# Vessel Route Prediction from AIS Data 

K C L Perera
2017

# Vessel Route Prediction from AIS Data 

A dissertation submitted for the Degree of Master of Computer Science

K C L Perera<br>University of Colombo School of Computing<br>2017

## Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any other university/institute.

To the best of my knowledge it does not contain any material published or written by another person, except as acknowledged in the text.

Student Name:

Registration Number:
Index Number:

Signature:
Date:

This is to certify that this thesis is based on the work of Mr./Ms.
under my supervision. The thesis has been prepared according to the format stipulated and is of acceptable standard.

Certified by:
Supervisor Name:

Signature:
Date:


#### Abstract

Route prediction for vessels when implemented on a vessel traffic monitoring solution can be used to prevent collisions and illegal activities from happening. Since route prediction will provide in-depth knowledge on a ship's route at least for a few minutes, monitoring officers and ship captains will know an approximated location of all ships after a few minutes. This will help them to find out if there is a possibility of ships will collide with each other or with an object on ground before few minutes. This will help them to change ship's course and speed in order to avoid collisions.

Vessel Traffic Management System (VTMS) which was developed locally was the subject of this research. Even though the system already has a path prediction system, it is not accurate enough to carry out predictions when the ships move at higher speeds and changing their courses quickly. Hence there is a need of better prediction model for this VTMS.

Even though most of the commercial vessel traffic monitoring systems have path prediction algorithms with them, they are not available for public. Thus, this research explores an efficient method of predicting vessel paths using Kalman Filter based techniques. These techniques use previous data when predicting the path. Hence the database of VTMS was used as the test data for this research.

Kalman filter and its variation are very popular methods for the solutions to prediction related problems. Thus, Kalman filter based solution was developed and tested with test cases. Developed solution was able to tackle the objective of this research giving better performances and accuracy.


## Acknowledgements

I would like to thank my supervisors, Dr. K. D. Sandaruwan and Prof. N. D. Kodikara who were always available to give me advice and guidance.

A big thank should go to people who did researches in these areas, without whom I wouldn't be able to do this report on my own.

A special thank should go to my parents for supporting me in everything I do by giving me the freedom to do anything I like and making me who I am today.

Finally, I wish to thank all my friends who gave me all the support and strength needed.

## Contents

Declaration ..... I
Abstract ..... II
Acknowledgements ..... III
Table of Figures ..... VII
List of Tables ..... VIII
List of Abbreviations and Acronyms ..... IX
Chapter 1 Introduction .....  1
1.1 Maritime Transportation. .....  1
1.2 Vessel Traffic .....  1
1.3 Vessel Traffic Service .....  1
1.4 Motivation ..... 2
1.5 Objective ..... 3
1.6 Research Problem ..... 3
1.7 Scope ..... 4
1.8 Outline of the Report .....  4
Chapter 2 Background ..... 5
2.1 Automatic Identification System .....  5
2.2 Literature Review on Prediction Based Researches .....  6
2.2.1 Predictions for Vehicle Based Navigation ..... 6
2.2.2 Predictions for Ship Based Navigation ..... 7
2.3 Kalman Filter .....  8
2.4 Map Projections .....  8
2.5 Haversine Formula ..... 8
2.6 Summary .....  9
Chapter 3 Methodology ..... 10
3.1 Kalman Filter ..... 10
3.1.1 Prediction Model ..... 10
3.1.2 Measurement Model ..... 11
3.1.3 Prediction Phase ..... 11
3.1.4 Measurement Update Phase. ..... 11
3.1.5 Kalman Filter Algorithm ..... 12
3.2 Haversine Formula ..... 13
3.2.1 Haversine Function ..... 13
3.2.2 The Haversine Formula ..... 13
3.3 Summary ..... 13
Chapter 4 Implementation ..... 15
4.1 Filter Parameters of Interest from Data Received via AIS ..... 15
4.2 Data Pre-processing ..... 15
4.2.1 Converting Speed Over Ground ..... 15
4.2.2 Converting Geocoordinates into Distances ..... 16
4.3 Kalman Filter ..... 17
4.3.1 Time Update Process ..... 17
4.3.2 Measurement Update Phase. ..... 19
4.3.3 Kalman Filter Algorithm ..... 19
4.3.4 Distance to Geocoordinates Conversion ..... 20
4.4 Summary ..... 21
Chapter 5 Evaluation and Results ..... 22
5.1 Test Data Collection ..... 22
5.2 Test Results for Initial Solution ..... 22
5.2.1 Comparison. ..... 22
5.2.2 Test Results for Second Solution. ..... 24
5.2.3 Comparison ..... 25
5.3 Test Results for Final Solution ..... 27
5.3.1 First Test Case ..... 27
5.3.2 Test Results for Test Case 2 ..... 30
5.4 Analysis ..... 33
5.4.1 Analysis of Positions ..... 33
5.4.2 Analysis on Runtime of the Solution ..... 34
5.5 Summary ..... 35
Chapter 6 Conclusion and Future Work ..... 36
6.1 Conclusion ..... 36
6.2 Future Work ..... 36
References ..... 38
Appendices ..... 40
Appendix A Source Code for Implementation of Kalman Filter ..... 40
Appendix B Few Output Values for Test Cases ..... 41
Test Case 1 ..... 41
Test Case 2 ..... 46

