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Abstract 

 

Colors add an extraordinary value to anything. Colors of the HTML user interfaces give them 

a fascinating attraction for users. But today HTML pages are written in a static way which the 

colors are embedded into the code. This property makes it very hard to change once the 

design is finalized. We have to define many CSS pages as themes, since we need web sites in 

many color ranges.  

We purpose a solution to this issue by letting the colors of the HTML pages to be dynamic 

even after the design is finalized. We purpose a framework which is called “Chameleon JS” 

Users of the framework need to integrate it to their HTML documents. Then they can change 

the colors of a particular HTML document. We can choose any color form the planet for the 

web document. 

Framework is built by experimenting the properties of color and the way they are presented in 

the computer screen. We purpose a way to define a color relative to another color. This 

relativity property is used to predict a color which is relative to the initially defined color of 

the HTML document. This way we keep the initial color combination of the HTML page and 

change the colors relatively to another color. Purposed framework is written in native CSS 

and JavaScript with HTML 5 standard. Hence, we assume any web technology can adapt this 

framework and use with their respective applications. RGB and HSL color schemes are 

considered to find a method to define colors relatively. HSL color scheme is selected with its 

unique features of dividing color into several aspects. Hue, Saturation and Lightness are 

compared when predicting a new color.  

This work achieves the state of dynamic color theming for the HTML documents using HSL 

color scheme. Furthermore, the framework is able to keep the color consistency and predict 

new colors relative to a previously defined color while keeping the initial color scheme of the 

original HTML document. CSS variables are used to apply the relevant colors into the HTML 

document. With CSS variables colors which are predicted can be applied right away to the 

HTML document. Dynamic color theming and relative color predicting framework is tested 

against many technologies and succeeded over them. A website called “chameleonjs.xyz” is 

created for the convenience of the users. Download bundles are available in this website.  

Design, implementation and the evaluation of this work is included in this report.  
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

 

HTML is the publishing language in World Wide Web [1]. Structure of the HTML page is 

consisting with HTML elements, and elements are represented by tags. Browsers use these 

tags to render the content of the page. User interface of the HTML pages are designed with 

these HTML tags and CSS is used to style them for a better user experience. Dynamic user 

interface design is more challenging than a static traditional HTML structure. Designing and 

styling these user interfaces faces many complications when changing colors of the html 

elements dynamically. Creating a dynamic view which can give a dynamic look and feel for 

the user is much better than having a static design.  

 

Fundamental standard of W3C to style HTML pages is Cascading Style Sheets (CSS) [1]. 

Today industry standard frameworks like CSS are not directly capable of handling complex 

dynamic color theming of HTML documents [2].  

This research is focused on defining CSS on HTML pages which will give dynamic color 

changing facility after declaring the CSS on the document. Colors of sections of the page will 

be able to control separately and will be changed relative to the other colors defined. 

 

As internet and interconnectivity of the world increases web technologies has become most 

extremely popular and useful in information technology sector. Good user interface of HTML 

document will play an energetic role in any web application. This can be the key point for a 

better human computer interaction. This is why most of software vendors’ main focus is to 

have a better user interface, as it is the main dealing medium with the end users of their 

valuable applications. Using CSS web applications and mobile applications can be styled 
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easily. These user interfaces should be user-friendly and attractive to gain users attraction in 

the competitive web industry. 

 

Theme of a user interface is created at the design time of the html page. Designers work hard 

to create the theme of the page without color conflictions. They decide the colors which are 

matching with other used colors and build up the theme carefully. Once this theme is written 

in CSS language it is hard to change it again. Because HTML tags are usually, tightly bind to 

the CSS which is defined at the design time. If we try to change the colors after that, many 

conflictions and mismatching situations can occur.  

 

Having a technical situation like that will not stop the requirements of the real-world 

applications and it will only reduce the quality of the designed application.  It is required to do 

dynamic color changes when we have the users who needs to change the colors of the 

interface eventually or when applications need to change the color for a better look and feel. 

 

Today over 90% of web developers are using CSS [5] in 90% of the web sites and over 93% of 

external CSS sheets are used in them [6]. Most of these developers are facing dynamic color 

changing problems and it is easier if they can have a way to handle the complexity of the 

dynamic user interface color changing, color grouping and color conflicts. It will address a 

major industrial problem. It is an extra cost and will be time consuming when there is a 

requirement to change the colors in the user interfaces even after the development. Giving 

user to change the colors of the application they use is hard to give as a feature, once the 

development is done only for a specific color range. Well defined grouping mechanism as a 

framework used in development time might be able to handle this complexity. 

 

As user interfaces are very important in any web site or an application it is always better to 

have a dynamic theming feature. This research states a mechanism to implement dynamic 

color theming in HTML documents. This will introduce an extended framework of CSS and 

set of rules to govern the framework in a way that dynamic theming implementation will not 

have color conflictions or reduce color conflictions to an acceptable/manageable level. 
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1.2 Problem Statement 
 

How to define and structure CSS in HTML documents in a way that it will give the ability to 

change the colors of the document in a dynamic manner without conflictions. 

  

1.3 Technological Background 

 

Cascading style sheets are extensively used to style HTML documents. It is a simple styling 

language which has the ability to divide the presentation of document from its structure. 

Properties of HTML elements can be decorated with CSS. It describes how HTML elements 

are displayed in browsers and other documents. Position, size, colors and other attributes of 

HTML elements are controlled by CSS and it can save much work as it has characteristics 

like inheritance which helps multiple documents to be styled at once. Any HTML document 

can be styled by using CSS [1]. 

 

CSS can be applied to HTML elements in several ways.  

I. Inline – Defining style on the HTML element. 

II. Internal – Defining style on the header section of the HTML document. 

III. External – Defining a separate CSS document and linking the document in to HTML 

page. 

 

CSS properties inherit from one to another, as an example; the closest/top most definition 

specified for an element will be the one which will override other definitions which were 

written for the same element and apply to the respective element. More than 93% of the 

internet uses external CSS. [6]. These CSS sheets define colors of the HTML elements which 

will directly effect on the look and feel of the web document. This work addresses this 

property of the Cascading Style Sheets to dynamically change the colors of the HTML page. 

Predicted outputs for the HTML document will by changed on the fly with less overhead for 

the HTML DOM element.  
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1.3.1 Implementation of dynamic color theming with CSS 

 

As we are going to build a new feature for dynamic color theming we should consider the 

current status and implementation of CSS in the HTML documents.  

 

CSS is the way defined by W3C to style HTML documents [1].  It is a framework with many 

features which are very useful for styling HTML pages. These HTML tags builds the 

structure and creates as Document Object Model of the HTML page which is rendered to the 

browser by JavaScript. 

 

The W3C Document Object Model (DOM) is a platform and language-neutral interface that 

allows programs and scripts to dynamically access and update the content, structure, and style 

of a document. [2]  

 

This dynamic nature of the DOM gives the ability to change the HTML elements 

dynamically. We can change the properties of the HTML elements even after the HTML 

DOM is created. We can do it by calling the DOM and changing the properties of the HTML 

element which is created on the DOM. 

 

Technologies today like AngularJS, Angular2, React, jQuery, and Bootstrap are most popular 

frameworks in frontend designing which can directly access the DOM by using JavaScript. 

With these frameworks or even with native JavaScript we can implement dynamic color 

theming for the applications or HTML documents.  

 

These solutions cannot be used as a standard way because one technical solution given by one 

framework will not directly implementable in other framework due to technical dependencies. 

Also, these technical stack dependent frameworks only allow to implement solutions in a 

programmatic way, at the end every technology will call the DOM by using pure JavaScript 

and change the colors of the HTML elements. Hence, we cannot use such simple solutions as 

a standard way in every development project. If we can implement a solution which will 

directly work from CSS and native JavaScript with conflict less design, it can be used in any 

project without depending on the technology. This research is trying to design something 

which will address these problems.  
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1.4 Goal and Objectives 

 

Goal of this research is to find a method to dynamically change the colors of the HTML 

pages. These colors should be relevant and matching to the initial colors of the HTML page. 

This will keep the consistency of page design. To achieve the goal there are many objectives 

in this work. 

 

1. Research for a methodology to define one color relative to another color. 

 

There we need to find be a mechanism to define a one color relative to another color.  

The purpose of this is to get the color of one HTML element relative to another 

element. With this color relativity mechanism, we can define the initial color matrix of 

the HTML page. Once this matrix is defined we can protect the initial color matrix and 

create another color matrix which is matching to the initial colors. New color matrix 

can be used as the new theme of the HTML page. 

 

2. Find a suitable and effective method to change the color properties of the HTML 

documents on the fly. 

 

The colors which are predicted by the framework should apply to the HTML page 

instantly. This will change the colors of the HTML page on the fly. This is the way 

purposed to get the dynamic color changing capability to the HTML pages. As of the 

background search HTML 5 defines a mechanism to change the colors of HTML 

elements with CSS variables. There are many other ways to define colors of the 

HTML page such as using jQuery or native JavaScript. We need to find a suitable 

method to dynamically change the colors of the HTML pages. 

  

3. Research for a methodology to predict new colors relative to another color. 

 

When users need to change the color of the HTML page to another color. There 

should be a mechanism to implement the required work. The purpose of this objective 

is implementing the work using color relativity and dynamic color changing 
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mechanism of HTML pages, we are aiming to find. This will be designed as an 

algorithm so any input/output to the algorithm will be handled properly. 

 

4. Design a framework for users to use this work in their HTML pages. 

 

It is highly aimed this solution to use by developers and end users. Hence there should 

be a suitable mechanism and set of instructions for uses. This will be achieved by 

designing this solution as a framework. Developers should implement this framework 

for their HTML pages for users to use. Framework is aimed to design as easy as 

possible for developers to use, hence many of the aspects such as color definition 

methods will be automated for easiness of users. 

 

5. Possible color conflicts that can occur with the framework should be minimized or 

prevented. 

 

There can be many color conflicts that can occur when applying the new colors to the 

existing HTML page. These color conflicts should be minimized as possible or 

prevented by using a suitable mechanism. A rule set to prevent color conflicts or other 

mechanism should be implemented on the framework.  Ideally any color which was 

not conflicting in initial design should not be conflicted after the color change. 

 

6. Design the framework independent of other technologies, so any standard website can 

use this solution. 

