
CLOUD BASED SECURE ELEMENT

IMPLEMENTATION FOR ANDROID HOST

CARD EMULATION

WIRAJ GUNASINGHE

UNIVERSITY OF COLOMBO

2018

CLOUD BASED SECURE ELEMENT

IMPLEMENTATION FOR ANDROID HOST

CARD EMULATION

Wiraj Gunasinghe

Supervisor Name: Dr. Chamath Keppitiyagama

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION SECURITY

SCHOOL OF COMPUTING

UNIVERSITY OF COLOMBO

2018

DECLARATION

I hereby declare that the thesis is my original

work and it has been written by me in its entirety.

I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

Wiraj Gunasinghe

14th July 2018

iv

Acknowledgment

First and foremost I would like to offer my sincerest gratitude to my supervisor, Dr.

Chamath Keppitiyagama, for his guidance as my supervisor. And also he introduced

me to Near Field Communication(NFC) during one of his lectures. His feedbacks and

technical guidance was very helpful to go forward with this thesis.

I also highly appreciated to countless contributor of Open Source programming com-

munity for providing many tools and frameworks that I have used to develop this imple-

mentation project.

I also express my gratitude to Mr. Dayan Bandula who taught me mobile payment

eco system related lessons as Principle Software Architecture during my first job.

I am also thankful to everyone who directly or indirectly give their support in this

thesis.

Finally I want to thank my parents, sister and specially my wife for supporting me

throughout my masters studies.

DEDICATION

TO MY FAMILY, TEACHERS AND FRIENDS who didn’t

hesitate to criticize my work at every stage without which I would

neither be who I am nor would this work be what it is today.

Contents

Abstract viii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Security aspects on Mobile Payment . 1

1.1.1 HCE mobile payments . 2

1.2 Research intent . 2

1.3 Methodology . 2

1.4 Scope of the Thesis . 2

1.5 Organization of the Thesis . 3

2 Background Context 4

2.1 Mobile Payment evolution . 4

2.1.1 Involvement of banks . 4

2.1.2 Contactless Payments . 6

2.1.3 Beyond conventional card types . 6

2.2 Near Field Communication . 8

2.2.1 NFC communication modes . 8

2.2.2 NFC deployment operational models 9

2.2.3 NFC protocol standards . 9

2.2.4 Related threats . 9

2.3 Secure Element . 11

2.3.1 UICC SIM cards . 11

2.3.2 Embedded SE . 11

2.4 Trusted Execution Environment . 13

2.5 Host-based Card Emulation . 14

2.5.1 Security enforcements . 15

2.5.2 HCE security risks . 17

2.5.3 Summery . 18

2.6 Cloud Computing . 19

vi

vii

2.6.1 Security on Cloud . 19

2.6.2 Identity delegation . 21

2.6.3 OAuth 2.0 . 23

2.6.4 JSON Web Tokens . 24

2.7 Micro-service Architecture . 26

2.7.1 Design Goals . 26

2.7.2 Modular Systems . 26

2.7.3 Availability . 26

2.8 Related Works . 27

3 Design and Implementation of the Solution 28

3.1 Overview . 28

3.2 Solution components . 29

3.2.1 Mobile Terminal . 29

3.2.2 HCE Mobile Application . 30

3.2.3 Cloud Services . 31

3.3 APDU Commands . 32

3.3.1 Authentication . 33

3.3.2 Data confidentiality . 34

3.3.3 Data integrity with CMAC . 35

3.4 Authorization server . 36

3.5 Cloud SE server . 37

3.6 Summery . 38

4 Results and Evaluation 39

4.1 Evaluation Criteria . 39

4.2 Results . 39

4.3 Summery . 42

5 Future Work and Conclusions 43

5.1 Overview . 43

5.2 Future Work . 43

5.3 Conclusions . 44

5.3.1 The problem . 44

5.3.2 Solution . 44

5.3.3 Applications and benifits . 44

5.3.4 Final words . 45

Bibliography 46

Abstract

Mobile banking and mobile payment have evolved tremendously over the last few decades.

Currently contactless card payment based on Near Field Communication(NFC) technol-

ogy emulates physical secure element embedded on mobile device by using Host based

Card Emulation(HCE) technology. We provide Cloud based implementation for Android

HCE, to show how HCE based mobile payment solutions can be operationally secured

using cloud technologies. We present full design and implementation of the security con-

cerns involving with the project. We also provide a comparison of implemented system

attributes with Payment Card Industry Data Security Standard(PCIDSS) guidelines to

ensure the standard of the proposed system.

viii

List of Tables

2.1 Token management models for popular payment applications. 14

3.1 Mobile Terminal and HCE application specification. 29

3.2 Server Specification. 29

3.3 Supported APDU Operations. 33

4.1 Transaction Time for Mobile SE Implementation. 39

4.2 Transaction Time for Cloud SE Implementation. 40

4.3 PCIDSS key requirements on build and maintain secure network. 40

4.4 PCIDSS key requirements on maintain vulnerability management programme. 41

4.5 PCIDSS key requirements on implement storing access control measure. . . 41

4.6 PCIDSS key requirements on regularly monitoring and testing networks. . 41

ix

List of Figures

2.1 World mobile device usage predictions.[1] 5

2.2 Growth in unique mobile internet subscribers.[2] 5

2.3 NFC protocol stack. [3] . 10

2.4 Global Platform TEE. [7] . 13

2.5 NFC card emulation with a secure element. [3] 15

2.6 NFC card emulation with host. [3] . 15

2.7 Relay attack. 18

2.8 Private Cloud Adoption 2016 vs. 2015. [9] 19

2.9 Broker Delegation. 22

2.10 Identity Delegation Work Flow. 22

2.11 JWT Token structure [11] . 24

3.1 Mobile Terminal. 30

3.2 Mobile HCE Application interactions. 31

3.3 ISO 7816-4 APDU Structure.[14] . 32

3.4 AES authentication with Desfire EV1.[16] 34

3.5 AES enciphering.[17] . 35

3.6 AES deciphering.[17] . 36

3.7 Data integrity with CMAC.[15] . 36

3.8 OAuth 2.0 flow with Authorization Server. 37

x

List of Symbols

⊕
XOR∑
Sum

xi

List of Abbreviations

AID Application Identifier

APDU Application Protocol Data Unit

API Application Programming Interface

AES Advanced Encryption Standard

C-APDU Command APDU

CMAC MAC according to NIST Special Publication 800-38B

EMV Europay, MasterCard, and Visa

GSM Global System for Mobile Communications

HCE Host Card Emulation

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

MicroSD Micro Secure Digital

MNO Mobile Network Operators

NFC Near Field Communication

OTA Over-the-air

PCD Proximity Coupling Device

PCI DSS Payment Card Industry Data Security Standard

PICC Proximity Card

QR Quick Response

R-APDU Response APDU

RFID Radio-frequency Identification

xii

xiii

SE Secure Element

SIM Subscriber Identity Module

SSD Supplementary Security Domain

TEE Trusted Execution Environment

TLS Transport Layer Security

TSM Trusted Services Manager

UICC Universal Integrated Circuit Card

UID Unique Identifier

Chapter 1

Introduction

This chapter discusses the motivation behind this thesis and provides an introduction to

the mobile payment systems with associating new technologies. Specifically this chapter

provides the background of the research intent that this thesis trying to solve. It also

discussed about the methodologies and procedures which will be use to implement this

proposed system.

1.1 Security aspects on Mobile Payment

Mobile phone based financial services related to Electronic cash gain huge attention and

popularity at the beginning of the mobile era. The banking industry and customers all

incur the less flexibility and high handling overhead of Physical cash and begins to adopt

virtually cashless mobile banking systems. For financial transactions, security can be

considered as most important factor apart from the availability and usability of the solu-

tion. Then mobile handset developers includes physically embedded Secure Element(SE)

types to store payment credentials in order to mitigate from majority of attack vectors

related to mobile eco systems . Along with Near Field Communication(NFC), embedded

SE provides high security levels to protect operationally important data but the mobile

handset vendor specific access rules on embedded SE prevents other mobile based finan-

cial application providers from using embedded SE to protect their own data. In order

to solve this limitation Google has introduced Host based Card Emulation(HCE) with

their Android 4.4 release and access limitations imposed on embedded SE are bypassed

by introducing software based SE implementation on mobile handset. Apart from the

intended usage of HCE, this new technology created new set of attack vectors which can

affect to the confidential operational data stored in mobile application and most of the

mobile payment application vendors reluctant to adopt this new technology with their

existing mobile contactless payment applications.

1

2

1.1.1 HCE mobile payments

HCE is a software architecture that provide virtual representation of various SE as soft-

ware representations and provides simple, convenient and flexible approach for many

complex mobile payment related design and operational issues. Even though HCE ex-

periences a ground breaking entrance to mobile payment arena, many new players are

reluctant to use it for their mobile payment systems. Many vendors prefer embedded SE

implementation or Trusted Execution Environment based application deployments be-

cause they trust on hardware based solutions even with lot of dependencies. Meantime

many vendors use HCE implementations with trusted hardware environments to use as

secure storage area to save secure payment data.

