

Web Component Based

Ecommerce Application

Development Framework for

Hosted Software Solutions (Pvt) Ltd.

A dissertation submitted for the Degree of Master of

Computer Science

W.T.K Dilhara

University of Colombo School of Computing

2018

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: W.T. K Dilhara

Registration Number: 2015/MCS/022

Index Number: 15440225

Signature: Date:

This is to certify that this thesis is based on the work of

Ms. W.T.K Dilhara

under my supervision. The thesis has been prepared according to the format stipulated and is

of acceptable standard.

Certified by:

Supervisor Name: Dr. K.L Jayaratne

Signature: Date:

i

Abstract

With the growth of software size and complexity, the traditional approach to building

software from zero, it becomes ineffective in terms of productivity and cost. The guarantee of

product software quality makes it almost impossible, discouraging the introduction of new

technologies. To meet the demands of quality, modernized software on a large scale, there are

new paradigms of development that facilitate the creation of evolvability systems, flexible,

reliable and reusable. One of these paradigms is the software component-based development

(CBSD) (Engineering, Component Based Software) and is based on the concept of building

elements of an application that must be the independent, reusable pieces of code.

Research problem is built on that same CBSD scenario, but it is for web-based ecommerce

applications. Leading ecommerce solution providers in Sri Lanka and USA need proper

solution for mentioned problem.

Web component-based E-Commerce Application Framework with Component should be able

to plug and play with other components and/or frameworks so that component can be

composed at run-time without compilation. When Web Application Live Run/Host, add new

module to existing web, no need to down the system and want to upload relevant module to

existing base web application.

ii

Acknowledgements

I would like to extend my sincere gratitude to everyone who has helped me to make this

research a success.

It is my responsibility to be thankful to the staffs who are working at Hosted Software

Solutions (Pvt) Ltd., without their support my Research Project and Documentation would not

possible thing. The special thank is go to owner of the business. Without his permission, were

unable to do this.

Especially I give my gratitude to my project supervisor Dr. K.L Jayaratne, for the guidance

and support provided me during the project, even during his busy schedules. The guidance I

got from him during those hard times which I came across was more than very helpful to

drive the research in the correct direction and to choose best approaches and techniques.

I wish to express my sincere gratitude to my colleagues and my friends who participated in

the research for giving valuable information and suggestions spending their valuable time.

Most of the information and knowledge was extracted from the Internet, and I am thankful for

those individuals who shared information and ideas through the World Wide Web.

I would like to thank all my colleagues at MCS batch who gave me valuable ideas and

support. And special thanks should go to my work place, Hosted Software Solutions (Pvt)

Ltd. for the support given to me during my MSC studies in last two years.

Finally, I would like to mention my parents who were encouraging and supporting me, during

the period of research study as well as during the postgraduate studies for nearly two years.

Thank you

iii

Table of Contents

Abstract .. i

Acknowledgements ... ii

List of Figures ..v

List of Tables .. vi

List of Abbreviations ... vii

Chapter 1 : Introduction ..1

1.1 General Introduction to the Problem ..1

1.1.1 What is Component Based Software Engineering?..1

1.1.2 Definition and characteristic of components ..1

1.1.3 Differences from object-oriented programming ...2

1.2 Motivation ..3

1.3 Aims and Objectives of the Project ..3

1.4 Scope ..4

1.5 Structure of the Thesis ..4

Chapter 2 : Background / Literature Review ..5

2.1 Selection of Related Course Works..5

2.2 Analysis of the related research work ..14

2.3 Identification of Research Gap / Problem ..19

Chapter 3 : Methodology ..20

3.1 Component Based Software Development vs Traditional Software Development20

3.2 Component Based Software Development vs Conventional Software Reuse20

3.3 Architecture and Methodology ...21

Chapter 4 : Proposed Solution Details ..23

4.1 Characteristics of proposed software component ...23

4.2 Proposed High Level Architecture of CBSD for eCommerce Solution23

4.2.1 Main Components ..24

4.2.2 Sub Components ..25

4.3 Used Technologies ...25

4.4 Implementation...28

4.4.1 Typical MVC Project Architecture ..28

4.4.2 Proposed System Design Architecture ...29

4.5 Proposed System Screen Designs ..31

4.5.1 Home Page ...31

4.5.2 Promotion Area ..31

4.5.3 Store Front Area ...32

iv

4.5.4 Top Rated Items ...32

4.5.5 Shopping Cart ...33

4.5.6 Checkout...33

4.5.7 My Account Area ...34

4.5.8 Admin Panel - Categories ..34

4.5.9 Admin Panel – Add / Edit Items ..35

Chapter 5 : Evaluation and Results ...36

5.1 Evaluation Plan ..36

5.2 Evaluation Approach ..36

5.3 Evaluation Methodologies ..37

5.4 Results ..38

5.4.1 Questionnaire Evaluation ...39

5.4.2 Analysis of Designation ...42

5.4.3 Analysis of Higher Educational Level ...42

5.4.4 Analysis of Age Category ..43

5.4.5 Analysis of Experience in working Hosted Software Solutions (Pvt)............................43

5.4.6 System Evaluation ..44

Chapter 6 : Conclusion ..46

6.1 Introduction ..46

6.2 Findings and Limitations ..46

6.3 Future Work ...47

References ..48

Appendices ...51

Appendix A: Questionnaire ..51

Appendix B: Interview Questions ..55

v

List of Figures

Figure 1 A simple example of several software components - pictured within a hypothetical holiday-

reservation system represented in UML 2.0 ...2

Figure 2 Citation level of papers by years ..7

Figure 3 Component models ..8

Figure 4 Programming languages ..9

Figure 5 Framework types..10

Figure 6 Visual example of how a component-based development style streamlines your processes ...17

Figure 7 CBSE methodologies ...22

Figure 8 Proposed High-Level Architecture of CBSD for eCommerce Solution24

Figure 9 Areas in ASP.Net MVC ...26

Figure 10 The Agile Process and Lifestyle ..27

Figure 11 Typical MVC Projects with Multiple Areas ..28

Figure 12 Modules will build as separate MVC Projects ...29

Figure 13 Module Manager Screen ..29

Figure 14 Modules after plugged in to base project ...30

Figure 15 Home Page ...31

Figure 16 Promotion Area ..31

Figure 17 Store Front Area...32

Figure 18 Top Rated Items ...32

Figure 19 Shopping Cart ..33

Figure 20 Checkout ..33

Figure 21 My Account Area...34

Figure 22 Admin Panel - Categories ..34

Figure 23 Admin Panel – Add / Edit Items ..35

Figure 24 Analysis of Designation ...42

Figure 25 Analysis of Higher Educational Level ...42

Figure 26 Analysis of Age Category ..43

Figure 27 Analysis of Experience in working Hosted Software Solutions (Pvt)43

Figure 28 Questionnaire Evaluation - Hosted Software ...52

Figure 29 Evaluation Sheet of Questionnaire...53

Figure 30 Criteria of Evaluation Sheet ...54

file:///E:/MCS/Documents/3%20DissertionDocument.docx%23_Toc517593798
file:///E:/MCS/Documents/3%20DissertionDocument.docx%23_Toc517593799
file:///E:/MCS/Documents/3%20DissertionDocument.docx%23_Toc517593801

vi

List of Tables

Table 1 Categorized - Citation Based ..5

Table 2 Categorized - Conference Proceedings ...6

Table 3 Overview component model & programing language ..8

Table 4 Usage of CBD and connection to architecture ..12

Table 5 Component Based Software Development vs Traditional Software Development20

Table 6 Component Based Software Development vs Conventional Software Reuse21

Table 7 Questionnaire Evaluation - Hosted Software ..41

Table 8 System Evaluation Data Sample ...45

Table 9 System Evaluation Diagram ..45

vii

List of Abbreviations

CBSE Component Based Software Engineering

CBD Component Based Development

SoC Separation of Concerns

UML Unified Modelling Language

OOP Object-Oriented Programming

MVC Model View Controller

CMS Content Management System

SSE2 Streaming SIMD Extensions 2

AVX2 Advanced Vector Extensions 2

WPF Windows Presentation Foundation

API Application Programming Interface

1

Chapter 1 : Introduction

1.1 General Introduction to the Problem

1.1.1 What is Component Based Software Engineering?

Component Based Software Engineering (CBSE) is also popular as component development

(CBD), concept has emerged in mid of 1990s. This concept is a development of separation of

concerns (SoC) [1], where we divide the software development project based on its

functionality or its architecture. It is a re-use-based approach-to define, implement and deploy

isolated components and plug & play with a main system. This practice is aimed at creating

the same level of benefits for both the short and long term for the software itself and the

sponsoring organization. Components may issue or retrieve events and may be used for EDA-

driven event architecture [2].