 

It is aimed to design this framework without using cross technologies so the final 

framework will not be depending on any of the other external technologies or 

frameworks other than CSS and JavaScript which is supported by all standard 

browsers as of March 2018.  

 

1.5 Scope 
 

Scope of the research work is important as it should clearly describe the boundaries of the 

work to be achieved. Scope of work of this research work is as below. 
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 Scope of research for a methodology to define one color relative to another color. 

Colors can be defined with many mechanisms. But here our scope is to find a 

mechanism which is suitable for our goal of the research. It is purposed to compare 

RGB and HSL color schemes and understand the color theory to implement a 

mechanism. Main aim of this is to calculate the difference between colors and the 

scope of this objective limits to that. 

 

 Scope of finding a suitable and effective method to change the color properties of the 

HTML documents on the fly. In the technological world there are many mechanisms 

to change the colors on single HTML element on the fly. Scope of this objective is to 

test and find the best suitable mechanism for this work. A website may consist of 

many web pages. But scope of this work is limits to a single. 

 

 Scope of researching for a methodology to predict new colors relative to another color. 

When one color of the HTML element is changing to another color, some attributes of 

the color may change. As an example, hue and saturation may change but lightness 

may not change. Scope of this objective is to find a good mechanism suitable for our 

work. The inputs of this prediction are limit to single color and other colors will be 

predicted relative to this color. 

 

 

 Scope of the purposed framework. Frameworks scope is limited to implementing CSS 

files and JavaScript files. Set of instructions will be given for the users to use this 

solution in their THML documents. 

 

 Possible color conflicts that can occur with the framework should be minimized or 

prevented. Scope of the color conflict prevention is limited only to the aspects of 

visibility and look and feel. It is purposed to achieve a good level of prevention but the 

scope of it is limited to prevention and not to be stopped completely. Color conflict 

prevention mechanism limits only to handle manually and not fully automated. 

 

 Design the framework independent of other technologies, so any standard website can 

use this solution. Scope of this objective is to be stick into HTML 5 standard. Standard 
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HTML 5 features and JavaScript ES2016 standard [20] functions will be used by the 

framework. This solution is only compatible with the web browsers which supports 

CSS variables. 

 

 Scope of this project is limited to address the discussed problem domain and it will not 

address the technical dependent problems that can occur when using the purposed 

framework.  

 

 Scope is limited to control the colors of the html document and it will not address the 

dynamic object creation or HTML component creation. Solution will address the color 

changes of the document when it is applied correctly. 

 

 Inline CSS are not allowed in the html documents due to the complexity. Solution will 

only accept for style sheets. 

 

 HTML color property rgba(x,x,x,y) usage will not be feasible with the current 

framework. The scope is limited only to define colors with hexadecimal codes. 

Defining colors with word in HTML document may take into consideration but scope 

is limited only to hexadecimal codes. 

 

 

1.6 Thesis Outline 
 

 Chapter 2 contains the literature review of this project. It will describe the similar 

research efforts, technological background and how this research work deviates from 

them will be described. 

 

 Chapter 3 describes the design of the purposed solution and the design principals of 

the work. The design and assumptions. 

 

 Chapter 4 presents the implementation details of the proposed model and It describes 

system architectural level implementation as well as infrastructural level details. 
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 Chapter 5 discusses the evaluation methods and evaluation results of this research. 

 

 Chapter 6 conclusion and the possible future enhancements is proposed.  
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Chapter 2 

 

Background and Related Work 

 

Cascading style sheets are an area which is not researched much. “Style sheet languages are 

terribly under-researched” [10] [11]. World Wide Web Consortium (W3C) has standardized the 

CSS language, its selectors and other specifications. CSS design principles [12] are defined by 

this organization. Current version for CSS on the time of this writing document is version 4 

which is released on 24th March 2017. This versioning is also handled by World Wide Web 

Consortium. 

 

2.1 Constraint Cascading Style Sheets for the Web 

 

Constraint Cascading Style Sheets for the Web [13] is a work sometime back from today. But 

still these are the rules which are subjected to identify CSS conflicting rules. Our work is 

going to identify rules which can defend the CSS color conflictions which makes us to work 

on the generalized set of rules to apply for CSS.  

 

This study demonstrates how constraints provide a powerful unifying formalism for 

declaratively understanding and specifying style sheets for web documents. [13] 

 

This study is not directly a framework but an aim to reflect the way of braking down structure 

when constraints are added to the current CSS framework. Our work is breaking the structure 

of HTML DOM elements and trying to create a mechanism to implement dynamic changes. 

Hence this work relates to our work in that way. Identifying a set of rules which will reduce 

the color conflictions within the HTML elements will lead to generalize them before applying 

to the framework. 
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2.2 Automated Analysis of CSS Rules to Support Style Maintenance 
 

Furthermore, style sheets of a web document should be easily maintainable. When the 

dynamic color change feature is implemented on users’ CSS documents, they should be easily 

maintainable. Otherwise little portion of our problem domain will not be addressed and 

remain unsolved. Work done by Ali Mesbah and Shabnam Mirshokraie which is Automated 

Analysis of CSS Rules to Support Style Maintenance [14] is addressing the issue of 

maintaining Cascading Style Sheets. As of them 60% unused CSS selectors in deployed 

applications. [14] 

 

When unused style rules and style definitions are validated in the user’s browsers it leads to 

the heavy duty which can be avoided and optimized.  

 

They have used few algorithms which can analyze the HTML DOM elements and identify 

style is matched with DOM element or not.  Work demonstrates the ability for a browser to 

avoid unnecessary style overhead. Usually this unnecessary overhead is avoidable. Our work 

which is going to catch the HTML DOM elements and identify the color conflicting HTML 

elements will also use an algorithm which is close to this work. This should be able to go 

through all current HTML DOM elements of the document and validate the colors over the 

researched and identified rules. 

 

W3 Web Consortium has defined new variables and operators as a standard and this research 

will use these new features of CSS defined by the w3 web consortium. [14] As we have 

mentioned in the introduction chapter these new variables which can be defined in the 

Cascading Style Sheets are able to control the property values of the CSS definitions.  

 

While we can control the variables of HTML element properties we should be able to create a 

mechanism to define CSS for dynamic features.  

 

By observation the current problem it can be addressed by creating a framework which will 

force the users to design the color combinations of html page at the development time.  
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They will first initialize the colors of the page. Once the page is finished we can calculate the 

color relativity of the html elements / divisions and it will be used as the parameters to do the 

dynamic color theming. Idea is not to destroy the color pattern of the page which is defined by 

the user (developer / designer) and just to make changes according same pattern/style but to 

give a different look and feel. 

 

Proposed solution is not a straightforward technical development. New CSS4 and HTML5 

standards can be used to implement this. Also, JavaScript DOM methods can be used to 

control the behavior of the framework. Framework will give CSS classes / variables for users 

to use. It will be the control structure of the html page of user by the framework. 

 

Color relativity of the elements should be calculated and I will have to practically find a way 

to define color relativity. Initial idea is to use the RGB color codes and create a schema or a 

pattern in a way that it will represent the relativity of two colors.  

 

With a background where CSS is not researched much for dynamic color theming here we are 

trying to find a solution for that. Dynamic color predicting will be tightly bind to this solution 

as colors of the html elements should not conflicted with each other.   

 

2.3 Color Relativity Work form Adobe CC 
 

Adobe CC have done a color wheel to generate many colors. [16] They have color rules called 

Analogous, Monochromic, Triad, Complementary, Compound, Shades and Custom. These 

rules change the way the colors are mixed in the color wheel to generate a new color. Color 

relativity mechanism they have used with rule of complementary is giving a similar 

experience as from our work. In that what they are trying to achieve is creating a new color 

and a good experience for users to pick the colors. Our work is relating to change the colors 

of HTML elements and our algorithm is predicting a color to an element according to a given 

color, hence this is purely not our work but similar work which focuses on giving a good user 

experience for the users who are looking for colors. 
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2.4 W3C Standard for Colors in HTML documents 

 

CSS style sheets are used to style the HTML pages. [12] Color of them is defined by using 

many standard methods described in CSS standard by W3C organization. [21] Following are 

methods to define a color to a HTML element. 

 

Figure 2.1: Methods to define color in CSS 

 

Users can use any of these methods depending on the situation on their HTML documents. In 

our work we can consider these methods when we create the algorithm. Usual format of the 

color definition in hexadecimal format followed by a “#” symbol.  

 

2.4.1 RGB and HSL color schemes in HTML 

 

As of the W3C standard RGB and HSL color schemes can be used in HTML elements. The 

properties of the color are divided into several aspects in these two color schemes. 

 

2.4.1.1 RGB Color Scheme  

 

Color is created by using the three main elements which are red, green and blue. Any color 

can be made by combining these three colors. They are the primary colors from the color 

wheel.  

 em { color: lime }                /* color keyword */ 

 em { color: rgb(0,255,0) }        /* RGB range 0-255   */ 

 body {color: black; background: white } 

 h1 { color: maroon } 

 h2 { color: olive } 

 em { color: #f00 }               /* #rgb */ 

 em { color: #ff0000 }            /* #rrggbb */ 

 em { color: rgb(255,0,0) } 

 em { color: rgb(100%, 0%, 0%) } 

 em { color: hsl(120, 100%, 25%) } /* dark green */ 
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In HTML red color can be defined from 0 to 255. Green and blue colors are also ranged from 

0 to 255. These numbers can be mixed together to implement the final color for the HTML 

element. Following is the way it is being done in the standard HTML elements. 

 

Figure 2.2: RGB definition in HTML page 

 

Since we have 256 different colors in each primary color we can produce 16 581 375 colors 

theoretically. Roughly we can produce 16 million different colors with this 8-bit RGB color 

scheme. 

 

2.4.1.2 HSL Color Scheme 

 

Three major factors of the colors can be described as hue, saturation and lightness. This is 

taken into consideration by W3C and HSL color scheme is define as another standard way to 

define colors as mentioned above.  

 

Hue defines the color variance form the color wheel saturation defines the color density and 

lightness defines the shade from black to white. Following figure [22] from the 

“nixsensor.com” describes this connection very clearly.  

