

Blockchain Based Protocol for IoT

Device Authentication and Secure

Communication

A dissertation submitted for the Degree of Master of

Information Security

K. S. Dasun

University of Colombo School of Computing

2019

ii

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

DECLARATION

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name : K. S. Dasun

Registration Number : 2015/MIS/004

Index Number : 15770042

 01/09/2019

Signature Date

This is to certify that this thesis is based on the work of

Mr. K. S. Dasun

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by : Dr. Kasun de Zoysa

Supervisor Name : Dr. Kasun de Zoysa

 /09/2019

Signature Date

iii

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

ABSTRACT

The Internet of Things (IoT) has gained a huge popularity during the recent years expanding into

many fields and industries. The massive generation and collection of data by IoT devices also come

with severe threats to security and privacy aspects. After understanding the importance of securing

IoT device networks, many researchers have focused on developing solutions to protect IoT

networks. However, providing complete security in IoT domain was challenging due to resource

constraints and the lack of standards among devices. This project aims to create a more secure IoT

device platform based on blockchain technology to protect IoT device networks.

The principal objective of the project is divided into four sub-problems as IoT device

authentication, data storage, data retrieval and secure communication. Then sub-problem solutions

are designed according to industry accepted security standards and combined to create the complete

solution based on blockchain technology. The solution has been implemented as a reusable

platform using Java programming language with Spring framework to ensure that application is

portable across all platforms that support Java Runtime Environment (JRE). The implemented

aggregator application publishes a RESTful API which is consumed by connected IoT devices and

other aggregators in the network. The aggregator applications are connected to build a distributed

network which maintains the blockchain used for data storage.

Finally, a comprehensive evaluation process has been performed by developing a prototype IoT

network. The results obtained during the tests are analyzed to find the limitations of the solution

and possible future enhancements. This thesis explains the background of IoT security domain and

the design of a novel approach to secure IoT networks.

iv

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

ACKNOWLEDGEMENT

I would like to take this opportunity to thank many people who helped me to make this project a

success with great pleasure. At the beginning, I must say that even though only a few names are

mentioned here, I have been lucky enough to receive help and support from many people who I

recall with a great pleasure while writing this. I am very thankful to all of them.

Great thanks especially to Dr. Kasun de Zoysa, Senior Lecturer at University of Colombo School

of Computing, for taking time out of his busy schedule to perform the duty as the supervisor.

Without his guidance, support, and motivation this project would not have been possible.

Special thanks go to Dr. Manjusri Wickramasinghe, Lecturer at University of Colombo School of

Computing, for guiding us throughout the project.

Next, I am grateful to the lecture panel at University of Colombo School of Computing, for all their

hard work in teaching us. The support and resources they provided was a large part of what made

this project successful.

Finally, I would like to extend my deepest gratitude to my family for their never-ending support

and encouragement.

v

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

TABLE OF CONTENTS

DECLARATION .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENT.. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1 INTRODUCTION.. 1

1.1 INTRODUCTION .. 1

1.2 MOTIVATION ... 2

1.3 PROBLEM DEFINITION .. 4

1.4 OBJECTIVES ... 5

1.5 SCOPE ... 5

1.6 STRUCTURE OF THE DISSERTATION .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 INTRODUCTION .. 7

2.2 SECURE SYSTEMS .. 7

2.3 CONFIDENTIALITY ... 9

2.3.1 Asymmetric Encryption ... 10

2.3.2 Symmetric Encryption ... 12

2.4 INTEGRITY ... 13

2.4.1 Cryptographic Hash Functions ... 14

2.5 AVAILABILITY .. 16

vi

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.6 BLOCKCHAIN .. 17

2.6.1 Public Blockchains .. 17

2.6.2 Permissioned Blockchains ... 19

2.6.3 Private Blockchains ... 19

2.7 RELATED WORK ... 20

2.7.1 The Effect of IoT New Features on Security and Privacy: New Threats, Existing

Solutions, and Challenges yet to be Solved [3] .. 20

2.7.2 Survey of Security and Privacy Issues of Internet of Things [4] 21

2.7.3 Security of IoT Systems: Design Challenges and Opportunities [5] 22

2.7.4 New security architecture for IoT network [6] .. 22

2.7.5 Security in the Internet of Things: A Review [7] .. 22

2.7.6 Network Level Security and Privacy Control for Smart Home IoT Devices [8] 23

2.7.7 Security Challenges in the IP-based Internet of Things [9] 23

2.7.8 Towards an optimized blockchain for IoT [10] ... 24

2.7.9 IoTChain: A Blockchain Security Architecture for the Internet of Things [11] 24

CHAPTER 3 DESIGN OF SOLUTION .. 25

3.1 INTRODUCTION .. 25

3.2 DEVELOPMENT METHODOLOGY .. 25

3.3 SOLUTION BREAKDOWN .. 26

3.3.1 Network Architecture... 26

3.3.2 Data Storage .. 27

3.3.3 Device Authentication ... 29

3.3.4 Control API ... 30

3.3.5 System Update Distribution ... 31

CHAPTER 4 IMPLEMENTATION .. 32

vii

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

4.1 INTRODUCTION .. 32

4.2 IMPLEMENTATION ENVIRONMENT .. 32

4.2.1 Aggregator Environment .. 32

4.3 DEVELOPMENT TOOLS AND TECHNOLOGIES .. 33

4.3.1 Development Tools .. 33

4.3.2 Technologies ... 33

4.4 NETWORK ARCHITECTURE .. 35

4.4.1 Communication Protocols .. 36

4.5 APPLICATION ARCHITECTURE .. 37

4.6 FUNCTION IMPLEMENTATION .. 38

4.6.1 Blockchain Storage .. 38

4.6.2 Blockchain Search ... 41

4.6.3 Blockchain Sync .. 44

4.6.4 Blockchain Validation ... 45

4.6.5 Device Registration.. 47

4.6.6 Device Authentication ... 51

4.6.7 Device Information .. 54

4.6.8 Hub Function ... 56

4.6.9 Secure Communication .. 60

4.6.10 API Playground ... 61

4.7 COMPLETE SOLUTION ... 62

CHAPTER 5 RESULTS AND EVALUATION ... 63

5.1 INTRODUCTION .. 63

5.2 EVALUATION ENVIRONMENT ... 63

5.2.1 Aggregator Evaluation Environment .. 63

viii

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

5.2.2 IoT Device Evaluation Environment .. 64

5.2.3 IoT Device Evaluation Program ... 64

5.2.4 Complete Evaluation Environment... 64

5.3 SECURITY EVALUATION .. 66

5.4 AGGREGATOR APPLICATION PERFORMANCE EVALUATION 68

5.4.1 Data Storage Response Time ... 69

5.4.2 Data Retrieval Response Time ... 71

5.4.3 Blockchain Validation Time .. 72

5.4.4 Aggregator Application Power Consumption ... 73

5.5 IoT DEVICE PERFORMANCE EVALUATION ... 74

5.5.1 IoT Device Power Consumption for Data Storage .. 74

5.5.2 IoT Device Power Consumption for Data Retrieval.. 75

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 76

6.1 OVERVIEW ... 76

6.2 LIMITATIONS AND KNOWN ISSUES .. 78

6.3 FUTURE IMPROVEMENTS ... 79

Waterfall Model .. 83

Iterative Development ... 84

REFERENCES ... 90

ix

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

LIST OF FIGURES

Figure 2.1: Security Triad ... 8

Figure 2.2: Data Encryption Process ... 9

Figure 2.3: Asymmetric Encryption / Decryption Process ... 10

Figure 2.4: Symmetric Encryption / Decryption Process.. 12

Figure 2.5: Hash Function ... 14

Figure 3.3: Aggregator Topology for IoT Network .. 27

Figure 3.4: Structure of the Blockchain ... 28

Figure 3.5: Sequence diagram for device authentication .. 29

Figure 3.6: System Update Process ... 31

Figure 4.1: Network Architecture of the Proposed Solution ... 35

Figure 4.2: Application Structure of the Solution .. 38

Figure 4.3: Data Storage Process ... 39

Figure 4.4: New Device Registration Steps ... 51

Figure 4.5: Authentication Challenge Generation Process ... 52

Figure 4.6: Hub Function Steps ... 57

Figure 4.7: API Call Summary Screen in API Playground ... 61

Figure 4.8: Try it Out Feature in API Playground .. 62

Figure 4.9: Running SecureIoT Application .. 62

Figure 5.1: Running IoT Program for Evaluation Tests ... 64

Figure 5.2: Complete Evaluation Environment .. 65

Figure 5.3: Solution Evaluation Prototype ... 65

Figure 5.4: Data Storage without Encryption Response Time .. 69

Figure 5.5: Data Storage with Encryption Response Time ... 70

Figure 5.6: Data Storage without Encryption - Memory/CPU Usage ... 70

Figure 5.7: Data Storage with Encryption - Memory/CPU Usage .. 71

Figure 5.8: Data Retrieval Response Time .. 71

Figure 5.9: Data Retrieval - Memory/CPU Usage .. 72

Figure 5.10: Blockchain Validation Time .. 72

Figure 5.11: Blockchain Validation - Memory/CPU Usage ... 73

https://d.docs.live.net/b8e4b967740ec462/Documents/2015MIS004_thesis_blockchain_based_protocol_for_iot.docx#_Toc18240447
https://d.docs.live.net/b8e4b967740ec462/Documents/2015MIS004_thesis_blockchain_based_protocol_for_iot.docx#_Toc18240448
https://d.docs.live.net/b8e4b967740ec462/Documents/2015MIS004_thesis_blockchain_based_protocol_for_iot.docx#_Toc18240449
https://d.docs.live.net/b8e4b967740ec462/Documents/2015MIS004_thesis_blockchain_based_protocol_for_iot.docx#_Toc18240450
https://d.docs.live.net/b8e4b967740ec462/Documents/2015MIS004_thesis_blockchain_based_protocol_for_iot.docx#_Toc18240458

x

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 5.12: Aggregator Device Power Consumption Measurement Setup 73

Figure 5.13: Aggregator Device Power Consumption .. 74

Figure 5.14: IoT Device Power Consumption for Data Storage ... 75

Figure 5.15: IoT Device Power Consumption for Data Retrieval ... 75

xi

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

LIST OF TABLES

Table 2.1: Difference between public and private blockchains .. 20

Table 2.2: Threats, Challenges and Opportunities of IoT Features ... 21

Table 3.1: Fields in a Block ... 28

Table 3.2: Control API Features .. 30

Table 4.1: Aggregator Environment Minimum System Requirements 33

Table 4.2: Development Tools .. 33

Table 4.3: Blockchain Data Save Request Parameters ... 39

Table 4.4: Blockchain Search Request Parameters .. 43

Table 5.1: Aggregator Application Evaluation Environment.. 63

Table 5.2: IoT Device Evaluation Environment ... 64

xii

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

LIST OF ABBREVIATIONS

ACE – Authentication and Authorization for Constrained Environments

AES – Advanced Encryption Standard

API – Application Programming Interface

CIA – Confidentiality, Integrity and Availability

DES – Data Encryption Standard

DSA – Digital Signature Algorithm

IP – Internet Protocol

IoT – Internet of Things

MAC – Message Authentication Code

NTP – Network Time Protocol

OSCAR – Object Security Architecture for the Internet of Things

PIR – Passive Infrared Sensor

PKCS – Public Key Cryptography Standards

PoW – Proof of Work

RNG – Random Number Generator

RSA – Rivest–Shamir–Adleman

SDN – Software Defined Networking

SHA – Secure Hash Algorithm

SQL – Structured Query Language

SSP – Single Sign-On

TCP – Transmission Control Protocol

TLS – Transport Layer Security

UDP – User Datagram Protocol

WLAN – Wireless Local Area Network

1

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

IoT, which stands for Internet of Things, refers to an ever-growing network of devices, which

includes home appliances, vehicles, devices with embedded sensors and the communication

medium, which enables the devices to connect and exchange information. IoT extends the Internet

beyond standard devices such as desktops, laptops, and mobile phones to a wide verity of connected

computing devices. Based on the statistics, the IoT devices are growing exponentially by

integrating with all aspects of the physical world. The use of IoT devices results in direct economic

benefits, improved living standards, and improved efficiency of industrial processes, and leads to

a more connected world. The extensive application set of IoT technology can be categorized as

consumer devices and industrial devices at a higher level.

Consumer applications: Connected vehicles, wearable devices, health monitoring tools, smart

home devices, security cameras and remote monitoring equipment’s, etc.

Industrial applications: Road monitoring, transport vehicle monitoring, automated

manufacturing supply chains to respond dynamic product demands, environmental monitoring,

connected weather stations, redefined agricultural processes, etc.

IoT devices are physical objects that use sensors to collect data and various application

programming interfaces (APIs) to exchange data over the Internet. Furthermore, IoT devices are

also collaborating with other IoT devices to perform their functions. Most of the IoT devices

communicate using wireless mediums. However, the connectivity protocols and the processing

capabilities, of IoT devices largely depend on the application. The non-standard nature of the IoT

devices and the use of proprietary protocols create many challenges when it comes to integrating

IoT devices from different sources.

The growing number of IoT devices have raised numerous challengers in security and privacy

aspects. The researchers have demonstrated the possibility of exploiting IoT device networks to

gain illegal access and to perform unauthorized modifications to information collected and

processed by IoT devices. The difficulty of adding common security measures to resource

constrained IoT devices and the lack of standards among devices have made the IoT devices

2

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

vulnerable to many security attacks. The security measures used in conventional Internet

applications to protect information and privacy tend to be inappropriate to protect IoT device

networks. However, if appropriate security measures have not been implemented these connected

devices could provide a much larger surface for attackers to target home and industrial networks.

1.2 MOTIVATION

The exciting idea of adding intelligence to objects were found in many early projects even though

their progress was slow due to the lack of affordable technology. In today’s IoT networks, many

devices with network connectivity are collecting and sharing data with each other. Thanks to cheap

hardware components such as sensors, processors, network connectivity chips, increasing

availability of broadband connections, and wireless networks, it is possible to group almost any set

of devices to form an IoT network. This merges the physical and digital worlds by allowing the

devices to send and receive, real-time data without human intervention. In most of the consumer

applications of IoT, the devices connected to the IoT network can be controlled and monitored

from a remote location either by another device or through an interface like a mobile phone. A light

bulb which is turning on and off based on data received from a PIR (passive infrared sensor) sensor,

which also allows to be controlled through a smart phone can be considered as an example IoT

application. An IoT device can be simple as a toy or complex as an autonomous vehicle which can

navigate without any aid from a human.

However, with the rapid growth of IoT devices which link devices to the Internet opens them up

to several vulnerabilities if they are not fully protected. In most of IoT applications, the security of

devices or their communication networks has not always been the top priority during IoT product

design phases. From manufactures point of view, security is found as an expensive thing which is

slowing down the development while reducing the usability of their products. IoT networks are

created using different operating systems, programming languages, hardware components, and

communication protocols. There are many cases, where the IoT appliances are integrated with

legacy systems, which are using non-standard interfaces. There is a high chance that these legacy

systems are not updated to protect against modern security threats.

Most of the IoT devices are resource constrained and do not contain resources required to

implement strong security mechanisms. Moreover, they are not intelligent to perform other tasks,

which are outside of their intended purpose. Implementing strong cryptography-based algorithms

3

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

on those devices will slow down their embedded processors and can negatively affect the user

experience. Furthermore, securing all the devices in the network individually is difficult because

the attack surface is enormous. The IoT devices may be distributed throughout a wide geographical

area using the connectivity medium as the Internet. IoT networks store and transmit sensitive and

financially valuable data, which entails huge potential gains and, hence attracting attackers. Most

of the IoT devices reside in vulnerable environments, which are within a reachable distance by

attackers and the natures of the deployments make protecting individual devices extremely

difficult.

Regardless of their security concerns IoT application are becoming more and more popular in every

day among both consumer users as well as among industrial environments. The growth of IoT

networks is mostly driven by efficiency, cost savings, and enhanced consumer experience.

However, one of the key concerns of successful adoption of IoT is having sufficiently strong

security mechanisms employed to protect the integrity and privacy of data stored and transmitted

in the network. For a consumer to use IoT device network with confidence, the network should be

able to ensure that it is not compromised, and all the data stored in the network as well as the data

communication channels used by the components are secure. Hence implementing security

measures becomes critical to ensure protecting privacy and safety of IoT device networks.

Many researchers have attempted to build secure IoT networks by focusing on identifying the root

causes for security weaknesses observed in small to large scale existing IoT networks and

developed solutions, which are tailored to specific environments. However, most of these proposed

solutions are limited to individual applications of IoT and they are not generally usable as a

framework to secure common IoT networks. Furthermore, some of the developed solutions rely on

proprietary protocols which are not compatible with others making them difficult to integrate. Due

to the lack of common generic framework, most of the IoT device networks completely ignore the

security or rely only on basic security features. Hence, if there is a such framework, it will help to

secure IoT networks as well as to reduce the development time required when implementing IoT

data communication methods from the scratch.