1.1.2 Definition and characteristic of components

An individual software component is a software package, a web service, a web resource, or a

module that encapsulates a set of related functions (or data). All system processes are placed

into separate components so that all of the data and functions inside each component are

semantically related (just as with the contents of classes). Because of this principle, it is often

said that components are modular and cohesive. With regard to system-wide co-ordination,

components communicate with each other via interfaces. When a component offers services

to the rest of the system, it adopts a provided interface that specifies the services that other

components can utilize, and how they can do so. This interface can be seen as a signature of

the component - the client does not need to know about the inner workings of the component

(implementation) in order to make use of it. This principle results in components referred to

as encapsulated. The UML illustrations within this article represent provided interfaces by a

lollipop-symbol attached to the outer edge of the component. However, when a component

needs to use another component in order to function, it adopts a user interface that specifies

the services that it needs. In the UML illustrations used interfaces are represented by an open

socket symbol attached to the outer edge of the component as illustrated in Figure 1.

2

Figure 1 A simple example of several software components - pictured within a hypothetical holiday-reservation system

represented in UML 2.0

1.1.3 Differences from object-oriented programming

Proponents of object-oriented programming (OOP) maintain that software should be written

according to a mental model of the actual or imagined objects it represents. OOP and the

related disciplines of object-oriented analysis and object-oriented design focus on modeling

real-world interactions and attempting to create "nouns" and "verbs" that can be used in more

human-readable ways, ideally by end users as well as by programmers coding for those end

users.

Component-based software engineering, by contrast, makes no such assumptions, and instead

states that developers should construct software by gluing together prefabricated components

- much like in the fields of electronics or mechanics. Some will even talk of modularizing

systems as software components as a new programming paradigm. Example for possible

paradigm: many experts feel adaptability to evolving needs is more important than reuse,

since 80% of software engineering deals with maintaining or releasing new versions. So it is

desirable to build complex system by assembling highly cohesive loosely coupled large

components, where cost of redesigning each of such adoptable components (or replacing by a

better component) must be minimized.

Some argue that earlier computer scientists made this distinction, with Donald Knuth's theory

of "literate programming" optimistically assuming there was convergence between intuitive

and formal models, and Edsger Dijkstra's [3] theory in the article The Cruelty of Really

Teaching Computer Science, which stated that programming was simply, and only, a branch

of mathematics.

3

In both forms, this notion has led to many academic debates about the pros and cons of the

two approaches and possible strategies for uniting the two. Some consider the different

strategies not as competitors, but as descriptions of the same problem from different points of

view.

One approach to creating component-based software using object-oriented programming is

interface-based programming. However, interface-based programming does not inherently

support distributed systems, and many computer systems are inherently distributed in the 21st

century. Interface-based programming in the OOP Invalid source specified. sense may be

extended to distributed systems with distributed component object models; however, many

have argued in recent years that REST APIs or the actor model are more suitable approaches.

1.2 Motivation

My research problem is built on same CBSD scenario but it is for web based e-commerce

applications. This is an actual issue in Hosted Software Solutions (Pvt) Ltd. This company is

a leading ecommerce solution provider in Sri Lanka and USA. Main products in this company

are e-Commerce and online food order solutions. Current Web Solutions are rich in features

but it is hard to add a new feature to it and decouple an existing feature from it. Because of

that even though customer do not want to buy fully featured online store (customer do not

want item rating and facility), customer should buy it. In my research tries to find a solution to

above problems and build a framework for web-based ecommerce solution development.

1.3 Aims and Objectives of the Project

Intention is this research is to develop a common framework which follow component based

loosely coupled but highly integrated software component framework for e-commerce

application development. Also, this research will search for suitable technologies to follow 5

for the CBSD in web-based e-commerce solutions in UI, Backend and Database level.

Proposed solution will feature to develop web-based e-commerce features in module basis

and those modules will able to plug-in to the main web solution when it needs and plug out

form the main web solution when do not need.

4

1.4 Scope

Scope of the research is limited to Software Developments specially web-based online

solutions and services. Specially this framework will be proposed for e-commerce solutions

which mainly has its business scope in Sri Lanka, USA and UK. So those business

requirements will consider on this research. Big picture of this research is to build a

conceptual model framework and couple of sample modules which can plug in and plug out to

the main web solutions.

1.5 Structure of the Thesis

The rest of this thesis is structured as follows:

Chapter 2 discusses about the background of this implementation with related publication on

literature. Selection of Related Course Works, Analysis of the related research work and

Identification of Research Gap / Problem also cover with this chapter.

Chapter 3 describes methodology. Aspects relating to the proof of concept specification which

includes design assumptions relating to the scope of the proof of concept, prototype

architecture contains in this chapter.

Chapter 4 discusses about Proposed Solution Details. chapter includes all the details about the

proposed solution. Also describe Form of the solution and how it is formed, rationale behind

the development of such solution.

Chapter 5 presents the findings and the evaluation of the research. Includes aspects such as

designed experiments, results obtained and critical evaluation of the research work.

Chapter 6 summarizes the work, discusses its findings and contributions, points out

limitations of the current work, and outlines directions for future research.

5

Chapter 2 : Background / Literature Review

2.1 Selection of Related Course Works

Following are related works which relevant to CBSD and eCommerce frameworks.

Researcher has categorized the relevant articles, website documents, journals, conference

proceedings and research papers, review papers and white papers as shown in Table 1.

Citation Based Year Cited by

Component-based frameworks for E-commerce 2000 74

Open MVC: A non-proprietary component-based framework

for

web applications

2014 9

Efficiently Distributing Component-Based Applications

Across Wide-Area Environments

2003 4

The pataphysics of creativity: Developing a tool for creative

search

2013 2

A Web Application Framework for

End-User-Initiative Development with a Visual Tool

2012 2

An approach to formally modeling the component-based e-

commerce system

2005 2

Blending E-Commerce Theory and Application 2005 1

Composing user-specific web applications from distributed

plug-ins

2013 1

Nested web application components framework: A comparison

to competing software component models

2013 0

Support for development and test of web application: A

tree-oriented model

2011 0

Nested web application components framework: A comparison

to competing software component models

2013 0

Component based Framework to Create Mobile Cross-platform

Applications

2013 -

Table 1 Categorized - Citation Based

6

Conference Proceedings Publisher

Thirteenth International World Wide Web Conference

Proceedings, WWW2004

ACM

Lecture Notes in Computer Science Springer

Proceedings - International Conference on Next Generation Web

Services Practices, NWeSP 2005

IEEE

Web3D Symposium Proceedings ACM

Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining

ACM

Proceedings of the ACM Symposium on Applied Computing ACM

Lecture Notes in Computer Science Springer

Lecture Notes in Engineering and Computer Science Springer

Thirteenth International World Wide Web Conference

Proceedings, WWW2004

ACM

Software Engineering and Advanced Applications, 2005. 31st

EUROMICRO Conference

IEEE

Lecture Notes in Computer Science Springer

ENASE 2013 - Proceedings of the 8th International Conference

on Evaluation of Novel Approaches to Software Engineering

Springer

2008 34th Euromicro Conference Software Engineering and

Advanced Applications

IEEE

Lecture Notes in Computer Science Springer

5th IEEE/ACIS International Conference on Computer and

Information Science and 1st IEEE/ACIS International Workshop

on Component-Based Software Engineering,Software

Architecture and Reuse (ICIS-COMSAR'06)

IEEE

Proceedings of the IASTED International Conference on Internet

and Multimedia Systems and Applications

IASTED

ICEIS 2005 - Proceedings of the 7th International Conference on

Enterprise Information Systems

ICEIS

Table 2 Categorized - Conference Proceedings

7

In Figure 2, which presents number of cited papers by year, it can be noticed that most of the

citations are from between 2005 and 2006, more than 50 %. But surprisingly the most cited

paper is from 2007, and the more recent one, from 2014 is cited 9 times. It will be interesting

to see if the rising trend as seen from 2011 up to 2014 will continue.