 

 

 

 

 

h1 {  

color : rgb(255,0,0)  

} 
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  Figure 2.3: Hue, Saturation and Lightness 

 

HTML documents define this property in the following way. As we can see we mention the 

hue value from 0 to 360 as degrees, saturation and lightness values from 0% to 100%. Below 

example outputs the dark green color by using HSL properties.  

 

Figure 2.4: HSL Color definition in HTML pages 

 

2.5 Color theory 
 

Beauty comes from the bright match of right colors. Color theory explains the mixing of 

colors and the way they are interacting with each other. In visual arts color theory plays a vital 

role to impress the audience of the art. Color mixing highly depends with the right color 

matching. There are primary colors, secondary colors and tertiary colors. Mix of them can 

make any color from the color wheel. With respect to primary colors there are three color 

system as follows. 

 

 

h1 {  

color: hsl(120, 100%, 25%)  /* dark green */ 

}  

 



28 

 

 RGB – Red, Green, Blue 

RGB color wheel uses three light sources and mix them as needed. This is used in 

computer and television screens.  

 

 CMY – Cyan, Magenta, Yellow 

CMY color scheme is sometimes referred as CMYK where K stands for black. This 

color scheme is mostly used to represent colors in the papers. Most modern printers 

use this color scheme to generate the colors. Here K is considered externally since true 

black is not possible with CMY colors alone.  

 

 RYB – Red, Yellow, Blue  

RYB color scheme is used by painters and artists. This is the most natural color 

pattern and hence it makes more natural feeling with white background. 

 

Each and every system is able to implement the full color wheel by mixing the three colors it 

contains. There are many predefined combinations of colors where monochromatic color 

schemes, complementary color schemes and analogous color schemes. 

 

Color can be divided into several parts with its properties. Following are the few main 

properties which are important when considering about color. 

 

2.5.1 Hue 

 

Hue is the mixture of two colors like red and green, it is also the pure color within the color 

properties. Hue ranges from 0° to 359° degrees in the color wheel. Within the color space hue 

can be considers as in the set of pure colors. Hue can tropically be represented as a number. 

Hence the measurement of hue is quantitative.  

 

2.5.2 Saturation  
 

Saturation is the range from pure color to gray (or the lightness). This can also be described as 

purity of the hue. High saturation makes the colors bright and low saturation makes the color 
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washed out or grayish. Saturation also defines the brilliance and intensity of color. Three main 

properties can be considered with saturation, they are tint, tone and shade, figure 2.5 explains 

this concept in a straightforward way. This figure speaks more than 1000 words described 

about the saturation. 

 

 

Figure 2.5: Different saturations with white gray and black 

 

As we can clearly see when white is added to the pure hue of the white, verity colors can be 

generated. Only specific values are mentioned here but there are millions of colors within this 

range. This property is called tint. 

 

When mixing the gray or the washed-out color to the pure red there another variance that is 

created, this property is called tone of the color. Pure color is being washed out at the edge of 

the color pattern. Grayscale pictures can be generated with this property. 

 

When mixing pure black the last set of colors are generated. This property is called shade. At 

the edge of the color pattern it is purely black, but what we actually have is absence of color. 

Many color patterns can be created with mixing the black. 

 

2.5.3 Lightness  

 

Lightness is the range from dark to illumination. When the color’s lightness is set to 0% it is 

called dark and only black color can be seen, when it I set to 100% it is too light and only 

white color can be seen. 50% is the normal value and there is no disturbance to the pure color 

by that value. 
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2.5.4 Intensity (Luma) 

 

Number of photons a light source eliminates is called intensity or luma. There are many 

meanings for this in context of physicians and painters. On the other hand, intensity can be 

defined as the amount of purity in the hue itself. This property can be seen when gray is 

mixed to the color. That would make the color dull or washed-out. When more gray is added 

the color can be seen as low intensive. 

  

2.6 Color and the Human Eye  

 

Color is essential for human perception, even animals can identify colors. Good colors can 

bring more value to the human life while some objects become extraordinary for many 

situations with the right colors. Below is a good example of using shades of some colors in 

photography.  

 

“With the human brain able to distinguish over two hundred shades of white, able to see the 

same color no matter the light source, saying color is essential to our perception is no slight 

exaggeration. Viewing a black and white scenic full of all the shades of gray that a good paper 

and photographer can bring to light, the emotions just those shades of gray can evoke is 

tremendous!” – Vol 5-1 BT Journal [17] 

 

Humans are able to see all these colors with the native eyes due to sensitivity of the eye to 

very narrow band of frequencies within the wide range of frequencies of electromagnetic 

spectrum. Visible range of the color starts from the wavelength 𝟕. 𝟖𝟎  𝟏𝟎−𝟕𝒎 and ends 

nearly at 𝟑. 𝟗𝟎  𝟏𝟎−𝟕𝒎 [18] which refers to “Red” and “Violet” in terms of the color wheel.  

 

As the colors which are visible to the human eye is made out of electromagnetic rays even a 

slight change of the ray makes a difference in visible color to the eye. Which leads the human 

eye to identify millions of different colors. Computers can display more than 16.8 million 

colors. [19] This work is to identify a way to define the colors which can be displayed on screen 

into another color and make the HTML user interfaces changeable even after creating them. 

While there are millions of colors which the human eye can catch, all these colors are made 
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from three basic colors. We mix them as necessary to reproduce other colors.  When we 

consider about the colors in real life and computer screen there is a major difference. To 

understand the difference of color reproduction in these two domains, we need to know about 

the addictive and subtractive colors.  

 

2.6.1 Additive and Subtractive Colors 
 

Computer screens, television screens and may other screens of various devices be using light 

rays to display colors in the screen. This is achieved by mixing spectral light in varying 

combinations. Background is a black screen with three primary addictive color rays which are 

red, green, and blue. By mixing these colors exactly one time we can produce subtractive 

primary colors, which are cyan, magenta and yellow.  Since Black absorbs all the color rays 

mixing RGB gives us the white color, this technique is used in computer screens where there 

is a black light in in the background. Mix of CMY which stands for cyan magenta and yellow 

gives us white and we use them in the backgrounds of white. 

 

 

 

Figure 2.6: Difference of colors in light and colors in ink, left demonstrates the mixture of 

additive color and right side white background demonstrated subtractive color 
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2.7 Way to define CSS with Variables 

 

W3C defines a way to use variables in the CSS documents [7]. This new feature gives us 

ability to define colors of the CSS page and we can use it to implement dynamic features to 

change the colors of the documents. Traditionally CSS uses the following way to define color 

of the HTML element in CSS document. There are three ways to access the HTML elements 

in CSS. HTML element can be accessed by element id property, class property or HTML tag 

name. For the simplicity we will use the class property of the HTML to demonstrate the way 

to define CSS. 

 

 

Figure 2.7: Sample HTML code to define CSS 

 

In figure 2.8 HTML paragraph tag is used to demonstrate the CSS definition. As we can see 

header section of the HTML page is used to define a class called “class_1” which makes color 

of the element to the blue color. This is applied to paragraph tag and it will make the specific 

element of the document to blue color.  

 

Below is a demonstration of using variables in the CSS code. It will not directly bind the color 

or the value of the property to the html element. Rather it will define a variable in root 

location and that will be used to assign the value to the element.  

 

<!DOCTYPE html> 

<html> 

<head> 

 <style type="text/css"> 

  .class_1{ 

   color: blue; 

  } 

 </style> 

</head> 

<body> 

<p class="class_1">This is a sample paragraph</p> 

</body> 

</html> 
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Figure 2.8: Sample HTML code to define CSS 

 

From the demonstration above we can see new variables give us the ability to define CSS in a 

relative way.  After the definition of the CSS we still can change the color in one place and 

then everywhere it will be changed respectively. 

 

Using this feature and by defining color levels we can start creating a framework to handle 

dynamic color theming.    

 

We will be going to use some base colors which will be defended in the framework. It will 

control the color relativity. Another mechanism which can identify colors of the objects and 

resolving color conflicts will be used to control the behavior of the respective document or the 

application. 

 

 

 

<!DOCTYPE html> 

<html> 

 

<head> 

 <title></title> 

 <style type="text/css"> 

 

:root { 

--main-color: blue; 

} 

 

.class_2{ 

color: var(--main-color); 

} 

</style> 

</head> 

<body> 

<p class="class_2">This is a sample paragraph</p> 

</body> 

</html>  
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Chapter 3 

 

Analysis and System Design 

 

This chapter will be giving an introduction of the system design and the principles behind the 

design. It will also give a brief overview to analysis of the framework. There are few feasible 

approaches to achieve the problem solution, here these approaches and problems faced are 

discussed.  

 

3.1 Introduction to Design Principles 

 

When it comes to the design of this framework it is highly depending on the key features and 

properties of the colors. Success of the color relativity is highly depending on the 

understanding to these concepts. Key concepts related to the design is discussed below in this 

section. 

 

3.1.1 Color Relativity  
 

To observe the natural colors and their behavior, we should consider the color relativity. 

Naturally color is relative. Relative to the light and to the other colors surrounded by that 

color. Human eye makes that relativity using the way human brain work with the eye, to 

determine the color of a particular object with the colors surrounded by that object. This 

relativity can be expressed by using the figure below. 
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Figure 3.1 – Color relativity 

When we see the figure 3.1 it appears to be four colors with the background colors gray and 

white respectively. But same orange color is there inside two boxes where the actual 

appearance is deferent with background colors. Orange in the gray color background is 

appears to be lighter than the orange in the white background. This refers to the color 

relativity in the color theory. 

 

But in other hand the color relativity we are trying to achieve here is quite different then this 

color relativity in the color theory. Rather than considering the way colors appear with the 

surrounding we are trying to define or value the color, relative to another color which exist in 

the HTML page. 

 

With the colors defined one related to another we can ask the designers to finish their design 

and even after that we can change the colors of the design without losing the color matching 

and details of color shades in the design. There are many ways to define colors but this 

method needs to follow the below conditions to be useful for our framework. 

 

I. Should be mathematically calculable and answer or the color given by the answer 

should be in the visible color range. 

 

This ensures that we can mathematically calculate the color values and apply them for the 

page or sections that we need. Furthermore, after the calculation answer of the calculation 
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which will be the color, should be in the visible color range or the so-called color wheel for us 

to apply it in the object that we need. 