4

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

1.3 PROBLEM DEFINITION

There are many secure communication protocols exists for standard Internet devices to achieve

protection against unauthorized interception and modifications while providing authentication for

communicating ends (e.g.: TLS/SSL). Firewalls, antivirus programs, intrusion

detection/prevention systems (IDS/IPS), security auditing tools and many other utilities have

helped to keep malicious activities off the devices and communication networks. The similarity of

the devices has made developing tools and protocols relatively easy. Over the years, these protocols

and utilities combined with limited physical access to the critical devices have been proved to be

successful in protecting end user information and privacy.

IoT devices are capturing and communicating sensitive and critical data that must be protected

from unauthorized access. However, the standard Internet protocols are unsuitable to secure IoT

devices and communication networks due to the resource constraints and the lack of adherence to

common standards among different IoT devices. Most of the IoT devices do not have necessary

computing resources required to use general-purpose secure communication protocols, which

demands a considerable amount of processing power in order to encrypt/decrypt a steady stream

of packets without a delay. Furthermore, most of the traditional communication protocols depends

on a central server, which facilitate authentication, authorization and secure communication, while

providing services to the connected clients. The centralized nature of such communication

protocols can make IoT networks more vulnerable to denial of service attacks.

IoT devices typically register with the network themselves and configure automatically without

human intervention. Traditional security mechanisms are built on top of the assumption that, the

sensitive devices are not physically accessible to the attacker. However, many IoT devices reside

in places where the attackers can gain physical access. Spoofing attacks and impersonating are

common on IoT networks due to this fact. Hence, establishing immutable identity for the devices

is a very important aspect in protecting IoT networks.

The purpose of this project is to research and implement a more secure method to authenticate IoT

devices and protect the integrity of data collected, processed, and transmitted by IoT devices

through insecure networks.

5

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

1.4 OBJECTIVES

The main objective of this project is to research and implement a more secure IoT device

authentication and communication protocol. The developed solution will facilitate secure

enrollment of IoT devices to the network. After the enrollment, the IoT devices must authenticate

before they can transmit or receive information. The authentication process should involve more

than one aggregator device to ensure that the connected device is not compromised. Then only the

IoT device is authorized to perform privileged functions.

IoT networks typically generate and communicate sensitive data. Hence the solution is developed

to protect confidentiality of the data communicated between IoT devices, to preserve the integrity

of information and provide the ability to verify the integrity of data stored in the network. A security

measures will be implemented to avoid reply attacks in the IoT device network. In order to make

sure that, all devices in the IoT network running the latest version of the software the developed

solution can push updates securely to connected devices. Moreover, this research expects to

implement the above security measures in a reusable framework, which can be used in IoT

communication networks to support connected devices while gaining protection against malicious

attacks.

1.5 SCOPE

This project will propose a suitable blockchain based protocol to authenticate IoT devices, preserve

the confidentiality and integrity of information exchanged between IoT devices. The proposed

solution will be implemented as a general communication platform for IoT devices. The solution

should facilitate high availability of the network in where the IoT devices can be continuously

operational even during connected device failures. Furthermore, a control API will be implemented

to monitor and interact with the IoT device network. The developed control API is also capable of

allowing the devices and users to verify the integrity of data stored in the system.

Moreover, a prototype IoT device network will be implemented using the developed framework

and evaluated to for resource consumption and the security. The results obtained during the

evaluation will be summarized to measure the suitability of the implemented solution to protect

IoT device networks.

6

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

1.6 STRUCTURE OF THE DISSERTATION

The dissertation will provide an overall idea about the process used to design solution and develop

the prototype of the secure IoT platform. The dissertation has divided into six main chapters.

CHAPTER 2 – LITERATURE REVIEW

Literature review gathers information related to the project being developed. The literature review

chapter provides a summary of related technologies and discusses the suitability of selected

technologies.

CHAPTER 3 – DESIGN OF SOLUTION

The design of solution chapter describes the architecture and the methods to be used to implement

the solution. Moreover, this chapter shows how information gathered in the literature review can

be transformed into complete detailed solution design that focuses on how to deliver the expected

features.

CHAPTER 4 – IMPLEMENTATION

Implementation chapter explains the implementation process of the solution developed in the

design chapter. This chapter explains the implementation environment, used software tools and

technologies.

CHAPTER 5 – RESULTS AND EVALUATION

The evaluation is performed to measure how far the developed solution meets its expected

requirements. This chapter shows how the system was tested with various scenarios and the results

of each test. In addition to that the errors found while testing and solutions made for them are

explained in this chapter.

CHAPTER 6 – CONCLUSION AND FUTURE WORK

As the last chapter of the thesis, this chapter will include the critical evaluation of the proposed

approach and suggestions for any future enhancement.

7

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

IoT networks and their applications have received a great deal of attention in recent years. IoT

networks are employed in many civilian applications such as transportation, agriculture,

environmental monitoring and home automation. This technology has dramatically changed the

home and industrial processes. However, along with the exponential growth of IoT applications,

security threats have also been raised and pose a more serious threat to privacy than ever before.

Most of the enterprises and individuals lack the awareness of security, and manufacturers are more

focused on implementing core functions of their products while ignoring security. This chapter

explains the technologies that can be used to develop a more secure IoT framework. Many

researchers have focused on investigating new techniques and improving existing solutions to

secure IoT networks after understanding the importance of security. This chapter also provides

details about approaches proposed to secure IoT networks and related existing work.

2.2 SECURE SYSTEMS

With the widespread of computerized systems and data communication networks, they are also

increasingly becoming a target for attacks. Standard computing devices such as computers and

mobile phones are protected using special hardware components, software, and domain-specific

policies, against unauthorized access and modifications. Overall, these measures are designed to

limit the exposure of the protected system to authorized users and to perform certain actions when

an intrusion is detected or during a violation of the defined security policy. Effective security

solution protects the valuable resources from verity of threats associated with unauthorized access,

use, disclosure, disruption, modification, or destruction with minimum impact to the usability and

the system performance. Any successful deployment of security solution should provide a balanced

protection against possible treats without degrading the productivity of system users. The process

which defines security controls in order to protect information systems is referred to as information

security management. This process involves identification of assets, threats, known vulnerabilities,

potential impacts, and possible controls, followed by an assessment of the effectiveness of the

applied solution.

8

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

All security measures deployed by such a solution can be categorized into three goals. These goals

serve as the basis for designing security measures and must be considered during the planning

phase.

1. Confidentiality

2. Integrity

3. Availability

The above goals are also identified as three fundamental principles of security and commonly

referred to as CIA triad. Figure 2.1 shows a graphical representation of CIA triad.

Figure 2.1: Security Triad

Any organization or system can stay protected by identifying the reasons for security breaches that

can occur in any of the above goals and employing countermeasures to minimize the possibility of

identified malicious actions while mitigating the risk associated with a security attack. These issues

could also include natural disasters, hardware malfunctions and physical theft of devices. The

deployed security measures may apply multiple layers of defenses each implementing different

policies and controls to ensure that the system is fully secured against all the identified threats. The

level of protection required for each category does depend on the application, its operating

environment, and the business use cases. There are several standards and policies, developed by

academics and professionals to guide the information security management process. These

standards enforce laws and regulations that control how sensitive information should be accessed,

processed, stored, and exchanged between different parties.

Confidentiality

Integrity

Information
Security

Availability

9

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.3 CONFIDENTIALITY

In today’s world, information always has a value. Confidentiality is a property of data or

information system, which ensures that data is not disclosed or made available to unauthorized

entities. In most cases, a failure to maintain the confidentiality of information means that some

external people have managed to access it, through intentional behavior or by an accidental event

and such a failure of confidentiality typically cannot be undone. Hence, protecting information is

a critical task in designing a secure system. The security measures deployed to achieve

confidentiality property of an information system are designed to prevent sensitive information

from leaking into the hands of wrong people at the same time allowing the authorized people to

use it whenever they need to. Confidentiality can be also considered as a component of privacy. In

most of the cases, confidentiality is achieved by categorizing information into several different

levels based on their importance, sensitivity, and the impact the information leakage can cause to

the system. Once categorized, access rules are defined to allow certain authorized users to access

the information inside each category. This will make sure that, the only the right people have access

to the right amount of data, they need to perform their tasks.

Data encryption which transforms data into another format called ciphered data is a common

method of protecting confidentiality. Currently, encryption is one of the most effective methods

employed by organizations and information systems, in order to protect data. Figure 2.2 shows the

encryption process.

Once encrypted using an adequately secure method, the source data which is referred as plaintext

cannot be retrieved by an unauthorized user even, they gained access to the encrypted data. Mainly

there are two types of encryption algorithms used today.

1. Asymmetric encryption (Public key encryption)

2. Symmetric encryption

Plain Text Encryption Cipher Text

Figure 2.2: Data Encryption Process

10

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.3.1 Asymmetric Encryption

Asymmetric encryption algorithms which are also known as public key encryption algorithms use

two different keys to perform encryption and decryption. The Keys used by asymmetric key

algorithms are referred as public key and private key. A plaintext message encrypted using public

key can be decrypted only by using its corresponding private key and a plaintext message encrypted

using private key can be decrypted only by using its corresponding public key. In these algorithms,

the security of the public key does not matter, and it can be freely distributed among the senders

who want to send messages to the receiver without compromising security. However, the private

key must be kept secret as anyone with the private key can decrypt messages encrypted with the

public key.

Asymmetric encryption/decryption process is shown in the Figure 2.3.

Public key algorithms are widely used in modern crypto systems and following are some popular

algorithms.

• RSA (Rivest–Shamir–Adleman)

• DSA (Digital Signature Algorithm)

• Elliptic curve cryptography algorithms

• PKCS (Public Key Cryptography Standards)

• ElGamal

Plaintext

Ciphertext

Plaintext

Encryption Decryption

Public Key

Private Key

Figure 2.3: Asymmetric Encryption / Decryption Process

11

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

RSA Algorithm

RSA algorithm which is the most widely used public key cryptography algorithm is developed

based on the difficulty of factorizing large integers. In RSA algorithm, the public key consists of

two numbers where one number is the multiplication of two large prime numbers, and the private

key is also derived from the same two prime numbers. The strength of the RSA encryption depends

on the key size and can be increased exponentially by multiplication of the key size. Keys generated

using RSA algorithm are typically 1024 or 2048 bits long.

Steps

1. Generate two large prime numbers: p and q (approximately equal size)

• n = pq, n is the required bit length (e.g. 1024 bits)

2. Calculate n = pq and ϕ = (p−1)(q−1).

3. Select an integer e in range 1 < e < ϕ, such that gcd(e, ϕ)=1.

4. Calculate the secret exponent d in range 1 < d < ϕ, such that ed ≡ 1 mod ϕ.

• (n, e) – The public key

• (d, p, q) – The private key

RSA algorithm is used in digital signatures to verify the authenticity of messages. However, it is

less efficient than symmetric key algorithms when encrypting large messages.

DSA Algorithm

DSA algorithm was proposed by the National Institute of Standards and Technology (NIST) in

August 1991 for use in their Digital Signature Standard (DSS). The algorithm is based on the

algebraic properties of the modular exponentiations, together with the discrete logarithm problem

which is computationally intractable.

Elliptic Curve Cryptography Algorithms

Elliptic-curve cryptography (ECC) is based on the algebraic structure of elliptic curves over finite

fields. ECC can provide equivalent security to other non-EC cryptography algorithms by using

smaller keys. For example, a 256-bit key in ECC can offer about the same security as 3072-bit key

using RSA. Due to this fact, ECC is more suitable for resource constrained devices.

12

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.3.2 Symmetric Encryption

Symmetric-key algorithms use the same key which is a shared secret between two or more parties

for both encryption of plaintext and decryption of ciphertext. This requirement that both parties

have access to the secret key is one of the main drawbacks of symmetric key encryption, in

comparison to asymmetric encryption algorithms.

There are two main types of symmetric encryption algorithms.

Block algorithms - This type of algorithms divides data into blocks of specific size and then

performs the encryption for each block separately.

Stream algorithms - This type of algorithms encrypts data as a stream of bits rather than dividing

it into blocks before performing encryption.

Symmetric encryption process is presented in Figure 2.4.

Symmetric encryption algorithms are widely used in modern cryptosystems and following are some

popular algorithms.

• Blowfish

• AES

• DES

• RC4 / RC5 / RC6

Plaintext

Ciphertext

Plaintext

Encryption Decryption

Secret Key

Secret Key

Same Key

Figure 2.4: Symmetric Encryption / Decryption Process

13

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.4 INTEGRITY

Data integrity can be defined as the assurance of the accuracy and consistency data over its entire

lifecycle from data creation, communication, processing, and storage. The overall objective of data

integrity is ensuring the data is the same as it was when originally recorded. Data integrity can be

compromised due to various reasons such as:

• Viruses/malware, hacking, and other security threats

• Due to Malicious or unintentional modifications

• Data transfer errors and hardware failures

• Physical compromise to devices

Data which are modified unintentionally has a little use to the users. Hence data integrity is a core

focus in designing any system, which stores, processes, or exchange data. There are several

techniques employed by modern systems to ensure data integrity.

Access Control : This also includes limiting physical access to data as if users cannot access

data, they cannot change it.

Data Auditing : Frequent data audits are important to ensure that data remains unchanged.

Hash Functions : Hash Functions generate a unique representation of data, which can be used

later to compare the states of the data set.

Digital Signature : Like checksum functions, digital signatures create a one-way hash

generated using a private key.

Backups : Backup process can be explained as keeping multiple copies of the data

and having duplicates is never a bad idea as there is a possibility in failure

of even backup media.

Maintenance : In most of the cases, physical device failures can be identified or expect

before a complete failure happens. IT professionals can monitor and upgrade

disks to ensure that they are operating as they should.

14

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.4.1 Cryptographic Hash Functions

Cryptographic hash functions accept an input of any length and produce an output of a fixed size

called digest. They are designed to be one-way functions, so that, once the hash is generated it is

infeasible to revert the result and get the original data back. Hash functions can be used to verify

the data integrity and the identification of the sender or source of data.

Figure 2.5 shows the high-level process of generating a hash code using a hash function.

An ideal hash function will have following features.

Deterministic : The same messages always result in a similar hash

Quick : The hash value for any given message can be computed in short time.

One-way : It is impossible to generate the original message from its hash value except

by trying all possible messages.

Change Distribution : A small change to a message should change the hash value completely so

that the new hash value appears to be uncorrelated with the old hash value.

Unguessable : It is infeasible to find two different messages with the same hash value.

Cryptographic hash functions have many applications in information security context and

following are some of them.

• Data integrity verification

• Digital signatures

• Message authentication codes (MACs)

• Authentication

• Data indexing

• Duplicate data detection

Input

Hash Function

Output

Figure 2.5: Hash Function

15

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Following sections describe two common popular hash functions, which are in use today.

MD5 [1]

MD5 hash function produces a digest of 128 bits (16 bytes) and typically expressed as a 32-digit

hexadecimal number. MD5 has been used in a wide variety of security applications and is also

popular to check the integrity of files. However, later it has been found that MD5 hash function

has certain flaws, which make is less useful as a cryptographic hash function. It can still be used as

a checksum to verify data integrity of files but only against unintentional corruption.

e.g.: Plain text : This is a test.

MD5 : 120EA8A25E5D487BF68B5F7096440019

SHA [2]

The Secure Hash Algorithms are a family of cryptographic hash functions published by the US

National Institute of Standards and Technology (NIST). There are hash algorithms in SHA family.

SHA-1 : A 160-bit hash function designed by the National Security Agency (NSA) to be

part of the Digital Signature Algorithm. This algorithm was no longer approved for

most cryptographic uses after 2010 due to cryptographic weaknesses.

SHA-2 : Includes two different algorithms, known as SHA-256 and SHA-512 each having

different block sizes. They differ in the word size; SHA-256 use 32-bit words where

SHA-512 uses 64-bit words. This algorithm works by first splitting data into pieces

of 512 bits (64 bytes) and then producing its cryptographic "mixing" to finally issue

a 256-bit hash value. SHA-256 is one of the strongest hash functions available has

not yet been compromised in any way.

 e.g.: Plain text: This is a test.

SHA-256: a8a2f6ebe286697c527eb35a58b5539532e9b3ae3b64d4eb0a46fb657b41562c

SHA-3 : A hash function formerly called Keccak, chosen in 2012 after a public competition

among non-NSA designers. It supports the same hash lengths as SHA-2, and its

internal structure differ significantly from the rest of the SHA family.

