
De-Centralized Secure Transparent
Systems to Manage Financial

Transactions

A dissertation submitted for the Degree of Master of
Science in Information Security

Kaludewa Chamil Lakmal De Silva
University of Colombo School of Computing

Sri Lanka
2019

DECLARATION

i

ACKNOWLEDGMENT

The ”De-Centralized Secure Transparent Systems to Manage Financial Transactions” was carried
out as a part of the Master of Science in Information Security program at University of Colombo
School of Computing.

I would like to thank all who helped me in numerous ways to make this work a success. Espe-
cially I am truly grateful for the valuable guidance and assistance given by my supervisor, Kasun
de Zoysa, Senior Lecturer at University of Colombo School of Computing. and also Mr.Kenneth
Manjula Thilakarathna was a great Mr.Kenneth Manjula Thilakarathna was a great mentor, visiting
Lecturer at University of Colombo School of Computing. Also I would like to thank Dr.Manjusri
Wickramasinghe and rest of the staff members at UCSC for some expertise help, providing advice,
constant constructive criticism of my ideas and their valuable comments throughout this work.

I am grateful to my friends and family for the maximum support and courage given during the time
to make this a success.

ii

ABSTRACT

De-Centralized Secure Transparent Systems to Manage Financial Transactions
By

K.C.L. De Silva, chamil.lakmal@gmail.com
UCSC, Colombo 07.

The projects run by the Sri Lankan Government has a tendency to overspend due to fraudulent
transactions and abuse of power. This is a huge problem in Sri Lanka since this affects the finances
of the country and hinders the development of the country as a whole. In worst case scenarios these
projects completely fail resulting in a tremendous wastage of resources. With a very limited number
of stakeholders having access to financial information on such projects makes it easier for this type of
fraudulent activity. Even though there is a current system in place to audit transactions the current
system is easy to tamper with. As a result stakeholders committing fraud has the ability to escape
any consequences and repeat the actions in different projects.

With blockchain technology transactions can be recorded in a way that is not permeable leaving
no room for tempering and deleting information from financial records. With the use of digital
signatures the identity of the person who did the transaction will not be an issue. The process of
auditing will take place before the transaction is authorized minimizing the chances of fraudulent
transactions. The blockchain by definition is a public ledger system therefore the transparency of
all financial transactions are guaranteed. The researcher believes that integration of blockchain to
manage financial transactions for projects run by the Sri Lankan Government will reduce corruption
and fraud as well as make these projects cost efficient, improving their chances of success and help
achieve developmental goals of the Sri Lankan Government.

The proposed system will take the Sri Lankan legal frame work into consideration as well as
the requirements of the auditing process for government projects. All transactions need to be
approved by all relevant stakeholders ensuring that the proposed transaction will not exceed the
amount required. More over the money will directly be transferred to the wallet of the stakeholder
requiring the financial transaction avoiding intermediaries from cashing in. After the transaction
is authenticated by all relevant stakeholders smart contracts in the blockchain will carry out the
transaction automatically. Digital signatures will assure that the no stakeholder can deny receiving
the money, authorizing a transaction or requesting a transaction.

iii

Contents

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

1 INTRODUCTION 1
1.1 Introduction . 1
1.2 Weaknesses of the Present System . 2
1.3 Objectives . 2
1.4 Scope . 3
1.5 Research Areas . 3
1.6 Limitations . 3
1.7 Organization of the Dissertation . 3

2 BACKGROUND INFORMATION AND LITERATURE REVIEW 5
2.1 Background Information . 5

2.1.1 Present System and Regulations . 5
2.1.2 Financial Audit Analysis . 5
2.1.3 Related Projects . 6

2.2 Cryptography . 7
2.2.1 Cryptographic Algorithms . 8
2.2.2 Secret Key Cryptography (SKC) . 8
2.2.3 Hashing and Blockchain . 10
2.2.4 Digital Signatures . 10
2.2.5 Multisignature . 11
2.2.6 Merkel Tree . 12

2.3 Turing Completeness . 13
2.4 Decentralization . 13
2.5 Peer-To-Peer Network . 14
2.6 Consensus Algorithms . 14
2.7 Bitcoin . 16
2.8 Blockchain . 17

2.8.1 Blockchain versions . 18
2.8.2 Blockchain variants . 18
2.8.3 Benefits of a blockchain . 19
2.8.4 Transactions . 20

iv

2.8.5 Mining- Processing . 21
2.8.6 Blockchain Usage . 21

2.9 Ethereum . 21
2.9.1 The Genesis Block . 23
2.9.2 Ether . 23
2.9.3 Gas Price . 23
2.9.4 Solidity . 23
2.9.5 Remix . 25
2.9.6 Ethereum smart contracts . 26
2.9.7 DApps . 26

3 SYSTEM DESIGN AND METHODOLOGY 28
3.1 Methodology . 28
3.2 System Context . 29
3.3 System Architecture . 31
3.4 Tools Used . 32

4 IMPLEMENTATION 33
4.1 Frontend . 33
4.2 Backend . 34

4.2.1 Ethereum Private Network . 34
4.2.2 Smart Contract Application . 38
4.2.3 Smart Contract Server . 45

5 RESULTS AND CONCLUSION 49
5.1 Discussion . 61
5.2 Future Work . 61
REFERENCES . 61

A De-Centralized Secure Transparent Systems 65

v

List of Figures

2.1 Simple Encryption and Decryption Process . 8
2.2 Secret Key (symmetric) cryptography uses single key [1] 9
2.3 Public Key (asymmetric) cryptography uses two keys [1] 9
2.4 Secret Key (symmetric) cryptography uses single key [1] 10
2.5 A Simple Hash Chain [2] . 10
2.6 Sign and Verifying the Message[3] . 11
2.7 How a Digital Signature is Created [4] . 12
2.8 Merkle Tree for Efficient and Secure Data Verification 13
2.9 Centralized, Decentralized and Distributed Ledgers[5] 14
2.10 Different Types of Consensus Algorithms [6] . 15
2.11 Top 5 cryptocurrencies based on market capitalizations [7] (as of August 2019) . . . 17
2.12 Blocks of Chain and Hashes . 18
2.13 transaction validation process . 20
2.14 ethereum blockchain Work progress . 22

3.1 Work Flow Diagram . 28
3.2 Context Diagram: Decentralized Secure Transparent prototype System 30
3.3 The architecture of the Decentralized Secure Transparent (prototype) System . . . 31

4.1 The architecture of the Decentralized Secure Transparent (prototype) System refer-
ence from page no 31 . 33

4.2 Ganache Personal Blockchain for Ethereum Development 35
4.3 Install Metamask and Integrate with Ganache GUI 36
4.4 Mnemonic Seed Words on ganache GUI . 36
4.5 General Settings on Ganache and Metamask! . 37
4.6 Dapp portfolio . 45
4.7 Remix - Solidity IDE . 46
4.8 System Deployment . 46
4.9 Decentralized Secure Transparent (Prototype) System 47
4.10 Metamask informations for deployment . 47
4.11 Ganache informations for deployment . 48

5.1 Sign the request and check new Administrator . 49
5.2 Check new Administrator of the system . 50
5.3 Sign and accept the Request by present Admin . 50
5.4 Add Project Stakeholders by Administrator . 51
5.5 Add Project Stakeholders by Administrator . 51

vi

5.6 Create Transactions by Any Stakeholder . 52
5.7 Transaction Creater sign transaction by his privet key 53
5.8 Transaction created for transfer 140 ethers. 54
5.9 Sign the Transaction for transfer 140 ethers. 54
5.10 Created Transaction details . 55
5.11 De-Authenticate the Transaction . 55
5.12 De-Authenticated transaction . 55
5.13 Transaction De-authenticate logs. 56
5.14 Transaction created for transfer 160 ethers... 57
5.15 Transaction creator approved for transfer 160 ethers... 57
5.16 Transaction approved for transfer 160 ethers... 58
5.17 Transaction approved for transfer 160 ethers... 58
5.18 Status of the Transactions... 59
5.19 Add more Authenticators for farther Authentications 59
5.20 . 60
5.21 Status of the Transactions... 60

vii

List of Tables

2.1 Use Cases of Block-chain different sectors . 21
2.2 standard metric for Ether Denominations . 23

viii

Chapter 1

INTRODUCTION

1.1 Introduction

Sri Lanka has changed a lot due to launched long and short term strategic and structural develop-
ment plans. Which will help to make a transform to an upper middle income country[8]. It has high
growth due to the strong contribution of the private sector in both investment and consumption
as well as the government contribution to large infrastructure projects that will help to change the
state of the country. Both Sri Lankan government and foreign countries are contributing to these
projects as well as public and private organizations are also conducting a number of projects that
attempt to improve the living conditions of the people by doing these infrastructure projects[8];

These projects also hold financial, economic, technical, institutional, social, political risks[9]. So we
need to come up with new mechanisms to address and mitigate these external risks. In general, most
projects seems less attractive or unsuccessful in generating expectations with respect to investment
and weight of financial resources. As a result Sri Lankas economy finances and the society as
a whole suffer from in wastage of resources[9]. There for. The real reasons for failure of these
development projects are not known and debatable. Nowadays Sri Lankan government involve into
many structural development projects[8]. Many of those projects are dealing with poor financial
transactional methods and that will result a major risk on the project[9]. A buyer and seller when
exchanging an asset for payment come to an agreement which is generally known as a financial
transaction. The buyer and seller are separate parties that exchange goods for money. Financial
audit is a review of financial transaction records [10] of a company which is later published as a
report. The report includes what the reviewers saw during the audit and which areas regulators
need to pay attention to[11].

According to researchers many projects have problems with cash flows because of poor financial
planning and assessment[9]. Other risk factor include political influences that are generally not
considers during the planning stage. According to the Transparency International [12], Sri Lanka
currently holds 91th place out of 175 countries for the least corrupt countries. That suggests a huge
amount of cash transactions take place in between as un-auditable events. Generally corruptions take
a form of facilitation payments, bribe solicitation by government officers and politicians, nepotism
and also cronyism. There an extremely high level of corruption carried out by those who are in
charge of public procurement [12]. All these corruptions are finally added to the project cost and

1

that makes the project cost to be too high and might not deliver the expected outcome. Anti-
corruption laws of Sri Lanka include Penal code[13] and bribery act[14] which criminalize corruption
as well as attempted corruption in the form of extortion and bribery. Although there is no clear
definition that differentiates bribery from facilitation payments under the prevention of corruption
act[15]. But there is a high chance of escaping from these processes, due to the doubt in the integrity
of the financial audit reports of such projects. Even Though the payment process of the government
is complex and sophisticated many exploit the weakness in the system to scam money from these
transactions. Law enforcement is restricted by a lack of resources and technical expertise, and the
influence of politics[12]. In researchers point of view if they’re a mechanism to immediate knowledge
of the transaction and fraud can be immediately known and it can be mitigation.

1.2 Weaknesses of the Present System

• A transaction involves only a few parties and the transactions can be kept secret from other
parties without transparency.

• Project financial management by one party, partitioning for approval and analysis of needs On
the other hand, the transactions were carried out without transparency.

• In the event of transactions, all parties have no immediate knowledge of the transaction and
fraud cannot be immediately known.

• Internal or external auditing takes place after the time of the transaction.

• In the long run, the audit report may be misplaced.

• Once the audit reports have been altered, other parties cannot be aware of it later.

• The payment process of the government is complex and sophisticated [16] [17] and which have
much weakness in the system corrupt officials gain to exploit an above weakness for scam
money from these transactions.

Therefore, this research is looking at the present time consuming manual Financial System to
proposing a fast and trusted mechanism which can be mitigate above mentioned weaknesses by
replacing a digital solution with smart contract built on block Chain technology [18] without com-
promising the prevailing legal framework of Financial Regulations[16] and Procurement Guidelines
[17] by Sri Lankan Government.

1.3 Objectives

Basic Objectives of this research is minimizes mismanagement of existing manual process and
proposed an efficient mechanism such as;

• Minimizes mismanagement of the existing inefficient, unproductive and untrusted manual sys-
tem.

• Protect the Integrity of financial transaction data. Creating an efficient, auditable, transparent
reliable transaction mechanism by cost effective manner.

• Create a digital signature for stakeholders for signing.

2

• Real time signature verification of transaction.

• Build conceptual design on blockchain smart contract to the fanatical transaction.

• Non repudiation of the transaction events.

• Protect legal framework of Financial Regulations by Sri Lankan Government.