Figure 2 Citation level of papers by years

In Table 3 and Figure 3 one can notice that lot of papers have not defined a component model.

The most used component model is some variation of JavaBeans consequently making Java

the most popular development language (usually J2EE).

8

Table 3 Overview component model & programing language

Figure 3 Component models

9

Figure 4 Programming languages

Both JavaBeans and EJB are used in several times. In lot of them, JavaBeans and EJB are

used simultaneously, some papers use COM and Corba component models which are well

known, and the remaining ones use custom component models. Considering programming

languages (Figure 4), Java is most widely used, with 12 out of 21 papers using it. Among

these, 10 of which using explicitly Java and in two paper Java is an option (papers [4] and

[5]). Paper [6] also uses Java, but only to build XML which is then used to develop web

applications, therefor it is not counted since this XML can be generated in many programming

languages.

Most papers do not explicitly report on any major problems while using the component

approach, but rather they report suggestions for future researchers and practitioners concerned

with CBD. All the suggestions are aggregated and presented below.

• Components should capture domain knowledge of web application development

and hide complexities from End User [7].

• Components should not capture application domain specific knowledge into

Components. Rather those specific application needs should be abstracted and

generic Components (Tools and Engines) should be created that can be used

across many application domains [7].

• Components should be easy to use by End Users, yet they need to be complete so

that it aids full capture of all the necessary ‘Components parts’ of the application

such as front-end pages, back end processing logic and database information [7].

10

• It is not an easy task to develop an in-house component framework or to integrate

available preexisting COTS in enterprise applications. It needed far more

efforts and investments than it was foreseen in the beginning (approximately 50%

more work than expected) [8].

• It is not one-time effort but continuous process, which needs considerable investment

in time and resources [8].

• The percentage of reusability changes from application to application and often

needs component modification and reconfiguration [8].

• The major benefit of an in-house Component framework development surprisingly is

not the project cost and time reduction based on business logic and business functions

reusability (our but the company knowledge sharing and the creation of business

function components [8].

• Component composition: Each component is designed to achieve some special

task; several components can be composed together in a dependent series to

achieve a larger task [9].

• Problem in distributed systems is distributed component management [9].

• Problem is redesign of components to be more generic, simple and fast integration

procedure with arbitrary Web applications [10].

All the selected papers authors use some type of a web development framework, which can be

divided in two groups; general and specific. General frameworks are used to develop any kind

of web application, i.e. they can be used in many domains, while specific frameworks are

specialized or limited to only a certain type of web application, i.e. a certain domain. As it can

be seen in Figure 5, authors tend to use general frameworks, however the number of specific

ones is significant.

Figure 5 Framework types

11

Usage of Components Connection to architecture

“Components are responsible for

realizing the application logic related to

the associated element and providing

services to other components.”

XVM architecture is component-based

architecture and enables dynamic composition of

components. XVM manager is responsible for

handling all components. “In the XVM

architecture, the key idea is a mapping between

XML elements and software components, which

associates XML elements with software

components.”

Two types of Components: “

(a) Tools that allow End Users to create

and assemble applications and (b)

Engines that could be used to run these

applications.”

Architecture not particularly described.

Framework is built so that end-users can use

existing components to build new applications, or

developers can create new component include into

Framework and this can be further used again by

end-users.

Components contain business logic or

presentation logic, with connectors to

HTTP, JDBC, JNDI, CORBA, RMI

Architecture is multi-tier (client, web

(presentation), business, and database).

Components are used at web and business tier.

Components have specialized

functionalities to client modules that

require server-based functionality (e.g.

data analysis or computation of

visualizations that require large data set)

Client-server architecture is used. Components are

used on server side.

“Using component-based programming,

we developed a highly maintainable

system, which contains three

components packages: Monitoring

Controls Package based on ActiveX,

Analysis Controls Package based on

ActiveX, and Diagnosis Algorithms

Package based on COM.”

“A four-tier model based on the Microsoft’s tier

concept is adopted in the WRMFDS, which

consists of the Presentation Services Tier, the

Application Services Tier, the Data Access

Services Tier and the Database Services Tier.”

Layered structure of components is

used. The top layer consists of

Three-tired-architecture is used (MVC pattern).

The tires are: server, client and databases.

12

components which are used to build

final applications (exp. welcome

component, login components …)

Components are used on server side. “A request-

response pair contains three parts (Model, View,

controller) and forms a unit. Each unit is

implemented by reusing component libraries in

the layered component structure and each unit can

be plug-and-play into the system.”

Component implement backend

functionalities, which end-users can use

when building web applications (exp.

search component for searching some

data table).

Two types of components: Components

that implement functionalities that are

not domain dependent and components

that are domain-dependent.

Three-tired-architecture (client, application server,

DB server) with MVC pattern is used.

Components are used in application server.

Component can be anything. Every user

can add his own components.

Components can be server-side that are

installed and executed on server. Client side

installed and executed on client and

use local resources. And sandbox

components installed on server and

downloaded to client on demand and

executed on sandbox on the client.

Component based plug-in architecture. Different

components are combined by end users and web

applications created.

Framework itself is a component that

can be integrated into another web

applications, but also consist of

components which consist of

components "nested components".

MVC architecture, components are used on all

MVC layers.

Table 4 Usage of CBD and connection to architecture

13

Table 4 shows for which purpose authors used component-based development and how did it

affect the software architecture of their web applications. There are three ways of component

approach usage which one can distinguish:

• Components are used for creating web development frameworks – in this approach

authors create component-based frameworks which are used to create web

applications, which can, but don’t need be component based.

• Components used as application building blocks – in this approach components are

used to create component-oriented web applications without the underlying

framework.

• Mixed approach – both framework and web application developed with this

framework are component oriented. In all the above cases the architectural decision is

made solely by the end user, and all papers report only on developing prototypes

(weather it is a framework or a web application). While most of the authors use

component approach on the server side to implement various services, on the client

side.

14

2.2 Analysis of the related research work

Component-based software engineering (CBSE) [11] is an approach to develop software that

relies on software reuse. The success of the final system is completely based on the

component-based software engineering that sometimes depends on the previous successful or

failed case experience, previous decision and helps us to select the component that leads to

the final system. It may reduce time for software development. In software development,

Component-Based Software Development (CBSD) is a new phase that helps in development

of complex software from the integration of pre-build components instead of developing

everything from scratch. There are several problems (For example: Integration, Maintenance,

Testing, etc.) occurred in the selection of components for integration.

A component is the unit of a system that offers predefined service and must be able to

communicate with the other components. Component based software engineering (CBSE)

mainly focuses on building large software systems with integrating previously-existing

software components/modules [12].To improve software reusability and maintainability so

many techniques have explored by software engineers for easing distress and pains that are

given by complexity of software system, i.e. Modularization of software, object oriented

techniques. Object-oriented technique is an approach to designing modular, reusable software

systems. The goal of Component based software development is to reuse components based

on previous conclusion and experience. But, the main goal of Component based software

development is that it reduces the time for software development [13]. By using previous

experience and the knowledge of failure can reduce the overall development time. Difficulties

faced by the developers are not only to overcome the common properties are sufficient but

enable a software developer to make such confidence to select suitable components to be

used. The main problem find was that how to select the component from the available list of

components which satisfy the requirements of the system.