16

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.5 AVAILABILITY

Availability is the assurance that information system and data are accessible to authorized users

when it is needed. It is important to ensure the computing systems used to process and store the

information, and the communication channels used must be functioning correctly to achieve

availability property of information systems. The information systems which are designed to

improve availability are called as high availability systems. Those systems employ proactive

methods such as redundancy, failover, RAID, and high-availability clusters to mitigate effects on

system outages occur due to both intentional and unintentional malicious activities.

Following are some of the intentional attacks.

• Physical attacks – In this type of attack, the attackers gain physical access to the information

system and open the system to variety of ways for hacking.

• DoS and DDoS attacks - In this type of attack, the information system and its services

become unavailable to the authorized users, or they may experience a severe degrade of

system performance. This attack is mostly accomplished by flooding the target machine

with the service request and due to this, the targeted system gets overload and fails to

respond to other users.

• SYN flood attacks – This is a type of Denial of Service attack that exploits the portion of

the three-way handshake process of TCP protocol to make the targeted information system

inaccessible.

Data redundancy is important when planning to minimize the system down time. Data redundancy

is achieved by replicating data into multiple nodes in the network and allowing IoT devices to

connect to more than one node. When a single node has been failed, the IoT devices can connect

to another node and continue to operate as the data generated by the failed IoT device is replicated

into the other nodes.

17

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.6 BLOCKCHAIN

A blockchain is a growing list of blocks, which are linked by each block storing the hash value

generated for the previous block in the chain. Blockchain network is a peer to peer network with

no central authority to manage the stored data or enforce rules. The network is maintained by many

independent users refer to as nodes. Blockchain can also be considered as a new approach of

developing distributed databases and there are many applications. Blockchains are so popular

because of their immutable property, which is once data are written to the blockchain, it is nearly

impossible to modify or delete it. At a minimum, all blocks in a blockchain contain, hash value of

the previous block, timestamp and data.

2.6.1 Public Blockchains

Public blockchains are large distributed network of independent nodes, which are open for anyone

to participate at any level. Most of the public blockchain implementations are open-source projects.

The public blockchains are very popular due to their transparency and the involvement of

participants to contribute the growth of the blockchain. The public blockchain networks typically

have incentive mechanisms to encourage more participants to join the network. These networks

can operate seamlessly in trustless networks due to their immutable nature of the records. Each

node in a public blockchain, must solve a complex resource-intensive cryptographic problem called

a proof of work (PoW) to ensure that recorded transactions are non-editable.

Public blockchains are widely used in crypto currency projects to create an unchangeable ledger of

transactions. However, one of the main drawbacks of public blockchains is their PoW approach,

which is very expensive in terms of resources required for calculations and time required for miners

to solve the puzzle. For example, currently the average time required for a new block creation in

popular Bitcoin network is 10 minutes and difficulty level of mining has been adjusted to

maintaining this time. However, due to the increased difficulty and competition among minors,

the task of adding a new block to the network became several times expensive than before. Due to

this disadvantage, public blockchains are only suitable for applications where a large number of

users participate in maintaining the blockchain.

e.g.: Bitcoin, Ethereum

18

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Bitcoin

Bitcoin, a form of electronic cash, is a decentralized digital currency without a central bank. The

currency can be exchanged between on a peer-to-peer bitcoin network without the need for a central

authority or administrator. The transactions made using Bitcoins are recorded in a public

blockchain. The Bitcoins are created as rewards for the process known as mining and can be

exchanged for other products, and services. In Bitcoin network, the nodes can validate transactions

and add them to their copy of the ledger while broadcasting the update to other nodes.

In Bitcoin blockchain, each block contains a SHA-256 hash of the previous block which is used to

link blocks. A new block added to the blockchain will be accepted only if the block contains a

proof-of-work (PoW) which is a system based on Hashcash. The PoW algorithm used in Bitcoin

requires miners to find a number called a nonce, such that when the block content is hashed along

with the nonce, the result is numerically smaller than the network's difficulty target. This proof can

be validated by any node in the network, but extremely difficult to generate. The minors must try

many different nonce values before meeting the difficulty target.

Ethereum

Ethereum is an open-source pubic blockchain platform which supports smart contract (scripting)

functionality. When compared to Bitcoin, which is a peer to peer electronic cash system that

enables online payments, the Ethereum blockchain focuses on running the programming code of

any decentralized application. In Ethereum network, Ether is a token generated by the Ethereum

platform which can be transferred between accounts and used to compensate participant mining

nodes for computations performed. In the Ethereum blockchain, the miners work to earn Ether,

which is a type of crypto token that fuels the network. Moreover, in Ethereum platform, there is a

second type of token called gas that is used to pay miners fees for including transactions in their

block, and every smart contract execution requires a certain amount of gas to be sent along with it

to put it in the Ethereum blockchain. Ethereum platform also provides a decentralized virtual

machine, the Ethereum Virtual Machine (EVM), which can execute scripts using a network of

public nodes.

19

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.6.2 Permissioned Blockchains

The permissioned blockchains limit the parties that can perform certain transactions on the

network. Each participant belongs to a set of roles, which defines the access rights of the

corresponding user. The blockchains maintain an access control layer to allow certain actions to be

performed only by certain authenticated users. The permissioned blockchains may or may not

require proof of concept or some other requirement from nodes. This type of blockchains is a

popular among industrial or business applications.

E.g.: Ripple

In general, permissioned blockchains have following advantages when compared to public

blockchains.

Efficiency : Permissioned blockchains are more efficient and have better performance when

compared to public blockchain networks. In permissioned blockchains, not all nodes are doing

redundant validations of all blocks in the network and permissioned blockchains only require its

member nodes to validate transactions.

Control : Nodes in a permissioned blockchains have pre-defined authorities in the network

which is different from a public blockchain which allows any node to participate in any

authorization level.

2.6.3 Private Blockchains

Blockchains were originally intent to be public networks, which are open to any user. The public

blockchains can be considered as the opposite of private networks, which are strictly controlling

the access to the network. Private blockchains are relatively smaller in size than the other two types

of blockchains and have strict control over the authorization. The users in a private blockchain

cannot read, write, or validate the blockchain if they do not have necessary permissions. Private

blockchains are introduced to solve the problems identified in public blockchains and expand the

scope to business applications.

e.g.: Hyperledger

20

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

 Table 2.1 explain the differences between public and private blockchain networks.

Public Blockchains Private Blockchains

Anyone can run a node and has access to all

data in the network.

Access to blockchain network is restricted.

Anyone can perform transactions on the

network.

Not all public users can perform transactions

on the network.

Anyone can validate the blocks in the network. Only the authorized uses can validate the

blockchain.

Cost of a transaction is high. Cost of transaction is low.

Slower and it takes a long time to approve and

add a new block to the blockchain.

New blocks can be added to the blockchain

almost instantly.

Nodes in the network can be independent and

requires no trust.

The nodes in the network are known to each

other.

Table 2.1: Difference between public and private blockchains

2.7 RELATED WORK

Motivated by the increased number of vulnerabilities, attacks, and information leaks, IoT device

manufacturers and researchers have carried out experiments to propose solutions to secure IoT

networks and analyze the effectiveness of existing solutions. The following sections present a

summary of the work which has been done in related fields.

2.7.1 The Effect of IoT New Features on Security and Privacy: New Threats,

Existing Solutions, and Challenges yet to be Solved [3]

In their research, Zhou, Wei, et al. have proposed the concept of “IoT features” and then analyzed

the security and privacy effect of eight IoT features, which have most impact on security for the

threats they cause, existing solutions and unsolved challenges. “IoT features” refer to the unique

features of IoT devices and their applications, which are different from the applications of the

Internet and computers. After defined “IoT features” they have analyzed each feature to find treats,

challenges, solutions, and opportunities. They have followed the up-to-date work in the field of

IoT and identified challenges while pointing out the need for further security improvements.

21

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Furthermore, they have suggested that researchers need to discover the root causes behind new

security threats and design more generic and practical protective measures.

The summary of the research is presented in Table 2.2.

Feature Threat Challenge Opportunity

Interdependence Bypassing static defenses,

Overprivileged

Bypassing static defenses,

Overprivileged

Context-based permission

Diversity Insecure

protocols

Fragmented Dynamic analysis

simulation platform, IDS

Constrained Insecure systems Lightweight defenses and

protocols

Combining biological and

physical characteristics

Myriad IoT botnet, DDoS Intrusion detection and

prevention

IDS

Unattended Remote attack Remote verification Remote attestation,

Lightweight trusted

execution

Intimacy Privacy leak Privacy protection Homomorphic encryption,

Anonymous protocols

Mobile Malware propagation Cross-domain identification

and trust

Dynamic configuration

Ubiquitous Insecure configuration - Safety consciousness

Table 2.2: Threats, Challenges and Opportunities of IoT Features

2.7.2 Survey of Security and Privacy Issues of Internet of Things [4]

Borgohain, Tuhin, Uday Kumar, and Sugata Sanyal have conducted a general survey of security

issues of IoT devices along with an analysis of the privacy issues that an end-user may face when

consuming applications of IoT. Most of the survey has focused on the security loopholes arising

out of when IoT devices exchange information. First, they have discussed about various

communication technologies using the Internet infrastructure for the exchange of information and

then analyzed each method to identify privacy issues faced by the end users of each technology.

After analyzing IoT from a security point of view, they have suggested that proper security

measures must be taken in the initial phase itself before going further development of IoT for

effective and widely accepted adoption.

22

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.7.3 Security of IoT Systems: Design Challenges and Opportunities [5]

In their research, they have mentioned, security is the most important requirement for the

widespread use of IoT networks. They have identified that optimization intensive CAD techniques

compounded with their traditional accurate modeling are naturally suited to enable the design of

highly optimized IoT devices. They have considered energy and security as two main constraints

for IoT devices and described how both constraints can be addressed well using CAD techniques.

2.7.4 New security architecture for IoT network [6]

This research identifies, traditional security mechanisms like firewalls, intrusion detection and

prevention systems which are deployed at the Internet edge to protect the network from external

attacks are no longer enough to secure the next-generation Internet and the border less architecture.

The applications of IoT raises additional concerns over network access control and software

verification. Recent advances in computer networking have introduced a new technology paradigm

for future communication, which is Software Defined Networks (SDN) where a central software

program, called SDN controller, manages the overall network behavior. Based on the SDN

architecture, they have proposed a security model for the IoT which is designed to establish and

protect both wired and wireless network infrastructure. Then they have extended the proposed

architecture in order to include Ad-Hoc networks and network object things such as: sensors,

tablets, smart phones, etc.

2.7.5 Security in the Internet of Things: A Review [7]

In their research, they have identified security and privacy as the key issues for IoT applications,

which are still facing some enormous challenges. In order to facilitate this emerging domain, they

have reviewed the research progress of IoT while paying attention to the security. By means of

deeply analyzing the security architecture and features they discussed the research status of key

technologies including encryption mechanism, communication security, protecting sensor data and

cryptographic algorithms, and identified challengers in following areas.

1. Security Structure

2. Key Management

3. Security Law and Regulations

4. Requirements for Burgeoning Applications

23

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.7.6 Network Level Security and Privacy Control for Smart Home IoT Devices

[8]

The increasing uptake of smart home appliances, such as lights, smoke-alarms, power switches,

baby monitors, and weighing scales, raises privacy and security concerns at an unprecedented scale,

allowing legitimate and illegitimate entities to snoop and intrude into the family’s activities. In this

paper, they have first illustrated these threats using real devices currently available in the market.

Then they have argued that as more such devices emerge, the attack vectors increase, and ensuring

security of the house become more challenging and advocated that device-level protections be

augmented with network-level security solutions, that can monitor network activity to detect

suspicious behavior. They have further proposed that software defined networking technology

should be used to dynamically block devices, based on their activity and on the context within the

house such as time-of-day or occupancy-level. They have prototyped their solution using open-

source SDN platforms and evaluated its efficacy in protecting multiple smart-home devices.

2.7.7 Security Challenges in the IP-based Internet of Things [9]

The direct interpretation of the term Internet of Things refers to the use of standard Internet

protocols for the human-to-thing or thing-to-thing communication in embedded networks. In this

paper, they have discussed the applicability and limitations of existing Internet protocols and

security architectures in the context of the Internet of Things. First, they have given an overview

of the deployment model and general security needs and then presented challenges and

requirements for IP-based security solutions highlighting specific technical limitations of standard

IP security protocols. As a conclusion, they have mentioned that the security architecture proposed

for IoT should fit the capabilities of the thing, and security protocols should further consider the

resource-constrained nature of things and heterogeneous communication models. The security

protocols should include lightweight security mechanisms that are feasible to be run on small

things. They have also mentioned that the group security must be considered as well, since the IoT

brings communication patterns that are unusual in traditional networks, and thus are not sufficiently

supported by end-to-end Internet security protocols. The protocol design should further consider

the effect of packet fragmentation on security, with focus on possible DoS attacks.

24

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

2.7.8 Towards an optimized blockchain for IoT [10]

This research proposes a lightweight Bitcoin based architecture for IoT that virtually eliminates the

overheads of classic blockchain, while maintaining most of its security and privacy benefits. They

have highlighted that IoT devices can benefit from a private immutable ledger managed centrally,

to optimize energy consumption. In this solution, high resource devices are creating an overlay

network to implement a publicly accessible distributed blockchain that ensures end-to-end security

and privacy. The proposed architecture uses distributed trust to reduce the block validation time.

They have explored the feasibility of their approach in smart home applications as a representative

case study for broader IoT applications. The architecture is evaluated under common threat models

highlighting its effectiveness in providing security and privacy for IoT applications. Furthermore,

they have demonstrated that their method decreases packet and processing overhead significantly

compared to the blockchain implementation used in Bitcoin.

2.7.9 IoTChain: A Blockchain Security Architecture for the Internet of Things

[11]

This research has defined IoT as the integration of Internet Protocol (IP) enabled constrained

devices with the existing Internet infrastructure and proposed IoTChain as a combination of Object

Security Architecture for the Internet of Things (OSCAR) architecture and ACE authorization

framework to secure access to IoT resources. IoTChain consists of two components, an

authorization blockchain based on the ACE framework and the OSCAR object security model

extended with a group key scheme. In their approach, a trust-less authorization blockchain has

replaced the centralized authorization server in the ACE, and OSCAR used the public ledger to set

up multi-cast groups for authorized clients. They have we have implemented the authorization

blockchain on top of a private Ethereum network to evaluate the feasibility of the solution and

reported on several experiments that assess the performance of different architecture components.

25

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 3 DESIGN OF SOLUTION

3.1 INTRODUCTION

As mentioned in the first chapter, the main objective of this project is to design and implement a

blockchain based protocol for IoT device authentication and secure communication. To achieve

the objectives of the research a compressive study has been conducted. After the study, the most

suitable technologies to build such a platform under the constraints of IoT devices are identified.

The proposed solution utilizes a combination of techniques, which are selected from the fields of

computer security, web API development, and hardware programming. This chapter describes the

techniques used in the proposed solution as well as their appropriateness to achieve the objectives

of the project.

3.2 DEVELOPMENT METHODOLOGY

The process of developing a software solution to a problem can be performed according to software

process models, which describe approaches to a variety of tasks that take place during the process.

The waterfall model is one such software process model in where the activities are performed as a

linear sequence of phases where each phase depends on the previous phase. In contrast the iterative

process model encourages the design, develop and test of features in iterations. The iterative

development methodology was chosen to develop the solution mainly by considering its flexibility.

One of the underlying principles of iterative development is that the solution can be refined

according to the feedbacks received while evaluating the intermediate solutions. Further details

about software process models and the reason for selecting iterative development methodology is

explained in Appendix B.

26

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

3.3 SOLUTION BREAKDOWN

This research suggests a blockchain based approach to secure IoT networks by considering the

common constraints of IoT networks. Many IoT devices perform critical and real time operations,

which expects high availability of the device. The embedded processors on IoT devices have

limited processing power and memory to implement conventional authorization protocols and

protection software. In any usable IoT security solution, the security features implemented on the

device should have minimum interruption to the device operation. The main objective of this

project is decomposed into several sub problems as network architecture, device authentication,

secure data storage, and control API. After developing sub problem solutions individually, they are

linked together to form the final solution.

Following sections describe the overview of the proposed solution.

3.3.1 Network Architecture

When designing a solution to secure IoT networks, it is necessary to have a better understanding

about IoT network architecture. Network architecture varies in both topology and architectural

design, depending on the application. Most of the current IoT networks are implemented using the

aggregator topology where many small IoT devices or sensor nodes are connected to an aggregator

device, which is responsible for communicating with the connected nodes. In most cases, IoT

devices connect to the aggregator device via wireless mediums such as Wi-Fi. The connected

devices may perform a verity of tasks, which sometimes require intercommunication between

devices in the same network. The aggregator device has enough processing power to collect

information from the child IoT nodes and to perform application-based processing on the collected

data. The aggregator is also capable of communicating with other aggregators as well as

communicating with internet services to perform further processing.