1.2 Research intent

The research intent of this thesis is to provide secure, operationally flexible HCE imple-

mentation based on cloud environment. Tokenization, cloud security principles and mobile

security guidelines are used to achieve the security goals covered with this research.

1.3 Methodology

Implementation methodology is basically consists of moving mobile based SE implementa-

tion into cloud architecture and handling relevant security concerns arises with the cloud

and mobile environments. Distributed authorization schema is introduced over the cloud

components in order to maintain data confidentiality and integrity requirements. Inves-

tigating and resolving steps of the existing and new attack vectors are also included into

the implementation. To evaluate the compliance and effectiveness of the cloud SE imple-

mentation both quantitative and qualitative measurements are used. Baseline PCIDSS

guidelines are evaluated over the cloud SE implementation and the results are analyze

qualitatively to measure the proposed system compliance. As quantitative measurements,

transaction time is taken for several SE operations and compared with mobile HCE im-

plementation values for the same operations.

1.4 Scope of the Thesis

The scope basically covers the cloud based SE implementation for android mobile based

HCE application with ISO7816-4 compatible SE.The mitigation steps and procedures of

the possible attack vectors available in the proposed system is also included into the scope

of this thesis.

3

1.5 Organization of the Thesis

The rest of this thesis are structured as follows:

Chapter 2 discussed about background context and related works. It provides details

about mobile payment systems, NFC technology stack, modular systems and cloud com-

puting related details.

Chapter 3 discussed about overall design of the proposed implementation and related

solution components.

Chapter 4 defined the implementation of the concepts. It discussed about the common

security flows related to HCE mobile payment systems and proposed mitigation proce-

dures.

Chapter 5 discussed about results of the implementations and comparisons in terms of

standard mobile transaction benchmarks.

Chapter 6 discussed the conclusion and possibilities of future work for improve this

solution.

Chapter 2

Background Context

2.1 Mobile Payment evolution

Mobile technology is revolutionizing the global banking market along with payment in-

dustry since the dawn of 2000. New opportunities, flexible customer support and high

scalable solutions are the outcomes of new emerging mobile landscape and traditional

customers are tend to use new technology day by day. In earlier days banks has not

faced many challenges because of the limitations of the technology and accessibility mo-

bile arena. But due to the huge success of mobile world (See Fig. 2.1), users begin to look

for mobile centric services and ultimately many entities had to change their traditional

business models to be compatible with mobile environments.

2.1.1 Involvement of banks

Due to high competency service providers are rapidly deploying their new service into tra-

ditional industry eco systems and ultimately banks had to integrate their legacy systems

with mobile banking systems. After the revolution of Internet and its related services, mo-

bile technology is considered as must have facility for any customer banking solutions in

the world. Although mobile banking have evolved from traditional banking to contactless

payments, still there are huge technology and migration gaps can be found with legacy

systems. Due to the complexity of existing system landscape, legal background, bank-

ing regulations and customer awareness there are no single model has been successfully

adapted for all major mobile payment deployments.

But banks are already invested huge amount of money on mobile technology in order

to maintain efficient end-to-end process and reduce high transactions cost. Then conse-

quently mobile banking adoption among new customers has increased (See Fig. 2.2) and

reduction of transaction cost affects to mobile customer retention and total online and

offline mobile transactions. Again banks has to increase total transaction cost due to sys-

tem maintenance but both users and banks found mobile banking is one of the essential

channel for day today transactions. Governments also pushes mobile technology related

4

5

Fig. 2.1. World mobile device usage predictions.[1]

deployment because of the huge mobile device usage all over the world and it clearly

addresses large sector of population of each country who does not actively involving with

traditional banking facilities. Simple Quick Response(QR) code related money transfer-

ring services, SIM centric stored value services, P2P money transactions and bluetooth,

NFC related advanced payment methods become very popular among small to large mer-

chants because of the expansion of mobile infrastructure and subscribers.

Fig. 2.2. Growth in unique mobile internet subscribers.[2]

Big mobile industry players like Apple, Android and Samsung are working with many

inter-industry payment organizations like Visa, MasterCard, EMV and GlobalPlatform to

innovate and standardize new technologies and solutions. Alternatively online payment

solutions those are not connected with credit card companies like PayPal are also develop

there systems in more internet and web centric way in order to address direct Internet and

mobile users. Finally brooming mobile payment industry directly market their solutions

to audience by promoting potential reduction of transaction cost, high accessibility and

efficient service, and so far those factors seems fulfilled in spite of huge designing and

6

deployment cost factors. The innovation of huge number of new technologies, fast adoption

rate, different similar services and lack of coordination among service providers has created

confusion for average mobile customer and that could lead to less customer involvement

and low rate of new subscriptions.

2.1.2 Contactless Payments

With the technical advancement of Radio frequency identification(RFID) data transmis-

sion, smart card industry add additional contactles interface to their mag stripe based

cards to improve security and usability and finally contactless payment cards was invented.

But card manufactures maintain all interfaces on card to maintain the compatibility with

legacy terminal devices. Currently many smart cards have two or multiple payment inter-

faces implemented on card chip to provide compatibility for different issuers but most of

the smart card vendors still using magnetic strip as card interface are migrating to EMV

dual interface smart cards by issuing contactless cards in order to increase the usage of

smart cards, integrate with new available services and ultimately the final goal of issuing

contactless cards is to increase the usage of smartcards of target customers. Contactless

payment cards are basically designed to deal with with low-value and high speed trans-

actions like transportation and access management. EMV standardize the contactless

payment ecosystems and ensures fast and reliable transactions while maintaining high

transaction security levels. Not like magnetic stripe smart cards, contactless smart cards

are considered to be intelligent memory storage which does not allows to access resident

data without proper identification steps. The chip resides contactless card act as a mi-

cro computer which can generate unique transaction cryptograms per transaction with

specific cryptographic keys and standards, while card terminal has to have proper agreed

process with card micro computer to verify requests. Unlike traditional magnetic strip

cads this dynamic verification process helps to protect smart card against conventional

attack vectors but consequently it opens new set of advances attack vectors.

2.1.3 Beyond conventional card types

Due to huge mobile based deployments and market share, contactless card products are

invented with different physical dimensions and those are easily embedded with mobile

devices and other host devices. So nowadays we have contactless stickers, tags with

different sizes and shapes. Sometimes technologies like host based card emulation enables

user to created completely virtual smart card with any custom standards. These new

card types reduces the card manufacturing and maintenance cost and promote usability

with wide range of contactless card acceptance devices. Mobile devices with embedded

NFC enabled chips changes the direction of mobile payments and users are allowed to

emulate their physical smart cards on mobile devices and the same time allows to control

their payment instruments with personalized secure domains with specific preferences.

7

Over-the-air communication capabilities with mobile device, changes the card provisioning

domain and ultimately user experience is simplified. This added benefits attracts new

users to the existing payment eco systems and then most of the mobile based vendors

tend to integrate their existing mobile payment solutions with NFC enabled devices and

consequently many new technologies are invented to solve common migration issues. HCE

is one of the ground braking alternative to resolve most of the conventional and operational

issues arises with legacy deployments.

8

2.2 Near Field Communication

NFC is short range, bidirectional, proximity coupling technology based on smart card

standard ISO14443 that is used to transfer data over a distance of up to 10 cm. ISO

18092 standardize physical and data link layer of NFC peer-to-peer mode and further

discussions on NFC protocol is mainly listed on NFC Forum.1 NFC protocol operates at

a standard frequency of 13.56 MHz and can support data exchange rate ranging from 106

kbps to 424 kbps. For mobile payments it helps mobile devices to initiate short range

radio connection with other active devices when touching them together. In compared

with wireless technologies NFC is considered as simple and robust protocol. Without

establishing secure channel or key sharing, NFC transactions can be initialized just by

touching a reader or other active NFC device.

2.2.1 NFC communication modes

The devices participating in NFC transactions can be considered either active or passive

depending on the communication capabilities of the device. Active devices has its own

energy source to generate RF field which can directly turn on the embedded chip on

passive device. Small transmitters, tags and NFC cards that can communicate with other

NFC devices without the need for a power source of their own can be considered as NFC

passive devices. The passive components can only be boot up with related active devices

and can not process any information send from outside entities. All NFC device categories

support three communication modes:

• In Reader/Writer mode NFC devices behaves as a reader for passive and any other

active devices. By using collision avoidance algorithm NFC reader can resolve mul-

tiple NFC passive devices in the field and once device is selected, NFC reader can

read or write data to the tag.

• When NFC devices exchange data with each other, the communication mode can be

defined as peer-to-peer mode and operations of this mode is defined under ISO18092

specifications . Peer-to-peer file sharing, money transactions are the use cases of

this mode and Android Beam technology uses this mode for its operations. In order

to establish connection client device (peer-to-peer initiator) needs to polling for host

(peer-to-peer) target systems.

• Card-emulations mode added after the invention of HCE technology and when a

device is active in this mode, it behaves like a contactless smart card and any

compatible active device can communicate with the device. Android, Blackberry

and Windows devices are can support card emulation mode. When device activated

in this mode, any smart card or protocol can be implemented withing the device

and subsequently device can initiate service as same as real smart card.

