedBin]

self.reg = regTmp[(len(regTmp) - l):]

def next(self):
l = len(self.reg)
nb = self.reg[l - 6] ^ self.reg[l - 4] ^ self.reg[l - 3] ^ self.reg[l - 1]
self.reg = ([nb] + self.reg)[:l]
return nb

Listing 1: Python implementation of Fibonacci LFSR

Performance and Caveats

Due to the inherently fast nature of the core operations being used, LFSRs are known
to be highly performant in terms of the speed of generation, which makes them use-
ful in applications that requires fast generators. Moreover, the resultant bit sequence
demonstrates a considerable statistical quality. Yet, it suffers from the major weak-
nesses enumerated below.

1. LFSR generates a deterministic output stream. Given that the present state of the
LFSR along with the positions of taps, one could derive the next states easily.

2. Output streams are reversible; a LFSR with mirrored taps enable regenerating the
output bit sequence in the reverse order of the original string.

2.3.2 Mersenne Twister

Mersenne Twister (MT) is a 623-dimensionally equidistributed uniform pseudorandom
number generator. The most commonly used version of the Mersenne Twister algo-
rithm is based on the Mersenne prime 219937− 1 (hence the name). This is precisely
the period of the particular implementation. The algorithm is based on a definition of
a k-distribution as a very reasonable definition of randomness[23]. This was chosen
mainly due to that fact that this is one of the most commonly adopted random genera-
tor in many applications and libraries including but not limited to Microsoft Excel[25],
MATLAB[22], PHP[29], Python[31][30], C++ (V.11 and forth)[14] and CUDA[26].
As for the pros and cons, following could be enumerated [23].

2.3. PSEUDO-RANDOM GENERATORS 19

Pros

• Licensed permissively and royalty-free for all of its variants except CryptMT.

• A substantially large interval of 219937−1 (in MT19937 implementation)

• Included in many programming languages and libraries.

• Passes a variety of statistical tests, including but not limited to the Diehard tests
and a majority of TestU01 tests.

• k-distributed upto 32bit for each k in 1≤ k ≤ 623

• Generally faster than other methods. A study indicates that the Mersenne Twister
is capable of generating 64-bit floating point random numbers about 20 times
faster than the RdRand (a hardware-implemented instruction set which is based
on the processor).[33]

Cons

• Relatively large state buffer(2.5 KiB), (TinyMT variant is to overcome this prob-
lem).

• Mediocre throughput as per the modern standards (SFMT variant is to overcome
this).

• Multiple instances that differ only in seed value (but not other parameters), are not
considered to be suitable for Monte-Carlo simulations, which require different
and independent random generators. However, there exists some techniques of
choosing multiple sets of parameter values which are void of such problems.

• Could take a considerably long time before it actually starts generating output
that passes randomness tests, if the initial state is lacks statistical qualities of true
randomness. This is particularly if the initial state is composed a large number
of 0’s. This is also known as the Zero-excess Initial State. Consequentially, with
closely similar initial states, will output sequences which are almost same for a
large number of iterations, before diverge from the similarity eventually. Update
for MT published in 2002 has improved the initialisation, so that such initialisa-
tion states were yielded unlikely.

• All implementations except CryptMT variety, are considered to be not crypto-
graphically secure. This is due to the fact that observing an adequate number of
iterations (624 in the case of MT19937; size of the state vector from which sub-
sequent iterations are generated) will enable an attacker to predict all the future
iterations. This matter is further discussed below with a sample implementation.

In the definition 1.1 of the article, Matsumoto and Nishimura suggest and establish
that

20 CHAPTER 2. LITERATURE REVIEW

"A pseudorandom sequence xi of w-bit integers of period P satisfying the
following condition is said to be k-distributed to v-bit accuracy: let truncv(x)
denote the number formed by the leading v bit of x, and consider P of the
kv-bit vectors

(truncv(xi), truncv(xi+1), . . . , truncv(xi+k−1))(0≤ i < P)

Then, each of the 2kv possible combinations of bits occurs the same number
of times in a period, except for the all-zero combination that occurs once
less often. For each v = 1,2, . . . ,w, let k(v) denote the maximum number
such that the sequence is k(v)-distributed to v-bit accuracy[23].

Mersenne Twister is based on the linear recurrence

xk+n := xk+m⊕ (xu
k | x

l
k+1)A

where k ∈ Z+
0 . According to Matsumoto and Nishimura, "We have several con-

stants: an integer n, which is the degree of the recurrence, an integer r (hidden in the
definition of xu

k), 0≤ r ≤ w−1, an integer m, 1≤ m≤ n, and a constant w×w matrix
A with entries in F2" [23]. Here w is the word length, hence xi ∈ Fw

2 would be word
vectors of length w. Here A is,

A =

 0 Iw−1

aw−1 (aw−2, . . . ,a0)

The term xu

k | x
l
k+1 denotes the concatenation of xu

k and xl
k+1. xu

k is the upper w− r
bits of xk and xl

k+1 is the upper r bits of xk+1. For MT19937, the parameters are set to
values w = 32, n = 624, m = 397, r = 31 and a is chosen such that a = 0x9908B0DF.
[24]

Next, for the initialisation, with a parameter f which initialises the internal state as
follows. Value of f is 1812433253, which is chosen without a particular reason[24].

xi = f · (xi−1⊕ (xi−1� (w−2)))+ i

There exists a tempering process (T), which is intended at compensating for the
reduced dimensionality of equidistribution. The tempering routine is defined for the
Mersenne Twister as

y = x⊕ ((x� u) & d)

y = y⊕ ((y� s) & b)

y = y⊕ ((y� t) & c)

z = y⊕ (y� l)

2.3. PSEUDO-RANDOM GENERATORS 21

Parameters for the above equations take values as u = 11, s = 7, b = 0x9D2C5680,
t = 15, c = 0xEFC60000 and l = 18[23].

However, this version of MT is not considered to be cryptographically secure due to
the fact that tampering process T is bijective. Since then there exists T−1 it is possible
to create an untempering function. If one could record n consecutive outputs of the
Mersenne Twister and untemper them using the function, it would reveal the internal
state of the generator and will enable predicting all future values. The untemper routine
implemented in Python is as follows (Listing 2)[24].

def untemper(y):
y ^= y >> MT19937.l
y ^= y << MT19937.t & MT19937.c
for i in range(7):

y ^= y << MT19937.s & MT19937.b
for i in range(3):

y ^= y >> MT19937.u
return y

Listing 2: Untemper routine of MT, implemented in Python
This is precisely the same steps of temper function, performed in the reverse order.

This routine will make the inner state of the MT instance visible to an attacker, leaving
all the future values of the MT instance predictable [24].

There is a number of varieties of the Mersenne Twister, which are improvements
to the original MT, to make it usable in different specific applications. These varieties
include,

• CryptMT - This variety functions as a stream cipher which is also a cryptograph-
ically secure PRNG. This is patented unlike the other varieties. CryptMT has a
Mersenne Twister at its core. The cryptographic security is provided by stream
encryption[24].

• SIMD-oriented Fast Mersenne Twister (SFMT) - This variety is also based on
the Mersenne Twister which is optimised for Single-Instruction-Multiple-Data
(SIMD) operations specially of 128-bit, which are most common in modern day
computers. This is also the base for the CryptMT. The implementation demon-
strates following characteristics[24].

– Approximately two times the speed of the generic MT.

– Demonstrates better equidistribution than the MT. However it is not as good
as Well Equidistributed Long-period Linear (WELL).

– Demonstrates faster recovery from Zero-excess Initial State than the MT.

• TinyMT - This is a variety that was proposed to overcome the problem caused
by the large state buffer. However due to the significant reduce in the state buffer
to 127-bits, this suffers having a low period of 2127−1. Therefore this is recom-
mended only for applications that is limited in memory[24].

22 CHAPTER 2. LITERATURE REVIEW

2.3.3 Xoroshiro128+

This is one of the most recent PRNGs which is developed by Sebastiano Vigna in collab-
oration with David Blackman. It is identified as an algorithm which has demonstrated
drastic improvements in speed (e.g. generation times well lesser than a nanosecond per
64bit integer) along with significant improvements in statistical quality [37].

Algorithmic Details

A key function in the algorithm is the rotation. This could be graphically depicted as
follows 2.2.

Figure 2.2: Rotation in Xoroshiro

The algorithm is named after its routine of transformations being used. The core
of the algorithm performs XOR, ROtate, SHIft and ROtate, which is the reason for the
name. This routine is performed over two Initialisation Vector (IV)s which will be
replaced after transformation, to the next iteration. Random bit string would be the
arithmetic sum of the IVs, before transformation [37].

Generator initialised with IVs s1 and s2. Each iteration begins by adding the current
values of the IVs to generate the next bit string (εi). Then, s1 is replaced by s1 ⊕
s2, followed XOR with Rotation and Shifting is performed over s1 and Rotation is
performed over s2. At the end of the iteration, the value εi is returned [37].

Statistical Quality and Performance

According to the statements made by the authors,

"It passes all tests we are aware of except for the four lower bits, which
might fail linearity tests (and just those), so if low linear complexity is not
considered an issue (as it is usually the case) it can be used to generate 64-
bit outputs, too; moreover, this generator has a very mild Hamming-weight
dependency making our test (http://prng.di.unimi.it/hwd.php) fail after 8
TB of output; we believe this slight bias cannot affect any application [36].

The algorithm has a 2128 period which is comparatively much less than that of the
MT. Yet, it is capable of generating pseudorandom numbers at a rate which is as high as
1.2 nanoseconds per 64-bit number as claimed by Matt Gallagher, in the study he has
conducted on the random generators used in Swift [19]. The authors of the algorithm

2.4. ENVIRONMENTAL RANDOMNESS 23

also have taken measures to verify the results by testing the algorithm using PactRand
and TestU01.

2.4 Environmental Randomness

As Linus Trovalds outlines in the documenting comments of the source code of the
random generators /dev/random and /dev/urandom

"Computers are very predictable devices. Hence it is extremely hard to pro-
duce truly random numbers on a computer as opposed to pseudo-random
numbers, which can easily generated by using an algorithm. Unfortunately,
it is very easy for attackers to guess the sequence of pseudo-random number
generators, and for some applications this is not acceptable. So instead, we
must try to gather "environmental noise" from the computer’s environment,
which must be hard for outside attackers to observe, and use that to gener-
ate random numbers. In a Unix environment, this is best done from inside
the kernel.[6]

Here, the term Environmental Noise is an interesting topic. By the same, it is re-
ferred to the internal environment of a computer, which is composed of the hardware
platform and the OS platform. However for the case of this study, this concept of
environment has further extended up to the surrounding environment. According to
Trovalds, the sources used in the above random generators were chosen carefully to
demonstrate the following attributes.

• Non-deterministic [6]

• Difficult for an outside observer to access [6]

The first attribute above traces back to the characteristics of true randomness out-
lined previously in subsection 2.1.5. Furthermore, the idea of difficulty for an outsider
to observe, is a relative matter which depends on how much information and probes are
available to the said observer. In that sense, to the eye of an outside observer who does
not possess sufficient information and probes to access a particular system, the system
might appear truly random, given that the system demonstrates other characteristics of
true randomness. This leads to the fact that true randomness in the current context, is
relative.

2.5 Evaluation of Randomness

When choosing a source, model or a system that generates random data, it is primarily
important to determine its quality of randomness. This would require different metrics
of quality. To compare between many different sources of randomness for their quality,

24 CHAPTER 2. LITERATURE REVIEW

it is important that these metrics be comparable. This essentially emphasises the fact
that these metrics should be quantitative and objective.

It is possible to find a handful of practical measures and tests of randomness of a
binary string. Almost all of these tests include measures which are based on statistical
tests, different sorts of transforms and complexity or a combination of these types. For
instances one could consider the use of Hadamard transform that measures randomness.
This suite was proposed by S. Kak and further developed by Phillips, Yuen, Hopkins,
Beth and Dai, Mund, and Marsaglia and Zaman[32].

Among the available tests, the publication with the title "A Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic Applications"
published by the NIST under the publication number NIST Special Publication 800-22,
appears to have gained wider acceptance throughout the community. This document
provides a detailed elaboration of a collection of statistical tests which could be per-
formed over a given potential input data. These tests, according to NIST could be used
in different combinations to evaluate the quality of randomness of the input.

2.5.1 BSI Evaluation Criteria

The Federal Office for Information Security (Bundesamt für Sicherheit in der Informa-
tionstechnik, BSI) Germany, has established a four-fold criteria to asses and rank the
quality of deterministic random number generators[35]. Those could be summarised as
follows.