1.4 Scope

Basic intention of this research is to identify and audit the financial flow of a certain project
involved in many stakeholders. Proposed system can store encrypted version of transactional events
occurred on project timeline and make that information available to all intended stakeholders for
their reference.

1.5 Research Areas

In this system, Researcher uses an Ethereum (blockchain) [19] decentralized platform for building
a “De-Centralized Secure Transparent Systems to Manage Financial Transactions”, Ethereum can
developing decentralized applications in addition to its secure and decentralized technology. Which
is tamper free, immutable and only a legitimate person with the correct person and signature can
descript the blocks collect the relevant information within it. This research also provide to protect
legal framework of Financial Regulations [16] and Procurement Guidelines [17] published by Sri
Lankan Government.

1.6 Limitations

Prototype model of “De-centralized secure transparent Systems to Manage Financial Transac-
tions” built on private Ethereum platform.

Present regulations for Financial Regulations [16] and Procurement Guidelines [17] published by
Sri Lankan Government is complex and sophisticated, and which is difficult to implement the each
and every requirements for digitalized system. Most of the cases government projects are done by
contract base for their relevant requirement and this research is not include for any contract pro-
cedures.Researcher will follow only protect a ledger information’s and basic Financial Transactions
process.

1.7 Organization of the Dissertation

The remaining chapters of this thesis are structured as follows:

Chapter two : Focused on the literature review, characteristics of Block Chain.

Chapter three : Discusses on building the system.

Chapter four : Implementation of the system.

3

Chapter five : Includes the final conclusion of the thesis.

4

Chapter 2

BACKGROUND INFORMATION
AND LITERATURE REVIEW

This section will explore the technology behind Bitcoin and the blockchain, followed by an in depth
look at smart contracts. Researcher expect to describe the background research on “De-Centralized
Secure Transparent Systems to Manage Financial Transactions” and how the prototype system will
aim to implement with core functionalities.

2.1 Background Information

2.1.1 Present System and Regulations

The Financial Regulations [16] and Procurement Guidelines [17] of the Government Sri Lanka is
a subject that has been assigned to the Minister of Finance by the President exercising the powers
vested in him under Article 44(1) a of the Constitution of the Democratic Socialist Republic of Sri
Lanka [16]. In present Sri Lankan governments Ministries, Departments, Statutory Bodies, Gov-
ernment Corporations and all State Employees must follow the Financial Regulations (1966 revised
on 1992) [16] when they processed the Financial transaction in an orderly manner. But the Finan-
cial Regulations will apply unless they have duly adopted their own comprehensive Financial Rules
and Procedures. Furthermore that procurement of supplies, tender procedures and the execution of
works can be neglected by the Head of Department which may, in appropriate circumstances but he
should immediately be reported to the Secretary to the Ministry the Director General Department
of Public Finance.

2.1.2 Financial Audit Analysis

Article 154 of the Constitution of the Democratic Socialist Republic of Sri Lanka provides the
order for the Auditor General Department [10] to audit public sector institutions, accounts of all
Ministries, Departments, and Statutory Bodies, Public Corporations and business or other undertak-
ings. The Auditor General’s Department should be directly reported to the Parliament for provides
an independent review of the accountability and performance of the public sector institutions also
Department aims to meet the needs and expectations of the Parliament and ensure the regulatory,
propriety and compliance with all the statutory and other regulatory requirements and the economy,

5

efficiency and effectiveness of the financial and other operations[11]. The importance of the financial
audit analysis to an organization is;

• To reduce the fraud and controls misappropriation of organization assets.

• To trace the transactions to supporting documents and authorizations. To carefully review
the records transactions, management reports, and also check the different legal documents
required for running a business.

• To help the company to increase the strong accounting procedures and identifying weaknesses.

• To ensure that financial health of the company.

• To trace existing financial issues and to suggest necessary changes to the current procedures
for a healthy strong financial management system.

• To determine additional factors which support the protection of the company’s financial assets.

• To ensure the organization had a good habit of QOS and follow proper standards also policy
for financial transactions.

2.1.3 Related Projects

There are many approaches introduced to overcome this problems related to manage financial
transactions in Sri Lanka but none of them are tampered free trusted solutions.

• Pronto-Xi Financials [20]

Which offers a seamless view of the all the business financial activities such as
accounts handling, payroll systems, assets management and the General Ledger.

The General ledger of the pronto-XI [20] is strong and flexible Ledger solution
which provides a team with real-time access to the system for accurate, financial
reports which is needed to support strategic decision making. And the pronto -XI
provides a role based permissions when users associates with the systems. Pronto-XI
can assist to analyse, record and classify the financial transactions and the general
ledger to fully understand the financial of activities.

• QuickBooks Enterprise [5]

QuickBooks Enterprise[5] has been specially designed for users with experience. It
includes advanced modules such as employee management, payroll, sales, inventory
management and reporting. But entry level accountants may find it difficult to track
fixed assets, direct credit card transactions, create custom and combined reports.

But which contain a general central database which is vulnerable to tampering,
deleting records also access by role based permissions levels even no database en-
cryption mechanism.

There are few existing systems which are similar to blockchain domain by comparing with the
global industry but those systems are too expensive and it is difficult to manage the functionalities,
but there is no any financial transaction management system connected to it;

• Bitcoin [21]

6

Bitcoin [21] is a purely crypto based currency, a form of electronic cash. It does
not have a central authority (decentralized) which means that it can be sent from one
user to another using the peer to peer network without any need for intermediaries.
These transactions are verified using cryptographic mechanism by the network nodes
and recorded in the blockchain which is a public distributed ledger.

• Ripple’s XRP Global Financial System[22]

XRP system[22] was designed for banks. It is great for cross-border transaction.
It uses a consensus protocol which records and validates every transaction without
any mediator.

• The Block-chain Model of Cryptography & Privacy Preserving Smart-Contracts

Smart contracts[23] lets two parties that does not trust each other to transact
safely without the help of a trusted third party. This transaction takes place over the
block chain using decentralized currencies. If the contract is breached the blockchain
ensures the honest party receives the required compensation.

2.2 Cryptography

Cryptography originated as the art of secret writing. It began thousands of years ago. The
first use of cryptography was documented in 1900 B.C [1]. from the tomb of an old kingdom of
Egypt. According to some experts cryptography was created soon after writing was invented and
used for communication during times of war. A New Generation of cryptography emerged with the
widespread use of data, computing and telecommunications. In today’s business world cryptography
provides the security necessary for communicating through a medium such as the internet that
everyone has access to. Cryptography provides five primary functions[1];

1. Privacy/confidentiality:
Ensure no other parties read the message other than the intended receiver.

2. Integrity:
This assures the legitimate receiver that the received message has not been altered or modified.

3. Authentication:
Ensure that the sender’s identity is identifiable.

4. Non-repudiation:
A process prove that either party cannot deny sending or receiving the data, message or
information [1].

5. Key exchange:
The process of sharing the cryptographic keys between sender and receiver is called the key
exchange [1].

Basic terms of cryptography;

• Plaintext (P) : This is the original message that can be understood by humans. Which is
the message before the encryption process and after the decryption process [1].

7

• Cipher text (C): The message after the encryption and before the decryption. The
data/message in a form that cannot easily be understood by humans.

• Cryptographic Key (K): An array of bits used by a crypto-algorithm to convert plain text
into cipher text or vice versa [1].

• Encryption (E): The mathematical process of altering plain text data (plaintext data) into
the something meaningless (ciphertext) [1].

• Decryption (D): the mathematical process of altering the cipher text message back to
plaintext which is easily understood by human beings [1].

Figure 2.1: Simple Encryption and Decryption Process

Finally, Cryptography can be used in almost everywhere for applications such as banking, transac-
tions, passwords, cards, and e-commerce transactions, etc. Cryptography is most closely associated
with mathematical algorithms which is used to encrypt and decrypt messages, whereas cryptanal-
ysis is used for investigating and breaching cryptographic security systems and gaining access to
the encrypted cyphered messages [1]. Cryptology is the term referring to the broader study of both
cryptography and cryptanalysis.

2.2.1 Cryptographic Algorithms

There are many ways of categorizing cryptographic algorithms. If it is classified using the number
of keys used for encryption and decryption algorithms it is much more effective [1]. The three types
of algorithms that need to be discussed which are

2.2.2 Secret Key Cryptography (SKC)

Here a single (same) key is used for both encryption and decryption. It is also referred as symmetric
encryption. This type of cryptography provides privacy and confidentiality primary function [1]s.

8

Figure 2.2: Secret Key (symmetric) cryptography uses single key [1]

The sender uses a key to encrypt his message. Then he has to send both the message and the
key to the receiver so that he can use the same key to decrypt the message he received. Here it is
important to send the key using a secure way so that only the receiver will have access to this key.
The weakness in this method is that if a third party knows the key they can also access the message.

2.2.2.1 Public Key Cryptography (PKC)

This algorithm uses a pair of keys. One key is known as the public key and it can be accessed
by anyone. The other key is known as the private key, and is only accessible by the owner. This
is called asymmetric encryption [1]. Encryption and decryption can be done by both keys if one
key use to encrypt other must need to decrypt the message. This type of cryptography provides
non-repudiation, authentication, and key exchange.

Figure 2.3: Public Key (asymmetric) cryptography uses two keys [1]

The sender encrypts his message using the receiver’s public key. Therefore the receiver has to
use his private key to decrypt the message. Nonrepudiation can be achieved by using the sender’s
private key to encrypt. Then the receiver has to use the sender’s public key to decrypt the message.

2.2.2.2 Hash Functions

By using a mathematical transformation data can be encrypted in a way that is not reversible.
They use no key which providing a digital fingerprint of the message [1].

Message digests and one-way encryption are synonyms for hash functions. Hash takes clear Text
in conjunction with a Mathematical Algorithm and generate a fixed length bit string. It is not
possible to recover both the content or its length. Hash algorithms are;

Typically used as a digital fingerprint of message or a contents of a file. By using this digital
figure print we can find out if the file or message was altered by an intruder or virus. Receiver of the
message and Hash run Message through Algorithm and compare results to Hash. If same message
can be taken as authentic and unaltered. So hash functions are used by many operating systems to
encrypt passwords[1].

9

Figure 2.4: Secret Key (symmetric) cryptography uses single key [1]

2.2.3 Hashing and Blockchain

It is important to know how blockchain Hashing works In order for new blocks to be accepted to
an extent blockchain, a proof of work have to be generated. The proof of work is composed of letters
and numbers fixed according to the desired outcome. This is expressed by the double SHA-256
hashing algorithm [2].

Figure 2.5: A Simple Hash Chain [2]

That means that once the target hash has been obtained, then the block is accepted into the
public ledger by the consensus of other participating networks.

Because the blockchain only contains those transactions that have been validated, this prevents
fraudulent transactions being added to the chain, or the problem of double-spending by reusing the
same transaction twice [2].

Here the letter T stands for transaction. This diagram demonstrates the power of the chaining.
H3 is generated by hashing the entire block 3, which contain the hash value of block no 2, which
was generated using the hash of block 1 etc. considering that the hash function is one-way, it is
impossible to calculate this chain from right to left (only calculated from left to right). There for
any attempt to alter the chain parameters will be detected making the chain immutable. This is the
useful property what we want.

2.2.4 Digital Signatures

A digital signature is a generated through a set of complex mathematical cryptographic calcula-
tions [3]. These Mathematical technique presenting the nonrepudiation, authenticity and integrity

10

of digital messages or documents. The digital equivalent of a handwritten signature or, a digital
signature offers far more inherent security, and it is intended to solve the problem of tampering and
impersonation in digital communications. Digital signatures are constructed busing asymmetric key
cryptography. Using an asymmetric key algorithm, such as RSA, two keys that are mathematically
linked is generated one functions as the private key while the other functions as the public key [4].

Figure 2.6: Sign and Verifying the Message[3]

A valid digital signature has three main functions. The first is the assurance that the message
was sent by the claimed sender (proof of the sender’s identity). This is known as authentication.
The second is that the sender cannot deny sending the message. This is called non-repudiation. The
third is that the message has not been altered during transmission. This property is called integrity.
Today Digital signatures have become a common element of every cryptographic protocol that
requires the above three functions. These include financial transactions, block chain applications,
contract management systems, and everywhere else in which forgery and tampering needs to be
detected [2].