Component-based UI development is not just the future of the web. It is a technique that

digital application owners need to implement right now. Developing with a component-based

user interface creates a sustainable technical architecture, saving time and costs. It also

ensures a consistent experience across a portfolio of applications. “component” as an

independent piece of software. This standalone, discrete piece of software has a clear

boundary that is accessible via an API and contains all the application dependencies. This

enables teams to build the user interface quickly, leveraging the library of components.

15

There are lot of benefits to Using a Component-Based approach. Briefly can describe some of

the benefits of Component-Based approach.

• It Allows for Reuse

Components are atomic units and building with components allows for their reuse in

future development cycles. Since technologies come and go, this is invaluable. If you

build your application in a componentized format, you’re able to swap the best

components in and out.

One of the challenges of reuse with other development types is that they are not

internally built or that they include many dependencies. A component-based UI

approach allows your application architecture to stay up to date over time instead of

rebuilding it from scratch. You can build multiple applications that adhere to the

intended design principles.

• A Component-based UI Approach Accelerates Development

Using a component-based UI approach supports iterative, agile development.

Components are hosted in a library from which teams can access, integrate and modify

them throughout the development process.

In the design process, instead of designing new components, the designer focuses time

on extending the existing components and designing new components where required.

This optimizes the design process without designing a new grid, layout, or navigation.

Ultimately, this expedites the design and development process because of the level of

reuse.

• It Ensures User Experience Consistency Across a Portfolio

One of the major challenges for an organization is ensuring that a portfolio of

applications provides consistent user experiences and interactions. The component

library acts as a point of governance for the business, designers, and quality assurance

teams. In the case of Quality Assurance (QA), teams often have challenges validating

the user interface due to a lack of an approved set of user interface standards. The

component-based approach enables the creation of a library that provides that

approved reference point. This enables the QA team to govern the compliance to UX

16

standards across a portfolio of applications. It acts as a dynamic repository that the QA

team can use to validate their tests.

• It Easily Integrates into the Development Process

As components are created, production quality user interface code is managed within a

source code repository such as GitHub. Application development teams are well

versed in using source code repositories, and so they are able to extract the code as

needed and incorporate it into the application. Leveraging the initial component as a

starting point, development teams can extend it to meet their needs. Then they can

submit it into the code repository for review and approval for inclusion.

The component library can be versioned in the repository, enabling tracking of which

applications are on which version of the approved UX. This also will facilitate the

governance and update process.

• Component-based UI Development Optimizes the Requirements & Design Process

Using the component-based library as a reference, product managers, business

analysts and user experience designers can spend less time defining the detailed

application functionality and user experience. As they work through the definition

process and requirements elaboration, they can reference a component as the baseline

for the requirement, and then only spend time defining the required extensions and

business logic.

17

Figure 6 Visual example of how a component-based development style streamlines your processes

Component-based e-commerce technology is a recent trend towards resolving the ecommerce

challenge at both system and application levels. Instead of delivering a system as a prepacked

monolith system containing any conceivable feature, component-based systems consist of a

lightweight kernel to which new features can be added in the form of components. In order to

identify the central problems in component-based e-commerce and ways to deal with them,

we investigate prototypes, technologies, and frameworks that will transcend the current state

of the practice in Internet commerce. [14] Component implement backend functionalities;

which end-users can use when building web applications. There are two types of components:

Components that implement functionalities that are not domain dependent and components

that are domain-dependent. [15] As it can be seen, in last four years general frameworks are

preferred. Although there is one exception, one can notice that there seems to be the

stabilization of the research domain. Initially, there was a lot of specific frameworks but due

to growing complexity of web applications, researchers seem to use existing and already

proven frameworks. [16] But there are limitations and competitive disadvantage in using

general frameworks.

Components are content created form three layers. “A Web application can usually be

described in three layers. Presentation layer, business logic layer, and database layer. Each

layer can be partitioned and distributed among the CDN’s replica servers. [17]

In a modern economy, computer systems development determines to some extent the value

added to the company's true profit and to a large extent the possibility of achieving business

18

success. Since the time when recording and storing data in computer memory became

possible, there have been constant efforts to exploit the analysis of this data. The most

advanced data analysis techniques involve data warehousing (to store large amounts of varied

data) and business intelligence technology (to mine useful information and discover

knowledge from data). Both areas have acquired new meaning thanks to e-commerce's

systematic progress and evolution, which depend on and give impetus to the development of

data acquisition, storage, and analysis technologies. So, we need knowledge about the

models, technologies, and so forth, that can be applied to e-commerce systems development.

Data Warehousing and Business Intelligence for E-Commerce attempts to meet this demand.

[18] Another trend is the use of component frameworks for building network services. Their

component-based nature makes such applications natural candidates for distributed

deployment, but it is unclear if the design patterns underlying component frameworks also

enable efficient service distribution. In this paper, we investigate the application design rules

and accompanying system-level support essential to a beneficial and efficient service

distribution process [19].

Another very important area of eCommerce CBD is mobile devices. In modern world,

smartphones provide a set of native functionalities and another set of functionalities available

through third-party applications. The emergence of more and more actors, without standards

to provide their devices or OS, stops the cross-platform development. Indeed, a developer

would have to learn many programmatic languages and create many user interfaces for many

devices. To resolve this problem, several solutions often consist in the creation of a common

SDK to only write the application once [20] . Then, same business logic uses for every

deice or platform. In this paper, we propose a solution based on a component model.

The lack of standardized approaches in the development of web-based systems is an ongoing

issue for the developers of commercial software. To address this issue, we propose a hybrid

development framework for web-based solutions that combines much of the best attributes of

existing frameworks but utilizes open, standardized W3C technologies where possible. This

framework called open MVC is an evolution of the Model-View Controller (MVC) pattern

[21].

19

2.3 Identification of Research Gap / Problem

There are large number of ecommerce frameworks available. 60% of eCommerce web-based

frameworks are in open source form, these lead developers to choose features from various

frameworks, but they are not easy to integrate, and plug & play feature is not there, even

though it has plug and play feature in same framework components most of those have not

met the required level of satisfaction for developers as well as clients. Following are the main

questions which are not directly answered by related researches.

• In which way is CBD used for web application development

• What is the relation between CBD and web application development?

• Which component models are used for web application development?

• In which web application development domains is CBD used?

20

Chapter 3 : Methodology

3.1 Component Based Software Development vs Traditional Software

Development

Traditional software development approach to the functionality of the system and mainly

follow the sequential models like waterfall, which are mostly overridden by the Iterative and

Evolutionary models like increment, prototyping, Boehm’s Spiral Model. Component-Based

Software Development is to address the development of systems as an assembly of parts

(components), the development of parts as reusable entities, maintenance and upgrading of

systems by customizing and replacing such parts.

Component-Based Software Development Traditional Software Development

Building system from pre-existing

components.

Building system from scratch.

Components and systems integrated from

those components are developed.

Software system is developed.

Component selection and evaluation are

special lifecycle phases.

In the lifecycle, there is no special phase like

that.

Much effort is required in the selection of

components, testing and verification phase.

Much effort is required for system

development.

Reusability is the main theme. Reusability usually not considered.

Table 5 Component Based Software Development vs Traditional Software Development

3.2 Component Based Software Development vs Conventional Software

Reuse

Object-oriented technologies have produced software reuse, there is a big gap between the

total systems and classes libraries. OOP include software design patterns, frameworks and

architecture of reusable elements. Component-Based Software Engineering is an elite form of

software engineering that offers the feature of reusability. Reuse of software artefacts and the

process of reusability make CBSE a specialized paradigm of software development.

21

Characteristics CBSE Conventional

Architecture Modular Monolithic

Components Interface and Black-Box Implementation and White-

Box

Methodology Composition Build from scratch

Process Evolutional and Concurrent Big-bang and Waterfall

Organization Specialized: component

Vendor, Broker and

Integrator

Monolithic

Table 6 Component Based Software Development vs Conventional Software Reuse

As shown in Table 6 CBSE and Conventional comparison important point is an Architecture.

Modular is more minimal and only provides the barebones functionality and structure for our

application. Generally, only has one “responsibility”. The code is more loosely couple where

each part of code communicates in a more or less standard interface. Monolithic typically

provides a tightly coupled codebase that makes a lot of assumptions about how the code

interacts with each other. It usually includes everything we would need to get a web

application up and running quickly.