1http://www.nfc-forum.org

http://www.nfc-forum.org

9

2.2.2 NFC deployment operational models

According to the real word use case NFC adoption can be categorized under following

groups:

• NFC with embedded or external SE in mobile handset that stores tokenized secure

payment credentials

• NFC with a trusted execution environment (TEE) can store secure payment details

within the secure area of main processor which runs on proprietary operation system.

Payment tokens can be stored and used withing the TEE of the mobile device.

• NFC with host card emulation (HCE) can replace the SE in mobile handset and

this mode can enable the mobile wallet application to define virtual payment card

structure.

2.2.3 NFC protocol standards

NFC protocol is basically standardized under ISO14443 and ISO7816 protocols. These

protocols defined the card capabilities and card command standards. Fig. 2.3 shows the

NFC protocol stack with mandatory standards.

ISO 7816-4 defines the message format to communicate with between NFC devices.

This format is named as APDU and its defines nested TLV formated command stan-

dards. Different vendors use different custom APDU command versions for their native

communications.

ISO 14443-1 defines the environmental factors that card should sustain without

damage to the stored data or the functionality.

ISO 14443-2 standard defines the radio frequency power can signal interface of the

NFC device.

ISO 14443-3 defines the initialization process and anti-collision mechanism for NFC

Type A and Type B tags.

ISO 14443-4 defines the data transmission protocols involving with application layer

functionalities.

2.2.4 Related threats

Standardization and integration of NFC devices into mobile handset is considered as

ongoing process, there is a potential of happening security or privacy issues on mobile

NFC deployments. Most of the use cases can be avoided by following standard industrial

practices but lack mature inter-industry implementation guideline for NFC and mobile

environments can still lead to unexpected problems. Following threat categories can be

found with mobile NFC deployments.

10

Fig. 2.3. NFC protocol stack. [3]

• Skimming on application ids can affect most of the Global platform based smart

cards shows the application directory related to the stores application on card.

Then third party can easily detect what kind of applications are already installed

in relevant smart card. By using HCE card emulation, this data leakage can be

prevented by implementing custom APDU interface to populate data excluding

sensitive information.

• Denial of services are applicable for almost all mobile or web components and also

applicable for NFC smart cards. Usually just by touching a NFC tag with relevant

active devices card begins to respond and this unnecessary read and write cycles[4]

can ultimately lead to data corruption on the smart card memory.

• Phishing on smart card data can be initiated using social engineering attack which

can replace or modify tag data. Special tag transporters or signatures would be

suitable way to mitigate phishing attacks.

11

2.3 Secure Element

According to the Global Platform specifications[5], SE is defined as: a tamper-resistant

platform (typically a one-chip secure micro-controller) capable of securely hosting applica-

tions and their confidential and cryptographic data (e.g., key management) in accordance

with the rules and security requirements set forth by a set of well-identified trusted au-

thorities. SE can store confidential data like secret keys, cryptograms, PAN, stored values

etc. Currently SE is presented on three major formats, namely UICC, embedded SE and

Micro-SD card based SE[6]. Most of the SE operation systems are powered by JavaC-

ard platform and applications resides on SE can be written according to the JavaCard

programming guidelines.

2.3.1 UICC SIM cards

The Universal Integrated Circuit Card(UICC) SE type is the most commonly available

SE implementation deployed to the systems. The mobile operator can directly access

to UICC chip card to provision related application and verification data stored in SE.

But the mobile OS does not have any access to the UICC and when UICC vendor need

to deploy new applications in to SE, both mobile operator and application issuer have

agree and operate on same UICC with adequate access controls. In order to control third

party access on UICC in secure manner, Trusted Service Manger can be introduced to

the mobile eco system.

TSM basically delegate access requirements and connects the trusted application ven-

dors with MNOs. Since the key delegation on UICC and access granting permission

handling are still available only to the UICC vendor account, so third parties can not di-

rectly create secure domains on UICC without proper access permissions. This limitation

affect to the availability and flexibility on UICC application deployments. But this strict

access rules enforces the security requirements but mobile device and application vendors

again has to trust UICC vendor for their deployments.

Apart from OTA provisioning, UICC can also be accessed by using device resident

NFC controller. After the successful UICC to NFC bridge, IPC command interface like

AT commands can be used to access UICC through device baseband processor. UICC

interface can be connected with NFC controller using Single Wire Protocol (SWP) and

here again UICC is only accessible to the baseband processor. Mobile device application

processor can not access UICC interface so the complete isolation can be guaranteed.

2.3.2 Embedded SE

Embedded type of secure elements are tightly couples or embedded in mobile device by

the device manufacture. Unlike UICC access controls, mobile device vendor have all

the access privileges to the secure element. Near Field Communication Wired Interface

(NFC-WI) is the recommended protocol to communicate with embedded SE. According

12

to NFC-WI protocol embedded secure element can communicate with outside entities by

using:

• Wired mode

• OFF mode

• Virtual mode

In wired mode, mobile OS can access embedded SE and application installed on mobile

OS can access secure element with relevant access keys. In the OFF mode, no communi-

cation exists with NFC controller and embedded SE is only used for mobile OS internal

usages. In the virtual mode, the embedded SE can be accessed by external active reader

and act exactly same as contactless smart card. The default mode of the embedded SE

is determined by the mobile device vendor and there are no standards to enforce the

availability and accessibility of the embedded SE. Since the mode of embedded SE can

only be managed by device vendor, this SE type inherently has practical limitation with

mobile payment solutions. As an alternative starting from android build 4.4 google has

introduced Host based Card Emulation (HCE) to overcome mobile vendor dependency

on embedded SE.

13

2.4 Trusted Execution Environment

Trusted Execution Environment(TEE) is a secure area of the main processor in the mobile

handset that allows to store credentials securely. TEE can facilitate to safe execution of

resident NFC applications with the help of its own proprietary operating system. TEE

operating system basically segregate the allocated hardware and software resources from

main mobile OS by enforcing access controls on secure resources. In TEE operating sys-

tem, the processor cores are divided to form new virtual cores in order to create normal

and trusted environments. Normally this trusted environment can access other low secure

portion but low secure portion can not access the trusted environment. Transition between

this two environments can be under the supervision of monitor mode and monitor mode

can handle which portion need to be activated according to application usage. This iso-

lated nature of TEE can be used to protect the sensitive applications data even if ROM is

compromised when the Android operating system is rooted. GlobalPlatform specification

defines how applications can securly share TEE, including how to securely communicate

between applications running on mobile operating system and TEE (See Fig. 2.4). Even

though TEE has built in security architecture, it is still vulnerable to cloning attacks and

buffer overflow attacks. But when device unable to facilitate embedded SE for payment

application, TEE storage can handle significant secure requirements.

Fig. 2.4. Global Platform TEE. [7]

14

2.5 Host-based Card Emulation

The term Host Card Emulation(HCE) was introduce in 2012 by SimplyTapp, Inc. to

defines the ability of the mobile device to act as virtual secure element. Before that

Blackberry research group implemented a smilar process in their handset device Black-

berry Bold 990 device in 2011 by defining the technology as Virtual Target Emulation.

Later Google has adopted the technology and release it with their Android 4.4 release.

Currently both Blackberry and Windows 10 mobile platforms can also emulate HCE

related services. Both Visa and Master card currently working on standardizing HCE

transactions on their contactless mobile platforms.

Table 2.1
Token management models for popular payment applications.

Service Provider Token Management Remarks

Google Android Pay HCE -

Apple Pay Embedded SE -

Samsung Pay NFC and HCE Payment tokens stored in TEE

HCE is a software architecture that provides virtual representation of smart cards

using software implementation. HCE is designed according to the card emulation mode

of the NFC device. Prior to the introduction of HCE, mobile NFC transactions were

mainly coupled with vendor controlled embedded SE. After the introduction of HCE,

software based implementations of virtual SE replaces the embedded SE dependency from

payment applications. Normally embedded SE used in NFC implementations are beyond

the control of mobile wallet service provider because the management of embedded SE

secure domains are always reserved to the SE hardware vendors.

As shown in Fig. 2.5 HCE implementation provides alternative routing path for in-

coming APDU to the user defined android service, but legacy services are also redirected

to their relevant embedded SE destinations. According to Fig. 2.6 HCE applications can

route their APDU even without having embedded SE. However storing payment creden-

tials and other sensitive data in mobile OS instead of embedded SE is considered less secure

and that can make host system very vulnerable to attacks. Additional security measures

like payment data tokenization according to EMV Payment Token Specification[8] can

adhere to improve data security in HCE application. Implementation of cloud bases SE

is one of the viable solution to mitigate the risks involving with Android OS:

• Data and application security in rooted devices

• Payment schema relate issues involving with Card not present(CNP) channels.

• Android OS related vulnerabilities

15

According to the EMV specification, Token Service Provider(TSP) should generate

tokenized PAN of the smart card and mobile application can store the token in device

(weather on embedded SE, device memory or TEE). Master card PayPass and Visa Pay-

Wave specifications are also amended their specification to facilitate cloud cryptograms

to accept as valid payment credentials upon present to terminal device.