## Table of Figures

Figure 3.1- Cycle of Kalman Filter Process ..... 12
Figure 4.1 - Implementation of Coordinate to Distance Conversion ..... 16
Figure 4.2 - Sample Movement of Vessel ..... 17
Figure 4.3 - Process with Inputs and Outputs ..... 20
Figure 4.4 - Implementation of Distance to Coordinate Conversion ..... 21
Figure 5.1- Comparison of Longitude with Time for Solution 1 ..... 22
Figure 5.2 - Comparison of Latitude with Time for Solution 1 ..... 23
Figure 5.3 - Comparison of Speed on X Direction with Time for Solution 1 ..... 23
Figure 5.4-Comparison of Speed on Y Direction with Time for Solution 1 ..... 24
Figure 5.5 - Longitude Comparison for Solution 2 ..... 25
Figure 5.6 - Latitude Comparison for Solution 2 ..... 25
Figure 5.7 - Speed on X Direction Comparison for Solution 2 ..... 26
Figure 5.8 - Speed on Y Direction Comparison for Solution 2 ..... 26
Figure 5.9 - Longitude Comparison for Test Case 1 ..... 27
Figure 5.10 - X Direction Distance Comparison for Test Case 1 ..... 28
Figure 5.11 - Latitude Comparison for Test Case 1 ..... 29
Figure 5.12 - Y Direction Distance Comparison for Test Case 1 ..... 29
Figure 5.13 - Longitude Comparison for Test Case 2 ..... 30
Figure 5.14 - X Direction Distance Comparison for Test Case 2 ..... 31
Figure 5.15 - Latitude Comparison for Test Case 2 ..... 32
Figure 5.16 - Y Direction Distance Comparison for Test Case 2 ..... 32
Figure 5.17 - Position Comparison for Test Case 1 ..... 33
Figure 5.18 - Position Comparison for Test Case 2 ..... 34
Figure A. 1 - Source Code to Project Next State ..... 40
Figure A. 2 - Source Code for Project Process COvariance ..... 40
Figure A. 3 - Source Code for Calculate Kalman Gain ..... 40
Figure A. 4 - Source Code for Calculate Measurement Residual ..... 41
Figure A. 5 - Source Code for Update Next State with Measurements ..... 41
Figure A. 6 - Source Code for Update Process Covariance ..... 41

## List of Tables

Table B. 1 - Longitude Data for Test Case 1 ..... 42
Table B. 2 - Latitude Data for Test Case 1 ..... 44
Table B. 3 - X Direction Data for Test Case 1 ..... 45
Table B. 4 - Y Direction Data for Test Case 1 ..... 46
Table B. 5 - Longitude Data for Test Case 2 ..... 47
Table B. 6 - Latitude Data for Test Case 2 ..... 49
Table B. 7 - X Direction Data for Test Case 2 ..... 50
Table B. 8 - Y Direction Data for Test Case 2 ..... 51