3.3 Architecture and Methodology

CBSD leads to build a modular architecture. It helps to partially develop a system and

incrementally enhance the processes, functions by adding and/or replacing components.

Common component-based systems underlying software architecture such as MFC (Microsoft

Foundation Class) and CORBA. Latest technologies are developed for web-based solutions

such as .Net core, MVC, Angular and jQuery / JSON based libraries. Proposed solution will

use these technologies in appropriate areas.

22

Figure 7 CBSE methodologies

CBSE focuses on connection of components through their interface. This connection also

requires designing and develop collaborative behavior of multiple components. CBSE

methodologies need to help interface-centric and behavior-oriented design such as

connection-oriented programming and catalysis.

23

Chapter 4 : Proposed Solution Details

4.1 Characteristics of proposed software component

By looking at above two traditional development approaches following are the identified

characteristics of single component.

1) Plug & Play: Component should be able to plug and play with other components

and/or frameworks so that component can be composed at run-time without

compilation

2) Interface-centric: Component should separate the interface from the implementation

and hide the implementation details so that they can be composed without knowing

their implementation.

3) Architecture-centric: Components are designed on a pre-defined architecture so that

they can interoperate with other components and/or frameworks.

4) Standardization: Component interface should be standardized so that they can be

manufactured by multiple developers or teams and widely reused across the company.

5) Distribution through Market: Components can be acquired and improved though

competition market and provide incentives to the vendors.

4.2 Proposed High Level Architecture of CBSD for eCommerce Solution

As writer analyzed the existing eCommerce web-based solution following are the main

processes identified.

24

Figure 8 Proposed High-Level Architecture of CBSD for eCommerce Solution

These modules will be developed as separate independent software components which will

able to plug into the base module. (Here writer has mainly focus on eCommerce process,

Because, Hosted Software Solutions (Pvt) Ltd. is a leading ecommerce solution provider in

Sri Lanka and USA. Main products in this company are e-Commerce and online food order

solutions.)

4.2.1 Main Components

1) Consumer Website (Base)

Main website which directly accessed by customers. Design layout is fixed. Color changes,

Images changes and text changes can be done via CMS Module.

2) CMS Module

Content Management Module of the website. Images, Text, Colors can be changed using this

module.

3) Product Setup

Administration area of item display module, inventory, price management, etc. done here.

4) Product Display

5) Shopping Cart Module

6) Customer Registration / My Account

25

7) Product Rating Module

8) Promotions / Discount

9) Customer Loyalty

10) Payment Processing

11) Shipping / Delivery

12) Order Processing

4.2.2 Sub Components

Above components can have sub components which can be plugged in to its main component

based on its behavior or process.

As an example, Payment Processing component has;

1) Credit card processing

2) Debit Card Processing

3) Pay on Delivery Processing

4) Bank Payment Processing

4.3 Used Technologies

1) Operating System – Microsoft Windows 10

Windows 10 is a personal computer operating system developed and released by Microsoft as

part of the Windows NT family of operating systems. It was released on July 29, 2015. [22] It

is the first version of Windows that receives ongoing feature updates. Devices in enterprise

environments can receive these updates at a slower pace or use long-term support milestones

that only receive critical updates, such as security patches, over their ten-year lifespan of

extended support.

2) Framework - Microsoft .NET Framework 4.6

.NET Framework 4.6 was announced on 12 November 2014. It was released on 20 July 2015.

It supports a new just-in-time compiler (JIT) for 64-bit systems called RyuJIT [23], which

features higher performance and support for SSE2 and AVX2 [24] instruction sets. WPF and

Windows Forms both have received updates for high DPI scenarios.

26

3) Language - ASP.NET MVC 6

The ASP.NET MVC is a web application framework developed by Microsoft, which

implements the model–view–controller (MVC) pattern. It is open-source software, apart from

the ASP.NET Web Forms component which is proprietary.

4) Database Management System - Microsoft SQL Server 2014

SQL Server 2014 is relational database management system (RDBMS) designed for the

enterprise environment. Released on April 1, 2014, SQL Server 2014 runs on the Structured

Query Language (SQL), but has several notable differences from its immediate predecessor

SQL Server 2012.

5) Areas Concept in ASP.NET MVC

Areas are some of the most important components of ASP.NET MVC projects. The main use

of Areas is to physically partition web project in separate units. If we look into an ASP.NET

MVC project, logical components like Model, Controller, and the View are kept physically in

different folders, and ASP.NET MVC uses naming conventions to create the relationship

between these components. Problems start when you have a relatively big application to

implement. For instance, if we are implementing an E-Commerce application with multiple

business units, such as Checkout, Billing, and Search etc. Each of these units have their own

logical components views, controllers, and models. In this scenario, we can use ASP.NET

MVC Areas to physically partition the business components in the same project. As illustrated

in Figure 9 , Also, an area can be defined as: Smaller functional units in an ASP.NET MVC

project with its own set of controllers, views, and models.

Figure 9 Areas in ASP.Net MVC

27

A single MVC application may have any number of Areas. Some of the characteristics of

Areas are:

- An MVC application can have any number of Areas.

- Each Areas has its own routing configuration to define the request pattern inside that area.

- Each Area has its own controllers, models, and views.

- Physically, Areas are put under separate folders.

- Areas are useful in managing big web applications.

- A web application project can also use Areas from different projects.

- Using Areas, multiple developers can work on the same web application project.

6) Agile Methodology

Agile is a software development methodology that is becoming more popular every day. It

defines the mind set of many software development teams working across the globe. Agile

means ability to move quickly. Value Driven (Agile approach) is a new way of building

software (Figure 10).

Figure 10 The Agile Process and Lifestyle

28

4.4 Implementation

4.4.1 Typical MVC Project Architecture

Even though MVC has a concept called areas they are not meant to build and deploy

separately. All Modals, as illustrated in Figure 11, Controllers and Routing Configuration

(AreaRegistration.cs) in a specific Area in MVC project will build in to one “.dll” file and

deployed under main project bin folder. All the Views and other contents will have deployed

as files in to the server.

This typical MVC project with Areas needs to develop all the modules at once or it needs to

develop new module again in the same project, deploy a full publish in to the server again and

re-test total application because of this full deployment. Also, this architecture is not

supporting to run and test Areas separately. Because of this, typical MVC project architecture

wills not suite for module-based development and deployment. But this area concept can be

used as a starting point to develop module-based web component development.

Figure 11 Typical MVC Projects with Multiple Areas

29

4.4.2 Proposed System Design Architecture

According to Module based software development (IEEE), software component can be

developed separately, run separately, test separately and plug and unplug from a base module

in minimum steps. Writer tries to develop architecture with above features using ASP.Net

MVC to overcome the problems in 4.1.

In proposed architecture main project and modules will develop as separate MVC projects

(Figure 12), run and test separately, publish separately and zip the project and upload it to

main project. Codes which need to run that module will deploy as a “.dll” with this publish.

There will be a module manager in main project and it will unzip the uploaded module

publish in to main project Area folder and place the “.dll” file to main project bin folder. All

other relevant files and contents will use same process in new module file placement. Also,

this module manager will help to remove (plug-out) as component easily.

Figure 13 Module Manager Screen

Figure 12 Modules will build as separate MVC Projects

30

After this process this module will automatically visible in the base project in relevant section.

To do this we have define sections in the main project. A separate module can be plug as

complete new page or else as a new section in in a specific page.

