

Framework for Secure Coding :

An algorithmic approach for real-time detection of secure coding

guideline violations

Group members

S.L. Dasanayake : 14000156

A. Mudalige : 14000954

M.L.T. Perera : 14001144

Supervisor: Dr. Prasad Wimalaratne

Co-Supervisor: Mr. Chaman Wijesiriwardana

University of Colombo School of Computing

Sri Lanka

Submitted in partial fulfillment of the requirements of the

B.Sc(Hons) in Software Engineering 4th Year Project (SCS4123)

January 14, 2019

i

Declaration

We certify that this dissertation does not incorporate, without acknowledgment, any material

previously submitted for a degree or diploma in any university and to the best of my knowledge

and belief, it does not contain any material previously published or written by another person or

myself except where due reference is made in the text. We also hereby give consent for my

dissertation, if accepted, be made available for photocopying and for interlibrary loans, and for the

title and abstract to be made available to outside organizations.

Candidate Name:

………………………………………………

Signature of Candidate Date:

Candidate Name:

………………………………………………

Signature of Candidate Date:

Candidate Name:

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Mr. S.L.Dasanayake, Mr.

A.Mudalige, and Mr. M.L.T.Perera under my supervision. The dissertation has been prepared

according to the format stipulated and is of the acceptable standard.

Supervisor Name: Dr. Prasad Wimalaratne

………………………………………………

Signature of Supervisor Date:

This is to certify that this dissertation is based on the work of Mr. S.L.Dasanayake, Mr.

A.Mudalige, and Mr. M.L.T.Perera under my supervision. The dissertation has been prepared

according to the format stipulated and is of the acceptable standard.

Co-Supervisor Name: Mr. Chaman Wijesiriwardana

………………………………………………

Signature of Co-Supervisor Date:

ii

Abstract

Secure Software Development refers to the process of developing software applications with

minimised security vulnerabilities. In the release or maintenance phase of the Software

Development Life Cycle(SDLC), fixing specific bugs is very expensive than correcting such issues

during the coding or development phase. Therefore it is essential to minimise these software

defects within the coding phase itself by adhering to a set of coding best practices that are referred

as secure coding guidelines. Following of these guidelines has been a challenging and time-

consuming task due to the lack of knowledge among developers regarding such guidelines and the

fact that currently there exists only a manual mechanism of checking these guidelines using a

checklist. This dissertation proposes a plugin-based framework for IntelliJ IDEA Integrated

Development Environment that focuses on developing a mechanism to automate the process of

detecting secure coding guideline violations found in the source code of a software application.

The framework is based on the secure coding guidelines introduced by Software Engineering

Institute Computer Emergency Response Team (SEI CERT) known as the SEI CERT secure

coding rules. These secure coding rules include guidelines for avoiding coding and implementation

errors, as well as low-level design errors.

In order to implement the secure coding rules, the rules were classified into three granularity levels

namely Method, Class and Package level. A total of 15 secure coding rules, five from each

granularity level have been implemented in this framework in the form of violation detection

algorithms. The source code fragments associated with each violation detection algorithm are

obtained via the Abstract Syntax Tree generated by the parser and are stored in data structures such

as ArrayLists and HashMaps. Violation detection algorithms use these stored source code

fragments to detect secure coding rule violations. A significant feature of this framework is the

extensibility mechanism in which violation detection algorithms could be added with minimal

effort during future development of the framework. Performance optimisation has also been

achieved to minimise resource consumption and reduce latency, by improved system design with

the support of software design patterns.

Apart from detecting secure coding rule violations in the source code, the framework will also

provide the necessary countermeasures to overcome those violations. In addition, the framework

could be used as a teaching tool for users who are unaware of the secure coding rules due to its

features such as tooltips, tools windows, syntax highlighting. Using this framework, a software

developer would be able to adhere to secure coding rules and ensure the security aspect of a

software application. The secure coding plugin-based framework has been deployed to the

JetBrains plugin repository enabling to be downloaded by the required users.

iii

Acknowledgements

This product based Software Engineering project is the final result of continuous commitment and

dedication among the members of our group with great support from various personnel that

assisted us in numerous ways.

A very special gratitude goes to Dr. Prasad Wimalaratne, our main supervisor, for giving us the

seed idea of the project and providing guidance and necessary support to complete this project in

a successful manner. He had been a great motivator and an advisor for us in order to overcome

major obstacles faced during this project.

We also appreciate the great support provided by Mr. Chaman Wijesiriwardana, our co-supervisor,

lecturer at the University of Moratuwa for the assistance given to us related to depth theoretical

and subject wise matter of this project.

Our special thanks are extended to the evaluating panel at the preliminary and interim defenses

that provided us important feedback and showed the places of improvement of the project.

Finally, we would like to extend our deepest gratitude to our beloved parents in supporting in

achieving goals in academic career and overcome unexpected barriers in our lives.

iv

Table of Contents

Declaration ... i

Abstract ... ii

Acknowledgements ... iii

Table of Contents ... iv

List of Figures .. vii

List of Tables .. viii

List of Acronyms .. ix

Chapter 1 : Introduction ... 1

1.1 Motivation ... 1

1.2 Aims and objectives ... 2

1.3 Scope ... 2

1.4 Structure of the dissertation .. 3

Chapter 2 : Background Study ... 4

2.1 Introduction ... 4

2.2 Review of similar systems.. 6

2.3 Related work and limitations .. 8

2.3.1 Related work ... 8

2.3.2 Limitations of current approaches .. 9

2.4 Secure coding guidelines .. 10

2.4.1 Secure coding.. 10

2.4.2 Secure coding guidelines ... 11

2.4.3 SEI CERT Secure coding rules .. 13

2.5 Summary ... 15

Chapter 3 : Analysis and Design ... 16

3.1 Introduction ... 16

3.2 Problem analysis .. 16

3.3 Design assumptions and dependencies ... 17

3.4 Secure coding rules classification criteria ... 18

3.5 Product perspective .. 19

3.5.1 Dependencies .. 19

v

3.5.2 Design and Implementation constraints ... 20

3.6 System architecture design ... 21

3.7 Parser selection .. 23

3.7.1 Compilers ... 23

3.7.2 Parsers .. 24

3.7.3 Rationale for the need of a parser .. 24

3.7.4 Parser selection ... 24

3.7.5 JavaParser ... 26

3.8 System modeling ... 28

3.8.1 Class diagram.. 28

3.8.2 Design patterns utilized ... 29

3.9 Justification as a Framework .. 30

3.10 Summary ... 31

Chapter 4 : Implementation .. 32

4.1 Introduction ... 32

4.2 IntelliJ IDEA plugin development .. 32

4.3 Method level implementation ... 34

4.3.1 Introduction .. 34

4.3.2 Implementation procedure ... 35

4.4 Class level implementation .. 37

4.4.1 Introduction .. 37

4.4.2 Implementation procedure ... 38

4.5 Package level implementation .. 41

4.5.1 Introduction .. 41

4.5.2 Implementation procedure ... 42

4.6 Alignment of implementation with system design .. 44

4.7 Countermeasures for violated guidelines .. 47

4.8 Test procedure ... 48

4.9 Deployment ... 49

4.10 Summary ... 51

Chapter 5 : Evaluation and Results .. 52

5.1 Introduction ... 52

5.2 Project based evaluation ... 53

vi

5.2.1 Introduction .. 53

5.2.2 Results of Project based evaluation .. 54

5.2.3 Conclusion .. 60

5.3 Extensibility based evaluation .. 62

5.3.1 Introduction .. 62

5.3.2 Addition of a new secure coding violation detection algorithm .. 62

5.3.3 Addition of a new source code granularity level .. 65

5.3.4 Modification of existing secure coding violation detection algorithms 66

5.3.5 Modification of existing data structures ... 67

5.4 Performance based evaluation .. 68

5.4.1 Introduction .. 68

5.4.2 Results of performance based evaluation ... 69

5.4.3 Benchmark tool comparison .. 74

5.5 User based evaluation .. 75

5.5.1 Introduction .. 75

5.5.2 Analysis of results ... 75

5.5.3 Conclusion .. 78

5.6 Summary ... 79

Chapter 6 : Conclusion .. 80

6.1 Future work ... 81

References .. 82

Appendix .. 85

Appendix A : Terminology .. 85

Appendix B : Classification of secure coding rules ... 86

Appendix C : Secure coding rules with algorithms and respective source code fragments 99

Appendix D : Other design artifacts ... 105

Appendix E : Violation detection ... 109

Appendix F : Evaluation results ... 111

Appendix G : Deployment results .. 117

Appendix H : Individual contribution ... 118

USER’S MANUAL .. 124

vii

List of Figures

Figure 2.1: Costs of fixing bugs based on the phase of SDLC .. 4

Figure 2.2: Software security best practices applied to various software artifacts 5

Figure 2.3: Detection of bugs using SpotBugs plugin ... 6

Figure 2.4: Detection of a code quality issue using sonarLint plugin .. 7

Figure 2.5: Levels and Priority ranges .. 14

Figure 3.1: Product interaction with internal and external environment .. 20

Figure 3.2: High-level (tier) architecture .. 23

Figure 3.3: Class diagram .. 28

Figure 4.1: Detection of the method level secure coding rule violations ... 36

Figure 4.2: Countermeasures for the detected method level violations .. 36

Figure 4.3: Detection of the class level secure coding rule violations.. 40

Figure 4.4: Countermeasures for the detected class level violations ... 40

Figure 4.5: Detection of the package level secure coding rule violations .. 43

Figure 4.6: Countermeasures for the detected package level violations ... 43

Figure 4.7: Example countermeasures for the detected violations ... 47

Figure 4.8: Framework for secure coding plugin deployed in the JetBrains Plugin Repository 50

Figure 4.9: Plugin deployed in the JetBrains Plugin Repository.. 51

Figure 5.1: Project based evaluation procedure diagram ... 54

Figure 5.2: ERR08J violation as detected by the secure coding plugin .. 58

Figure 5.3: Multiple rule violations and same rule violation at multiple places as detected by secure

coding plugin .. 61

Figure 5.4: Response time versus lines of code .. 73

Figure 5.5: Percentage wise usage of Programming languages ... 76

Figure 5.6: Percentage wise awareness of secure coding ... 76

Figure 5.7: Percentage wise use of secure coding standards while coding ... 77

Figure 5.8: Gradings received for usability of plugin.. 78

viii

List of Tables

Table 2.1: Comparison of secure coding guidelines .. 11

Table 2.2: Main categories in SEI CERT secure coding rules ... 12

Table 3.1: Classification criteria .. 18

Table 3.2: Comparison between JavaParser and ANTLR ... 27

Table 4.1: Comparison of IntelliJ IDEA plugin development approaches ... 33

Table 4.2: Justification of method level secure coding rules ... 34

Table 4.3: Justification of class level secure coding rules ... 37

Table 4.4: Justification of Package level secure coding rules .. 41

Table 5.1: Results of Project based evaluation ... 54

Table 5.2: Detection of secure coding rules by static code analysis tools .. 58

Table 5.3: Summary of the detection of secure coding rules by static code analysis tools 59

Table 5.4: Memory and CPU consumption with design patterns and without design patterns

for individual rule .. 69

Table 5.5: Memory and CPU consumption with design patterns and without design patterns

for above six rules ... 70

Table 5.6: Average response time with design patterns and without design patterns for individual rule ... 70

Table 5.7: Average total response time with design patterns and without design patterns for six rules ... 72

Table 5.8: Average response time for different lines of code .. 73

Table 5.9: Benchmark tool comparison using Secure Coding plugin and SonarLint 74

ix

List of Acronyms

AST Abstract Syntax Tree

CERT Computer Emergency Response Team

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

SDLC Software Development Life Cycle

SEI Software Engineering Institute

OWASP Open Web Application Security Project

1

Chapter 1 : Introduction

1.1 Motivation

The software security field based on the concept of Secure Software Development originated in

the early 2000s [1]. As a result a set of software security best practices which involve in identifying

and understanding common software threats, designing software focussing on security and

subjecting all software artifacts through a thorough security analysis [2] have been introduced.

In the early 2000s, there were several critical cyber attacks such as Nimda, Code Red, etc that

caused uncertainty among users with regards to the technology they were using every day [3]. This

resulted in a need to improve the security, privacy, and reliability of the technology. As a result in

the year of 2002, Microsoft's "Trustworthy Computing" initiative [1] was launched by Bill Gates

with the primary intention of ensuring the technology used by people is secure and reliable. This

initiative mainly focused on people, process, and technology to tackle the software security

problem and overcome issues related to them.

Carnegie Mellon University has established a laboratory named CyLab comprising a set of

researchers related to the field of cybersecurity [4]. A research on Cyber Security Engineering was

done by CyLab has identified that organizations which focus on security in the early stages of the

SDLC have seen major reductions in operational vulnerabilities, resulting in reductions in software

patching. CyLab is currently researching on developing an advanced tool that could assist in

identifying parts of web pages that are vulnerable to DOM Cross Site Scripting (XSS) attacks [4]

which could be considered as a major step towards ensuring web security.

In the current context, smartphones have become a vital member in the daily lives of people and

they contain information such as user’s location, contacts and other sensitive information that has

resulted in huge security breaches by various unauthorized parties such as hackers, attackers, etc.

The software security related researchers at CyLab are currently engaged in research to improve

the smartphone privacy and controlling access to third-party libraries that may contain malicious

elements [4] with the intention of minimizing the security breaches into sensitive information.

From these facts, it could be concluded that many parties are currently committed to ensuring

software security by engaging in various ways.

2

1.2 Aims and objectives

The goal of this project is to build a framework to detect secure coding guideline violations in real-

time in order to assist and encourage software developers to adhere to these guidelines. The main

objectives of this project are,

1. Identification of existing approaches and their limitations.

2. Conducting a literature review on secure coding.

3. Study SEI CERT Oracle Secure Coding rules [5] and identify the most suitable set of rules

that are to be implemented in the framework.

4. Designing and implementing a methodology to integrate these secure coding rules into the

proposed framework.

5. Notify developers about potential violation of secure coding rules while they are coding in

a real-time manner.

6. Evaluate the capability of the plugin-based framework to detect secure coding rule

violations.

1.3 Scope

The proposed framework in this dissertation is only focused on analyzing projects based on Java

programming language. It is focused on the coding or implementation phase of the SDLC. The

proposed plugin is covering a selected set of secure coding guidelines and only focus on source

codes written using IntelliJ IDEA Integrated Development Environment (IDE). The plugin

supports on the fly catching of secure coding rule violations.

3

1.4 Structure of the dissertation

The remaining sections of this thesis are as follows. Chapter 2 is associated with the literature

review and background study related to the project. Chapter 3 provides a detailed explanation of

the architecture of the project and Chapter 4 explains the implementation of the project. Chapter 5

illustrates the evaluation methodologies along with their results and Chapter 6 concludes the

dissertation along with a discussion regarding future work.

4

Chapter 2 : Background Study

2.1 Introduction

According to a research conducted by Tricentis which is an Austrian software testing firm, the

total economic loss to the world in the year of 2016 as a result of software bugs, software failures

and other vulnerabilities was approximately $1.1 trillion including 606 software failures in 314

companies which affected approximately 3.6 billion people mainly in the areas of consumer and

retail technology [6]. These facts convey an important message regarding the significance of

following secure coding practices while writing the source code of a program since it will reduce

the time and cost of developing less vulnerable software applications.

Figure 2.1: Costs of fixing bugs based on the phase of SDLC [7]

Figure 2.1 states that code fixes performed after the release or maintenance period known as the

reactive approach are more expensive than correcting such issues during the coding phase

(proactive approach) [8]. It is also visible that the increase in the cost is approximately 6 times [8]

than fixing it in the coding phase which can be considered as a significant amount. Not only the

cost but the time needed to correct the issues in the post-release period is also high since the source

code is complex after the software application has been completely developed. Software

5

developers might also forget the contents of the source code since coding was done sometimes

back. Therefore it will be difficult for them to rectify a large number of defects at once.

A major contribution to the secure software development was made by Gary McGraw by writing

several important books namely “How to break code”, “Building security in [2]”, “Java security”,

etc. Out of them “Building security in” is the most prominent book related to the development of

secure software which mainly consists of facts [7] that indicates the importance of following secure

coding concept while developing software. According to Gary McGraw, software security must

be incorporated into all levels of the SDLC [2]. In this book, Gary also mentioned a set of best

practices [9] known as the seven touchpoints as shown in figure 2.2, which may need to be

followed in order to develop secure software.

Figure 2.2: Software security best practices applied to various software artifacts [9]

The descending order of effectiveness of the seven touchpoints [10] has been identified as follows

:

Code review Risk analysis Penetration testing Risk analysis Abuse

cases Security requirements Security operations

It could be seen from the above order of effectiveness, the importance of code reviews and that

they mainly involve in examining the source code, identifying issues and correcting them in order

to improve source code quality. Also, it could be concluded that source code plays a major role in

building secure software since code reviews are associated with the source code.

6

2.2 Review of similar systems

There are few similar static code analysis tools that mainly focus on source code quality issues and

bug detection but these tools do not give the exact solution for the real world problem which is to

detect the secure coding rule violations and to encourage developers to write secure code.

Following are two major Software Engineering solutions currently available.

1. SpotBugs [11]

SpotBugs is a tool which uses the concept of bug patterns to detect bugs in Java bytecode. It can

be considered as the successor of FindBugs tool and it is available as a free software which is

distributed under the terms of GNU Lesser General Public License. Currently, SpotBugs supports

more than 400 bug patterns with reference to Open Web Application Security Project (OWASP)

Top 10 and Common Weakness Enumeration (CWE). Bugs have been classified into four main

categories namely Scariest, Scary, Troubling and of concern.

It is used majorly as a plugin and supports major IDEs such as Eclipse, IntelliJ IDEA, NetBeans,

etc and when a bug is detected in the source code, a small bug icon is displayed at the beginning

of the source code line in the IDE. Also, command line integrations may be done with build tools

such as Gradle, ANT, and Maven. SpotBugs is also extensible where new detectors may be added

through plugins such as fb-contrib and find-sec-bugs. SpotBugs tool is capable of detecting

relevant bugs in source code but not secure coding rule violations and can not be considered as a

solution for identifying such violations.

Figure 2.3: Detection of bugs using SpotBugs plugin

7

2. SonarLint [12]

SonarLint is a tool recently introduced to the Sonar family. After its introduction, Sonar family

comprises 3 main tools namely SonarLint, SonarCloud, and SonarQube. SonarLint exists as a

plugin and provides on the fly detection of source code quality issues and these issues have been

classified into 3 main categories namely Vulnerabilities, Bugs and Code smells. It supports the

currently existing major IDEs namely Eclipse, IntelliJ IDEA, Microsoft Visual Studio, VS code

and Atom.

SonarLint comprises of several major features such as bug detection which involves in detecting

common mistakes, tricky bugs and known vulnerabilities, provides on the fly instant feedback

when the bugs are detected, provides guidance regarding the countermeasures for such bugs,

uncovering old issues, provides descriptions about the errors that have arose in the source code,

etc. But the on the fly feedback is provided only when the Java class is saved not while the user

types the source code in the IDE. Similar to SpotBugs, SonarLint is incapable of detecting secure

coding rule violations that occur in the source code and thus can not be considered as a solution

for identifying such violations that occur in source code.

Figure 2.4: Detection of a code quality issue using the sonarLint plugin

8

2.3 Related work and limitations

2.3.1 Related work

The research paper published by Steve Lipner discusses the Trustworthy Computing Security

Development Lifecycle [1] which is adopted by Microsoft for the development of software that

needs to withstand malicious attacks. This methodology introduces a series of security-focused

activities and deliverables to each of the phases of the development process. During

implementation or coding phase of the SDLC the development team codes the software. In this

phase, secure coding standards can be applied in order to prevent forms of security vulnerabilities.

In addition, static code analysis tools and code reviews can also be conducted.

Malik Imran published a paper on secure software development model [13] which mainly discuss

based on Extreme Programming (XP) technique, a new model which has been designed to focus

on the concept of iterative development of secure software. At each phase of the SDLC, security

requirements are considered and iteratively updated. During security design and implementation,

threat modeling can be used in order to identify threats, vulnerabilities, and their countermeasures.

During implementation, the known security vulnerabilities and their countermeasures can be taken

into consideration while developing software.