## List of Abbreviations and Acronyms

| AIS | Automatic Identication System |
| :--- | :--- |
| ARPA | Automatic Radar Plotting Aids |
| AVL | Automatic Vehicle Location |
| COG | Course Over Ground |
| GPS | Geographical Positioning System |
| IMO | International Maritime Organization |
| MMSI | Maritime Mobile Service Identity |
| MSS | Maritime Safety and Security |
| SOG | Speed Over Ground |
| VHF | Very High Frequency |
| VTMS | Vessel Traffic Management System |
| VTS | Vessel Traffic Service |

## Chapter 1 Introduction

### 1.1 Maritime Transportation

Due to globalization, large amounts of goods need to be transported all over the world. Since large amounts of goods can be transported in a single ship, the transportation costs can be decreased. Many goods do not need to be delivered very urgently. Hence transporting goods by waters has become the most popular way of goods transportation even though it takes more time to deliver than an air plane or truck based transportation. Due to low production costs in some countries like china, many goods have to be exported to other countries. Thus, there will be heavy traffic around harbours of those countries as well as waterways around those countries since the transportation of those exported goods are being done by waters in ships.

### 1.2 Vessel Traffic

Since maritime transportation has become the most popular way of transportation, there is a heavy traffic around harbours and waterways. Hence there exists a high possibility of happening of an accident around the high traffic areas. Collisions can happen between ships or between ships and an object in sea which would result in heavy losses on the financial side as well as other casualties. Due to the high intensity of traffic around harbours, the port operations can be delayed if the vessel traffic is not controlled properly. Thus having a proper vessel traffic monitoring methodology will increase the efficiency of port operations and improve the navigational safety by avoiding possible accidents. There are situations like illegal immigrants come to countries by waters and smugglings happen around coastal areas. These situations can be monitored by coastal guards if they have a proper way of vessel monitoring. Coast guards monitor vessel movement around the coastal areas of the country and react on noticeable situations using Maritime Safety and Security (MSS) Systems. Monitoring happens around harbours are being managed with Vessel Traffic Services (VTS)

### 1.3 Vessel Traffic Service

A VTS is a marine traffic monitoring system which is controlled by a harbour or a port. Normally a VTS system contains radar, Closed Circuit Television (CCTV), VHF transceivers, voice communication and Automatic Identification System (AIS) in order to track and get vessel static data and dynamic positional data to provide safety for a limited area [1]. This is a dynamic data driven application system in which the data captures dynamically through AIS and other sources and displays them in 3D or 2D viewer dynamically.
"VTS is governed by SOLAS (safety of life at sea) Chapter V Regulation 12 together with the Guidelines for Vessel Traffic Services [IMO Resolution A.857(20)] adopted by the International Maritime Organization on 27 November 1997" [2].

The purpose of a VTS is to improve the navigational safety by providing information regarding traffic and other geographical characteristics about a specific area and giving advices in order to avoid unnecessary traffic to masters who control the vessel [3].

A harbour VTS or VTMS (Vessel Traffic Management System) should be able to assist the control officers to manage the port operations by providing information and visualizations.

Navy or Coast Guard Officers use VTS or VTMS to monitor coastal areas of their country in order to prevent illegal immigrants' coming to the country as well as to detect and prevent illegal smuggling activities happening around the coastal areas.

In order to visualize vessel traffic for VTS and VTMS, data has to be captured from data sources. In which AIS is an important source for data capture as it transmits positional and voyage related data.

### 1.4 Motivation

VTMS solutions plot the Geographical Positioning System (GPS) locations of the vessels it receives via the AIS data on a map or a virtual harbour environment and show the movements and other data of the vessel in real-time to assist vessel traffic monitoring officers that use the VTMS solution in taking decisions. Since AIS data is not continuous, vessels do not move smoothly on the map or the virtual harbour environment and will cause jump/hop routing for vessels. Furthermore, there can be abnormal tracks such as tracks on land when drawing the trails of the vessels since VTMS will connect the previous GPS location and the current location. This will drop the behavioural realism of the VTMS solution.