• K1 – The probability of generated sequences of random numbers being different
from each other should be high.

• K2 – A sequence of numbers which is indistinguishable from ’true random’ num-
bers according to specified statistical tests. These tests should include

1. Monobit test (equal numbers of ones and zeros in the sequence)

2. Poker test (a special instance of the chi-squared test)

3. Runs test (counts the frequency of runs of various lengths)

4. Longruns test (checks whether there exists any run of length 34 or greater
in 20 000 bits of the sequence)—both from BSI and NIST

5. Auto correlation test

In essence, these requirements are a test of how well a bit sequence: has zeros
and ones equally often; after a sequence of n zeros (or ones), the next bit a one
(or zero) with probability one-half; and any selected subsequence contains no
information about the next element(s) in the sequence.

• K3 – It should be impossible for any attacker (for all practical purposes) to cal-
culate, or otherwise guess, from any given subsequence, any previous or future
values in the sequence, nor any inner state of the generator.

2.5. EVALUATION OF RANDOMNESS 25

• K4 – It should be impossible, for all practical purposes, for an attacker to calcu-
late, or guess from an inner state of the generator, any previous numbers in the
sequence or any previous inner generator states.

For cryptographic applications, generators which are meeting the K3 or K4 standard
only would be accepted.

2.5.2 Unpredictability

NIST emphasizes that Random and pseudorandom numbers generated for cryptographic
applications should be unpredictable[34]. Further, it spans the discussion towards
PRNGs and highlights the fact that given that the seed of a PRNG is kept a secret,
next output number of the sequence should be unpredictable, in spite of any knowledge
of the previous random numbers. This is identified as forward unpredictability. Along
with that, it is also important that, given the entire or a part of the sequence of random
numbers generated is known, it should be infeasible to determine the seed used for the
given sequence. This attribute is known as backward unpredictability. There should
not be any obvious or computable correlation between the seed and any of the random
numbers in the sequence [34].

2.5.3 Statistical Tests Suite of NIST

NIST, in their special publication 800-22 highlights a number of statistical tests which
could be applied on a random sequence to assess and compare the sequence to deter-
mine the quality of its randomness. Randomness is widely accepted to be a probabilistic
attribute; i.e., the attributes of any random string can be characterised in terms of prob-
ability. The probable outcome of any statistical evaluation, when applied on a truly
random sequence, is known a priori. This then can be explained in probabilistic terms.
A number of statistical tests are out that could be utilised that which each is evaluating
if particular patterns are present or absent which, if identified, would denote that the
string being considered is not random. Since there is an abundance of tests for evalu-
ating the randomness and its degree of a given sequence, it is not possible to deem that
this finite set of tests is deemed "complete" [34].

Apart from that, SP 800-22 also highlights that the results of statistical testing on
a random sequence requires being interpteted with due care in order to mitigate possi-
ble erroneous conclusions about the generator being tested [34]. According to NIST,
how the test results should be interpreted is extremely sensitive to the sequence and its
utilisation. This matter is discussed in detail later under this section.

A statistical test is specifically composed to evaluate a predetermined Null Hypoth-
esis (H0). In the test suite given by NIST, the null hypothesis being tested is that the
sequence being tested is random. The Alternative Hypothesis (Ha) associated with this
null hypothesis, which in the test suite, is that the sequence is not random. Each and
every test in the NIST suite, has a decision or conclusion derived for whether to accept

26 CHAPTER 2. LITERATURE REVIEW

or reject the null hypothesis, i.e., whether the sequence being produced by the generator
is random or not[34].

For each of tests taken, an applicable randomness statistic should be chosen and
used to conclude if H0 is accepted. Such a statistic would be composed of a dis-
tribution of possible outcomes, under an assumption of randomness. A hypothetical
reference distribution for the selected statistic under H0 would be determined by vari-
ous mathematical models. Then, based on the reference distribution derived, a critical
value is derived. Each test is designed in a manner that generates a test statistic value
with statistical computations upon the sequence under test and, the resultant is com-
pared against the previously determined critical value. For the test statistical values that
exceeds the critical value, the H0 for randomness will be rejected[34].

Statistical hypothesis testing is for generating conclusions. The possible outcomes
of a statistical hypothesis test are two folded. Those are namely,

1. Accept H0 (i.e. the input being considered is random)

2. Accept Ha (i.e. the input being considered is non-random)

How each TRUE situation is related to each possible outcome could be tabulated as
follows (Table 2.1).

TRUE SITUATION
CONCLUSION

Accept H0 Accept Ha (reject H0)

Data is random (H0 is true) No error Type I error

Data is not random (Ha is true) Type II error No error

Table 2.1: Conclusions on Each Hypothesis[34]

There might be a rare case that chooses to reject H0 (i.e. the data stream is not
random). If it is arrived at such conclusion, it is called a Type I error. Similarly, if it
is chosen to accept H0 where the sequence being tested is not actually random (i.e., to
accept that the data is actually random), this case is called a Type II error. The cases to
that accepts H0 when the sequence is really random, and rejects H0 when the sequence
is non-random, are deemed accurate[34].

The probability of a Type I error is being occurred is known as the level of sig-
nificance, a property of the test. This probability (denoted as α) could be computed
before a statistical test is taken. For any of the tests, α denotes the probability that a
sequence would appear to have non-random properties even when a “good” generator
produced the sequence. Most commonly, values of α (as applicable to cryptographic
applications) are about 0.01[34].

The probability of a Type II error (denoted by β) is for any of the tests, the prob-
ability that a "bad" generator would produce a sequence which appears to demonstrate
attributes of quality randomness. Unlike α , β could be any of many different values
as there are many ways that a particular stream shows no randomness, and β is based

2.6. TESTING STRATEGY OF NIST STATISTICAL TEST SUITE 27

on the data stream. Computation of β is quite laborious thank α because of the many
different possibilities of types of non-randomness[34].

These tests primarily aim to minimise the probability of a Type II error. The com-
puted variables α and β are related mutually and also to the size n of the sequence being
tested in a way so that when two of those values are specified, the other could automati-
cally be determined. In general a sample size n and a value for α (level of significance)
are chosen upfront. Then a critical value for a given statistic is chosen in such a way so
that β is smallest. In other words, aa appropriate sample size along with an acceptable
probability of the generator being bad when the sequence demonstrates statistical ran-
dom qualities, are chosen. Then the threshold for acceptability would be chosen so that
the probability of erroneously accepting a sequence is random is the smallest[34].

Each test at its core computes a statistic value, using a function of the data being
tested. Given the test statistic value S and the critical value t, value for α is computed
by

P(S > t ‖ H0 is true) = P(reject H0 | H0 is true)

and the β by

P(S≤ t ‖ H0 is false) = P(accept H0 | H0 is false)

Using the test statistic S, a P-value is calculated to quantify the evidence which are
against H0. For these tests, each P-value is the likelihood that an ideal random generator
would have created a succession, which is less random from the sequence under test,
given the sort of non-randomness that the test is aiming to assess. For P-values equal to
1, the sequence appears to demonstrate statistically perfect randomness as opposed to
P-values equal to 0 indicates that the sequence appears to be completely non-random.
P-values less than or equal to α would make H0 accepted. Otherwise (P-value is greater
than α), H0 is rejected. α is chosen in the range [0.001, 0.01] in general[34].

2.6 Testing Strategy of NIST Statistical Test Suite

The 15 tests described in the NIST statistical test suite can be briefly enumerated as
follows.

1. Frequency (Monobits) Test

2. Frequency Test within a Block

3. Runs Test

4. Test for the Longest Run of Ones in a Block

5. Binary Matrix Rank Test

6. Discrete Fourier Transform (Spectral) Test

28 CHAPTER 2. LITERATURE REVIEW

7. Non Overlapping Template Matching Test

8. Overlapping Template Matching Test

9. Maurer’s “Universal Statistical” Test

10. Linear Complexity Test

11. Serial Test

12. Approximate Entropy Test

13. Cumulative Sum Test

14. Random Excursions Test

15. Random Excursion Variant Test

The NIST publication 800-22 elaborates in detail, how these tests should be under-
taken and the facts and points that needs to be taken into account when the results of
tests are interpreted[34].

2.7 Common Sources of Bit Strings

There are a variety of mathematical components such as constants, functions and so
forth which are yielding infinite strings of numbers. It all begins at the principles of
counting and number theory. There are several different classes of numbers such as
integers (Z), real numbers (R), rational (Q) and irrational (Q′) and so forth. All these
categorisations are based on how they behave when they are graphically depicted on the
Line of Numbers. Out of these, rational numbers which are not integers (i.e. (Q−Z)
and irrational numbers (Q′) are quite interesting in terms of Number Representation in
Digital Circuits. This is because of the properties of binary numbers and their behaviour
in different representations. All of the above numbers ((Q−Z)∪Q′) are having frac-
tions of whole numbers (e.g. 1/2 is also represented as 0.5 which is a part/fraction of a
number). Based on how they behave in decimal number system, they are categorised as
follows.

1. Terminating Decimals - Numbers that has a finite number of places beyond the

decimal point (e.g.
1
2

)

2. Recurring Decimals - Numbers that which its fraction has a whole or part of a
finite numbers, which are recurring as a pattern. There could be two different
types.

(a) The decimal part, called the period, is repeated endlessly (e.g. 3.222...= 3.2̇
and 3.217217...= 3.2̇17̇)

(b) The period has an irregular part followed by a regular part repeated endlessly
(e.g. 0.00522222...= 0.0052̇ and 4.55127127...= 4.551̇27̇)

2.8. ENCRYPTION 29

3. Non terminating/Infinite Decimals - Fractional part is extended infinitely. (e.g.
π = 3.141592653 . . .)

Certain researches highlights the statistically random qualities of numbers such as
the value of Pi (π) which is an irrational number [1]. Furthermore, when these num-
bers are represented in a digital computer, there were several different challenges that
which some of them still exist in certain cases. Today, most common representation of
decimal numbers, used in modern binary computers is Floating Point Representations.
However, it is a widely accepted fact that floating point is not an exact representation
of a fractional value. In reality, floating point representation is an approximation of the
actual fractional value. This result however, yields some interesting results which are
identified and meticulously discussed in section 3.4.3.

In addition to these, enormous amounts of information are being shared in the mod-
ern world. Due to the amount of different types of devices, different connectivity tech-
nologies available for communication over Hypertext Transer Protocol (HTTP) and also
the extensive usage of HTTP for business application development has paved the way
for an environment which is rich of electronic data. Depending on the different proto-
cols technologies being used, large amounts of metadata which are required to estab-
lish, secure, maintain and terminate connectivity between different interfaces are also
included in this electronic data rich environment. So, it is fair to conclude that in such
an environment there could be certain possible sources which their results/output is ran-
dom. The existence of such and if available, how useful they are, needs to be taken into
account. During this, it is important to focus on the following aspects.

• Availability - Whether such data sources are available

• Accessibility - Whether accessing such data sources is feasible

• Mechanisms for extracting data from such sources

• Mechanisms for distillation of such data

• Mechanisms for hardening of such data so that they are useful in security critical
applications such as cryptography

2.8 Encryption

Encryption is the process of concealing the true meaning of a message by means of
substitution and transposition or some other mathematical means such as trapdoor func-
tions. There is a heap of research and literature that could be considered in this aspect.
However, the focus on encryption for the scope of this study, is to use it in the process
of hardening the generated output to meet the cryptographic security requirements.

30 CHAPTER 2. LITERATURE REVIEW

2.8.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) (also known as Rijndael) is a standard for
encrypting data communications accepted by the NIST in 2001. AES infact is a re-
finement of the Rijndael block cipher Vincent Rijmen and Joan Daemen, two Belgian
cryptographers. Rijndael encompasses a family of encryption schemes that supports a
multitude of block and key sizes. For AES, three members of the Rijndael family were
chosen by the NIST, with block lengths of 128, 192 and 256 bits.

AES encryption is four staged process which could be outlined as follows.

1. KeyExpansion — round keys are derived from the cipher key using Rijndael’s
key schedule. AES requires a separate 128-bit round key block for each round
plus one more.

2. Initial round key addition: AddRoundKey — each byte of the state is combined
with a block of the round key using bit wise xor.

3. 9, 11 or 13 rounds for each key length respectively:

(a) SubBytes — a non-linear substitution step that replaces each byte based
on a lookup table.

(b) ShiftRows — a transposition step where the last three rows of the state
shifted to right in a cyclic manner.