 

II. Definition of the color should be easy for the designers. 

 

As no designers are willing to use a framework which is really hard to use and complicated 

out solution should be easy to use for the designers of the HTML pages. Therefore, initial 

color definition should be easy as possible. 

 

III. Details of the colors or the shades should not be destroyed by the solution. 

 

As the designers carefully design the HTML page many details will be there in the design, 

such as shades, highlight colors or may be lighter or darker color matchings. Our solution 

should be smart enough to keep this constancy and the accuracy when it changes the color of 

the page. This is the most important aspect with respect to usability of the whole framework. 

 

Color relativity is not something straightforward to find and calculate. In colors there is no 

basement or strict place to define it relative to another color. Even if we do it is hard to 

generalize the solution as the boundary which is visible for human eye can be exceeded very 

easily. But still relativity of colors can be achieved with the properties of colors such as hue, 

structuration, lightness and intensity. We have considered the color schemes RGB and HSL 

with its internal properties to divide the color into few parts and understand the way to define 

colors relatively. 

 

 

3.2 Approach to find relative Colors 
 

3.2.1 Approach 1 – Using RGB Color Scheme 

 

As the color can be represented with the RGB values, we define a base color and calculate the 

different of red, green and blue with the color of the element. After that when a new color is 
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chosen as the base color defined, relativity of RGB to that color is calculated and added with 

the previous base color. This will result a new color for the element relative to the original 

color of the element.   

As an example of our base color is #60cf47 then the calculation goes as follows. 

 

RGB values of #60cf47 – a green shade. 

 Red – 96 

 Green – 207 

 Blue – 71 

Now if we need to define the relativity of #4cf540 a light green color, values are as follows. 

 Red – 76 

 Green – 245 

 Blue – 64 

Now we will consider changing this green color to a blue color. Then the light green color is 

expected to go to a light blue color. 

Base blue color: #4760cf 

 Red – 71 

 Green – 96 

 Blue – 207 

Let us see the calculation with green color we considered earlier. 

 Red difference: 96 – 71 = 25 

 Green difference: 207 – 96 = 111 

 Blue difference: 71 – 207 = -136 

 

New expected blue color is can be calculated with the light green we considered earlier. 

 Red – 76 + 25 = 101 

 Green – 245 + 111 = 356 = 365 – 256 = 109 

 Blue – 64 + |-135| = 199 
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This color is #656dc7. As we can see the blue color which is predicted is lighter than the 

previous blue color and our work is successful to some extent. But there are issues with 

this mechanism and they are mentioned below. 

 

3.2.2. Problems Faced in RGB Color Schema 

 

This method is good for defining the relativity of colors only in few color range. Because as 

we know, RGB values are ranging from 0 to 255 and sometimes there can be minus values as 

the answer for calculation, for the relativity in the above method. Practically these values may 

not be in the visible color range or just some false values. Similarly, there can be situations 

where relativity value exceeds 255 with the calculation. This is a major problem when finding 

the relative color because there might be no color defined for the predicted color value if RGB 

relativity values exceeds the range. 

 

One way to avoid this is recalculating the value again from the next as a color cycle. But 

when testing practically output color became less applicable for the real color which was 

originally defined. In other words, the predicted color is not matching with the color defined 

in the HTML element, and our goal is not achievable with that approach practically.  

 

Another way to avoid this problem is to keep the maximum and minimum values at the upper 

bound and the lower bound of the range. It was solved the problem to a certain extent but, it 

was also not the best solution since after a certain extent the algorithm or the framework itself 

is not predicting a good matching color to the defined color of the HTML element. This was a 

good improvement for the current problem but a better solution was needed to achieve 

research goals. 

 

This method was not selected due to the discussed issues above and the approach two 

discussed below was much better for the color relativity with practical applications. 
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3.2.3 Approach 2 – Using HSL Values of the Color 
 

Properties in the color like hue, saturation and intensity is able to give a better solution to this 

problem. Color mixed by the HSL values can be used to generate the relative value and this 

can be used to predict the relative color.  

 

Value of the Hue can go from 0 to 360 degrees.  Hue denote the main color in the color mix 

with Saturation and Lightness. Since that hue can be used to define the colors relatively and 

saturation and lightness with define the shades of it. 

 

This approach is using the HSL values of one color and calculates the saturation and lightness 

values of the new color related to previous color using simple mathematical calculation. Later 

in implementation section these calculations and the improvements made to this approach will 

be discussed. 

Here is the mechanism to find the color relativity with this approach and below is an example 

of our base color is #60cf47 then the calculation goes as follows. 

 

HSL values of #60cf47 – a green shade. 

 Hue – 108.97° 

 Saturation – 58.62 

 Lightness – 54.51 

 

Now if we need to define the relativity of #4cf540 a light green color, values are as follows. 

 Hue – 116.02° 

 Saturation – 90.05 

 Lightness – 60.59 

 

Now we will consider changing this green color to a blue color. Then the light green color is 

expected to go to a light blue color. 
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Base blue color: #4760cf 

 Hue – 228.97° 

 Saturation – 58.62 

 Lightness – 54.51 

Let us see the calculation with green color we considered earlier. 

 Hue difference: 116.02°– 108.97° = 7.05° 

 Saturation difference: 90.05– 58.62 = 31.43 

 Lightness difference: 60.59– 54.51= 6.08 But we do not use this value always. We 

usually use the lightness value of light green and if required we change use this value. 

 

New expected blue color is can be calculated with the light green we considered earlier. 

 Hue – 228.97°+ 7.05° = 236.02° 

 Saturation – 58.62 + 31.43= 90.05  

 Lightness – 54.51+ 6.08 = 60.59 or  

 

As we can see this blue color is more matching with the light green given previously. This 

mechanism does not exceed the values as the hue is cyclic and saturation, lightness has its 

own limitations as they are percentages. Hence, we have used this mechanism in the 

framework.  

 

3.2.4 Problems in HSL Color Schema 

 

HSL color scheme was quite good to handle the complexity of the relative color definition 

used in this work. But even after still there are limitations with the current application of this 

method in our algorithm. Major issue is to be discussed here would be lightness and saturation 

problem. Which is quite challenging to keep the accuracy of the HTML page when saturation 

and lightness changes with the newly applied colors. This problem is addressed to some 

extent where someone is able to use this solution with reasonable limitations. The solution we 

have given is users to choose whether to apply the lightness changes or to go with the initial 
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lightness values. The way this problem addressed and that solution is discussed later in 

implementation section.  

 

3.3 Color Conflictions 

 

When colors are mixing together some colors may not be able to see properly, this is mainly a 

mistake that can happen by the user when they are changing colors in multiple layers 

simultaneously. From the framework we can handle these kinds of issues and let the users to 

work without issues. This is focused when users are working with layered styles which will be 

discussed later in this document.  

 

With the design of the solution we have layers (sections) that the user interface can be divided 

into. These areas can be used as separate color schemas so that user (or the UI developer/ 

engineer) will have a good flexibility for color theming in a one page of their interface. They 

can have many pages for their purposes. When users are defining multiple colors for the 

layers at the same time without paying attention to the output these color conflicts can occur. 

 

With our solution initial color schema of the user is not destroyed. Hence if initial color 

designer has not done any serious mistake with color conflictions this framework’s color 

predicting algorithm will never make a chance for a color confliction to be happen in single 

layer. But when it comes to multiple layers users are notified about the color conflictions 

where it is applicable. Detailed explanation of this will be in implementation section of this 

document.  

 

3.3.1 Preventing Color Confections and its Limitations 

 

Initial understanding was to prevent color conflicts by using color validation rules. Later it 

was realized a rule set is not able to prevent possible color conflictions. Color conflictions 

which may arise within the closer elements cannot be identified easily with the way HTML 

pages work. Even if we make a rough sketch to identify that it will not be a general solution 

since many HTML pages are dynamic and HTML elements are not consistently static. When 



42 

 

we try to give user a warning the warning may be a false one if the element is changed on the 

fly dynamically. This identifies issue lead to stop developing the color conflicting rule set and 

we had to look for another solution to prevent the color conflictions. 

  

With many thoughts and practical tests, we came to a point that these conflictions can be 

prevented with manual layered approach used for the HTML documents. This was further 

researched practically and the solution was fascinating. Finally, we decided to use this as the 

color conflict prevention mechanism. 

 

Web page is layered for the different color areas by the naming convention of the CSS 

variables. This way different areas of the web document are identified and treated separately. 

Since users can change the colors of the different layers independently possible color 

confections are easy to see in the HTML document at the time of changing the color. 

Furthermore, in the control panel of the framework there we have created a button to control 

the lightness and with this change, users can choose to use the initial lightness or to change 

the lightness value to a new one. This led to pass the control more to the side of user but it led 

for users to have a wide range of color designs. 

 

3.4 Usage of the framework 
 

Dynamic color relativity easy to achieve with our proposed solution. Most important fact is 

that our solution will be able to use by almost every technical stack which uses HTML and 

CSS for their user interface designing and where JavaScript can be used. Every browser today 

is compatible with these three technologies since it is the standard for every browser which is 

deigned to view web using HTTP traffic. But users should follow few steps in-order to get the 

benefits from our new proposed solution. Detailed user manual will be appended into 

appendix 1.  

 

1. Users must create HTML pages by using standard HTML, CSS and they need to 

include a JavaScript file in their solution. 
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2. Our solution uses CSS variables to achieve the color relativity. Hence users will 

need to define CSS variables in their CSS sheets and define colors to the elements 

by using that CSS variables. 
 

 

3. Users need to define the sections and the main color for these sections 

respectively. 

 

4. Once everything is done, users can change the color of their design by changing 

only the main color of the section or the page. This will result a whole color 

change in every HTML element in their user interface.  
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3.4.1 Steps to use the solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Illustrates the steps to use the solution 
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Chapter 4 

 

Implementation 

 

4.1 Overview 

 

Purposed solution for the color relativity algorithm and relative color predicting was 

implemented in few stages. Development of the algorithm and framework was not 

straightforward but methodology was selected while doing the researching and testing for a 

suitable approach. This chapter will explore the used concepts and technologies with reasons, 

and the flow of the solution in a practical application to a general HTML page. 