Fig. 2.5. NFC card emulation with a secure element. [3]

Fig. 2.6. NFC card emulation with host. [3]

2.5.1 Security enforcements

Since HCE implementation not depending on embedded SE, HCE implementations has

to completely relies on the Android security model. All the HCE enables applications

shares same android sandbox model as like other normal applications but HCE related

service component allows two specific security enforcements:

16

1 - Screen off and Device Lock

HCE applications are only allowed to exchange APDU with external entities if mobile

device screen is unlocked. Android enforces security measures to turn off NFC controller

and application processor when device screen is off or device is locked. So the HCE re-

lated android services can not communicate and this can protect device from unintended

interactions and skimming attempts. But this device unlock status which enable to con-

tinue with HCE transactions can be altered by simply defining android service attribute

android:requireDeviceUnlock to false and to prevent this type of alterations, mainly

developer can obfuscate the android payment application source to prevent reverse engi-

neering attempts.

2 - Android HCE service permissions

BIND_NFC_SERVICE permission allowed only the operation system to communicate with

HCE services and ultimately this guaranteed all the APDU commands received to HCE

service comes after passing OS filters so ensures that the device NFC controller coupled

with external NFC active devices can only access to virtual SE implementation. This

permission is used to prevent APDU sniffing from external entities.

3 - Code obfuscation

Code obfuscation can not be considered as direct HCE related security measure, but gen-

erally it ensures the confidentiality of the business logic by making code de-compilation

and reverse engineering attempts of application artifacts harder. Most of the times an-

droid OS can be converted to rooted status by gaining super user privileges, so malicious

user can easily decompile android APK files located in /data/data/ directory in android

file system.

4 - Securing HCE storage

Payment credentials can be stored on HCE environment using following locations:

• Cloud based SE

• TEE

• Mobile OS

Mobile host storage is considered as the least secure option compared to TEE and

Cloud based storage solutions which can be provided significant protection to HCE trans-

action credentials. Mobile device storage can only provide application sandbox related

isolation but cloud-based SE approach presented with high secure infrastructural solution

like the hardware security module(HSM) which is basically used to store master secrets

can provide industry level end-to-end security solutions. Due to the expensiveness of the

HSM based solution, payment tokens with limited lifespans can be introduced to the HCE

17

payment environment. This payment tokens can be used to perform off-line transactions

considering the availability of the network connection.

2.5.2 HCE security risks

In the HCE model, all the communications are tunnel through Android operating system

and hosted system related security issues can be considered as the main attack vectors to

HCE deployments. Implementing Multi layer security on HCE mobile payment applica-

tions can significantly reduce the possibility of attack.

1 - Android mobile related issues

Device rooting or gaining administrative privileges on device is not difficult on android

devices and rooted devices are always susceptible to hacking and exposing android HCE

based payment applications in many ways. Bugs, security flows and vulnerabilities of HCE

implementation can be identified by attackers after accessing rooted devices. Embedded

SE based applications on rooted mobile devices can automatically blocks their transactions

and access permission to SE so these security risks are not present on such environments.

Sensitive data exposure and malware infections are the most common attack scenarios

available on rooted mobile devices. Security issues arises with rooted mobile devices can

be controlled by frequently checking rooted status on mobile operating system.

Storing plain payments credentials on the NFC payment device can reveals secure

data to third parties. PAN, secret keys can be considered as primary attacking targets,

so tokenization on those sensitive information can maintain the confidentiality of the pay-

ment credentials.Lack of standards are the next major issue arises with HCE deployments.

Only Visa and Mastercard have released their HCE specifications, but apart from EMV

tokenization standards not other HCE related standards can be found.

2 - Relay attacks

Both Software and hardware based relay attacks can be considered as the primary attack

vector against HCE payment systems. In relay attacks attacker can place relay reader

close to the NFC mobile device and a special relay proxy device can be used to emulate

as the victim contactless smart card. When relay proxy reader connected with victim

device, APDU traffic can be tunnel to legitimate POS terminal through relay proxy. So

attacker can analyze the traffic and determine the emulated card structure. Fig. 2.7 shows

the components of relay attacks.

3 - Man-in-middle attack

Man-in-middle attack is also possible with HCE payment systems and attacker can place

relay between communication channel to sniff the APDU communication and possibly

modifies the communication between two parties. In cloud based HCE deployments, at-

18

Fig. 2.7. Relay attack.

tacker controlled router can be used to perform man-in-the-middle attacks. This security

risk can be easily mitigated by using Transport Layer Security(TLS) protocol with strong

cipher suite.

4 - Denial-of-Service Attack

Denial-of-Service (DOS) attack can also be performed on HCE payment application with

the help of social engineering. Malicious HCE applications with same AID parameters

can be installed on the target device to corrupt routing tables and successful scenarios

can collect original APDU commands sent from terminal device. Frequent unnecessary

SELECT commands on HCE based target device can drain battery life. Resource intensive

malicious application can also be installed on host system to damage battery life and

ultimately can affect to the availability of the HCE payment application. If there is no

way to identify the legitimate POS terminal from HCE application, attacker can place an

additional NFC terminal in close proximity to the actual POS terminal. This malicious

terminal can create a AID conflict with HCE application and ultimately payment process

can be interrupted.

2.5.3 Summery

Even though the popularity and availability, HCE is still considered as nascent technology

that has yet to match standardization, certification and security for large scale deploy-

ments. High affordability, flexibility and cost-effectiveness takes HCE into unique stage

but still payment system stakeholders needs to come up with universal standards to ensure

interoperability.

19

2.6 Cloud Computing

“I dont need a hard disk in my computer if I can get to the server faster carrying around

these non-connected computers is byzantine by comparison.”

— Steve Jobs, Co-founder, CEO and Chairman of Apple Inc.

Cloud can be considered as a metaphor for the Internet and cloud computing discuss

about the abstraction of infrastructure that used to build cloud based computer services.

In recent times cloud computing has become one of most popular topic among technical

society and has got lots of attention when it comes to availability and security. Day by

day the market share of cloud computing getting increase and the number of applications

based on cloud infrastructure also increased significantly. In order to reduce cost and

human intervention, modern enterprise tend to utilize cloud services which based on

visualization technologies. Efficiency, less human administration, improved utilization,

faster deployments and overall financial benefits are the main positive factors behind the

popularity of cloud computing.

Fig. 2.8. Private Cloud Adoption 2016 vs. 2015. [9]

Unlike the legacy systems, modern day cloud solutions try to maintain mean time to

recovery (MTTR) factor very low to improve the recovery time. Most of the times cloud

vendor and consumer agrees on service level agreement (SLA) and confidentiality, privacy

and access model are depending on that.

2.6.1 Security on Cloud

Cloud platform infrastructures are optimized for cost-efficiency and to cater the high

utilization and service availability, vendors has to use cost-effienct hardware that serve as

multitenant services running on commodity hardware. The straightforward disadvantage

arises with this cost-efficient multitenent model is the difficulty to maintain the tenant

isolation this is also tightly coupled with cloud security concerns. Any individual tenant

20

node in cloud system should be placed in a security sandbox to prevent knowing about

any other tenants.

Cloud services can be categorized according to the characteristics and behavior of

each service components. In short form this is referred as SPI mode, standing for service,

platform and infrastructure.

• Cloud Software as Services

When consumer can utilize services or applications on the cloud hosted by cloud

provider, then cloud service can be categorized as software based service or software

as service.

• Cloud Platform as Service

In this category consumer can deploy applications on cloud platform and cloud

service itself provides the basic deployments infrastructure as containers.

• Cloud Infrastructure as Services

Infrastructure level services provides the processing, deployment, storage and net-

work operations like normal computer where consumer can deploy and run the

applications.

Securing the Cloud Components

The base intent of moving to cloud is to save cost on infrastructures and cloud providers

also provides cheaper data storage for consumers. The real question arise here is the

confidentiality and integrity of saved data on cloud servers and ultimately it became one

of the most serious concern related to modern cloud infrastructures. Cloud providers are

developing various technologies to maintain those issues but lack of control on hardware

to consumer end is again a really complex scenario to solve. Data server physical location,

data encryption status and integrity mechanisms on cloud are also considered as propri-

etary matters and those are only known by cloud providers. By only understanding the

Cloud computing mode, security risks can not be identified or foreseen but consumers can

standardizer their developments and deployments to ensure the data protection.

Security controls used in both cloud computing and IT environments are not signifi-

cantly different but level of controls is always fluctuates according to use cases. (Cloud

Security Alliance, 2009, p25)

Industry recommended IT auditing framework practices can be apply to maintain the

security factor in cloud deployments. Risk management, Compliance, audit, information

management, interoperability nature and Legal or Electrical discovery methods can be

applied to cloud environments to ensure optimal security levels.

Benefits of cloud computing

Apart from financial advantages, cloud computing mainly popular for the flexibility of

application scaling matters. Cloud providers can set up or remove node instantly ac-

21

cording to consumers demands. Packer filtering, intrusion detection, patch management,

general hardening of virtual machines, redundancy on resources, access control with fed-

erated identity management are some of advantages of cloud computing over legacy server

systems.