Noopur Davis from Carnegie Mellon University [14] published a paper on a survey conducted to

discuss existing SDLC processes. This article provides overview information about existing

processes, standards, life-cycle models, frameworks, and methodologies that support or could

support secure software development. The target audience of this paper includes program

managers, project managers, developers, software engineering process group (SEPG) members

who want to integrate security into their standard software development processes. This document

also provides overviews of process models, processes, and methods that support one or more

phases of the SDLC focussing on areas of secure software development.

V.S. Mdunyelwa, J.F. van Niekerk and L.A. Futcher in this [15] research paper, discussed whether

software developers and students know about secure coding practices. Security breaches in web

applications are mostly caused by programmers failure to adhere to secure coding practices, such

as those recommended by the OWASP. Programmers cannot adhere if they are not educated

regarding the secure coding best practices in the first place. It discusses secure coding practices

according to the OWASP guidelines. It further discusses what the Association for Computing

Machinery (ACM) curricular guidelines for Information Technology states in terms of secure

coding practices.

Currently, many static code analysis tools are used by software companies to detect security

vulnerabilities and bugs. But these tools are mainly used when its close to a major software release

which is commonly known as batch style analysis [16]. At this point, the software developers that

9

programmed the software application might have forgotten the coding context and also correcting

such issues is extremely complex due to the low effectiveness of static code analysis tools since

they exhibit a large number of false positives [17]. As a result building and patching which is the

concept used to overcome this issue where patching is done to the relevant issues, but the real

errors exist in the source code level.

The concept of Just In Time(JIT) static code analysis introduced by Justin Smith along with five

other scholars [16] mainly focuses on code development along with bug fixing. Unlike traditional

batch-style analysis tools, a JIT analysis tool presents warnings to software developers over time,

providing the most relevant results quickly, and computing less relevant results incrementally later

[16]. In this paper the JIT static code analysis concept which has been proposed mainly involves

the integration of static code analysis into the development workflow, allowing developers to

immediately see the impact of their changes in the code without preventing them from performing

other coding tasks.

2.3.2 Limitations of current approaches

It could be concluded from [1], [13], [16], [14], [15] and [17] that the development or the coding

phase of the Secure SDLC is extremely important. But in the current context, there exists no

automated mechanism to support software developers adhere to secure coding guidelines in order

to minimize the introduction of security vulnerabilities during the coding phase. In the current

context, there exist solutions such as SpotBugs and SonarLint that mainly focuses on detecting

security vulnerabilities and source code quality issues but do not detect secure coding guideline

violations. Therefore currently there does not exist any automated mechanism to support software

developers adhere to secure coding guidelines while they are writing source code.

10

2.4 Secure coding guidelines

2.4.1 Secure coding

As mentioned previously in the introduction section of the report it could be seen that insecure

coding practices committed by software developers during the coding phase of the SDLC incur

heavy costs in developing a software application due to wastage of time and other resources. In

order to overcome this issue, the concept of secure coding has been introduced.

The concept of secure coding primarily states that Computer Software should be developed in a

manner such that accidental introduction of bugs and security vulnerabilities during the

development or coding phase needs to be minimized or prevented by the use of appropriate guards,

typically following a set of best practices known as the secure coding guidelines.

It has been discovered that there are 3 main reasons for developers to follow these set of secure

coding guidelines when they are writing the source code of a computer software program. They

are [18],

1. A set of best practices developed with expertise support -

The secure coding guidelines have been developed by analyzing the feedback from various

software developers based on the vulnerabilities that they encounter in various software

projects over a period of time. Also, many experienced people in the security field with the

necessary expertise have involved in designing these guidelines. Thus making these

guidelines a set of best practices for software developers.

2. Creating efficiencies through standard coding practices -

Following secure coding guidelines when writing source code will allow the creation of

consistency in the source code and also create a common communicating mechanism

among various developers that follow different coding techniques (Similar to software

design patterns that create a method of communication among developers). This would

definitely save a massive amount of time since any new developer that has joined a project

could get a quick understanding of the source code since it is in a standard form.

3. Reduction of costs significantly -

Since the software bugs and vulnerabilities are prevented entering into the source code at

an early stage(coding stage) of the SDLC it would significantly reduce developer time

incurred on correcting the bugs and vulnerabilities that are identified during the testing

stage. This will allow the developers to invest their time in another project thus reducing

11

the average cost of a project (Because minimizing the unnecessary activities in a software

project reduces overall project cost). It has been found that the cost of building secure

software following secure coding practices is much lower than correcting security-related

issues after the software application has been developed [19].

2.4.2 Secure coding guidelines

During the literature review, secure coding guidelines provided by 3 parties namely OWASP,

Oracle, and SEI CERT were identified. A comparison analysis based on several selected

parameters was carried out in order to select the most feasible set of secure coding guidelines to

be implemented in the project. In Table 2.1 Significant refers to equal or greater than 50%, Less

refers to less than 50% of the resources.

Table 2.1: Comparison of secure coding guidelines

Parameters SEI CERT [5] Oracle [20] OWASP [19]

Number of Resources /

References available

Significant

Less Less

Code examples provided Significant Significant Less

Nature (language

specific/not)

Language specific Language specific Not language

specific

Security domain

Coverage (Security areas

covered)

 Significant

coverage

Low coverage Significant

coverage

Prioritization of

guidelines

Yes No No

Based on the analysis shown in Table 2.1 it could be concluded that the secure coding rules

provided by SEI CERT are the most suitable set of secure coding standards to be implemented in

the solution of the project. As previously mentioned there are 19 categories of secure coding rules

and a brief explanation of them is shown in Table 2.2.

12

Table 2.2: Main categories in SEI CERT secure coding rules

Category Explanation

Input Validation and Data

Sanitization (IDS)

Input validation mainly involves testing input data

provided by a user into an application and prevents

improperly formed data from entering into that application.

Data sanitization involves the process of deliberately,

permanently, and irreversibly removing or destroying the

data stored on a memory device.

Declarations and

Initializations (DCL)

Mainly associated with declaring and initializing of

variables.

Expressions (EXP) Expressions are usually used to produce a new value or

assign a value to a variable. Expressions are built using

values, variables, operators and method calls.

Numeric types and

Operations

(NUM)

Numeric types are used to handle various numbers using

operations such as assignment, arithmetic, unary, etc.

Characters and Strings

(STR)

Related to the use of strings and character data types in Java

Programming language.

Object Orientation (OBJ)

A programming language model organized around objects

along with the concepts of inheritance, encapsulation,

polymorphism and abstraction.

Methods (MET) Represents the behaviors of class instances(objects).

Exceptional behavior (ERR) Mainly associated with handling exceptions during the

execution of a program.

Visibility and Atomicity

(VNA)

Focuses on accessibility and independence of variables and

objects.

Locking (LCK) Is a synchronization technique that allows at most one

thread to own and make changes to a resource.

https://www.thoughtco.com/variable-2034325

13

Thread Application

Programming Interface

(THI)

Associated with thread functions and their states (New,

Runnable, Blocked, Waiting).

Thread Pools (TPS) Thread pools typically consist of idle threads which are to

be used in future processes.

Thread Safety Miscellaneous

(TSM)

Mainly comes into effect in a multi-threaded code where

multiple threads share common resources such that

consistency is maintained.

Input Output (FIO) Involves in performing reading(input) and writing(output)

operations using stream data.

Serialization (SER) This is the process of converting an object into a stream of

bytes in order to store the object and reconstruct it later.

Platform security (SEC) Associated with the security concerns of the Java platform

Runtime environment (ENV) Concerned with privileges of the Java Runtime

Environment.

Java Native Interface (JNI) It is a framework that enables Java code running in a Java

Virtual Machine to call and be called by native applications

Miscellaneous (MSC)

Concerned of guidelines that do not fall on any of the above

mentioned categories.

Android (DRD) Associated with mobile application development based on

Java.

2.4.3 SEI CERT Secure coding rules

The SEI of Carnegie Mellon University along with their CERT group have introduced a set of

secure coding standards known as SEI CERT coding standards for a set of specific programming

languages including C, C++, Java, Perl and Android [21]. The professors and lecturers at Carnegie

Mellon University has actively contributed to improve these standards and promote them by

writing books such as “The CERT Oracle Secure coding standard for Java” [5], “Java Coding

guidelines for reliable and secure programs” [5], “Secure coding in C and C++” [21], “The CERT

14

C++ secure coding standard” [21], etc. This implies that SEI CERT has provided a huge set of

resources to promote the concept of secure coding among the software developer community.

SEI CERT has provided a set of secure coding standards for Java Programming language known

as Rules (19 rules) and Recommendations (12 recommendations) collectively known as guidelines

[5]. Violation of a rule may result in a defect that may adversely affect the reliability, safety, and

security of software whereas a recommendation typically suggests improving code quality [22].

Hence the impact of secure coding rules is much higher than that of the recommendations. SEI

CERT has provided comprehensive documentation for these guidelines along with compliant and

non-compliant code examples making it simpler for the developers to understand the guidelines.

Also, these guidelines have been prioritized based on 3 major parameters [23] as shown in Figure

2.5.

1) Severity - The serious nature of the consequences or outcomes of the rule is ignored.

2) Likelihood - The probability of a flaw introduced by violating the rule could lead to a

security vulnerability.

3) Remediation cost - Cost involved correcting the existing unsecure code to comply with

the rule.

Figure 2.5: Levels and Priority ranges

15

2.5 Summary

There is a huge increase in remediation costs when software defects are detected and corrected at

post-implementation phase of the SDLC when compared with the development or coding phase of

the SDLC. Following of coding best practices by software developers known as secure coding

guidelines while developing of software applications, can be considered as the well known and

accepted method to overcome this issue since these best practices primarily focus on vulnerabilities

that may arise in the source code level.

The review of existing approaches gives an idea that there exists no automated mechanism to

identify the violation of secure coding guidelines in the source code in order to support software

developers to adhere to them in order to minimize the accidental introduction of security

vulnerabilities while coding. Developing a software product that is able to detect these violations

in the form of a plugin-based framework could be considered as the best solution for the

aforementioned problem.

It could be concluded that three parties namely OWASP, SEI of Carnegie Mellon University along

with their CERT and Oracle have majorly contributed to the promotion of the secure coding

concept among software developers. Out of these three parties, the coding best practices introduced

by SEI CERT known as the Secure Coding Rules could be considered as the most feasible set of

best practices to be implemented in the plugin-based framework.

16

Chapter 3 : Analysis and Design

3.1 Introduction

The design and analysis chapter mainly describes the proposed design of the framework that was

implemented in order to provide a solution for the aforementioned problem. Based on the literature

review that was carried out in the background study several design methodologies were identified.

The system architecture and the system model was developed based on those design

methodologies. The system architecture consists of three main layers namely the Presentation

layer, Application layer and the Data layer with relevant components for each layer. The workflow

process was also identified during the design phase in order to get a thorough view of the proposed

solution. The system modelling stage mainly focuses on the class diagram which provides a static

view of the plugin-based framework along with the relevant design patterns. Use of design patterns

is a main focus in Product based Software Engineering projects. Several parser selection criteria

were also analyzed in this phase.

3.2 Problem analysis

The goal of the project is building a framework to detect secure coding guideline violations in real-

time to assist developers to adhere to secure coding best practices. Most of the Software developers

are unaware of this concept and the ones that follow secure coding guidelines while writing source

code encounter many difficulties in adhering them due to the manual cheat sheet approach which

is lengthy and consumes a huge amount of time. In order to achieve the goal, an extensive

background study was conducted by referring relevant artifacts such as white papers, dissertations,

existing tools, etc.

The acquired knowledge from the background study was used to identify relevant requirements,

design system architecture and system model, identify related components of the framework, etc.

Remedies for the limitations identified in existing Software Engineering solutions, related

concepts in white papers and dissertations, workflow and interaction between the components were

incorporated into the system design of the framework. Since the solution involves the development

of a plugin-based framework for IntelliJ IDEA IDE, the relevant approaches for plugin

development were observed and parser libraries were analyzed in order to identify the most

feasible parser to be used in the solution.

17

3.3 Design assumptions and dependencies

1. This plugin-based framework requires the user to be a person with basic Java programming

knowledge. The user of this plugin would be a software developer who should be able to

fix security vulnerabilities shown by the secure coding framework, after referring to

countermeasures given.

2. The user is responsible for following general coding standards such as proper indentation,

variable declaration, proper usage of brackets etc. This is important because the source

code written by developers needs to be parsed in order to analyze it by the secure coding

plugin. Therefore, the source needs to be syntactically correct. JavaParser library, which is

used in this project allows parsing of slightly syntactically incorrect source codes but when

designing this framework the assumption is made that user will write syntactically correct

source codes. This can be easily achieved with the help of IntelliSense feature of IntelliJ

IDEA. This framework will aid developers to write more secure code but not with general

coding standards such as proper indentation, variable declaration, proper usage of brackets

and etc.

3. This framework requires the user to have a compatible version of IntelliJ IDEA IDE or any

other supported JetBrains IDE up and running(community edition or proprietary

commercial edition). The user can access JetBrains plugin repository through their IDE

and this plugin will only be shown to the user if it is compatible with the IDE version of

the user.

4. This framework assumes it will detect the violations of secure coding rules based on the

source code granularity levels namely Method level, Class level and Package level. At

present the framework supports 15 secure coding rules given by SEI CERT Secure Coding

Standard for Java. This number can increase as this plugin is designed and built in a way

that supports the addition of new secure coding rules. (Extensibility is a key feature of the

secure coding plugin)

5. The framework will not depend on any other software or service but it is using an existing

parser library to transform the source code into an Abstract Syntax Tree (AST). The parser

used in this projects is JavaParser library. This JavaParser library is integrated into the

system. Therefore this plugin works as a standalone system and each user who downloads

it will have their own copy.

6. The framework makes the assumption that the user has an active internet connection.

Internet connection would be required when downloading the plugin from the plugin

repository and also when accessing the links provided by the plugin to find more details

18

about the detected secure coding rule violations. These details can be used when applying

fixes to detected secure coding rule violations.

3.4 Secure coding rules classification criteria

In order to implement the secure coding rules in the plugin-based framework, the rules were

initially classified into three main granularity levels namely Method level, Class level and Package

level based on the source code fragments that triggered the violations. The main focus of the

Method level classification was to identify the source code fragments that lie inside a specific

method. The source code fragments that are interrelated between two or more methods of the same

class are classified under Class level granularity. Package level granularity primarily focussed on

the source code fragments that lie between two or more classes inside the same package. The

classification criteria for source code fragments that fall into each granularity level are as shown

in Table 3.1.

Table 3.1: Classification criteria

Method Level Class Level Package Level

Focuses on the source code

fragments that belongs to the

java.lang package (default

package) and exist inside a

method of a class.

.

1. Method parameters

in method signature

2. Local variables

3. Loop controls (for,

for each, while, do

while) with no

method calls

4. Exceptions belonging

to the java.lang

package

(eg-

Focuses on the source code

fragments of the java.lang

package(default package) that

is inside a class but lies

outside a method.

1. Names of class

variables

2. Data types of class

variables

3. Access modifiers of

class variables

4. Method names in a

method signature

5. Return types of

methods in a method

signature

Focuses on the source code

fragments that belongs to

classes outside the existing

class.

1. Methods belong to

packages outside

java.lang package

2. Extended classes

outside java.lang

package

3. Library imports

4. Implemented

interfaces which are

outside java.lang

package

19

NullPointerException

)

5. Threads(That fall

into java.lang

package)

6. Try, catch, Finally

blocks

6. Access modifiers of

methods in a method

signature

5. Instances of classes

outside java.lang

package

A set of classified secure coding rules (100 rules) based on the above-mentioned classification

criteria can be found in Appendix B. A set of 15 secure coding rules 5 belonging to each granularity

level out of the classified set of rules has been implemented in the framework.

3.5 Product perspective

The software product developed in this project is an open source product. It is a plugin-based

framework for IntelliJ IDEA, which is an IDE. The plugin can be used as an aid for software

developers to correct secure coding rule violations they have done when coding. This is an entirely

new software product and not an extension of an already existing product.

3.5.1 Dependencies

This software product does not depend on any other software or service but it is using an existing

parser(JavaParser) which is integrated into the system. Figure 3.1 shows how the product is

interacting with the internal and external environment.

20

.

Figure 3.1: Product interaction with internal and external environment

3.5.2 Design and Implementation constraints

The software product developed is intended to provide real-time feedback to its users. Therefore,

secure coding rules and code fragments are stored in a common data structure and that improves

the performance of the plugin. Software design is made transparent and simple in order to provide

the ability to extend the framework when a new secure coding rule or a new granularity level needs

to be added to the framework.

The software product developed consist of three main components. They are parser, violation

detector and output generator. Each component would be using the results given by its preceding

component as its input. Following are the description of these components and component

architecture diagram for the proposed system.

21

1. Parser - This component is taking a source code as its input and it transforms it into a

structure called an AST. The parser is also providing methods to get code fragments by

traversing the AST it created. A code fragment represents a set of items like a list of local

variables, a list of class variables, a list of method names etc. The output of the parser

component is the code fragments.

2. Violation Detector - This component has three subcomponents namely Method level

violation detector, Class level violation detector and Package level violation detector.

These subcomponents represent three main granularity levels in the source code. Under

each subcomponent, there are algorithms for detecting secure coding rule violations

relevant to granularity level it specifies. These algorithms will take code fragments given

by parser component as its input. Each algorithm is giving an output stating whether the

particular secure coding rule it represents, has been violated or not. Finally, the violation

detector component outputs all of these secure coding rule violations it has identified to the

output generator component.

3. Output Generator - The main intention of this component is to receive the results given

by violation detector component as its input and rank them according to priority. Priority

level [23] specified under each secure coding rule of "SEI CERT Oracle Coding Standard

for Java" is used for this purpose. After ranking, secure coding rule violations with the

highest priority is given as the output of this component. This output along with the full

specification of relevant secure coding rules are used to notify the developers, as real-time

feedback.

3.6 System architecture design

The proposed system is a standalone system which runs on an IDE. It could be seen from Figure

3.2 that the plugin-based framework could be organized into three horizontal layers, with each

layer performing a specific role within the system. These three layers are the presentation layer,

Application layer and Data layer. The main idea behind this architecture is the separation of

concerns. This architecture is also used for communication due to its simplicity. Following are the

descriptions of the roles and responsibilities of each layer.

1. Presentation Layer - Users of the proposed system would be using an IDE to interact with

the system. Therefore, IDE could be considered as the presentation layer, which is

responsible for handling all user interface logic. Presentation layer only needs to know how

22

to format user data for displaying and doesn't even need to think about from where the data

is coming. The presentation layer will pass the source code of the currently opened source

file in the editor of the IDE to its underneath layer. The presentation layer is also

responsible for showing the results that it will receive from the application layer.

2. Application layer - This layer consists of 3 main components. They are parser, violation

detector and output generator. Application layer handles the business logic of the system.

The parser is responsible for parsing the source code it received from the presentation layer

and creating an AST. Violation detector will utilize the output of parser to implement

violation detection algorithms. Output generator is responsible for generating the output

and passing it back to the presentation layer. Output generator would also be making use

of the data layer to perform its tasks. All these three subcomponents in the application layer

represent three main business logic in the system. The application layer is also responsible

for moving and processing data between its two surrounding layers. Following are the three

subcomponents mentioned in the application layer.

1. Parser - Represents an existing parser called JavaParser which will be used to

create an AST from the source code. This subcomponent in application layer will

directly interact with the presentation layer.

2. Violation Detector - This subcomponent will interact with the parser to get the

generated AST and use it to detect secure coding rule violations.

3. Output Generator - This subcomponent will interact with violation detector

component of the application layer and the data layer to detect the set of secure

coding rule violations to be shown to the user. This subcomponent would also be

interacting with the presentation layer. The user will see the results when it is passed

from the output generator to the presentation layer.

3. Data layer - The proposed system will use a selected data structure such as ArrayLists,

HashMaps etc to store its data. Data of the system would be a secure coding rule set and

code fragments extracted by traversing an AST. Output generator component of the

application layer will interact with the data layer to carry out its tasks.

23

Figure 3.2: High-level (tier) architecture

3.7 Parser selection

3.7.1 Compilers

Source codes written by developers in a particular programming language needs to be

understandable by machines in order to execute it. The process of converting a source code written

by humans to a format which is understandable by machines(machine-code) can be done using a

compiler. A compiler is a program that converts instructions into a machine-code or lower-level

form so that they can be read and executed by a computer. A parser is a part of the compiler which

is used during syntax checking or parsing phase in the compilation process.