Figure 3.1 shows the aggregator topology for IoT network.

27

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 3.1: Aggregator Topology for IoT Network

In the proposed approach, the aggregator devices perform resource-consuming tasks such as

maintaining the blockchain and hosting the control interface. In addition to the traditional

aggregator function layer, a new hub function layer is added to facilitate establishing connections

to more than one aggregator device. An IoT device or an aggregator may use the hub function to

perform important operations such as authentication. Once the hub has received a request, it will

forward the request to multiple other aggregators for collecting their responses. The aggregators to

send the request are selected randomly from the list of available aggregators. Once all the responses

are collected, the hub function compare the responses to find discrepancies between the received

responses. The response which is agreed by most of the other aggregators will be sent to the service

requester.

3.3.2 Data Storage

Blockchain stores immutable records of device identifications and data generated by the devices.

Any device in the network can ensure the integrity of information by validating the blockchain.

However, only the authorized devices can access the encrypted information. Each block in the

28

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

blockchain contains multiple fields, which are created to maintain the blockchain and for easy

navigation between blocks.

The Table 3.1 describes the purpose of each field stored in a block.

Field Description

Timestamp Time zone independent UNIX timestamp of block added time.

Type System has three predefined types:

1. AUTH – Blocks containing device authentication details.

2. CERT – Blocks containing public keys and device identifiers.

3. DATA – Blocks containing data records

4. UPDATE – Blocks containing device update information.

Creation and use of custom block types are also supported.

Owner ID Identifier of the aggregator added the block.

Hash SHA-256 hash code generated for the block.

Previous Block Hash Hash code of the previous block.

Data Data stored in the block.

Table 3.1: Fields in a Block

Figure 3.2 shows the structure of the blockchain proposed in the solution.

Figure 3.2: Structure of the Blockchain

Data added to a block is encrypted by the aggregator based on the request received from the

provider. If the data stored in the block found to be encrypted, the aggregator will decrypt the

data before transferring to the requester. However, some data such as public keys are stored as

plain-text in the blockchain.

29

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

3.3.3 Device Authentication

One of the most important challenges that IoT networks face is authentication and verification of

connected devices. The device authentication is performed in a decentralized way by involving

several other randomly selected aggregators. The authenticity of the IoT device and the aggregator

is validated before establishing the connection. The hub function will select a subset of the other

aggregators to validate the response. Hence compromising several nodes in the network will not

grant unauthorized access to the network. Figure 3.3 shows the sequence diagram of the

authentication flow implemented in the solution.

Figure 3.3: Sequence diagram for device authentication

30

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

3.3.4 Control API

All authorized devices, and user applications are interacting with the blockchain through the control

API. Furthermore, the control API allows to perform operations through the hub layer to ensure

that the provided information is accurate.

In general, the control API provides the features described in Table 3.2 to the consumers.

Feature Description

Device authentication The control API performs the device authentication according

to the rules discussed in the previous section.

New device registration The control API provides facilities to securely enroll new

devices to the network. At the time of enrollment, a unique

identifier and a public key/private key pair will be generated for

each device. The generated identifier and the public key are

stored in the blockchain to facilitate authentication of the newly

created device.

Data storage Devices will access the control API to store data. The device

can decide whether to store data in plaintext format or in the

encrypted format.

Data retrieval Devices obtain data from the blockchain through control API.

However, the node will gain access to the data only if data is

not encrypted or the consumer possesses the correct private key

to decrypt data.

Blockchain validation The control API will provide the real time validation status of

the blockchain by collecting information from multiple other

nodes.

IoT network status checking The control API provides an overview of the other registered

devices found in the platform and provides facilities to manage

registrations.

Table 3.2: Control API Features

31

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

3.3.5 System Update Distribution

Details about IoT system updates are stored in a special block of type “UPDATE”. Device specific

data block which contains information about the system update is included in all device update

blocks. At minimum, following information is stored in update data.

• Applicable device type

• System version information

• Hash code of the system update file

• Published location

The update checking frequency is decided by the IoT device. The devices can query for the

matching updates and use the provided information in data field to download the system update

and verify the integrity. The device will receive only the updates published by its owner. The owner

is the aggregator which performed the device registration. Since the data stored in the blockchain

is immutable, the IoT devices can guarantee that the update has not been modified in a malicious

way. System updates usually contain large binary files and it is advisable to publish update files to

an external location instead of storing them in the blockchain.

Figure 3.4 summarize the system update process of an IoT device.

Figure 3.4: System Update Process

Install Update

Verify Downloaded Files

Download Update Files

Receive Update Definition

Query for System Updates

32

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 4 IMPLEMENTATION

4.1 INTRODUCTION

Implementation process converts the designed solution into the actual system by developing the

application programs. The output of this phase is a complete working solution, which consists of

executable programs and hardware components developed to fulfill the requirements identified in

the previous sections. In this phase, an appropriate programming language, hardware, and software-

development tools were chosen to implement the solution that is designed in the previous phases.

Furthermore, this phase relies on a mixture of technologies and design patterns, which are precisely

chosen to fulfill the requirements efficiently.

4.2 IMPLEMENTATION ENVIRONMENT

The implementation environment of the solution is planned carefully to achieve the maximum

outcomes while taking some important factors like cost, robustness, reliability and performance

into consideration. Primarily the implementation environment is where the aggregator program and

hub program operate. Moreover, the requirements for the implementation environment can be

separated into software requirements and hardware requirements. The detail of the implementation

environment is described in the following subsection.

4.2.1 Aggregator Environment

The web application of the implemented solution is hosted in the aggregator environment. The

aggregator environment is planned to handle the communication links between the IoT devices and

the blockchain in real-time. IoT devices mainly communicate with the aggregator device to

retrieve, process and store data. Furthermore, the aggregator device act as a distributed streaming

platform to synchronize data with other aggregator devices maintaining the blockchain. Each

aggregator device hosts its own copy of the blockchain which is verified with other devices

periodically to ensure the data integrity.

Table 4.1 summarize the minimum system requirements for the aggregator environment.

33

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Hardware Software

700 MHz processor

256 MB RAM

500 MB storage

Network connectivity

Any Java supported operating system.

Java Runtime Environment 8 or later.

Table 4.1: Aggregator Environment Minimum System Requirements

4.3 DEVELOPMENT TOOLS AND TECHNOLOGIES

A variety of tools and technologies were used in the development of the solution to save time while

satisfying requirements identified during the previous phases. The selected tools and technologies

are described in this section.

4.3.1 Development Tools

Following software tools were used to facilitate the rapid development of the system at the same

time preserving the quality of the program language code produced.

Table 4.2 summarizes the tools used and the purpose.

Tool Purpose

Java Development Kit Main platform for aggregator application development.

IntelliJ IDEA IDE for developing the aggregator and hub programs.

PlatformIO Platform for developing IoT device program.

Visual Studio Code Editor used to write IoT device program.

SoapUI For developing load test projects used during the evaluation.

Git Used to track the changes during the software development.

Table 4.2: Development Tools

4.3.2 Technologies

The system is developed using a mixture of well-matured and robust technologies, which enables

the implementation of required functionalities. The solution is mainly developed using Java [12]

language, which is a platform independent, object-oriented programming language developed for

general-purpose programming. Java is a platform independent programming language meaning

that compiled Java code can run on any platform that supports Java without the need for

34

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

recompilation. This solution has selected Java as the main programming language by considering

the following features.

• Platform independent

• Object oriented

• Secure

• Complete standard library

• Support for multi-threaded programming

Spring Framework [13] is an open-source modular application framework for Java platform. The

core features of the Spring framework can be used to develop desktop applications as well as web-

based APIs. The framework uses existing technologies like ORM frameworks, logging

frameworks, JEE, JSON, etc. to provide a comprehensive support framework. The Spring

framework was selected to develop the proposed solution by mainly considering its ability to

integrate with other technologies used for real time communication and features provided to

develop RESTful APIs. A JSON format based RESTful API was developed in the solution by

considering the wide acceptance of JSON as the main format used in RESTful APIs. RESTful API

[14] is an application interface designed using HTTP requests such as GET, POST, DELETE, PUT,

etc. to communicate. RESTful APIs can return data in XML, JSON or any other format depending

on the context. By using a stateless protocol and standard HTTP operations, RESTful APIs deliver

fast, reliable, and extensible APIs developed using components that can be updated independently

without affecting the other systems.

The solution stores data in H2 Database [15] which is an open source relational database

management system written in Java which can be embedded in Java applications. H2 database

supports a subset of the SQL (Structured Query Language).

The main features of H2 are:

• Open source

• Fast JDBC API

• Embedded and server modes with support for in-memory databases

• Browser based console application

• Small footprint: around 2 MB file size

35

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

4.4 NETWORK ARCHITECTURE

The network architecture of the solution consists of aggregators, IoT devices and user applications,

which are consuming the services provided by IoT network. Each aggregator device in the network

has its own embedded database to store a copy of the blockchain. The aggregator device is accessed

by many IoT devices at a time. The access rights for IoT devices are granted only after the device

registration process and successful authentication. Figure 4.1 shows the network architecture of the

solution.

Figure 4.1: Network Architecture of the Proposed Solution

The solution can function independently without relying on any Internet technology. However, the

Internet or any other wide area network (WAN) technology can be used to link remote IoT device

environments together. In this scenario, the aggregator devices should be able to discover each

other to form the required communication links. An IoT device can access any aggregator device

available in its sub network for communication. The communications between IoT devices are

handled through the aggregator device.

36

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

4.4.1 Communication Protocols

All components in the network, including IoT devices and aggregators are linked using a

communication medium which supports HTTP protocol. The HTTP protocol is mainly used by IoT

devices to access the API provided by the aggregator and the communication between aggregator

devices. The implementation supports several popular communication mediums used by current

IoT device networks. However, the communication medium used for the solution should have a

low latency and adequate bandwidth for the application.

Zigbee [16] [17] is a Bluetooth like protocol, which has wide use in industrial and home IoT

applications. Zigbee has several profiles, including ZigBee PRO [18] and ZigBee Remote Control

[19] (RF4CE [20]) which are based on the IEEE802.15.4 protocol. Zigbee is operating at 2.4 GHz

frequency targeting applications that require relatively infrequent data exchanges at low data-rates

over a restricted area and within a 100m range such as in a home or building. ZigBee is popular

technology for IoT communications as it has some significant advantages offering low-power

operation, high security, reliability, and scalability. Zigbee works in a mesh network and becomes

more powerful and stronger as more devices are added. The latest version of ZigBee is 3.0 [21],

which is the unification of the various ZigBee wireless standards into a single standard.

• Standard: ZigBee 3.0 based on IEEE802.15.4

• Frequency: 2.4 GHz

• Range: 10-100 m

• Data Rates: 250 kbps

Zigbee IP [22] is an IPv6-based open standard supporting full wireless mesh networking solution

and provides seamless Internet connections to control low-power, low-cost devices. It enables low-

power devices to participate natively with other IPv6-enabled Ethernet, Wi-Fi and, HomePlug [23]

devices. It supports standard Internet protocols, such as IPv6, TCP, TLS and UDP and end-to-end

security using TLS1.2 protocol, link layer frame security based on AES-128-CCM algorithm [24]

and support for public key infrastructure using standard X.509 v3 certificates and ECC-256 cipher

suite.

37

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Wi-Fi [25] is commonly used communication medium supported by the implementation for the

wireless local-area networking (WLAN). Wi-Fi is based on the IEEE 802.11 family of standards

and a popular choice for IoT device communication due to its wide existing availability in homes.

• Standard: Based on 802.11n

• Frequencies: 2.4 GHz and 5 GHz bands

• Range: Approximately 50 m

• Data Rates: Around 600 Mbps

Wi-Fi HaLow [26] is a technology based on the IEEE802.11ah standard and introduced to address

the range and power concerns of IoT devices using Wi-Fi as the communication medium. Wi-Fi

HaLow uses the 900 MHz band to provide extended range over a radius of one kilometer with low

power requirements and power use is further optimized by using predefined wake/doze periods.

4.5 APPLICATION ARCHITECTURE

There are three main components exits in the developed solution as follows.

1. Device Registration and Authentication Component

2. Communication Hub Component

3. Blockchain Management Component

The IoT devices act as clients and connect to the aggregator server using the provided RESTful

API. The aggregator is developed as a web service which can be started as a standalone application

and once started publishes a RESTful API. The Blockchain management component uses an

embedded database which stores blockchain data. The RESTful API was selected by considering

its suitability to develop efficient, scalable, platform-independent applications.

Figure 4.2 shows the composition of the solution.

38

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 4.2: Application Structure of the Solution

4.6 FUNCTION IMPLEMENTATION

As presented in methodology chapter, the proposed solution can be broken down into nine

subsystems as follows.

1. Blockchain Storage

2. Blockchain Search

3. Blockchain Synchronization

4. Blockchain Validation

5. Device Registration

6. Device Authentication

7. Device Information

8. Hub Function

9. Secure Communication

10. API Playground

The following sections discuss about the implementation details of each subsystem.

4.6.1 Blockchain Storage

The blockchain handling component can receive data from IoT devices or from aggregators in the

network. The following API URI is exposed for devices to send data which will be stored in the

blockchain.

Communication Hub
Component

Device Registration and
Authentication Component

Blockchain Management
Component

39

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

POST /blocks/save

This URI accepts the following request in the body of the HTTP POST request.

{

 "data": "data",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": true,

 "encryptionKey": "encryption_key",

 "salt": "salt",

 "type": "DATA"

}

Blockchain data save request parameters are described in Table 4.3.

Parameter Description

data [OPTIONAL] Data to be saved in the blockchain.

deviceId [REQUIRED] Device identifier of the data producer.

encrypted [OPTIONAL] If this parameter is true, the data will be encrypted before

saving into the blockchain. The default value of this parameter is false.

encryptionKey [OPTIONAL] The key which is to be used for data encryption.

salt [OPTIONAL] This parameter will be used in combination with the

encryption key to strength the encryption. Adding salt to the encryption

key will mitigate the risk of dictionary attacks.

Table 4.3: Blockchain Data Save Request Parameters

If the data has been successfully saved, this URI will return the HTTP status 200 OK.

The data save operation is performed by the API by following steps shown in Figure 4.3.

Figure 4.3: Data Storage Process

Once data received; this API operation first performs the validation of the received data using

Hibernate Validator Framework. Then the hash code of last block will be obtained from the

blockchain.

Validation
Find Last

Hash
Encrypt

Data
Add

Parameters
Calculate

Block Hash
Save
Block

Notify Other
Aggregators

40

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Data Encryption

If the encrypt flag is true, the data will be encrypted using 256-bit AES encryption algorithm.

public byte[] encrypt(byte[] bytes) {

 synchronized (this.encryptor) {

 byte[] iv = this.ivGenerator.generateKey();

 initCipher(this.encryptor, Cipher.ENCRYPT_MODE, this.secretKey,

 this.alg.getParameterSpec(iv));

 byte[] encrypted = doFinal(this.encryptor, bytes);

 return this.ivGenerator != NULL_IV_GENERATOR ? concatenate(iv,

encrypted)

 : encrypted;

 }

}

During the encryption process, a 16-byte initialization vector is generated using the secure random

number generation function provided by JDK. The Java implementation provides a

cryptographically strong random number generator (RNG) [27].

public byte[] generateKey() {

 byte[] bytes = new byte[keyLength];

 random.nextBytes(bytes);

 return bytes;

}

Then the cipher is initialized for the generated initialization vector.

/**

 * Initializes the Cipher for use.

 */

public static void initCipher(Cipher cipher, int mode, SecretKey secretKey,

 AlgorithmParameterSpec parameterSpec) {

 try {

 if (parameterSpec != null) {

 cipher.init(mode, secretKey, parameterSpec);

 }

 else {

 cipher.init(mode, secretKey);

 }

 }

 catch (InvalidKeyException e) {

 throw new IllegalArgumentException(

 "Unable to initialize due to invalid secret key", e);

 }

 catch (InvalidAlgorithmParameterException e) {

 throw new IllegalStateException(

 "Unable to initialize due to invalid decryption parameter spec",

e);

 }

}

41

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Finally, during the encryption process, the actual encryption is performed by calling the doFinal

method of the initialized cipher.

Once the encryption is completed, the following additional parameters are added to the block.

• Timestamp

• Type

• Owner ID

• Previous Block Hash

Then the hash of the block is calculated using SHA-256 algorithm and stored in the same block.

public void calculateHash() {

 try {

 String value = new ObjectMapper().writeValueAsString(this);

 this.hash = Hashing.sha256().hashString(value,

StandardCharsets.UTF_8).toString();

 } catch (JsonProcessingException e) {

 e.printStackTrace();

 }

}

After populating all fields inside the block, the newly generated block is stored into the H2

embedded database.