1. – As a complete new page in main menu

2. – As a section in an existing page

3. – As a sub section in an existing section

Figure 14 Modules after plugged in to base project

31

4.5 Proposed System Screen Designs

4.5.1 Home Page

Figure 15 Home Page

4.5.2 Promotion Area

Figure 16 Promotion Area

32

4.5.3 Store Front Area

Figure 17 Store Front Area

4.5.4 Top Rated Items

Figure 18 Top Rated Items

33

4.5.5 Shopping Cart

Figure 19 Shopping Cart

4.5.6 Checkout

Figure 20 Checkout

34

4.5.7 My Account Area

Figure 21 My Account Area

4.5.8 Admin Panel - Categories

Figure 22 Admin Panel - Categories

35

4.5.9 Admin Panel – Add / Edit Items

Figure 23 Admin Panel – Add / Edit Items

36

Chapter 5 : Evaluation and Results

5.1 Evaluation Plan

Evaluation Plan is all about testing / evaluating functional as well as non-functional

requirements of the research. Testing require to be carried out for quantitative and qualitative

aspects of each functional and non-functional requirements.

• Purpose of preparing an Evaluation Plan

- Validate the appropriateness of a software product.

- Help the people outside the test group to understand „why‟ and „how‟ of

product validation.

• Scope

- Every area of the system testing was done by the QA team. - Specify the areas

which are out of scope (screens, database, mainframe processes etc).

• Evaluation Approach

- Include Details on how the testing is to be performed.

- Include specific strategy is to be followed for testing.

5.2 Evaluation Approach

I have chosen Opinion & Interview based evaluation approach to evaluate my research

project.

Evaluation is a systematic process to understand what a program does and how well the

program does it. Evaluation results can be used to maintain or improve program quality and to

ensure that future planning can be more evidence-based. Evaluation constitutes part of an

ongoing cycle of program planning, implementation, and improvement.

Evaluation falls into one of two broad categories: formative and summative. Formative

evaluations are conducted during program development and implementation and are useful if

we want direction on how to best achieve our goals or improve our program. Summative

evaluations should be completed once our programs are well established and will tell us to

what extent the program is achieving its goals.

37

The purpose of the project evaluation is to assess the software development methodology that

was used throughout the development of the framework, assess the usefulness of the

technologies and tools, the accuracy of the estimations and the usefulness of the reviews. The

solution will be reviewed and evaluated to decide whether it accomplishes the ideas processed

in the initial overview and for the quality of the project.

5.3 Evaluation Methodologies

Choosing an appropriate evaluation methodology is a key factor when conducting proper

evaluation. The objective of this project is aimed to develop a common framework which

follow component based loosely coupled but highly integrated software component

framework for e-commerce application development. Also, this research will search for

suitable technologies to follow 5 for the CBSD in web-based e-commerce solutions in UI,

Backend and Database level. Therefore, conducting a general user evaluation would be of

most importance to ensure that the product is accepted by the user. Used several

methodologies evaluate. These are the most importance once.

• Demonstration

Demonstration is one of main evaluation method of this research.After the demo has

been completed, our job isn’t finished. Each person from our software selection team

attending the on-site demo should now participate in scoring. This will give you a

quantitative method of evaluating the software. Determining an appropriate scoring or

rating system and breaking down the demonstration into different sections (each of

which represents a percentage of the overall evaluation score) will facilitate the

scoring process.

- Functionality or Performance

- Ease of use

- Process and flow

- Flexibility

These are the main areas to focus on during the demo, and it’s important that each of

these is covered to ensure potential solutions meet our company’s specific needs.

38

• Interview

Interviews were held with domain expert, developers and clients in a formal manner to

evaluate the system.

• Questionnaire

A questionnaire was circulated among member of target audience along with using the

system the member could fill in a feedback from and give in their evaluation of the

system. Used for mention methodologies to evaluate the system using expert as well

normal users.

5.4 Results

Based on company opinions and practical experimentation, a web application evaluation

makes it possible to check whether the project objectives were satisfied. I will collect

feedback after deployed final Project to our company. At the early stage I have deploy

prototype in our company and allow to access that system to Developers and Implementation

Teams. After getting an idea about my proposed system, I have deployed another Prototype

based on feedbacks and evaluate again. Then based on the evaluation results, we will decide

to change our existing E-commerce applications on client companies with my New Research

Project. I will collect feedbacks using verbal interview, written interview and observations.

Evaluation Results can be measure in several areas. Such as Appearance, Usability,

Functionality, Performance, simplicity etc...

Proposed system contains Main Modules and Sub Module. These modules will be developed

as separate independent software components such as Main Component and Sub Component

which will able to plug into the base module. When we consider about single component, we

can do static testing or dynamic testing without any doubt. Web component-based E-

Commerce Application Framework has lot of individual components which are connect to

base web application. At the initial stage, I have done unit testing for each component. Then

time to time have done Integration Testing, System Testing and Acceptance Testing.

39

5.4.1 Questionnaire Evaluation

 Questionnaire Evaluation - Hosted Software Solutions (Pvt)

Partici
pant

Designati
on

Departm
ent you
work for

Highest
Educatio
nal Level

Age
Cate
gory

Experi
ence

in
worki

ng
Hoste

d
Softw

are
Soluti
ons

(Pvt)

System Evaluation

Ability to
add new
features
to the
existing
system
immedia
tely

Ability to
remove
unnecess
ary
features
from the
existing
system
immedia
tely

Add
or
Rem
ove
feat
ures
to
exist
ing
syste
m
with
out
syste
m
dow
n

Ability to
add new
features
to the
propose
d system
immedia
tely

Ability to
remove
unnecess
ary
features
from the
propose
d system
immedia
tely

Easiness
of users
in using
propose
d
applicati
on

1 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Master/P
hD

18-
27
years

10<
years

[2=Poor] [1=Very
Poor]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[5=Excell
ent]

2 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Degree 18-
27
years

3-5
years

[1=Very
Poor]

[2=Poor] [
2=Po
or]

[3=Satisf
actory]

[4=Good] [4=Good]

3 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Diploma/
Higher
Diploma

28-
37
years

1>
years

[2=Poor] [2=Poor] [
2=Po
or]

[4=Good] [4=Good] [3=Satisf
actory]

4 QA
Engineer
/ Senior

QA
Engineer

QA
Departm
ent

Diploma/
Higher
Diploma

18-
27
years

3-5
years

[1=Very
Poor]

[2=Poor] [
2=Po
or]

[4=Good] [5=Excell
ent]

[5=Excell
ent]

5 QA
Engineer
/ Senior

QA
Engineer

QA
Departm
ent

Degree 28-
37
years

3-5
years

[1=Very
Poor]

[2=Poor] [
2=Po
or]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

6 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[3=Satisf
actory]

[2=Poor] [1=V
ery
Poor
]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

40

7 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [1=Very
Poor]

[
2=Po
or]

[3=Satisf
actory]

[3=Satisf
actory]

[5=Excell
ent]

8 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[3=Satisf
actory]

[2=Poor] [
2=Po
or]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

9 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [1=Very
Poor]

[
2=Po
or]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

10 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Master/P
hD

18-
27
years

3-5
years

[2=Poor] [1=Very
Poor]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[5=Excell
ent]

11 QA
Engineer
/ Senior

QA
Engineer

QA
Departm
ent

Master/P
hD

18-
27
years

1-2
years

[2=Poor] [3=Satisf
actory]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

12 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

1-2
years

[2=Poor] [2=Poor] [1=V
ery
Poor
]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

13 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [2=Poor] [
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[3=Satisf
actory]

14 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[1=Very
Poor]

[3=Satisf
actory]

[
2=Po
or]

[3=Satisf
actory]

[5=Excell
ent]

[3=Satisf
actory]

15 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

1>
years

[2=Poor] [3=Satisf
actory]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

16 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [2=Poor] [
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

17 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Degree 18-
27
years

10<
years

[1=Very
Poor]

[3=Satisf
actory]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

41

18 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [2=Poor] [
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

19 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[1=Very
Poor]

[2=Poor] [
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[5=Excell
ent]

20 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Degree 18-
27
years

1-2
years

[1=Very
Poor]

[1=Very
Poor]

[
2=Po
or]

[5=Excell
ent]

[5=Excell
ent]

[4=Good]

21 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 28-
37
years

3-5
years

[2=Poor] [2=Poor] [
2=Po
or]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

22 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 18-
27
years

3-5
years

[2=Poor] [2=Poor] [1=V
ery
Poor
]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

23 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Degree 28-
37
years

3-5
years

[2=Poor] [1=Very
Poor]