To summarize hashing and digital signatures makes the blockchain unique. Because of hashing
everyone can trust the blockchain state has not been altered. In the same way digital signatures
ensure that all transactions are made by the rightful owners. This is what guarantees the blockchain
is not compromised or corrupted. So Digital signatures are a key component of the blockchain for
securing data and auditing the transactions.

2.2.5 Multisignature

Multisignature [4] is a digital signatures scheme for more than one signature is needed to approve
a transaction. Multisignature (Multisigs) are used by many cryptocurrencies such as Bitcoin and
Lisk as well, concept of the Multisignature to provide dividing the ability to make decisions group of
peoples or parties which provide better security for the transaction. This feature provide transactions
makes the system significantly safer and secure, both by hackers and those who somehow gained
access also prevent fraudulent transaction of smart contract .

11

Figure 2.7: How a Digital Signature is Created [4]

2.2.6 Merkel Tree

The idea behind a Merkle tree [24] evolve from the concept of hash list. It soon became a
fundamental part of blockchain technology. It has a tree like structure where each parent node is
generated by hashing two child (leaf) nodes. Child nodes (leaf-node) are generated by hashing block
chain of data. In this tree each parent node has only two-child nodes making the branching factor
equals to two.

To assure effective and secure data-verification of content in a large body of data such as in
distributed systems merkle trees are generally used.Hashes encode files in to much smaller content
than the original file. This is what makes this system Efficient. Entire data from a file is replaced
by a much smaller hash of fixed length. P2P networks such as Tor, Ethereum and Bitcoin uses this
function.

12

Figure 2.8: Merkle Tree for Efficient and Secure Data Verification

L1 though L4 are blocks of data which are then hashed to create leaf hash nodes. Then these
nodes are paired and hashed recursively until root node is reached. Therefore the hash of the root
node is calculated using all other nodes in the merkle tree that’s why it is called the merkle root
[24].

2.3 Turing Completeness

The concept behind the modern computer was proposed by a mathematician called Alan Turing
in the 1930s. This hypothetical machine was called the Turing machine. In theory it was able to
perform any mathematical or logical calculation as it had unlimited memory. Ethereum is one such
network that has the potential to mimic Turing Completeness [25].

The term turing completeness refers to a system or device that can calculate anything if memory
is available.

2.4 Decentralization

Since it doesn’t rely on a central point of control the blockchain technology is said to be decen-
tralized [5]. It means each node is running autonomously in the system. The main difference with a
distributed system is that in a distributed system there are dedicates set of nodes to control other
nodes. But in a decentralized system no one takes commands from each other. No concept of client
server of master slave. Everyone has equal decision power.

Since there is no central authority the system is fairer and considerably more secure. Instead of
a central authority, blockchain uses an advance consensus protocols[26] throughout the network, to

13

Figure 2.9: Centralized, Decentralized and Distributed Ledgers[5]

validate and record transaction data in an immutable fashion. As a blockchain is equivalent to a
digital ledger it is very important that the information is accurate.

2.5 Peer-To-Peer Network

A Peer to Peer network[5] is a very important part of how blockchain technology. Blockchain
technology has a system of recording and confirming transactions using consensus protocols. Here,
each node in the peer to peer network holds a complete record of transactions. As a result, a central
recording system does not exist, instead each participant has a record of all transactions ever made.
This is the same system used by Bitcoin.

2.6 Consensus Algorithms

Decentralization and security are very important features of Blockchain. Consensus algorithm [6]
is what helps a network with multiple nodes achieve reliability. Finding a solution to the consensus
problem is essential in multi agent systems and distributed computing to ensure that the next block
in the blockchain is fully validated and secured. There are different kinds of consensus algorithms
in existence, each with different fundamental processes [6].

The consensus algorithm should do two things, Make sure the next block added to the blockchain
is the only version and inhibit anyone from disrupting the system and forking the chain. There are
many consensus algorithms available some of them are;

Proof of Authority Algorithm (PoA)

Only some nodes with a particular key holds the status of validators and only validators
are allowed to add new blocks [6].

14

Figure 2.10: Different Types of Consensus Algorithms [6]

The Proof of Work Algorithm (PoW)

The nodes in this system solves Cryptographic complex computation to verify each block
before it is added to the blockchain. This calculation can take around 10 minutes [6].

The Proof of Stake (PoS) Algorithm

This algorithm has validators who are selected based on criteria such as coin age and
economic stake. It is important to note that this algorithm requires much less energy
due to its selection criteria [6].

The Byzantine Fault Tolerance (BFT) Algorithm

This algorithm defends against a catastrophic system failure by reducing the influence
that malicious nodes have. Malicious nodes are failing nodes or nodes that propagate
incorrect information to other Peers [6].

15

Proof of Burn (PoB) Algorithm

This algorithm encourages miners to prove their long-term commitment by burning their
coins. Burning happens when a coin is sent to an unsend able address. Only miners who
have proved their long-term commitment to the coin will receive incentives much later
on [6].

2.7 Bitcoin

The first decentralized cryptocurrency bitcoin and blockchain technology was introduced from the
original white paper ”Bitcoin: A Peer-to-Peer Electronic Cash System” in October 31st of 2008 by,
pseudonymous developer called Satoshi Nakamoto [21]and his team was created it in 2009. It used
SHA-256, a cryptographic hash function and an electronic payment system utilizing cryptographic
calculations. The idea behind it was to create a transaction method, not depending on of any
central authority or single administrator that has the ability to be exchanged electronically in a
secure, verifiable and immutable way [27].

Bitcoin to Bitcoin transactions are made through a peer-to-peer (P2P) network by digitally ex-
changing anonymous hash codes that are heavily encrypted. Transactions are verified and monitored
by the P2P network. Bitcoins are stored in a digital wallet belonging to each user. Digital wallet
is a program for storing currency. It has an address which is also unknown as the public key of the
wallet. The owner can authorize this transactions using his private key which is only known by him.
Wallet also contains previous transaction details.

By design the bitcoin network can generate up to 21 million bitcoins. The network is capable
of dealing with inflation and regulating itself. Spending bitcoin involves sending bitcoins from the
customer’s wallet to the vender’s wallet. As of now the bitcoin is valued at $ 10139.80 [7] but like
in stocks the value fluctuates quickly. Features of Bitcoin are listed below [27].

1. Direct payments from P2P through the network

2. Third parties are eliminated and trust is replaced by verification.

3. Irreversible Transactions. This protects sellers from deception. Buyers can be protected by
escrow mechanisms.

4. Time map servers on the P2P network provides proof on the chronological order of transactions.
This is a secure system given that honest participants as a group have more computing power
than the attackers.

Since external third parties have the power to commit fraud Nakamoto argues that the verification
process is better than having trusted third parties when it comes to financial transactions [27].
The fact that transactions cannot be reversed builds trust and confidence in the system. It also
minimizes the ability to commit fraudulent acts through the system. Since many nodes have to
confirm a transaction before it is carried out the users feel confident in the validly of the irreversible
transaction adding to the overall confidence in the system.

16

Figure 2.11: Top 5 cryptocurrencies based on market capitalizations [7] (as of August 2019)

Up to now double spending has been a problem in the digital world as a digital asset can be easily
copied and re-used [27]. Bitcoin takes care of this problem by the creatively utilizing cryptography
and economic incentives. When fiat currencies are transferred through a public network in the
traditional system it is the banks that help mitigate the double spending problem. This gives banks
power and control over the system. Since the distributed open network is not owned by anyone it
can be considered as a system with much more integrity.

The blockchain to be used is Bitcoin, there is at first no difference between Bitcoin and blockchain.
Many used cases based on blockchain are in the financial sector, however a Bitcoin-like crypto-
currency Ethereum has added functionality for smart contracts[19].

2.8 Blockchain

As suggested by the name, blockchain contain information in the form of a chain of blocks. It was
created for cryptocurrencies [26]. It functions as a public distributed ledger that transactions are
recorded in an immutable fashion. Even with the system continuously growing all records of blocks
are synchronized with identical information. It can be seen as a decentralized ledger that tracks
transaction effectively in a permanent and verifiable way. It is important not to confuse Bitcoin
with the blockchain. Blockchain is the underlying Technology in bitcoin. Bitcoin is just one digital
token. There are many others. The blockchain is used to track the integrity of these tokens. Simply,
Bitcoin cannot exist without blockchain, however, blockchain can exist without Bitcoin [26].

Each block has a header that includes the hash of the former block’s header generating a chain
like structure between blocks. If any part of the block is altered, the value of the hash will also
change, which will change the value of hash referenced in the next block as well as all other blocks
that follow. This is what makes the blockchain immutable. The concept of proof of work is what
stops an attacker from rewriting the whole chain.

The transactions in a block are pared and hashed. The resulting values are then again pared and
hashed. This process is continued until only one hash is obtained. This single hash is called the

17

Figure 2.12: Blocks of Chain and Hashes

‘Merkle root’. The process as a whole produces a tree-like structure called the Merkle tree. This is
why transactions cannot be modified since any modification will Result in a modification in every
single hash value propagating up the tree [23].

In summary, blockchain is an Internet-based software protocol that acts as a digital ledger that
is constantly updated and is run on a distributed network which can be accessed by anyone at any
time. The blockchain is a single source of truth since it is impossible to hack the blockchain.

2.8.1 Blockchain versions

Generation 1.0 : Crypto-Currency

Cryptocurrencies are the most famous application of the (distributed ledger technology)
DLT. Financial transactions can be performed on the blockchain using cryptocurrency.
Bitcoin is the most popular currency for this generation of blockchain [26].

Generation 2.0: smart contract

A smart contract can be seen as small computer program data available in the blockchain.
They can be used as a replacement for traditional contracts. The processes facilita-
tion verification and enforcement is automated in smart contracts. When a predefined
criteria is fulfilled the smart contract will automatically enforce the previously agreed
transaction[26].

Generation 3.0: D-apps

D-apps stands for decentralized application. They have a back end code processing on
this decentralized P2P network. They can have a front end code as well as user interfaces
that can make a call to its back end like a traditional app[26].

2.8.2 Blockchain variants

Public Blockchain

18

Public blockchain ledger is available on the internet for everyone to see. Anyone can
verify and add block transactions to the blockchain. Public networks have incentives for
people who mine[26].

Private Blockchain

When a single organization is using blockchain it is called a private blockchain. Only pre-
specified people are allowed to verify and add transactions to the blocks in the blockchain.
However, anyone who access the network has the ability to see these blocks[26].

Consortium Blockchain

A group of organizations can use this kind of blockchain to perform cross organizational
transactions. The ledger has the option to be Restricted or open to selected parties. The
blockchain is controlled by pre-authorized known[26].

2.8.3 Benefits of a blockchain

Blockchain technology is rapidly being adopted all over the world especially in the IT industry
thanks to its wide range of benefits some of these benefits are listed below[26].

Resilience

The architecture of the blockchain is often replicated, therefore, it can function even
while a massive attack Takes place against this system.

Time reduction

Blockchain significantly reduces the Time taken to process transactions since it does not
require a long time for settlement, Verification, and clearance since the ledger is available
for all stakeholders to view.

Reliability

Since all processes searches certification verification and identification is done by the
blockchain there will be no double records and transactions will be accelerated while
reducing the rates.

Unchangeable transaction

The use of hashing in the blockchain make sure the transactions cannot be altered. All
transactions will be entered in chronological order and once it is added to the blockchain
it cannot be deleted or altered.

Fraud prevention

Since all information in the blockchain is accessible to everyone this system prevents
possible losses due to fraud or embezzlement.

19

Security

A general database is vulnerable to be brought down by attacking a specific location.
Thanks to DLT, the blockchain remains active even if many nodes fail since each party
holds the original copy of the chain.

Transparency

Whatever changes that occur in the blockchain is publicly viewable by anyone, therefore,
blockchain offers greater transparency.

Collaboration

Because of above-mentioned features such as reliability transparency and security differ-
ent parties can interact with each other directly without a 3rd party for mediation.

Decentralized

All blocks in the blockchain follow the same standard rule when exchanging information.
Therefore blockchain makes sure that all transactions are authorized. After that all valid
transactions will be added to the next block in the blockchain.

2.8.4 Transactions

A transaction is the process of transferring some kind of value. In this case tokens (some kind
of data) are been transferred between wallets. These transactions are recorded in the blockchain.
Wallets have a secret code known as the private key or a seed. It is used to authorize transactions.
This is what provides mathematical proof regarding the identity of the owner. Another use of this
signature is that it prevents the record in the blockchain from being changed after it is entered. All
transactions are usually confirmed within 10 to 20 minutes after the transaction is broadcasted [28].