2.6.2 Identity delegation

When it comes to cloud complex cloud based enterprise applications, managing identity

flow can be identified as a complex yet important task. Because of the complexity of

modern enterprise systems, single user access request needs to be send through number of

filters sequentially in order to check compatibility of multiple preconditions. After each

successful access request which passes all defined filters, identity management system

will initialize an authorization chain and further this is used to verify the access rights

originator at service destinations. Identity delegation is a concept which is introduced

by Active Directory Federation Service (ADFS) that allows set of predefined accounts

to impersonate general users. The user account that impersonate the user is called the

deligator. The deligator owns the resources and delegate aka client can access service on

resource server on behalf of deligator. Identity delegation plays a key role in enterprise

security systems.

Deligation workflow can be divided into to two categories according to behavior of the

relevant parties such as:

• Direct Deligation

When deligator directly deligate his permissions on resource server to a deligate,

the model can be called as direct deligation.

• Indirect Deligation

As shown in Fig. 2.9 inderect deligation deligator who owns the resource can deligate

necessary permissions to intermediate deligator and then the intermediate deligator

deligates to another end user(or again a deligate)

Basic identity delegation work flow scenario is shown in Fig. 2.10 with necessary com-

ponents.

1 Identity delegation work flow starts with a service request to API endpoint and then

the request is redirect back to caller asking for authentications.

2 Then caller need to authenticate himself with Authorization server to get access token.

3 The caller sends a request to the relevant Web server with received token in step 2.

4 Web application contacts Federation Service to get deligation token to access separate

entity to do a certain action, which is intended by caller.

5 Federation server sends the token with intended claims about the client and targeted

realm.

6 Web server sends a request with deligation token received in step 5 to resource server.

22

Fig. 2.9. Broker Delegation.

Fig. 2.10. Identity Delegation Work Flow.

23

7 Resource server can verify the token and send send the intended data back to web

server and then to caller.

To handle the security of the token, Federation server can limit the usage and expira-

tion of token. Token revocation services can also be implemented to perform immediate

token disposals.

2.6.3 OAuth 2.0

OAuth 2.0 can be considered as de facto standard[10] for access delegation in modern

identity management systems. OAuth 2.0 is inherited from its former version OAuth

1.0 with some alteration like OAuth 1.0 signature schema and OAuth 2.0 is considered

as highly extensible framework. When using OAuth 2.0 client redirect user to resource

service with user identifications but again user is redirected back with token request.

Then user can call token endpoint to get OAuth 2.0 token in order to send with each API

request to resource servers.

OAuth 2.0 protocol defines 4 types of roles in authorization process.

• Resource Owner

• Resource Server

• Authorization Server

• Client

OAuth 2.0 defines set of grant types to define the behavior of client when obtaining

authorization grant from resource owners. According to OAuth 2.0 specification those

core grant types are Client Credential grant type, Authorization code grant type, Implicit

grant type and Resource owner grant type.

Authorization Code Grant Type is basically suites for web and native mobile applica-

tions. Resource owner is initiated the grant flow and then client redirects resource owner

to authorization server to get approval. Once the client registered with authorization

service, client_id, client_secret and redirect_url is received. When client sends

calls for authorization server with above received attribute values, authorization server

sends relevant authorization code back to the client via HTTP redirect and it is also vis-

ible to the resource owner. Then client exchange the authorization code for and OAuth

token by calling OAuth token endpoint. The authorization code received to client should

used only one time to get OAuth access token. When authorization server detects mul-

tiple usage of same access code, it will revoke all tokens sent with reference to access code.

24

Client Credential Grant Type itself can become a resource owner. Then client can

directly called to authorization server in order to request access token. Unlike other grant

types , this grant type doesnt send any refresh_token to the client.

Implicit Grant Type authorization flow is initiated by client by redirecting user to

authorization server. When requesting access token client has to send client_id in the

request and then authorization server send the access token to the client.

Resource Owner Grant Type is used when resource owner trust the client applica-

tion resource owner grant type can be used. Then resource owners access credentials are

directly send to the client to initiate authorization request.

2.6.4 JSON Web Tokens

JSON Web Tokens (JWT) defines a standard container structure in JavaScript Object

Notation(JSON) to facilitates to transport payload between intended parties. Oauth 2.0

is not defined the access token structure but the token generation process. And the token

receiving endpoint looks about the validity and structure of the token. JWT defines the

token structure (See Fig. 2.11) which can facilitate both confidentiality and integrity in

very efficient manner. When integrating tokens with micro-service architecture, token

replication is one of the most critical performance related issue happened in scaling au-

thorization services. Each and every API request against resources servers with token in

token embedded in request header has to perform another request to authorization server

to check the token validity. So each request has to call another additional request only for

verifying token validity for security reasons. This additional overhead can be negatively

effected on system architecture and highly performance intensive when it comes to large

scale systems.

Fig. 2.11. JWT Token structure [11]

JWT token is a self contained token which carries details about OAuth client, user

details, claims and signature to verify the content at resource servers. JWT is a base64

25

url encoded string value which consists of three main sections separated by a period mark.

1 - JOSE Header

JavaScript Object Signing and Encryption(JOSE) header is the first component of the

JWT token and it defines the cryptographic operations applied on the JWT token clam

set details.

Base 64 url decoded JOSE header contains two mandatory attributes.

{"alg":"RS512","kid":"76c029907f2cd361ffe18b4cf2365c396d54f1b6"}

2 - JWT Payload

The second part of the JWT token structure is the JWT payload and it contains custom

business data of certain token bearer and this payload can further be encrypted if it

contain any sensitive information. According to the JWT specification, JWT payload

can contain three types of claims:

• Public Claims Claim content is defined by the application that going to consume

JWT token and the attribute names should be defined in collision-resistance manner.

• Private Claims This claims are only shared with given identity providers and specific

applications.

• Registered Claims Registered in Internet Assigned Numbers Authority (IANA) but

JWT doesnt mandate the fields.

3 - JWT Signature

JSON Web Signature (JWS) and JSON Web Encryption (JWE) are derived formats

of the JWT tokens and they provides methods to secure JWT payload based on signatures

and encryption schema.

26

2.7 Micro-service Architecture

Service Oriented Architecture (SOA) took the industry in the mid 2000s and many com-

panies adopted this architecture to make their business functions way better than old

monolithic systems. But due to the transition and design complexity problems most of

the companies refused SOA. Currently microservices architecture is taking the IT systems

with the ready-to-go style system component designs available as modular and high scal-

able sub systems. Microservices architecture promised to deal with some of the problems

from large and complex SOA or monolithic business systems. Both SOA and microser-

vices can not be considered as evolutionary patterns on each other but they share some

of common characteristics but both can be defined as service based architecture pattern

because both are heavily depending on services. They can also be defined as distributed

architectures, because the service components are distributed on many locations. Wide

variety of transfer protocols needs to be used to communicate with each other service

components but the isolated nature guaranteed the loose-coupling of the business logic.

2.7.1 Design Goals

Components withing the mocrosesrvice architecture considered to be more self-contained,

loosely coupled. Those characteristics mainly enabled better control over maintenance

and provide more responsive nature to each service components.

2.7.2 Modular Systems

Modularity is the practice of encapsulating portions of service components in order to

reduce dependency of each other components. This architecture is also encourages to

maintain small components over large business components to enable the maintenance

and performance goals.

2.7.3 Availability

Service availability and responsiveness are two main goals of adopting microservice ar-

chitecture which are directly affects with user experience. Service responsiveness is the

ability to receive timely responses from service components and the service availability

refers to the ability of accepting requests in timely manner. Systems with microservices

architecture which unable to provide above availability scenarios can implement busy

signal patterns to maintain responsiveness.

27

2.8 Related Works

EMVCo.2 has published tokenization framework Specification in 2014 and as extension to

they have also publicly release EMV payment tokenization specification v2.0[8]. Mainly

later document addressess the usage of payment token use cases in e-commerce. Apart

from that mainly Visa and MasterCard contributed to HCE related tokenization deploy-

ments with their card specifications.

Thales e-Security Solutions implemented HCE Mobile Payments solution called Thales

e-Security HCE based on their Hardware Security Module (HSM)s, and they have used

HSM to store payment credentials generated by solution provider. Thalas completely

depends on their HSM solutions to handle all data and transaction but proposed solution

introduce simple token based approach to build eco system. To ensure end to end security,

HSM can be optionally introduced to the proposed solution and client mobile applications

totally identified by the generated token value.

Royal Bank of Canada (RBC) is one of the largest card issuer with 7 million issued

cards. Early January 2014, they launched its Secure Cloud Platform with NFC sim card

on mobile application enabling user to install payment applet in mobile and storing pay-

ment credentials in secure cloud solution. Secure cloud send commands to SIM payment

application to do transactions. In September 2015, RBC added support for HCE to get

rid of SIM card application due to the limited support of MNOs and mobile device mod-

els. Then mobile HCE users are allowed to use virtual credit cards with mobile devices

that supported HCE. Operationally RBC saved mobile wallet payment credentials in their

secure cloud and only cryptograms are saved on mobile HCE application. Commonwealth

bank of Australia(CBA)[12], TD bank of canada, Getin Bank in Poland, IGN bank in

Netherland accept HCE transactions and they also integrated HCE into their mobile

wallets.