Finally, the new block added notification is sent to the other aggregators using the Block

synchronization functionality.

4.6.2 Blockchain Search

Blockchain search feature is provided for consumers to search data stored in the blockchain. The

function also supports a query API which can be used to query blocks based on the data stored

inside the block.

Fetch All Data

Following API URI is provided for consumers, who want to obtain a copy of the blockchain. Since,

the blockchain may contain a large amount of data, this method will not be used frequently.

GET /blocks/all

The API URI does not accept any parameter and provide the complete list of blocks stored in the

blockchain as the response.

42

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Example response:

[{

 "id": "9dd451bf-a299-4a1b-a8aa-76dd39952629",

 "type": "APP_START",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": false,

 "hash": "1caf2b188cdc1c2ad25db6e36ad8062e9c4843fd21a3fecf09f93658821f584a",

 "previousHash": null,

 "data": "{\"type\":\"APP\",\"deviceId\":\"d076c6a4-a61a-4eab-a7bc-

90deb51e689d\",\"hostname\":\"192.168.56.1\",\"port\":8080,\"timestamp\":15531

72755934}",

 "addedTime": 1553172755979

 },{

 "id": "0c0c4a58-2ecc-4836-b9af-efaea12f24f1",

 "type": "APP_START",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": false,

 "hash": "98112e285fe7005f9a7a7d924cc0a9187edbcc2f33f64a9edc37b0ecc2660023",

 "previousHash":

"1caf2b188cdc1c2ad25db6e36ad8062e9c4843fd21a3fecf09f93658821f584a",

 "data": "{\"type\":\"APP\",\"deviceId\":\"d076c6a4-a61a-4eab-a7bc-

90deb51e689d\",\"hostname\":\"192.168.56.1\",\"port\":8080,\"timestamp\":15531

72904927}",

 "addedTime": 1553172904974

 }]

Query Blockchain Data

Support for querying the data stored in the blockchain is provided to consumers through the

following URI.

POST /blocks/search

This URI accepts the following request in the body of the HTTP POST request.

{

 "encryptionKey": "encryption_key",

 "salt": "salt",

 "path": "path/to/field",

 "value": "

}

Blockchain search request parameters are described in Table 4.4.

43

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Parameter Description

encryptionKey [OPTIONAL] The key which is to be used for data decryption.

salt [OPTIONAL] This parameter will be used in combination with the

encryption key to strength the encryption. Adding salt to the encryption

key will mitigate the risk of dictionary attacks.

path JSONPath to select the parameter

value query string value

Table 4.4: Blockchain Search Request Parameters

JSONPath

Like XPath for XML, JSONPath querying JSON documents with expressions. JSONPath

expressions refer to a JSON document in the same way as XPath. However, unlike XML, a JSON

document may or may not have a root element. Hence, JSONPath use $ as the root element of the

document.

e.g.: $.home.lights[0].brightness

This request returns the data matching with the query from the blockchain. If a block is encrypted,

the provided encryption key and salt will be used to decrypt the data inside the block. Following is

an example output generated by this API method.

[{

 "id": "d4a44f3b-3869-4efc-a7d3-2de950e20039",

 "type": "APP_START",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": false,

 "hash": "8f1671b7f6d6…..730128aa696cd7ab77a3d",

 "previousHash": "da0b3bfff3e1685053…8fbcba3e40c3f95fdf5c73ce0723",

 "data": "{\"type\":\"APP\",\"deviceId\":\"d076c6a4-a61a-4eab-a7bc-

90deb51e689d\",\"hostname\":\"192.168.56.1\",\"port\":8080,\"timestamp\":15568

00367007}", "addedTime": 1556800367019

 },{

 "id": "46b4a24b-cbb0-48f0-9a0e-731935fe169f",

 "type": "APP_START",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": false,

 "hash": "876fb0870985d3c488522…..df7492a97b69008e9534aea51d289",

 "previousHash": "8f1671b7f6d6fd318f33c5e73…30128aa696cd7ab77a3d",

 "data": "{\"type\":\"APP\",\"deviceId\":\"d076c6a4-a61a-4eab-a7bc-

90deb51e689d\",\"hostname\":\"192.168.56.1\",\"port\":8080,\"timestamp\":15568

09480022}",

 "addedTime": 1556809480069

 }]

44

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Query Blockchain Data by Block Id

If the block identifier is known to the device, the following URI can be used to fetch the block from

the blockchain.

GET /blocks/get

This API URI accepts the block identifier as a GET parameter and returns the matching block if

exists. This API URI always returns one block.

Following is an example response generated by the URI.

{

 "id": "8f21f9cb-0cf0-4389-aa69-052bde33dd64",

 "type": "APP_START",

 "deviceId": "d076c6a4-a61a-4eab-a7bc-90deb51e689d",

 "encrypted": false,

 "hash": "b1333e1122094a38d0d11…49c00e5fd73a0b108895111483449cbb9a33156",

 "previousHash": "98112e285fe7005f9a7a7d…2f33f64a9edc37b0ecc2660023",

 "data": "{\"type\":\"APP\",\"deviceId\":\"d0…90deb51e689d\",\"hostname\":

\"192.168.56.1\",\"port\":8080,\"timestamp\":1553173054142}",

 "addedTime": 1553173054203

}

4.6.3 Blockchain Sync

Initially, each aggregator maintains a list of other known aggregators called seeds. When

aggregator is started, it selects a random aggregator from the seed list or from the existing

blockchain in order to obtain the updated blocks. This process is important as the other aggregators

may have generated new blocks while the considered aggregator is offline. The aggregator will not

respond to the queries until its synchronization process is successfully completed.

Following code snippet is used to perform the synchronize function.

@EventListener(ApplicationReadyEvent.class)

public void sync() {

 String hash = blockSearchService.getPreviousHash();

 LOGGER.info("Obtaining updated blocks through hub service");

 obtainUpdatedBlocks(hash);

 LOGGER.info("Obtained updated blocks through hub service");

 boolean valid = validationService.validate();

 if (!valid) {

 LOGGER.info("Validation status is invalid.");

 blockRepository.deleteAll();

 obtainUpdatedBlocks("");

 LOGGER.info("Completed rebuilding local storage");

 }

}

45

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

First, the hash of the last block is obtained from the local blockchain. Then the blocks generated

after the obtained hash is requested from other aggregators.

private void obtainUpdatedBlocks(String hash) {

 List<BlockDTO> blockDTOS = hubService.getAfter(hash);

 if (blockDTOS != null) {

 LOGGER.info("Store updated blocks");

 blockDTOS.forEach(blockDTO -> blockRepository.save(new

Block(blockDTO)));

 }

}

The blocks are obtained through the Hub Service which is communicating with multiple

aggregators at the same time. The Hub Service will return only the most agreed response for a

request.

Once all blocks are received, the blockchain will be validated by the aggregator to ensure that the

local blockchain is still valid. If the local blockchain validation has been failed, the blocks will be

requested again from other aggregators. The process continues, until a configurable number of

times or until the blockchain validated successfully. After this process, the aggregator can ensure

that its local blockchain is up to date with the blockchains of other aggregators.

4.6.4 Blockchain Validation

Blockchain validation is performed by aggregator to ensure the integrity of the data stored in the

blockchain. During the validation, the aggregator starts from the initial block stored in the

blockchain and continues until the last block in the blockchain. Every time the aggregator is started,

this validation is performed.

Manual Block Validation

In addition to the automatic validation, the validation function can be triggered manually at any

time by calling the following URI.

GET /validation/validate

This URI does not accept any parameter and returns the validation status (true or false) as the

response.

Block validation is performed sequentially using the following code snippet.

46

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

private boolean isValid() {

 List<Block> blocks; int page = 0; String previousHash;

 do {

 blocks = blockRepository.findAllByOrderByAddedTime(

 PageRequest.of(page++, pageSize));

 if (!blocks.isEmpty()) {

 previousHash = blocks.get(0).getHash();

 boolean first = true;

 for (Block block : blocks) {

 if (first) {

 first = false;

 continue;

 }

 if (!previousHash.equals(block.getPreviousHash())) {

 return false;

 }

 previousHash = block.getHash();

 }

 }

 } while (blocks.size() == pageSize);

 return true;

}

During the validation, the blocks are loaded into the memory in batches as the complete blockchain

may not fit into the memory available in the aggregator. The number of blocks loaded into the

memory in one batch can be configured using the following system configuration.

block.load.page.size = 1000

This manual validation process may take some time to complete based on the number of blocks

stored in the blockchain.

Check Validation Status

The following URI is provided to check the last validation status of the blockchain without running

the complete validation process again.

GET /validation/lastStatus

This URI does not accept any parameters and return the last validation status of the blockchain

without a re-validation. Hence, this method is expected to run faster than a manual validation.

However, the status returned from this URI may not represent the current validation status of the

blockchain.

47

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

View Previous Validation Results

Another URI is provided to view the status of previous validations performed by the aggregator.

The output of this URI is useful to analyze when the blockchain became invalid. The response can

be obtained by calling the following URI.

GET /validation/all

This URI does not accept any parameters and produces a list of validation status records with each

record having following fields.

• Validation Status

• Validation Start Time

• Validation End Time

[

 {

 "id": "0143fecc-8faf-4015-867b-ad3b761aae7f",

 "startedTime": 1553171775881,

 "completedTime": 1553171776187,

 "valid": true

 },

 {

 "id": "6bcc5698-76b8-41bf-b01c-e29c27643eca",

 "startedTime": 1553172173019,

 "completedTime": 1553172173475,

 "valid": true

 }

]

4.6.5 Device Registration

A new device can be registered to the blockchain using the following URI.

GET devices/register

This URI does not accept any parameters and produces the following response if the device

registration is successful. The response should be transferred to the device in a secure manner.

{

 "deviceId": "d47ae6e6-ba8d-4f63-a36b-a704f2cf5027",

 "publicKeyAlgorithm": "RSA",

 "privateKeyAlgorithm": "RSA",

 "publicKey": "MIIBIjANBgkqhkiG...7i+BQIDAQAB",

 "privateKey": "MIIEvQIBADANBgkw0B...b7uOFgsxqkvjuog="

}

48

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

The response contains the following parameters.

deviceId : Unique device id generated for the device. The device Id is a UUID

generated using a cryptographically strong pseudo random number

generator.

publicKeyAlgorithm : The algorithm used to generate the public key.

privateKeyAlgorithm: The algorithm used to generate the private key.

publicKey : The public key.

privateKey : The private key.

The public key and private key are generated for a device using the RSA algorithm with key size

of 2048. The following code snippet is used to generate the keys.

KeyPair keyPair = null;

try {

 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");

 keyPairGenerator.initialize(2048);

 keyPair = keyPairGenerator.generateKeyPair();

} catch (NoSuchAlgorithmException e) {

 e.printStackTrace();

}

return keyPair;

The KeyPairGenerator that generates public/private key pairs for the specified algorithm is created

using the following code snippet. This method iterates the available list of registered security

providers starting with the most preferred provider and returns a KeyPairGenerator object

encapsulating the KeyPairGeneratorSpi implementation from the first provider that supports the

specified algorithm.

public static KeyPairGenerator getInstance(String algorithm)

 throws NoSuchAlgorithmException {

 Objects.requireNonNull(algorithm, "null algorithm name");

 List<Service> list =

 GetInstance.getServices("KeyPairGenerator", algorithm);

 Iterator<Service> t = list.iterator();

 if (t.hasNext() == false) {

 throw new NoSuchAlgorithmException

 (algorithm + " KeyPairGenerator not available");

 }

 // find a working Spi or KeyPairGenerator subclass

 NoSuchAlgorithmException failure = null;

 do {

49

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

 Service s = t.next();

 try {

 Instance instance =

 GetInstance.getInstance(s, KeyPairGeneratorSpi.class);

 if (instance.impl instanceof KeyPairGenerator) {

 return getInstance(instance, algorithm);

 } else {

 return new Delegate(instance, t, algorithm);

 }

 } catch (NoSuchAlgorithmException e) {

 if (failure == null) {

 failure = e;

 }

 }

 } while (t.hasNext());

 throw failure;

}

Then the KeyPairGenerator is initialized using 2048 to generate the keys. The following code

snippet is used to generate the Keys using the KeyPairGenerator.

public KeyPair generateKeyPair() {

 // accommodate odd key sizes in case anybody wants to use them

 int lp = (keySize + 1) >> 1;

 int lq = keySize - lp;

 if (random == null) {

 random = JCAUtil.getSecureRandom();

 }

 BigInteger e = publicExponent;

 while (true) {

 // generate two random primes of size lp/lq

 BigInteger p = BigInteger.probablePrime(lp, random);

 BigInteger q, n;

 do {

 q = BigInteger.probablePrime(lq, random);

 // convention is for p > q

 if (p.compareTo(q) < 0) {

 BigInteger tmp = p;

 p = q;

 q = tmp;

 }

 // modulus n = p * q

 n = p.multiply(q);

 // even with correctly sized p and q, there is a chance that

 // n will be one bit short. re-generate the smaller prime if so

 } while (n.bitLength() < keySize);

 // phi = (p - 1) * (q - 1) must be relative prime to e

 // otherwise RSA just won't work ;-)

 BigInteger p1 = p.subtract(BigInteger.ONE);

 BigInteger q1 = q.subtract(BigInteger.ONE);

 BigInteger phi = p1.multiply(q1);

 // generate new p and q until they work. typically

 // the first try will succeed when using F4

 if (e.gcd(phi).equals(BigInteger.ONE) == false) {

50

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

 continue;

 }

 // private exponent d is the inverse of e mod phi

 BigInteger d = e.modInverse(phi);

 // 1st prime exponent pe = d mod (p - 1)

 BigInteger pe = d.mod(p1);

 // 2nd prime exponent qe = d mod (q - 1)

 BigInteger qe = d.mod(q1);

 // crt coefficient coeff is the inverse of q mod p

 BigInteger coeff = q.modInverse(p);

 try {

 PublicKey publicKey = new RSAPublicKeyImpl(rsaId, n, e);

 PrivateKey privateKey = new RSAPrivateCrtKeyImpl(

 rsaId, n, e, d, p, q, pe, qe, coeff);

 return new KeyPair(publicKey, privateKey);

 } catch (InvalidKeyException exc) {

 // invalid key exception only thrown for keys < 512 bit,

 // will not happen here

 throw new RuntimeException(exc);

 }

 }

}

The generated public key is stored in the blockchain with the device id which is used to authenticate

the device. With this information, a new block is added to the blockchain with the type as

“DEVICE_REGISTER”.

{

 "id": "7812b8bc-53c6-495f-86a9-d06aacceb699",

 "type": "DEVICE_REGISTER",

 "deviceId": "7ffa9781-25fb-41fa-afd1-f3ef49d4df6e",

 "encrypted": false,

 "hash": "45ac0cb54b2336a34…0e7bba7961a29fba4bcb3a4e",

 "previousHash": "7f262c1daf84517…0826965f42a22f0c6a705c72c",

 "data": "{\"deviceId\":\"7ffa9781-25fb-41fa-afd1-

f3ef49d4df6e\",\"publicKey\":\"MIIBIjANB...4bGuz4I+7i+BQIDAQAB\"}",

 "addedTime": 1556944537829

}

Device id inside the data field is the deviceId of the newly created device, and the deviceId appear

in the block level is the deviceId of the aggregator who created the device. The device registration

block stored in the blockchain is stored without encryption and can be accessed by any device in

the network.

51

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Once the new device is registered, the newly added block is broadcasted to the other aggregators

in the network to perform device authentication with any aggregator without depending on a single

aggregator where the device is registered. Figure 4.4 shows a summary of the steps performed

during device registration.

The private key is not stored in the blockchain and provided to the registered device in the response.

The device should store the private key securely in order to perform authentication in the future

before sending any data.

4.6.6 Device Authentication

Device authentication is performed using a three-step process with three different URIs in the

following order.

1. Request authentication (/authenticator/authenticate)

2. Get aggregator public key (/devices/getPublicKey)

3. Verify device identity (/authenticator/verify)

Send new Device Registration Information to the Device

Boradcast New Device Registration Block

Save Device Registration Details to Blockchain

Generate New Public Key/Private Key Pair for the device

Generate Unique Device Indentifier

Receive Device Registration Request

Figure 4.4: New Device Registration Steps

52

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Request Authentication

Following URI is called with the deviceId as a POST parameter to initiate the authentication

process.

/authenticator/authenticate

Then operation perform the steps shown in Figure 4.5 to generate and return the authentication

challenge token to the device.