Many proprietary VTMS solution have tackled these problems and have come up with solutions to smooth vessel routing and good vessel route predictions. Open source VTMS solutions does not have a proper way to tackle the problem of jump/hop vessel routing even though some VTMS has the capability of predicting a position after a pre-defined time. Siyara VTMS is currently facing the same issue as the above mentioned open source VTMSs.

Siyara VTMS's and many open source VTMS's route prediction uses the current speed, the course of the ship and the pre-defined time period and do the calculation using the equation $S=v t$. Where $v$ is the speed over the ground of the ship, $t$ is the pre-defined time period and $S$ is the distance from the current position. After finding the distance the prediction system
draws a line with a length of the calculated distance on the ship's current position on the direction of ship's course over ground. This prediction is good when a ship is going on a straight line. When the ship is not travelling straight this will fail as the course of the ship will change from one location point to next location point.

In order to avoid above mentioned abnormalities, next location point has to be predicted using the previously received AIS data locations and the prediction process has to be done in realtime. This prediction can be either a short-term prediction or a long-term prediction. These kinds of predictions can be done using either a Dynamic model, a Statistical model or a Trained model.

### 1.5 Objective

Main objective of the project was to predict next GPS location in real-time using the previous GPS locations received through the AIS and interpolate the trail between two GPS locations in order to avoid abnormal trails of vessels plotted on a map in a VTMS solution. Siyara VTMS was used to collect test data sets and test the outputs through visualization.

First it was needed to identify the most feasible prediction model type for this particular problem. Then an algorithm that is compatible with the data set had to be identified. AIS data contains vessel's position data as well as static vessel data such as its type and dimensions. Hence the data set will consist of a vessel's mechanical properties and position data over time. After analysing these data which prediction model type should be used in this project had to be decided.

Prediction based research projects had to be studied to identify algorithms, develop a solution using the algorithm and refine the solution to achieve better results.

### 1.6 Research Problem

Most of the commercial VTMS's have the dynamic route prediction modules which have high accuracy and they have smooth vessel routing. Unfortunately, these solutions are not available to access or to find and these are definitely not open source solutions. There are research projects that have been done on path predictions for either vehicle based navigation [4][5] or maritime navigation [6][7][8] domain. Most of these research projects are based on either a mathematical model or a statistical model. Some of these solutions are computationally intense and can't be used in this situation as it needs to predict location very quickly. In this research, it needs to find a method to predict the next location point using the most recent AIS data. Thus, this has to be done on real-time and it has to be efficient in order to give results quickly. This
prediction may need to be done in few milliseconds and prediction process may need to be carried on for few minutes.

Can the next location point be predicted in real-time by using most previous location data points?

### 1.7 Scope

Research study was followed in order to identify the algorithms and prediction model used to refine the vessel routing based on AIS data. At the moment, Kalman filtering algorithm and Particle Filter algorithm seem to be the best algorithms for the task. Kalman Filter variations had to be studied as well. In order to clarify the fact that which algorithm is the most suitable algorithm for the task, few other techniques had to be studied.

After selecting the algorithm, a solution had to be implemented to test using the test data. If the test results are not satisfying, refinements have to be made on the method. After refining the solution, it should be plugged in to a real-time visualizing framework to test the result. Siyara VTMS developed by UCSC will be used to collect test data for the visualization and testing purposes.

### 1.8 Outline of the Report

In the second chapter, related work in the problem domain will be explored. In the third chapter, analysis on the selected algorithm and methodologies will be explained. In the fourth chapter, design of the proposed solution with the implementation will be discussed. In the fifth chapter, analysis of the test results and comparisons will be discussed. In the sixth chapter, conclusions and future work will be discussed.

## Chapter 2 Background

This chapter will describe the key components which will help to determine the methodology for the solution design while describing background information and providing few literatures based on the research domain.

### 2.1 Automatic Identification System

AIS is a system which used in vessels to automatically track them in order to identify and locate by sending data to surrounding vessels and control stations [9]. AIS uses VHF signal transmission as data source of communication. AIS can provide many static and dynamic information about vessels and transmits them through the VHF frequencies. AIS transmits data through two VHF frequency channels [10].