Grimiti cloud HCE is also provided similar HCE transaction eco system, but they store

card information on mobile device and NFC enabled card terminal used mobile data to

continue with transactions.

Above describe most of the systems seems to use HCE mobile application storage to

save transaction cryptograms but instead of saving card details for each transaction on

mobile devices, proposed system used identification token to continue with transaction.

Once the mobile handset identification is done, established secure channel between termi-

nal and TSP via mobile device can be used to send APDU commands. So android mobile

device related data security issues can be easily mitigated.

2https://www.emvco.com/

https://www.emvco.com/

Chapter 3

Design and Implementation of the

Solution

Design of the system is basically considered on security, efficiency and flexibility concerns.

To design end-to-end security system inter industry standards are adopted and equally

considered about application security, transport security and storage security all over the

system components.

3.1 Overview

This solutions consists of mobile and web components to demonstrate fully secured mo-

bile HCE transactions with cloud implementation of Desfire EV1 SELECT, AUTHENTI-

CATE, CREDIT, DEBIT, COMMIT, ROLLBACK and BALANCE functions. To com-

pare with mobile device based SE implementation transaction norms and standards, we

also have implemented mobile based SE too. The main solution components consists of:

• Mobile HCE Application

• Mobile Terminal Application

• Authorization Server

• Cloud Server

Java 1.8 is used as main programming language for Mobile and web applications.

Android version 7.0(N2G48H)1 is used to develop all mobile applications and Spring

Boot 1.5.10 GA2 is used to develop Authorization and cloud server and resulting web

artifacts are deployed to Apache Tomcat 8 servlat container. MySQL is chosen as the

server database and SQLite is used to persist data on mobile applications. Both web

applications are hosted on cloud server hosted by Linode server3. Table 3.1 shows Mobile

1https://www.android.com/versions/nougat-7-0/
2https://docs.spring.io/spring-boot/docs/1.5.10.RELEASE/reference/htmlsingle/
3https://www.linode.com/

28

https://www.android.com/versions/nougat-7-0/
https://docs.spring.io/spring-boot/docs/1.5.10.RELEASE/reference/htmlsingle/
https://www.linode.com/

29

Terminal and HCE application specification details and Table 3.2 further describe about

Authorization and Cloud Server specification.

Table 3.1
Mobile Terminal and HCE application specification.

Application Android Version Device Type Device Vendor Device RAM

Terminal 7.1.2 Nogut Google Nexus 5 LG 2 GB

Mobile HCE 7.1.2 Nogut Nokia 5 HMD Global 3 GB

Cloud hosting server has following configurations:

Vendor : Linode

OS : Ubuntu Linux 16.04 LTS

CPU : 2 Cores

Ram : 4 GB

Storage : 48 GB SSD

Table 3.2
Server Specification.

Server Type Application Server Web Framework Language Database Server

Authorization Tomcat 8 Spring Boot Java 1.8 MySQL 5.7.21

Cloud Tomcat 8 Spring Boot Java 1.8 MySQL 5.7.21

Above all hardware specifications consists of commodity hardware versions and cost

efficiency and affordability of the solution is also considered. By using high level hardware

specifications, existing transaction time and user experience can be improved significantly.

3.2 Solution components

Basic design functions and significance of each component in the proposed solution are

discussed under this section. Operational background and security is the main concerns

discussed here.

3.2.1 Mobile Terminal

Mobile terminal is developed to simulate PCD and it support DesfireEV1 card opera-

tions as listed in Table 3.3. According to Fig. 3.1 mobile terminal only interacts with

HCE mobile application and once the card identification is done by HCE controllers, mo-

bile terminal initiate Application Protocol Data Unit (APDU) flow by sending SELECT

30

command. Then HCE mobile application sends APDU response with data if available.

Then according to the funcations mobile terminal continue with rest of the APDU until

response APDU from mobile HCE application indicate error status.

Fig. 3.1. Mobile Terminal.

Moreover all the application status and generated session keys are securely saved in

SQLite database and after each and every session they are revoked immediately. Normally

for production systems this mobile terminal simulation can be replaced with real terminals

those are equipped with well organized secure and efficient functionalities.

3.2.2 HCE Mobile Application

HCE mobile application is the main components of this solutions and it is designed to

fulfill two operational modes.

1 - Emulate SE on mobile environment

SE emulation on mobile device is done for the comparisons with cloud based HCE

implementations. Cloud implementation and mobile SE implementations shares same

module structure on SE emulations and shares same android based HCE configurations.

2 - Connects with Cloud SE implementation

When mobile HCE application connects with cloud SE implementation, mobile HCE

logic simply tunnel all APDU commands sent by terminal application to cloud server.

From mobile to cloud server, APDU commands are transported with rest API services

along with transaction specific token value.

According to the Fig. 3.2, mobile HCE application interacts with all solution compo-

nents. For every request received from terminal application mobile HCE application has

to deal with security integrity and confidentiality of messages. The steps involves in HCE

application interactions with each other solution components can be described as follows:

1 - Mobile HCE application request a token from Authorization service by providing client

credentials with authentication API request.

2 - After a successful authentication, authorization server grants an access token in JWT

format to be used with successive API calls

3 - Mobile terminal sends an APDU to mobile NFC controller.

4 - Mobile HCE application routes the received APDU command through cloud API call

31

Fig. 3.2. Mobile HCE Application interactions.

secured with SSL along with token received in step 2.

5 - Cloud API server validate the token and then execute APDU command in request

payload against cloud SE implementation. Then the result is sent back to the mobile

client application.

6 - Mobile client application sends the received APDU response to mobile terminal ap-

plication.

As same as mobile terminal application, all generated sensitive data within mobile

HCE application like session keys and application status values are saved in SQLite

database and after each sessions those saved credentials and sensitive data are revoked

immediately. Moreover this HCE mobile implementation can be placed on device TEE if

application provider is granted access to it. Received access tokens from Authorization

server are also kept securely and token revocation can be done according to the usage

count and expiration of hte tokens.

3.2.3 Cloud Services

Cloud service components are designed to use REST API in order to communicate with

each other components. Security and access rights to each service component is defined

under the granted privilege level on access tokens. Following section describe about the

basic functionality of each cloud service elements:

Authorization Server

• Provide authentication mechanism and enable authorization for systems resources.

• Create custom tokens with tokenized PAN.

32

• Handle token revocation mechanism.

Cloud API Server

• Verify API service requests from outside entities for Bearer token.

• Implement cloud SE as a software services.

• Implementation of API endpoint to send and receive APDU.

Modularity, scalability and security are the main design outlines considered for cloud

services. Identity delegation related principles are used to manage identity of mobile HCE

client with other resource servers while card provisioning and accepting phases.

3.3 APDU Commands

Application Protocol Data Unit(APDU) is defined under ISO 7816-4 specification and

used to communicate between smart cards. Usually APDU command is send to target

device after successful service discovery and connection establish phases, as hexadecimal

byte array. As shown in Fig. 3.3, APDU command consists of multiple standard data

components. APDU command can exists without payload data but CLA, INS, P1, P2

fields considered mandatory for ISO 7816-4 implementations. But some vendors like NXP,

developed shorter APDU command versions called Native APDU commands to achieve

efficient transaction time. Native APDU commands can not integrate with current HCE

implementations and ISO 7816-4 commands can be used[13].

Fig. 3.3. ISO 7816-4 APDU Structure.[14]

Table 3.3 define all APDU commands implemented in both mobile HCE and cloud

SE applications. Apart from SELECT APDU, all other commands are secured using

AES 128 session encryption. Integrity of APDU commands is handled by using CMAC

implementation as described in NIST special publication 800-38B.[15]

33

Table 3.3
Supported APDU Operations.

Operation INS Data Data Size(bytes)

SELECT 5A Application Id 3

AUTHENTICATE AES AA Key Number 1

CREDIT 0C Reversed Credit Value 4 - 12

DEBIT DC Reversed Debit Value 4 - 12

GET VALUE 6C File Number 1

COMMIT C7 - -

ABORT A7 - -

3.3.1 Authentication

Authentication procedure used in this web and mobile components directly connected

with the identity delegation mechanisms. Token received after authentication has access

key to card details and server components. According to the system design two authen-

tication schemes can be defined as follows:

1 - OAuth and JWT token based user authentications

Authorization server requires delegator user name and password, client user name and

password with unique identifier to device for authentication purposes. If the provided

inputs are matched with the saved credentials, authorization server issued a token with

relevant claims according access level of the user. Generated token is formatted according

to JWT standards and token can be used only for limited APDU sessions with cloud

services.

2 - Session authentication between PCD and PICC components.

Establishing the session between PCD and PICC is done according to the Fig. 3.4. PICC

can have multiple keys stored in memory after initial personalization process. This keys

can be selected according to the operation type and security requirements when estab-

lishing session with PCD. PCD is always initialized the authentication session creation

process and it contains following high level steps:

1 PCD sends authentication initialization command with key identification number which

is going to use for authentications.

2 PICC generates a 8 byte long random number and send it to PCD after encrypt with

agreed key according to step 1 which is available on PICC memory.