[
2=Po
or]

[5=Excell
ent]

[4=Good] [5=Excell
ent]

24 Software
Engineer
/Senior

Software
Engineer

Software
Departm
ent

Diploma/
Higher
Diploma

28-
37
years

3-5
years

[2=Poor] [2=Poor] [
2=Po
or]

[4=Good] [4=Good] [4=Good]

25 Impleme
ntation

Engineer
/ Senior
Impleme
ntation

Engineer

Impleme
ntation
Departm
ent

Degree 18-
27
years

3-5
years

[1=Very
Poor]

[3=Satisf
actory]

[
2=Po
or]

[3=Satisf
actory]

[3=Satisf
actory]

[5=Excell
ent]

Table 7 Questionnaire Evaluation - Hosted Software

42

5.4.2 Analysis of Designation

Figure 24 Analysis of Designation

5.4.3 Analysis of Higher Educational Level

Figure 25 Analysis of Higher Educational Level

43

5.4.4 Analysis of Age Category

Figure 26 Analysis of Age Category

5.4.5 Analysis of Experience in working Hosted Software Solutions (Pvt)

Figure 27 Analysis of Experience in working Hosted Software Solutions (Pvt)

Experience in working Hosted Software Solutions

(Pvt)

44

5.4.6 System Evaluation

A - Ability to add new features to the existing system immediately

B - Ability to remove unnecessary features from the existing system immediately

C - Add or Remove features to existing system without system down

D - Ability to add new features to the proposed system immediately

E - Ability to remove unnecessary features from the proposed system immediately

F - Easiness of users in using proposed application

1 - [1=Very Poor]

2 - [2=Poor]

3 - [3=Satisfactory]

4 - [4=Good]

5 - [5=Excellent]

No A B C D E F

1 2 1 2 5 5 5

2 1 2 2 3 4 4

3 2 2 2 4 4 3

4 1 2 2 4 5 5

5 1 2 2 5 4 5

6 3 2 1 5 4 5

7 2 1 2 3 3 5

8 3 2 2 5 4 5

9 2 1 2 5 4 5

10 2 1 2 5 5 5

11 2 3 2 5 5 4

12 2 2 1 5 5 4

13 2 2 2 5 5 3

14 1 3 2 3 5 3

15 2 3 2 5 5 4

16 2 2 2 5 5 4

45

17 1 3 2 5 5 4

18 2 2 2 5 5 4

19 1 2 2 5 5 5

20 1 1 2 5 5 4

21 2 2 2 5 4 5

22 2 2 1 5 4 5

23 2 1 2 5 4 5

24 2 2 2 4 4 4

25 1 3 2 3 3 5

Table 8 System Evaluation Data Sample

Based on the evaluated data sample, system evaluation diagram can be generated as Table 9.

Table 9 System Evaluation Diagram

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

System Evaluation

A B C D E F

46

Chapter 6 : Conclusion

6.1 Introduction

Finally, I deliver complete web component-based E-Commerce Application Framework with

Component should be able to plug and play with other components and/or frameworks so that

component can be composed at run-time without compilation. Special thing is when Web

Application Live Run/Host, we want to add new module to existing web. There is no any

issue with this solution. Only we want to upload relevant module to existing base web

application. No need to down the system according to add new features.

6.2 Findings and Limitations

Finally, the answer to the overall research questions. How much of the current web

application development frameworks explicitly refer to application of component-based

approach is hardly intuitive.

1) In which way is CBD used for web application development? - There are three main

approaches:

a) component approach is used for creating component-based frameworks which are

then used for creating web application (not necessarily component oriented).

b) component approach is used for building components which are the building blocks

of web applications.

c) a mix of two previous approaches.

In approach a) and c) the end user decides whether to use component approach for

web application development while in b) component approach is imposed to the end

users.

2) What is the relation between CBD and web application development? – Component

approach is used mostly for server-side applications. Using it on the client side is less

common, but there are cases and end-users aren’t constrained to use it. Most widely

used architecture is n-tired with components used inside different layers. For any

future researchers and practitioners, it is strongly suggested to plan component

approach right from the start of the application design process. Although it requires

more time, true benefits (separation of concerns, better maintainability, scalability,

replaceability, single point of edit, etc.) are apparent later.

47

3) Which component models are used for web application development? –EJB and Java

beans are most preferable component models rather than ASP.NET. But ASP.NET

MVC the most popular programming language for this purpose. Although, it should be

noted that there are a lot of custom models also. Offers new possibilities independent

of a single technology.

4) In which web application development domains is CBD used? – It is hard to recognize

distinct domains however there are two types of web application development

frameworks presented in the selected publications:

a) general; used for any kind of web applications and

b) specific; for developing special purpose web applications (e.g. eCommerce,

eLearning, etc.).

6.3 Future Work

Future work will concentrate on improving the performance of the existing prototype. The

evaluation results provided some useful information to help us to find out how this approach

works and how this approach fine tune.

If one is interested component approach and web development frameworks the most relevant

scientific databases are Scopus, Springer and IEEE which will cover most of the related

publications. Currently, the most relevant publications (2/3 of them being conference

proceedings) were published between 2005 and 2006 which is most likely due the

popularization of Web 2.0.

It is apparent that component-based approach is becoming a serious architectural direction

and there is a very recent working group focused solely on component-based development for

web, including the one from the W3C.

Existing prototype component plug-in to predefined and specific location or plug-out from

predefined and specific location. There will be a proper method to define a component with

location in the Main web application. In future, Module Manager Screen modified to define

location and map existing locations of the components using simple way. Component plug-in

and plug-out with locations define option will be the best solution rather than current

prototype.

48

References

[1] Wikipedia, "Senaration Of Concerns," 14 07 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Separation_of_concerns. [Accessed 25 07 2017].

[2] Wikipedia, "Event-driven architecture," 02 02 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Event-driven_architecture. [Accessed 04 02 2018].

[3] IEEE, "Edsger W. Dijkstra," [Online]. Available:

https://www.computer.org/web/awards/goode-edsger-dijkstra. [Accessed 25 07 2017].

[4] M. T. G. G. a. P. B. M. Vaitis, "Structural engineering:Processes and tools for developing

component-based open hypermedia systems," Lecture Notes in Computer Science, vol.

3511, p. 113–128, 2005.

[5] R. W. M. L. a. H. M. M. Jahn, "Composing user-specific web applications from

distributed plug-ins," Comput. Sci. - Res. Dev, vol. 28, p. 85–105, 2013.

[6] M. Y. K. E. S. a. S. W. Q. Li, "XVM: A bridge between XML data and its," Thirteenth

International World Wide Web Conference Proceedings, WWW2004, p. 155–163, 2004.

[7] B. D. S. a. A. G. J. A. Ginige, "Towards end user development of Web applications for

SMEs: A component based approach," Lecture Notes in Computer Science, 2005, vol.

3579, p. 489–499, 2005.

[8] V. L. a. S. Ilieva, "Towards development and use of in-house component framework:

Results and expectations in Software Engineering and Advanced Applications," in 31st

EUROMICRO Conference, 2005, 2005.

[9] J. L. a. T. Chusho, "A web application framework for end-user-initiative development

with," Lecture Notes in Engineering and Computer Science, 2012, vol. 1, p. 816–822,

2012.

[10] S. P. a. M. Žagar, "Nested web application components framework: A comparison to

competing software component models," in ENASE 2013 - Proceedings of the 8th

International Conference on Evaluation of Novel Approaches to Software Engineering,

49

2013.

[11] t. f. e. Wikipedia, "Component-based software engineering," Wikipedia, 18 02 2018.

[Online]. Available: https://en.wikipedia.org/wiki/Component-

based_software_engineering. [Accessed 02 02 2018].

[12] W. J. Lloyd, "A Common Criteria Based Approach for COTS Component," Journal of

Object Technology, vol. 4, no. 2004, 2005.

[13] Syed Ahsan Fahmi, Ho-Jin Choi, "A Study on Software Component Selection," in

ICACT 2009, 2009.