- 161.975 MHz
- 162.025 MHz

AIS has a horizontal range limit of 74 kilometres and a vertical range of 400 kilometres. AIS transmits data every 2 to 10 seconds on fast moving or manoeuvring vessels and every 3 minutes on anchored or moored vessels [9]. AIS is less affected and will have minor interferences in the sea clutter. AIS will not be affected by weather and changing sea conditions. Information given by AIS complements to Automatic Radar Plotting Aids (ARPA) [11]. Marine AIS has two versions for vessels as class A and class B. According to IMO regulations international ships with gross tonnage of 300 or above, non-international ships with 500 or more gross tonnages and all passenger ships should have class A AIS. Class B AIS is for smaller ships [11].

AIS transceivers can transmit 27 types of messages defined in ITU 1371-4. Those messages contain various static data on ship as well as dynamic positioning data on ship.

Few important message types send by ships [12].

- Message type 1 - Class A position report
- Message type 5 - Class A static and voyage related data
- Message type 18,19- Class B position report
- Message type 24 - Class B static and voyage related data

Following data transmits from every moving ship with a frequency of 2 to 10 seconds and every anchored ship with a frequency of 3 minutes [9].

- Vessel's MMSI
- Navigation status
- Course over ground
- Speed over ground
- True heading
- Latitude
- Longitude

Following data will be transmitted with a frequency of 6 minutes [9].

- Name of the ship
- Call sign
- Ship type
- Dimensions of ship
- Destination

Since 2007, AIS is mandatory for sea faring vessels [13].

### 2.2 Literature Review on Prediction Based Researches

### 2.2.1 Predictions for Vehicle Based Navigation

Adaptive Kalman Filtering for Vehicle Navigation by Congwei Hu, Wu Chen, Yongqi Chen and Dajie Liu [5] discusses on two adaptive algorithms which were applied to GPS data. Few test have been carried out on test data to demonstrate performances of the two algorithms and to compare those results with conventional Kalman filter for vehicle navigation. The adaptive filtering with fading memory algorithm and the adaptive filter with variance component estimation are the two algorithms used in this paper. Both these algorithms are Kalman filter based algorithms. This paper shows that these two algorithms are better than the conventional Kalman filter algorithm.

Vehicle Route Prediction and Time of Arrival Estimation Techniques for Improved Transportation System Management by Abdolreza Karbassi and Matthew Barth [4] describes vehicle route prediction and time of arrival estimation system that has been implemented using cars that have Automatic Vehicle Location systems. These AVL systems send position and time data of the vehicles. In this system's prediction algorithm, initially the system assumes that the current route is the route with the highest probability for that time and day. This is determined from the pre-computed route probability data. When the real-time location data is received, system matches coarse trajectory data to appropriate roadways. When new data are received, a hierarchical tree data structure is used to recalculate most probable route. At the conclusion of
the paper authors say by using Kalman filter techniques much better predictions can be achieved.

### 2.2.2 Predictions for Ship Based Navigation

Ocean Vessel Trajectory Estimation and Prediction Based on Extended Kalman Filter by Lokukaluge P. Perera and Carlos Guedes Soares [7] presents a manoeuvring ship model which predicts position data using Extended Kalman Filter techniques and shows results of this model with respect to the test data. There are three sections for the prediction and estimation of trajectories described in this paper. Target Motion Model, Measurement Model and Associated Techniques and Trajectory Tracking \& Estimation are the three sections described. Continuous time Curvilinear Motion Model was selected as the Target Motion Model while Measurement Model was formulated as a discrete time linear model. For Trajectory Tracking and Estimation Process Extended Kalman Filter has been used due to its capability of capturing non-linear states.

Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation and Trajectory Prediction by Lokukaluge P. Perera, Paulo Oliveira and C. Guedes Soares [8] have two sections in which the first section describes a solution for detecting and tracking of multiple vessels. For this, authors propose an Artificial Neural Network based solution. Second section of this paper describes a solution for state estimation and trajectory prediction of a single vessel. For this, authors propose a solution with an Extended Kalman Filter. Apart from that the paper contains test results for the proposed solutions. Prediction has been done on position, velocity and the acceleration.