3 PCD received the encrypted random generated by PICC and recover the random num-

ber generated by PICC after deciphering it. Then PCD generates new random number

and append with the received random number generated by PICC in step 2 after inverting

34

Fig. 3.4. AES authentication with Desfire EV1.[16]

it. Finally the encrypted result is send back to PICC.

4 PICC decrypts the command data and verify the inverted random number with the

generated random number in step 2. Then PICC again shift PCD generated random

number for 8 bits and the result is send back to the PCD.

5 Once the PCD recovers the random number received in step 4, both parties can verify

that they have the same key. Then a new session key is formed on both PCD and PICC

using already generated random numbers.

6 The generates session key is used to secure the APDU channel.

Session key generated on ADDU sessions are revoked immediately after the command

execution of each session on PICC and PCD implementations.

3.3.2 Data confidentiality

According to the service component design, data confidentiality on HTTP transports can

be managed by using SSL/TLS with good cipher suit. Token received after authentication

with authorization server is considered as Bearer token and SSL/TSL implementation is

required for to protect payment tokens.

Apart from the web components Advanced Encryption Standards(AES) algorithm is

used with 16 byte length keys to protect PICC and PCD sessions. Unlike Triple DES

algorithm widely used in DesfireEV1 cards, AES is not a Feistel cipher[15].

There are two different algorithms exists for the encryption and decryption of AES

sessions. According to Fig. 3.5 AES encryption initiated with Initialization Verctor(IV)

35

Fig. 3.5. AES enciphering.[17]

of 16 byte all zero values and data block of size 16 bytes, XOR together and result is send

into AES algorithm as inputs. So the cipher receive after the operation can be derived

as:

C = E(P
⊕

IV)

For i number of input blocks, the result would be

Ci = E(Pi

⊕
IVi)

After continuing with same operational cycles with IV values equals to cipher blocks

generated in each iteration, the summation of resulting cipher text values can be consid-

ered as encrypted value.

EN =
∑

Ci

AES decryption can be found on Figure Fig. 3.6 and it used 16 byte long cipher text

blocks as input and plain text data block is generated as the result. AES cipher is used

to perform cryptographic operations because it is considered as recommended algorithm

apart from TripleDES for many payment solutions.

3.3.3 Data integrity with CMAC

Cyclic Redundancy Check(CRC) algorithms are used to maintain integrity of the data

on DesfireEV1 smart cards. For communication with MAC codes, 8 byte CMAC is used

to ensure the data integrity and proposed systems used CMAC generation algorithm

(See Fig. 3.7) is defined in NIST special Publication 800-38B. This specification defined

recommendations for block cipher modes of operations and proposed algorithm provide

36

Fig. 3.6. AES deciphering.[17]

assurance of authenticity and ultimately integrity of binary APDU data. Both PCD

and PICC components are implemented to use CMAC for ensure integrity of APDU

commands.

Fig. 3.7. Data integrity with CMAC.[15]

3.4 Authorization server

According to the design authorization server initiate the security flow of the application

components. Client can directly connect with authorization server to get Bearer token

and further this token can be used for subsequent logins. Authorization server design

used Resource Owner Password Credential Grant type as the token issuing work-flow.

When using this grant type resource owner(in proposed system cloud SE server) must

trust the client application (HCE mobile client) and resource owner password should be

shared with client application. But authorization server can manage client authentication

separately with another set of credentials and once client succeeded with all inputs, token

is issued. Fig. 3.8 describe about the token granting flow as follows:

1 - Resource owner shares the credentials with client.

37

Fig. 3.8. OAuth 2.0 flow with Authorization Server.

2 - Client initiate access token request with authorization server.

3 - Once client is authenticated, new token value is issued to the client.

3.5 Cloud SE server

Cloud HCE server is the host for virtual SE implementation. With the appropriate access

levels granted by authorization server only mobile HCE client can be connected with API

services provided by cloud SE server. Mobile HCE application is only used to verify and

authorize end user and without processing the APDU received from PCD, it just tunnel

them to the cloud SE server for the processing. The main functionalities required from

cloud SE server are:

1 - Implementation of the cloud SE.

Virtual SE related functions previously implemented on mobile HCE application should be

transferred to cloud SE server. This will prevent attacker for directly access SE structure

implemented on mobile device. In compared to the physical SE, this approach enables

to manage the SE implementation logic without affect to the end consumers in very less

time. Finally the handling cost of physical SE can be totally eliminated with proposed

cloud implementation.

2 - API interface opened for outside services to interact with virtual SE through APDU

commands.

API interface needs to be implemented to receive apdu values from PCD and it should

take incoming APDU as parameter.

3 - Verification of RSA512 token signature before each API request.

User should be allowed to access API services hosted on cloud SE service with valid JWT

token in request header. The signature of the JWT token can be verified by the public

key component on cloud SE server.

4 - Manage the access to the virtual SE for end user.

Enabling or revoking access to the virtual SE can be done on cloud SE service.

38

5 - Collect and analyze audit logs.

Audit logs for every transactions can be collected and analyzed on cloud SE server. So

security flows can be identified and users credentials and account access can be managed

accordingly.

3.6 Summery

We have discussed about the high level design, expected functionalities and implementa-

tion details of each component on proposed system. Security, availability and scalability

are the main design goals of this system.

Chapter 4

Results and Evaluation

4.1 Evaluation Criteria

We can evaluate implementation and operational details of the proposed system qualita-

tively by comparing with PCIDSS baseline requirements. Quantitative analysis can be

performed by comparing transaction time of the cloud and mobile implementations. We

can measure and compare the readings and deviation of records to measure the efficiency

of the proposed system.

4.2 Results

We have listed transaction time in milliseconds for CREDIT, DEBIT and GET VALUE

operations separately for HCE mobile and cloud implementations. Table 4.1 and Table

4.2 shows the received readings.

Table 4.1
Transaction Time for Mobile SE Implementation.

Operation Reading 1 (ms) Reading 2 (ms) Reading 3 (ms) Mean Value (ms)

CREDIT 376 372 369 372

DEBIT 457 395 381 411

GET VALUE 289 301 292 294

By checking the results of HCE mobile implementation we can have pretty good results

in terms of transaction time but security wise underline approach should be improved.

Readings taken with cloud SE implementation deviates with the standard transaction

time range. Due to the network connection latency and strength, real time calculations

on cloud based SE always can not be guaranteed and ultimately cloud implementation

may not be able to reach 300ms - 500ms transaction time range as mobile SE ralated

readings.

39

40

Table 4.2
Transaction Time for Cloud SE Implementation.

Operation Reading 1 (ms) Reading 2 (ms) Reading 3 (ms) Mean Value (ms)

CREDIT 830 806 790 808

DEBIT 871 831 858 853

GET VALUE 729 739 736 734

Apart from the transaction time based measurements, we can qualitatively measure

our implementation against PCIDSS key requirements standards. Table 4.3, Table 4.4,

Table 4.5, Table 4.6 shows the comparison results.

Table 4.3
PCIDSS key requirements on build and maintain secure network.

PCIDSS Requirement Remarks Result

Install and maintain a fire-
wall configuration to pro-
tect cardholders data

This can be done on cloud
services both authorization and
cloud HCE server can be config-
ured accordingly.

Can implement
on existing sys-
tem

Manage vendor-supplied de-
faults

This can be configured on the
proposed system.

Can implement
on existing sys-
tem

Protect stored cardholder
data

Mobile HCE application only re-
ceived tokenized PAN and so
cardholder data can be safely
handled only on cloud servers.

This require-
ment is covered.

Encrypt transmission of
cardholder data across
open, public network

SSL/TLS connection can be used
to secure transport layer security

Can implement
on existing sys-
tem

According to the PCIDSS key requirement analysis, our proposed application com-

patible with most of the requirements in design and majority of non existing requirement

can be easily added as extensions without interrupting current system.

41

Table 4.4
PCIDSS key requirements on maintain vulnerability management programme.

PCIDSS Requirement Remarks Result

Use and regularly update
anti-virus software

This can be done on cloud ser-
vices.

Can implement
on existing sys-
tem

Develop and maintain se-
cure systems and applica-
tions

We have implemented many se-
curity measures to protect secure
payment details

Can be im-
proved accord-
ing to various
methodologies.

Table 4.5
PCIDSS key requirements on implement storing access control measure.

PCIDSS Requirement Remarks Result

Restrict access to card-
holder data by business
need-to-know

Only tokenized pan is sent to mo-
bile device and no other informa-
tion shared with any components

This require-
ment is covered.

Assign a unique ID to each
person with computer ac-
cess

This can be done by handling our
own hardware servers

With cloud envi-
ronment we can
not achieve this
requirement

Restrict physical access to
cardholder data

This can be done by handling our
own hardware servers

With cloud envi-
ronment we have
to trust vendor

Table 4.6
PCIDSS key requirements on regularly monitoring and testing networks.