Figure 4.5: Authentication Challenge Generation Process

Get Device Public Key – The public key of the device is obtained from the blockchain using the

following code snippet.

public String getPublicKey(String deviceId) throws IOException {

 BlockDTO blockFound = blockSearchService.findOne(block ->

 (BlockType.APP_REGISTER == block.getType() ||

BlockType.DEVICE_REGISTER == block.getType())

 && deviceId.equals(block.getDeviceId()

));

 if (blockFound != null) {

 DeviceInfoDTO deviceInfoDTO =

objectMapper.readValue(blockFound.getData(), DeviceInfoDTO.class);

 return deviceInfoDTO.getPublicKey();

 }

 return null;

}

Generate Random Token – A random UUID is generated for the authentication process.

Return Encrypted Token

Encrypt Token

Generate Random Token

Get Device Public Key

53

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Encrypt Token – The generated random token is encrypted using the public key obtained from the

blockchain.

Return Encrypted Token – Once the token is encrypted, the encrypted value is returned as the

response to the device requesting to initiate the authentication.

Get Aggregator Public Key

The response returned for the authenticate request contains the identifier of the aggregator

generated the authentication challenge. Then the device will request the public key of the

aggregator involved in the authentication process from the following URI by passing the aggregator

device id as a GET parameter.

GET /devices/getPublicKey

This URI can be requested from any aggregator. Once the request is received, the hub layer of the

aggregator may request this information from several other aggregators to ensure that the returned

public key is correct.

Verify Identity

The device next tries to decrypt the challenge received from the URI using the aggregator public

key obtained from the above step. Once successful, the device will get the decrypted challenge.

Then the device tries to solve the challenge using its own private key stored in the device. Finally,

when the device was successfully able to solve the challenge, it will encrypt the challenge one more

time using the aggregator device public key and sent to the aggregator. Then the encrypted solution

is sent to the aggregator by calling the following URI.

/authenticator/verify

If the authentication process is successful, the response contains the authentication token which

must be sent with all future requests from the endpoint. Then authentication token issued by the

aggregator is encrypted using the device public key before sending the token. Hence, capturing the

token in-between the aggregator and device will not allow an interceptor to gain unauthorized

access.

The authentication token issued by the aggregator is valid only a configurable time duration. After

this duration, the device should obtain a new token from the aggregator.

54

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

A device can obtain more than one token from the aggregator and implement a token pool which

is maintained by a background worker. This approach is recommended to make sure that tokens in

the pool are always valid. The number of token issues per device can be configured using the below

system configuration.

max.concurrent.autth.token.count =100

The device should decrypt the token using the aggregator public key and encrypt it using the device

private key before sending again. The encrypted authentication token should be sent using

“Authorization” HTTP header with the “Bearer” authorization scheme.

Example:

GET /validation/lastStatus HTTP/1.1

Host: localhost

Authorization: Bearer 7ffa9781f3....ef49d4df6e

The Bearer authentication scheme which is used by the solution is registered in IANA [28] and

originally defined in the RFC 6750 [29] for the OAuth 2.0 [30] authorization framework.

If this token was not present in the request header or not validated successfully, the aggregator may

produce authentication failure and return the HTTP status 401 to the device.

4.6.7 Device Information

Several URIs are implemented in the solution to provide information about devices in the network.

List Started Applications

The following URI provides the list of started applications. This URI does not accept any

parameters.

GET /devices/getStartedApplications

55

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Check If Aggregator Has Started

Devices in the network can check if an aggregator is started using the following URI which accept

deviceId of the aggregator as the POST parameter.

/devices/isStarted

The URI provides true/false as the response based on the aggregator started status. If the requested

device is not found in the network, the URI will provide a response with the HTTP status code 404.

Retrieve Device Registration Record

The following URI accept the deviceId as a GET parameter and return the device registration block.

GET /devices/get

Following is an example response generated by the above URI.

{

 "id": "04927fde-d6a2-4191-9dab-0372808ac47f",

 "type": "DEVICE_REGISTER",

 "deviceId": "cf1f46c5-882a-4ed4-8556-95a91e070dc9",

 "encrypted": false,

 "hash": "907c065cb1d3f477837bb832e93065f83ccad2b9383b7d1a9d8100315fad9823",

 "previousHash":

"91dfb2da5c1e3579f51b8dae6553a9ce21a9c129d9ab830516eeb0be7e721e4a",

 "data": "{\"deviceId\":\"cf1f46c5-882a-4ed4-8556-

95a91e070dc9\",\"publicKey\":\"MIIBIjANBgkqhkiG9w...oXBlwIDAQAB\"}",

 "addedTime": 1556944278850

}

If the requested device is not found in the network, a response will be returned with the HTTP

status code 404.

Retrieve All Device Registration Records

Registration records of all devices found in the network can be obtained by calling the following

URI. This URI accepts the device type as a GET parameter and returns the list of device registration

records.

GET /devices/all

The type parameter of this URI can be either of the following two values.

56

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

• APP – To obtain the list of aggregators.

• DEVICE – To obtain the list of devices without aggregators.

Following is a sample response generated by this URI.

[{

 "id": "04927fde-d6a2-4191-9dab-0372808ac47f",

 "type": "DEVICE_REGISTER",

 "deviceId": "cf1f46c5-882a-4ed4-8556-95a91e070dc9",

 "encrypted": false,

 "hash": "907c065cb1d…83b7d1a9d8100315fad9823",

 "previousHash": "9ce21a9c129d9…b830516eeb0be7e721e4a",

 "data": "{\"deviceId\":\"cf1f46c5-882a-4ed4-8556-

95a91e070dc9\",\"publicKey\":\"MIIBIjANBg…wIDAQAB\"}",

 "addedTime": 1556944278850

 },

 {

 "id": "7812b8bc-53c6-495f-86a9-d06aacceb699",

 "type": "DEVICE_REGISTER",

 "deviceId": "7ffa9781-25fb-41fa-afd1-f3ef49d4df6e",

 "encrypted": false,

 "hash": "45ac0cb54b23…09553420e7bba7961a29fba4bcb3a4e",

 "previousHash": "7f262c1b051daf8…f47892a22f0c6a705c72c",

 "data": "{\"deviceId\":\"7ffa9781-25fb-41fa-afd1-

f3ef49d4df6e\",\"publicKey\":\"MIIBIjA…4I+7i+BQIDAQAB\"}",

 "addedTime": 1556944537829

 }]

Total Number of Devices Registered in the Network

The total number of devices registered in the network can be obtained by calling the following URI

which does not accept any parameters.

GET /devices/total

4.6.8 Hub Function

The hub function allows the consumers to request results from other aggregators and find the most

accepted result in the network. Due to this function, compromising few nodes in the network will

not grant a malicious user to manipulate all data stored in the network.

Devices can request API calls to provide from hub function by setting the HTTP header X-

VALIDATE-RESULT.

The hub function is implemented in according to the process shown in Figure 4.6.

57

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 4.6: Hub Function Steps

Obtain List of Aggregators

The aggregator list is obtained by filtering the blockchain based on the device registration record

type. Only the aggregators that are currently in the running status is added to the list. The following

code snippet is used to obtain the list of aggregators.

public List<AppStatusDTO> getStartedApplications() {

 List<AppStatusDTO> appStatusDTOS = new ArrayList<>();

 blockSearchService.find(block -> block.getType() ==

BlockType.APP_REGISTER).forEach(blockDTO -> {

 BlockDTO lastStartedBlock =

getLastStatusBlock(blockDTO.getDeviceId());

 if (lastStartedBlock != null && lastStartedBlock.getType() ==

BlockType.APP_START) {

 try {

appStatusDTOS.add(objectMapper.readValue(lastStartedBlock.getData(),

AppStatusDTO.class));

 } catch (IOException e) {

 LOGGER.error("Error in reading application status", e);

 }

 }

 });

 return appStatusDTOS;

}

Return Result

Find Most Accepted Result

Request Result from Each Aggregator

Select Random Sample

Obtain List of Aggregators

58

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Select Random Sample

After obtaining the list of active aggregators, a random sample is selected using the following

code snippet.

private List<AppStatusDTO> selectVerifiers() {

 List<AppStatusDTO> appStatusDTOS = deviceService.getStartedApplications();

 Collections.shuffle(appStatusDTOS);

 int toIndex = verifiesCount > appStatusDTOS.size() ? appStatusDTOS.size()

: verifiesCount;

 return appStatusDTOS.subList(0, toIndex);

}

The shuffle function randomly permutes the specified list in a way that all permutations occur with

approximately equal likelihood. The implementation of this function traverses the list backwards,

from the last element up to the second, repeatedly swapping a randomly selected element into the

"current position". Then the elements are randomly selected from the portion of the list that runs

from the first element to the current position, inclusive.

The number of aggregators to select in the sample can be configured using the following system

configuration.

hub.verifiers.count=5

Request Result from Each Aggregator

Once the random sample of aggregators are selected, each aggregator is contacted to obtain the

result for the request. Following code snippet is used to perform this function.

private <T> List<T> getResults(String request, List<NameValuePair> parameters,

Class<T> type) {

 List<T> results = new ArrayList<>();

 selectVerifiers().forEach(appStatusDTO -> {

 String uri = String.format(appEndPointPattern,

appStatusDTO.getHostname(),

 appStatusDTO.getPort(),

 request, URLEncodedUtils.format(parameters,

Charset.defaultCharset()));

 LOGGER.info("Obtaining results for " + uri);

 long startTime = System.currentTimeMillis();

 T result = restTemplate.getForEntity(uri, type).getBody();

 LOGGER.info(String.format("Obtained results for %s in %dms", uri,

(System.currentTimeMillis() - startTime)));

 results.add(result);

 });

 return results;

}

59

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Find Most Accepted Result

Finally, the most accepted result is selected by considering results obtained from all aggregators.

The result will be returned only if the acceptance percentage of the result is above a configurable

threshold. If a result cannot be found with above the accepted threshold, an error is returned from

the URI. The below system configuration can be used to configure the threshold used in the

aggregator.

hub.accept.percentage=.5

The below code snippet is used to find the common result out of the list of results.

private <T> T getCommonResult(List<T> results) {

 if(results == null || results.isEmpty()) {

 return null;

 }

 Map<T, Integer> commonResultCounts = new HashMap<>();

 results.forEach(result -> {

 if (commonResultCounts.containsKey(result)) {

 commonResultCounts.put(result, commonResultCounts.get(result) +

1);

 } else {

 commonResultCounts.put(result, 1);

 }

 });

 int totalResults = results.size();

 LOGGER.info("Total number of results found: " + totalResults);

 List<Map.Entry<T, Integer>> entries =

commonResultCounts.entrySet().stream()

 .sorted(Map.Entry.comparingByValue())

 .collect(Collectors.toList());

 LOGGER.info("Number of different results found: " + entries.size());

 for (Map.Entry<T, Integer> entry : entries) {

 float resultAcceptedPercentage = (float) entry.getValue() /

totalResults;

 LOGGER.info("Result accepted with percentage: " +

resultAcceptedPercentage);

 if (resultAcceptedPercentage > acceptPercentage) {

 return entry.getKey();

 }

 }

 throw new NoAcceptableResultException();

}

60

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

4.6.9 Secure Communication

The devices can encrypt the payload before sending to the aggregator using the token provided

during the authentication token provided from aggregator. If the request is encrypted, the HTTP

header X-ENCRYPTED must be set in order to decrypt the request correctly by the aggregator.

Furthermore, if this header is set in the request, the response provided by the aggregator will also

be encrypted using the same token.

Reply Attack Protection

A replay attack occurs in a network, when an attacker intercepts the communication on the network

and fraudulently manipulates requests to delay or repeat the intended action in order to cause

damage.

To mitigate this attack, the aggregator sends a random sequence initialization number to the device

in the authentication successful result. Then the device should increment this number by one every

time a new request is created. This sequence should be set as the value of HTTP header X-

SEQUENCE. If two requests are received with the same sequence number, the aggregator will

reject the request by returning a response with the HTTP status code 403 (Forbidden).

61

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

4.6.10 API Playground

A web-based UI is provided in order to experiment with the API published by the solution. This

API Playground tool is hosted by the aggregator and can be accessed through the following URI.

GET /api-playground

This initial UI summarizes all the API calls provided by the aggregator as shown in the Figure 4.7.

Figure 4.7: API Call Summary Screen in API Playground

The URIs are categorized into several controllers based on their function and can be expanded to

view more details.

The “Try it Out” feature in the API playground allows the users to compose and send a request to

the URI and obtain the response as shown in Figure 4.8.

62

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 4.8: Try it Out Feature in API Playground

4.7 COMPLETE SOLUTION

After implementing the subsystems, they are integrated to form the complete solution. The

complete solution is packaged as a WAR file [31] which can be executed as a standalone program

using the command: java -jar secuireiot.war

Figure 4.9 shows the output of running the SecureIoT application.

Figure 4.9: Running SecureIoT Application

63

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 5 RESULTS AND EVALUATION

5.1 INTRODUCTION

Evaluation is a process conducted to measure the how far the implemented solution meets its

expected requirements. Testing is performed by operating the solution under controlled conditions

while performing a pre-determined set of verification and validation tasks. The goal of the

evaluation process is to establish confidence that the solution is “fit for purpose”. This chapter

summarizes the results obtained by evaluating the secure IoT framework developed according to

the proposed solution described in previous sections.

5.2 EVALUATION ENVIRONMENT

The testing environment of the solution was selected so that the solution can be fully tested under

a common environment. Following sections describe the software/hardware specification of the

testing environment used to evaluate the solution.

5.2.1 Aggregator Evaluation Environment

Table 5.1 describes the specifications of the aggregator device used to test the developed solution.

Since all the processing tasks are mainly performed by the aggregator, a reasonably high-power

device is required.

Hardware Software

SOC: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit

CPU: 1.4 GHz 64-bit quad-core ARM Cortex-A53 CPU

Memory: 1 GB LPDDR2 SDRAM

Storage: 32 GB

Wi-Fi: Dual-band 802.11ac and Bluetooth 4.2

Power: 5V/2.5A DC power input

Operating System: Raspbian

Runtime: Java 11

Web Server: Tomcat 9

Table 5.1: Aggregator Application Evaluation Environment

64

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

5.2.2 IoT Device Evaluation Environment

IoT device environment is planned to create a prototype device which can send/receive data to/from

the aggregator device in enough data rate for testing. Table 5.2 summarize the specification of the

selected IoT device environment.

Hardware Software

CPU: Tensilica Xtensa LX6 microprocessor @ 160 or

240 MHz

Memory: 520 KiB SRAM

Wi-Fi: 802.11 b/g/n/d/e/i/k/r (2.4 GHz)

Power: 3.3 V DC

Wi-Fi Modes: Station / softAP /

SoftAP+station / P2P

Security: WPA/WPA2/WPA2-

Enterprise/WPS

Encryption: AES/RSA/ECC/SHA

Table 5.2: IoT Device Evaluation Environment

5.2.3 IoT Device Evaluation Program

An IoT device which can send/receive data in a pre-defined data rate has been developed to

evaluate the solution. The source code of the program can be found in Appendix D. Figure 5.1

shows the menu appear in the program after connecting to an existing Wi-Fi network.

Figure 5.1: Running IoT Program for Evaluation Tests

5.2.4 Complete Evaluation Environment

The complete evaluation environment designed for the solution consists of two Raspberry PI [32]

modules which are acting as aggregators and two ESP32 [33] modules which are acting as IoT

devices connected to the aggregator. This evaluation environment uses Wi-Fi as the

communication medium to establish the connection between aggregators and IoT devices. The

architectural diagram of the complete evaluation environment is shown in Figure 5.2.

65

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 5.2: Complete Evaluation Environment

The prototype IoT network developed to evaluate the implemented secure IoT framework is shown

in Figure 5.3.

Figure 5.3: Solution Evaluation Prototype

66

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

5.3 SECURITY EVALUATION

The principal objective of this project was to design and implement a more secure generic IoT

device platform, which can be used to protect wide range of IoT applications. The objective is

achieved by developing, a platform which can perform secure enrollment, device authentication,

authorization, confidentiality protection, replay attack protection, integrity verification, and secure

update delivery. The security measures deployed to achieve the objectives must be strong enough

according to the accepted standards to ensure that the platform provides adequate security to

practical IoT applications. However, these measures must be implemented within the identified

constraints of IoT devices. This section evaluates how far the implemented solution fulfill these

objectives.

The developed solution mandates that any connected IoT device must register and authenticate

before consuming functions provided by the platform. The device registration and authentication

functions are performed using public key cryptography. The public key and private key are

generated for a device using the RSA algorithm with key size of 2048 bits, which is accepted as

secure enough according to modern security standards. The NIST (National Institute of Standards

and Technology) recommends 2048-bit keys for RSA and expect to be sufficient until 2030. Once

authenticated, the devices can perform privileged functions of the network and receive the ability

store encrypted information on the network. If an IoT device attempt to access the API without

authentication, the aggregator produces the following response and rejects the request.