Knowledge-Based Vessel Position Prediction using Historical AIS Data by Fabio Mazzarella, Virginia Fernandez Arguedas, Michele Vespe [6] propose a system that uses a Particle Filter based Bayesian prediction model to predict vessel positions. Authors have used the knowledge of traffic routes in order to enhance the system. They have applied the solution on historic traffic data and presents those results.

Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction by Giuliana Pallotta, Michele Vespe, Karna Bryan [14] propose a solution that provides decision support capability to Vessel Traffic Monitoring Systems using large amounts of AIS data. System extract knowledge via an incremental learning approach. That enables system to adapt into evolving situations. After extracting vessel traffic and motion data, predicting ship movements, based on the trajectories of past vessels on the same route can be done. After extracting data, routes are being classified and assigned a probability compatible to
the vessel position. Using these probability values and considering the state vector of the ship, it can be predicted that the ship is in what route.

### 2.3 Kalman Filter

In 1960 Rudolf E. Kalman published a paper[15] describing a recursive solution to linear filtering problem of discrete data[16]. This solution was named as Kalman Filter after Rudolf Kalman. Kalman filter is an optimal estimator as it can deduce the parameters under observation from indirect, uncertain and inaccurate observations[17]. Since it is recursive, measurements can be processed in real-time to make corrections.

Kalman filter is a set of mathematical equations[16]. There are two parts of Kalman filter algorithm. $1^{\text {st }}$ one is the predictor part where a prediction will be made on the next state observing the properties of the current state and its controller parameters. 2n part of Kalman filter is corrector phase where a measurement from a sensor which may not be accurate, is observed and some corrections will be made to the output of the predicted phase.

Kalman filter has been very popular in many areas since its introduction, especially in autonomous navigation. This is due to Kalman filter's relative simplicity and the robustness[16] as well as its capability process real-time information[17]. Hence Kalman filter technique can be used for real-time path prediction problems.

### 2.4 Map Projections

Earth is a spherical object where a location point is given by latitudes and longitudes. In order to do distance and direction calculations, those latitude and longitude coordinates have to be mapped in to a plane. The process of systematic transformation of latitude and longitudes in to locations on a plane is called a map projection[18].

There are three steps to create a map projection. In each step, some information will be lost. $1^{\text {st }}$ step is selection of a model for the shape of the earth where the shape has to be determined from either a sphere or an ellipsoid. $2^{\text {nd }}$ step is transforming geographic coordinates into plane coordinates. $3{ }^{\text {rd }}$ step is the reducing the scale[19].

### 2.5 Haversine Formula

Haversine formula calculates great circle distance between two points on a sphere[20]. Which means Haversine formula is able to determine the shortest distance between two points on spherical surface[21]. As the earth is a spherical object where a point on the surface of earth is given by a latitude and longitude value pair, distance between two points on the surface of the
earth can be calculated by using the Haversine formula without having to project the earth coordinates in to plane coordinates.

### 2.6 Summary

In this chapter, background information needed for this research were discussed at first. Then the discussion moved on to literature on the domain of predictions. In the end, identified methodologies and techniques were elaborated briefly. In the next chapter, theories and methodologies for implementation will be discussed.

## Chapter 3 Methodology

This chapter will elaborate on the theories and methodologies used to design and implement solution for the research problem while justifying the selection of those particular methods thoroughly.

### 3.1 Kalman Filter

As mentioned earlier main objective of this research is to predict a ship's next location point in real-time using previous location points. This prediction can be either a short-term prediction or a long-term prediction. Thus, the solution for this problem lies in the domain of motion prediction over time. Kalman Filter based techniques are a very popular algorithm set for this category.