[14] A. S. J. L. Z. M. Bichler, "Component-based e-commerce: assessment of current

practices and future directions," ACM Digital Library, vol. 27, pp. 7-14, 1998.

[15] T. C. J. Li, "A Web Application Framework for End-User-Initiative Development with a

Visual Tool," Research Gate, 2012.

[16] I. Š. M. Novak, CURRENT USAGE OF COMPONENT BASED PRINCIPLES FOR

DEVELOPING WEB APPLICATIONS WITH FRAMEWORKS, Faculty of

Organization and Informatics, University of Zagreb, 2016.

[17] R. S. R. R. J. Wang, "Shared Content Management in Replicated Web Systems: A

Design Framework Using Problem Decomposition, Controlled Simulation, and Feedback

Learning," IEEE, vol. 38, p. 1, 2008.

[18] V. Galant, "Blending E-Commerce Theory and Application," IEEE Distributed Systems

Online, vol. 6, p. 5, 2005.

[19] A. T. V. K. D. Llambiri, "Efficiently distributing component-based applications across

wide-area environments," in 23rd International Conference, Rhode Island, USA, 2003.

[20] M. S. JoachimPerchat, "Component based Framework to Create Mobile Cross-platform

Applications," Procedia Computer Science, vol. 9, pp. 1004- 1011, 2013.

[21] S. J. D. R. Barrett, openMVC: A Non-proprietary Component-based, New York: Dublin

Institute of Technology, 2004.

50

[22] T. Myerson, "Hello World: Windows 10 Available on July 29," Microsoft, 01 06 2015.

[Online]. Available: https://blogs.windows.com/windowsexperience/2015/06/01/hello-

world-windows-10-available-on-july-29/. [Accessed 02 02 2018].

[23] R. L. [MSFT], "Announcing .NET Framework 4.6," Microsoft, 20 07 2015. [Online].

Available: https://blogs.msdn.microsoft.com/dotnet/2015/07/20/announcing-net-

framework-4-6/Announcing .NET Framework 4.6. [Accessed 31 01 2018].

[24] Wikipedia, "Advanced Vector Extensions," 30 01 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions. [Accessed 31 01 2018].

51

Appendices

Appendix A: Questionnaire

• Questionnaire

52

Figure 28 Questionnaire Evaluation - Hosted Software

53

• Evaluation Sheet of Questionnaire

Figure 29 Evaluation Sheet of Questionnaire

Ability to add

new features to

the existing

system

immediately

Ability to

remove

unnecessary

features from

the existing

system

immediately

Add or

Remove

features to

existing

system

without

system

down

Ability to add

new features to

the proposed

system

immediately

Ability to

remove

unnecessary

features from

the proposed

system

immediately

Easiness of users

in using proposed

application

1 Software

Engineer

/Senior

Software

Engineer

Software Department Master/PhD 18-27 years 10< years [2=Poor] [1=Very Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [5=Excel lent]

2 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Degree 18-27 years 3-5 years [1=Very Poor] [2=Poor] [2=Poor] [3=Satis factory] [4=Good] [4=Good]

3 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Diploma/Higher

Diploma

28-37 years 1> years [2=Poor] [2=Poor] [2=Poor] [4=Good] [4=Good] [3=Satis factory]

4 QA Engineer /

Senior QA

Engineer

QA Department Diploma/Higher

Diploma

18-27 years 3-5 years [1=Very Poor] [2=Poor] [2=Poor] [4=Good] [5=Excel lent] [5=Excel lent]

5 QA Engineer /

Senior QA

Engineer

QA Department Degree 28-37 years 3-5 years [1=Very Poor] [2=Poor] [2=Poor] [5=Excel lent] [4=Good] [5=Excel lent]

6 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [3=Satis factory] [2=Poor] [1=Very

Poor]

[5=Excel lent] [4=Good] [5=Excel lent]

7 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [2=Poor] [1=Very Poor] [2=Poor] [3=Satis factory] [3=Satis factory] [5=Excel lent]

8 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [3=Satis factory] [2=Poor] [2=Poor] [5=Excel lent] [4=Good] [5=Excel lent]

9 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Degree 18-27 years 3-5 years [2=Poor] [1=Very Poor] [2=Poor] [5=Excel lent] [4=Good] [5=Excel lent]

10 Software

Engineer

/Senior

Software

Engineer

Software Department Master/PhD 18-27 years 3-5 years [2=Poor] [1=Very Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [5=Excel lent]

11 QA Engineer /

Senior QA

Engineer

QA Department Master/PhD 18-27 years 1-2 years [2=Poor] [3=Satis factory

]

[2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

12 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 1-2 years [2=Poor] [2=Poor] [1=Very

Poor]

[5=Excel lent] [5=Excel lent] [4=Good]

13 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [2=Poor] [2=Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [3=Satis factory]

14 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [1=Very Poor] [3=Satis factory

]

[2=Poor] [3=Satis factory] [5=Excel lent] [3=Satis factory]

15 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 1> years [2=Poor] [3=Satis factory

]

[2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

16 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [2=Poor] [2=Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

17 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Degree 18-27 years 10< years [1=Very Poor] [3=Satis factory

]

[2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

18 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [2=Poor] [2=Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

19 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [1=Very Poor] [2=Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [5=Excel lent]

20 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Degree 18-27 years 1-2 years [1=Very Poor] [1=Very Poor] [2=Poor] [5=Excel lent] [5=Excel lent] [4=Good]

21 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 28-37 years 3-5 years [2=Poor] [2=Poor] [2=Poor] [5=Excel lent] [4=Good] [5=Excel lent]

22 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 18-27 years 3-5 years [2=Poor] [2=Poor] [1=Very

Poor]

[5=Excel lent] [4=Good] [5=Excel lent]

23 Software

Engineer

/Senior

Software

Engineer

Software Department Degree 28-37 years 3-5 years [2=Poor] [1=Very Poor] [2=Poor] [5=Excel lent] [4=Good] [5=Excel lent]

24 Software

Engineer

/Senior

Software

Engineer

Software Department Diploma/Higher

Diploma

28-37 years 3-5 years [2=Poor] [2=Poor] [2=Poor] [4=Good] [4=Good] [4=Good]

25 Implementatio

n Engineer /

Senior

Implementatio

n Engineer

Impelementation Department Degree 18-27 years 3-5 years [1=Very Poor] [3=Satis factory

]

[2=Poor] [3=Satis factory] [3=Satis factory] [5=Excel lent]

Participant System Evaluation

Questionnaire Evaluation - Hosted Software Solutions (Pvt)

Designation Department you work for Highest Educational Level Age Category Experience

in working

Hosted

Software

Solutions

(Pvt)

54

• Criteria of Evaluation Sheet

Figure 30 Criteria of Evaluation Sheet

Software Engineer /Senior Software Engineer

Implementation Engineer / Senior Implementation Engineer

QA Engineer / Senior QA Engineer

Software Department

Impelementation Department

QA Department

Advanced Level

Diploma/Higher Diploma

Degree

Master/PhD

18-27 years

28-37 years

38-47 years

48-57 years

More than 57 years

1> years

1-2 years

3-5 years

10< years

[1=Very Poor]

[2=Poor]

[3=Satisfactory]

[4=Good]

[5=Excellent]

55

Appendix B: Interview Questions

01. Satisfaction level of allowing to create web modules separately.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

02. Satisfaction level of allowing to separate business process to each module.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

03. Satisfaction level of allowing to design screens separately.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

04. Satisfaction level of allowing to add new modules.

Extremely satisfied

Satisfied

Need to improve

56

Not so satisfied

Not satisfied

05. Satisfaction level of allowing to modify existing module.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

06. Satisfaction level of allowing to configure new modules to base module.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

07. Satisfaction level of allowing to publish base module.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

08. Satisfaction level of allowing to publish sub modules to base module.

Extremely satisfied

Satisfied

57

Need to improve

Not so satisfied

Not satisfied

09. Satisfaction level of detaching modules from base module.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

10. Satisfaction level of overall progress of suggested architecture.

Extremely satisfied

Satisfied

Need to improve

Not so satisfied

Not satisfied