PCIDSS Requirement Remarks Result

Track and monitor all ac-
cess to network resources
and cardholder data

This feature can be implemented
as centralized log management
system

Can implement
on existing sys-
tem

Regularly test security sys-
tems and processes

Cloud services can be regularly
monitored. Using audit logs all
incidents can be identified and
properly addressed

Can implement
on proposed sys-
tem

Maintain a policy that ad-
dress information security

This can be done when process
get matured

Can implement
on existing sys-
tem

42

4.3 Summery

In summery implementation of the proposed system shows fairly good readings with

respect to the recommended transaction times values. But when it comes to qualitative

measurements in compared to PCIDSS key requirements, some features and procedures

needs to be implemented to maintain compliance with requirements.

Chapter 5

Future Work and Conclusions

5.1 Overview

Mobile payment is one of the emerging technology that affect many existing businesses.

Specially NFC technology resolves many operational issues involved with payment indus-

try and sometimes adoption of cutting edge technologies like HCE, can make existing

business process more complex and risky by exposing existing systems to completely new

attack vectors. The proposed system consists of:

• transfer mobile environment related security risks involving with HCE to cloud

environment in order to handle/mitigate effectively.

• provide solutions for the limitations of embedded SE or TEE based payment solu-

tions and improve flexibility.

• manage newly applicable attack vectors after transferring HCE mobile implemen-

tation to cloud based solution.

• solve scalability and availability issues of HCE mobile implementation.

• provide cost effective solutions for the operational issues like physical card manage-

ment and hardware cost reduction.

5.2 Future Work

After comparing with PCIDSS key guideline we realize following improvements can be

done in order to make the system more secure and organize:

• Private cloud can be maintained without utilizing public cloud environments where

the data confidentiality and security can not be guaranteed.

• We can implement policy framework to manage the system.

43

44

• Access management policies can be converted to more granular levels to ensure high

security standards.

Overall we thought by implementing following features can make the proposed system

more efficient and secure

• Connection establishing time between mobile and cloud server can be improved.

• Databases can be installed on separate host to make sure high availability and

scalability.

• OAuth token received on authentication phase, can equipped with more payment

related data and it can be saved in mobile TEE.

5.3 Conclusions

We have proposed a system to operationally secure payment detail when using mobile

based HCE deployments. Most of the times vendors tend to use embedded SE or TEE to

save sensitive payment details. Due to the security risks involving with Android operating

system, we proposed new systems which used almost zero sensitive payment information

shared with mobile apart from tokenized PAN of the client. We have measured system

performance qualitatively and quantitatively by using established payment card industry

norms.

5.3.1 The problem

The problem domain of this thesis is to provide secure, operationally efficient and cost

effective alternative for mobile based HCE implementation.

5.3.2 Solution

We have implemented cloud based SE to replace the SE implementation on mobile in order

to mitigate mobile based security risks. Even though we move SE implementation from

mobile, the basic APDU tunneling is done through mobile. To manage cloud services

we have implemented two services used for authorization and cloud SE management

operations.

5.3.3 Applications and benifits

The proposed system architecture can be applicable to cloud based mobile payment sys-

tems. The described solution components can be improved according to the specific

requirements and global platform compliance SE implementations which compatible with

ISO/IEC 7816-4 can be implemented on cloud SE server. And also this solution can be

45

used with any HCE enabled mobile applications without considering the availability of

embedded SE or TEE. The proposed system has following benefits:

• minimal use of payment specific confidential data on mobile device. Mobile is only

used as identification and command routing device between card terminal and cloud

SE server. This will prevent attacker who gain access to mobile device from gath-

ering payment details.

• This system allows remotely update SE implementation on cloud and related se-

curity measures without updating customer mobile application or physical smart

card(if applicable).

• solve common scalability and availability issues involved with HCE mobile imple-

mentations.

5.3.4 Final words

At the end, this thesis attempted to introduce set of approaches to mitigate android

HCE payment related risks on the mobile applications by moving SE implementation to

cloud environment. Even though the transaction time comparison shows considerable

performance improvements with additional network overhead but the evaluation section

emphasizes the additional attack vectors applicable after the system migration from mo-

bile to cloud implementation.

Bibliography

[1] The Mobile Economy, GSMA, 01 2015, sub-Saharan Africa 2015.

[2] P. Ndichu. (2015) Smarter Utilities for the Developing World. [Online].

Available: https://www.gsma.com/mobilefordevelopment/programme/m4dutilities/

smarter-utilities-for-the-developing-world/

[3] Google. (2018) Host-based Card Emulation. [Online]. Available: https://developer.

android.com/guide/topics/connectivity/nfc/hce.html

[4] MIFARE DESFire EV1 contactless multi-application IC, NXP, 12 2015, version 3.2.

[5] GlobalPlatform Card Specification 2.2.0.7, GlobalPlatform, 3 2006, version 2.2.

[6] Marketwired. (2016) SD Association Shows microSD Value for Mobile Payment and

Network Security. [Online]. Available: http://www.marketwired.com/press-release/

sd-association-shows-microsd-value-for-mobile-payment-and-network-security-2098613.

htm

[7] Dafu Lv. (2014) ARM TrustZone Powered Mobile Security. [Online]. Available:

http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html

[8] EMV Payment Tokenisation Specification, EMVCo, LLC, 09 2017, version 2.0.

[9] RightScale. (2016) Cloud Computing Trends:2016 State of the Cloud Survey.

[Online]. Available: http://dafulv.blogspot.com/

[10] Drillster. (2018) Authorization through OAuth 2.0. [Online]. Available: https:

//www.drillster.com/info/developers/api/oauth

[11] J. T. BLOG. (2017) SECURING YOUR CLOUD-NATIVE MICROSERVICE

ARCHITECTURE IN SPRING. [Online]. Available: https://ordina-jworks.github.

io/microservices/2017/09/26/Secure-your-architecture-part1.html

[12] C. B. of Australia. (2015) Commonwealth Bank of Australia selects GD HCE

payment tech. [Online]. Available: https://www.finextra.com/news/announcement.

aspx?pressreleaseid=59139

46

https://www.gsma.com/mobilefordevelopment/programme/m4dutilities/smarter-utilities-for-the-developing-world/
https://www.gsma.com/mobilefordevelopment/programme/m4dutilities/smarter-utilities-for-the-developing-world/
https://developer.android.com/guide/topics/connectivity/nfc/hce.html
https://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://www.marketwired.com/press-release/sd-association-shows-microsd-value-for-mobile-payment-and-network-security-2098613.htm
http://www.marketwired.com/press-release/sd-association-shows-microsd-value-for-mobile-payment-and-network-security-2098613.htm
http://www.marketwired.com/press-release/sd-association-shows-microsd-value-for-mobile-payment-and-network-security-2098613.htm
http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html
http://dafulv.blogspot.com/
https://www.drillster.com/info/developers/api/oauth
https://www.drillster.com/info/developers/api/oauth
https://ordina-jworks.github.io/microservices/2017/09/26/Secure-your-architecture-part1.html
https://ordina-jworks.github.io/microservices/2017/09/26/Secure-your-architecture-part1.html
https://www.finextra.com/news/announcement.aspx?pressreleaseid=59139
https://www.finextra.com/news/announcement.aspx?pressreleaseid=59139

47

[13] Google. (2018) Host-based card emulation overview. [Online]. Available: https:

//developer.android.com/guide/topics/connectivity/nfc/hce

[14] Enrique Ortiz. (2003) An Introduction to Java Card Technology - Part 1. [Online].

Available: http://www.oracle.com/technetwork/java/javacard/javacard1-139251.

html

[15] Recommendation for Block Cipher Modes of Operation:The CMAC Mode for Authen-

tication 800-38B, NIST, 06 2016, nIST Special Publication 800-38B.

[16] MIFARE DESFire EV1 AES Authentication With TRF7970A, Texas Instruments,

12 2014, version 1.0.

[17] MIFARE DESFire EV1 - Features and Hints, NXP, 04 2009, rev 03.02 1.0.

https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce
http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html
http://www.oracle.com/technetwork/java/javacard/javacard1-139251.html

48

	Abstract
	List of Tables
	List of Figures
	Introduction
	Security aspects on Mobile Payment
	HCE mobile payments

	Research intent
	Methodology
	Scope of the Thesis
	Organization of the Thesis

	Background Context
	Mobile Payment evolution
	Involvement of banks
	Contactless Payments
	Beyond conventional card types

	Near Field Communication
	NFC communication modes
	NFC deployment operational models
	NFC protocol standards
	Related threats

	Secure Element
	UICC â•ﬁ SIM cards
	Embedded SE

	Trusted Execution Environment
	Host-based Card Emulation
	Security enforcements
	HCE security risks
	Summery

	Cloud Computing
	Security on Cloud
	Identity delegation
	OAuth 2.0
	JSON Web Tokens

	Micro-service Architecture
	Design Goals
	Modular Systems
	Availability

	Related Works

	Design and Implementation of the Solution
	Overview
	Solution components
	Mobile Terminal
	HCE Mobile Application
	Cloud Services

	APDU Commands
	Authentication
	Data confidentiality
	Data integrity with CMAC

	Authorization server
	Cloud SE server
	Summery

	Results and Evaluation
	Evaluation Criteria
	Results
	Summery

	Future Work and Conclusions
	Overview
	Future Work
	Conclusions
	The problem
	Solution
	Applications and benifits
	Final words

	Bibliography