 

4.2 Technologies, Libraries and Frameworks 

 

4.2.1 Technologies 

 

 Hyper Text Markup Language (HTML) – Version 5 

 Cascading Style Sheets (CSS) – Version 4 

 JavaScript (Native version without any libraries) – Version ECMAScript 7 

 

As mentioned above this work is achieved the state of working with standard browsers 

without any external installation. This was a key goal that wanted achieve since it helps the 

framework to work with any technology without conflictions. 

 

Standard browsers support for HTML, CSS and JavaScript natively. All the websites are 

either natively written in these technologies or converted into these technologies for 

reliability. This framework should work with any current technology or framework due to this 
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reason. Apart from the technologies mentioned above there are no any other library or 

framework used to implement this solution. 

 

4.2.2 Tools and the Environments 

 

 WebStorm 2016.3.1 as the development IDE 

 Google Chrome for the main testing browser. 

 Mozilla Firefox browser for testing 

 Safari browser for testing 

 Opera browser for testing 

 Edge browser for testing 

 Internet Explorer browser for testing 

 Windows 10 as the environment. 

 

Many standard browsers are used for the testing. But as we can see there are no much 

advanced tools used as we wanted our solution to be technological independent from many of 

the technologies available.  

 

4.3 Implementation 

 

Framework is named as “Chameleon JS” this framework contains few CSS and JavaScript 

files. Following figure show the way these files are organized into the framework. 

 

Figure 4.1 - Illustrate organization of the framework 

Chemeleon JS

CSS

Chameleon.CSS

chameleon-js-
popup.css

chameleon-
toggle-

button.css

chameleon-
control-

panel.css

JavaScript

chameleon.js
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4.3.1 CSS 

 

Framework contains four CSS files as described below. They are categorized with the purpose 

of their usage. 

 

 chameleon.css – Used to define the root CSS element of the document. Other three 

CSS files are included into this file. Hence this file is sufficient to include in any 

HTML document. 

 chameleon-js-popup.css – CSS definitions of the popup panel is defined here. 

 chameleon-toggle-button.css – CSS definitions of the toggle button which is used in 

control panel is defined here. 

 chameleon-control-panel.css – CSS definitions of the control panel is defined here 

 

4.3.2 JavaScript 

 

Framework contains three JavaScript files described as below. They are categorized with the 

purpose of their usages.  

 

 chameleon.js – Main functional definitions and area for the users to include their CSS 

variable names is included in this script file. Should be added to the end of the HTML 

document.  

 chameleon-algorithm.js – Main Algorithm and the works are defined here in this file. 

Should be added to the end of the HTML document.  

 chameleon-popup.js – Script definitions for the popup to work is included in this file. 

Should be added to the end of the HTML document. 
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4.4 Flow and the Design of the Framework 
 

Following is the main flow of the framework. This includes user interaction only in the 

situation where they change the color of layers. Flow will be started when the page is fully 

loaded in the client browser. After successful loading framework is doing many works 

underneath by using JavaScript. Below figure explains the way they are interacting at a 

particular stage.  

 

Figure 4.2 - Illustrate the flow of framework and design 

As explained in figure 4.2 following steps will be the main key points in the framework. 

I. Identify CSS color variables.  
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II. Layering the color variables. 

III. Defining the initial color scheme. 

IV. Generate the color pickers. 

V. User changes the color of a layer of the HTML page. 

VI. Predict new color using relativity 

VII. Apply the new color to respective HTML element. 

 

Execution and interactions of these steps will be explained here in detail with the code snips 

used in the framework to understand the framework and its behavior. 

 

4.4.1 Identify CSS color variables  

 

First step would be to identify the CSS color variables which are defined by the user. These 

variables contain the initial colors for the HTML page in many forms. Figure 4.3 is an 

example of color variables defined in the HTML page. 

 

Figure 4.3 – CSS variables with colors in HTML page 

 

These variables are stored in an array called “variablesArr” and used within the framework to 

access the initial colors and to apply the relevant color to the particular HTML element. Name 

of the variable will be starting with “--” according to the standard way in defining CSS 

variables. [8]  
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4.4.2 Variable naming convention 

 

Variables defined in this framework follows a naming convention. Users of the framework 

should follow this naming convention in order to define the layer of the variable which they 

are referring to. Naming convention should follow the following rules in order to achieve the 

color relativity in HTL documents. 

 

I. All the names should be declared as CSS variables and assigned to a color. 

 

II. Names must be unique, but one unique variable can be used in many places in the 

HTML page, where users need to have the same color. 

 

III. Name should start with “--” due to the standards in CSS variables. 

 

IV. Names which needs to go to particular layer should mention the layer name starting 

with “L” followed by layer number. Ex: “--L1-my-background-color” 

 

V. Variables which does not need to go to a particular layer can be declared without “L” 

but these variables will fall into the category of default layer which is the “0” layer. 

 

4.4.3. Layering the color variables. 

 

Framework support for users to define variables in separate layers. These layers can be used 

to define the similar colors in the same layer or to differentiate the sections in the HTML page 

such as let navigation sections or header sections which may have a different color from the 

other sections of the HTML page. Following are the special things to notice with layers and 

what the users can do with layers. Layering is important as it acts as the color conflicts 

preventing mechanism of this framework.  

 

 Each layer will be able to control the colors separately. For this purpose, there will be 

a color picker automatically generated by the framework with the HTML page. 
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 Users can define any number of layers but defining large number of layers may hard 

to handle for users due to complexity. 

 Users can use color variables to define new layers. 

 Layers can be used with different colors for different layers or different sections for 

different layers, depending on the users wish. 

 It is recommended to use different color variations as different layers since it will be 

easy to change the colors of the HTML document. 

 

Figure 4.4 explains the function used by the framework to layer the variables used in the 

HTML page. As we can see function look for the each and every variable in “variablesArr” 

array. Further it stores the variable in a relevant array and later combine these arrays to 

finalize the CSS color variables in the HTML page into layers.    

                 

Figure 4.4 – Run for layers function. 
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4.4.4 Initial color scheme. 

 

Initial user color scheme is taken into variable array called “layerVariableAndColorsArray”. 

This stores all the initial colors which the user has defined at the design time. In other words, 

this array will store all the original colors of the HTML page. 

 

When changing colors of the HTML page dynamically this initial color scheme is used to 

calculate the relativity of the colors without losing the important details of the colors in HTM 

page. 

 

Defined CSS variables will be layered according to a naming convention recommended by 

the framework. Layer system is important since it give the users the ability to control the 

colors of a section of the HTML page separately. This way users can control the color of the 

HTML page very sensitively. Correct layering of the HTML page may overcome the 

limitations of the color relativity algorithm. 

 

Figure 4.5 shows the function used by the framework to define the initial color scheme for a 

particular HTML page. This function uses another function called 

“defineInitialElementColors” which is a supporting function described in figure 4.6. This 

function takes a particular CSS color variable and look for the color defined with the variable. 

This work is repeated for a particular layer and resulting colors are saved into an array. 

 

Figure 4.5 – Run for layer variable colors function. 
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Figure 4.6 – Define initial element colors function. 

 

Figure 4.7 shows the final function which is run for layer variable colors function. This 

function is used to complete the color variable array which actually is an array of an array. As 

explained earlier in this section this function is used as a measurement when changing the 

colors relatively.  

 

 

Figure 4.7 – Run for layer variable colors function. 

 

4.4.5 Generating color pickers 

 

Color pickers will be generated in a separate section of the HTML page. Users can define 

their own location in the HTML page for this. Further users need to create a “div” element or 

any other HTML element which can give some space for color pickers to be created in. This 

element should be tagged with a “id” property equal to “color-box-div”. color pickers will be 

generated inside this HTML element automatically by the framework. It is important to notice 

that separate colors pickers will be generated for each of the layer which are defined by the 
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color variables. Separate color pickers will give the ability for users to change the colors of 

the layers separately. 

 

Figure 4.8 shows the generate color pickers function which is responsible for creating color 

pickers for each layer in the HTML page. This function looks for all the layers and asks the 

“createColorPicker” method to generate a color picker for each of the layer. Figure 4.9 shows 

the create color picker function which is responsible for creating particular color picker. As 

we can see after creating a color picker for the respective layer the function looks for the 

HTML element with id equaling to “color-box-div” and append the color picker as a child 

element of that element. Since it used HTML 5 standard color picker any browser which is 

compatible with HTML 5 will support for this function.  

 

 

Figure 4.8 – Generate color pickers function. 

 

Figure 4.9 – Run for layer variable colors function. 

 

4.4.6 Color of a layer 

 

After the HTML page fully loaded, users can start changing the colors of the defined layers. 

At this stage color picker for the layers are created already as it has explained in the previous 

sections. Users may select any color out of 16.8 million colors by using the color picker. 
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Color predicting algorithm will predict the colors of other HTML element in the same layer 

with the aid of initial color scheme. Users can have look at their web pages as never before 

with dynamic color theming and choose the most suitable color theme by seeing it directly 

rather than guessing the suitable colors as they used to do in the traditional way.  Figure 4.10 

shows the implementation of this work with the function named as update favorite color 

function.  

 

This function run after user selects a particular color within 16.8 million different colors. This 

function takes two arguments as the new color and the layer number. Basically, this function 

looks for each and every variable defined in the layer and asks generate relative color HSL 

function to give a matching color for the variable. It is important to notice that function uses 

the 0th index of the initial color array as the base color for the layer. This is default behavior 

but if users need to change the basic color they have to edit the code lines of the framework 

and define a relative base color. In many situations it is very important for base color to be a 

good average color within the used colors of the framework since color predicting ability of 

the algorithm highly depends on this base color.  For the simplicity of the framework for the 

users to use this method uses the 0th index as the base color of that respective layer. This 

method uses a helper function called “generateRelativeColorHSL” and this is the magical part 

of the framework which will be discussed in the section 4.3.7 

 

 

Figure 4.10 – Update favorite color function 

 

4.4.7 Prediction of new colors using relativity 

 

After user change the color by using the color picker it will directly change the colors of the 

HTML page. But to achieve that there will be a process going underneath. Predicting new 

colors can be achieved with the relative color calculating functions written in the framework. 