(c) MixColumns — a linear mixing operation which operates on the columns
of the state, The four bytes of each column are combined here.

(d) AddRoundKey

4. Final round (giving a total of 10, 12 or 14 rounds for each key size):

(a) SubBytes

(b) ShiftRows

(c) AddRoundKey

2.8.2 Block Cipher Modes of Operation

Block ciphers have various modes of operation, which could be enumerated as follows.

1. Electronic Code Book (ECB) - This is the simplest form that a block cipher could
be employed in. There, each input block is encrypted in isolation from the pre-
vious blocks. Due to this isolation of blocks in operation, certain properties of
the plain text such as regions, might be preserved in the cipher text. Hence this
is considered to be weak. Yet, this is useful in certain communication channels
which are inherently non-reliable, due to the fact that communication errors are
not propagated. The process could be graphically depicted as follows (Figure
2.3).

2.8. ENCRYPTION 31

Figure 2.3: Electronic Code Book (ECB) Encryption

2. Cipher Block Chaining (CBC) - This model introduces an additional step that
includes an XOR operation on the plain text block and an IV, that which its output
is encrypted with the key. For each successive blocks, the previous block’s cipher
text becomes the IV. The process could be graphically depicted as follows (Figure
2.4).

Figure 2.4: Cipher Block Chaining (CBC) Encryption

Even though this effectively ties each block together, in order to to allow decryp-
tion of the message by the recipient, the IV should be shared with the recipient. If
an intruder manages to predict the IV, then the encryption would not be resistant
to chosen plain text attacks1. If the IV is chosen to be some input such as a user
password, then it requires to be encrypted using a separate key. IVs should be
changed after some time, so as to not to make the system vulnerable to chosen
plain text attacks. Also, an isolated error of a single bit during the transmission
of the cipher text would be propagated across the rest of the cipher text, yielding
the whole cipher text useless. in decryption.

3. Cipher Feedback (CBF) - This mode of operation is quite similar to the CBC,
except for that the IV for each iteration/block is encrypted with the key. Then, the
resultant is XORed with the plain text block, which will provide the IV for the
next iteration. The process could be graphically depicted as follows (Figure 2.5).

This is also vulnerable to error propagation during encryption, due to the tying of
blocks using the cipher of each block.

1a cryptanalyst can choose arbitrary plain text data to be encrypted and then he receives the corre-
sponding cipher text

32 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Cipher Feedback (CBF) Encryption

4. Output Feedback (OBF) - The IV is repeatedly encrypted to provide the IVs for
each successive blocks in this mode. This is also a slight variation of the CBF
mode discussed previously. The process could be graphically depicted as follows
(Figure 2.6).

Figure 2.6: Output Feedback (OBF) Encryption

If an error occurred in a single bit of plain text or cipher text (for an instance due to
a transmission error), only one corresponding cipher text or respectively plain text
bit is damaged as well. This could however be recovered using various correction
algorithms to restore the previous value of damaged parts of the message. The
most critical drawback of OFB is that the state of the system might be repeated
due to the repeated encryption of the same plain text. Even though the probability
of occurring such situation is quite low, in such a case the plain text blocks will
be encrypted with the same corresponding state as previous.

2.9 Conceptual Framework

Based on the knowledge established in the previous sections, the following conceptual
framework is formulated to be used in establishment of the scope and further develop-
ment of the research project (Figure 2.7).

2.9. CONCEPTUAL FRAMEWORK 33

Figure 2.7: Conceptual Framework

2.9.1 Elaboration of the Concept

The research is based on the internal and external phenomena that are observable inter-
nally. These sources are monitored and recorded during the Extraction. Caution must
be exercised when choosing these sources to ensure that an external manipulator has
no knowledge or access (ideally) or the least practical knowledge and access. Based
on these criteria, the observations recorded are filtered during the Visual Inspection and
Filtering stage.

The data collected from the filtered sources would undergo a distillation process to
extract the exact values and filter them based on the criteria demanded by the trans-
formation work flow, which would play the role of seeds which would undergo the
Transformation, which would magnify the values that has been distilled. These trans-
formed data would be taken into evaluation as inputs to the statistical tests suite. To
meet the cryptographic security requirements, the data could optionally be hardened by
the hardening strategies identified and assessed in the corresponding section 3.5.

Chapter 3

Methodology

This chapter is dedicated to elaborate the design and the methodology of execution
of the research project. The chapter commences with a thorough elaboration of the
research methodology, followed by the detailed description of the sources of data which
have been taken into consideration. Afterwards, the details of data collection strategy,
data sanitisation and transformation strategy is described. Towards the conclusion of the
chapter, the resultant data is summarised into appropriate visual forms of presentation.

3.1 Computational Device as an Environment

According to the Systems Thinking, it is possible to portray the Computer as a system.
Typically a system,

• has predefined objectives.

• has components interacting with each other.

• components cooperate and coordinate with each other to achieve the objectives.

• enclosed by a boundary.

• might or might not interact with the surrounding environment.

An abstract schematic that graphically depicts this outline could be sketched as in
figure 3.1. It is quite straightforward that this approach enables identifying two distinct
partitions of the space that the system exists. Those are namely,

• Internal Environment - The space that which is within the system’s boundary

• External Environment - The space that which is out of the system’s boundary

This research identifies both of these partitions as the Environment. The research
focuses on the phenomenon that takes place in this environment. The observations made
by the author along with the assumptions and interpretations are discussed in detail in
the following chapter.

35

36 CHAPTER 3. METHODOLOGY

Figure 3.1: Abstract Schematic of a System

3.2 Extraction and Visual Inspection

Identifying different phenomenon from this environment of the computational device
and collecting the metrics related to those are the activities which are due on the Ex-
traction phase. There, primarily the following sources were considered as data sources
for extraction of randomness.

1. Device metrics such as Random Access Memory (RAM) usage, Central Process-
ing Unit (CPU) usage, temperature measures and so forth.

2. Network packet flows. Here, it was mainly focused on the wireless network
adapters that the device is having built in. Specifically the Wireless Local Area
Network (WLAN) adapters that the device is having and operating in the monitor
mode (also known as promiscuous mode) was extensively used.

The reason behind choosing these sources was primarily due to the readily avail-
ability. One of the main motives behind this study is to discover the ability for an
ordinary personal computational device to generate randomness while being portable,
cost effective and performant. Costly peripherals attached to the devices via cables or
any other source, would not be positively supporting to uphold that motive. Moreover,
large volumes of systematic, structured and intentional data flows are quite effective in
concealing subtle, less important yet useful effects which the causes are uncertain and
unpredictable.

The data extracted from the sources were visually inspected in the second stage so
as to filter out any obvious and frequently repeating data points and items, as an added
measure to further ensure the quality and the suitability of these measures in security
critical applications. Even though the network traffic data was collected, they were
not taken into consideration during the next steps, due to the added complexity and
overhead of reliably filtering those data to filter out the less secure measures, as those
data are originated well away from the system boundary. However, these data and the
network data as a source of entropy, could be considered and accounted in expanding
this study further.

3.3. DISTILLATION 37

3.3 Distillation

Distillation is the phase where the data points which sequentially together demonstrate
absence of patterns, are extracted from the filtered sources. During the extraction of
data, initially the collected data pool was visually inspected using small sliding win-
dows1 of time. The variation of each observed attribute across the sliding window was
considered and the attributes which does not demonstrate rapid changes were dropped
out. For the ease of observation, these data were tabulated and visually inspected over
approximately 1000 samples. End result of the distillation would be microscopic data
points/values, or macroscopic values which could be used to generate microscopic re-
sults with the use of some operation or a combination of operations, which will provide
the seeds for transformation in the next step.

3.4 Transformation

During the transformation, the seeds from the previous stage are transformed into dif-
ferent representations in order to meet the volume and complexity requirements of the
randomness. Since the requirement is a large bit string which is sufficiently complex,
the primary alternative considered was Floating Point Number System.

3.4.1 Floating Point Representation System

Floating Point Representation is a binary representation of a fractional number, which
is which is widely used in modern day computers. A Floating Point representation
attempts to capture and represent the following details about the particular number.

1. Sign (represented by s)

2. Exponent (represented by E) - A measure of the position of the decimal point of
the number being represented.

3. Significand (also known as Mantissa, represented by m) - The actual value of the
number.

Usually, to represent the sign, a single bit would be allocated. For the other two
parameters there are standard value combinations as well as arbitrary settings. When a
number is represented using floating point

1. The number is represented in the binary number system.

2. Binary number is normalised (discussed in subsection 3.4.2 below).

1A predetermined time frame of fixed length, that will be sled across a sequence from the beginning
to the end. At any point in time, what belongs to within the time frame is taken into consideration

38 CHAPTER 3. METHODOLOGY

3. The index of two (2) is obtained and transformed using the bias (discussed in
subsection 3.4.2 below) and the biased exponent is converted to binary. This will
be assigned to E.

4. Fractional bits of the normalised number is assigned to m.

5. CONCATENATE(s,E,m) will be the final representation of the number.

3.4.2 Normalisation of the Binary Number and Exponent

If the number +13.2510 is taken into consideration for an instance, it’s binary represen-
tation would be +1101.012. In applied mathematics, a number is said to be normalised
when it is written in scientific notation with one non-zero decimal digit before the dec-
imal point [17]. So, the above number in decimal could be written as +1.325× 101.
The same process on the binary representation would result in +1.10101× 23. It is
also important to note that, if the first two steps are interchanged, the result would be
drastically different.

As per the steps above, next is to convert the index of two to binary. Now if an
imaginary result of a binary conversion of a fraction is considered such as 0.000101,
normalising such would result in 1.01×2−4, which the index of two is a negative num-
ber. This causes another problem of representing signed magnitudes. This could in a
way be overcome by representing this using a number representation such as 2’s com-
plement. However, since 2’s complement would make the forward process and the
reversal process too much complicated, and since this is not directly used in any arith-
metic operations, it is possible to reliably use a bias value, which would map an interval
{−n . .n+1} to an interval {0 . .2n−1}. The bias value is based on the number of bits
allocated as the exponent and for i which is the number of bits in exponent, bias value
is given by 2i−1.

3.4.3 Analysis on Attributes of Floating Point

Previously it has been established that floating point is an approximate representation
of a fractional number. If the fractional number 3.2 is considered for an instance, rep-
resenting this as a binary number would result in 11.001100110011 . .. Upon closer
examination, it is evident that the fractional part of the binary representation above,
has a repetitive pattern of 0̇011̇. Apart from those special cases, many floating point
representations were appearing to have an uneven spread of binary digits across the
representation. So, it is decided to closely review the behaviour of floating point repre-
sentations to identify its usability as a model of transformation of certain metrics. This
review was conducted according to the following routine.

1. Implement a routine for floating point conversion of arbitrary structures.

2. Starting from one digit at the mantissa in the decimal number, convert the given
mantissa to binary. Here, the length of the mantissa m was chosen to be around

3.4. TRANSFORMATION 39

106. It could be extended beyond that however, such cases will be sensitive to the
performance of the device being used.

3. Once the bit string is generated, plot the bits into an x×y (where x ·y = m) bitmap
for visualisation.

4. At the end of each iteration, append a randomly chosen digit (here the digit is
chosen by author with no conscious intervention) to the input on the previous
stage, and repeat from step 2.

A separate routine that generates the bitmaps were implemented using Python with
the use of matplotlib . matplotlib is a powerful module that could be plugged
into Python, for a vast variety of image processing tasks. Once the above process is
repeated for over 1000 times for different choices of digits, it was decided to visually
and mathematically evaluate the bitmaps. Based on those, it is possible to discover the
patterns and assess their closeness to randomness. For the benchmark of this activity,
a bitmap which is captured from a television which was out of synchronisation with a
visual signal, was used (Figure 3.2) and each bitmap was compared visually, mathemat-
ically and then the data and the observations were tabulated.

Figure 3.2: Television Noise generated, during absence of a Signal

Each bitmap generated above, were structurally compared using Mean Squared Er-
ror (MSE). MSE is a measure of average of the squared errors for each pixel of the
image. For each sample, the MSE is calculated and plotted in a graph, in order to eval-
uate the variation as the number of digits increased. A visual inspection on each image
also was carried out in order to note the perceivable differences and variations. This test
is hereafter identified by the name Initial Random String Test.