Compilation process consists of several steps [24]. These steps are lexical analysis, syntax

analysis/parsing, type checking, intermediate code generation, register allocation, machine code

24

generation and finally the assembly and linking. During the lexical analysis phase, the source code

is read and divided into tokens, each of these tokens corresponds to a symbol in the programming

language. For example, a symbol can be a variable name, a keyword or a number. During syntax

analysis/parsing phase, the list of tokens produced by the lexical analysis phase will be arranged

in a tree structure. This tree reflects the structure of the program. The output of the parsing phase

is a syntax tree or an AST. AST focuses more on the abstract relationships between the components

of source code. This syntax tree or AST will be used during the next phases of compiling to get

the machine-code of the relevant source code.

3.7.2 Parsers

Parsers are used during the syntax analysis/parsing phase of a compiler. The input to a parser is a

list of tokens and the output is a syntax tree. A parser can be written by hand or automatically

generated by parser generators like ANTLR, Bison, JavaCC etc. A parser usually consists of two

parts called a lexer/scanner/tokenizer and proper parser. Lexer scans the input and produces the

matching tokens, and the parser scans these tokens and produces a syntax tree or an AST.

3.7.3 Rationale for the need of a parser

We follow two main steps to identify secure coding rule violations. They are AST creation and

AST analysis. An AST omits unnecessary syntactic details of the source code and describes the

source code in a convenient format for analyzing.

This project involves identifying secure coding rule violations using well-defined algorithms.

These algorithms need code fragments to operate. For example, a code fragment can be a list of

methods declared with the private access modifier, a list of synchronized methods etc. In order to

get code fragments specific to the source code, the AST relevant to this code needs to be

walked/traversed and analyzed. Hence, this project requires a parser to extract an AST from the

source code.

3.7.4 Parser selection

In order to analyze a source code, it needs to be represented in a format that is good for analyzing.

Best format suited for analyzing a source code (which is in concrete syntax) is an AST. An AST

is a tree which contains the nodes that are necessary for representing the source code. Source code

needs to be parsed to get an AST. Three main approaches can be followed to parse the source code.

They are,

1. By developing a custom parser.

25

2. By using a tool or library to generate a parser: for example ANTLR, that can be used to

build parsers for any language.

3. By using an existing library supporting that specific language: for example JavaParser

library to parse source code written in Java.

The first approach is writing a parser by hand. It is a time-consuming task. In this case, the source

codes written in Java programming language need to be parsed. Since Java is a very popular

programming language, there are many open source libraries available to use which means that

building a parser by hand is a rework.

The second approach to parse a language is by generating a parser using a parser generator.

ANTLR which stands for “ANother Tool for Language Recognition” is a very popular parser

generator. It can be used to generate parsers for reading, processing, executing, or translating

structured text or binary files [25]. To follow this approach (using ANTLR), grammar needs to be

defined. Then ANTLR will generate a parser using the grammar that is defined. The parser given

by ANTLR can be used to build and walk parse trees or ASTs. ANTLR is also capable of

generating parsers for the same grammar in many languages (Java, C#, Python etc). Building a

parser using ANTLR may have been a better approach if the source codes of many programming

languages need to be analyzed.

The third approach is to use an existing parser or a library. JavaParser is one such library which

can be used for processing source code written in Java. Using JavaParser library, Java code can be

parsed to get an AST and also this AST can be processed or analyzed by using the methods

JavaParser have defined. In order to process an AST, its nodes need to be traversed. There are two

main approaches to traverse an AST. They are by using a visitor or by using a recursive iterator

[26]. A visitor is usually used when specific types of nodes in the AST needs to be operated. An

iterator is used when all sort of nodes in an AST needs to be processed. JavaParser provides built-

in methods and functions to follow both of these approaches.

JavaParser also provides a number of methods and function that can be used to analyze an AST

generated by it. All these methods are well-documented in a Javadoc [27]. Other than parsing and

analyzing, JavaParser is also capable of transforming and generating a source code given an AST.

JavaParser also has an excellent online community to discuss and get help when needed.

JavaParser contributors also provide a book called "JavaParser visited" which can be used by its

users as a reference on how to use JavaParser in their projects. Due to all these benefits, JavaParser

is used in this project.

26

3.7.5 JavaParser

JavaParser is a library to parse, analyze, transform and generate Java code from an AST. These

are the four main functions of JavaParser. As the name suggests, it works on Java programming

language. In this project, JavaParser is used to get an AST from Java code and analyze it using the

built-in methods they have provided. Generating an AST using JavaParser can be done with just

two lines of code. Following are the main features of JavaParser library [28].

1. JavaParser supports all versions of Java from 1 to 9.

2. JavaParser supports lexical preservation and pretty printing which means that it can parse

Java code, modify it and print it back either with the original formatting or pretty printed.

3. JavaParser can be used along with JavaSymbolSolver which is used for symbol resolution.

For example, using JavaSymbolSolver, an AST created by JavaParser can be analyzed and

find the declarations connected to each of its element.

4. JavaParser supports almost all the new features of Java (lambdas, generics, type inference

etc).

JavaParser will not only create an AST but also its built-in methods can be used to analyze an AST

to get code fragments required by the secure coding rule violation detection algorithms. Following

are the steps that were followed when identifying code fragments using JavaParser.

1. Parse the source code with JavaParser.

2. Traverse/walk the AST using the visitor design pattern or iterator design pattern.

3. While traversing/walking the AST, use built-in methods of JavaParser to get code

fragments and store them in a data structure.

Due to the above-mentioned benefits, it could be concluded that JavaParser is the most suitable

parser to be used in the proposed plugin-based framework. Table 3.2 depicts a comparison between

JavaParser and ANTLR.

27

Table 3.2: Comparison between JavaParser and ANTLR

JavaParser ANTLR

A parser - Grammar already defined (User

friendly)

A parser generator - Grammar needs to be

defined (Less user friendly)

An AST can be generated - More focussed A parse tree can be generated - Less focussed

Supports only Java programming language Supports several programming languages

The reference guide is currently being

written

The reference guide already exists

28

3.8 System modeling

3.8.1 Class diagram

Figure 3.3: Class diagram

29

3.8.2 Design patterns utilized

In this project, two main design patterns are utilized during the implementation phase. They are

given below.

1) Singleton pattern [29]

The Singleton design pattern is a creational design pattern which ensures that only a single object

or instantiation of a class is created, through which other class objects access the singleton class

members(methods and variables). According to the class diagram in the previous page, the three

code fragment classes namely MethodLevelCodeFragment, ClassLevelCodeFragment and

PackageLevelCodeFragment consist of data structures such as HashMaps and ArrayLists which

are used store the code fragments belonging to each granularity level namely method level, class

level and package level.

Any violation detector class corresponding to each source code fragment class, i.e.

MethodLevelViolationDetector class corresponds to MethodLevelCodeFragment class)will only

need a single instantiation of the code fragment class to access the source code fragments stored

in the data structures. I.e. a single instance of MethodLevelCodeFragment class, is sufficient for

one or more MethodLevelViolationDetector class to access the method level source code

fragments stored in the MethodLevelCodeFragment class.

2) Factory pattern [29]

The Factory design pattern belongs to the category of creational design patterns and is mainly used

to create an object of a class without exposing its internal class member details to the outside

classes by accessing the created class object using a common interface.

As shown in the class diagram ViolationDetector is the common interface and the 3 violation

detector classes namely MethodLevelViolationDetector, ClassLevelViolationDetector and

PackageLevelViolationDetector are the concrete classes implementing the ViolationDetector

interface. The DetectorFactory class would be used to create objects of the three concrete classes

by passing the class type. I.e. if MethodLevelViolationDetector is passed as the type then an object

of this class would be generated by the ViolationDetector factory class.

30

3.9 Justification as a Framework

Following are four major features[30] that a framework consists of and how they are achieved by

the project solution.

1. Reusability

The concept of reusability is one of the significant features of a framework since reusable

components ensure less effort required by developers to add new functionalities to the

existing framework. This feature has been achieved in the project solution by the system

modelling (class diagram). The source code fragments relative to each granularity level are

caught into data structures such as ArrayLists and HashMaps.

When a new secure coding rule violation detector algorithm is to be added the source code

fragments stored in existing data structures could be utilized ensuring the reusability

feature. I.e. if a new method level secure coding rule is to be implemented the method level

secure coding rule violation detector algorithm may use the source code fragments that are

stored in existing data structures found in MethodLevelCodeFragment.java class.

2. Extensibility

The concept of extensibility is a mandatory requirement to ensure that a framework could

be easily extended in the future to add new functionalities with minimum changes to the

existing source code base. This concept has been implemented in the project solution by

the use of three common data structures(of type HashMap<String, Object>) in each of the

three source code fragment classes which is descriptively explained in the Extensibility

based evaluation in section 5.3 of the thesis. In order to extend the framework, a developer

may import this common data structure and add new secure coding rule violation detection

algorithm without any changes to the initial source code base thus ensuring the extensibility

mechanism has been achieved in the project solution.

3. Low coupling

The framework implemented is an Object Oriented framework since it typically involves

java classes and objects. An important feature of such a framework is loose coupling among

the framework components. This means that the software components should be less

dependant on other software components. In this project loose coupling refers to the

respective Java classes being less interdependent between each other.

31

The project solution has achieved this feature through its system model and system design.

When the system model or class diagram is considered each source code fragment class is

extended by its violation detector class. I.e MethodLevelCodeFragment.java class is

extended by MethodLevelViolationDetector.java class. Thus it could be concluded that

there is less interdependence between the java classes in the secure coding framework.

4. High cohesiveness

Being highly cohesive is another vital feature of an object-oriented framework which

mainly refers to each software component performing a specific task. In the framework, it

typically means relative focusness of each java class when performing a particular task.

Each Java class of the secure coding plugin-based framework performs a specific task.

The three code fragment java classes mainly focus on storing source code fragments

corresponding to each granularity level. The three violation detector classes focus on

detecting algorithms, the LiveParser class mainly focuses on the on the fly mechanism and

generation of the AST. Thus it could be seen that each class in the framework performs a

specific task hence ensuring a high level of cohesiveness.

The successful fulfilment of the above four features in a comprehensive manner by the

project solution could be concluded as a strong justification for it to be defined as a

framework.

3.10 Summary

In this chapter, the design of the framework for secure coding plugin is presented using the

system architecture diagram, product interaction with internal and external environment

diagram and class diagram(other design artifacts found in Appendix D). Prior to designing

the architecture, the selected secure coding rules are classified under three granularity

levels as method level granularity, class level granularity and package level granularity in

order to apply design patterns and improve the performance of the plugin as well as to add

extensibility feature. The rationale for the need of a parser and the approach followed when

selecting JavaParser is also presented under this chapter. The features of a framework and

how those features are included into the plugin is presented under the justification of a

framework section.

32

Chapter 4 : Implementation

4.1 Introduction

This chapter provides information as to how the solution is provided, development approaches

followed, how each component was developed, tool and technologies used in implementing the

plugin-based framework. The source code snippets are also illustrated at places where they are

applicable. The implementation of the solution of this project which is a Framework for Secure

Coding was primarily achieved by focussing on the source code abstraction levels and categorising

them into 3 granularity levels namely Method level, Class Level and Package level. Each of the 3

group members took the responsibility of implementing the secure coding violation detection

algorithms belonging to a particular granularity level as their individual component. The approach

to integrating the 3 individual components using appropriate design patterns described in the

system model(Class diagram) is mentioned in this chapter.

4.2 IntelliJ IDEA plugin development

A plugin is a software component that adds a specific feature to an existing computer program.

Plugin for an IDE has the same purpose of adding specific features to it. IntelliJ IDEA is currently

the most popular IDE among Java developers according to statistics. This may be due to its user-

friendliness and enhanced features. This IDE already has a lot of built-in plugins which adds

different features, and they also provide plugin development capabilities to its users to let them

customise and extend IDE's functionality based on their specific needs. IntelliJ IDEA Community

Edition which is the open source version of IntelliJ IDEA includes the complete set of plugin

development tools where its users can use to develop custom plugins.

The IntelliJ platform provides a foundation for building JetBrains IDEs and all of the infrastructure

that these IDEs need. The most popular IDEs are IntelliJ IDEA, WebStorm, RubyMine, DataGrip

etc. These IDEs are the products of the IntelliJ platform. The IntelliJ platform fully supports plugin

development, and JetBrains (the software development company which created IntelliJ IDEA)

hosts a plugin repository that can be used to distribute plugins that support one or more of these

products. Plugins that support different products can also be created. Since IntelliJ platform is a

JVM application written mostly in Java and Kotlin, the developers who intend to create plugins

for their products should also be familiar with these languages, and associated tooling. IntelliJ

Platform SDK [31] is the primary source of documentation for plugin developers who intend to

write plugins that will extend the IntelliJ platform. It provides necessary guidance on how to

package, deploy and test plugins.

33

The most common types of plugins are [31],

1. Custom language support plugins that provide basic functionality for working with a

particular programming language.

2. Framework integration plugins which allow integrating a framework to the IDE.

3. Tool integration plugins which allow manipulating third-party tools and components

directly from the IDE.

4. User interface add-ons which allow adding various changes to the standard user interface

of the IDE.

Out of these types, the secure coding plugin falls under the category of custom language support

plugin because it provides syntax highlighting, inspections and countermeasures for source codes

written in Java programming language.

IntelliJ Platform SDK provides two possible workflows for building IntelliJ IDEA plugins. They

are by using Gradle or by using Plugin DevKit. The recommended workflow is to use Gradle.

Table 4.1 provides a comparison between the two approaches.

Table 4.1: Comparison of IntelliJ IDEA plugin development approaches

Using Plugin Devkit [31] Using Gradle [31]

● Provides support for developing IntelliJ

plugins using IntelliJ IDEA’s own build

system.

● Provides its own SDK type and a set of

actions for building plugins within the

IDE.

● Possible to run and debug the plugin

directly from the IntelliJ IDEA.

● Provides a simple way to package

plugins and generate a JAR file inside

the project directory, which can be

installed and distributed.

● Can easily upload JAR file to the

IntelliJ Plugin Repository.

● Gradle is an open-source build

automation system.

● The plugin build using Gradle will

take care of the dependencies of the

plugin project.

● Could easily build the plugin against

many versions of the base IDE and

make sure that the plugin is not

affected by API changes which may

happen between major releases of the

platform.

● Provides tasks to run the IDE with the

plugin and to publish it to the

JetBrains plugins repository.

● This is the recommended solution for

building new IntelliJ plugins.

34

Secure coding plugin-based framework was built using the Gradle approach because of it being

the currently recommended approach by JetBrains community for new plugin development

projects.

4.3 Method level implementation

4.3.1 Introduction

The method level implementation section mainly consists of details regarding the implementation

of the secure coding rules that fall under the method level, based on the classification criteria in

Table 3.1. The Table 4.2 illustrates the secure coding rules implemented under method level based

on the source code fragment which leads to the violation and the appropriate justification for each

rule to be classified as a method level rule.

Table 4.2: Justification of method level secure coding rules

Main category Secure

coding rule

Justification

 Numeric types and

Operations (NUM)

NUM09-J

Violation of the rule occurs due to using float as the data

type of the loop counter used in for loops found inside a

method.

Exceptional Behavior

(ERR)

ERR04-J

Violation of the rule occurs as a result of the contents

inside finally block of a method containing return,

break, continue, or throw statements which belong to

java.lang package.

Exceptional Behavior

(ERR)

ERR07-J

Violation of the rule occurs as a result of throwing

RuntimeException, Exception or Throwable which are

exceptions belong to java.lang package, inside a

method.

Exceptional Behavior

(ERR)

ERR08-J

Violation of the rule occurs as a result of catching

NullPointerException, Exception or Throwable

exceptions that belong to java.lang.package, inside the

methods of a class.

Exceptional Behavior

(ERR)

EXP02-J

The use of equals() method inside a declared method of

a class to compare 2 arrays leads to the violation.The

equals() method belongs to the Object class of the

java.lang package.

35

4.3.2 Implementation procedure

The implementation process was carried out after the relevant algorithms were designed for each

secure coding rule. In order to achieve the method level implementation two main java classes,

namely MethodLevelCodeFragment and MethodLevelViolationDetector classes were used. The

MethodLevelCodeFragment classes mainly consist of data structures such as ArrayLists and

HashMaps which are used to store the relevant method level source code fragments corresponding

to each method level secure coding rule. Each rule may have a corresponding single data structure

or many data structures based on the nature of the algorithm.

The relevant source code fragments required by each secure coding rule are stored in the data

structures of the MethodLevelCodeFragment.java class with the support of the relevant JavaParser

methods and private static inner classes. The LiveParser.java class of the framework is used to

capture source code fragments the user types in IntelliJ IDEA IDE in an on the fly(real-time)

manner. Each time the user types a source code an AST is generated by the JavaParser library and

the relevant JavaParser methods are used to traverse the AST with the support of the Visitor design

pattern found in the JavaParser library.

After the relevant method level source code fragments are stored in data structures in the

MethodLevelCodeFragment.java class, the method level secure coding rules are implemented in

the form of algorithms in the MethodLevelViolationDetection.java class. The method level secure

coding rule violation detection algorithms access the data structures in the

MethodLevelCodeFragment.java class in order to obtain the relevant source code fragments

needed for the algorithm to implement the violation detection algorithm successfully.

For instance, if Num09-J secure coding rule which is the first method level rule mentioned in Table

4.2 is considered, it mainly states users not to use float as the data type of the loop counters inside

for loops. This is mainly because it may adversely affect the precision of the results after the

execution of the for loop. To implement this secure coding rule successfully, the source code

fragment which is needed is the list of data types of the loop counters of the "for loops" present

inside methods.

The data type of the loop counters is stored in a data structure (A HashMap in this instance) in the

MethodLevelCodeFragment.java class and the violation detection algorithm in the

MethodLevelViolationDetector.java class accesses this data structure and if a float data type is

found a violation is detected. The selected method level secure coding rules along with the

algorithms designed for them and the relevant JavaParser methods used to obtain relevant code

fragments are Appendix C.

36

.

Figure 4.1: Detection of the mentioned Method Level secure coding rules(in orange colour)

Figure 4.2: Countermeasures(in Right side column) for the detected violations

37

4.4 Class level implementation

4.4.1 Introduction

Class granularity is an important granularity level in object-oriented programming since object-

oriented programs are based on the hierarchy of classes, and well-defined and cooperating objects.

Specifically, in Java programs, a class is a Java platform API library that defines a set of objects

that share a common structure and behaviour. In Java programming language, all the code written

by developers should be included inside a particular class which means that in order to have any

piece of source code, a class is needed. Hence class level granularity is a must for any Java

program. This granularity level covers the code written inside a class but lies outside a method and

also belongs to the java.lang package that doesn’t need to be imported explicitly.

Table 4.3 mentions the five secure coding rules supported by the framework that fall into the class

granularity level. A justification is also provided to explain as to why they belong to class level

granularity.

Table 4.3: Justification of class level secure coding rules

Main category Secure

coding rule

Justification

Methods (MET) MET09J Both equals and hashcode method belongs to

java.lang.Object package which is auto-imported. In

Java, java.lang.Object class requires that any two

objects that are compared using the equals() method

must produce the same integer result when the

hashCode() method is invoked. The violation occurs

when the hashCode() is not defined.

Object Orientation

(OBJ)

OBJ05J This secure coding rule states that accessor methods

(getter methods) should not return mutable class private

members(eg- private global variables) without making

them defensive. The violation occurs when referencing

to private mutable class members are returned.

Object Orientation

(OBJ)

OBJ01J This secure coding rule states to limit the access of

fields such as global variables by using access modifiers

such as private. The violation occurs if the accessibility

of class variables are not limited.

Object Orientation

(OBJ)

OBJ10J This secure coding rule states to use the final keyword

for public static non-final fields(eg- Global variables).

38

I.e to make those fields into constants so that their

values cannot be changed by an attacker. The violation

occurs if the public static class variables are not

declared as final.

Declarations and

Initialization (DCL)

DCL00J This secure coding rule violation arises due to the

incorrect order of initialization of static field triggers

inside a class but outside a method. This secure coding

rule involves static class variables.

4.4.2 Implementation procedure

Class level implementation was carried out to add the ability to detect class level secure coding

rule violations to the framework. A systematic approach was followed during the class level

implementation. Secure coding rules that belong to class level were selected as mentioned in Table

4.3. This classification was done according to the class level classification criteria that was defined

in Table 3.1 . Single secure coding rule may require several source code fragments of different

granularity levels. In that case, the granularity of the secure coding rule was selected according to

its required code fragment with the highest level of granularity. If the highest level of granularity

of code fragments required by a secure coding rule is class level, it was classified under class level

granularity. Secure coding rules that belong to class level granularity will only use class level code

fragments or method level code fragments.