This is referred as the color predicting algorithm and appendix B shows this important method 
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and its description. This method accepts for three variables called base color, new Main color 

and actual color. By calculating the HSL parameters of these colors by using the function 

shown in appendix B. This method calculates the relativity of the new color related to the 

color that was existing in the element before. By changing these parameters to some extent 

this method successfully outputs the predicted relative color for the given color of the HTML 

element.   

 

4.4.8 Apply the new color to respective HTML element 

 

Finally, the framework applies the generated color to the HTML element by using the CSS 

variable which is there for each and every HTML element. Users can see the applied new 

colors and make changes to the color as much as they need. It is important to notice that 

persistency for the results are not saved in the HTML pages by this framework. Users 

(Developers) need to implement their own way to store the newly generated colors and apply 

them at the start of the HTML page. There can be many methods for users (developers) to 

achieve the persistency and handling that complexity exceeds the limitations of this research 

work. 

 

4.5 Control Panel of the Framework 

 

Control panel contains few elements of the framework. Following points explains about the 

important functions of the control panel. 

 Each layer will have a separate control are to change the color of the layer and a 

button to decide whether to change the lightness values or not. 

 

 There is a panel at the bottom of the control panel to control the persistency of the 

framework and the results. Users can save the initial color matrix and / or the current 

color matrix. These matrixes are save as .txt files to the local computer they are using. 

file will be in the format of JSON. Users can load the JSON file again and apply the 

relevant color set again. Users can use this as a mechanism to test the color 

combinations and match them as they need. 
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 It is important to notice that this persistency is only for the convenience of users and 

not a permanent persistency solution. The initial understanding was persistency to be 

handled by the developers as per their respective applications.   

 

 This control panel will be shown as a popup panel. This panel will work in any 

browser since this is created as a native CSS solution. 

 

 Some basic styling has been provided by the framework for this control panel. But 

styling of the control panel should be handled by the developers as per their 

applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – Control Panel of the Framework 
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4.6 Automatic Generation of UI elements 

 

User interface elements which are used in framework are automatically generated by using 

several JavaScript functions. Following figure is used to generate the main div of the 

framework. For other user interfaces there are similar functions used in the framework.  

 

The id property is used little bit long to make sure developer web site’s id will not be 

conflicting with the id of a framework element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 – Automatically Generated UI Elements 
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4.7 Distribution of the Framework 

 

Framework should be distributed to the developers who are looking for the color changes. 

There should be a mechanism to spared the details and the instructions. In order to facilitate 

the information through the open internet there is a web site which is created for this 

framework. Website is hosted in an Amazon S3 bucket as a static web site. URL to the 

website is as www.chameleonjs.xyz   

 

Initial framework package can be downloaded from this web site. Website is created as a 

single page website. Details and instructions to use the framework, technical information 

contact information and much more information is given on the web site. Following figures 

show the contents and the way the website is organized.  

 

 

 

 

 

 

 

 

 

Figure 4.15– Home page of the website 

http://www.chameleonjs.xyz/
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Figure 4.16 – Introduction page of the website 

 

 

 

Figure 4.17– Projects page of the website 
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Figure 4.18 – Documentation page of the website 

 

 

 

Figure 4.19 – Contacts page of the website  
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Chapter 5 

 

Evaluation 

The evaluation process is the one of the most important roles of the research. This chapter is 

devoted to describe the evaluation process carried out for our proposed Cascading Style Sheet 

framework for dynamic color theming and relative color predicting. With this work we should 

be able to implement the framework in our web applications and change the colors of a 

HTML page(s) into any color that can select from the color wheel.  

 

5.1 Evaluation approach 

 

Dynamic color theming framework is an innovation to color theming world and carried out as 

an experimental research. It is important to evaluate this framework correctly to measure the 

success and the usability of the framework.  

 

This work defines the color relatively by using HSL color scheme. Suggested algorithm is 

able to predict a suitable color with respect to the existing color and the new color. This work 

is tested several times by using standard HTML pages and standard (famous) web front end 

technologies. Works carries out for this are listed below. 

 

 Testing the solution with sample HTML pages. 

 Testing the cross-browser compatibility with several standard web browsers 

 Testing the solution with other standard frontend web technologies. 

 Carryout a survey with experienced web developers to get their feedback. 

 Evaluating the used approach and problems faced. 



63 

 

5.2 Testing the solution with sample HTML pages 
 

Sample HTML page was created to test the framework by using only necessary elements in 

the HTML page. Following figure 5.1 shows the original design of that HTML page.  

 

 

 

Figure 5.1 – Original HTML page 

 

This page consists of HTML elements with several color variances. To illustrate the color 

pickers and the way they work color pickers are placed below the header section of the page. 

There are 4 layers in the page. The default layer and 3 more layers with color boxes to 

illustrate the color layering ability of the framework. Figure 5.2 shows the color pickers and 

the way users can use to change the colors dynamically in the HTML pages. 
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Figure 5.2 – Color pickers of the HTML page 

Users may select their favorite color within 16.8 million colors of the color picker. Following 

figures 5.3 to 5.6 shows the step by step color selection for this HTML. In this situation we 

assume that user is trying to change the color to a red for all the layers. 

 

Figure 5.3 – Changing color to red in default layer of the HTML page 
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Figure 5.4 – Changing color to red in layer 1 of the HTML page  

 

 

  

Figure 5.5 – Changing color to red in layer 2 of the HTML page 
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Figure 5.6 – Changing color to red in layer 1 of the HTML page 

At this stage color of all the layers are changed to the red color. As we can see in the figure 

5.6 all the colors and shades are successfully changed into red color.  

 

Furthermore, users can select any color suitable for the HTML page. Following figure 5.7 to 

5.11 shows the different colors which is applied to the above discussed HTML page. It should 

be notice that shades of the HTML page are not changed by the color change. Which was a 

key goal achieved with this framework.  
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Figure 5.7 – Changing colors to blue on testing HTML page 

 

 

 

Figure 5.8 – Changing colors to a purple shade on testing HTML page 
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Figure 5.9 – Changing colors to a yellow-green shade on testing HTML page 

 

 

 

Figure 5.10 – Changing colors to a cyan shade on testing HTML page 
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Figure 5.11 – Changing colors to a green shade on testing HTML page 

 

As described in the implementation chapter, it is possible for the framework to change the 

colors of single layers separately. Figure 5.12 shows the color changed in the 1st layer into a 

different color. It should be noticed that color of the layer 1 is selected as a different color 

which may not match with other colors but only for the demonstration purposes. 

  

Figure 5.12 – Cyan color applied to the layer 1 of testing HTML page while other colors 

remains the same 
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5.2.1 Testing Framework with W3 CSS 

A HTML document is created by using W3 CSS which is popular CSS framework on the web 

development world, to test the framework. We can see the framework is compatible and 

working with W3 CSS properly. Following is figures are some of the screenshots of the W3 

CSS web document. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 – W3 CSS HTML document, sample 1 

 

 

 

 

 

 

 

 

 

Figure 5.14 – W3 CSS HTML document, sample 2 
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Figure 5.15 – W3 CSS HTML document, sample 3 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 – W3 CSS HTML document, sample 4 
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5.2.2 Testing Framework with Native CSS and jQuery 

Following figures are a document from native CSS with JavaScript and jQuery. Framework 

was integrated into this document for the testing. We can see the framework is compatible 

with web document and working properly. 

 

Figure 5.17 – Native CSS with jQuery - HTML document, sample 1 

 

 

 

 

 

 

 

 

Figure 5.18 – Native CSS with jQuery - HTML document, sample 2 
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Figure 5.19 – Native CSS with jQuery - HTML document, sample 3 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 – Native CSS with jQuery - HTML document, sample 4 
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5.3 Testing the cross-browser compatibility with several standard web 

browsers 
 

It is really important for a web application to be cross browser compatible for keeping their 

wide range of users who use different browsers worldwide. Best way to achieve cross browser 

compatibility is to use standard functions supported by standard JavaScript and use them in 

the correct way. This was another major goal in our work and our work was able to achieve it 

successfully. Figure 5.21 to figure 5.22 shows our testing HTML page working in several 

standard browsers available today. Furthermore, since we use standard methods to achieve 

dynamic color theming it is assumed to work in other standard browsers which are not 

mentioned here as well. 

 

 

 

Figure 5.21 – Testing HTML page in Google Chrome 
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Figure 5.22 – Testing HTML page in Firefox browser 

 

 

 

Figure 5.23 – Testing HTML page Opera browser 
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Figure 5.24 – Testing HTML page in Edge browser 

 

5.4 Survey with experienced web developers to get their feedback. 

 

To measure the integrality and usably of this framework there is no better way than getting 

user feedback. Hence a questionnaire is being created and given to few users who are 

experienced web developers to use the framework and give a feedback. To give the 

questionnaire a google form is used with few important questions. Figure 5.25 to figure 5.27 

shows the google form which is used to collect the user feedback. Google from can be found 

in the following link by using open internet. 

 

https://docs.google.com/forms/d/e/1FAIpQLSctVCMWWOmlwndjZawPID8zbLihVpNo9Tz

gZlIJhXMeNBCWrQ/viewform?entry.1702728825 

(Link to the Google form with the questionnaire) 

 

 

 

https://docs.google.com/forms/d/e/1FAIpQLSctVCMWWOmlwndjZawPID8zbLihVpNo9TzgZlIJhXMeNBCWrQ/viewform?entry.1702728825
https://docs.google.com/forms/d/e/1FAIpQLSctVCMWWOmlwndjZawPID8zbLihVpNo9TzgZlIJhXMeNBCWrQ/viewform?entry.1702728825
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Figure 5.25 – Feedback form part 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 – Feedback form part 2 
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Figure 5.27 – Feedback form part 3 

 

Following is the responses from the users for this framework. Their ideas and problems they 

faced will be discussed in the next section of this report. Figure 5.28 – figure 5.31 shows the 

summary of the responses of the users. 
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Figure 5.28 – Feedback from the users part 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 – Feedback from the users part 2 
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Figure 5.30 – Feedback from the users part 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 – Feedback from the users part 4 
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5.5 Evaluating the used approach and problems faced 

 

Approach to implement this framework and algorithm would be experimental based. There 

are few stages of this work as follows. 

1. Research for a way to define colors relatively. 

2. Creating new colors with the approach selected from the color relativity schema. 

3. Creating functions and a standard way to apply the colors relatively for any standard 

HTML page. 