40 CHAPTER 3. METHODOLOGY

3.5 Hardening

Hardening is an optional phase, which would only be required in the context of security
critical applications such as cryptography. Intention of this phase is to make sure that
the data being generated becomes more tamper proof. This stage is primarily essential
to inculcate the attributes of a Cryptographically Secure Random Number Generator,
which in brief are

1. Given that the first k bits of a random sequence is known, there should not exist a
polynomial time algorithm that would predict the k+1th bit, any better than 50%
of success.

2. In case if a part of the sequence is successfully asserted, it should not be possible
to predict the part of the sequence before the revelation.

3. If the generator uses some sort of an entropy input, it is expected to be infeasible
to utilise the knowledge on the state of the input for predicting future conditions
of the generator.

Specially, the 3rd point on the above list is crucial in a security critical application.
In order to achieve this, following alternatives were taken into consideration.

3.5.1 Symmetric vs. Asymmetric Key Encryption

Symmetric Key Encryption (also known as Private Key Encryption) is one of the two
fundamental flavours of data encryption. The absolute purpose of encryption is to hide
the meaning of some message from everyone else except the intended recipients. This
is primarily some function E(m,k) where m is the message and k is the encryption key.
The reason for this to be known as symmetric is that, to decrypt and reveal the original
plain text, the same key that was for encryption is used, which is where the symmetry
of the process is considered at.

Asymmetric Key Encryption (also known as Public Key Encryption) is the counter-
part flavour of the previous. Popular and widely used encryption schemes such as RSA,
ECC and so forth. Here also exists some function F(m,K) where m is the message and
K is the encryption/decryption key. Here, the asymmetry comes from the fact that the
K in fact are two interrelated keys kp and ku in such a way that, what is encrypted with
kp could only be decrypted by ku and vice versa. This addresses certain inherent issues
in symmetric key encryption such as key distribution problem. Since the two keys are
entirely different, the term asymmetric is coined. However, schemes of this model are
having certain other drawbacks such as implementation complexity and specially, most
of the encryption schemes of this family requires a random Initialisation Vector (IV),
which causes a cyclic dependency between random number generation and asymmetric
encryption, for most of the algorithms.

3.5. HARDENING 41

Due to the obvious reasons it has been decided to lean towards symmetric encryp-
tion. This leaves the following concerns to be addressed when an encryption scheme is
chosen.

1. Resistant to attacks

2. Less implementation complexity for being compatible with the personal comput-
ing devices

3. Less consumption of computational power for being compatible with the personal
computing devices

As discussed previously in section 2.8.1, AES has some powerful features which are
quite useful along subtle weaknesses that could be overcome with caution. When AES
works in CBC mode, it requires an IV, that which could be provided as a password for
the system, which enables enforcing standards over the password. Since the encryption
process does not require to have a decryption process, the administrator(s) will not
have the requirement to remember the password, which will enable enforcing strict
standards. This will provide the additional security required to meet the cryptographic
security standards.

Figure 3.3: Work flow of a Hash Function

42 CHAPTER 3. METHODOLOGY

3.5.2 Message Digest and Hashing

Hashing, which is also known widely as Message Digest is a process of mathematically
transforming an input of an arbitrary size, to an output which is most of the times of
fixed size. Precisely, hash functions generate an output which is called the Message
Digest. Typical work flow of a hashing algorithm is as depicted in Figure 3.3.

The most important attribute of hashing is that, given only the output it is a process
which cannot be reversed to obtain the initial input or the state of the algorithm. This
makes hashing a powerful function, which has attributes that could be leveraged in
generating random numbers. There already are a wide variety of RNGs which are
based on hashing algorithms. Such algorithms include but not limited to Hash_DBRG,
HMAC_DBRG, CTR_DBRG and so forth [13].

3.5.3 Use of Hashing within the Context

Hashing was considered as an option for hardening in the context of this research. Since
hashing is an irreversible process, a block which appears to be arbitrary could be easily
hidden by using hashing, as the reverse mapping is not present and computationally
infeasible to generate that. However, all the available hashing algorithms are generat-
ing lengthy hashes (about 128 bits and above), which would bring in the requirement
of clipping their outputs. This would add more overhead and dependencies on addi-
tional functions such as sponge functions2. Hence hashing was left out from further
consideration, as a possible further work.

2Finite state algorithms that take a bit stream of any length to produce a bit stream of a given length

Chapter 4

Implementation

This chapter is dedicated to the implementation related details of the models discussed
in the previous chapters. In order to capture and thereafter execute the conceptual model
discussed previously, a variety of mechanisms and software implementations were re-
quired. Details related to those implementations and the justifications for the corre-
sponding decisions and choices are included and elaborated in this chapter.

4.1 Capturing of Data

In order to assess the behaviour of a system, collection of relevant and accurate data
is a must. For the purposes of this study, a number of readings were collected over a
period of more than 30 days. Data capturing routines were implemented using Python
programming language. Python was chosen as the language for implementation, due
to its simple and expressive syntax, support for extended arithmetic operations such as
power and floor division and the comparatively higher availability of various modules
and extension Application Programming Interface (API)s.

During the capturing of data, reading and transformation concerns such as fast and
easy access, was taken into consideration. Hence, the data being captured were stored in
JSON initially. JavaScript Object Notation (JSON) was chosen as the storage structure

due to the simplistic nature and flexible support for that format awarded by python.
Further, the data that was captured was processed later as a batch and written into a
database in MongoDB. MongoDB was chosen again due to the freedom interfacing
with python and freedom and performance in querying.

As discussed previously, this study focuses on both the internal and the external
environments, under the constraints of

• Technological Feasibility

• Portability

• Economical Feasibility (i.e. Cost effectiveness)

There are certain phenomenon such as software and hardware interrupts, context
switches and so forth, which are deemed to be sufficiently random by certain applica-
tions, such as /dev/random and /dev/urandom in Unix Systems [?].

43

44 CHAPTER 4. IMPLEMENTATION

Python has a module named psutil which is designed to capture the CPU and
RAM metrics and so forth. A python routine was implemented which consumes these
functions from the psutil which is attached as appendix B. When collecting data, the
following functions in psutil were invoked.

1. psutil.cpu_stats() - Collects CPU statistics including hardware and soft-
ware interrupt counts, number of system calls and number of context switches

2. psutil.sensors_temperatures(1) - Core temperature metrics of the CPU

3. psutil.virtual_memory() - Various counts of memory of the computer in-
cluding but not limited to available memory, used memory, cached memory and
so forth

4. psutil.disk_usage("/") - Disk usage of a given mount point (in linux)

A sample of such a result, represented as a MongoDB document is indicated in the
code listing below (Listing 3).

{
"_id" : 1555041606,
"sdiskusage" : {

"total" : NumberLong(51471126528),
"used" : NumberLong(42555625472),
"percent" : 87.1,
"free" : NumberLong(6277283840)

},
"scpustats" : {

"interrupts" : 2092921,
"soft_interrupts" : 1537679,
"syscalls" : 0,
"ctx_switches" : 4502862,
"temperature" : {

"nouveau" : [
[

"",
120.2,
203.0,
221.0

]
],
"acpitz" : [

[
"",
123.8,
null,
null

]
],
"coretemp" : [

[
"Core 0",
111.2,
221.0,
221.0

],
[

"Core 1",
111.2,
221.0,
221.0

]

4.2. DISTILLATION AND TRANSFORMATION 45

]
}

},
"svmem" : {

"available" : 1991725056,
"used" : 1804324864,
"cached" : 1569783808,
"percent" : 51.9,
"free" : 391614464,
"inactive" : 837197824,
"active" : NumberLong(2480824320),
"shared" : 48029696,
"total" : NumberLong(4140666880),
"slab" : 303345664,
"buffers" : 374943744

}
}

Listing 3: Example of CPU data collected into a MongoDB document
Two systems were monitored with this routine where one system was running at

idle and the other was being used by a software developer. A total of 1838879 data
documents from idle system and 1999681 data documents from the working system,
which maps to each second of a mix of continuous and noncontinuous time frames were
collected and, each document was assigned with the corresponding epoch timestamp1

as the ID.

4.2 Distillation and Transformation

The metrics obtained in the previous step were observed initially and the numeric values
were extracted. During the extraction the values that were potential seeds, the primary
concern was those values to demonstrate variations over time and the rate of change
to be as high as possible. In order to do a systematic comparison, two systems were
monitored simultaneously, that which both of them were having the same version of the
same operating system running, one running at idle, and the other one being used by
a software developer which engages in various software development work. Then, the
metrics were evaluated for their quality as seeds for the transformation process.

The distillation was mainly based on statistical analysis and visualisation of data
points using graphs. for the primary filtering of data items, values for each metric for
ten seconds were visually inspected for their appearances of suitable variations. This
was repeated over a 100 different samples and then the observations were tallied. A
sample of such observations is graphically depicted below (Table 4.1).

1The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that
have elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601:
1970-01-01T00:00:00Z).[2]

46 CHAPTER 4. IMPLEMENTATION

sdiskusage.percent
83.5

83.5
83.5

83.5
83.5

83.5
83.5

83.5
83.5

83.5

sdiskusage.free
8080375808

8080375808
8080375808

8080375808
8080375808

8080375808
8080375808

8080375808
8080375808

8080375808

scpustats.interrupts
62734861

62735347
62735834

62736290
62736681

62737063
62737443

62737847
62738260

62738686

scpustats.soft_interrupts
32646241

32646570
32646907

32647196
32647394

32647585
32647759

32647938
32648143

32648406

scpustats.syscalls
0

0
0

0
0

0
0

0
0

0

scpustats.ctx_sw
itches

75075959
75076482

75077126
75077759

75078166
75078568

75078967
75079360

75079786
75080366

scpustats.tem
perature.nouveau.0.0

scpustats.tem
perature.nouveau.0.1

118.4
118.4

118.4
118.4

118.4
118.4

118.4
118.4

116.6
118.4

scpustats.tem
perature.nouveau.0.2

203.0
203.0

203.0
203.0

203.0
203.0

203.0
203.0

203.0
203.0

scpustats.tem
perature.nouveau.0.3

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

scpustats.tem
perature.acpitz.0.0

scpustats.tem
perature.acpitz.0.1

120.2
120.2

120.2
120.2

120.2
120.2

120.2
120.2

120.2
120.2

scpustats.tem
perature.acpitz.0.2

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

scpustats.tem
perature.acpitz.0.3

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

N
one

scpustats.tem
perature.coretem

p.0.0
C

ore
0

C
ore

0
C

ore
0

C
ore

0
C

ore
0

C
ore

0
C

ore
0

C
ore

0
C

ore
0

C
ore

0

scpustats.tem
perature.coretem

p.0.1
105.8

104.0
104.0

104.0
104.0

104.0
104.0

104.0
104.0

104.0

scpustats.tem
perature.coretem

p.0.2
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0

scpustats.tem
perature.coretem

p.0.3
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0

scpustats.tem
perature.coretem

p.1.0
C

ore
1

C
ore

1
C

ore
1

C
ore

1
C

ore
1

C
ore

1
C

ore
1

C
ore

1
C

ore
1

C
ore

1

scpustats.tem
perature.coretem

p.1.1
105.8

104.0
104.0

104.0
104.0

105.8
105.8

105.8
105.8

105.8

scpustats.tem
perature.coretem

p.1.2
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0

scpustats.tem
perature.coretem

p.1.3
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0
221.0

221.0

svm
em

.available
2684878848

2684878848
2684891136

2684899328
2684899328

2684899328
2684899328

2684899328
2684899328

2684899328

svm
em

.used
1117835264

1117835264
1117835264

1117835264
1117835264

1117835264
1117835264

1117835264
1117835264

1117835264

svm
em

.cached
1331859456

1331859456
1331859456

1331859456
1331859456

1331859456
1331859456

1331859456
1331859456

1331859456

svm
em

.percent
35.2

35.2
35.2

35.2
35.2

35.2
35.2

35.2
35.2

35.2

svm
em

.free
1271947264

1271947264
1271947264

1271947264
1271947264

1271947264
1271947264

1271947264
1271947264

1271947264

svm
em

.inactive
662401024

662401024
662409216

662409216
662409216

662409216
662409216

662409216
662409216

662409216

Table
4.1:Tabulation

ofC
PU

statistics
w

ithin
a

10
second

w
indow

forobservation
(Idle

D
evice)

4.2. DISTILLATION AND TRANSFORMATION 47

As per the table, it is obvious that the following parameters demonstrate a rapid
change.

1. Number of Context Switches

2. Number of Hardware Interrupts

3. Number of Software Interrupts

Other metrics such as CPU core temperatures, disk usage and all are demonstrating
no changes at all in most cases. The same was observable in other windows also for the
static/idle system. So, it has concluded to utilise a combination of these variables as the
inputs to the seed generator.