Figure 2.13: transaction validation process

transaction validation process [26]

1. A Blockchain transaction is requested by bob. This transaction may include cryptocurrency,
records, contracts or other information.

2. Next the request broadcasting takes place throughout the peer to peer network.

3. Nodes in the network validate the transaction using an algorithm.

4. After the transaction is validated and confirmed by multiple nodes in the network it is added
to a block which is then added to the blockchain. This record is permanent and can never be
changed. If the validation fails the transaction will not take place.

20

2.8.5 Mining- Processing

Mining can be seen as a reward system for those who run the nodes in the blockchain. This
consensus system requires miners to follow a strict set of rules and guideline to be rewarded[28].
This ensures that transactions are processed chronologically and assures the systems neutrality. A
block is only accepted in to the chain if the majority of the nodes agree. The strict set of rules
also prevents old blocks from being modified because doing so will invalidate the blocks that follow.
Mining creates competitive environment therefore no one can add new blocks consecutively. Because
of this no one can control what is in the blockchain or replace any information.

A transaction fee is required for a blockchain (in the bitcoin) transaction. The miners will receive
the taxes of all transactions in the block. For bitcoin the price of a block is reduced by half every
210000 blocks [28]. This takes four years roughly. It used to be 50 bitcoins but now it has been
reduced to 12.5 bitcoins.

2.8.6 Blockchain Usage

The decentralized blockchain technology is now most trusted and secured ledger technology which
can be applied in several domains for providing a trusted service for their clients which categorized
as follows [26],

Domain or Industry Service or Application

Marketplaces

Transaction management , Billing and procument management
stock management in the supply chain network
online secure payment and booking systems
Decentralized markets store

The government sector.

Registry, Notary and identity service
Voting system
Tax and payment systems
Tender and contract management systems.
Document digitalization such as Properties and ownership management service

IOT sector
agricultural and sensor networks,
smart and sensor home networks,
Personalized robotics and consumer components.

Finance and accounting domain

Digital payments system
Decentralized markets store
payments and remittance
Inter-divisional accounting

Health and pharmaceuticals
domain

Health information Bank
Health and hospital management systems
Digital health wallet Smart property

Science and development
p2p resources management
super computing and data processing

Table 2.1: Use Cases of Block-chain different sectors

2.9 Ethereum

Ethereum is a second generation cryptocurrency [19] which was introduced in 2013. The main
goal of Ethereum is to provide a platform for decentralized applications. These applications use the
concept of smart contracts. Therefore the application is immune to third-party interference, fraud

21

or censorship. Since this is a blockchain Technology It has no possibility of downtime. Ethereum
network is fueled by its underlying currency Ether. It has a fairly new programming language that is
executed by an internal virtual machine (EVM) This language is developer friendly. With the help
of the supporting community, It is becoming widely used and adapted. The custom built blockchain
that runs these applications is very powerful and has infrastructure that is shared worldwide. It
can move values and ownership of property. Therefore, developers can create markets, move funds
according to previously agreed upon conditions, store Debt information in registries, etc. without
a middleman, reducing the counterparty risk. The figure shows the schematic diagram 2.14 for
ethereum blockchain.

Figure 2.14: ethereum blockchain Work progress

The process of validation is what causes smart contract to run automatically. This process is
executed by full nodes autonomously. Full node downloads and validates the whole blockchain
without trusting other nodes. Portable devices, however, use lightweight clients that stores the
blockchain partially and depend on full nodes for transaction validation [26].

The cryptocurrency used in the ethereum platform is Ether. It is used to store and transfer
monetary value as well as to pay for computation and transaction costs. Gas is used to measure
transaction costs as a way to avoids saturation due to meaningless junk transactions. The consensus
algorithm for the ethereum network use proof of work protocol and consumes a lot of energy causing
environmental concerns. To solve this issue the network was expected to move into proof of stake
system which was expected to be fully implemented by 2018 [26].

22

2.9.1 The Genesis Block

Genesis block or Block 0 is the first block of a block-chain. A specific folder is created to save this
block as a document in the .JSON format. This is where it will be called from.

2.9.2 Ether

The currency token used in the ethereum platform to pay transaction fees is called ether. in order
to deploy contract code developers need to provide ether. When users invoke transactions on a
contract they have to either burn or spend ether. Ether can be exchanged into other Fiat currencies
as well as other cryptocurrencies in various cryptocurrency exchanges. Ether can be divided into
smaller units; the smallest being wei [29]. It is 10^18th of an ether[26] and table 2.2 shows that the
standerd metrics of ether.

Unit Wei Value Wei
wei 1 wei 1
Kwei (babbage) 1e3 wei 1,000
Mwei (lovelace) 1e6 wei 1,000,000
Gwei (shannon) 1e9 wei 1,000,000,000
microether (szabo) 1e12 wei 1,000,000,000,000
milliether (finney) 1e15 wei 1,000,000,000,000,000
ether 1e18 wei 1,000,000,000,000,000,000

Table 2.2: standard metric for Ether Denominations

2.9.3 Gas Price

The ethereum network has associated price in ether gas, which users need to pay to initiate a
transaction. Gas is a unit of computation an internal pricing unit that separates the market price of
ether from the cost of transactions. Gas is not a currency. It’s the price for the simplest operation
executed on the blockchain is represented by 1 unit of gas. Depending on the complexity of the
operation smart contracts have different gas costs [26].

Gas price is the fee for utilizing a single unit of gas which is dynamically adjusted to the fluctuating
values of ether. Insufficient Ether balance, as well as lack of gas, can cause the transaction to rollback.

The originator of the transaction can decide the gas price. miners can also decide whether they
want to include the transaction in their blocks. The start gas value or gas limit determines how many
computational Steps a transaction is allowed. Since more memory and storage is used to execute
more lines of code in a contract more Complex contracts have a higher gas limit. Gas limits and
transaction fees help prevent faulty code such as infinite loops from execution saving computational
resources on the network. Gas limit discourages denial-of-service attacks on the network as well.

2.9.4 Solidity

Although ethereum supports many different languages for writing smart contract. Solidity [30] is
regarded as the official language maintained by the ethereum project. This high-level language is
object-oriented as well as contract oriented. Solidity system is the static type with a syntax very

23

similar to java script. Solidity main construct is a contract. It contains fields, functions and function
modifiers as well as struct types, enum types, and inheritance.

Ethereum address is a interesting data type which is 20 byte long. It can represent an external
account or a contract. This data type has members that are predefined which has the ability to
transfer either or check the balance using a contract or a call function. Structs, ennumerations and
byte arrays which are able to store multiple data types are supported by Solidity. Also supports
mapping which is seen as a hash table that could map any data type to another data type. Every
declared variable produces a accessor function.

The most important concepts of a contract are described in the following subsections

2.9.4.1 Solidity Variables and Data Types

State variables store values in a contract permanently . The data type of the variable needs to
be specified. Elementary data types used in solidarity are listed below. They can be combined to
create more Complex data types [30].

• Booleans

boolean values (true, false) are stored using this data type.

• Integers

Different subtypes of signed (int) and unsigned(uint) integers with different byte
lengths are stored using this data type.

• Address

Ethereum addresses of 20 bytes are stored using this data type.

• Fixed-size byte arrays

Arrays that varies from length 1 to 32 are stored using this data type.

• Dynamically-sized arrays

“bytes” type arrays, dynamically-sized byte arrays, string type arrays and, dynami-
cally sized UTF8-encoded strings are stored using this data type.

• Struct Type

These are custom defined types that have the ability to group several variables

• Enum Types

These are utilized for creating finite set of values with custom data types.

24

2.9.4.2 Visibility for Functions

Solidity has functions and variables in the Global namespace which provides information on the
status of the blockchain and executable unit codes in the contract. Solidity holds four types of
visibility functions [30] which are.

• External

This function is a specification in a contract which can be called by other contracts.
But the contract containing the function cannot call itself.

• Public

This function can be called by both the contract containing it as well as other
contracts.

• Internal

Only the contract containing this function or it’s derived contracts can call it.

• Private

Private functions are only available for the use of the contract containing the func-
tion. Derivative contracts cannot use this.

2.9.4.3 Other Impotents Notes

Function Modifiers

Function modifiers [30] can change the behavior of a function and make minor changes
to the semantics of a function. They make sure that a function can be executed only in
a specific context.

Events

Events are interfaces that grant AVM logging facilities. Applications can subscribe to
events and monitor the state of a contract without directly interacting with the contract
itself.

2.9.5 Remix

Remix [31] is a web-based IDE. It writes solidity smart contracts, deploys and run them. It comes
with a running environment, debugger and testing facilities. It is very secure since it analyses the
solidity code to reduce coding mistakes and identify vulnerable coding patterns [30]. Examples of
such vulnerabilities are transaction origin usage, block-hash usage, dependence on timestamp, reen-
trancy, and patterns with high has costs. Formal verification such as deductive program verification
and theorem proving are used for remix Security Analysis.

Remix IDE can be access through the web browser without any kind of special installation by
visiting htps://remix.ethereum.org/ [31]. You can access a complete IDE which have a code editor
and various panels for compiling, debugging and running the smart contracts.

25

2.9.6 Ethereum smart contracts

Smart contract process inputs automatically and perform logical calculations based on predefined
criteria to provide results. Obvious next step for this application is to improve the complexity of
the agreements. The blockchain stores, executes and verifies the smart contract code. The second
generation of blockchain facilitates trades using cryptocurrencies and smart contracts. Nick Szabo
proposed Smart contracts in 1997. The main objective of this contract is to automatically execute
the transaction once all terms and conditions are met.the simplest smart contract is shown in below
[30];

pragma solidity >=0.4.22 <0.6.0;

contract Transparent_System {

address public Admin;

Transaction [] public Transactions;

constructor () public payable{

Admin = msg.sender;

}

modifier Only_Admin {

require(msg.sender == Admin);

_;

}

function Change_Admin(address New_Owner) Only_Admin public {

Admin = New_Owner;

}

}

As a result of transactions stand-alone contracts is saved in the blockchain itself for storing ex-
ecutable codes, data, or ether. Smart contracts have the ability to interact with other contracts
and create new contracts if necessary. They have a low bar of entry for users due to low legal and
transactional costs. Currency is used by the consumer himself, therefore, security can be an issue.
if you send currency into a Buggy contract it can be lost forever. the smart contract [32] has the
ability to hold assets which will only be released once certain conditions are met.

Contracts act on behalf of the users with the exception of initiating a transaction. This limitation
was introduced to dodge DoS attacks against contracts on the blockchain. The user has to pay the
gas required to execute the contract before the process begins. Since programs can refund users, the
contracts that people can use for free is a real possibility.

2.9.7 DApps

The Dapps stand for decentralized applications. There are many apps available and also in
development. The average user of the blockchain usually interacts with the ethereum network using
these apps. Dapps can be viewed from the state of the Dapps web page. Marketplaces, exchanges
and betting applications are some popular features of the Dapps (most Dapps are still development).
To access these features the user must connect with the ethereum network. For this, the user must
download an ethereum client which is usually available for download from the internet [33].

26

The go version (geth/go-ethereum) is the most common implementation while other versions such
as versions written in Rust (parity), C++ (cpp-ethereum) are also available. The client downloads
the blockchain and verifies blocks, manages ethereum accounts using command line interfaces, sends
Ether and deploys smart contracts. Mining can also be performed by clients.

The end users usually use the Mist Browser which has go client bundled into it. Developers have
the option of using browsers with the client through the JSON RPC API. Most apps use JavaScript
API [33].

27

Chapter 3

SYSTEM DESIGN AND
METHODOLOGY

This chapter will discuss the requirements and provides a comprehensive explanation on the
methodology which followed by the researcher to addressing for developing a prototype of Decentral-
ized Secure Transparent Systems to Manage Financial Transactions for the Sri Lankan government
organizations.

The system is a blockchain-based system which is capable to Direct Payments for any stakeholders
in the particular Project. The main goal of the system are introduced a proper transaction ledger
and securing that ledger from bogus users for gain fraud transactions.

3.1 Methodology

Figure 3.1: Work Flow Diagram

28

This prototype is based on the blockchain and related technologies. The basic intention of the
system is to create, store and validate the legitimacy of financial transactions in a way that is tamper
free, immutable and guaranteed the integrity. The prototype system which runs on decentralized
private network, only a legitimate user with a valid cryptographic signature can create and validate
the financial transactions. Also the receivers of the transaction needs to have valid cryptographic
signature in order to accept and cash out from that transaction. This strong cryptographic mech-
anism prevents bogus users and miners from altering and creating contents of the ledger. So this
system provides trusted, transparent and reliable mechanism which can be audited by any number
of parties in order to verify the overall integrity of the created transactions.