4. Apply the work to a real HTML test page. 

5. Testing the accuracy of the functions and fine-tune the application for several major 

color variances. 

6. Restructure and build the initial framework and its behavior.  

7. Test the framework over standard technologies. 

8. Finalize the Framework and testing templates. 

9. Creating the user guide and carryout a survey as a questionnaire to get user feedback. 

10. Evaluating the user feedback and decide the future work.  

 

5.5.1 Problems and solutions 

1. Defining colors relatively was the major problem in the first phase. After initializing a 

way to define colors with RGB color schema and apply with the test pages, there were 

more issues caused because of that relativity schema. 

 

2. Initial understanding was colors are made from RGB and it will be possible to define 

them relatively. But later when changing the colors relative to another color, it was 

realized that the color variance is very limited and colors that are predicting with the 

algorithm was not in the visible color range. Solution to that was not direct and I had 

to further study about the color theory.  

 

3. After learning about the color theory and other aspects of color definitions I decided to 

use HSL color schema and to find a way to define the colors relatively in a way that is 

changeable with many color variances.   

 

4. With HSL there is a way for the relativity of colors. 



82 

 

5. Further I wrote a function that could change the colors of a HTML page dynamically 

and I could cover for a large color variance as possible. Any color variance is now 

possible with the algorithm. 

 

6. Still there is an issue with lightness in the algorithm. Even though this supports for any 

color schema reducing the lightness of the color makes no difference for the output.  

7. Later I realized this happens due to several reasons in the algorithm. Current approach 

is focused with the colors and not with the lightness. If we take lightness change to the 

algorithm, then user expectation with their UI color schema will change. This happens 

due to several properties in the colors. 

 

8. As a simple explanation colors are made from one or two main elements in HSL 

schema. Either color will be based on hue and saturation, or it will be made from 

saturation and lightness. When saturation or lightness is relatively very high then the 

hue can be ignored since it makes no difference in the final color. 

 

9. Currently I have decided to draw a graph and identify the breakeven points of 

saturation and lightness. This work is in the progress with testing. 

 

5.6. Data sets for evaluation 

 

Dynamic color theming framework is technically supposed to change any human visible color 

in the planet. Computer and other standard screens can display 16.8 million difference colors. 

Here this work will use 16.8 million colors as input and this will be the dataset of the work.   

 

5.7 Experimental research work and benchmarks 

 

Bench mark of this research work will be the breakeven points of the algorithm for saturation 

and lightness. The level of this is still under experiment and I am in the stage of fine-tuning 

saturation and lightness for better results in the framework. 
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Chapter 6 

 

6.1 Conclusion and Future Work 

 

This chapter describes the conclusion of this research. Drawbacks, limitations and future 

improvements that is identified during the work is mentioned here. It is important that the 

future works to be detailed in this chapter since it is possible to improve the solution without 

repeating the same work again. 

The purpose of this research was to find a way to change colors of the HTML user interfaces, 

in a dynamic manner even after creating them. Initial design of a HTML page is created 

carefully by using the matching colors and other aspects of the HTML web pages. We use this 

initial color matrix of the page prudently and change them with our framework. 

 

This work achieves the main goal of research and was able to achieve sub goals as well. 

While this purposed mechanism handles extensible complexity and performing 

extraordinarily this mechanism has its own limitations too. This chapter is to mention the 

possible future works, improvements and laminations identifies throughout the work. This 

chapter will be describing the conclusions, limitations of the framework and the future work 

that has been identified.  

 

Static design of HTML page limits the design aspects of the website some extent and it may 

limit the human interaction for specific audiences. This work is to reduce that limitation with 

respect to color matchings of the web pages. This limitation can be reduced with a dynamic 

color theming option for the HTML pages. To give a dynamic color theming ability for the 

HTML page there this work purposes a solution, which is the work carried out as a dynamic 

color theming framework for CSS and relative color predicting algorithm. This work achieves 

the state of relative color theming. 
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As mentioned in above chapters purposed solution successfully achieved the relative color 

theming state in HTML documents. This was technologically feasible with the introduction of 

CSS variables from the W3C organization. Today all the standard browsers support for CSS 

variables and hence this work is production ready for any application with confidence. 

 

Before mentioning the technical aspects of the solution here, it is important to mention about 

the relative color predicting algorithm which is used underneath of this framework. This 

relative color predicting algorithm is written by taking the very basic aspects of the natural 

color and the way we see it in the computer screens. RGB and HSL which are in-detail 

explained in the introduction and background chapters, we use HSL color scheme to define a 

color relative to another color. We have used this mechanism to by doing many tastings but 

the conclusion is that it is very easy to deduct colors into many parts with HSL color schema 

than the RGB color scheme. Basically, in relative color predicting algorithm color is deducted 

into hue, saturation and lightness.  Color predicting algorithm clearly deducts the color into 

few parts and compare them to guess or calculate the new colors. This calculation is described 

in the system design chapter. 

 

The relationship of initial colors is taken into consideration when calculating the new color. 

This method is very efficient in calculation since it has only few mathematical additions and 

subtractions but give the good outputs to the HTML pages. This method has its own 

limitations but enough for our framework to guess the colors for the HTML pages. 

Limitations will be discussed immediately in the next section of this document. 

 

By using this algorithm, a framework was built using native CSS and JavaScript. This 

framework is named as “Chameleon-JS” since it logically issues an ability for a HTML page 

to show color changing effects as a chameleon in the nature. One should use this framework 

in the development time to integrate this into their HTML pages. 

 

This framework is written with very small and simple CSS code lines and any person with 

small CSS knowledge even can change the control panel look and feel as they need in their 

respective applications. 



85 

 

Persistency of the outputs and states should be handled by the developer but the framework 

itself supports for outputting the JSON format text file as a download, and users can restore 

the color settings by uploading the JSON formatted file at any moment. 

 

Initial understanding was to develop this framework with a rule set to eliminate or prevent 

possible color conflicts which may occur with this framework. But later with experiments of 

the work, it is realized that possible color conflictions cannot be prevented by implementing a 

rule set. But it was feasible with layers approach of the HTML page. The approach to 

implement this was to make the framework applicable to the HTML pages with few stages 

called layers. Developers should do this layering in the time of applying this framework to 

their respective web applications.  

 

Colors of the layers can be controlled independently and users can see the colors right away in 

the HTML page and identify the conflictions easily. They can use the best suitable colors as 

they wish for these layers but with care for the possible color conflictions.  

 

Framework is written in native CSS and JavaScript as mentioned above and it is possible for 

any web application to use this as any standard web browser supports for standard JavaScript 

and CSS. No any other external library or framework is used as a support for this framework. 

Hence, we can introduce “Chameleon JS” as a browser independent cross platform framework 

where they can implement without the fear of compatibility issues. Furthermore, this 

framework is tested with many standard browsers for the compatibility. 

 

A survey is being conducted to check the easiness of integrating this framework. Few 

developers are asked to use this framework and their ideas and feedback was taken by using 

this survey. Many ideas that they gave are taken into consideration and most of the changes 

are applied lately into the framework. 

 

This framework should be distributed to the users who need it. And the mechanism was to 

create a web site called “chameleonjs.xyz” users can visit there get more intimation and 

improve their design with Chameleon JS. Usage of the framework and other relevant 

information is there in the website available for users. 
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Research objectives were successfully achieved with the limitation for some objectives. 

Below is a small description to recall can reconsider the objectives. 

 

Objective Status Limitations and Satisfaction Achieved 

or Not 

Research for a methodology 

to define one color relative to 

another color. 

 

Done with 

HSL color 

scheme. 

Lightness definition was not 

straight forward but handled 

that using a control panel given 

for the users to change 

lightness manually. 

Achieved. 

Find a suitable and effective 

method to change the color 

properties of the HTML 

documents on the fly.  

Done with 

CSS 

variables. 

Only Standard browsers 

support for the CSS variables. 

Usage of browser version older 

then 2 years may not be 

possible. 

Achieved 

Research for a methodology 

to predict new colors relative 

to another color. 

Done with 

HSL color 

scheme 

With a good satisfactory level. Achieved 

Design a framework for users 

to use this work in their 

HTML pages. 

Framework 

called 

Chameleon 

JS was 

created. 

With a good satisfactory level. Achieved 

Possible color conflicts that 

can occur with the 

framework should be 

minimized or prevented. 

Handled the 

color 

conflictions 

with layers 

approach 

A control panel is given for the 

users and they can manually 

handle such situations if occur.  

Achieved 

Design the framework 

independent of other 

technologies, so any standard 

website can use this solution. 

 

Done by only 

using native 

JavaScript 

and CSS 

With a good satisfactory level. Achieved 

Table 6.1 Objectives of the Research and Conclusions 
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6.2 Limitations of the framework 

 

Framework will be quite useful for developers who need the dynamic color changing ability 

in their HTML documents. The framework has its own limitations. But the design of the 

framework was trying to minimize the limitations as much as possible. It is important to 

mention the limitations  

 

6.2.1 Color Conflict Handling Limitation 

 

One limitation is when the users are working with lightness and saturation color mismatches 

or conflictions may occur. This will lead to destroy the initial color combinations and law 

readability of the HTML document. There are actions taken to prevent this but it is important 

to consider how they can occur. 

 

When changing the colors initially we do not let the users to change the lightness of the color. 

We only consider hue and saturation. At this point color conflicts will not be a problem. But 

this limits the ability for users to change the colors they need irrespective of initial color 

lightness. Hence there is an option given to the users in the control panel as lightness and 

users can turn it on. Once they activate this mode, users are able to change the lightness of the 

color if that particular layer. Here when users are doing it color conflictions may occur. It is 

highly advices for yours to take a manual look into the document after a successful color 

change. If conflictions are there, then users can change the colors immediately. 

 

However, the limitation is that the framework is not directly able to handle all the possible 

color conflictions automatically. But the mechanism forces the users to prevent such 

conflictions manually by giving them the control. 

 

6.2.2. Color Definition Limitation 

 

HTML documents can use a property called “rgba(x,x,x,y)” this property is able to give a 

opacity to the layer and define the color at the same time. With the technical limitations and 
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by taking the scope of this research into consideration this framework does not support to use 

this special element with color changes. Users can use this functionality and framework will 

not hold users using it but rather framework does not support for the dynamic color changes. 