4.2.1 Floating Point Conversion Algorithm

The author has taken note on the fact that the floating point algorithm is quite simple to
implement and execute. More importantly, the algorithm could be implemented in such
a way that it takes arbitrary values for its primary parameters, the exponent (E) and sig-
nificand (m). Hence, this algorithm was implemented using python, to take a decimal
number as a string and to convert it to a floating point number of arbitrary exponent
and mantissa size. Python was chosen as the language to implement, primarily due to
its expressive syntax and native support for certain operations on arrays and lists such
as map-reduce functions, for-each loop, type conversions and string manipulation op-
erations. The algorithm which was initially implemented is as the code listing outlined
below (see Listing 9).

Resolution of float
f = n1[1]
f = [int(e.encode('ascii')) for e in f]

zero = [0] * len(f)

sig = []

decPosFound = decPos > -1

while True:
if f == zero:

break

[of, f] = self.__arrayTimes2(f)

if not decPosFound:
if of == 1:

decPosFound = True
else:

decPos -= 1

if len(sig) >= (m - decPos):
break

sig.append(of)

Listing 4: Mantissa Derivation Subroutine of Floating Point Converter

48 CHAPTER 4. IMPLEMENTATION

The intention of implementing this algorithm was to closely analyse the behaviour
of the bit strings of the numbers when they are converted to floating point. Upon the
analysis, the mantissa conversion routine was identified to be a suitable component,
which could be used at the core of the proposed algorithm for generation. This routine
is as outlined below (listing 4).

4.2.2 Proposed Algorithm - FloatRAND

The proposed algorithm implements the mantissa conversion routine at its core, to gen-
erate the next bit. All that is provided by this algorithm is a mechanism to utilise a
microscopic value (hereafter referred to as seed) to generate random bit stream which
are of high statistical quality. This is precisely a state machine that depends on the in-
puts given and is a One-to-One mapping between the seed and the bit string generated.
For an instance,

0.3310 = 0.0101010001111010111 . . .2

where the seed 0.33 into this algorithm will produce 010101000111 . . . as the ran-
dom bit stream. The algorithm is designed in a manner that it takes two arbitrary in-
tegers S1 and S2, both of which are 6-7 digits long and the ratio (i.e. S1/S2) of these
are taken as the seed. Now, given a quotient, there are infinitely many number of pos-
sible combinations for the numerator and denominator, which all of them are correct.
Therefore it is computationally infeasible to determine the exact numerator and denom-
inator pair used to obtain the given quotient. The only possibility is doing an exhaustive
brute force on all possible combinations and querying someone who knows the answer
who in fact is the challenger himself. If the challenger is not willing to disclose the
answer, there is no way that it could be verified. Hence this can be regarded as a non-
deterministic problem.

Algorithmic Details

Initialisation of the algorithm requires two seeds which are about 6-7 digits long (could
be grater) and approximately similar in size. Quotient of these two seeds are used by the
core routine to generate bits. Quotient should be obtained to a precision about 20 digits
in order to generate bits at the optimum. Larger quotients will generate bit strings which
demonstrate better statistical quality, at the cost of lower generation speeds. Precision
below 10 digits are not recommended due to the low statistical quality and existence of
obvious patterns.

The fractional portion of the quotient is pushed into the seed buffer and then the
seed buffer is repeatedly multiplied by two (2) and the overflow of the multiplication
will be the next bit. Hence the multiplication of any decimal digit is always less than 20,
the overflow will always be either 1 or 0. The generation stops when either the desired
length is reached or all digits in the seed buffer becomes 0. This could be elaborated

4.2. DISTILLATION AND TRANSFORMATION 49

with an example as follows.
Assume two microscopic observations S1 and S2, which yielded the following val-

ues.

S1 = 23728192

S2 = 26158216

The quotient S1/S2 would result in 0.9071028391232797, which the fraction could
be represented as a binary string using the following routine, graphically depicted as
below (figure 4.1).

Figure 4.1: FloatRAND - Generation

In the figure provided, it is clearly visible that each iteration of generating the man-
tissa is resulting in either 1 or 0 which could be represented as a bit. This repeated for
n times will yield a bit string of n bits long. Given the seeds S1 and S2 are chosen from
random sources, the algorithm provides adequate statistical qualities of randomness
which are desired by most of the applications in the personal domain. If the sources of
randomness chosen are proven to have the quality attributes of randomness discussed
above, the generator shall have the desired security as well, due to the non-deterministic
nature of the core.

50 CHAPTER 4. IMPLEMENTATION

Known Weaknesses

However, the following weaknesses were identified at the initial stage.

• Seed and the bit string has a one to one mapping. Hence, an attacker who has the
output bit string can generate the seed, but not the random variables.

• Seeds with too many zeros, less number of digits (digit count below 7) are gener-
ating strings which are of poor quality

• Performance depends on the computational resources.

• Serial - Each iteration of the core generates only one bit

Chapter 5

Evaluation

This chapter is dedicated to elaborate the various aspects which are related to evaluation
process. Primarily it is focused on the implementation and execution details of the NIST
statistical test suite, followed by the test invocation examples. Along with the NIST
suite, the Initial Random String Test and the results are also elaborated here, along with
the interpretation of the results. Then, the various test results and their interpretations
along with the possible conclusions are derived towards the latter half of the chapter.

5.1 Initial Random String Test - Observations

As discussed previously, the evaluation on this test is two fold. The results and the
interpretation are as elaborated in the subsections below. The results enumerated here
are for 1000 samples.

5.1.1 Visual Inspection

The visual inspection on the images was done primarily taking the following concerns
into account.

1. Perceived Similarity with the TV noise image

2. Absence of any obvious patterns

3. Plain white/black patches which are obviously large

The results and the interpretation of the visual inspection could be itemised per each
appended digit up to 8th image, as below (Figure 5.1).

• 1 Digit - When it is only one digit, except for ’5’, all other digits demonstrated a
pattern with alternating lines. The image generated by the seed 0.8 is given in the
figure below (Figure 5.1).

• 2-4 Digits - A relatively small patch which appears to be uneven is repeated over
the whole image. Bitmap generated by the seed with 2-3 digit appears to demon-
strate some check/diagonal pattern. The bitmap generated with 3-digit seed is as
depicted in figure 5.2

51

52 CHAPTER 5. EVALUATION

Figure 5.1: Bitmap of Random String - 1 Digit Seed

Figure 5.2: Bitmap of Random String - 3 Digit Seed

• 5-6 Digits - A relatively large patch which appears to be uneven is repeated over
the whole image. Since the patch is large, the number of times that the pattern is
repeated has become lesser. Pattern still appears to be somewhat diagonal. Figure
5.3 (left) indicates the bitmap generated with a seed of 5 digits.

• 7 Digits - The pattern has become much less obvious in the bitmap generated
with 7 digits seed. Figure 5.3 (right) indicates the bitmap generated with a seed

5.1. INITIAL RANDOM STRING TEST - OBSERVATIONS 53

(a) 5 Digit Seed (b) 7 Digit Seed

Figure 5.3: Bitmap of Random String - 5 Digit Seed (Left) and 7 Digit Seed (Right)

of 7 digits. However, upon closer examination, some pattern could be observed.
This gets obvious when the dimensions of the bitmap are increased.

54 CHAPTER 5. EVALUATION

• 8 Digits and above - No obvious patterns are visible beyond 8 digits. However,
it has not tested if there exists a pattern as the number of bits generated by the
generator is increased. This is to be further tested in the next iterations of devel-
opment. Figure 5.4 indicates the bitmap generated with a seed of 8 digits, while
figure 5.5 depicts the bitmap of the bit string generated with 10 digit seed.

Figure 5.4: Bitmap of Random String - 8 Digit Seed

Figure 5.5: Bitmap of Random String - 10 Digit Seed

5.1. INITIAL RANDOM STRING TEST - OBSERVATIONS 55

5.1.2 Statistical Testing on Bitmaps

Then, each generated bitmap is compared against the bitmap B of TV noise. For this
comparison, the MSE and the SSIM values for each of the sample against B were com-
puted and the variation of the MSE values are plotted against the sample number, into a
two dimensional line chart as depicted in figure 5.6.

Figure 5.6: Variation of the MSE of the Samples in Initial Random String Test (Up to
10 Digits)

When these are observed, it is quite evident that the variation of the MSE for the
first 6 samples are not that high. Yet, beyond that point, the MSE starts to vary quite
rapidly and the variation is not demonstrating any patterns. This is visible in the graphs
in figure 5.7.

These observations are falling in line with the observations of the visual inspection
outlined above. The observations were quite similar when the same test was conducted
on other samples of randomly chosen strings. Further, each of the bit strings was tested
with the NIST suite and a summary report for each random string tested is generated.

56 CHAPTER 5. EVALUATION

Figure 5.7: Variation of the MSE of the Samples in Initial Random String Test

The test reports correspond to sample 0001 and 0500 are attached as appendix F and
appendix G respectively. The test results were summarised as follows.

• Total number of instances, passed and skipped of each instance was summarised
as mentioned below.

{
"_id" : "SAMPLE_0001",
"passed" : 6,
"total" : 188,
"passRate" : 0.0319148936170213

}

• Then, the passRate was plotted against the sample id in a 2D plot (figure 5.8).

Upon closer observation, it is evident that the initial samples are showing very low
pass rates and beyond sample bearing the ID 6, the pass rates of the tests exceed 80%
of pass rate and settle to vary almost linearly around 90%. Test which are dropping the
pass rate close to 80% are the tests that which the instances Random Excursion Test and
Random Excursion Test (Variant) were skipped due to the inadequate number of cycles
in the random walk of each bit string. This could be better observed in the graphs below
(figure 5.9)

5.1.3 Performance during Testing

For generating 106 bits, the processing time has demonstrated variations which are as
summarised and enumerated below, in the second itemised list. The generation timings
were measured in a device with the following configuration.

• Processor - Intel Core i5-6400 CPU @ 2.70GHz × 4

• RAM - 7.7GiB

5.1. INITIAL RANDOM STRING TEST - OBSERVATIONS 57

Figure 5.8: Variation of the Pass Rate of NIST Test Suite of Samples in Initial Random
String Test (Samples 1 - 500)

• Graphics - Intel HD Graphics 530 (Skylake GT2)

• OS - Ubuntu 16.04 LTS

Observations

• During the earliest stage (i.e. between 1-10 digits), the generation time was well
below a second.

• Up to 20 digits of seed, the generation time of the random string was close to, but
less than a second.

• Between 20 to 500 digits, the generation time was rapidly increasing and the
average generation time lies around five to seven seconds.

• Above 500 digits, the generation becomes quite slow, and towards the latter stage,
the generation time has exceeded 10 seconds.

As per the observation enumerated above, the period for repetitions which could
cause obvious patterns, rises as the seed length grows. So, longer the seed, better the
generation would be. Nevertheless, at the same time, the processing time complexity
also rise as the number of digits in the seed is increased. It has a time complexity of
O(n · l), where n is the number of digits and l is the length of the bit stream. Hence,
the optimum combination of n and l is dependent on the requirement. However, the test
combination used during the study (i.e. n = 20 and l = 106) appeared to be sufficiently
performant in terms of volume and statistical quality.

58 CHAPTER 5. EVALUATION

Figure 5.9: Variation of the Pass Rate of NIST Test Suite of Samples in Initial Random
String Test (Samples 1 - 6)

5.2 Visual Inspections

Further, the data sequences chosen were visually inspected by plotting them on graphs
against the timestamp they were obtained. This was conducted for the both IDLE and
WORKING systems. Obtained plots are as graphically depicted below. Figure 5.10
depicts the variation of the total number of hardware interrupts count while figure 5.11
and 5.12 depicts the variations of total number of software counts and the ratio between
hardware and software counts respectively.

These plots suggest that the variation of the differences between each observation
is not following any deterministic pattern. That is, total number of interrupts or soft
interrupts during the time t + 1 is determined by the system environment and has no
correlation whatsoever to the same counts at the time t. Even though their variation
appears to be varying close to linear, obtaining pin point values would be extremely
hard for an outside observer, and the implementation the proposed algorithm requires

5.2. VISUAL INSPECTIONS 59

Figure 5.10: Variation of the Total Hardware Interrupts Count (Between 1500th and
2000th seconds - IDLE System)

Figure 5.11: Variation of the Total Software Interrupts Count (Between 1500th and
2000th seconds - IDLE System)

to have a 100% match with the seed, in order to successfully compromise the state. This
becomes even mote complex, as appearing in the figures 5.14 and 5.13 which plot the
variation of the interrupts count (top), soft interrupts count (bottom) and the variation
of the ratio of the two metrics respectively for the WORKING system.