In order to replace legacy systems like cash book and ledger adaptable with existing legal frame-
work of financial regulations of Sri Lanka (Section 2.1.1). And aligned with financial auditing (
Section 2.1.2) requirements, proposed system must have controls required to fulfill requirements
of legal framework and auditing procedures. In order to fulfill above requirements, researcher was
identified some of basic criteria considered when design the prototype system.

When the system is started by the Administrator, he became an owner of the system, Administra-
tor should have to add all the stakeholders by using their pair of keys. Administrator hold the user
manipulation rights Such as add or remove stakeholders also he can Transfer the Administration
authority to another one but if he not become a stakeholder he cannot create transactions.

Transactions can be created by any stakeholder by application. The creator of the transaction
should decide Authenticators also conditions to comply by Authenticators for genuinely successful
transactions. The transaction data is sent to all stakeholders for further processing. Authentica-
tors can authenticate the transaction with respect to the conditions and also add more conditions
for further processing or can also any stakeholder can de-authenticate the transaction if it is not
authenticated by his signature. If all Authenticators proof legitimacy of the transaction will be suc-
cessful and value (if the creator set the value) should transfer recipient wallet by automatically or
transaction can completed manually by proper banking check. Through this process internal audit
team can verify each and every transaction by comparing relevant wallet hashes.

So this system provides trusted, transparent and reliable mechanism. Furthermore Integrity and
authenticity of the transactional data can be preserved by introducing appropriate encryption and
hashing mechanism. For each wallet data of stakeholders and third party or internal audit team or
any number of parties can be verify each and every transaction by comparing relevant wallet hashes.
Non reversible hashes and encrypted wallet information can further prove non repudiation of the
transaction events with certain owner who responsible for the action.

3.2 System Context

The Decentralized Secure Transparent prototype Systems is act together with few number of actors
also exterior software systems. This section is introduced by these actors and software systems.
According to the context diagram as shown in figure : 3.2 which defines the Decentralized Secure
Transparent prototype System with the inputs and outputs from its set of actors.

29

Figure 3.2: Context Diagram: Decentralized Secure Transparent prototype System

Administrator

Any one deployed the system he is become an administrator of the system as well as
he is the owner of the system, afterwards he can Transfer Administration authority to
another. Administrators primary job role is manipulate the stakeholders.

Stakeholders

Stakeholder is the main actor of the system and he has many user roles such as Authenti-
cator, De-Authenticator. So basically stakeholders can create Transactional request and
manipulate the Transaction. Once they have created a transactional request and the
creator of the transaction can edit the transaction if the transaction is still processing.
But he cannot hold or manage that transaction.

Authenticator

Authenticator is derived from stakeholders when the creating the transaction for sign
and Authenticate the legitimacy of particular transaction for successful transaction.

De-Authenticator

De-Authenticator is also derived from stakeholders by himself when the stakeholder De-
Authenticate the transaction and also he become an authenticator for farther proof
legitimacy of authentication transparency.

30

Other User

Any of the user access the system he can only view status and can be audited of the
process.

Ethereum Blockchain

The Ethereum Blockchain is the underground technologies uses to automatize the pro-
cesses, store data and securing the ledger of the Decentralized Secure Transparent pro-
totype system.

3.3 System Architecture

The architecture of the Decentralized Secure Transparent (prototype) System is design with fron-
tend and backend process which shown in figure : ??, the main components of the architecture are
in brief;

Figure 3.3: The architecture of the Decentralized Secure Transparent (prototype) System

Frontend

The DApp is the frontEnd Application is what users willing to access the system via internet.

- Desktop / Tablet device

End Devices that are used to end-users for creating, managing, Authenticating and
viewing the status of transactions which exchanging among stakeholders.

31

Backend

The backend is a Blockchain based system which directly communicate with Ethereum network
for the supplied serviced to frontend client consumes.

- Smart Contract Server

The server hosts an Ethereum node and Smart contract Application that is part of the
Ethereum blockchain network.

- Ethereum network

Ethereum network consists of many nodes that are used to record transactions. Therefore
it can be seen as a public digital-ledger. After validation a transaction is entered in to
a block and it can never be altered thereafter. Consequently participants can verify and
audit transactions by themselves at relatively cost-effective prices.

3.4 Tools Used

• E.V.M

EVM stands for Ethereum Virtual Machine. It provides a run time environment
based on ethereum for smart contract execution and mining blocks of the blockchain.

• Solidity

Smart contracts are usually written in solidy. Solidy is a very popular programming
language in the ethereum block chain. It has almost befome the official language for
ethereum development. It was designed specifically for ethereum virtual machine.

• Remix ethereum - IDE

Remix IDE is a compiler and runtime environment. It is run on a browser and is
also open-source. This is used to write solidity or Vyper smart contracts. Written
in Java script, this IDE, performs debugging, testing and deploying smart contacts.

• MetaMask

Metamask is a browser based ethereum extension tool for Firefox, chrome, and opera.
It provides a simpler platform for users to interact with the ethereum blockchain.
This is a secure platform that users utilize for managing their identities and signing
their blockchain transactions.

• Web3

Web 3.0 is a more user centric blockchain stack that has a decentralized network.
This is a more transparent and secure internet that is attempting to create a more
user friendly apps.

32

Chapter 4

IMPLEMENTATION

The specific details and design decisions regarding the disentailed secure transparent system are
described in this chapter. According to the system architecture discussed in Section 3.2 as shown in
the Figure: 4.1 in page no 31, the implementation is mainly divided into two parts as backend and
frontend. The backend is a Blockchain based application which directly communicate with Ethereum
network to provide the necessary services for frontend clients. The frontend requests information
from the backend process and displays it to the user. The front end embed the public and private
keys for the user.

Figure 4.1: The architecture of the Decentralized Secure Transparent (prototype) System reference
from page no 31

4.1 Frontend

The DApp is the frontend Application is what users willing to access the system via internet.
DApp is browser based device independent application which is directly interact with Metamask or

33

any decentralized client app. Which hold the Ethereum wallet of clients (privet and public keys).
The researcher used metamask to communicate with the private ethereum block chain and create a
wallet that was used to access the application. This was due to the fact that Meta mask is a browser
extension for chrome, Firefox and opera. It is easy to install and interact with the system.

4.2 Backend

The backend is a based on the blockchain and related technologies, which directly communicate
with Ethereum privet network for the supplied serviced to frontend client consumes which is mainly
consist with of three major subsystems.

1. Ethereum Private Network.

2. Smart Contract Application

3. Smart contract server

4.2.1 Ethereum Private Network

According to the amount of computation the network provides to execute a smart contract the
user need to pay a price. This price which is paid in ether is known as gas. The cost of gas may
be too high for running on complex smart contract. The main Ethereum network gas is obtainable,
it involves purchasing and depositing actual ETH into the account. So for testing and development
purposes researcher used a type of simulation technique for blockchain which is ideal platform for
testing blockchain based apps with lesser cost and resources. And also Ethereum Private Network is
a recommended platform for a deployment of the real system due high gas price. This price usually
increases with the increase of the system complexity.

When nodes are not linked to the main ethereum network it is called a private network. Therefore
this is reserved and isolated but does not necessarily mean it’s protected or secured. The security,
immutability, and reliability of such private ethereum networks can be improved by increasing the
number of nodes and servers.

There’s a several ways to deploy an ethereum private network. This test network consist with one
physical server and one ethereum node but if more nodes and servers are needed we can increases
the no of servers. Which is more reliable and much more secure. The simplest way to development
and test Decentralized Secure Transparent System the researcher uses Ganache GUI as a personal
ethereum blockchain network for Ethereum Development which is installed on Ubuntu Linux server.
If much more security is needed for more reliable mechanism the researcher recommends Geth
framework.

4.2.1.1 Installing Ganache GUI

Ganache GUI shown is figure :4.2. Is used for creating the personal ethereum blockchain. This is
what the researcher used for ethereum development and deploy smart contracts, develop applications
and test smart contracts. To install ganache GUI it can be directly download by visiting the home
page of Ganache. There are specific formats for Windows, Linux and Mac as well.

34

Figure 4.2: Ganache Personal Blockchain for Ethereum Development

4.2.1.2 Install Metamask and Integrate with Ganache GUI

To access the blockchain, the user needs to install a mobile distributed application (DApp) browser.
So the most popular DApp browsers is Metamask which is a google chrome, firefox, opera extension.
Therefore it is a prerequisite to install one of the above mentioned web browser as well. A brief
description of how to install metamask for chrome is given bellow.
Step 1 : Go to the Metamask website using google chrome browser.
Step 2 : Click on “Get Chrome Extension” to install Metamask, as seen in 4.3a.
Step 3 : Click “Add to Chrome” in the upper right corner.
Step 4 : Click “Add Extension” to complete the installation.

35

(a) Installing Metamask extension
(b) Configuring Meta mask

(c) Import the wallets

Figure 4.3: Install Metamask and Integrate with Ganache GUI

Step 5 : After Metamask is successfully installed click “Get Started” as shown in 4.3b.

Figure 4.4: Mnemonic Seed Words on ganache GUI

Step 6 : Then click ”Import Wallet” followed by “I agree”. Copy and paste Mnemonic Seed Words
on ganache as shown in GUI 4.3c into wallet seed and set password of the account. Then click
“Import” and “All Done”

36

(a) Add Accounts
(b) Set Network

(c) Gnache GUI Sttings

Figure 4.5: General Settings on Ganache and Metamask!

Now set the network (Refer Figure : 4.5b) to ’Localhost 8545’ or settings what you provided
earlier to ganache. Now you have connected to metamask and ganache GUI with your Account. If
you need to increase the no of accounts you can add (Refer Figure 4.5a). So the ganache prop-up
more account to you according to the relevant settings (Refer Figure 4.5c that you set in the ganache
GUI.

37

4.2.2 Smart Contract Application

The Decentralized Secure Transparent System is purely blockchain-based application. All of the
data flows regarding the request from this System (smart contract), is stored in Ethereum Blockchain.
The Smart contract is developed in solidity (Refer 2.9.7) language. The development and testing
with Ethereum Remix environment (Refer 2.9.6) and Ethereum development framework Truffle.
Truffle framework will help to the creating the essential files when creating the Dapp.

The full source code of the Transparent-System smart contract will be post as an Appendix-A
and some of the data stores, major functionalities and function modifiers on the contract described
in below.

4.2.2.1 Function Modifiers

Function modifiers can change the behavior of a function also validate the inputs that means
modifiers are able to check a given condition prior to running the function. In this smart contact
the researcher use modifiers to validate the authority and to access particular functions.

Only Admin Modifier

“Only_Admin” modifier is used to check if the person sending the function request is an admin or
not. This is done by checking if the public key of the sender is equal to the public key of the admin.

modifier Only_Admin {

require(msg.sender == Admin);

_;

}

Only Creater Modifier

“Only_Creater” modifier is used to check if the person sending the function request to change a
transaction is the creator of the same transaction or not. This is done by checking if the public key
of the sender is equal to the public key of the creator of the transaction.

modifier Only_Creater(uint TId) {

require(msg.sender == Transactions[TId]. Creater);

_;

}

Only Stakeholders Modifier

“Only_Stakeholders” modifier is used to check if the person sending the function request is a
stakeholder or not. This is done by checking through the list of stakeholders if the public key of the
sender is equal to the public key of one of the stakeholders.

modifier Only_Stakeholders{

for(uint J = 0;J < Stakeholders.length; J++){

if(Stakeholders[J]. Stakeholder ==msg.sender){

_;

return;

38

}

}

revert ();

_;

}

Only Authenticater Modifier

“Only_Authenticater” is used to check if the person sending the function request is a authenticator
for that transaction or not. This is done by checking through the list of authenticators if the public
key of the sender is equal to the public key of one of the authenticators

modifier Only_Authenticater(uint TId){

uint x= Transactions[TId]. Authenticaters.length;

for(uint i = 0;i < x ; i++){

if(Transactions[TId]. Authenticaters[i]. Authenticater ==msg.sender){

_;

return;

}

}

revert ();

_;

4.2.2.2 Data stores

According to the controls required to fulfil the requirements of legal framework in government
sector and auditing procedures. Researcher identified some of basic criteria to be considered when
designing the prototype system. The system must keep recodes of every transactional data, list
of Authenticators and De-authenticators. Each and every structures keeps necessary details which
needs to be audited further. It is defined in the code bellow:

Stakeholder Data Store

The stakeholder structures keeps multiple details to identify the stakeholders.

struct Stakeholder{

address Stakeholder;

string Name;

string Designation;

uint Stakeholder_Since;

}

Stakeholder array helps to add multiple stakeholders to the system.