HTTP status code: 403

{

 "timestamp": 1566697553678,

 "status": 403,

 "error": "Forbidden",

 "message": "Access Denied",

 "path": "/blocks/all"

}

Due to the strong encryption used, the attackers cannot intercept the messages and read the content.

However, they can still capture and repeat previous messages in order to perform harmful actions

on the IoT device network. To prevent this vulnerability, the IoT device negotiates a sequence with

the aggregator device after the authentication. Then the aggregator validates the sequence before

67

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

performing any function. Due to this feature, the implemented system is secure against reply

attacks. If the sequence is not validated properly or previous sequence number, which is already

consumed is received, the aggregator will produce an error response instead of performing the

requested function.

HTTP status code: 403

{

 "timestamp": 1566698151358,

 "status": 403,

 "error": "Forbidden",

 "message": "Invalid Sequence",

 "path": "/blocks/all"

}

The data stored in developed solution are saved to a blockchain network hosted in multiple

aggregators. In a blockchain, the blocks are linked using the hash code of the previous block which

is calculated by considering all the important fields in the block. Hence, if data or fields in one

block changed, it can be easily noticed while validating the blockchain. The implemented solution

validates the blockchain during the startup. In addition to the initial validation, the IoT devices or

users can request the aggregators to validate their local blockchains anytime they want. Due to this

feature, the implemented solution protects the integrity of the stored data which is an inherent

property of blockchain based systems.

The developed solution consists of more than one aggregator device and data stored in the local

blockchain of one aggregator device are also replicated to several other aggregator devices. When

new block is added to the local blockchain of one aggregator, the others are automatically notified

to update their blockchains. An IoT device can connect to any other aggregator device and obtain

the same state of the data. As typical IoT applications employ several aggregator devices, there are

chances of happening unexpected failures in one or more aggregator devices. Due to the data

replication feature of the developed solution, no data will be lost in the event of aggregator device

failure. The IoT device network can continue to operate by connecting to other aggregator devices,

and this feature is important to maintain high availability of the network.

In most of the IoT applications, the aggregator devices are often located in different networks or

different physical locations. Even with all the security measures deployed, it is possible an attacker

to compromise an IoT aggregator device by gaining unauthorized access. The developed solution

68

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

can request data from multiple aggregator devices and returns only the most accepted response to

the receiver. This feature is referred to as the hub function in the solution. Due to this feature,

compromising few aggregator devices will not affect the reliability of the data received from

aggregator devices. In the case of the data stored in the affected aggregator device is corrupted, it

can easily sync with the other aggregators during the startup by clearing the local blockchain

storage. In the case, the hub function is unable to obtain an acceptable response, it will produce the

following response.

{

 "timestamp": 1566713476888,

 "status": 500,

 "error": "Error",

 "message": "No acceptable response found"

}

In order to ensure that, IoT devices are well protected and to enhance their functionality, the

delivery of system updates is essential. However, the attackers can infect the system updates with

malicious programs to gain unauthorized access to the system. For this, the attackers might gain

control of the connected aggregator or modify the update files during the transit. The developed

solution facilitates storing update information securely in the blockchain network. The IoT devices

can download the system updates using the information stored in update blocks and verify their

integrity with the blockchain before installing them. This allows IoT devices to perform system

updates without worrying about malicious modifications.

By considering all those solutions, it is confirmed that developed solution is secure enough to

mitigate the risks identified in the objectives of the research.

5.4 AGGREGATOR APPLICATION PERFORMANCE EVALUATION

Unlike general purpose computers and communication networks, the IoT devices and their

networks are designed to perform more application specific tasks. The tasks performed by IoT

device networks are different from one application to another. However, regardless of the

differences, the data storage and communication facilities are used as the foundation to build other

high-level tasks. This section and the next section evaluate the usability of the platform with regards

to the performance mainly by considering those two basic tasks. The performance and efficiency

69

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

 of the aggregator device when running the developed Secure IoT solution has been evaluated under

several tests. Following sections summarize the results obtained during each test.

5.4.1 Data Storage Response Time

Under this test, the average time taken for the aggregator to complete a data storage request has

been measured while increasing the number of data storage requests sent per second. This test has

been performed to get an idea about how the implementation behaves when the number of data

storage requests are increased either due to the increased number of IoT devices connected or due

to the devices which are sending large number of requests while operating. The size of the data

stored in each request is set to 5 KB and the average time taken to perform 1000 requests including

the network delay has been measured in each test. Figure 5.4 and Figure 5.5 shows the summary

of the response times observed in two scenarios.

Without Encryption

Figure 5.4: Data Storage without Encryption Response Time

35

40

45

50

55

60

65

70

10 20 30 40 50 60

R
es

p
o

n
se

 T
im

e

Requests Per Second

70

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

With Encryption

Figure 5.5: Data Storage with Encryption Response Time

The CPU and memory usage of the aggregator device while processing 50 requests per second is

shown in Figure 5.6 and Figure 5.7.

Without Encryption

Figure 5.6: Data Storage without Encryption - Memory/CPU Usage

40

50

60

70

80

90

100

10 20 30 40 50 60

R
es

p
o

n
se

 T
im

e

Requests Per Second

71

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

With Encryption

Figure 5.7: Data Storage with Encryption - Memory/CPU Usage

5.4.2 Data Retrieval Response Time

This test has been performed to measure the aggregator response time variation when the number

of data retrieval requests are increased. This test allows to get an idea of how the implementation

behaves when the number of data retrieval requests increased either due to the increased number

of IoT devices connected or due to the devices which are sending large number of requests while

operating.

The graph shown in Figure 5.8 is created by measuring the time takes to retrieve 5 KB of data. The

average time taken to perform 1000 requests has been measured under each test. The response time

has been measured including the network delay.

Figure 5.8: Data Retrieval Response Time

5

7

9

11

13

15

17

25 50 75 100 125 150

R
es

p
o

n
se

 T
im

e

Requests Per Second

72

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

The CPU and memory usage of the aggregator device while processing 50 requests per second is

shown in Figure 5.9.

Figure 5.9: Data Retrieval - Memory/CPU Usage

5.4.3 Blockchain Validation Time

This test has been performed to evaluate the time taken to validate the complete blockchain as the

number of blocks stored in the aggregator increased.

In following tests, each block contains 5 KB of data and the validation request has been sent 10

times to find the average response time. Figure 5.10 summarizes the results obtained by repeating

the test while increasing the number of blocks stored in the blockchain.

Figure 5.10: Blockchain Validation Time

100

300

500

700

900

1100

1000 2000 3000 4000 5000 6000 7000 8000

R
es

p
o

n
se

 T
im

e

Number of Blocks

73

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

The CPU and memory usage of the aggregator device while validating 6000 blocks is shown in

Figure 5.11.

Figure 5.11: Blockchain Validation - Memory/CPU Usage

5.4.4 Aggregator Application Power Consumption

In this test, the power consumption of the aggregator device is measured while increasing the

number of transactions made per second. Figure 5.12 shows the setup used to measure the power

consumption.

Figure 5.12: Aggregator Device Power Consumption Measurement Setup

74

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

The graph shown in Figure 5.13 summarizes the power consumption of the IoT device when the

number of block retrieval requests made per second is increased.

Figure 5.13: Aggregator Device Power Consumption

5.5 IoT DEVICE PERFORMANCE EVALUATION

Several test scenarios have been planned to measure the performance and efficiency of the IoT

device when interacting with the aggregator device running the developed Secure IoT solution. The

following sections describe each test scenario and summarize the obtained results.

5.5.1 IoT Device Power Consumption for Data Storage

Under this test, the average power consumption of the IoT device has been measured while

increasing the number of storage requests generated per second. Each storage request has been

designed to send 5 KB of data to the aggregator. The obtained results are summarized in the graph

shown in Figure 5.14.

400

450

500

550

600

650

700

25 50 75 100 125 150

C
u

rr
en

t
(m

A
)

Requests Per Second

75

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure 5.14: IoT Device Power Consumption for Data Storage

5.5.2 IoT Device Power Consumption for Data Retrieval

Under this test, the average power consumption of the IoT device has been measured while

increasing the number of data retrieval requests generated per second. Each data retrieval request

has been designed to receive 5 KB of data from the aggregator. The obtained results are

summarized in the graph shown in Figure 5.15.

Figure 5.15: IoT Device Power Consumption for Data Retrieval

120

125

130

135

140

145

150

155

160

2 4 6 8 10 12

C
u

rr
en

t
(m

A
)

Requests Per Second

120

125

130

135

140

145

2 4 6 8 10 12

C
u

rr
en

t
(m

A
)

Requests Per Second

76

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 OVERVIEW

The IoT devices and networks are playing a major role across various industries by leveraging

efficient data collection and communication methods. However, the wide spread of IoT

technologies have resulted in many concerns about security and privacy. IoT devices are deployed

in many ways and their unique limitations have made the use of conventional security measures to

secure IoT device networks less effective. After identifying the importance of security in IoT

domain, this project was started to design and develop a generic platform to secure IoT device

networks. The main objective of this project is achieved by implementing a platform with following

ten sub functions.

1) Blockchain Storage

2) Blockchain Search

3) Blockchain Synchronization

4) Blockchain Validation

5) Device Registration

6) Device Authentication

7) Device Information

8) Hub Function

9) Secure Communication

10) API Playground

The sub function solutions are carefully planned according to industry accepted security

requirements and characteristics of IoT devices. After analyzing the current status of each

respective research area, a unique solution has been proposed to solve the problem within identified

constraints. Then the solution has been implemented for individual sub function, and finally the

sub function solutions are combined to propose the complete solution. The proposed solution

suggested a blockchain based approach to secure IoT device networks. Blockchain technology

which is basically a distributed database has been identified as an emerging technology which can

bring integrity and availability properties to IoT networks. The solution is based on a private

77

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

blackchin implementation and designed mainly to bring the following three properties of secure

systems to IoT networks.

1) Confidentiality

2) Integrity

3) Availability

Each property is achieved within the following unique properties of IoT devices.

• Resource Constraints

• Ad-hoc nature

• Huge variation of devices in IoT networks

The solution has been developed by modelling the IoT device network according to aggregator

topology in where multiple low-power IoT devices are connected to an aggregator. The designed

solution has been implemented as a re-usable framework which can be used to secure any IoT

device network. The application developed in the solution should be implemented in the aggregator

as generally the aggregator possesses enough resources to run the program. The aggregator

application stores the data received from IoT devices in a blockchain, and data is replicated to other

aggregators using blockchain synchronization function. The aggregator can automatically validate

the blockchain data and request data from other aggregators in order to update the local blockchain

while fixing discrepancies.

When an aggregator has received a data retrieval request, a feature has been implemented to

redirect the same request to multiple other aggregators and return the most commonly accepted

result to the consumer. Due to this feature, compromising few aggregators in the blockchain

network will not affect the reliability of the entire network. A comprehensive RESTful API has

been developed for IoT devices and users to interact with any aggregator in the network. The API

publishes many useful operations which can be invoked by IoT devices to perform their operations

including the authentication. The implementation also provides utilities to handle practical IoT

issues like the secure system update handling.

Finally, the developed solution has been evaluated using a prototype IoT network built using

Raspberry PI development board and ESP32 modules. The evaluation environment is one of the

most common IoT device platforms used by real-world applications. The evaluation process of the

78

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

developed platform analyzed the security of the solution as well as the usability of the solution in

practical IoT applications. The performance of the IoT platform has been measured to ensure that

the implemented security features has minimum impact to the functionality of IoT devices. The

results obtained from the evaluation have shown that the solution meets its expected requirements

adequately and can be used as a reliable platform to secure IoT networks.

6.2 LIMITATIONS AND KNOWN ISSUES

The following are the limitations and issues identified in the developed solution. These limitations

mainly arise due to reasons like duration and scope of the project.

Time Synchronization

There are several functions in the implemented solution (e.g.: Block creation) which use the system

time. Each block stored in the blockchain contains a field to store time zone independent UNIX

timestamp of block creation time. For these functions, having a synchronized time between

aggregators is essential. However, there is no requirement for all aggregators to reside in the same

time zone since the system performs operations using time zone independent UNIX timestamp.

The designed solution assumes the aggregators have been synchronized their time using an external

time synchronization utility. Since most of the operating systems have their built-in time

synchronization utilities, this is a valid assumption in initial prototypes of the solution. However,

having a built-in time synchronization feature helps to reduce dependencies on external

functionalities and becomes important as the application is ported into different platforms in the

future.

Fixed Authentication Session

There are some IoT applications where the IoT device is moving from one aggregator to another

aggregator while operating. In the current solution, the IoT devices authenticate with one

aggregator and authentication session is stored only in the aggregator who performed the

authentication process. Hence if the IoT device is moving from one aggregator to another, the

device must perform the authentication process again with the new aggregator before

sending/receiving data. If the application expects more responsive interaction with the aggregator,

re-authentication may not be desirable. To overcome this limitation, “Single sing-on” [34] feature

has been described in “Future Improvements” section.

79

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Limited Encryption Algorithm Support

Currently, the implemented system support encryption only using 256-bit AES encryption

algorithm. This algorithm is selected by considering its common use in IoT platforms and the

availability of shared libraries. Furthermore, the 256-bit AES encryption algorithm is considered

as a strong encryption algorithm. However, there can be IoT applications, which prefer specific

encryption algorithm over another due to some domain-specific constraints. The solution was

implemented by considering this requirement as well, and it is easily extensible to support other

cryptographic encryptions.

Blockchain Validation Slowness

With the increased number of blocks stored in the blockchain, the validation process may take a

considerable time to complete. A complete blockchain validation is performed when an aggregator

application is started, and the aggregator will reject requests until this validation process is

completed. As the growth of the data stored in the blockchain, this initialization time may be more

noticeable. However, as aggregator devices are not restarted frequently, it is assumed that this has

little impact to the usability of the solution.

Compatibility

The aggregator application developed in this solution is platform independent and expose a

RESTful API which can be accessed by any program running on any device. During the evaluation

phase of the project, the implemented solution was tested in one popular IoT hardware platform.

However, the application should be tested in other platforms as well in order to ensure that, the it

can maintain the same performance.

6.3 FUTURE IMPROVEMENTS

After performing the solution evaluation, several extra functionalities and improvements which can

be used to expand the proposed solution have been identified. The following are some future

expansions that can be made to the solution.

80

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Time Synchronization of Aggregator Devices

As described in the “Limitations and Known Issues” section, having a built-in time synchronization

mechanism helps to simplify the application deployment on various platforms by reducing external

dependencies. There are several widely used protocols exists today to support time

synchronization. The Network Time Protocol (NTP) [35] is one such protocol for clock

synchronization with UTC time between computer systems over packet-switched, variable-latency

data networks. NTP protocol can do so with a high degree of accuracy and a high degree of stability.

NTP operates over the User Datagram Protocol (UDP) [36] and uses the concepts of server and

client. A server is a source of time information, and a client is a system that is attempting to

synchronize its clock to a server. Furthermore, if any of the aggregator device own a built-in GPS

[37], it can be used as a more precise time for source.

Single Sign-On for IoT Devices

Single sign-on feature can be implemented in the solution to allow IoT devices to move from one

aggregator to another without authenticating again. There are two options has been identified to

achieve this functionality.

1) Shared Authentication Token: In this approach, the authentication token which is

currently stored only in one aggregator should be shared with the other aggregators. Once

the authentication token has been shared, those aggregators can also verify the validity of

the authentication token independently from the aggregator which performed the initial

authentication. The aggregators which has access to the authentication token can be

assigned to a one group and the authentication token can be encrypted with a key known

only to the group.

2) Mutual Authentication Token Validation: The format of the authentication token can be

modified to include the device-id of the aggregator performed the authentication. When an

aggregator received a new request with an authentication token which is not in the local

authentication token pool, the aggregator should extract the device aggregator which

performed the authentication from the authentication token. Then the device-id can be used

to establish a connection to the corresponding aggregator to validate authentication token.

In this approach, the authentication token only resides in the aggregator who performed the

initial authentication, and it will answer authentication token validation requests coming

81

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

from other aggregators. The authentication token validation results can be cached until a

pre-defined time to minimize redundant network calls.

Blockchain Data Indexing

After the blockchain has been successfully validated, the data stored in the blockchain can be

indexed using tools like Elasticsearch [38]. Elasticsearch is a search engine developed using Java

and based on the Lucene library. Elasticsearch supports full-text search with an HTTP web

interface and schema-free JSON documents. When a new block is added to the blockchain, the data

inside the block should be added to the index. Since the blockchain stores immutable records, only

the insertions are performed on the index. Building an index will help to respond to data search

queries much faster than the current implementation. Furthermore, it is expected that the use of an

indexer will help to optimize the aggregator resource usage.