60 CHAPTER 5. EVALUATION

Figure 5.12: Variation of the Ratio between the Hardware and Software Interrupts
Count (Between 1500th and 2000th seconds - IDLE System)

Figure 5.13: Variation of the Ratio between Total Hardware and Software Interrupts
Count (Between 1500th and 2000th seconds - WORKING System)

5.3 Test Results

Afterwards, the data sequences were used as seeds for the generator and 106 bit long bit
sequences were generated from each seed pair. Then each of the bit string generated was
tested with the NIST statistical test suite. For these tests, only a sample of observations
were used from each of the IDLE and WORKING system. This constraint was imposed
due to the long time which was consumed. For each bit string of 106 bits, it takes little
over 1 minute to complete the entire test suite and each test produces a test summary,
which is as given in appendix H.

For bench marking, two of the previously discussed algorithms were used. Mersenne

5.3. TEST RESULTS 61

Figure 5.14: Variation of the Total Hardware and Software Interrupts Count (Between
1500th and 2000th seconds - WORKING System)

Twister (MT19937) and Xoroshiro128+ was used for bench marking and LFSR was
purposely dropped from the benchmark due to the fact that the generator is already out-
dated. From each of MT and Xoroshiro128+, 1000 samples of random strings were
generated and each of these were statistically tested using the NIST test suite.

The test suite executes multiple instances of each tests, selected from the entire set.
Out of the all of 15 tests, Random Excursion Test and Random Excursion (Variant)
Test was not executed on approximately 45% of the entire samples which were tested.
This was due to the absence of sufficient number of random walks in the bit strings
which were skipped. All of the other tests were executed. There are a total of 188 test
instances from all tests, that which the number of instances executed for each test is as
tabulated below (table 5.1).

The test summary was used to summarise the test results for each of the systems.
Similar to the previous case of Initial Random String Test, here also the pass counts
were summarised for each sample tested as follows.

62 CHAPTER 5. EVALUATION

Test Name Number of Instances
Frequency 1

Block Frequency 1

Cumulative Sums 2

Runs 1

Longest Run 1

Rank 1

Spectral (DFT) 1

Non Overlapping Template 148

Overlapping Template 1

Universal 1

Approximate Entropy 1

Random Excursion 8

Random Excursion (Variant) 18

Serial 2

Linear Complexity 1

Total Number of Instances 188

Table 5.1: Total number of Instances per Test Class

{
"_id" : "2090775_1536805",
"passed" : 161,
"total" : 188,
"passRate" : 0.856382978723404

}

Then, these summaries were plotted on 2D line graphs against their index in the
sequence. The variation of the pass rates of the tests conducted for the proposed al-
gorithm are as depicted below in figure 5.15. The top most graph plots the variations
of the proposed algorithm executed on the idle system. The graph at the bottom is the
variation of the pass rates of the tests conducted on the bit strings generated by the seeds
extracted from the working system.

Figure 5.16 outlines the variation of the pass rates of the tests conducted on the bit
strings generated with Mersenne Twister (top) and the Xoroshiro128+ (bottom).

Interpretation

Upon close examination it is evident that the pass rates of the random strings generated
by the proposed algorithm are much higher compared to the pass rates of the bit strings
generated by the Mersenne Twister. The proposed algorithm shows pass rates between
82% and 100% with much large variation, while Mersenne Twister demonstrates results
which are between 44% and 56% with comparatively less variation. For the case of

5.4. STATISTICAL SUMMARISING OF TEST RESULTS 63

Figure 5.15: Variation of the Pass Rate of NIST Test Suite for Proposed Algorithm,
MT and Xoroshiro128+

Xoroshiro128+, the pass rates vary between 82% and 99.9%, with the lower bound of
variation is mostly close to 85%. This is almost similar and close to that of the proposed
algorithm.

5.4 Statistical Summarising of Test Results

Then the sequences of pass rates were summarised using the mean, variance and stan-
dard deviation for each sequence. These measures were obtained for each of the system
considered and they are as tabulated below (table 5.2).

Interpretation

Since the mean values for proposed algorithm and MT are 0.934809 and 0.501771 re-
spectively, the higher mean of the proposed algorithm, suggests that the average statisti-

64 CHAPTER 5. EVALUATION

Figure 5.16: Variation of the Pass Rate of NIST Test Suite of the bit string generated
by MT and Xoroshiro128+

System Mean Variance Standard Deviation
Mersenne Twister 0.501771 0.000407 0.021690

Xoroshiro128+ 0.935840 0.004422 0.066500

FloatRAND (Idle) 0.934809 0.004563 0.067552

FloatRAND (Working) 0.937500 0.004482 0.066947

Table 5.2: Summary of Statistical Measures

cal quality is much higher in the proposed algorithm than the typical MT. The difference
is roughly about 43% between the two. However, the proposed algorithm demonstrates
much higher standard deviation, which is almost 5% more than that of the MT. This
suggests that MT demonstrates more consistency than the proposed algorithm in terms
of the statistical quality. These properties are further highlighted by the graphs provided
in figure 5.16.

Compared to the case of MT vs. proposed algorithm, the results of the comparison
of Xoroshiro128+ and the proposed algorithm, are much closer. The mean values of the

5.4. STATISTICAL SUMMARISING OF TEST RESULTS 65

pass rates of Xoroshiro128+ and the proposed algorithm are 0.935840 and 0.934809 re-
spectively, where the Xoroshiro128+ has demonstrated slightly better pass rates which
is about 0.001%. When the standard deviations are compared, the standard deviation of
the pass rates of Xoroshiro128+ is about 0.001% lower than that of the proposed algo-
rithm. Hence, it could be concluded that the Xoroshiro128+ is slightly more consistent
in terms of the pass rates, than the proposed algorithm. Yet, the differences are at small
scales. Also it is obvious that irrespective of the chosen system (idle or working), the
statistical quality of the proposed algorithm in terms of the NIST criteria remains close.

Chapter 6

Conclusion

In retrospect at the the conclusion of this research project, it is evident that random
numbers play an essential role in a variety of applications. Yet, the problem ahead of the
generation of random numbers is the quality of randomness of the numbers generated
by the said systems.

One important aspect to note regarding the True Randomness is that it is impossible
to attain true randomness from a finite state machines that which the conditions for the
state transitions are well defined. As a rule of thumb, it is believed that ideal randomness
is impractical without specialised and expensive hardware that gathers data from, for
an instance, quantum events, there is no such thing as ideally true random number
generator (i.e. a RNG that generates truly unpredictable number). Nonetheless, it
is possible to reach the quality attributes of true randomness. PRNGs in the modern
context are doing that and in fact, most PRNGs in use have become better at it.

Yet, they tend to have a problem of repetition of the output after a certain large
number of iterations. This is known as the period of the said generator. Irrespective
of how large the period is, it still repeats, making it vulnerable to certain attacks such
as replay attacks. The problem lies in the core concept, which is to deterministically
change the seed for the generator to get different numbers. This in almost all the cases
causes the output to repeat after a known number of cycles. This is the reason why
a PRNG usually requires a seed provider which ideally should be a TRNG. However,
since such seeds are not quite common and even capturing the commonly available
random variables from the surrounding is expensive, this has become and exhaustive
matter.

This study takes a slightly different approach to resolve the problem. Instead of
deterministically changing a seed, this uses a microscopic random variable as a seed
and utilises a commonly available representation as a generator core. The proposed
algorithm’s randomness therefore is entirely dependent on the randomness of the seed.
As long as the variations of the seed is random, the output will also be random. This
highlights the fact that the source of seed should have the attributes of randomness,
instead of the algorithm. And also this study have focused on identifying the possible
sources of seeds which has the required attributes of randomness. Further, the identified
sources were statistically tested using the NIST statistical test suite, which is a widely
accepted standard across the industry.

67

68 CHAPTER 6. CONCLUSION

6.1 Lessons Learnt

First and foremost, as a postgraduate student, this was a great opportunity for me to
practice the knowledge and skills on various subject areas, I have gathered during the
academic tenure for the masters and even the bachelors tenure. It was quite interesting
on discovering various practical aspects of the theoretical knowledge gathered. More
specifically, exposure to this research enabled me to closely investigate an important
aspect of cryptography and many other different applications, and attempt to investi-
gate the feasibility of a different approach to solve the said problem. Also, I could
expose myself for certain important libraries, tools and techniques on analysing and
summarising relatively large sets of data and utilising these summaries in various deci-
sion making.

The knowledge and practical exposure I have gained in conducting a scientific in-
vestigation on determining the success of a proposed solution for a given problem, is
also worth noting about. It was a monumental contributor to broaden my knowledge
envelop on scientifically analyse and investigate a proposed solution and determine is
success, failure and determine probes for further research.

Apart from that, this was also a great opportunity to understand and practice the
important aspects of systematically presenting and communicating the findings of an
academic research. it was possible to get exposed to a variety of important aspects
including, but not limited to academic writing styles, reviewing existing literature, de-
termining methodologies of analysis, evaluation and conclusion, documenting the re-
search project within the academic standards and regulations and so forth. I beseech
that this exposure will be a prominent guideline in further academic studies.

6.2 Critical Evaluation

Initially it was intended to explore and identify the possible sources of randomness
within the system of a personal computing device and its surroundings. For this, the
system environment and the surrounding was monitored. Monitoring external environ-
ment was restricted only to the network interfaces, due to the requirement of additional
expensive and less portable hardware that would otherwise violate the constraints of
cost and portability. Under this investigation, it was able to determine and establish
that certain CPU variables such as hardware and software interrupt counts and context
switches vary in a manner which is non deterministic external to the system. This was
the same basis of the Linux random generator. However, only a limited set of variables
were analysed and the analysis on the external data sources were abandoned due to the
excessive volume. These could be analysed in future developments.

Next objective was to identify and establish transformation strategies which is iden-
tified as Distillation, which are required to improve the complexity and volume. This
objective resulted in the design and implementation of a transformation algorithm known

6.3. FUTURE WORK 69

as FloatRAND . This is more of a bit generation algorithm based on a pair of random
seeds. Also it was set as an objective to identify and establish the encryption strate-
gies which are required to meet the cryptographic security requirements of the said bit
string. This was determined to be an optional stage and the whole purpose of this step
is to eliminate the One-to-One mapping between the generated bit string and the source
seed. Purpose of this step is to provide an added layer of transparency, which will
provide additional security.

Next goal was to identify evaluation strategies to assess the quality of the outputs
and to assess the quality of the outputs based on the complexity and volume require-
ments in order to determine the performance of the system. This was conducted using a
bench mark test with the use of the Statistical Test Suite for evaluating CSPRNGs, pro-
vided by NIST. The tests were conducted for two other widely used PRNG algorithms
namely Mersenne Twister and the Xoroshiro128+, aside of the proposed algorithm.
Tests were conducted on a number of samples from each algorithm and the pass rates
were summarised. The summaries of the results were tallied using the mean and stan-
dard deviation of the pass rates and also the pass rates were visually depicted and com-
pared for any visible observations. Further, some constraints of the proposed algorithm
was also determined with the use of the same statistical test suite and visualisations of
the variations of the random variables chosen.

Upon retrospect of the research outcomes against the objectives that were initially
set, it is fair to conclude that the research study as intended has contributed to expand
the horizons of the problem of random number generation. While it has supported to
establish some of the set rules on random number generation, it also has enabled a new
possible approach of generating numbers which are close to ideal randomness.

6.3 Future Work

In order to further develop this model, the following probes could be used.

• Find better random variables from the system environment - For the time being,
the system uses only CPU metrics as the source of entropy. However, there could
be other measures and sources that could be obtained from within the environ-
ment of the system. Feasibility of such could be assessed.

• Introduce security hardening to eliminate the mapping between the seed and the
random string - Even though a suggestion to mitigate this problem is already
provided, the feasibility and the performance of such needs to be assessed. Alter-
natively, using a different approach to solve the problem also could be introduced,
in the due course.

• Derive routines for parallel operations (such as seed slicing) - Another inherent
weakness of this system is it currently operates only on serial mode. It is required
to derive ways and means of utilising this algorithm to generate a block of bits

70 CHAPTER 6. CONCLUSION

at once, other than collecting in into a buffer. One alternative could be multiple
generators with sliced seed.