Stakeholder[] public Stakeholders;

Authenticator Data Store

39

The Authenticate structures keeps multiple details to identify the Authenticator and his comments.
Authentication_1st Authentication_2nd and Authentication_3rd is holding the acceptance details
put in by the Authenticator because any transaction can only be authenticated 3 times. If the
transaction is de-authenticated after the third time the transaction will be halted. These 3 variables
are used to hold the comments of approval by the authenticator.

struct Authenticate{

address Authenticater;

address Added_By;

bool isApproved;

string reson_To_Added;

string Authentication_1st;

string Authentication_2nd;

string Authentication_3rd;

}

De Authenticator Data Store The De_Authenticate structures keeps multiple details to iden-
tify the De_Authenticater and his comments.

struct De_Authenticate{

address De_Authenticater;

string De_AuthReason;

}

Transaction Data Store

The Transaction structures keeps multiple details to identify the Transaction. The details of the
transaction should be entered correctly for further auditing purpose by the transaction creator. That
is a organization policy that the users should maintain. This structure is keeps Authenticate and
De_Authenticate list for each transaction for farther auditing and the TransactionHash provides the
integrity for the transaction.

struct Transaction {

string Name;

string Description;

string Condition;

address Creater;

address Recipient;

uint amount;

bool Stop_Transaction ;

bytes32 TransactionHash;

Authenticate [] Authenticaters;

De_Authenticate [] De_Authenticaters;

}

Transaction array help to add multiple Transactions to the system

Transaction[] public Transactions;

4.2.2.3 Functionalities

Change System Administrator

40

A request to change the administrator can only be done by the admin. This function checks if the
sender of the request is the admin using the Only_admin modifier before assigning a new admin.To
view the results of this process please refer section 5.0 .

function Change_Admin(address New_Owner) Only_Admin public {

Admin = New_Owner;

}

Add Project Stakeholders

Project stakeholders are those with any interest in the project’s outcome, such as project managers,
customers, contractors, executives, project sponsors as well as Auditors and also any other key
individuals. Project Administrator is the only party who can add the stakeholders and remove them
from the system. Therefore this function checks if the sender of the request is the admin using the
Only_admin modifier. However before the request can be sent the admin needs to enter the public
key of the stake holder. So every stakeholder has to generate a wallet and send the public key to
the admin before the admin could request this function.

Function Add_Stakeholder (address Target_Stakeholder , string Stakeholder_Name ,

string Stakeholder_Designation) Only_Admin public {

uint id = Stakeholder_Id[Target_Stakeholder];

if (id == 0) {

Stakeholder_Id[Target_Stakeholder] = Stakeholders.length;

id = Stakeholders.length ++;

}

Stakeholders[id] = Stakeholder ({

Stakeholder: Target_Stakeholder ,

Stakeholder_Since: now ,

Name: Stakeholder_Name ,

Designation:Stakeholder_Designation });

emit Stakeholder_Changed(Target_Stakeholder , true);

}

Remove Project Stakeholders

The admin can remove stakeholders from the system by using the stakeholder’s public key. If
someone is not a stakeholder of the project any more this is necessary for security and confidentiality
concerns.

function Remove_Stakeholder(address Target_Stakeholder) Only_Admin public {

require(Stakeholder_Id[Target_Stakeholder] != 0);

for (uint i = Stakeholder_Id[Target_Stakeholder]; i<Stakeholders.length -1;

i++){

Stakeholders[i] = Stakeholders[i+1];

}

delete Stakeholders[Stakeholders.length -1];

Stakeholders.length --;

}

41

Create Transactions

Project stakeholders are the only authorised party to create transaction. when creating the trans-
action creator must add authenticators (list of other stakeholders) public address for verification
of the transaction. if one member among them will de-authenticate the transaction, others must
authenticate another time such that this process can iterate only three times then the transaction
will be blocked and it will no further proceed. This is what helps to prevent fraud. auditors will be
alerted of such transactions.

function newTransaction(string Tra_Name ,string Tra_Condition , string

Tra_Description , address Next_Recipient , address [] Authenticaters_List)

Only_Stakeholders public payable returns (uint TransactionID)

{

TransactionID = Transactions.length ++;

Transaction storage p = Transactions[TransactionID];

p.Name = Tra_Name;

p.Condition=Tra_Condition;

p.Description = Tra_Description;

p.Creater = msg.sender;

p.Recipient = Next_Recipient;

p.amount= msg.value;

p.TransactionHash = keccak256(Tra_Name ,Tra_Condition , msg.sender ,

Next_Recipient ,msg.value ,now);

p.Stop_Transaction = false;

for(uint256 i=0;i<Authenticaters_List.length;i++)

{

New_Authenticater(TransactionID , Authenticaters_List[i] ,msg.sender ,"

Initial Authenticaters ");

}

New_Authenticater(TransactionID , msg.sender ,msg.sender ," Initial

Authenticaters ");

New_Authenticater(TransactionID , Next_Recipient ,msg.sender ," Initial

Authenticaters ");

numTransactions = TransactionID +1;

return TransactionID;

}

Edit Created Transaction

Only the creator can edit a transaction. This is ensured by only_creater modifier. This useful if
the creator made a mistake during his request. If the amount was entered incorrectly the difference
will be deposited back to the creator’s wallet.

function Edit_Transaction(uint Transaction_ID , string Tra_Name ,string

Tra_Condition , string Tra_Description , address Next_Recipient , address []

Authenticaters_List) Only_Creater(Transaction_ID) public payable

{

Transaction storage x = Transactions[Transaction_ID];

x.Creater.transfer(Transactions[Transaction_ID]. amount);

x.Name = Tra_Name;

x.Condition=Tra_Condition;

x.Description = Tra_Description;

x.Creater = msg.sender;

x.Recipient = Next_Recipient;

x.amount= msg.value;

42

x.TransactionHash = keccak256(Tra_Name ,Tra_Condition , msg.sender ,Next_Recipient

,msg.value ,now);

x.Stop_Transaction = false;

for(uint256 i=0;i<Authenticaters_List.length;i++)

{

New_Authenticater(Transaction_ID , Authenticaters_List[i] ,msg.sender ,"

Initial Authenticaters ");

}

New_Authenticater(Transaction_ID , msg.sender ,msg.sender ," Initial

Authenticaters ");

New_Authenticater(Transaction_ID , Next_Recipient ,msg.sender ," Initial

Authenticaters ");

}

Authenticate the Transactions

Transactions are approved only by the authenticators. This is ensured by the only_authenticater
modifier. The authenticator needs to input the transaction ID to the system before authenticating
and if any stakeholder de-authenticated the transaction then the authenticator has to authenticate
again. In such cases the authenticator may have to authenticate up to 3 times. If the transaction
is de-authenticated 3 times the transaction will freeze and the creator will receive his cash back.
If all the authenticators have approved the transaction then the transaction will be completed and
receiver will receive the cash.

function approve(uint TracID ,string _Comments) Only_Authenticater(TracID) public {

bool isAllApproved=true;

for(uint256 i=0;i<Transactions[TracID]. Authenticaters.length;i++)

{

if(Transactions[TracID]. Authenticaters[i]. Authenticater == msg.sender)

{

Transactions[TracID]. Authenticaters[i]. isApproved = true;

if (Transactions[TracID]. De_Authenticaters.length ==0){

Transactions[TracID]. Authenticaters[i]. Authentication_1st =

_Comments;

}

if (Transactions[TracID]. De_Authenticaters.length ==1){

Transactions[TracID]. Authenticaters[i]. Authentication_2nd =

_Comments;

}

if (Transactions[TracID]. De_Authenticaters.length ==2){

Transactions[TracID]. Authenticaters[i]. Authentication_3rd =

_Comments;

}

}

if(! Transactions[TracID]. Authenticaters[i]. isApproved)

isAllApproved = false;

}

if(isAllApproved && !Transactions[TracID]. Stop_Transaction)

{

Transactions[TracID]. Recipient.transfer(Transactions[TracID]. amount)

;

}

}

Add Authenticator to the Transactions

43

If an authenticator needs to add another authenticator they can do so using this function. The
only authenticator modifier guarantees that the person adding another authenticator is already
an authenticator of the transaction. The person being added as an authenticator needs to be a
stakeholder.

function Add_Authenticater(uint TransactionID , address New_Authenticater_Address ,

string Purpose) Only_Authenticater(TransactionID) public {

New_Authenticater(TransactionID , New_Authenticater_Address ,msg.sender ,

Purpose);

}

function New_Authenticater(uint TransactionID , address

New_Authenticater_Address , address Add_By ,string Reson_To_Added) private{

uint Authenticater_id = Transactions[TransactionID].

Authenticaters.length ++;

Authenticate storage a =Transactions[TransactionID]. Authenticaters[

Authenticater_id];

a.Authenticater =New_Authenticater_Address;

a.isApproved = false;

a.Added_By=Add_By;

a.reson_To_Added= Reson_To_Added;

}

}

De-Authenticate the Transactions

A transaction can be de-authenticated by any stakeholder. The only_stakeholder modifier is used
to guarantee that the person de-authenticating the transaction is a stakeholder. If the transaction is
de-authenticated 3 times the transaction will freeze and the creator will receive his cash back. This
happens due to the change in stop_transaction variable from false to true.

function De_Authenticates(uint8 TracID ,string De_Auth_Reason ,string Comments)

Only_Stakeholders public returns(uint) {

for(uint256 i=0;i<Transactions[TracID]. Authenticaters.length;i++)

{

Transactions[TracID]. Authenticaters[i]. isApproved = false;

}

New_Authenticater(TracID , msg.sender ,msg.sender ,Comments);

uint De_Authenticater_id = Transactions[TracID]. De_Authenticaters.

length ++; De_Authenticater to de-authanticates list for ferther

knolage

De_Authenticate storage d =Transactions[TracID]. De_Authenticaters[

De_Authenticater_id];

d.De_Authenticater = msg.sender;

d.De_AuthReason = De_Auth_Reason;

if (De_Authenticater_id >=2){

Transactions[TracID]. Stop_Transaction=true;

Transactions[TracID]. Creater.transfer(Transactions[TracID]. amount);

Transactions[TracID]. amount =0;

}

}

44

4.2.3 Smart Contract Server

The server hosts an Ethereum node and Smart contract, Decentralized Application that is part
of the Ethereum blockchain network. The DApp is the frontend Application. It is what users will
access. Instead of being centered on a central server, distributed applications spread throughout
multiple servers. This is useful at times of huge data and traffic demand because it prevents a
system breakdown. This is especially useful for critical projects where downtime is not an option.

But for testing purposes the researcher is using only one physical server to host the prototype
Dapp. To develop the Decentralized Secure Transparent System researcher used a single Ubuntu
Linux server as a personal blockchain network for Ethereum Development.

Figure 4.6: Dapp portfolio

4.2.3.1 Deployment of the Decentralized Secure Transparent (Prototype) System

Step 01 :

To deploy the prototype system researcher use”Remix - Solidity IDE” (Refer Figure :4.7.)
which is the most common and powerful tool for testing and developing smart contracts.
And make sure to run ganache and metamask in backend (Refer Subsection 4.2.1.2).

Step 02 :

copy and paste solidity code into the development background and go to the compile tab
and set the compiler version as ”0.4.22+commit.4cb486ee” so that when it successful it
can seen with no errors as in Figure 4.6.

Step 03 :

45

Figure 4.7: Remix - Solidity IDE

To deploy the system user needs to set the Environment. go to the Run tab and set the
Environment to Injected web3 then it will ask permission to connect remix and metamask
(Refer the Figure 4.7a).

Step 04 :

Set the Gas limit as 5000000 and click deploy. the system it will pop-up window again
ask for confirmation for the transaction deployment approval from the particular account
holder (Refer the Figure : 4.7b).

Step 05 :

So after the successful Deployment the system shown as Figure : 4.8

(a) permission to connect remix and meta-
mask (b) confirmation for the transaction deployment

Figure 4.8: System Deployment

46

Figure 4.9: Decentralized Secure Transparent (Prototype) System

Metamask information about the deployment of the Decentralized Secure Transparent (Prototype)
System is shown. It includes account holders transaction metadata and the account balance.