Subsequently, the code fragments required by secure coding rules that belong to class level

granularity were extracted by traversing the AST of the source file that is needed to be analysed.

JavaParser library was used for this purpose of creating an AST and traversing through it. The

code written for extracting code fragments were included in ClassLevelCodeFragment class or

MethodLevelCodeFragment class according to its granularity level because the code fragments

needed by class level secure coding rules can also be method level code fragments.

After extracting relevant code fragments, the secure coding rules that belong to class level

granularity were represented by algorithms. These algorithms were then implemented using Java

programming language and included into a single class called ClassLevelViolationDetector.

Finally, the ClassLevelViolationDetector class was integrated into the framework using the factory

design pattern. Countermeasures relevant to the secure coding rules that belong to class level

granularity were also added by a separate class.

39

For example, let's consider how the above approach was applied to implement the secure coding

rule that states to prevent class initialisation cycles (DCL00-J). This secure coding rule requires

two code fragments. The first code fragment required is the list of class level variable declarations

and the second code fragment is the list of assign statements inside the constructor. These required

code fragments were extracted using JavaParser library. Then the secure coding rule was

represented using an algorithm and then implemented using Java. Following the algorithm used to

implement this secure coding rule.

1. Check whether a constructor is defined.

2. Get the full declaration of class variables along with their line number. (Line number is

required because in this rule the order of class variables are important as well)

3. If a class variable has created an object of the same class, get class variables defined after

that object creation.

4. Check whether these variables are used in expressions inside the constructor and if so

DCL00-J is violated.

Finally, the code fragments, secure coding rule implementation and countermeasures were added

to the framework respecting the design. Following figures illustrate as to how the class level secure

coding rule violations were detected by the framework.

40

Figure 4.3: Detection of the mentioned class level secure coding rules(in orange colour)

Figure 4.4: Countermeasures (in Right side column) for the detected violations

41

4.5 Package level implementation

4.5.1 Introduction

The proposed solution consists of three main granularity levels namely method level, class level

and package level. As mentioned previously, SEI CERT Coding Rules have been classified into

above three granularity levels based on classification criteria. This classification helps to

implement relevant secure coding rules correctly.

Package level mainly focuses on secure coding rules which are neither belongs to method level

nor class level. That is source code fragments that are imported from external classes and which

lie outside the java.lang package falls into package level. Table 4.4 shows secure coding rules

implemented under package level and their relevance to package level based on code fragments

with justifications.

Table 4.4: Justification of Package level secure coding rules

Main category Secure

coding rule

Justification

Thread Application

Programming

Interface (THI)

THI00-J A violation occurs due to invoking of run() method

directly Inside a class that implements the Runnable

interface.

Serialization

(SER)

SER01-J A violation of the rule occurs due to incorrect method

signatures of writeObject(), readObject(),

readResolve() and writeReplace() methods.

Serializable interface belongs to java.io Package.

Numeric types and

Operations

(NUM)

NUM10-J A violation occurs due to passing double values instead

of string values to the BigDecimal constructor which

belongs to the BigDecimal class of java.math package.

Platform Security

(SEC)

SEC07-J A violation occurs due to overriding getPermissions()

method without invoking super.getPermissions()

method. getPermissions method belongs to

URLClassLoader in java.net package.

Input Output (FIO) FIO02-J This rule violates due to delete() method is used to

delete a specified file, but it does not indicate its

success. It only throws SecurityException. No other

exceptions are thrown, so the deletion can silently fail.

42

This method includes in file class which is inherited

from java.io package.

4.5.2 Implementation procedure

Initially, a set of secure coding rules that fall under package level were identified. Subsequent to

the successful completion of designing of violation detection algorithms for selected secure coding

rules, package level implementation was carried out. A mechanism was required to extract source

code fragments which are used by violation detection algorithms. To achieve this task, a JavaParser

library is used to generate an AST from the source code. The source code fragments were obtained

by traversing along the generated AST. HashMaps and ArrayList are used to store relevant source

code fragments for each secure coding rule.

A single data structure can contain common code fragments which are used by several secure

coding rules. Single secure coding rule may use several code fragments which belongs to different

granularity levels. Package level consist of PackageLevelCodeFragment and

PackageLevelViolationDetector class. Package Level Code fragment class consist of data

structures for store relevant code fragments and method which can be used to extract relevant

source code fragments from the source code.

Then secure coding rules were represented as violation detection algorithms in order to detect

violations in the source code. PackageLevelViolationDetector class contains package level secure

coding rules implemented as violation detection algorithms. These violation detection algorithms

used source code fragments of different granularity levels to detect violations.

Finally completed secure coding rules of package level need to be integrated into the framework.

To achieve this factory design pattern was used to incorporate three granularity levels and build

single unit (DetectorFactory class) which can be used to detect secure coding rule violations which

fall into any of the above three levels. Countermeasures for the package level secure coding rules

were also added to the framework to guide the user to resolve the detected violation.

Consider the third secure coding rule in Table 4.4 (NUM10-J). It states not to construct

BigDecimal objects from floating-point literals. This is primarily because literal decimal floating-

point numbers cannot always be precisely represented as an IEEE 754 floating-point value.

Consequently, the BigDecimal(double value) constructor must not be passed a floating-point

literal as an argument when doing so results in an unacceptable loss of precision. To implement

this rule first need to identify relevant code fragments (Object creational expressions and

arguments passed to the constructor). Then the list of object creational expression along with their

43

arguments is obtained and passed to the constructors. If a BigDecimal object exists, which is

created from a double value passed as a parameter, then the rule NUM10-J is violated.

Figure 4.5: Detection of the mentioned package level secure coding rules(in orange colour)

Figure 4.6: Countermeasures(in Right side column) for the detected violations

44

4.6 Alignment of implementation with system design

In the design chapter System modelling section which mainly includes the class diagram, it was

mentioned that two main design patterns namely Singleton and Factory design patterns are to be

used during the implementation of the solution. The main reasons for the use of design patterns

are to improve the system design and this product based project being an industry level Software

Engineering project.

1. Singleton design pattern

According to the class diagram, singleton pattern is to be used in the three source code fragment

classes namely MethodLevelCodeFragment.java, ClassLevelCodeFragment.java and

PackageLevelCodeFragment.java classes and the LiveParser.java class which involves reading the

source code typed in the IDE in a real-time manner. The main reason for this is that to access the

relevant data structures a single instance of each class is sufficient and also, creating too many

instances of the same class would increase the overhead and degrade the performance of the

framework by consuming an excess amount of main memory and increased Central Processing

Unit (CPU) usage.

The following Listings provide evidence for the use of Singleton design patterns in the three source

code fragment classes based on the Lazy initialisation of the Singleton design pattern.

Listing 4.1: Singleton initialization in MethodLevelCodeFragment.java class

Private static MethodLevelCodeFragment instance;

Private MethodLevelCodeFragment();

public static MethodLevelCodeFragment getInstance(){

 if(instance == null){

 instance = new MethodLevelCodeFragment();

 }

 return instance;

}

Similarly, singleton initializations have been made in the other 3 classes namely

ClassLevelCodeFragment.java, PackageLevelCodeFragment.java and LiveParser.java.

45

2. Factory design pattern

The primary purpose of using the Factory design pattern in the system design is to integrate the

implementations of the three granularity levels and to ensure that they function in an effective,

consistent manner after the integration. To incorporate the factory design pattern into the

implementation process of the framework successfully, the DetectorFacory.java class and

ViolationDetector.java interface was specifically created.

The DetectorFactory.java class primary focuses on defining the types of violation detector classes

available in the framework namely MethodLevelViolationDetector class,

ClassLevelViolationDetector class, and PackageLevelViolationDetector class. The main focus of

this is to enable the creation of the objects of these violation detector classes appropriately in the

LiveParser.java class and also support the future extensibility of the framework by allowing a

developer to add a new violation detector granularity level easily.

Listing 4.2: Implementation of the Factory design pattern in DetectorFactory.java class

public class DetectorFactory {

 public ViolationDetector getViolatorType(String ViolatorType){

 if(ViolatorType == null){

 return null;

 }

 if(ViolatorType.equalsIgnoreCase("MethodLevelViolationDetector")){

 return new MethodLevelViolationDetector();

 } else if(ViolatorType.equalsIgnoreCase("ClassLevelViolationDetector")){

 return new ClassLevelViolationDetector();

 } else if(ViolatorType.equalsIgnoreCase("PackageLevelViolationDetector")){

 return new PackageLevelViolationDetector();

 }

 return null;

 }

}

The ViolationDetector.java interface supports the use of factory design pattern by defining the

abstract methods that are overridden in the three violation detector classes namely

MethodLevelViolationDetector.java, ClassLevelViolationDetector.java and

PackageLevelViolationDetector.java classes to implement the violation detection algorithms

46

corresponding to the relevant secure coding rules belonging to the three granularity levels. It also

supports extensibility by enabling the easy addition of a new violation detection algorithm to the

framework.

Listing 4.3: Implementation of Factory design pattern in ViolationDetector.java interface

public interface ViolationDetector {

 String rule1Detection();

 String rule2Detection();

 String rule3Detection();

 String rule4Detection();

 String rule5Detection();

}

Listing 4.4: Overriding of the relevant abstract methods in MethodLevelViolationDetector.java

class to implement violation detector algorithm of secure coding rule NUM-9J

public class MethodLevelViolationDetector extends AnAction implements

ViolationDetector{

public String rule1Detection(){

 try {

 rule1Detection=detectViolationNUM09J();

 } catch (Exception e) {

 e.printStackTrace();

 }

 return rule1Detection;

}

}

47

4.7 Countermeasures for violated guidelines

Countermeasures are included in the plugin-based framework as a separate module since it is

convenient to maintain a separate module for them and these are required by secure coding rules

of all three granularity levels. To store countermeasures for selected secure coding rules, a

HashMap data structure is used. Listing 4.5 shows the structure of the HashMap created to store

countermeasure data.

Listing 4.5: Implementation of CountermeasureData HashMap in order to store countermeasure

data of implemented secure coding rules.

public HashMap<String, String> CountermeasureData = new HashMap<String, String>();

As shown in Listing 4.5 it is clear that two string <key,value> pairs are maintained in the

CountermeasureData HashMap. Each rule has a unique name in its description [5]. For example

consider the THI00J rule which is the package level first rule as mentioned in the Package level

implementation. (This rule represents the first rule under the Thread APIs (THI) main category).

This name is used as the key of the HashMap. A rule description is included as the value of the

HashMap. Rule description consists of three main parts including rule name, risk assessment

relevant to the rule and a link to the rule in the SEI CERT coding standard web page.

Figure 4.7: Example countermeasures for the detected violations

48

Figure 4.7 illustrates how the risk assessment of each secure coding rule is represented in the

ToolWindow using an HTML table. The detected violations are listed down under the violated

rules heading in LHS column. Countermeasures for the detected violations are shown in the RHS

column of the ToolWindow, and they are linked to the relevant secure coding rules. If a user clicks

on a violated rule shown in the LHS column, then appropriate countermeasures will be displayed

in the RHS column. If a user needs to know more details relevant to a particular secure coding

rule, he/she can click on the link at the bottom. Then the user will be directed through the web

browser to the relevant rule of the SEI CERT secure coding web page.

4.8 Test procedure

The primary purpose of conducting software testing for this project was to find defects in the

solution and to ensure that the plugin-based framework operates as mentioned in the specification.

I.e. to verify whether actual results are aligned with the expected results. In the current context

there exist two main categories of testing methodologies namely, functional testing and non-

functional testing. Functional testing primarily focuses on unit testing, integration testing, and

system testing to verify that the implemented plugin-based framework provides accurate results.

Automated unit testing focussing on the the three granularity levels namely Method, Class and

Package levels was performed using the TestNG framework.

Non-functional testing was primarily performed on performance and reliability aspects of the

plugin-based framework. The performance testing was carried out using software profiling tools

such as VisualVM, JProfiler to verify that the framework functioned in an optimised manner with

low memory consumption, Central Processor unit consumption and low latency(response times).

The reliability testing was manually conducted by all three members focussing on the three levels

of granularity levels namely method, class and package levels. This reliability testing methodology

was carried out using the code snippets provided by SEI CERT [5] to verify whether the

implemented violation detection algorithms detected the respective secure coding rule violations.

Thus ensuring the reliability of the framework providing accurate results.

49

4.9 Deployment

The solution of this product based project is a plugin-based framework for Intellij IDEA IDE and

specific to Java programming language. In the plugin development process, an IDE instance along

with the developing plugin is used to make sure that it works as intended. After successful

completion of the plugin development process the framework needs to be deployed. This is mainly

because prior to the usage of custom plugin it needs to be deployed: built, installed, and then

enabled using the Plugin Manager. If the plugin module does not depend on any libraries, a .jar

archive will be created. Else, a .zip archive will be created including all the plugin libraries

specified in the project settings.

In order to deploy the plugin-based framework, it needs to be verified that it works correctly and

provides the expected results. The proper working of the framework was achieved by installing a

built of the plugin from disk on a fresh instance of IntelliJ IDEA community edition. Subsequently,

manual testing was conducted against some compliant and non-compliant codes to verify its

correct functionality. After confirming that the framework functions as intended, the plugin

version needs to be updated, as the JetBrains plugin repository will not accept multiple artefacts

with the same version. After the next step was to upload the plugin to the plugin repository.

After submitting the secure coding plugin-based framework, it was successfully uploaded to the

JetBrains plugins repository. After the uploading process, there was a pending JetBrains' review

conducted by their plugin evaluating panel that assesses the standards of the plugin. This process

took two business days, and after the evaluation conducted by IntelliJ IDEA authorities, approval

was granted, and the framework was made publicly available. In the meantime, authors of the

plugin can always access the plugin via direct link provided by them. However, it will not be

publicly available (e.g. in search results and the product) until approved by JetBrains. All new

plugins are typically reviewed within two business days. Authors will receive a notification as

soon as the status of this review changes. Once the Framework for Secure Coding plugin has been

approved by JetBrains plugin administration team, it was publicly available to download in the

JetBrains Plugin Repository. Figure 4.8 illustrates Framework for secure coding plugin deployed

in the JetBrains Plugin Repository.

50

Figure 4.8: Framework for secure coding plugin deployed in the JetBrains Plugin Repository

As mentioned in the use case diagrams included in Appendix D, the plugin can be installed to the

IntelliJ IDEA IDE in two ways. The first method is installing the plugin from disk. In order to do

this first need to make sure that the plugin is compatible with the IDE version and if not then the

plugin will not be able to install and run in the IDE. If it is compatible with the IDE version, then

it can be downloaded from the JetBrains plugin repository. After successful installation, the plugin

needs to be enabled using the Plugin Manager. The second method is to browse repositories for

the plugin. This method is quite easy as a user can directly download and install the plugin at once.

The plugin will appear in the search result only if it is compatible with the IDE version. If the

plugin is not compatible with the IDE version, then it will not appear in the search results. As

previously mentioned after a successful installation, the plugin needs to be enabled using the

Plugin Manager.

51

Figure 4.9: Downloads of deployed plugin on weekly basis

4.10 Summary

This chapter presented a detailed description of the solution provided, development approaches

followed, how each component was developed, tools and technologies used in implementing the

plugin-based framework. This chapter also discusses the overall process of IntelliJ IDEA plugin

development. A detailed description of the implementation of 3 granularity levels was also

presented in this chapter. Further, this chapter discussed decisions taken during the implementation

process and justification for alignment of implementation with system design. In addition to that,

this chapter also explained how the countermeasures for violated guidelines were implemented

and integrated into the plugin-based framework.

52

Chapter 5 : Evaluation and Results

5.1 Introduction

The evaluation process was carried out to assess the solution of the product based project in order

to verify whether the intended requirements have been met and are up to relevant standards. The

main focus is to ensure that the plugin-based framework functions in a way that the expected

objectives are achieved. In the evaluation process, four methods were selected in order to assess

various aspects of the framework. They are Project-based evaluation, Extensibility based

evaluation, Performance-based evaluation and User-based evaluation.

The Extensibility based evaluation methodology mainly assess the extent to which the existing

framework could be extended with minimal changes to the existing source code base, by users in

the future. Extensibility mechanism has been achieved by the use of a common data structure and

with the support of design patterns used in the system design. 4 main aspects of extensibility were

considered in this method of evaluation and they are addition of a new secure coding violation

detection algorithm, addition of a new source code granularity level, modification of existing

secure coding algorithms, and modification of existing data structures.

Project-based evaluation methodology primarily focuses on evaluating the extent to which the

framework is capable of detecting secure coding rule violations found in existing open source

projects. Other aims of this method of evaluation are to identify the most commonly violated secure

coding rules by software developers while writing the source code and assessing the accuracy of

the detected violations via comparison with other existing static analysis tools.

IntelliJ IDEA IDE consumes a considerable amount of main memory when it is being executed.

Optimising the memory usage during the execution is vital to maintain the performance of the

framework when it is being used. The Performance-based evaluation methodology mainly

evaluates the system design of the framework by assessing the performance-related factors such

as memory usage, Central Processing Unit(CPU) usage, response time(latency), etc to determine

the extent to which the system design improved them.

The user-based evaluation was carried out in order to evaluate the usability aspects of the plugin-

based framework based on the responses provided by the users that downloaded the plugin after

its deployment to the JetBrains plugin repository. The main intention of this evaluation

methodology is to assess the usability aspects of the plugin-based framework along with focussing

on the improvements to be made in the future versions to be released.

53

5.2 Project based evaluation

5.2.1 Introduction

The project-based evaluation was carried out to check whether the secure coding plugin can detect

secure coding rules violated by open source Java projects on Github code repository and to verify

whether the detected violations are correct(True positive) or incorrect and use those results to

measure the accuracy of algorithms used to detect secure coding rule violations.

This evaluation methodology assisted in identifying false positives and false negatives of the secure

coding plugin-based framework if there is any. False positive means when the secure coding plugin

detects and shows a secure coding rule violation that is not there. When the secure coding plugin

does not detect a secure coding rule violation that is there, it is a false negative. Opposites of these

two terms are true positives and true negatives. True positives are correctly detected violations,

and true negatives mean not showing any violations even if there does not exist any.

Following is the procedure that was followed when conducting the project-based evaluation.

1. A set of open source projects in Java programming language found on Github code

repository were selected [32].

2. Source files of these selected projects were scanned using the secure coding plugin-based

framework to get the set of secure coding rule violations that it detects.

3. Source files were manually reviewed to identify any false positives, false negatives and

then the correctness of the detected violations. During this step of manually evaluating the

source files, they were manually tested against all the 15 secure coding rules supported by

secure coding plugin ignoring the results given by the plugin at the first place. This

approach allowed this evaluation technique to find false negatives if there exists any.

54

Figure 5.1: Project based evaluation procedure diagram

5.2.2 Results of Project based evaluation

Shown below are the results of the project based evaluation conducted. Table 5.1 shows the

projects considered, source files scanned, the results obtained when scanned and the justification

after manually reviewing the detected violations. Appendix E contains screenshots of how secure

coding plugin detected violations in open source projects mentioned Table 5.1.

Table 5.1: Open source projects considered for project based evaluation

Rule Project File name Justification

ERR08 Arthas TelnetConsole.ja

va

In this code "Exception" is caught at seven places

which violate the rule stating that programs must

not catch NullPointerException or any of its

ancestors namely RuntimeException, Exception, or

Throwable. The secure coding plugin detected this

vulnerability at all of these seven places.

55

Arthas.java

(Figure 5.2)

In this code, "Throwable" is caught and it violates

the rule stating that programs must not catch

NullPointerException or any of its ancestors

namely RuntimeException, Exception, or

Throwable. The secure coding plugin detected this

vulnerability.

NUM09J griDraw PlotThread.java

In this code, two floating-point variables called

"gsx" and "gsy" are used as loop counters. It

violates the secure coding practice that states not to

use floating-point variables as loop counters. The

secure coding plugin detected this vulnerability in

both of its occurrences.

ERR07J Processing

Spoon

UTCompiler.jav

a

JDTBasedSpoon

Compiler.java

In this code, "RunTimeException" is thrown at two

places. It violates the secure coding practice that

states not to throw RuntimeException, Exception,

or Throwable. The secure coding plugin detected

this vulnerability in both of its occurrences.

In this code, "RunTimeException" is thrown at six

places. It violates the secure coding practice that

states not to throw RuntimeException, Exception,

or Throwable. The secure coding plugin detected

this vulnerability at all of its occurrences.