• Test further to determine the limits - Apart from the currently known limits, this
system needs to be further tested to determine if there are any vulnerabilities or
weaknesses which would cause flaws in using this in the production state. Such
limits and constraints could be investigated for, in a future work.

• Consider and evaluate the feasibility of using network interfaces as a source of
entropy - Even though this was initially considered in the scope of the study, it
has been moved to future work, due to the load of data. That investigation could
also be suggested as a future probe.

Appendix A

Floating Point Converter - Python

class Float(object):
def __init__(self, l, m, n):

super(Float, self).__init__()

n = str(n)
n1 = n.split('.')

Resolution of sign and integer
n = int(n1[0])
n = '{0:b}'.format(n)
n = n.split('-')
s = 1 if not n[0] else 0
n = n[1] if not n[0] else n[0]
n = [int(e.encode('ascii')) for e in n]

e = l - m - 1;

Resolution of exponent
decPos = len(n) - 1

if len(n) == 1 and n[0] == 0:
decPos -= 1

Resolution of float
f = n1[1]
f = [int(e.encode('ascii')) for e in f]

zero = [0] * len(f)

sig = []

decPosFound = decPos > -1

while True:
if f == zero:

break

[of, f] = self.__arrayTimes2(f)

if not decPosFound:
if of == 1:

decPosFound = True
else:

decPos -= 1

if len(sig) >= (m - decPos):
break

sig.append(of)

n = n[1:] + sig[sig.index(1):]

n += [0] * (m - len(n))

71

72 APPENDIX A. FLOATING POINT CONVERTER - PYTHON

decPos += ((2 ** e) >> 1) - 1
exp = [int(e.encode('ascii')) for e in ('{0:b}'.format(decPos))]

self.n = [s] + exp + n

def __arrayTimes2(self, arr):
of = 0
for i in reversed(range(len(arr))):

x = of + (arr[i] * 2)
of = x // 10
arr[i] = x % 10

return [of, arr]

Listing 5: Python implementation of the Float class

Appendix B

CPU Metrics Collector Routine

#!/usr/bin/python3

import os
import sys
import threading
import time
import psutil
import json
import cutil
import re

StartTime = None
fileNameStr = None
fileName = None
fSource = None

def grab():
global fileNameStr
global fSource

fileName = str(fileNameStr) + ".txt"
if fSource.closed:

fSource = open(fileName, "a")

if fileNameStr != str(cutil.epochHour()):
fSource.close()
print(fileName, " is closing...")
fileNameStr = str(cutil.epochHour())
fileName = fileNameStr + ".txt"
fSource = open(fileName, "a")
print("DONE! Started logging in a new file ", fileName)

metrics = dict()

Retrieval of CPU stats
res = psutil.cpu_stats()
resType = type(res).__name__
data = dict(res._asdict())
data["temperature"] = psutil.sensors_temperatures(1) # TODO: Fahrenheit?

Or Celsius↪→
metrics[resType] = data

Retrieval of Memory Stats
res = psutil.virtual_memory()
resType = type(res).__name__
data = dict(res._asdict())
metrics[resType] = data

Retrieval of Disk Usage Stats
res = psutil.disk_usage("/")
resType = type(res).__name__
data = dict(res._asdict())
metrics[resType] = data

73

74 APPENDIX B. CPU METRICS COLLECTOR ROUTINE

fSource.write(json.dumps(metrics) + "\n")

def getConnections():
for con in psutil.net_connections():

try:
yield [psutil.Process(pid=con.pid).name(), con]

except psutil.AccessDenied:
continue

def toSeconds(timeStr):
if re.match(r'^[\d]+[hHmMsS]$', timeStr, re.M | re.I) is None:

raise ValueError("Invalid input string.")
timeUnit = (timeStr[-1])
timeAmt = int(timeStr.replace(timeUnit, ""))
timeUnit = timeUnit.lower()

seconds = {
'h': lambda timeAmt: timeAmt * 60 * 60,
'm': lambda timeAmt: timeAmt * 60,
's': lambda timeAmt: timeAmt

}[timeUnit](timeAmt)

return seconds

class SetInterval:
def __init__(self, interval, action):

self.interval = interval
self.action = action
self.stopEvent = threading.Event()
thread = threading.Thread(target=self.__setInterval)
thread.start()

def __setInterval(self):
nextTime = time.time() + self.interval
while not self.stopEvent.wait(nextTime - time.time()):

nextTime += self.interval
self.action()

def cancel(self):
self.stopEvent.set()

def main():
global StartTime
global fileNameStr
global fileName
global fSource

interval = int(sys.argv[1])
cycles = toSeconds(sys.argv[2])

StartTime = time.time()
fileNameStr = str(cutil.epochHour())
fileName = fileNameStr + ".txt"
fSource = open(fileName, "a")

start action every {interval} seconds
inter = SetInterval(interval, grab)
print('Commenced reading datasources : {:.1f}s'.format(time.time()))

will stop interval in {cycles} seconds
t = threading.Timer(cycles, inter.cancel)
t.start()

75

if __name__ == '__main__':
try:

main()
except (KeyboardInterrupt, SystemExit):

print('Shutting down...')
try:

sys.exit(0)
except SystemExit:

os._exit(0)

except IndexError as e:
print("USAGE:python grab.py <<Interval>> <<Duration in H|M|S>>")

Listing 6: Python implementation of the CPU Data capturing routine

Appendix C

CPU Metrics Data Insertion Routine

#!/usr/bin/python3
from pymongo import MongoClient
import os
from os import listdir
from os.path import isfile, join
import json
from loggin import log

log("Connecting to Database...")
client = MongoClient('mongodb://127.0.0.1:27017/', connect=False)
db = client.db_mis_research
col = db.internalMetricsIdle
col = db.internalMetricsWorking

txtDir = './txt'

fileNames = [f for f in listdir(txtDir) if isfile(join(txtDir, f))]

for filename in fileNames:
epochHour = int((filename.split(".txt"))[0])
path = '{}/{}'.format(txtDir, filename)
with open(path) as fp:

line = fp.readline()
cnt = 0
while line:

docId = epochHour + cnt
extObj = col.find_one({'_id':docId})

obj = json.loads(line.strip())

if extObj != None:
dupLog = open('./logs/dupes/{}.dup.log'.format(epochHour), 'a+')
logEntry = '{{"OBJ":{}, "EXT_OBJ":{}}}\n'.format(json.dumps(obj),

json.dumps(extObj))↪→
dupLog.write(logEntry)
dupLog.close()

log('Duplicate entry found for {} when processing {}\n', docId,
path)↪→

cnt += 1
continue
os._exit(0)

obj['_id'] = docId
oId = col.insert_one(obj).inserted_id
print('Processed {}. Created Document with ID {}'.format(path,

oId))↪→
line = fp.readline()
cnt += 1

log("{}::DONE! Processed {} documents!\n", path, cnt)

log("DONE!")

77

78 APPENDIX C. CPU METRICS DATA INSERTION ROUTINE

Listing 7: Python implementation of data insertion to a MongoDB database

Appendix D

Sequence Differentiation Routine

#!/usr/bin/python3

import multiprocessing
from multiprocessing import Pool
from pymongo import MongoClient
import os
from os import listdir
from os.path import isfile, join
import json
import matplotlib.pyplot as plt
import threading
import datetime
from gridfs import GridFS
import numpy
from loggin import log

def nowStr():
return str(datetime.datetime.now())

def now():
return datetime.datetime.now()

def f(x):
return x["scpustats"]["interrupts"]

client = MongoClient('mongodb://127.0.0.1:27017/', connect=False)
db = client.db_mis_research
fs = GridFS(db)

col = db.internalMetricsIdle

project = {'scpustats.interrupts':1, 'scpustats.soft_interrupts':1,
'scpustats.syscalls':1, 'scpustats.ctx_switches':1}↪→

log('Commenced reading databases...')

res = col.find({}, project)
scpustatsList = list(res)

log("Extraction to a list of dictionaries is completed. Starting collecting
interrupts counts...")↪→

interruptsCounts = []

def getInterrupts(x):
return x["scpustats"]["interrupts"]

def getSoftInterrupts(x):
return x["scpustats"]["soft_interrupts"]

def getRatios(x):
intrs = x["scpustats"]["interrupts"]
softIntrs = x["scpustats"]["soft_interrupts"]

79

80 APPENDIX D. SEQUENCE DIFFERENTIATION ROUTINE

return intrs / softIntrs

with Pool(5) as p:
interruptsCounts = p.map(getInterrupts, scpustatsList)
softInterrupCounts = p.map(getSoftInterrupts, scpustatsList)
ratios = p.map(getRatios, scpustatsList)

log("Extraction of interrupts counts is complete.")

Interrupts
y = list(numpy.diff(interruptsCounts))
x = list(range(len(y)))

oId = "PLT_ADJ_INTERRUPTS_DIFFERENCES_IDLE"

colPlots = db.plots
fileId = fs.put(str([x, y]), encoding='utf-8')
log('Inserted plot file data into "db_mis_research.fs.files" with ID {}',

fileId)↪→

xLabel = 'Time'
yLabel = 'Difference Between Adjacent Interrupts Counts'
title = 'Variation of Differences of Interrupt Counts'

obj = {"_id": oId, "name": "Difference Between Adjacent Interrupts
Counts", "fileId": fileId, "xLabel": xLabel, "yLabel": yLabel,
"title": title}

↪→
↪→

oId = colPlots.insert_one(obj).inserted_id
log('Inserted plot metadata into "db_mis_research.plots" with ID {}',

oId)↪→

Soft Interrupts
y = list(numpy.diff(softInterrupCounts))
x = list(range(len(y)))

oId = "PLT_ADJ_SOFT_INTERRUPTS_DIFFERENCES_IDLE"

colPlots = db.plots
fileId = fs.put(str([x, y]), encoding='utf-8')
log('Inserted plot file data into "db_mis_research.fs.files" with ID {}',

fileId)↪→

xLabel = 'Time'
yLabel = 'Difference Between Adjacent Soft Interrupts Counts'
title = 'Variation of Differences of Soft Interrupt Counts'

obj = {"_id": oId, "name": "Difference Between Adjacent Soft Interrupts
Counts", "fileId": fileId, "xLabel": xLabel, "yLabel": yLabel,
"title": title}

↪→
↪→

oId = colPlots.insert_one(obj).inserted_id
log('Inserted plot metadata into "db_mis_research.plots" with ID {}',

oId)↪→

Interrupts / Soft Interrupts
y = list(numpy.diff(ratios))
x = list(range(len(y)))

oId = "PLT_ADJ_INTERRUPTS_RATIOS_DIFFERENCES_IDLE"

colPlots = db.plots
fileId = fs.put(str([x, y]), encoding='utf-8')
log('Inserted plot file data into "db_mis_research.fs.files" with ID {}',

fileId)↪→

xLabel = 'Time'
yLabel = 'Difference Between Adjacent Ratios of Intterupts/Soft

Interrupts Counts'↪→

81

title = 'Variation of Differences of Ratios of Intterupts/Soft Interrupts
Counts'↪→

obj = {"_id": oId, "name": "Difference Between Adjacent Soft Interrupts
Counts", "fileId": fileId, "xLabel": xLabel, "yLabel": yLabel,
"title": title}

↪→
↪→

oId = colPlots.insert_one(obj).inserted_id
log('Inserted plot metadata into "db_mis_research.plots" with ID {}',

oId)↪→

client.close();

log('Display of plot closed! COMPLETE!')

Listing 8: Python implementation of the routine to differentiate the sequence data

Appendix E

View Plot Routine

This routine was used to generate the plots of the linear difference data on CPU metrics.