Figure 4.10: Metamask informations for deployment

Ganache GUI also shows some of the information regarding the transaction which transaction
data is encrypted.

47

Figure 4.11: Ganache informations for deployment

48

Chapter 5

RESULTS AND CONCLUSION

Initially, ten Ethereum accounts were created with 1000 ethers on the Ethereum private blockchain.
Two accounts were named as Admin-A and Admin-B and the other accounts are used to project
stakeholder address.

Change System Administrator

Get the proposed Administrators public address and then transfer the system Administration to
new administrator. Function description 4.2.3 section..

(a) Check the present Administrator

(b) Check new Administrator of the system

Figure 5.1: Sign the request and check new Administrator

Figure: 5.1a shows that check present administrator and also Figure: 5.1b shows that the Trans-
ferring to Administration to new Administrator by his public key.

Figure : 5.3 shows Approving and signing the transaction and Figure :5.1b shows that new
Administrator in the system

49

Figure 5.2: Check new Administrator of the system

Figure 5.3: Sign and accept the Request by present Admin

Add Project Stakeholders

Administrator is the only Authorised party to add stakeholder(Refer Figure :??. for the function
description please refer 4.2.3 section.

50

Figure 5.4: Add Project Stakeholders by Administrator

Each time Administrator has to sign using his private key (Refer Figure 5.5a) otherwise stake-
holder will not be added to the system. And the Figure 5.5b shows 3 stakeholders have been added
to the system and 2 have been rejected by administrator(Remix-output)

(a) Administrator sign by his private key

(b) Add Project Stakeholders Remix-informations

Figure 5.5: Add Project Stakeholders by Administrator

Create Transactions

51

Transactions can only be created by stakeholders. For the function description please refer 4.2.3
section. (Refer in Figure 5.6).

Figure 5.6: Create Transactions by Any Stakeholder

Then each time transaction creator must sign with his private key using Meta mask. Please refer
the Figure : 5.7. .

52

Figure 5.7: Transaction Creater sign transaction by his privet key

Transactions de-authentication by stake holder

Transaction created by 0xCfBaed77900707633b838f12DB7ce0f7713b66e8 (Account 3) for transfer
140 ethers. please refer figure : 5.8 and you can seen the ether deduction on the transaction creates
wallet figure 5.9.

53

Figure 5.8: Transaction created for transfer 140 ethers.

(a) sign transaction for further process

(b) deduct the ethers from Creators wallet

Figure 5.9: Sign the Transaction for transfer 140 ethers.

As shown in figure :5.10 the 7th point ”Stop-Transaction” is ”false”. That means transaction can
be further processed. If stakeholders de-authenticate the Transaction by three times (Refer Figure

54

Figure 5.10: Created Transaction details

: 5.11) then the ”Stop-Transaction” parameter has changed to ”true”. So transaction cannot be
process any further. Amount of ether 140 has been send back to the Transaction creator (account 3)
refer Figure: 5.13a and also shows ”Account 3” stake-holder’s logs where can one failed transaction
can be seen. Please refer to figure :5.13b.

Figure 5.11: De-Authenticate the Transaction

Figure 5.12: De-Authenticated transaction

55

(a) Reversed the Transaction and cash back

(b) Account 3 wallet logs

Figure 5.13: Transaction De-authenticate logs.

56

Successful transaction

Transaction created by Account 4 for transferring 160 ethers. please refer figurers num : 5.14 and
5.15.

Figure 5.14: Transaction created for transfer 160 ethers...

Figure 5.15: Transaction creator approved for transfer 160 ethers...

Please refer to the Figure : 5.16a where in the 7th point ”Stop-Transaction” is ”false”. so that
means transaction can be further proceed. if all authenticators has approved the transaction (please

57

refer figure : 5.16b) then it must be a legitimate transaction. so the requested amount of ether 160
has been send to Recipient’s (refer Figure: 5.16) wallet.

(a) Transaction Details.

(b) Transaction approvements

Figure 5.16: Transaction approved for transfer 160 ethers...

(a) Transaction Senders wallet (b) Transaction Recipient wallet

Figure 5.17: Transaction approved for transfer 160 ethers...

All users can seen the status of the transaction such as Pease refer figures on 5.18

58

(a) Check Authenticaters status

(b) Check De-Authenticaters status

(c) Check Transaction status

Figure 5.18: Status of the Transactions...

Add authenticaters

Any Authenticator can add more Authenticators who are the stakeholders for further authentica-
tion process. please refer the figure : 5.19

Figure 5.19: Add more Authenticators for farther Authentications

Remove stakeholder

Admin Can remove the stakeholder if he is no longer in the project. please refer figure: 5.20
Status and logs on ganache GUI

Status and logs on ganache GUI after the all process (please refer figures on 5.21.

59

Figure 5.20

Figure 5.21: Status of the Transactions...60

5.1 Discussion

There are only prototype app and ethereum private network can have several limitations.

present financial regulations and procurement service of Sri Lankan government is very complex
. when requesting wages from government office the project stakeholders must choose and filled
forms according to the reason. as an example the form General-35 is used for requesting payment
for procurement and services. how ever for the North western province they use General-26 form for
the same purpose. also the D-Form is used if the officer sending a 3rd purpose to pickup his wage
from his office.

Such that reason it is very difficult to implement such system for that. the researcher was follow
only protect a general ledger information and financial Transactions with integrity,non-repudiation
and the security.

The De-centralised system is build on top of the private blockchain. which have only one node
that plant in one server. if some bogus user capable to change the blockchain, fraud can be detected
but the original chain cannot be recovered. also the block chain server is hardly vulnerable to a
DOS attack. due to having only one physical server with one node.

5.2 Future Work

• Prototype system can be implement as a real system with more functions and proper user
interfaces.

• This system improve with a DAPP and it can host in cloud based.

• The system can be integrate with mobile app such a user friendly.

• this system can plant multi-node and multi-server private blockchain network with the help of
privet-vpn it can serviced mobile users also.

61

Bibliography

[1] G. C. Kessler. (2019, feb) An overview of cryptography. [Online]. Available: https:
//www.garykessler.net/library/crypto.html

[2] D. M. Scott. (2018, oct) The essence of the blockchain. [Online]. Available: https:
//medium.com/miracl/the-essence-of-the-blockchain-ac0c4f6dfeff

[3] R. Agrawal. (2018, may) Digital signature from blockchain context. [Online]. Available:
https://medium.com/@xragrawal/digital-signature-from-blockchain-context-cedcd563eee5

[4] L. Academy. (2019, feb) Blockchain basics. [Online]. Available: https://lisk.io/academy/
blockchain-basics

[5] F. Online. (2018, dec) 15 best accounting software systems for your business. [Online].
Available: https://financesonline.com/15-best-accounting-software-systems-business/

[6] H. ANWAR. (2018, aug) Consensus algorithms: The root of the blockchain technology.
[Online]. Available: https://101blockchains.com/consensus-algorithms-blockchain/

[7] https://coinmarketcap.com/, 2019.

[8] T. W. B. Group. (2019) The world bank in sri lanka. [Online]. Available: https:
//www.worldbank.org/en/country/srilanka

[9] H. Ranaweera, “Real causes of project failures in urban development sector in sri lanka,” Ar-
chitecture, Dept of Building Economics, University of Moratuwa, Motatuwa, 2016.

[10] A. G. Department. (2016) The auditor general’s role and responsibilities. [Online]. Available:
http://www.auditorgeneral.gov.lk/web/index.php/en/roles-responsibilities

[11] M. B. C. DMCC. (2019) Annual audit and its importance. [Online]. Available:
https://mybusinessconsulting.ae/blog/annual-audit-and-its-importance/

[12] A. Obeyesekere. (2018) Transparency international - sri lanka. [Online]. Available:
https://www.transparency.org/country/LKA

[13] C. GOVERNMENT, AN ORDINANCE TO PROVIDE A GENERAL PENAL CODE FOR
CEYLON. CEYLON GOVERNMENT PUBLICATION, 1885, ch. All.

[14] P. O. T. D. S. R. O. S. LANKA, AN ACT TO PROVIDE FOR THE PREVENTION AND
PUNISHMENT OF BRIBERY AND TO MAKE CONSEQUENTIAL PROVISIONS RELAT-
ING TO THE OPERATION OF OTHER WRITTEN LAW. THE GOVERNMENT PUBLI-
CATIONS BUREAU,, 1954, ch. 26.

62

https://www.garykessler.net/library/crypto.html
https://www.garykessler.net/library/crypto.html
https://medium.com/miracl/the-essence-of-the-blockchain-ac0c4f6dfeff
https://medium.com/miracl/the-essence-of-the-blockchain-ac0c4f6dfeff
https://medium.com/@xragrawal/digital-signature-from-blockchain-context-cedcd563eee5
https://lisk.io/academy/blockchain-basics
https://lisk.io/academy/blockchain-basics
https://financesonline.com/15-best-accounting-software-systems-business/
https://101blockchains.com/consensus-algorithms-blockchain/
https://www.worldbank.org/en/country/srilanka
https://www.worldbank.org/en/country/srilanka
http://www.auditorgeneral.gov.lk/web/index.php/en/roles-responsibilities
https://mybusinessconsulting.ae/blog/annual-audit-and-its-importance/
https://www.transparency.org/country/LKA

[15] ——, FINANCIAL TRANSACTIONS REPORTING ACT, No. 6 OF 2006, 1st ed. THE
GOVERNMENT PUBLICATIONS BUREAU,, mar 2006, ch. one.

[16] D. G. of Public Finance, FINANCIAL REGULATIONS OF THE GOVERNMENT OF THE
DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA, 2nd ed. Sri Lanka: Department
of Government Printing., 1992, ch. XIII.

[17] N. P. COMMISSION, PROCUREMENT MANUAL FOR GOODS, WORKS, SERVICES AND
INFORMATION SYSTEMS – 2018. Democratic Socialist Republic of Sri Lanka, 2018, ch.
5-11.

[18] I. Lana Gates. (2019, feb) Why blockchain is important to
business. [Online]. Available: insight.com/en US/content-and-resources/2019/
2202019-why-blockchain-is-important-to-business.html

[19] Ethereum. (2018, feb) Ethereum project. [Online]. Available: https://www.ethereum.org/

[20] P. Software. (2018, nov) Financial management erp software solutions - pronto xi erp systems
— pronto software. [Online]. Available: https://www.pronto.net/pronto-xi-erp/financials/

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” www.bitcoin.org, Tech. Rep.,
2008.

[22] T. C. Consultant. (2018, may) What is ripple (xrp)? explanation & advantages & disadvantages.
[Online]. Available: https://medium.com/swlh/what-is-ripple-xrp-337c91d8b636

[23] E. S. Z. W. C. P. Ahmed Kosba, Andrew Miller. (2016, may) Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. [Online]. Available:
https://www.computer.org/csdl/proceedings-article/sp/2016/0824a839/12OmNs59JYD

[24] J. K. Alex Chumbley, Karleigh Moore. (2016, apr) Merkle tree. [Online]. Available:
https://brilliant.org/wiki/merkle-tree/

[25] I. Watson. (2012, apr) How alan turing invented the computer age. [Online]. Available:
https://blogs.scientificamerican.com/guest-blog/how-alan-turing-invented-the-computer-age/

[26] guru99. (2018, jun) Blockchain tutorial for beginners: Learn blockchain technolog. [Online].
Available: https://www.guru99.com/blockchain-tutorial.html

[27] Bitcon.com. (2019, feb) Bitcoin whitepaper: A beginner’s guide. [Online]. Available:
https://www.bitcoin.com/get-started/bitcoin-white-paper-beginner-guide

[28] Bitcoin.org. (2019, jan) How does bitcoin work? [Online]. Available: https://bitcoin.org/en/
how-it-works

[29] https://etherconverter.online/, 2019.

[30] Ethereum. (2016, jan) Solidity. [Online]. Available: https://solidity.readthedocs.io/en/v0.4.2/
index.html

[31] http://remix.ethereum.org/optimize=false&evmVersion=null&appVersion=0.7.7, 2018.