ERR04J sonar-java ReturnInFinally

Check.java

In this code, return, break, continue and throw

statements are used inside the finally block in

multiple places. It violates the secure coding

practice that states not to complete abruptly from a

finally block. The secure coding plugin detected

this vulnerability at all of its occurrences.

EXP02J eureka EurekaJacksonC

odecIntegrationT

est.java

In this code Object.equals() method is used to

compare two character arrays. It violates the secure

coding practice that states to use Arrays.equals()

method when comparing two arrays. The secure

coding plugin detected this vulnerability.

MET09J 12B IntegerStack.java

In this code equals() has been given a new

implementation but hashCode() is not defined. It

violates the secure coding practice that states an

equals() method is defined, hashCode() method

should also be defined. The secure coding plugin

detected this vulnerability.

OBJ05J demo- SerializableOpti In this code, there is a private mutable class

56

serialize-

optional

onal.java member called optional. This variable is also used

inside the constructor which means it can be

assigned with a value when creating an object.

There is a public method called asOptional() that

returns this variable. It violates the secure coding

practice that states not to return references to

private mutable class members. The secure coding

plugin detected this vulnerability.

OBJ01J eclipse.jdt.

core

JavaModelMana

ger.java

This code has declared several public class

variables. For example, consider public integer

variable called rawTimeStamp. It is used for

different arithmetic operations like increment but

as it is a public field, it can be altered by a client

code. It violates the rule that states to limit

accessibility of fields. The secure coding plugin

detected this vulnerability.

OBJ10J Arthas GlobalOptions.ja

va

PlainTextHandle

r.java

This code has declared 8 non-final public static

variables. It violates the rule that states not to use

public static non-final fields. The secure coding

plugin detected all these vulnerabilities.

This code has declared a non-final public static

variable called NAME. It violates the rule that

states not to use public static non-final fields. The

secure coding plugin detected this vulnerability.

DCL00J java-

puzzlers

Puzzle49LargerT

hanLife.java

The Puzzle49LargerThanLife class declares a

public static final class variable, which is

initialized to a new instance of the

Puzzle49LargerThanLife class. Another class

variable called beltSize is initialized after that

which means the initialization of the

Puzzle49LargerThanLife instance class variable

happens before the runtime initialization of the

beltSize field because it appears lexically before

the initialization of the beltSize field. The value of

beltSize seen by the constructor, when invoked

during the static initialization of

Puzzle49LargerThanLife instance, is the initial

value of integer variable beltSize (0) rather than the

value assigned inside the constructor. It violates the

rule that states to prevent class initialization cycles.

The secure coding plugin detected this

vulnerability.

57

THI00J Thread_De

mo

Foo.java This code has explicitly invoked run() in the

context of the current thread. It violates the rule

that states not to invoke Thread.run(). The secure

coding plugin detected this vulnerability.

SER01J demo-

serialize-

optional

SerializableOpti

onal.java

This code has declared a readResolve() method as

private after implementing the Serializable

interface. It violates the rule that states not to

deviate from the proper signatures of serialization

methods. The secure coding plugin detected this

vulnerability.

NUM10J cbioportal SignificantlyMut

atedGenesContro

llerTest.java

In this code, BigDecimal() is passed with 0.1 or 0.2

as an argument. They are floating-point literals.

This can make an unacceptable loss of precision. It

violates the rule that states not to construct

BigDecimal objects from floating-point literals.

The secure coding plugin detected this

vulnerability at all of its occurrences.

SEC07J j2objc SecureClassLoad

er.java

This code which is intended to create a custom

class loader overrides the getPermissions() method

but does not call its superclass's more restrictive

getPermissions() method. It violates the rule that

states to call the superclass's getPermissions()

method when writing a custom class loader. The

secure coding plugin detected this vulnerability.

FIO02J Spoon JDTBasedSpoon

Compiler.java

This code attempts to delete a file but gives no

indication of its success. It violates the rule that

states to detect and handle file-related errors. The

secure coding plugin detected this vulnerability.

Figure 5.2 is a screenshot captured when Arthas.java file of Arthas project (refers to the Table 5.1)

was scanned using secure coding plugin. It shows how ERRO8 violation was detected by the

secure coding plugin and displayed to the user.

58

Figure 5.2: ERRO8 violation as detected by the secure coding plugin

The open source Java project files that were used in the above task were further used to see whether

the secure coding rules violated by them are detected by already existing popular static code

analysis tools. The most popular static code analysis tools for Java are SonarQube, SonarLint,

FindBugs and CheckStyle. Table 5.2 shows the results when these open source project files were

scanned using these tools and secure coding plugin-based framework.

Table 5.2: Detection of secure coding rules by static code analysis tools

Rule Secure

Coding

Plugin

SonarQube SonarLint FindBugs CheckStyle

ERR08 Detected Not Detected Not Detected Not Detected Not Detected

NUM09J Detected Not Detected Not Detected Not Detected Not Detected

ERR07J Detected Detected Detected Not Detected Not Detected

ERR04J Detected Detected Detected Not Detected Not Detected

59

EXP02J Detected Detected Detected Not Detected Not Detected

MET09J Detected Detected Detected Not Detected Not Detected

OBJ05J Detected Not Detected Not Detected Not Detected Not Detected

OBJ01J Detected Detected Detected Not Detected Not Detected

OBJ10J Detected Detected Detected Not Detected Not Detected

DCL00J Detected Not Detected Not Detected Not Detected Not Detected

THI00J Detected Detected Detected Not Detected Not Detected

SER01J Detected Not Detected Not Detected Not Detected Not Detected

NUM10J Detected Detected Detected Not Detected Not Detected

SEC07J Detected Not Detected Not Detected Not Detected Not Detected

FIO02J Detected Detected Detected Not Detected Not Detected

Table 5.3 shows the summary of the above analysis done using already existing static code analysis

tools.

Table 5.3: Summary of the detection of secure coding rules by static code analysis tools

Tool name Number of rules supported

out of 15 rules implemented

in the secure coding plugin

On the fly analysis?

Secure Coding Plugin 15 Yes

SonarQube 9 No

SonarLint 9 Yes

FindBugs 0 No

CheckStyle 0 No

60

5.2.3 Conclusion

The primary objective of the project based evaluation was to check the accuracy of the algorithms

and the results given by the secure coding plugin. Results can be divided into four categories as

true positives, true negatives, false positives and false negatives. Following is a summary of how

the secure coding plugin was evaluated using open source trending Java projects on Github code

repository.

Figure 5.3 shows that in most cases multiple violations were detected in the same source code and

in some cases the similar violations were detected at numerous places of the same source code.

Table 5.1 illustrates the results from the secure coding plugin which were manually reviewed and

justified to be true in all the cases, and this further proves that the logic behind the algorithms used

to detect secure coding rule violations by secure coding plugin-based framework is correct.

Therefore it could be concluded that all the detected violations by secure coding plugin are true

positives and the plugin does not give false positives.

The source files were manually reviewed against all 15 rules supported by secure coding plugin to

see whether the plugin did not detect any violations that are there. For example, to see whether the

rule that states to prevent class initialisation cycles has been violated, the class variables defined,

and constructor body of the source code was manually examined, and in this way, it could be

identified whether the secure coding plugin gives any false negatives. After manually reviewing

all the 15 rules, there were no false negatives found for the scanned source files, and therefore it

can be concluded that secure coding plugin does not give any false negatives and hence it gives

only true negatives.

Apart from identifying true positives, true negatives, false positives and false negatives by project

based evaluation it was also found that the most commonly violated secure coding rules among the

15 rules supported by secure coding plugin were the rules that states, programs must not catch

NullPointerException or any of its ancestors namely RuntimeException, Exception, or

Throwable(ERR08) and not to use public static non-final fields (OBJ10).

61

Figure 5.3: Multiple rule violations and same rule violation at multiple places as detected by

secure coding plugin

62

5.3 Extensibility based evaluation

5.3.1 Introduction

The Solution of this project mainly involves developing a framework. Extensibility is a mandatory

key feature or a requirement that a framework should be comprised of. This type of evaluation

involves the extent to which the Class diagram of the plugin-based framework supports its

extensibility in order to accommodate future requirements such that the framework could be

expanded easily without changes to the extending source codebase. When considering the

Extensibility 4 major extensibility areas were considered. These aspects are as follows

5.3.2 Addition of a new secure coding violation detection algorithm

The violation detector algorithms corresponding to the implemented secure coding rules are stored

in 3 Java classes based on their granularity levels. There are three code fragment classes

corresponding to each violation detector classes that stores the source code fragments in various

data structures such as ArrayLists and HashMaps. One or more data structures may be used for a

particular secure coding violation detection algorithm.

In order to accommodate the addition of a new secure coding algorithm the implemented project

solution uses a concept of a common data structure which has been introduced for each source

code fragment class. It is a HashMap with String as the key(Store names of existing data structures)

and Objects as the value(To store various data structures such as ArrayLists, HashMaps, etc.). I.e.

a HashMap with the form of HashMap<String, Object> is being used as the common data

structure. Three such common data structures are used in each source code fragment classes

corresponding to each source code granularity level.

The object-oriented concept of Encapsulation has been used for implementing the common data

structure approach. Here the common data structure has been declared with the private access

modifier and relevant getter methods for each of the three common data structures have been

declared in the three source code fragment classes. This supports the easy addition of new secure

coding violation detection algorithms into the framework.

63

Listing 5.1: The common data structure and methods associated with it in

MethodLevelCodeFragment.java class

private static Map<String, Object> methodLevelCommonHashMap = new

HashMap<String, Object>();

public static Map<String,Object> getMethodLevelCommonHashMap(){

 return methodLevelCommonHashMap ;

}

All the existing data structures used to store source code fragments in each granularity level are

added to the common data structure corresponding to that granularity level. A new secure coding

violation detection algorithm can be easily added to the framework by writing two java classes.

I.e. one java class to store the code fragments related to the extended secure coding rule and the

other java class to write the new secure coding violation detection algorithm. In the case where the

necessary code fragments are already stored in the common data structure, then a separate class

may need not to be written for the new secure coding violation detection algorithm since the code

fragments could be directly obtained from the data structure.

Listing 5.2: Adding an existing data structure to the common data structure

public Map<Integer, ArrayList<Integer>> catchClause = new HashMap<Integer,

ArrayList<Integer>>();

methodLevelCommonHashMap.put("catchClause",new HashMap<Integer,Integer>());

After the new secure coding violation detection algorithm is written an object of the violation

detection algorithm class needs to be instantiated in the LiveParser.java class and the relevant

violation detection method needs to be called. The Num09J secure coding rule which was

implemented in the initial code base was reimplemented using the extensibility mechanism.

Successful results were achieved confirming that the common data structure based approach being

a successful mechanism to extend the plugin-based framework to accommodate the addition of

new secure coding violation detection algorithms.

64

Listing 5.3: Adding a new data structure of the ExtendeCodeFragments.java class to the common

data structure

MethodLevelCodeFragment methodLevelInstance = new

MethodLevelCodeFragment();

public Map<String, Object> newCommonHashMap =

methodLevelInstance.getcommonHashMap();

public Map<Integer, ArrayList<Integer>> forCounter = new HashMap<Integer,

ArrayList<Integer>>();

public void addDataStructures(String name, Object O){

 newCommonHashMap.put(name,O);

}

addDataStructures("forCounter",forCounter);

BlockVisitor.visit(cu, (Map<Integer, Integer>)

newCommonHashMap.get("forCounter"));

65

Listing 5.4: Writing a new secure coding violation detection algorithm in the

ExtenededViolationDetector.java class.

public class ExtendedViolationDetector {

 public void extenedViolation() throws IOException {

 ExtendedCodeFragments cc = new ExtendedCodeFragments();

 if(!((Map<Integer, Integer>)

cc.newCommonHashMap.get("forCounter")).isEmpty()){

 for(int i=1;i<((Map<Integer, ArrayList<Integer>>)

cc.newCommonHashMap.get("forCounter")).size()+1;i++) {

 System.out.println("The violations are at lines "+((Map<Integer,

ArrayList<Integer>>) cc.newCommonHashMap.get("forCounter")).get(i));

 }

 System.out.println("Guideline Num09J is violated");

 return;

 }

 System.out.println("Guideline not violated");

 }

5.3.3 Addition of a new source code granularity level

In the current context, the secure coding plugin-based framework caters three source code

granularity levels namely Method, Class and Package levels. When the extensibility of the

framework is considered, the addition of a new granularity level other than the previously

mentioned three levels may also need to be focused. The approach for this has been already

achieved by the System design represented by the class diagram of the plugin-based framework.

The use of the Factory design pattern has allowed the easy addition of a new source code granularity

level into the framework. This could be simply achieved by adding the name of the new granularity

level violation detector class into the DetectorFactory.java class which contains the names of the

other three violation detector classes. Then the respective violation detector class could be created

similar to the other existing violation detector classes in the LiveParser.java class.

66

Listing 5.5: Defining the new source code granularity level in DetectorFactory.java class

public ViolationDetector getViolatorType(String ViolatorType){

 if(ViolatorType == null){

 return null;

 }

 if(ViolatorType.equalsIgnoreCase("NewGranularityLevelViolationDetector")) {

 return new NewGranularityLevelViolationDetector();

 }

5.3.4 Modification of existing secure coding violation detection

algorithms

The secure coding violation detection algorithms corresponding to each granularity level are

implemented in three separate violation detector classes namely

MethodLevelViolationDetector.java, ClassLevelViolationDetector.java and

PackageLevelViolationDetector.java. I.e. Secure coding violation detection algorithms falling

under method level are written in the MethodLevelViolationDetector.java class of the framework.

Along with time, the particular secure coding rules may be updated by SEI CERT, and thus the

existing secure coding violation detection algorithms in the plugin-based framework may need to

be changed accordingly, by committing minimal changes to the existing source code base.

This aspect of extensibility has also been achieved by the system design of the framework which

involves following a loose coupling and high cohesiveness based approach. Loose coupling is

achieved as a result of the secure coding violation detection algorithm class, corresponding to each

granularity level being dependent only on the on the respective secure coding code fragment class

and independent of all other classes. I.e. The MethodLevelViolationDetector.java class depends

only on the source code fragments stored in the common data structure of the

MethodLevelCodeFragment.java class. High cohesiveness or improved focuses is achieved by

splitting the source code into three granularity levels namely method level, class level and package

level. This has supported in achieving independence among secure coding violation detection

algorithms belonging to granularity level.

Thus the system design has allowed any individual intending to change the existing secure coding

violation detection algorithms in the future. Since the algorithms are independent among each

other, they could be changed easily with a minimum negative impact on the other algorithms in the

same granularity level or another granularity level.

67

5.3.5 Modification of existing data structures

Developers may intend to change the existing data structures used to store source code fragments

based on future requirements. Modification of the data structures may primarily refers to either

changing its name or the datatype. I.e. converting an ArrayList to a HashMap or vice versa. This

aspect of extensibility which involves changing the existing data structures is achieved from the

concept of the common data structure. The three common data structures of type

HashMap<String, Object> that are instantiated in each of the three source code fragment classes

namely MethodLevelCodeFragment.java, ClassLevelCodeFragment.java and

PackageLevelCodeFragment.java can be used to modify the existing data structures used to store

source code fragments corresponding to the relevant violation detection algorithms.

This extensibility aspect could be easily achieved as the common data structure used in this project

is of type HashMap<String, Object>. The String data type is used for the key of the HashMap

since the names of the data structures are to be stored. An Object is used as the value in order to

store various data structure types such as ArrayLists and HashMaps. If a modification such as

changing the datatype of an existing data structure is to be done, it could be easily achieved since

HashMaps do not allow duplicate keys to be stored in it. A developer can easily change the data

structure using the default put() function of the HashMap with the name of the existing data

structure with a different data type as the existing data structure stored in the common data

structure will be overridden by the new data structure since the name will be used. If the name of

the data structure is to be changed the default get() method and put() method may be used. Thus it

could be concluded that the use of a common data structure has ensured the modification of

existing data structures by name and the data type.

Listing 5.6: Modification of the data type of existing data structures

public Map<Integer, ArrayList<Integer>> catchClause = new HashMap<Integer,

ArrayList<Integer>>();

commonHashMap.put("catchClause",new HashMap<String,Integer>());

commonHashMap.put("catchClause",new ArrayList<String>());

68

5.4 Performance based evaluation

5.4.1 Introduction

The solution of this project primarily focuses on the fly detection of secure coding rule violations

in the source code written in Java programming language. It may be necessary to evaluate the

performance of the plugin with respect to the size of the source code and its complexity. Consuming

a tremendous amount of time to detect violations when large source code is present in the IDE may

reduce the effectiveness and usefulness of the plugin.

Usually IntelliJ IDEA IDE consumes a considerable amount of memory and Central Processing

Unit(CPU). As a result, the performance may also need to be evaluated with respect to the main

memory and CPU usage compared with the source code size with the use of suitable Software

profiling tools. VisualVM and JProfiler were used as software profiling tools in this evaluation

methodology.

In order to achieve this task performance has been evaluated in terms of the time required for the

analysis to complete(time is taken to detect violations in the source code) commonly referred to as

latency, main memory usage, and CPU usage. These criteria assisted in verifying whether the

plugin-based framework efficiently used its resources and how it performed on different source

codebases.

In addition to the above-mentioned performance evaluation criteria, main memory and CPU

consumption of the plugin-based framework was also evaluated using design patterns used version

of the framework and design patterns not used version. The main focus of this performance

evaluation criteria is to assess the contribution of the system design in improving the performance

of the framework. The violation detection of six secure coding rules in which two rules from each

of the three granularity levels were considered in the performance evaluation methodology.

69

5.4.2 Results of performance based evaluation

Table 5.4: Memory and CPU consumption with design patterns and without design patterns for

individual rule

Secure

coding

rule

Design Patterns Used Version Without Design Patterns Used Version

Average Memory

consumption

Average CPU

consumption

Average Memory

consumption

Average CPU

consumption

ERR08J

NUM09J

OBJ05J

MET09J

THI00J

SER01J

175.13 MB

165.33 MB

190.85 MB

186.75 MB

172.77 MB

175.65 MB

6.97 %

10.53 %

10.34 %

10.34 %

7.02 %

9.66 %

218 .00 MB

173.43 MB

183.23 MB

195.68 MB

179.12 MB

184.43 MB

50.75%

30.34 %

29.56%

35.83%

20.40%

20.98%

70

Table 5.4 illustrates average memory and CPU consumption for each rule which has been

implemented in the plugin. According to Table 5.4 all the rules in the design pattern used version

consumes relatively less amount of main memory than in version without design patterns.

Likewise, the design pattern used version consumes significantly less amount of CPU compared

to the version without design patterns.

In the design pattern used version each violation detector class only need a single instance of

relevant code fragment class. As a result, rules which fall into the same granularity level can reuse

this code fragments for violation detection without regenerating them. Moreover, these code

fragment objects have declared as global which can be accessible by all the methods in that class

instead of declaring them as local objects. Thus it could be concluded that this will eventually

result in less amount of memory consumption.

Table 5.5: Memory and CPU consumption with design patterns and without design patterns for

above six rules.

Design Patterns Used Version Without Design Patterns Used Version

Average Memory

consumption

Average CPU

consumption

Average Memory

consumption

Average CPU

consumption

185.33 MB

22.60%

196.94MB

41.77%

Table 5.5 shows that the design pattern used version consumes less amount of main memory and

CPU compared to the version without design patterns. As mentioned earlier, since less number of

objects are created of a violation detector class are created with the support of design patterns,

CPU load is also small in design pattern used version. The above results also justify that adoption

of design patterns have resulted in efficient consumption of CPU and main memory.

Table 5.6: Average response time with and without design patterns for individual rule.

Secure

coding rule

Average response time with design

patterns (Nanoseconds)

Average response time without design

patterns (Nanoseconds)

ERR08J

407311.25

22973794.00

71

NUM09J

OBJ05J

MET09J

THI00J

363133.50

911124.50

716337.75

259046.00

5437295.50

7775405.75

17224237.25

5745540.25

72

SER01J

249563.50

4561981.75

It could be seen from Table 5.6 that design patterns used version has less response time (low

latency) compared to the version without design patterns. According to this table, it is clear that

design patterns used version function more efficiently. From the above six rules, MET09J has the

highest response time since it consists of nested for loops. This result also justifies that adoption

of design patterns in the system design has a positive effect on the response time of the plugin.