However, this is a limitation in the framework. 

 

6.2.3 Necessity to use CSS Variables 
 

This framework is highly dependent on the CSS variables. The predicted colors are applied 

directly to the HTML elements by using CSS variables. Today all the standard browsers 

support CSS variables. However, there are old browsers, non-standard browsers which does 

not support CSS variables. If the browser is not supporting CSS variables, then any of the 

color will not be visible in the specific browser. This is a limitation for this framework.  

 

It was initially understood this much of a tradeoff to achieve the highly valuable dynamic 

color changing ability for the HTML page. And as of today, for the standard applications this 

limitation does not effect.  

 

6.2.4 Development time application  

 

The framework is not able to use just by adding the CSS and JavaScript files into the HTML 

document. The developer has a sufficient amount of work to reassign the colors of the page 

into variables and declare them in the framework. Steps are clearly given to the users and they 

can follow it easily but still developers have to compromise their time and important material 

in the real development environments. This is a limitation of this framework since it does not 

offer 100% automated service. 

 

6.3 Future Work. 
 

 Reading the HTML DOM and changing the colors of the HTML elements by using 

this framework. 
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This framework currently works with defining the colors of HTML elements 

manually. But it is being realized that with some other mechanism it may be possible 

to read the HTML document’s DOM element directly and get the CSS color 

definitions. These color definitions can be grouped in several sections and they can be 

used as the input for this framework.  

 

This will help the framework to work more efficiently and framework will be more 

automated than a manual process. This will increase the developer satisfaction and 

accuracy of the work as well. 

   

Since all the HTML definitions anyway go to the HTML DOM element it will not be a 

problem from cross technology applications as well. But currently this is hard to 

achieve to a certain level with the current technological background. However, this 

will not be infeasible if we can implement a mechanism to read DOM and subscribe 

for colors of the elements and use them with the framework.  

 

 Improving the color predicting algorithm for saturation and lightness as well. 

 

Current color predicting algorithm is able to do required work but can be improved by 

using artificial intelligence program. There are many aspects to be solved before 

starting this as a research but many more impressive results will be possible with a 

much more advance color predicting algorithm.  

 

When the algorithm becomes more powerful there well be many aspects that can be 

covered by this concept of dynamic color changing and relative color predicting. 

 

 Creating a tool to convert CSS or HTML pages in to CSS variables and usable with 

this framework for user friendliness. 

 

This framework uses a manual method which is handled by the developers to change 

the color names and order them into an array. Instructions are given to the developers 

but there is a trade off with the time they have to spend for this. In future if we can 
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create a converter to read the HTML pages. Convert the relevant colors into variables 

and output the finalized HTML document and the JavaScript file the work will be 

automated. 

 

This will be grate for developers since their development time can be reduced to a 

considerable level. However, there may be limitations with this approach as well due 

to many technologies uses many syntaxes in the HTML pages. There will be 

validation limitations in this mechanism. 

 

 Testing this with large websites and suggest the persistency mechanism by the 

framework.   

This framework is tested with many technologies and browsers. This was tested with 

many websites too. But still it would be good to test this framework with large website 

which can handle more than 20000 requests per second then we can get an idea about 

the performance of this framework this can be done in the future in a real web 

application whenever the chance is there to test. 

 

 Using an artificial intelligence tool to identify color conflictions and improve accuracy 

of the framework. 

To handle the color conflictions, the framework uses a manual procedure. But if we 

can train neural network for this suppose and use it with this application then it would 

be able to prevent the color conflictions in more accurate way. 

 

It will not be easy for this framework to work with a neural network or any other 

artificial intelligent application but in the future if we can implement a way to connect 

that then it can produce more effective color conflicting mechanism for this 

framework.   
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Appendix A – Integration Manual Documentation. 

Integration manual will give the relevant information for the framework to be integrated with any 

HTML document. 

 

Chameleon JS – Integration Manual 

 

Welcome to Chameleon JS. If you need to have dynamic color theming for your web page you are 

here in the right place. First get an understanding on how this amazing feature works and learn how 

easy it Is to integrate it to your own website. 

 

Chameleon JS is designed to give your website the dynamic color changing ability. You can change 

the colors of your website on the fly, any time you want. There will be a control panel which the 

Chameleon give you to change the colors of your website. You can choose any color you need from 

16.8 million different colors or you can mention RGB values or HSL values to input your favorite 

color to the framework. At any time, you can save your current color combinations of the page or 

initial color pattern of the page and reload it any time you need. For the technical details and other 

questions please see the FAQ section. 

 

Framework uses a relative color predictive algorithm underneath to predict the most suitable colors for 

your website. Framework saves the initial color combination of your web page and uses that matrix to 

predict new colors. Hence the initial color matches and the details of the colors will not be vanished 

even after a color change. The Framework is written in native CSS and JavaScript and there are no 

external frameworks underneath. Hence it is guaranteed to work in with any application but CSS 

version should support the CSS variables. 

 

Prerequisites for usage. 

 

1. Interest to have dynamic color changing feature on your web site. 

If you have a requirement to do dynamic color theming in your website or may be to integrate 

the dynamic color theming and give it as a feature to your users it will be a grate hit since 

yours can choose their own interesting colors.  

2. Web site should be running only on browsers which supports CSS variables. 
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Chameleon JS uses CSS variables to implement its dynamic color theming behavior. Hence 

your application will only be viewable with the browsers which supports CSS variables. CSS 

variables was there in the technological world for some time and hence every standard 

browser today supports CSS variables.  

 

3. Website should have the support for CSS and JavaScript  

Every standard browser supports CSS and JavaScript. Hence this will be the least of your 

problems if you are doing a web application. Because you must be having an environment 

where it supports these technologies. 

 

Usage of the Chameleon JS 

1. Follow the steps to integrate the Chameleon JS into your favorite website. 

 

2. Download Chameleon JS distributable bundle and extract the zip file. And include 

Chameleon.CSS file in your HTML document. 3 JavaScript files should be included at 

the end of the HTML document. Notice adding them in the end of file is necessary. 

 

3. You can download the Chameleon JS with the link below or just visit to 

http://chameleonjs.xyz 

 

4. In your download there is a sample HTML file which is working properly and you 

may see the CSS and JS folders which the actual framework is. 

5. Direct download link: https://goo.gl/RmK7pN 

  

   <link href="CSS/chameleon.css" rel="stylesheet"> 

   

<script src="JS/chameleon.js"></script> 

<script src="JS/chameleon-algorithm.js"></script> 

<script src="JS/chameleon-popup.js"></script> 

 

 

6. Replace all colors of your document with CSS variables and define them in the root 

element of CSS file. You can complete this by following below steps. 

 

http://chameleonjs.xyz/
https://goo.gl/RmK7pN
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i. Replace the color of CSS style with a variable which follows the Chameleon 

naming convention. As an example, you will be replacing the value of white 

on background property with a CSS variable as below. Note that your color 

can be on a external CSS sheet internal definition or even inline definition. 

 

background: var(--L3-white); 

 

Then go to the Chameleon.CSS which is given on download bundle and open 

the file. You can define your variable here with your favorite color. 

 

:root { 

    --L3-white : #FFFFFF; 

} 

 

There are many ways to define color with this Chameleon JS as used in 

standard CSS. As an example, you can mention white color as any of the 

following. 

 

 #FFFFFF 

 #FFF 

 White  

 

(Chameleon naming convention is explained after this introduction.) 

  

ii. Open the chameleon.js file and find the definition of “variablesArr” which is 

defined on the top of the file. Add your previously defined variable here as an 

array element. As an example, following array holds two CSS variables 

created as of in the 1st step given above. Notice you only add the variable 

name here. 

 

var variablesArr = ["—L3-white", "--btn-hover-color"]; 

 

iii. Chameleon JS control panel is auto created on your HTML document. To give 

the space for this control panel you need to add following div element to your 

page. You may add any CSS definition to this div element to match with your 

website. Remember to place this div in a place where your users can identify it, 

so it will be easy for them to find the control panel.  
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<div id="chameleon-js-main"></div> 

 

Chameleon JS uses a native popup mechanism which is supported by HTML5. 

Control panel will be visible there.  

 

7. Open your HTML document and enjoy!  

 

Chameleon Naming Convention  

 

Variables defined in this framework follows a naming convention. Users of the framework 

should follow this naming convention in order to define the layer of the variable which they 

are referring to. Naming convention should follow the following rules in order to achieve the 

color relativity in HTL documents. 

 

I. All the names should be declared as CSS variables and assigned to a color. 

 

II. Names must be unique, but one unique variable can be used in many places in the 

HTML page, where users need to have the same color. 

 

III. Name should start with “--” due to the standards in CSS variables. 

 

IV. Names which needs to go to particular layer should mention the layer name starting 

with “L” followed by layer number. Ex: “--L1-my-background-color” 

 

V. Variables which does not need to go to a particular layer can be declared without “L” 

but these variables will fall into the category of default layer which is the “0” layer. 

 

Visit Chameleonjs.xyz for more details. Or email to herathnadeeshan@gmail.com for any 

assistance. Please leave a comment of your experience with Chameleon.JS 

 

 

 

mailto:herathnadeeshan@gmail.com
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Appendix B – Description of functions in the framework. 

Chameleon JS uses many functions written I JavaScript language. Some of the important functions 

will be shown here and described.  

 

Color Relativity Generation.  

 

This function takes three parameters as the “baseColor” which is the basic color defined on the 

original HTML page, “newMainColor” which is the newly selected main color that user is trying to 

change to and the “actualColor” which is the actually defined color of the current HTML document.  

 

Function calculates few parameters which is really simple in JavaScript language, it is important to 

notice that inputs are running through two more functions called “hexToDecimal” which will convert 

the hexadecimal code to RGB numbers and “calculateHSL” function which will convert the RGB 

numbers to a HSL number array. This function returns a string which contains a HSL color definition 

ready to use for the HTML page. 

 

 

Appendix B, Figure 1 – Generate relative color HSL function. (color relativity algorithm) 
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Calculate HSL function 

 

This function takes the RGB value as an array and converts the RGB color to the respective 

HSL colors after doing few validations to ensure the color is in the visible range. Finally it 

returns the HSL color as an array. 

Appendix B, Figure 2 – Calculate HSL function 