#!/usr/bin/python3

from pymongo import MongoClient
import os
import matplotlib.pyplot as plt
import datetime
from gridfs import GridFS
from bson import ObjectId
import ast
import sys

def now():
return str(datetime.datetime.now())

def log(message, *args):
message = message.format(*args)
print('{}: {}'.format(now(), message))

def main():
log("Connecting to DB...")
client = MongoClient('mongodb://127.0.0.1:27017/', connect=False)
db = client.db_mis_research
fs = GridFS(db)
plots = db.plots

pltId = sys.argv[1]#"PLT_ADJ_INTERRUPTS_DIFFERENCES"
plot = plots.find_one({'_id':pltId})
fileId = plot['fileId']

file = fs.get(ObjectId(fileId)).read().decode('utf-8')
log("CONNECTED! Files found and retrieved!")

obj = ast.literal_eval(file)

try:
offset = int(sys.argv[2])

except IndexError:
offset = 0

try:
limit = int(sys.argv[3])

except IndexError:
limit = len(obj[0])

plt.plot(obj[0][offset:(offset + limit)], obj[1][offset:(offset +
limit)])↪→

plt.xlabel(plot['xLabel'])
plt.ylabel(plot['yLabel'])

plt.title(plot['title'])
plt.show()

83

84 APPENDIX E. VIEW PLOT ROUTINE

client.close()

if __name__ == '__main__':
try:

main()
except (KeyboardInterrupt, SystemExit):

print('Shutting down...')
try:

sys.exit(0)
except SystemExit:

os._exit(0)

except IndexError as e:
print("USAGE:view_plot.py <<PlotID>> [<<int offset>> [<<int limit>>]]")

except TypeError as e:
print("{} was not found in the DB.".format(sys.argv[1]))

Listing 9: Python implementation for plotting linear differences of CPU metrics stored
in the database

Appendix F

Sample of NIST Test Summary - Initial
(S0001)

--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <randbits.txt>
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--
0 0 0 0 0 0 0 0 0 1 ---- 1/1 Frequency
0 0 0 0 0 0 0 0 0 1 ---- 1/1 BlockFrequency
0 0 0 0 0 0 0 0 0 1 ---- 1/1 CumulativeSums
0 0 0 0 0 0 0 0 0 1 ---- 1/1 CumulativeSums
0 0 0 0 0 0 0 0 0 1 ---- 1/1 Runs
1 0 0 0 0 0 0 0 0 0 ---- 0/1 LongestRun
1 0 0 0 0 0 0 0 0 0 ---- 0/1 Rank
1 0 0 0 0 0 0 0 0 0 ---- 0/1 FFT
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate

85

86 APPENDIX F. SAMPLE OF NIST TEST SUMMARY - INITIAL (S0001)

1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate

87

1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 OverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 Universal
1 0 0 0 0 0 0 0 0 0 ---- 0/1 ApproximateEntropy
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 1 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 0/1 Serial
1 0 0 0 0 0 0 0 0 0 ---- 0/1 Serial
1 0 0 0 0 0 0 0 0 0 ---- 0/1 LinearComplexity

- -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 0 for a

88 APPENDIX F. SAMPLE OF NIST TEST SUMMARY - INITIAL (S0001)

sample size = 1 binary sequences.

The minimum pass rate for the random excursion (variant) test is undefined.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- -

Listing 10: Example of Test Summary - Initial Random String Test (Sample 0001)

Appendix G

Sample of NIST Test Summary - Initial
(S0500)

--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <randbits.txt>
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--
0 0 0 0 0 0 1 0 0 0 ---- 1/1 Frequency
0 0 0 0 0 0 0 0 1 0 ---- 1/1 BlockFrequency
0 0 0 0 0 1 0 0 0 0 ---- 1/1 CumulativeSums
0 0 0 0 0 0 1 0 0 0 ---- 1/1 CumulativeSums
0 0 0 0 0 0 1 0 0 0 ---- 1/1 Runs
0 0 0 1 0 0 0 0 0 0 ---- 1/1 LongestRun
0 0 0 0 0 1 0 0 0 0 ---- 1/1 Rank
0 0 0 0 0 0 1 0 0 0 ---- 1/1 FFT
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate

89

90 APPENDIX G. SAMPLE OF NIST TEST SUMMARY - INITIAL (S0500)

0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate

91

0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 OverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 Universal
0 0 0 0 0 0 0 0 0 1 ---- 1/1 ApproximateEntropy
0 0 0 0 0 0 0 0 1 0 ---- 1/1 RandomExcursions
0 0 0 0 0 0 0 1 0 0 ---- 1/1 RandomExcursions
0 0 0 1 0 0 0 0 0 0 ---- 1/1 RandomExcursions
0 0 0 0 0 0 1 0 0 0 ---- 1/1 RandomExcursions
1 0 0 0 0 0 0 0 0 0 ---- 0/1 RandomExcursions
0 0 1 0 0 0 0 0 0 0 ---- 1/1 RandomExcursions
0 0 0 0 1 0 0 0 0 0 ---- 1/1 RandomExcursions
0 0 0 0 0 0 1 0 0 0 ---- 1/1 RandomExcursions
0 0 0 1 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 1 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 1 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 1 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 1 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 0 1 0 0 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 0 0 1 0 ---- 1/1 RandomExcursionsVariant
0 0 0 0 0 0 1 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 0 0 1 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 1 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 1 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 1 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
1 0 0 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 1 0 0 0 0 0 0 0 ---- 1/1 RandomExcursionsVariant
0 0 0 1 0 0 0 0 0 0 ---- 1/1 Serial
0 0 0 1 0 0 0 0 0 0 ---- 1/1 Serial
0 0 1 0 0 0 0 0 0 0 ---- 1/1 LinearComplexity

- -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 0 for a

92 APPENDIX G. SAMPLE OF NIST TEST SUMMARY - INITIAL (S0500)

sample size = 1 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 0 for a sample size = 1 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- -

Listing 11: Example of Test Summary - Initial Random String Test (Sample 0500)

Appendix H

Sample of NIST Test Summary - IDLE

--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <2090775_1536805.txt>
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--
0 0 0 0 0 0 0 1 0 0 ---- 1/1 Frequency
0 0 0 0 0 0 1 0 0 0 ---- 1/1 BlockFrequency
0 0 0 1 0 0 0 0 0 0 ---- 1/1 CumulativeSums
0 0 0 0 0 1 0 0 0 0 ---- 1/1 CumulativeSums
0 0 0 0 0 0 0 0 1 0 ---- 1/1 Runs
0 1 0 0 0 0 0 0 0 0 ---- 1/1 LongestRun
0 0 0 0 0 1 0 0 0 0 ---- 1/1 Rank
0 0 1 0 0 0 0 0 0 0 ---- 1/1 FFT
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate

93

94 APPENDIX H. SAMPLE OF NIST TEST SUMMARY - IDLE

0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 0/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate

95

0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 1 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 1 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 0 1 ---- 1/1 NonOverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 1 0 0 ---- 1/1 NonOverlappingTemplate
0 0 1 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 0 0 0 0 0 1 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
1 0 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 1 0 0 0 0 0 0 0 0 ---- 1/1 NonOverlappingTemplate
0 0 0 1 0 0 0 0 0 0 ---- 1/1 OverlappingTemplate
0 0 0 0 1 0 0 0 0 0 ---- 1/1 Universal
0 0 0 0 0 0 0 0 1 0 ---- 1/1 ApproximateEntropy
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursions
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 0 0 0 0 0 0 0 0 0 ---- ------ RandomExcursionsVariant
0 1 0 0 0 0 0 0 0 0 ---- 1/1 Serial
1 0 0 0 0 0 0 0 0 0 ---- 1/1 Serial
0 0 0 1 0 0 0 0 0 0 ---- 1/1 LinearComplexity

- -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 0 for a
sample size = 1 binary sequences.

The minimum pass rate for the random excursion (variant) test is undefined.

96 APPENDIX H. SAMPLE OF NIST TEST SUMMARY - IDLE

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- -

Listing 12: Example of Test Summary - IDLE System

Bibliography

[1] “Are the digits of pi random? researcher may hold the key.” [Online]. Available:
https://www2.lbl.gov/Science-Articles/Archive/pi-random.html

[2] “Epoch converter - unix timestamp converter.” [Online]. Available: https:
//www.epochconverter.com/

[3] “List of random number generators.” [Online]. Available: https://ipfs.io/
ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/List_
of_random_number_generators.html

[4] “The lotto machines | howstuffworks.” [Online]. Available: https://entertainment.
howstuffworks.com/lottery3.htm

[5] “Non-deterministic algorithms.” [Online]. Available: https://cs.nyu.edu/courses/
spring03/G22.2560-001/nondet.html

[6] “random.c/char/drivers - kernel/git/torvalds/linux.git - linux kernel source tree.”
[Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/drivers/char/random.c

[7] “Randomness and mathematical proof by gregory j. chaitin.” [Online]. Available:
https://www.owlnet.rice.edu/~km9/Randomness\%20and\%20Mathematical.pdf

[8] “Random.org - introduction to randomness and random numbers.” [Online].
Available: https://www.random.org/randomness/

[9] “urandom(4): kernel random number source devices - linux man page.” [Online].
Available: https://linux.die.net/man/4/urandom

[10] Feynman path integrals. Springer Germany, 1979.

[11] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cam-
bridge University Press, 20 April 2009.

[12] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for
key management, part 1: General (revision 3).” [Online]. Available: https:
//csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-3/archive/2012-07-10

[13] E. Barker and J. Kelsey, “Recommendation for random number generation
using deterministic random bit generators - revision 1.” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

97

98 BIBLIOGRAPHY

[14] W. Brown, “Random number generation in c++11.” [Online]. Available:
https://isocpp.org/files/papers/n3551.pdf

[15] “Random|meaning in the cambridge english dictionary,” Cambridge University
Press. [Online]. Available: https://dictionary.cambridge.org/dictionary/english/
random

[16] T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications
(Second edition). Academic Press, 2017.

[17] D. Fleisch and J. Kregenow, A Student’s Guide to the Mathematics of Astronomy.
Cambridge University Press, August 2013.

[18] R. W. Floyd, “Non-deterministic algorithms,” Journal of the ACM, vol. 14, pp.
636–644.

[19] M. Gallagher, “Random number generators in swift.” [Online]. Available:
https://www.cocoawithlove.com/blog/2016/05/19/random-numbers.html

[20] T. Gowers, J. Barrow-Green, and I. Leaderk, The Princeton Companion to Math-
ematics. Princeton University Press, 18 July 2018.

[21] S. G. Krantz, The Proof is in the Pudding: The Changing Nature of Mathematical
Proof. Springer Science and Business Media, 13 May 2011.

[22] “Random number generator algorithms - matlab randstream.list,” The Math-
works Inc. [Online]. Available: https://www.mathworks.com/help/matlab/ref/
randstream.list.html

[23] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator,” ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform ran-
dom number generation, vol. 8, pp. 3–30.

[24] M. Matsumoto, T. Nishimura, M. Hagita, and M. Saito, “Cryptographic
mersenne twister and fubuki stream/block cipher.” [Online]. Available: https:
//eprint.iacr.org/2005/165.pdf

[25] G. Merald, “On the accuracy of statistical procedures in microsoft excel 2010,”
pp. 1095–1128.

[26] “curand :: Cuda toolkit documentation,” nVIDIA Developer Zone. [On-
line]. Available: https://docs.nvidia.com/cuda/curand/host-api-overview.html#
generator-types

[27] “deterministic|definition of deterministic in english by oxford dictionaries,”
Oxford University Press. [Online]. Available: https://en.oxforddictionaries.com/
definition/deterministic

BIBLIOGRAPHY 99

[28] “random|definition of random in english by oxford dictionaries,” Oxford Uni-
versity Press. [Online]. Available: https://en.oxforddictionaries.com/definition/
random

[29] “Php: mt_rand - manual,” The PHP Groups. [Online]. Available: https:
//www.php.net/manual/en/function.mt-rand.php

[30] “8.6. random — generate pseudo-random numbers — python v3.2 doc-
umentation,” Python Software Foundation. [Online]. Available: https:
//docs.python.org/release/3.2/library/random.html

[31] “9.6. random — generate pseudo-random numbers — python v2.6.8 doc-
umentation,” Python Software Foundation. [Online]. Available: https:
//docs.python.org/release/2.6.8/library/random.html

[32] T. Ritter, “Randomness tests: A literature survey.” [Online]. Available:
http://www.ciphersbyritter.com/RES/RANDTEST.HTM

[33] M. Route, “Radio-flaring ultracool dwarf population synthesis,” The Astrophysical
Journal, p. 66.

[34] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test
suite for random and pseudorandom number generators for cryptographic
applications.” [Online]. Available: https://nvlpubs.nist.gov/nistpubs/legacy/sp/
nistspecialpublication800-22r1a.pdf

[35] W. Schindler, “Functionality classes and evaluation methodology for determinis-
tic random number generators,” pp. 5–11. [Online]. Available: https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_
20_Functionality_Classes_Evaluation_Methodology_DRNG_e.pdf

[36] S. Vigna, “xoshiro / xoroshiro generators and the prng shootout.” [Online].
Available: http://prng.di.unimi.it/xoroshiro128plus.c

[37] S. Vigna and D. Blackman, “Scrambled linear pseudorandom number generators.”
[Online]. Available: https://arxiv.org/abs/1805.01407