Table 5.7: Average total response time with design patterns and without design patterns for six

rules

Total Response time with design patterns

(Nanoseconds)

Total Response time without design

patterns (Nanoseconds)

4468158.50

55829724.75

Average total response time with design patterns used version and without design patterns is shown

in Table 5.7. According to the table, it is clear that the response time of version with design patterns

is relatively less than the version without design patterns. Hence this result further concludes that

the adoption of design pattern has reduced the overall response time of the plugin.

73

Table 5.8: Average response time for different lines of code

Lines of code Average response time (Nanoseconds)

100

200

300

500

1315088.75

1482097.25

1598991.20

1641296.00

The average response time for different lines of code is illustrated in Table 5.8: Average response

time for different lines of code. This table shows when lines of code increase response time also

gradually increase. This is mainly because for large codebases, parser requires a significant amount

of time to generate an AST.

Figure 5.4: Response time versus lines of code

As mentioned earlier the response time should increase when the lines of code in the code base

increase. As expected Figure 5.4 illustrates this behaviour.

74

5.4.3 Benchmark tool comparison

This benchmark comparison was carried out for the Framework for Secure Coding plugin which

has a total of 15 secure coding rules. Sonarlint IntelliJ IDEA plugin was selected as a benchmark

tool which can be freely downloaded from the IntelliJ plugin repository.

Table 5.9: Benchmark tool comparison between Secure coding plugin-based framework and

Sonarlint

Lines of code

Memory and CPU consumption of

Secure Coding plugin

Memory and CPU consumption of

Sonarlint

CPU

consumption

Memory

consumption

CPU

consumption

Memory

consumption

100

200

300

500

63.63 %

68.13 %

78.49 %

80.89 %

163.00 MB

180.95 MB

184.00 MB

208.95 MB

64.65 %

70.39 %

84.46 %

83.39 %

183.35 MB

207.40 MB

211.00 MB

236.42 MB

The benchmark tool comparison using Secure Coding plugin and Sonarlint is illustrated in Table

5.9. It is clear that the secure coding plugin-based framework consumes significantly less amount

of main memory compared to Sonarlint plugin. CPU consumption is also less with compared to

Sonarlint plugin. For both tools, memory and CPU consumption gradually increase when the

number of lines of code increase in the codebase. This evaluation concludes that the plugin was

reasonable in its resource consumption with respect to benchmark tool.

75

5.5 User based evaluation

5.5.1 Introduction

The user-based evaluation was carried out in order to assess the usability aspects of the plugin-

based framework along with its impact on guiding software developers to adhere to secure coding

rules while writing source code. The evaluation was performed by allowing a set of users to

provide feedback after downloading the framework directly from IntelliJ IDEA IDE or JetBrains

plugin repository and using it.

5.5.2 Analysis of results

Feedback was obtained by enabling users that downloaded and used the the plugin-based

framework, to fill a questionnaire. These questions were associated with the usability properties

of the framework and other fundamental questions such as frequently used programming language,

whether they are aware of secure coding, whether they follow secure coding guidelines when

coding, if so what are the secure coding guidelines followed by them, etc. Users were also allowed

to provide comments and recommendations for the improvement of the framework in order to

improve the usability.

Based on the feedback from seven users it was evident that a majority of them mostly used Java

programming language (71.4%). The secure coding plugin-based framework primarily supports

the Java programming language, and it was also noticed that a majority of the feedback providers

(57.1%) had heard about the concept of secure coding. The main reason for this is that the concept

of secure coding was introduced in the early 2000s which is sometime back, along with the secure

SDLC introduced by Microsoft [8].

76

Figure 5.5: Percentage wise usage of Programming languages by the respondents

Figure 5.6: Percentage wise awareness of respondents regarding secure coding

The feedback as to whether the users who knew about secure coding concept followed secure

coding guidelines while coding, provided negative results since a majority(75%) of them stated

that they did not follow such guidelines while coding. The main reason for this could be identified

as the lack of any automated tool focussed on identifying such violations in which the manual

procedure of following a secure coding cheat sheet is highly time-consuming.

77

Figure 5.7: Percentage wise use of secure coding standards by respondents

The usability aspect of the plugin was assessed based on 5 major parameters. These were ease of

installing the plugin into the IntelliJ IDEA plugin, Performance aspects such as latency, memory

and processor usage, accuracy whether the mentioned secure coding rules are detected, Support as

guide for the developers to learn secure coding best practices and User Friendliness such as

tooltips, countermeasures, etc. The gradings for parameters in descending order were Excellent,

Good, Fair and Poor and following are the respective responses received related to the usability

aspect of the plugin.

78

Figure 5.8: Gradings received for usability of plugin

5.5.3 Conclusion

It could be concluded based on the usability related responses that the plugin-based framework

had an average grading of Good since it is the highest grading received for three out of the five

usability parameters apart from ease of installation and User friendliness parameters. Other than

these the responses, the feedback respondents were requested to provide comments or suggest any

other improvements in order to improve the versions of the plugin-based framework that would be

released in the future. The feedback provided by the respondents could be found in Appendix F.

79

5.6 Summary

The project based evaluation methodology was mainly carried out in order to verify whether the

secure coding rule violations detected in open source projects are accurate. A set of four existing

static code analysis tool namely SonarQube, SonarLint, FindBugs, and Checker were used and

from the results of this evaluation methodology, it was verified that the secure coding rule violation

detections by the secure coding plugin-based framework were accurate. The aforementioned four

static code analysis tools all together detect nine secure coding rule violations which have also

been implemented in the secure coding framework. The comparison of the results from this

evaluation methodology verified that the detection of secure coding rule violations by the

framework developed in this product based project was accurate.

It could be concluded from the extensibility based evaluation methodology that the secure coding

plugin-based framework can be modified in the future by developers, with minimal changes to the

code base. The use of HashMap<String,Object> type of common data structure and Factory design

pattern has enabled the extension of the plugin through various aspects such as addition of a new

Secure coding violation detection algorithm, addition of a new source code granularity level,

modification of existing secure coding algorithms and modification of existing data structures.

The performance based evaluation was performed using software profiling tools such as visualVM

and JProfiler in order to assess the performance of the plugin-based framework based on its system

design. The main intention was to identify whether the design provided a competitive advantage

to the secure coding plugin-based framework on performance factors such as memory and

Processor usage, latency which is the response time in detecting secure coding rule violations, etc.

The user based evaluation was carried out in order to assess the usability aspects of the plugin-

based framework such as ease of installing, accuracy, performance, etc in which positive responses

were received from the users that downloaded the plugin via the JetBrains plugin repository.

Feedback was also received in the form of comments in order to make improvements in the future

upgrades to be released.

80

Chapter 6 : Conclusion

The solution focuses on developing a mechanism to automate the process of detecting SEI CERT

secure coding rule violations found in the source code of software applications. In the current

context, most of the software developers follow a manual approach in which a checklist with secure

coding guidelines is followed each time a part of source code is typed. A plugin-based framework

was built as a proof concept for the automation of this manual process which currently consumes

a massive amount of developer time unnecessarily.

The well-focussed background study identified that a significant amount of costs could be saved

by preventing the introduction of security vulnerabilities during the coding or development phase

of the SDLC, if software developers adhere to secure coding guidelines. Furthermore it was

identified that there exist three sets of secure coding guidelines introduced by parties namely

Oracle, SEI CERT and OWASP. The set of secure coding guidelines introduced by SEI CERT

commonly referred to as SEI CERT secure coding rules were selected as the most suitable and

feasible set of guidelines to be implemented in the secure coding plugin-based framework.

Subsequently, the SEI CERT secure coding rules were classified into three granularity levels

namely Method, Class and Package respectively. Based on these three levels of classification a set

of 100 secure coding rules were classified and is found in Appendix B. The classification criteria

immensely supported improving cohesiveness in analysing the secure coding rules and

implementing them in the form of algorithms in the framework. The system design with the use of

design patterns facilitated extensibility of the secure coding framework for future development

purposes.

During the implementation process, a selected set of 15 secure coding rules were converted into

algorithms and implemented in the framework in the form of an IntelliJ IDEA IDE plugin. An on

the fly methodology was developed and integrated with the JavaParser, in order to build the live

parser of the framework. This assisted in creating an AST in a real-time manner through which

the necessary source code fragments for the violation detection algorithms are obtained and stored

in data structures. Apart from the detection of secure coding rule violations in the source code, the

countermeasures to overcome such violations were also provided to the user via a tool window. A

mechanism to extend the framework with the support of Factory design pattern and a common data

structure was introduced to support future developments.

Subsequent to the implementation process an executable version of the plugin-based framework

was deployed to the JetBrains plugin repository. This enabled users to download and use the

plugin-based framework. An evaluation process was carried based on four main aspects namely

Project-based, Extensibility-based, Performance-based and User-based evaluations. The

violations detected by the plugin-based framework can be concluded as accurate based on the

results of the Project based evaluation. Extensibility-based evaluation assessed various aspects

through which the framework could be extended for future work. The results from the

81

performance-based evaluation indicated that the system design of the plugin-based framework

improved its performance with the support of appropriate design patterns. Based on user responses

of the user based evaluation, it could be concluded that users have received positive experience

when using the framework.

6.1 Future work

A significant amount of secure coding rules classified in Appendix B are user dependent and is

therefore complex to be implemented in the form of algorithms. This could be considered as a

limitation of this project and identification of a formal mechanism to convert these set of user-

dependent rules into algorithms or any other suitable form to detect secure coding rule violations,

could be considered as a vital task in the future development process of the plugin-based

framework.

Secure coding plugin-based framework requires users to have a syntactically correct source code

in the IDE editor. The reason for this is, JavaParser library can only parse syntactically correct

source codes. Due to IntelliJ IDEA’S IntelliSense feature, users usually write syntactically correct

source codes even though the code is incomplete or semantically incorrect. When a user makes a

typo mistake, the whole code will become syntactically incorrect, and then the framework will not

be able to work as intended. This is a limitation of this framework and hence finding an approach

to analyse syntactically incorrect, or unparsable source codes can be considered as future work.

The framework developed in this product based project detects 15 SEI CERT secure coding rule

violations. Integration of further secure coding rules into the framework could be considered as a

vital task in the future work of this project. The ability to detect more and more secure coding rule

violations in source codes could be considered as an aspect which improves the usability and

importance of the secure coding plugin-based framework.

In the current context, the plugin-based framework supports Java programming language and

focuses only on IntelliJ IDEA IDE. Existing static code analysis plugins such as SonarLint,

SpotBugs support several programming languages and different IDEs such as NetBeans and

Eclipse. SEI CERT has introduced secure coding rules for several languages such as C, C++, Perl,

and Android. Updating the secure coding plugin-based framework to accommodate the secure

coding rules in these different programming languages and modifying the framework to support

several IDEs could be considered as future work associated with this project.

82

References

[1] S. Lipner, "The trustworthy computing security development lifecycle," in Computer

Security Applications Conference, 20th Annual, 2004.

[2] G. McGraw, "Software Security: Building Security In", 2006.

[3] SANS Institute, "Software Engineering - Security as a Process in the SDLC", Nithin

Haridas, 2007.

[4] "Software security", Cylab, 2018. [Online]. Available:

https://www.cylab.cmu.edu/research/software-security.html. [Accessed: 08- Aug-

2018].

[5] Software Engineering Institute, “SEI CERT Oracle Coding Standard for Java“. [Online].

Available:

https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+f

or+Java

[6] Tricentis, "The Software Fail Watch: 2016 in Review", 2016.

[7] R. Stites, "The Power of Peer Review Session", 2015.

[8] "Benefits of the SDL", Microsoft. [Online].

Available: https://www.microsoft.com/en-us/SDL/about/benefits.aspx. [Accessed: 12-

June- 2018].

[9] G. McGraw, "Seven Touchpoints for Software Security", Swsec.com, 2006. [Online].

Available: http://www.swsec.com/resources/touchpoints/. [Accessed: 09- Jun- 2018].

[10] G. McGraw. “Risk analysis in software design“, 2004. [Online].

Available:

https://www.synopsys.com/blogs/software-security/software-risk-analysis. [Accessed: 05-

June- 2018].

[11] SpotBugs. Retrieved from https://spotbugs.github.io

[12] Sonarlint. Retrieved from https://www.sonarlint.org

83

[13] M. I. Daud, “Secure Software Development Model: A Guide for Secure Software Life

Cycle“. 2009.

[14] N. Davis, “Secure Software Development Life Cycle Process“, 2013.

[15] V. S. Mdunyelwa, J. F. van Niekerk and L. A. Futcher, “Secure Coding Practices in the

Software Development Capstone Project“, 2017.

[16] L. N. Quang Do, K. Ali, B. Livshits, E. Bodden, J. Smith and E. Murphy-Hill, “Cheetah:

Just-in-Time Taint Analysis for Android Apps“, 2017.

[17] F. Wedyan, D. Alrmuny and J. M. Bieman, “The Effectiveness of Automated Static

Analysis Tools for Fault Detection and Refactoring Prediction“, 2009.

[18] Synopsys, “Secure Coding Guidelines“, 2017. [Online].

Available: https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/secure-

coding-guidelines-datasheet.pdf

[19] OWASP, “OWASP Secure Coding Practices Quick Reference Guide“. [Online].

Available:

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

[20] Oracle, “Secure Coding Guidelines for Java SE“. [Online].

Available: https://www.oracle.com/technetwork/java/seccodeguide-139067.html

[21] Software Engineering Institute, “SEI CERT Coding Standards“. [Online].

Available: https://wiki.sei.cmu.edu/confluence/display/seccode

[22] Software Engineering Institute, “Rules vs. Recommendations“. [Online].

Available:

https://wiki.sei.cmu.edu/confluence/display/seccode/Rules+vs.+Recommendations

[23] Software Engineering Institute, “Rule: Priority and Levels“. [Online].

Available:

https://wiki.sei.cmu.edu/confluence/display/java/Rule%3A+Priority+and+Levels

[24] T. Mogensen, Basics of Compiler Design: Anniversary edition, (p. 2), 2011.

[25] ANTLR. Retrieved from http://www.antlr.org/about.html

84

[26] F Tomassetti, “Getting started with JavaParser: analyzing Java Code programmatically“,

2016. [Online].

 Available: http:/tomassetti.me/getting-started-with-javaparser-analyzing-java-code-

programmatically

[27] Javadoc of JavaParser.

Available at: https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.6.15

[28] G. Tomassetti, "Java Libraries That Parse Java: JavaParser", 2017. [Online].

Available: https://tomassetti.me/parsing-in-java/#javaLibraries

[29] "Design Patterns in Java Tutorial", www.tutorialspoint.com. [Online].

 Available: https://www.tutorialspoint.com/design_pattern/index.htm. [Accessed: 05- Aug-

2018].

[30] N. M. Edwin, "Software Frameworks, Architectural and Design Patterns", 2014.

[31] "IntelliJ Platform SDK", JetBrains IntelliJ Platform SDK, 2015. [Online].

Available: http://www.jetbrains.org/intellij/sdk/docs/welcome.html.

[32] "Trending Java Repositories", GitHub.com. [Online].

Available: https://github.com/trending/java. [Accessed: 15- Nov- 2018].

85

Appendix

Appendix A : Terminology

Abstract Syntax Tree - A tree representation of a source code.

Batch style analysis - An analysis done as a whole at the end of a process

rather than analysing over time.

Build Security In - A set of principles, practices, and tools to design,

develop, and evolve information systems and software that

enhance resistance to vulnerabilities, flaws, and attacks.

Code fragments - A list of related data found in a program.

IntelliSense - A code completion aid provided by an IDE for

developers.

On the fly(Just in time) analysis - Analysis which is carried out dynamically rather

than after a result of something.

Secure coding - The practice of writing software that is protected

from vulnerabilities.

Secure coding guideline - A set of secure coding best practices.

Software patch - A software update which is installed into an existing

software program.

Static code analysis - Analysis of computer software that is performed

without actually executing programs.

Touchpoint - A characteristic or specific weakness that renders an

organization or asset open to exploitation by a given threat

or susceptible to a given hazard.

86

Appendix B : Classification of secure coding rules

Based on the classification criteria in Table 3.1, the secure coding rules of each main category

have been classified as follows.

Main

Category

Sub

category

Level Justification

Input

validation and

Data

Sanitization

(IDS)

Declarations

and

Initialization

(DCL)

IDS01-J

IDS03-J

IDS04-J

IDS06-J

IDS07-J

IDS08-J

IDS11-J

DCL00-J

Package

Package

Package

Method

Method

Method

Method

Class

Normalize() method used is inherited from the

Normalizer class of the the java.text package.

The main class used is Logger class which is

inherited from the java.util package.

The FileInputStream, ZipInputStream,

BufferedInputStream objects are inherited from

classes in the java.io package

The violation occurs inside a method and the

system.out.format() method mainly involved here is

inherited from the System class of the lang package.

The violation occurs inside a method and it is

invoked in the exec() method which belongs to the

Runtime class of the lang package.

Data sanitization is to not done at the beginning

inside a method which leads to an error. The

Sanitization is to be done initiating a StringBuilder

object which is inherited from the java.lang

package.

The violation occurs in a method when the

unrepresentable characters in a string have not been

removed before violation and it occurs in a string

variable which belongs to the String class of the

java.lang package.

Arise due to incorrect order of initialization of static

field triggers inside a class but outside a method.

The datatypes of the static variables are either its

own class or a member of the the java.lang package.

87

Expression

(EXP)

Numeric

Types and

Operations

(NUM)

DCL01-J

DCL02-J

EXP00-J

EXP02-J

EXP04-J

EXP05-J

NUM01-J

NUM02-J

NUM03-J

NUM04-J

Package

Package

Method

Method

Package

Class

Method

Method

Class

Method

Class name is a public identifier of the java standard

library. I.e the class with the relevant name already

exists in another package and if that package is

imported in the future it could lead to various

conflicts in the program.

Mainly involves the modification of the elements of

a collection in a foreach loop. Collections belong to

the java.util package.

Ignoring the values returned by a particular method

leads to this secure coding rule violation.

The use of equals() method inside a declared method

of a class to compare 2 integer arrays leads to the

violation and equals() method belongs to the Object

class of the java.lang package.

The rule is violated by passing arguments to java

collections framework methods that are different to

the collection parameter type. The java collections

framework belongs to the java.util package.

Involves calling a method to assign a value to a

variable inside the main method where program

grants access to the unauthorized user because

evaluation of the side effect infested subexpressions

follows the left to right ordering rule.

The violation occurs when both arithmetic(+,-, /, *)

and bitwise(<<, >>) operations are performed on the

same integer variables inside a method.

Rule violation arises due to the the division (/) pr

modulus (%) operators resulting a value 0 when

applied on 2 integer variables inside a method.

Involves using int as the return type of class

methods which is incapable of fully representing all

numerical unsigned values (i.e have to use long as

the return type in order to fully represent all

numerical unsigned values.

This rule is violated if float data type is used in a

method where precise computations needs to be

performed since int data types needs to be used for

88

Characters

and Strings

(STR)

NUM07-J

NUM09-J

NUM10-J

NUM12-J

NUM14-J

STR00-J

STR01-J

STR02-J

STR03-J

STR04-J

Method

Method

Package

Method

Method

Method

Method

Method

Method/

Package

Method

such computations.

Involves using NaN(constant holding Not-a-Number

which belongs to inside a method of a class for

comparisons which results always false.

Violation occurs due to using float as the data type

of the counter used in for loop inside methods of a

class.

Violation occurs due to passing a double values

instead of string values to the BigDecimal

constructor which belongs to the BigDecimal class

of java.math package.

The rule is violated if converting a numeric type into

a lower type(eg- Int to byte) is performed without

range checking since it may lead to data

misinterpretation or loss.

Involves incorrectly using of arithmetic and logical

shift operators inside a method of a class.

Rule violation occurs when String variable(belongs

String class of java.lang package) inside a method

ha partial value of data since the variable has been

created before data is made available.

Involves incorrectly using char and integer forms of

the isLetter() method of the Character class which is

in the java.lang package.

Violation occurs due to not defaultly using locale

when comparing local dependant data inside a

method of a class.

The violation occurs when non character data such

as data stored in Integer variables(belonging to

java.lang package) or BigInteger(belonging to

java.Math package) are encoded as strings. So this

rule can fall into both method or package level

based on the non character data type used.

Involves using compatible character encodings of

various data with different data types into strings by

specifying the character encoding used when the

89

Object

Orientation

(OBJ)

OBJ01-J

OBJ02-J

OBJ04-J

OBJ05-J

OBJ07-J

OBJ08-J

OBJ09-J

OBJ10-J

Class

Package

Class

Class

Package

Package

Class

Class

String object which belongs to java.lang package is

being created. This occurs inside a method of a

class.