[32] B. A. Bouchefra. (2018, jun) Remix: Develop smart contracts for the ethereum blockchain.
[Online]. Available: https://www.sitepoint.com/remix-smart-contracts-ethereum-blockchain/

63

insight.com/en_US/content-and-resources/2019/2202019-why-blockchain-is-important-to-business.html
insight.com/en_US/content-and-resources/2019/2202019-why-blockchain-is-important-to-business.html
https://www.ethereum.org/
https://www.pronto.net/pronto-xi-erp/financials/
https://medium.com/swlh/what-is-ripple-xrp-337c91d8b636
https://www.computer.org/csdl/proceedings-article/sp/2016/0824a839/12OmNs59JYD
https://brilliant.org/wiki/merkle-tree/
https://blogs.scientificamerican.com/guest-blog/how-alan-turing-invented-the-computer-age/
https://www.guru99.com/blockchain-tutorial.html
https://www.bitcoin.com/get-started/bitcoin-white-paper-beginner-guide
https://bitcoin.org/en/how-it-works
https://bitcoin.org/en/how-it-works
https://solidity.readthedocs.io/en/v0.4.2/index.html
https://solidity.readthedocs.io/en/v0.4.2/index.html
https://www.sitepoint.com/remix-smart-contracts-ethereum-blockchain/

[33] H. Pokharna. (2016, jun) Develop dapps on ethereum.
[Online]. Available: https://medium.com/technologymadeeasy/
develop-dapps-on-ethereum-tutorial-series-for-beginners-part-1-basic-terminology-866d2ce4cf34

64

https://medium.com/technologymadeeasy/develop-dapps-on-ethereum-tutorial-series-for-beginners-part-1-basic-terminology-866d2ce4cf34
https://medium.com/technologymadeeasy/develop-dapps-on-ethereum-tutorial-series-for-beginners-part-1-basic-terminology-866d2ce4cf34

Appendix A

De-Centralized Secure Transparent
Systems

pragma solidity >=0.4.22 <0.6.0;

contract Transparent_System {

address public Admin;

Transaction [] public Transactions;

uint public numTransactions;

mapping (address => uint) public Stakeholder_Id;

Stakeholder [] public Stakeholders;

constructor () public payable{

Admin = msg.sender;

}

modifier Only_Admin {

require(msg.sender == Admin);

_;

}

modifier Only_Creater(uint TId) {

require(msg.sender == Transactions[TId]. Creater);

_;

}

function Change_Admin(address New_Owner) Only_Admin public {

Admin = New_Owner;

}

event Stakeholder_Changed(address Stakeholder , bool Is_Stakeholder

);

event TransactionAdded(string Tra_Name ,string Tra_Condition ,

string Tra_Description , address Next_Recipient , address []

Authenticaters_List);

struct Stakeholder{ //store and structure of the

shareholders details

address Stakeholder;

string Name;

65

string Designation;

uint Stakeholder_Since;

}

modifier Only_Stakeholders{

for(uint J = 0;J < Stakeholders.length; J++){

if(Stakeholders[J]. Stakeholder ==msg.sender){

_;

return;

}

}

revert ();

_;

}

// adding a new shareholder to the pool of contact

function Add_Stakeholder(address Target_Stakeholder , string

Stakeholder_Name , string Stakeholder_Designation) Only_Admin

public {

uint id = Stakeholder_Id[Target_Stakeholder];

if (id == 0) {

Stakeholder_Id[Target_Stakeholder] = Stakeholders.

length;

id = Stakeholders.length ++;

}

Stakeholders[id] = Stakeholder ({

Stakeholder: Target_Stakeholder ,

Stakeholder_Since: now ,

Name: Stakeholder_Name ,

Designation:Stakeholder_Designation });

emit Stakeholder_Changed(Target_Stakeholder , true);

}

// remove a shareholder from the list of shareholder pool

function Remove_Stakeholder(address Target_Stakeholder) Only_Admin

public {

require(Stakeholder_Id[Target_Stakeholder] != 0);

for (uint i = Stakeholder_Id[Target_Stakeholder]; i<

Stakeholders.length -1; i++){

Stakeholders[i] = Stakeholders[i+1];

}

delete Stakeholders[Stakeholders.length -1];

Stakeholders.length --;

}

//} contract transaction_pro is ownrShip{

//store and structure of the transaction details

struct Transaction {

string Name;

string Description;

string Condition;

address Creater; //owner of transaction

address Recipient; // next Authenticater of transaction

uint amount;

66

bool Stop_Transaction ;

bytes32 TransactionHash;

Authenticate [] Authenticaters;

De_Authenticate [] De_Authenticaters;

}

struct Authenticate{

address Authenticater;

bool isApproved;

string reson_To_Added;

string Authentication_1st;

string Authentication_2nd;

string Authentication_3rd;

address Added_By;

}

struct De_Authenticate{

address De_Authenticater;

string De_AuthReason;

// string comments;

}

// create a new transaction for bigging of the process

verification Transactions

function newTransaction(string Tra_Name ,string Tra_Condition ,

string Tra_Description , address Next_Recipient , address []

Authenticaters_List) Only_Stakeholders public payable returns

(uint TransactionID)

{

TransactionID = Transactions.length ++;

Transaction storage p = Transactions[TransactionID];

p.Name = Tra_Name;

p.Condition=Tra_Condition;

p.Description = Tra_Description;

p.Creater = msg.sender;

p.Recipient = Next_Recipient;

p.amount= msg.value;

p.TransactionHash = keccak256(Tra_Name ,Tra_Condition , msg

.sender ,Next_Recipient ,msg.value ,now);

p.Stop_Transaction = false;

for(uint256 i=0;i<Authenticaters_List.length;i++)

{

New_Authenticater(TransactionID ,

Authenticaters_List[i] ,msg.sender ," Initial

Authenticaters ");

}

New_Authenticater(TransactionID , msg.sender ,msg.sender ,"

Initial Authenticaters ");

New_Authenticater(TransactionID , Next_Recipient ,msg.

sender ," Initial Authenticaters ");

67

numTransactions = TransactionID +1;

return TransactionID;

}

function Edit_Transaction(uint Transaction_ID , string Tra_Name ,

string Tra_Condition , string Tra_Description , address

Next_Recipient , address [] Authenticaters_List) Only_Creater(

Transaction_ID) public payable

{

Transaction storage x = Transactions[Transaction_ID];

x.Creater.transfer(Transactions[Transaction_ID]. amount);

x.Name = Tra_Name;

x.Condition=Tra_Condition;

x.Description = Tra_Description;

x.Creater = msg.sender;

x.Recipient = Next_Recipient;

x.amount= msg.value;

x.TransactionHash = keccak256(Tra_Name ,Tra_Condition , msg

.sender ,Next_Recipient ,msg.value ,now);

x.Stop_Transaction = false;

for(uint256 i=0;i<Authenticaters_List.length;i++)

{

New_Authenticater(Transaction_ID ,

Authenticaters_List[i] ,msg.sender ," Initial

Authenticaters ");

}

New_Authenticater(Transaction_ID , msg.sender ,msg.sender ,"

Initial Authenticaters ");

New_Authenticater(Transaction_ID , Next_Recipient ,msg.

sender ," Initial Authenticaters ");

}

function getAuthMember(uint Traid ,uint AuthId) Only_Stakeholders

public view returns(address Authenticater , bool isApproved ,

string Authentication_1st ,string Authentication_2nd ,string

Authentication_3rd ,address Added_By) {

return(Transactions[Traid]. Authenticaters[AuthId].

Authenticater ,Transactions[Traid]. Authenticaters[

AuthId].isApproved ,Transactions[Traid]. Authenticaters[

AuthId]. Authentication_1st ,Transactions[Traid].

Authenticaters[AuthId]. Authentication_2nd ,Transactions

[Traid]. Authenticaters[AuthId]. Authentication_3rd ,

Transactions[Traid]. Authenticaters[AuthId]. Added_By);

}

function approve(uint TracID ,string _Comments) Only_Authenticater(

TracID) public {

bool isAllApproved=true;

for(uint256 i=0;i<Transactions[TracID]. Authenticaters.

length;i++)

{

if(Transactions[TracID]. Authenticaters[i].

Authenticater == msg.sender){

68

Transactions[TracID]. Authenticaters[i].

isApproved = true;

if (Transactions[TracID]. De_Authenticaters

.length ==0){

Transactions[TracID].

Authenticaters[i].

Authentication_1st = _Comments

;

}

if (Transactions[TracID]. De_Authenticaters

.length ==1){

Transactions[TracID].

Authenticaters[i].

Authentication_2nd = _Comments

;

}

if (Transactions[TracID]. De_Authenticaters

.length ==2){

Transactions[TracID].

Authenticaters[i].

Authentication_3rd = _Comments

;

}

}

if(! Transactions[TracID]. Authenticaters[i].

isApproved)

isAllApproved = false;

}

if(isAllApproved && !Transactions[TracID]. Stop_Transaction

)

{

Transactions[TracID]. Recipient.transfer(

Transactions[TracID]. amount);

}

}

function De_Authenticates(uint8 TracID ,string De_Auth_Reason ,

string Comments) Only_Stakeholders public returns(uint) {

for(uint256 i=0;i<Transactions[TracID]. Authenticaters.

length;i++)

{

Transactions[TracID]. Authenticaters[i]. isApproved

= false; //ALL Authanticaters

Approval set false

}

New_Authenticater(TracID , msg.sender ,msg.sender ,Comments)

;

uint De_Authenticater_id = Transactions[TracID].

De_Authenticaters.length ++; //add De_Authenticater to

de-authanticates list for ferther knolage

De_Authenticate storage d =Transactions[TracID].

De_Authenticaters[De_Authenticater_id];

d.De_Authenticater = msg.sender;

d.De_AuthReason = De_Auth_Reason;

69

if (De_Authenticater_id >=2){

Transactions[TracID]. Stop_Transaction=true;

Transactions[TracID]. Creater.transfer(Transactions

[TracID]. amount);

Transactions[TracID]. amount =0;

}

}

function getDeAuthMember(uint Traid ,uint AuthId) Only_Stakeholders

public view returns(address Authenticaters ,string

De_Auth_Reason , uint dAuthnums) {

return(Transactions[Traid]. De_Authenticaters[AuthId].

De_Authenticater ,Transactions[Traid]. De_Authenticaters

[AuthId]. De_AuthReason ,Transactions[Traid].

De_Authenticaters.length);

}

modifier Only_Authenticater(uint TId){

uint x= Transactions[TId]. Authenticaters.length;

for(uint i = 0;i < x ; i++){

if(Transactions[TId]. Authenticaters[i].

Authenticater ==msg.sender){

_;

return;

}

}

revert ();

_;

}

function Add_Authenticater(uint TransactionID , address

New_Authenticater_Address ,string Purpose) Only_Authenticater(

TransactionID) public {

New_Authenticater(TransactionID ,

New_Authenticater_Address ,msg.sender ,Purpose);

}

function New_Authenticater(uint TransactionID , address

New_Authenticater_Address , address Add_By ,string

Reson_To_Added) private{

uint Authenticater_id = Transactions[TransactionID].

Authenticaters.length ++;

Authenticate storage a =Transactions[TransactionID].

Authenticaters[Authenticater_id];

a.Authenticater =New_Authenticater_Address;

a.isApproved = false;

a.Added_By=Add_By;

a.reson_To_Added= Reson_To_Added;

}

}

70

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Introduction
	Weaknesses of the Present System
	Objectives
	Scope
	Research Areas
	Limitations
	Organization of the Dissertation

	BACKGROUND INFORMATION AND LITERATURE REVIEW
	Background Information
	Present System and Regulations
	Financial Audit Analysis
	Related Projects

	Cryptography
	 Cryptographic Algorithms
	 Secret Key Cryptography (SKC)
	 Hashing and Blockchain
	Digital Signatures
	 Multisignature
	 Merkel Tree

	Turing Completeness
	Decentralization
	Peer-To-Peer Network
	Consensus Algorithms
	Bitcoin
	Blockchain
	Blockchain versions
	Blockchain variants
	Benefits of a blockchain
	Transactions
	Mining- Processing
	Blockchain Usage

	Ethereum
	The Genesis Block
	Ether
	Gas Price
	Solidity
	Remix
	Ethereum smart contracts
	DApps

	SYSTEM DESIGN AND METHODOLOGY
	Methodology
	System Context
	System Architecture
	Tools Used

	IMPLEMENTATION
	Frontend
	Backend
	Ethereum Private Network
	Smart Contract Application
	Smart Contract Server

	RESULTS AND CONCLUSION
	Discussion
	Future Work
	REFERENCES

	De-Centralized Secure Transparent Systems