Further Compatibility Testing

The developed solution can be tested in other popular IoT platforms, which have enough processing

power to function as an aggregator. Following are some of them.

• BeagleBone Blue/Black [39] [40]

• Intel Edison Development Board [41]

• Orange Pi 3 [42]

• Raspberry Pi Zero [43]

The solution can be easily installed and tested in any Java supported platform.

82

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

APPENDIX A SYSTEM DOCUMENTATION

This chapter explains the process that should be followed to install the implementation of this

project which is the SecureIoT application. The instructions provided in this chapter will be very

useful for anyone who is performing the SecureIoT installation or modifications.

SecureIoT solution consists of three main parts, which are the aggregator server, IoT devices and

the web client for accessing the API. The web clients do not need any special configuration other

than having a compatible web browser. The web server should be installed on a computer or a

development board, which has enough capacity to bear the workload caused by IoT devices.

Minimum Hardware Requirements Minimum Software Requirements

700 MHz processor

256 MB RAM

500 MB storage

Network connectivity

Any Java supported operating system.

Java Runtime Environment 8 or later.

Table A. 1: Minimum Hardware and Software Requirements to Run the Aggregator Application

ADDITIONAL SOFTWARE REQUIREMENTS

The following software tools will be required to do any modification or extensions to the system.

• Java Development Kit (JDK) 8

• IntelliJ IDEA IDE

• PlatformIO and Visual Studio Code

• Web Browser

APPLICATION INSTALLATION

An easy to use single click runner has been created to start the aggregator server application. To

run the SecureIoT aggregator application, copy “secureiot” directory located at [SecuireIoT

application folder]\secureiot\ to the storage and run start.bat file. After the SecureIoT application

is started it can be tested by accessing the URL http://localhost:8080/api-playground via the web

browser. Please note that Java Cryptography Extension (JCE) [44] should be installed before

running the application.

83

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

APPENDIX B SOFTWARE PROCESS MODELS

There are two main strategies exist when designing solutions for software systems as top-down

approach and bottom-up approach. A top-down approach is the process of breaking down a system

into subsystems and gaining more understanding about its compositional sub-systems. In bottom-

up approach, subsystems are developed individually and then linked together to form the complete

top-level system. The solution was developed using a bottom-up approach where the main problem

is divided into sub problems and sub problems are individually solved using appropriate

technologies under the constraints of the problem. Finally, the sub problem solutions are integrated

into a single solution and evaluated to assess the suitability to meet the expected objectives.

The process of developing a software solution to a problem can be performed according to software

process models, which describe approaches to a variety of tasks that take place during the process.

Even though there are many software process models, two of the most popular process models are

described below.

Waterfall Model

Because of the cascade from one phase to another, this model is known as the waterfall. In this

model, the following phase should not start until the previous phase has completed. The waterfall

model has the advantages of simplicity of implementation and well documented systems. However,

waterfall model is inflexible in partitioning the project into distinct stages. Moreover, commitments

must be made at an early stage in the process, which makes it difficult to change the system

according to evaluation results. Therefore, the waterfall model should only be used when the

solution is well understood and unlikely to change frequently during system development.

Steps in waterfall model are shown in Figure B.1.

84

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure B.1: Waterfall Model for Software Development [45]

Iterative Development

Iterative development is based on the idea of developing an initial implementation, evaluating

implementation, and refining it through many versions until an adequate system has been

developed. This model is suitable when there is no fixed set of requirements at the beginning of

the development process. The main advantage of iterative development is its ability make changes

to improve the solution while continuously evaluating the current solution. The specification of the

solution can also be developed incrementally. However, the developed solution may be poorly

structured due to continuous changes.

Iterative software development process is shown in Figure B.2.

Figure B.2: Iterative Software Development [46]

85

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

APPENDIX C DIAGRAMS

CLASS DIAGRAM [47]

The class diagram in the Unified Modelling Language (UML) [48] is a type of static structure

diagram that describes the structure of a system by showing the system's classes, their attributes,

operations (or methods), and the relationships among the classes. This appendix presents the class

structure of the SecureIoT aggregator application.

Figure C.1: Class Diagram of Secure IoT Application – Part 1

86

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

Figure C.2: Class Diagram of Secure IoT Application – Part 2

87

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

APPENDIX D IoT DEVICE EVALUATION PROGRAM

Following is the source code of the IoT device program developed to test the solution.

#include <Arduino.h>

#include <WiFi.h>

#include <WiFiMulti.h>

#include <HTTPClient.h>

WiFiMulti WiFiMulti;

// Wi-Fi connection details

const char *SSID = "ssid";

const char *PASSWORD = "password";

// Aggregator connection details

const String HOST = "http://192.168.1.118:8080";

const String ENDPOINT_TOTAL_BLOCKS = HOST + "/blocks/total";

const String ENDPOINT_GET_BLOCK = HOST + "/blocks/get?id=4d549b5a-0e34-461a-

bdc2-2a18d52e2fe8";

const String ENDPOINT_STORE_BLOCK = HOST + "/blocks/save";

// Number of requests per second and test limit

const int TPS = 20;

const int TOTAL_REQUESTS = 1000;

// Tests

const byte TOTAL_BLOCKS = 1;

const byte DATA_RETRIVE = 2;

const byte DATA_STORE = 3;

byte selectedTest = 0;

int run = 0;

String DATA_STORE_REQUEST = "{\"data\": \"aa…aa\",\"deviceId\": \"cf1f46c5-

882a-4ed4-8556-95a91e070dc9\",\"encrypted\": false,\"encryptionKey\":

\"aaaaaa\",\"salt\": \"aaaaaa\",\"type\": \"DATA\"}";

void getTotalBlocks()

{

 HTTPClient http;

 long startTime = millis();

 http.begin(ENDPOINT_TOTAL_BLOCKS);

 if (http.GET() == HTTP_CODE_OK)

 {

 String payload = http.getString();

 Serial.println("[" + String(millis() - startTime) + " ms] [" +

ENDPOINT_TOTAL_BLOCKS + "] Total blocks: " + payload);

 }

 http.end();

}

void getBlock()

88

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

{

 HTTPClient http;

 long startTime = millis();

 http.begin(ENDPOINT_GET_BLOCK);

 if (http.GET() == HTTP_CODE_OK)

 {

 String payload = http.getString();

 Serial.println("[" + String(millis() - startTime) + " ms] [" +

ENDPOINT_GET_BLOCK + "] Received block size: " + payload.length());

 }

 http.end();

}

void storeBlock()

{

 HTTPClient http;

 long startTime = millis();

 http.begin(ENDPOINT_STORE_BLOCK);

 http.addHeader("Content-Type", "application/json");

 int status = http.POST(DATA_STORE_REQUEST);

 if (status == HTTP_CODE_OK)

 {

 String payload = http.getString();

 Serial.println("[" + String(millis() - startTime) + " ms] [" +

ENDPOINT_STORE_BLOCK + "] Block saved");

 }

 http.end();

}

// Select a test and run

void peformTest()

{

 switch (selectedTest)

 {

 case TOTAL_BLOCKS:

 {

 getTotalBlocks();

 break;

 }

 case DATA_RETRIVE:

 {

 getBlock();

 break;

 }

 case DATA_STORE:

 {

 storeBlock();

 break;

 }

 }

}

void setup()

{

 Serial.begin(115200);

 delay(10);

 WiFiMulti.addAP(SSID, PASSWORD);

89

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

 Serial.println();

 Serial.println();

 Serial.print("Waiting for Wi-Fi... ");

 while (WiFiMulti.run() != WL_CONNECTED)

 {

 Serial.print(".");

 delay(500);

 }

 Serial.println();

 Serial.print("Wi-Fi connected. IP address: ");

 Serial.println(WiFi.localIP());

 delay(500);

}

void loop()

{

 // Ask to select a test

 if (selectedTest < 1 || selectedTest > 3)

 {

 Serial.println();

 Serial.println("1 - Test block total request");

 Serial.println("2 - Test block retrival");

 Serial.println("3 - Test block storage");

 Serial.print("Please select a test: ");

 while (!Serial.available())

 {

 }

 selectedTest = Serial.parseInt();

 Serial.println();

 Serial.print("Test starting: ");

 Serial.println(selectedTest);

 Serial.println("=======================================");

 Serial.println();

 delay(3000);

 }

 else

 {

 if (run > TOTAL_REQUESTS)

 {

 Serial.println("Test Completed!");

 run = 0;

 selectedTest = 0;

 }

 peformTest();

 run++;

 delay(1000 / TPS);

 }

}

90

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

REFERENCES

[1] "MD5," Wikipedia, 26 05 2019. [Online]. Available: https://en.wikipedia.org/wiki/MD5.

[Accessed 26 05 2019].

[2] "Secure Hash Algorithms," Wikipedia, 26 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms. [Accessed 26 05 2019].

[3] W. Zhou, Y. Jia, A. Peng, Y. Zhang and P. Liu, "The effect of iot new features on security

and privacy: New threats, existing solutions, and challenges yet to be solved," IEEE Internet

of Things Journal, 2018.

[4] T. Borgohain, U. Kumar and S. Sanyal, "Survey of security and privacy issues of internet of

things," arXiv preprint arXiv:1501.02211, 2015.

[5] T. Xu, J. B. Wendt and M. Potkonjak, "Security of IoT systems: Design challenges and

opportunities," in Proceedings of the 2014 IEEE/ACM International Conference on

Computer-Aided Design, 2014.

[6] F. Olivier, G. Carlos and N. Florent, "New security architecture for IoT network," Procedia

Computer Science, vol. 52, pp. 1028--1033, 2015.

[7] H. Suo, J. Wan, C. Zou and J. Liu, "Security in the internet of things: a review," in 2012

international conference on computer science and electronics engineering, 2012.

[8] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli and O. Mehani, "Network-level

security and privacy control for smart-home IoT devices," in IEEE 11th International

conference on wireless and mobile computing, networking and communications, 2015.

[9] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar and K. Wehrle, "Security

Challenges in the IP-based Internet of Things," Wireless Personal Communications, vol. 61,

pp. 527--542, 2011.

91

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

[10] A. Dorri, S. S. Kanhere and R. Jurdak, "Towards an optimized blockchain for IoT," in

Proceedings of the second international conference on Internet-of-Things design and

implementation, 2017.

[11] O. Alphand, M. Amoretti, T. Claeys, S. Dall'Asta, A. Duda, G. Ferrari, F. Rousseau, B.

Tourancheau, L. Veltri and F. Zanichelli, "IoTChain: A blockchain security architecture for

the Internet of Things," in IEEE Wireless Communications and Networking Conference

(WCNC), 2018.

[12] "Java (programming language)," Wikipedia, 26 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Java_(programming_language). [Accessed 26 05 2019].

[13] "Spring Framework," Pivotal Software, 26 5 2019. [Online]. Available: https://spring.io/.

[Accessed 26 5 2019].

[14] "Representational state transfer," Wikipedia, 26 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed 26 05 2019].

[15] "H2 Database Engine," H2 Database Engine, 01 05 2019. [Online]. Available:

https://www.h2database.com/html/main.html. [Accessed 01 05 2019].

[16] "Zigbee," Wikipedia, 01 05 2019. [Online]. Available: https://en.wikipedia.org/wiki/Zigbee.

[Accessed 01 05 2019].

[17] "Zigbee Alliance," Zigbee Alliance, 01 05 2019. [Online]. Available:

https://www.zigbee.org/. [Accessed 01 05 2019].

[18] "Zigbee PRO," Zigbee Alliance, 01 05 2019. [Online]. Available:

https://www.zigbee.org/zigbee-for-developers/zigbee-pro/. [Accessed 01 05 2019].

[19] "Zigbee Remote Control," Zigbee Alliance, 01 05 2019. [Online]. Available:

https://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-remote-

control/. [Accessed 01 05 2019].

92

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

[20] "Zigbee RF4CE," Zigbee Alliance, 01 05 2019. [Online]. Available:

https://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeerf4ce/.

[Accessed 01 05 2019].

[21] "Zigbee 3.0," Zigbee Alliance, 01 05 2019. [Online]. Available:

https://www.zigbee.org/zigbee-for-developers/zigbee-3-0/. [Accessed 01 05 2019].

[22] "Zigbee IP and 920IP," Zigbee Alliance, 1 5 2019. [Online]. Available:

https://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeeip/. [Accessed

1 5 2019].

[23] "HomePlug," Wikipedia, 01 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/HomePlug. [Accessed 01 05 2019].

[24] "CCM mode," Wikipedia, 01 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/CCM_mode. [Accessed 01 05 2019].

[25] "Wi-Fi," Wikipedia, 01 05 2019. [Online]. Available: https://en.wikipedia.org/wiki/Wi-Fi.

[Accessed 01 05 2019].

[26] "Wi-Fi HaLow," Wi-Fi Alliance, 01 05 2019. [Online]. Available: https://www.wi-

fi.org/discover-wi-fi/wi-fi-halow. [Accessed 01 05 2019].

[27] "SecureRandom," Oracle Corporation, 01 05 2019. [Online]. Available:

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecureRandom.

html. [Accessed 01 05 2019].

[28] "Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry," Internet Assigned

Numbers Authority (IANA), 04 05 2019. [Online]. Available:

https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml. [Accessed 04

05 2019].

[29] "The OAuth 2.0 Authorization Framework: Bearer Token Usage," Internet Engineering

Task Force (IETF) , 04 05 2019. [Online]. Available: https://tools.ietf.org/html/rfc6750.

[Accessed 04 05 2019].

93

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

[30] "OAuth," Wikipedia, 04 05 2019. [Online]. Available: https://en.wikipedia.org/wiki/OAuth.

[Accessed 04 05 2019].

[31] "WAR (file format)," Wikipedia, 04 05` 2019. [Online]. Available:

https://en.wikipedia.org/wiki/WAR_(file_format). [Accessed 04 05 `2019].

[32] "Raspberry Pi," RASPBERRY PI FOUNDATION, 05 05 2019. [Online]. Available:

https://www.raspberrypi.org/. [Accessed 05 05 2019].

[33] "ESP32," ESPRESSIF SYSTEMS, 05 05 2019. [Online]. Available:

https://www.espressif.com/en/products/hardware/esp32/overview. [Accessed 05 05 2019].

[34] "Single sign-on," Wikipedia, 06 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Single_sign-on. [Accessed 06 05 2019].

[35] "Network Time Protocol," Wikipedia, 06 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Network_Time_Protocol. [Accessed 06 05 2019].

[36] "User Datagram Protocol," Wikipedia, 06 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/User_Datagram_Protocol. [Accessed 06 05 2019].

[37] "Global Positioning System," Wikipedia, 05 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Global_Positioning_System. [Accessed 05 05 2019].

[38] "Elasticsearch," Elastic, 06 05 2019. [Online]. Available:

https://www.elastic.co/products/elasticsearch. [Accessed 06 05 2019].

[39] "BeagleBone Blue," BeagleBoard.org Foundation , 06 05 2019. [Online]. Available:

https://beagleboard.org/blue. [Accessed 06 05 2019].

[40] "BeagleBone Black," BeagleBoard.org Foundation , 06 05 2019. [Online]. Available:

https://beagleboard.org/black. [Accessed 06 05 2019].

[41] "Intel Edison," Wikipedia, 06 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Intel_Edison. [Accessed 06 05 2019].

94

Blockchain Based Protocol for IoT Device Authentication and Secure Communication

[42] "Orange Pi 3," Orange Pi, 06 05 2019. [Online]. Available:

http://www.orangepi.org/Orange%20Pi%203/. [Accessed 06 05 2019].

[43] "Raspberry Pi Zero," Raspberry Pi Foundation, 06 05 2019. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-zero/. [Accessed 06 05 2019].

[44] "Java Cryptography Extension (JCE) Unlimited Strength," Oracle, 26 05 2019. [Online].

Available: https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-

2133166.html. [Accessed 26 05 2019].

[45] "Waterfall model," Wikipedia, 25 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Waterfall_model. [Accessed 25 5 2019].

[46] "Iterative and incremental development," Wikipedia, 25 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Iterative_and_incremental_development. [Accessed 25 05

2019].

[47] "Class diagram," Wikipedia, 26 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Class_diagram. [Accessed 26 5 2019].

[48] "Unified Modeling Language," Wikipedia, 26 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Unified_Modeling_Language. [Accessed 26 05 2019].

[49] "HTTP Status Code Definitions," W3C, 04 05 2019. [Online]. Available:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. [Accessed 04 05 2019].

[50] "JAR (file format)," Wikipedia, 04 05 2019. [Online]. Available:

https://en.wikipedia.org/wiki/JAR_(file_format). [Accessed 04 05 2019].