Involves limiting the access of fields such as global

variables by using access modifiers such as private.

Violation of this rule occurs when the contents of a

superclass is changed which may adversely affect

the program logic of the subclasses that it depends

on.

Involves creating a constructor to copy instances of

a mutable class when an argument of same type is

passed into it.

States that accessor methods (getter methods) should

not return mutable class private members(eg- private

global variables) without making them defensive.

Involves preventing the creation of malicious classes

by declaring a sensitive super class final.

States that Private access modifier needs to be used

to hide the inner class and its methods.

Involves comparing classes(using getClass()

method) not class names(using getClass.getName())

in order to verify whether the 2 classes are equal.

States to use final keyword for public static non

final fields(eg- Global variables). I.e to make those

fields into constants so that there values can not be

changed by an attacker.

Methods

(MET)

MET00-J

MET01-J

Method

Method

If a method argument type does not adequately

constrains the state of the argument (Ex- void

setState(Object state) {...}) then need to check

whether conditional statement like "if else" are used

to validate these arguments. Method arguments

should be validated to prevent incorrect calculations,

runtime exceptions, violation of class invariants, and

inconsistent object state.

Assertions should not be used for method argument

90

MET02-J

MET03-J

MET04-J

MET05-J

MET06-J

MET07-J

MET08-J

MET09-J

Package

Class

Package

Package

Package

Package

Class

Class

validations inside a method. Therefore method level.

Don't use deprecated fields, methods, or classes in

code. Most of these packages need to be imported.

Ex- java.util.

Methods that perform security checks should not

allow malicious subclasses to override the methods

and omits the checks. In java, auto imported

java.lang class SecurityManager is used for security

checking.

Overridden or hidden methods should be less

accessible. Otherwise they permits a malicious

subclass with access to the restricted methods. This

vulnerability involves inheritance relationship,

therefore package level.

Constructor of superclass should not call overridable

methods. It may result in the use of uninitialized

data, leading to runtime exceptions or to

unanticipated outcomes. This vulnerability involves

inheritance relationship, therefore package level.

Vulnerability occurs when the superclass has a clone

method that invokes an overridable method of the

same superclass. Only need to check method

signatures and method content inside the superclass.

We should not declare a method that hides a method

declared in a superclass or superinterface. This

vulnerability involves inheritance relationship,

therefore package level.

Equals method overriding can cause equality

contract violations. Equality contract is preserved if

equals method consistently return the same integer,

provided no information used in equals comparisons

on the object is modified.

Both equals and hashcode method belongs to

java.lang.Object package which is auto imported. If

equals() method is defined then hashCode() method

must also be defined because java.lang.Object class

requires that any two objects that compare equal

using the equals() method must produce the same

91

Exceptional

Behavior

(ERR)

MET10-J

MET12-J

ERR00-J

ERR01-J

ERR02-J

ERR03-J

ERR04-J

ERR05-J

Package

Package

Method

Package

Package

Method

Method

Method

Method

integer result when the hashCode() method is

invoked.

Classes that have implemented Comparable

interfaces can violate general contract when

implementing compareTo() method. If so a

vulnerability occurs.

Classes should not use finalizers. This may involve

Superclass's finalizer as well.

Inside catch blocks of source code, don't just print

the exceptions which means suppressing or ignoring

them. This will leak information about the structure

and state of the process and also the behavior of the

application will be unaffected by the exception

being thrown.

A vulnerability occurs when reading files, working

with databases expose sensitive information. For

reading files and databases, relevant packages like

java.io, java.sql need to be imported.

Vulnerability occurs when SecurityException is

used. SecurityException belongs to java.lang

package which is auto imported by java. Inside

catch block of SecurityException,

System.err.println(se), Console.printf(),

System.out.print*(), or Throwable.printStackTrace()

should not be used because this can cause security

vulnerabilities.

Vulnerability occurs when finally clause or catch

block fails to restore prior object state which was

there before method failure. This can cause incorrect

results in calculations as well.

Vulnerability occurs when statement inside finally

block completes abruptly along with any exceptions

thrown from the try or catch blocks. Therefore

inside finally block the return, break, continue, or

throw statements should not be used.

Exceptions can be thrown from method calls inside

finally blocks. These exceptions needs to be handled

inside finally block itself to prevent vulnerabilities.

92

Visibility and

Atomicity

(VNA)

Locking

(LCK)

ERR07-J

ERR09-J

VNA00-J

VNA02-J

VNA05-J

LCK00-J

LCK01-J

Method

Method

Class

Class

Class

Class

Class

Vulnerability occurs inside methods.

A vulnerability may occur when catching

RuntimeException. Therefore methods must not

throw RuntimeException, Exception, or Throwable.

When untrusted code is allowed to terminate the

JVM, vulnerabilities can occur. For example

invocation of System.exit() to terminate JVM can

cause DoS attacks. These vulnerabilities occurs

inside methods.

Multiple threads can share variables. To ensure the

visibility of the most recent update on these

variables, it must be declared volatile or the reads

and writes must be synchronized. This shared

variable is a class level variable.

Compound operations (ex- *=, /=) on shared

variables must be performed atomically to prevent

data races and race conditions. To make these

operations atomic, the methods these operations

belongs to need to be declared as synchronized.

Shared variable is a class variable therefore class

level.

We may get incorrect results from calculations, if

atomicity is not ensured when reading and writing

shared variables with 64-bit values (long) using

multiple threads. Shared variable is a class variable.

Therefore class level.

Deadlocks may cause DoS, if the objects that

require synchronization use their own intrinsic lock

instead of private lock object idiom. This idiom

requires the use of synchronized blocks within the

class's methods rather than the use of synchronized

methods. Lock is a class variable. Therefore class

level.

Deadlock may occur if synchronization is done on

objects that may be reused. Examples of these

objects are Boolean locks, boxed Integer objects,

String literals, interned String objects etc. These

objects are defined as class variables. Therefore

class level.

93

Thread APIs

(THI)

LCK02-J

LCK03-J

LCK04-J

LCK05-J

LCK08-J

THI00-J

THI03-J

Package

Package

Class

Class

Class

Package

Class or

Package

Vulnerability occurs between superclass and

subclasses, when synchronization done on the class

object returned by getClass() because the class

object of the subclass is entirely distinct from the

class object of the parent class. Therefore package

level.

Intrinsic locks should not be synchronized (Intrinsic

means that we don't have to synchronize) of high-

level concurrency objects. High-level concurrency

objects belongs to java.util.concurrent.locks

package. Therefore package level.

Vulnerability occurs when synchronization is done

on a collection view which has a backing collection

which is accessible by other threads. These

collections and backing collections are defined as

class variables. Therefore class level.

Vulnerability occurs when a code fails to

synchronize access to a static field which is a class

variable and also when it can be modified by an

untrusted code. Therefore class level.

An unreleased lock in any thread will prevent other

threads from acquiring the same lock. Therefore

need to make sure that actively held locks are

released on exceptional conditions. Lock is defined

as a class variable. Therefore class level.

Inside a class that implements Runnable interface,

Thread object's run() method should not be invoked

directly, because then the statements in the run()

method are executed by the current thread rather

than by the newly created thread.

The wait() method must be invoked from a loop that

checks whether a condition predicate holds and also

the await() method of the condition interface also

must be invoked inside a loop or else the program

can lead to indefinite blocking and denial of service

(DoS). .wait() belongs to java.lang.Object and

.await() belongs to

java.util.concurrent.locks.Condition package.

94

Thread Pools

(TPS)

THI05-J

TPS00-J

TPS01-J

Package

Class

Package

Calling Thread.stop() from a class which

implements Runnable interface will result in the

release of all locks a thread has acquired. This may

expose the objects protected by those locks when

those objects are in an inconsistent state.

When Thread-Per-Message design pattern is used to

process incoming messages or requests attackers can

carry out Dos attacks by sending multiple requests.

To implement this Thread-Per-Message design, a

class variable of ServerSocket (belongs to

java.lang.Object package) type will be used.

Therefore class level.

A program that execute tasks that depend on the

completion of other tasks in a bounded thread pool

may lead to thread-starvation deadlock. This

involves implementing an interface which belongs

to java.util.concurrent package. Therefore package

level.

Thread-Safety

Miscellaneous

(TSM)

Input Output

(FIO)

TSM01-J

TSM02-J

TSM03-J

FIO00-J

FIO01-J

Method,

class

Method

Method

Method

Package

The keyword this may be used only in the following

contexts:

● in the body of an instance method or default

method

● in the body of a constructor of a class

● in an instance initializer of a class

● in the initializer of an instance variable of a

class

● to denote a receiver parameter

Threads are created using thread class inside the

java.lang package.

Violation occur since the partially initialized object

can be made visible to other threads. During

initialization of a shared object, the object must be

accessible only to the thread constructing it.

Before accessing a file need to check whether it is

in a secure directory. Violation occurs since directly

accessing to directories/file without checking its

safety.

The constructors for FileWriter do not allow the

programmer to explicitly specify file access

95

FIO02-J

FIO03-J

FIO04-J

FIO05-J

FIO06-J

FIO07-J

Package

Package

Package

Package

Package

Method

permissions. The class FileWriter is inherited from

the java.io package.

The delete() method is used to delete a specified file

but it gives no indication of its success. It only

throws SecurityException. No other exceptions are

thrown, so the deletion can silently fail. This method

includes in file class which is inherited from java.io

package.

Violation occurs due to unexpected termination of

JVM before invoke of deleteOnExit() method.

Consequently, the temporary file is not deleted.

deleteOnExit() method belong to the java.io

package.

Resources need to be released when they are not

needed. When FileInputStream is used, the file

needs to be explicitly closed. FileInputStream class

belongs to java.io package. Database connection

also need to close explicitly when an error occurs

during execution of the SQL statement or during

processing of the results. Connection interface

belongs to java.sql package.

CharBuffer created using wrap() or duplicate()

methods must not return. CharBuffer defined in the

java.nio package. Instead a read-only view of the

char array can be returned in the form of a read-only

CharBuffer.

Violation occurs when multiple

BufferedInputStream wrappers are used.

BufferedInputStream class belongs to java.io

package.

The exec() method of the java.lang.Runtime class

and the related ProcessBuilder.start() method can be

used to invoke external programs. While running,

these programs are represented by a

java.lang.Process object. This process contains an

input stream, output stream, and error

stream.Incorrect handling of such external programs

can cause unexpected exceptions, denial of service

(DoS), and other security problems.

96

Serialization

(SER)

FIO08-J

FIO09-J

FIO10-J

SER00-J

SER01-J

SER02-J

SER03-J

Package

Package

Package

Package

Package

Package

Package

Violation occur when return value of the byte input

method (read()) in FileInputStream class OR the

return value of the character input method (read()) in

FileReader class compare with -1(end of the

stream). Both FileInputStream and FileReader

classes are belongs to java.io package.

The write() method, defined in the class

java.io.OutputStream, takes an argument of type int

the value of which must be in the range 0 to 255.

Because a value of type int could be outside this

range, failure to range check can result in the

truncation of the higher-order bits of the argument.

Incorrect use of the read() method can result in the

wrong number of bytes being read or character

sequences being interpreted incorrectly. This read()

method belongs to FileInputStream and Reader class

under java.io package.

If a class that implement Serializable without

overriding its functionality changes, byte streams

produced by users of old versions of the class

become incompatible with the new implementation.

Interface Serializable belongs to java.io package.

Violation of rule occurs due to incorrect method

signature of writeObject(), readObject() and

readObjectNoData() methods. These methods must

be declared private for any serializable class.

Serializable interface belongs to java.io Package.

Failure to sign and then seal objects during transit

can lead to loss of object integrity or confidentiality.

SealedObject constructor belongs to

javax.crypto.SealedObject class.

It uses the java.security.SignedObject class to sign

an object when the integrity of the object must be

ensured.

Violation occurs due to serialized form of sensitive

data. Sensitive data that should never be serialized

include cryptographic keys, digital certificates, and

classes that may hold references to sensitive data at

the time of serialization. Classes can be serialized by

simply implementing the java.io.Serializable

97

Platform

Security

(SEC)

SER04-J

SER05-J

SER09-J

SEC02-J

SEC04-J

SEC06-J

SEC07-J

Method

Package

Package

Package

Method

Package

Package

interface.

security manager checks are omitted from the

methods that are used in the serialization-

deserialization process. security manager checks are

included in the SecurityManager class which

belongs to java.lang package.

Programs must not serialize inner classes.

Serialization of inner classes can introduce platform

dependencies and can cause serialization of

instances of the outer class. Serializable interface

belongs to java.io package.

Overridable methods should not invoke from

readObject() method. This will provide the

overriding method with access to the object's state

before it is fully initialized. readObject() method

belongs to ObjectInputStream class in java.io

package.

This violation refers to Java 1.5 java.io package.

java.io.File is non final. As a result of that the

getPath() method can be overridden so that the

security check passes the first time it is called but

the value changes the second time to refer to a

sensitive file such as /etc/passwd. Class File belongs

to java.io package.

Violation occurs due to The check*() methods lack

support for fine-grained access control. checkRead()

method belongs to SecurityManager class which

inherit from the java.lang package.

By default, URLClassLoader verifies the signature

using the public key contained within the JAR file.

The default automatic signature verification process

may still be used but is not sufficient.

URLClassLoader class belongs to java.net package.

Violation occurs due to overriding getPermissions()

method without invoking super.getPermissions()

method. getPermissions method belongs to

URLClassLoader in java.net package.

Untrusted environment variables can provide data

98

Runtime

Environment

(ENV)

ENV02-J

ENV03-J

Method

Method

for injection and other attacks if not properly

sanitized.

Granting All Permission to untrusted code allows it

to perform privileged operations. The permission

java.lang.RuntimePermission applied to target

createClassLoader grants code the permission to

create a ClassLoader object. This permission is

extremely dangerous because malicious code can

create its own custom class loader and load classes

by assigning them arbitrary permissions.

99

Appendix C : Secure coding rules with algorithms and

respective source code fragments

Rule Algorithm Source code fragment and relevant

JavaParser methods required for the

algorithm

NUM09-J 1. Check the data type of the

loop counters of for loops

inside methods.

2. If the data type is float

violation else no violation

1. Checking the data type of the for loop

counter

getInitialization().get(0).getChildNodes().get(0).getCh

ildNodes().get(0)).equals("float")

ERR04-J 1. Check the contents of the

finally blocks in try catch

statements

2. If it contains return, break,

continue or throw

statements violation

occurs else no violation.

1. Checking whether finally block contains a

return statement.
getFinallyBlock().flatMap(fb ->
fb.findFirst(ReturnStmt.class)).isPresent()

2. Checking whether finally block contains a

break statement.

getFinallyBlock().flatMap(fb ->

fb.findFirst(BreakStmt.class)).isPresent()

3. Checking whether finally block contains a

continue statement.

getFinallyBlock().flatMap(fb ->

fb.findFirst(ContinueStmt.class)).isPresen

t()

4. Checking whether finally block contains a

throw statement.

getFinallyBlock().flatMap(fb ->

fb.findFirst(ThrowStmt.class)).isPresent()

ERR07-J 1. Check the thrown

exceptions inside methods.

2. If RuntimeException,

Exception or Throwable

has been thrown then

violation else no violation

1. Checking whether thrown exception is a

RuntimeException

getExpression().getChildNodes().get(0)).e

quals("RuntimeException")

2. Checking whether thrown exception is an

Exception

100

getExpression().getChildNodes().get(0)).e

quals("Exception")

3. Checking whether thrown exception is a

Throwable

getExpression().getChildNodes().get(0)).e

quals("Throwable")

ERR08-J 1. Check the contents of the

catch clause in try catch

statements in a method.

2. If NullPointerException,

Exception or Throwable

are found in the catch

block then violation else

no violation

1. Checking whether NullPointerException

is caught.

getParameter().getType()).equals("NullPo

interException")

2. Checking whether Exception is caught.

getParameter().getType()).equals("NullPo

interException")

3. Checking whether Throwable is caught.

(n.getParameter().getType()).equals("Throwable"

)

EXP02-J 1. Check whether equals()

method has been called

inside methods of a class.

2. Get the set of arrays

declared inside methods

3. Check the parameters of

the called equals()

methods.

4. If the number of

parameters is 1 and that

parameter has a data type

of an array then violation

else no violation

1. Getting equals method

getName().asString().equals("equals")

2. Getting number of arguments

getArguments().size() == 1

3. Getting the list of arrays in methods

n.getName()

MET09-J 1. Get all the method names

defined in a class.

2. Check whether the method

name “equals” is there.

1. Getting the list of method names defined

in a class

n.getNameAsString()

101

3. If so check whether

hashCode method is also

defined.

4. If hashCode() is not

defined then there’s a

vulnerability.

OBJ05-J 1. Get class variables of

object types, declared as

private.

2. Check whether any

method returns a value of

these object types

identified above.

3. If so then there’s a

vulnerability.

1. Getting the list of non primitive class

variable declarations

(!ff.getVariable(0).getType().isPrimitiveT

ype() &&

ff.getModifiers().contains(Modifier.PRIV

ATE))

2. Getting the list of return types of methods

defined

public void visit(ReturnStmt n,

List<ReturnStmt> collector) {

 super.visit(n, collector);

 if(!n.toString().equals("return;")){

 collector.add(n);

 }

 }

OBJ01-J 1. Get the list of class

variables declared as

public.

2. Check whether this

variable is used inside

more than one method.

3. If so then there’s a

vulnerability.

1. Getting the list of class variables

for (FieldDeclaration ff : n.getFields()) {

 collector.add(ff);

 }

OBJ10-J 1. Get the list of public static

class variables.

2. Check whether they are

declared final as well.

3. If they are not declared as

1. Getting the list of public static non-final

class variables

(member.isPublic() && member.isStatic()

&& !member.isFinal())

102

final, then there’s a

vulnerability.

DCL00-J 1. Check whether a

constructor is defined.

2. Get the full declaration of

class variables along with

their line number.

3. If a class variable has

created an object of same

class, get class variables

defined after that object

creation.

4. Check whether these

variables are used in

expressions inside

constructor.

5. If so then there’s a

vulnerability.

1. Getting the full declarations of class

variables

n.getFields()

2. Getting the list of statements inside a

constructor

(n.getBody().getStatements())

3. Checking whether the type of fields are of

the same type as the object of the same

class.

for (FieldDeclaration member :

ccf.clssvardeclarations) {

if(member.getVariable(0).getTypeAsStrin

g().equals(ccf.className)){...}

}

THI00-J 1. Get implemented interface

of class.

2. Check whether class

implement runnable.

3. If Thread.run() is used

then it is violation of rule.

1. Getting implemented interface.

getNameAsString()

2. Checking whether it is runnable

equals("Runnable")

3. Getting all expressions with run method.

getNameAsString().equals("run")

SER01-J 1. Get implemented

interfaces and method

signatures.

2. If class implement

serializable then

readObject() and

writeObject() methods

must be “private void”

methods.

3. readResolve() and

1. Getting implemented interface.

getNameAsString()

2. Checking whether it is serializable.

ImplementedInterfaces.get(j).equals("Seri

alizable")

3. Getting method declaration of

readObject() and writeObject() methods

and check for proper method signatures.

(n.getNameAsString().equals("readObject

")&&(!(n.isPrivate()&&!n.isStatic())))

103

writeReplace() methods

should be private and

static.

4. If not it is a vulnerable

code.

(n.getNameAsString().equals("writeObjec

t")&&(!(n.isPrivate()&&!n.isStatic())))

4. Getting method declaration of

readResolve() and writeReplace()

methods and check for proper method

signatures.

n.getNameAsString().equals("readResolv

e")&& (n.isStatic()||n.isPrivate())

n.getNameAsString().equals("writeReplac

e")

&& (n.isStatic()||n.isPrivate())

NUM10-J 1. Get object creation

expressions.

2. Check whether

BigDecimal constructor is

used.

3. If its argument is a float or

double then violation of

rule.

1. Getting object creational

expressions.ObjectCreationExpr

2. Checking whether source code contains

Big Decimal constructor.

getTypeAsString().equals("BigDecimal")

3. Checking whether constructor argument is

double literal.

getArguments().get(0).isDoubleLiteralEx

pr()

SEC07-J 1. Get method names in the

class

2. Check whether it override

getPermissions() method.

3. If it contains

getPermissions() method

then get method body and

check whether is it calls

super.getPermissions()

4. If not then violation of the

rule.

1. Getting method names invoke inside the

class. MethodDeclaration

2. Checking whether it contains

getPermissions() method.

getNameAsString().equals("getPermissio

ns")

3. Getting method body and then checking

whether is it calls Permissions().

getBody().get().getRange().get().begin.lin

e

getBody().get().getRange().get().end.line

getTypeAsString().equals("Permissions")

FIO02-J 1. Get file objects created in

the class.

1. Get list of method names invoked in the

class. MethodCallExpr

104

2. Check whether delete()

method directly called

without checking return

inside if condition. Then

violation of the rule.

2. Checking whether delete() method is

called.

getNameAsString().equals("delete")

3. Get file objects created in the class.

ObjectCreationExpr

getTypeAsString().equals("File")

getChildNodes().get(0).toString().equals(

ObjectCReationExpress.get(j).getParentN

ode().get().getChildNodes().get(1).toStrin

g())

4. Get conditional expression of if condition

getCondition().toString().equals(fileDelet

eInstance)

105

Appendix D : Other design artifacts

1. Use case diagram

106

2. Sequence diagrams

I) Sequence diagram for installing the plugin

II) Sequence diagram for secure coding rule violation detection

107

3. WorkFlow diagram

.

4. State transition diagram

108

5. Activity diagram for violation detection

109

Appendix E : Violation detection

 PlainTextHandler.java source file of "Arthas" project

 TelnetConsole.java source file of "Arthas" project

110

 PlotThread.java source file of "griDraw" project

 JDTBasedSpoonCompiler.java source file of "Spoon" project

111

Appendix F : Evaluation results

1. Project Based Evaluation results screenshots

 OBJ10J rule violation of GlobalOptions.java file of "Arthas" project as detected by Sonarqube

112

OBJ10J rule violation of GlobalOptions.java file of "Arthas" project as detected by Secure Coding Plugin

 OBJ10J rule violation of GlobalOptions.java file of "Arthas" project as detected by SonarLint

113

2. Performance based evaluation

1. JProfiler Overview

2. JProfiler memory usage monitor

114

3. VisualVM monitor overview

4. User based evaluation form

115

116

4. Feedback and comments provided by respondents

117

Appendix G : Deployment results

1. Downloading the deployed framework from IntelliJ IDEA IDE

Online Available at : https://plugins.jetbrains.com/plugin/11265-framework-for-secure-coding

2. Unique downloads by products

118

Appendix H : Individual contribution

 Contribution of S.L.Dasanayake (Index number- 1400156)

Initially the currently existing problem needed to be identified. The component of the literature

review which involves identifying the problem and the necessity of the framework. Similar

systems such as Spotbugs and sonalint were reviewed practically and the limitations of them were

identified. Studied the existing secure coding guidelines provided by Oracle,SEI cert and OWASP

to identify the most suitable and feasible set of secure coding guidelines. Based on the study I

identified SEI CERT secure coding rules to be the most suitable set of guidelines to be

implemented in the framework , by detailed comparison study with other 2 secure coding

guidelines.

In the design phase, my major contribution was to the system modelling aspect. The system model

primarily consists of the class diagram drawn with a thorough study accommodating the necessary

design patterns. The singleton design pattern was mainly used to improve the performance of the

framework, and factory design pattern was added to the system model to support future

extensibility of the plugin. Also, other design artefacts namely use case, activity diagram and state

transition diagrams were contributions in the designing phase of the project.

The subcategories of secure coding rules of, six main categories of SEI CERT secure coding rules

namely Input validation and Data Sanitization, Declarations and Initialization, Expression,

Numeric Types and Operations, Characters and Strings, Object Orientation were classified into

the three granularities based on their nature of the violation. I also contributed in designing the

classification criteria for the method level secure coding rules which was my individual

component. The violation detector algorithms for five selected method level secure coding rules

were designed by me. The necessary source code fragments for these secure coding rules were

obtained using static inner classes of the javaParser and stored in data structures such as HashMaps

and arrayLists.

During the implementation phase, the necessary source code fragments for the method level secure

coding rules were obtained using static inner classes of the javaParser and stored in data structures

such as HashMaps and arrayLists. I implemented the selected five method level secure coding

rules in the form of violation detection algorithms as my individual component implementation.

Explanation of the implementation of method level algorithms has been explained in detail in this

thesis. After the implementation of the violation detection algorithms, they were tested. This was

done in order to verify whether these algorithms detected the respective method level secure coding

rule violations in source code and expected results are obtained.

119

Apart from individual component implementation, I also developed the on the fly mechanism in

of the framework which was then combined with the JavaParser to generate the live parser. The

live parser is primarily used to generate AST through which the necessary source code fragments

are obtained in a real-time manner. The design patterns namely Singleton and Factory mentioned

in the system design were practically implemented to align the implementation and the system

design. I did the integration of the implementations of the three individual components with the

use of the factory design pattern. I used the singleton design pattern to avoid any unnecessary

instantiation of classes in order to optimise the performance of the plugin based framework. This

optimisation was verified from the results of the performance of based evaluation(not conducted

by me) in which the framework with design patterns consumed less memory and showed low

latency when compared with the framework implementation without design patterns.

I developed the extensibility mechanism which is a significant contribution to this project in order

to accommodate future requirements such that the framework could be expanded easily with

minimal changes to the extending source codebase. In Order to verify the success of the

extensibility mechanism an evaluation was carried out Four main aspects were considered in

extensibility based evaluation methodology which mainly involves the addition of new violation

detection algorithms, new source code granularity level, modifying existing algorithms and

modifying existing data structures were considered here. As a proof of concept of extensibility

mechanism a violation detection algorithm which was implemented in the framework was

reimplemented using the extensibility in order to verify the proper functionality of the mechanism.

120

Contribution of A.Mudalige (Index number- 14000954)

The main research area of the project was to find a technique for analysing source codes and

detecting secure coding rule violations. After referencing to different techniques, we chose the

algorithmic approach which involved using a parser to transform source code into an AST. A

suitable parser was needed for this purpose and I reviewed and studied currently available parser

libraries, parser generators and also how to write our own parser. I referred to “Basics of Compiler

Design: Anniversary edition“ by T. Mogensen to understand the compilation process. I referred

parser generators like ANTLR and JavaCC. These parser generators required us to define our own

grammar. Then I referred to parser libraries like JavaParser and IntelliJ IDEA’s built it Program

Structure Interface (PSI) which can be used to create a tree structure from source codes. Due to

many reasons like online community, easiness and nature of this project, I concluded that

JavaParser is the most suitable parser to be used in this project. After choosing JavaParser I studied

how to use its built in libraries and methods to extract basic code fragments that we would need in

this project and for this purpose, I had to get the help of JavaParser online community since

JavaParser user guides are still being written. I also referred to “JavaParser: Visitied“ book.

I referred to IntelliJ IDEA’s plugin development approaches and there are two possible workflows

for building IntelliJ IDEA plugins. They are using Gradle and using plugin Devkit. After

comparing and contrasting I chose that Gradle would be the better approach.

I further improved the design of the framework by designing the System architecture diagram,

Component architecture diagram, Workflow diagram and Product interaction with internal and

external environment diagram. These diagrams helped us to get a clear picture of our system and

also for group communication. I referred to online tutorials when designing these diagrams that

gives a both high level and an internal view of the system.

After designing the system I was involved in the implementation phase. We have three main

implementations called method level, class level and package level in this project. I conducted

class level classification and class level implementation. This is an important granularity level

since every Java code requires a class. I classified six main categories of SEI CERT (Methods,

Exceptional Behavior, Visibility and Atomicity, Locking, Thread APIs and Thread Pools) which

involved around thirty secure coding sub rules. Out of 100 secure coding rules classified in this

project I chose five class level secure coding rules and represented them using algorithms before

implementing them in Java. During this process, the relevant code fragments required by each

class level secure coding rule was identified as well. The class level secure coding rules in SEI

CERT, I implemented are MET09-J, OBJ05-J, OBJ01-J, OBJ10-J and DCL00-J.

I implemented several features of the plugin during the implementation phase. They are syntax

highlighting, tool window creation and adding annotations to highlighted codes by syntax

121

highlighter. I used IntelliJ IDEA’s RangeHighlighter to highlight areas where a violation occurs.

For this purpose, I identified the range of the areas that needs to be highlighted using JavaParser

built-in methods and then passed them into the RangeHighlighter. I created the basic toolwindow

to print the results of detected violations and this was further improved by other members of this

project. Adding annotations and tooltips to highlighted areas in the source codes was a main

challenge because there were no compatible built-in methods for this purpose. I had to create my

own annotation handler by creating an editor mouse motion listener. For this I had to create a new

class and implement EditorMouseMotionListener interface of IntelliJ Open API and define my

own functions and logic in it. I integrated this mouse listener with syntax highlighter to make it

work as intended. Same as the other members I carried out automated unit testing using TestNG

for the code I wrote.

I conducted project based evaluation and for this selected a set of open source trending Java

projects on Github repository. I conducted this evaluation in an unbiased manner and the main

purpose of this evaluation was to see whether secure coding plugin detects vulnerabilities in these

projects and if so are they accurate. In this evaluation, I also found the most common secure coding

rules violated by developers. After project based evaluation, it was concluded that secure coding

plugin works as intended.

Under documentation, I created the user manual which can be used by a developer to write secure

code or to extend the framework by adding new secure coding rules or a new granularity level.

122

Contribution of M.L.T. Perera (Index number - 14001144)

Initially, a study was carried out in order to identify an approach to achieve the proposed goal of

this project. Then the background of secure software development and secure coding guidelines

were studied to acquire a thorough knowledge. During this process, several research papers and

white papers were read in order to identify research areas in the literature. This study showed that

related work is limited with relevant to secure coding practices since Secure Software

Development originated in the early 2000s.

During the planning phase, I involved in determining the scope of this project along with other

items which should be considered to achieve the goal. In the requirement gathering phase, I mainly

involved in identifying the requirements of the plugin-based framework along with the major

limitations and features of current software engineering solutions. During this process, I also

involved in identifying the functional requirements of the solution.

I also designed system analysis and design artifacts such as sequence diagrams to understand the

functionality of the system. This plugin-based framework is based on the SEI CERT secure coding

rules for Java. The subcategories of last six main categories of SEI CERT secure coding rules

including Thread Safety Miscellaneous, Input-Output, Serialization, Platform security, Runtime

environment and Java Native Interface were classified into three granularity levels namely Method

level, Class level and Package level based on classification criteria as mentioned previously. I

designed the package level classification criteria. Package level primarily focused on the source

code fragments that belong to classes outside the existing class. I.e. code fragments such as

methods that belong to outside default package, extended classes and implemented interfaces

outside default package, library imports, etc.

In order to implement these secure coding rules, five package level secure coding rules have been

selected based on commonly violated guidelines, the likelihood of vulnerabilities and severity.

Subsequently, algorithms for selected package level rules were implemented by me in the form of

violation detection algorithms. The source code was parsed by a Java parser and the relevant source

code fragments were identified. To store these extracted source code fragments, HashMaps and

ArrayLists were used as data structures. Source code fragments extracted from an AST were

passed to the violation detection algorithms in order to detect violations. The required source code

fragments were extracted using relevant java parser methods, classes and interfaces. It was a

challenging task. Finally necessary countermeasures for package level secure coding rules were

designed.

I implemented the countermeasure component of the plugin-based framework to make it more

user-friendly. Countermeasures were included in the plugin-based framework as a separate module

since it was convenient to maintain a separate module for them and these were required by secure

123

coding rules of all three granularity levels. A separate HashMap data structure was maintained in

the framework in order to facilitate this requirement. After successful completion of this

component, it was integrated into the output generator in order to provide countermeasures for

violated secure coding rules in the source code. Once a user clicks on the detected secure coding

rule violation in the toolwindow, the relevant countermeasure will be displayed. During the

implementation process, several difficulties were faced. By posting questions on JetBrains IDE

Support, I was able to resolve them.

Following successful completion of the plugin development process, the framework needs to be

deployed. The deployment procedure of this plugin-based framework was carried out by me. This

was a challenging task because it is necessary to make sure that it works as intended. The proper

working of the framework was achieved by installing a built on a fresh instance of IntelliJ IDEA

IDE. Subsequently, manual testing was conducted. A zip archive was created including all the

plugin libraries specified in the project settings. After submitting the secure coding plugin-based

framework, it was successfully uploaded to the JetBrains plugins repository. Once the Framework

for Secure Coding plugin has been approved by JetBrains plugin administration team, it was

publicly available to download in the JetBrains Plugin Repository. Since we made some changes

in the plugin based framework new updates of the plugin were also uploaded to the repository.

Finally, performance based evaluation of the plugin-based framework was carried out by me in

order to ensure that its resource consumption was reasonable. Usually IntelliJ IDEA IDE consumes

a considerable amount of memory and Central Processing Unit. As a result, the performance was

evaluated concerning the main memory and CPU usage compared with the source code size with

the help of suitable software profiling tools. VisualVM and JProfiler were used as software

profiling tools in this evaluation methodology. Subsequently, results were extracted from above

performance based evaluation and they were organized in a manner that was suitable for analysis.

The main focus of this performance evaluation criteria was to assess the contribution of the system

design in improving the performance of the framework. Benchmark tool comparison was also

carried out using Sonarlint IntelliJ plugin. From the result obtained, it is clear that the plugin was

reasonable in its resource consumption with respect to benchmark tool.

As a team, we were able to achieve this goal because of hard working and commitment of every

member of the team who worked at same capacity and sharing of knowledge with the team.

124

USER’S MANUAL

 Framework for Secure Coding

January, 2019

USER'S MANUAL

125

TABLE OF CONTENTS

1.0 GENERAL INFORMATION..

1.1 System Overview

1.2 Points of Contact

1.3 Organization of the Manual

2.0 SYSTEM SUMMARY...

2.1 System Configuration

2.2 Contingencies

3.0 GETTING STARTED...

3.1 Installation

3.2 Running the plugin

3.3 Exit System

4.0 USING THE SYSTEM..

4.1 Navigating the Results

4.2 Applying countermeasures

5.0 EXTENDING THE SYSTEM..

5.1 Adding a new secure coding violation detection algorithm

5.2 Adding a new source code granularity level

6.0 UNINSTALLING...

126

1.0 GENERAL INFORMATION

1.1 System Overview

This manual presents the Framework for Secure Coding plugin for IntelliJ IDEA. This plugin is a

static code analyzer that automatically performs analysis of Java code written by software

developers. This IntelliJ plugin aids software developers to write more secure codes by allowing

them to inspect the results given by the plugin and applying countermeasures to detected secure

coding rule violations.

1.2 Points of Contact

Following persons can be contracted for informational and troubleshooting purposes.

1. Sachintha Lasith Dasanayake (Developer) lasithd2@gmail.com

2. Lahiru Tharanga Perera (Developer) mlt.perera93@gmail.com

3. Arosha Mudalige (Developer) aroshamudalige1@gmail.com

1.3 Organization of the Manual

Section 1.0 of this manual presents the general information about the plugin and contact details of

the relevant personals if any assistance is needed. Section 2.0 presents a summary of the system.

Section 3.0 presents the instructions on how to install and run the plugin. Section 4.0 presents how

to use the plugin and section 5.0 presents instructions on how to extend the plugin. Section 6.0

gives instructions on how to uninstall the plugin.

mailto:lasithd2@gmail.com
mailto:mlt.perera93@gmail.com
mailto:aroshamudalige1@gmail.com

127

2.0 SYSTEM SUMMARY

2.1 System Configuration

Framework for secure coding plugin supports a variety of IDEs provided by JetBrains. They are

IntelliJ IDEA, PhpStorm, WebStorm, PyCharm, RubyMine, AppCode, CLion, GoLand, DataGrip, Rider,

MPS and Android Studio. After installation on the IDE, this plugin can be used immediately without

any further configuration.

Following is the list of all the versions of the plugin and compatibility build numbers of each

version.

2.2 Contingencies

Users cannot access previously analysed results since the plugin will save no user data or source

codes. In case there is no Internet connection available users won't be able to access links provided

by the plugin to access more details about the secure coding rules.

128

3.0 GETTING STARTED

3.1 Installation

Framework for Secure Coding plugin is compatible with the following IDEs. If you have any of

these IDEs installed, you can install the plugin using the instructions given below.

IntelliJ IDEA, PhpStorm, WebStorm, PyCharm, RubyMine, AppCode, CLion, GoLand, DataGrip, Rider,

MPS and Android Studio

First of all, you need to navigate to settings panel by clicking File->Settings. The “Settings” panel

will appear.

From there, choose the “Plugins” from the list on the left and the “Browse repositories...” button.

129

Now type “Framework for Secure Coding” in the search bar on the top. This step requires you to

have an active internet connection. Under the search results select the plugin as shown in the below

screenshot.

Finally, you have to click on the “Install” button to start the download and installation of the plugin.

At the end of the installation, you will need to restart the IDE.

130

3.2 Running the plugin

Framework for Secure Coding plugin will automatically carry out analysis while developers are

coding. This plugin will highlight the places in the code which violates a specific secure coding

rule. Once the user hovers over to these highlighted places, a tooltip will be shown, briefly stating

the violated secure coding rule. Then the user can access more information about these violations

and how to correct them by navigating the results in the tool window.

3.3 Exit Plugin

The plugin will exit once the IDE is closed and no user data or source codes will be saved.

4.0 USING THE SYSTEM

4.1 Navigating the Results

First of all, open the “Secure Coding Plugin“ tool window by clicking View>Tool

Windows>Secure Coding Plugin. In the tool window, you can see two columns as “Violated Rule“

and “Rule Description“. “Violated Rules“ column will show every rule that has been violated by

the currently opened source code in the IDE. The following screenshot depicts that each of the

results in this column will show a rule id and the line number/numbers in the code that has violated

that particular rule.

131

Once you click on these results the “Rule Description“ column will show you more information

about these violated rules as shown in the below screenshot. This information includes the severity

of the rule, the likelihood of the rule, the remediation cost of the rule, the priority of the rule etc.

4.2 Applying Countermeasures

On the bottom left of the “Rule Description“ column you will see a link to a web page where you

can access the full specification of that secure coding rule as documented by SEI CERT. After

opening this link in a browser you can get more detailed information about the secure coding rule.

You can go through rule descriptions, code examples given by them and come up with a code that

will eliminate the security vulnerability you previously had. Once you have eliminated these

vulnerabilities you will no longer see them under tool window results.

5.0 EXTENDING THE SYSTEM

5.1 Adding a new secure coding violation detection algorithm

Follow the below steps when adding a new secure coding violation detection algorithm

1. Download the source code of the plugin from the bitbucket repository and set up a new

project using it in IntelliJ IDEA. (Link to the source code is given in the plugin’s official

page in JetBrains plugin repository.)

2. Navigate to the CodeFragments folder (/src/main/java/CodeFragments/). There you will

find 3 code fragment classes corresponding to each violation detector classes namely

method level, class level and package level that stores the source code fragments in various

data structures such as ArrayLists and HashMaps.

132

3. Access these three codeFragment classes and if the code fragments that the new secure

coding algorithm need is found then use it. Otherwise, create a new class called

ExtendeCodeFragments.java and define the code fragmnet extracting logic in it. Then add

the extracted code fragment to the common data structure which is HashMap<String,

Object>.

4. Navigate to the ViolationDetectors folder (/src/main/java/ViolationDetectors/). In this

folder create a new class called ExtendedViolationDetector and implement the algorithm

of the new secure coding rule in it.

5. Finally, the object of the violation detection algorithm class needs to be instantiated in the

/src/main/java/Tools/LiveParser.java class and the relevant violation detection method

needs to be called.

5.2 Adding a new source code granularity level

1. Download the source code of the plugin from the bitbucket repository and set up a new

project using it in IntelliJ IDEA. (Link to the source code is given in the plugin’s official

page in JetBrains plugin repository.)

2. Add the name of the new granularity level violation detector class into the

/src/main/java/ViolationDetectors/DetectorFactory.java class which contains the names of

the other 3 violation detector classes.

3. Then create the respective violation detector class in a similar manner as the other existing

violation detector classes.

6.0 UNINSTALLING

To uninstall the plugin, navigate to settings panel by clicking File->Settings. The “Settings” panel

will appear.

133

From there, choose the “Plugins” from the list on the left and then select “Framework for Secure

Coding” from the plugin list. Then click on the “Uninstall” button and after uninstallation of the

plugin, you will need to restart the IDE.

134

The End