Kalman Filter uses recursive approach. Hence it is capable of processing new measurements real-time. If all noise is Gaussian, Kalman filter minimizes the mean square errors of estimation parameters. [17] Kalman filtering process consists of two steps. [16]

1. Prediction Phase

- Project the state ahead.
- Project the error covariance ahead

2. Update Phase

- Compute Kalman Gain
- Update estimate with measurement
- Update error covariance

Kalman Filter assumes that the state at time $t$ evolves from a prior state at time $t$-1. [22]

### 3.1.1 Prediction Model

Kalman filter model assumes that the new system state will evolve from previous state according to the following equation[22].
$x_{t \mid t-1}=F_{t} x_{t-1 \mid t-1}+B_{t-1} u_{t-1}+\mathrm{w}_{\mathrm{t}}$
Where;
$x_{t \mid t}$ - the state estimate at time $t$ given observation up to and including time $t$.
$B_{t}$ - Control input matrix which applies effect of each control input parameter on state vector $u_{t}$ - Vector containing any control input
$F_{t}$ - the state transition matrix which applies the effect of each system parameter at time $\mathrm{t}-1$ on time t .
$w_{t}$ - the vector containing process noise for each term in the state vector.
The process noise is assumed to be zero mean multi variate distribution based values with covariance given by covariance matrix $Q_{t}$.

### 3.1.2 Measurement Model

Measurements of the system can be performed using the following equation[22].
$z_{t}=H_{t} x_{t \mid t-1}+v_{t}$
Where;
$H_{t}$ - Transformation matrix that maps state vector parameters in to measurement domain.
$z_{t}-$ Vector of measurements
$v_{t}$ - the vector containing measurement noise for each term in the measurement vector.
Measurement noise is assumed to be zero mean Gaussian white noise with covariance $R_{t}$.

### 3.1.3 Prediction Phase

Equations for prediction phase of Kalman filter are as follows.

$$
\begin{align*}
& x_{t \mid t-1}=F_{t} x_{t-1 \mid t-1}+B_{t-1} u_{t-1}  \tag{3.3}\\
& P_{t \mid t-1}=F_{t} P_{t-1 \mid t-1} F_{t}^{T}+Q_{t} \tag{3.4}
\end{align*}
$$

Where;
$P_{t \mid t}$ - Predicted process covariance matrix at time $t$ given observation up to and including time $t$. The terms along the main diagonal of $P_{t \mid t}$ are the variances associated with the corresponding terms in the state vector. The off-diagonal terms of $P_{t \mid t}$ provide the covariance between terms in the state vector[22].

Equation 3.3 projects the state ahead while equation 3.4 projects process covariance for next state.

### 3.1.4 Measurement Update Phase

Equations for measurement update phase of Kalman filter are as follows.

$$
\begin{equation*}
y_{t}=z_{t}-H_{t} x_{t \mid t-1} \tag{3.5}
\end{equation*}
$$

$K_{t}=P_{t \mid t-1} H_{t}{ }^{T}\left(H_{t} P_{t \mid t-1} H_{t}^{T}+R_{t}\right)^{-1}$
$x_{t \mid t}=x_{t \mid t-1}+K_{t} y_{t}$
$P_{t \mid t}=\left(I-K_{t} H_{t}\right) P_{t \mid t-1}$
Where;
$y_{t}$ - Measurement residual
$K_{t}$ - Kalman gain
$I$ - Identity matrix
Equation 3.5 calculates measurement residual while equation 3.6 calculates Kalman gain whereas equation 3.7 and equation 3.8 update estimate with measurement and error covariance respectively.

### 3.1.5 Kalman Filter Algorithm

As mentioned earlier Kalman filter has two phases and they have separate groups of equations. In Kalman filter algorithm, prediction phase or time update phase equations provide predictions for next state while measurement update phase equations provide corrections to those predictions provided on the previous phase. These two phases will occur recursively one after other while the algorithm is working where final output of state and covariance will be inputs for next state predictions (Figure 3.1).


Figure 3.1- Cycle of Kalman Filter Process

### 3.2 Haversine Formula

Haversine formula is used to calculate great circle distance between two points on a sphere's surface. Thus, by using haversine formula distance between two points on earth's surface can be calculated. In this research project movement distance is considered between two geo coordinates. Hence the haversine formula will be used to calculate distance between two geocoordinates instead of using map projections where errors can be occurred in each step of projecting geo coordinates in to plane coordinates.

### 3.2.1 Haversine Function

$\operatorname{hav}(\theta)=\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{1-\cos \theta}{2}$
Haversine function is called haversine as it is half of versine which is also known as versed sine. Versine of an angle equals 1 minus its cosine[23].

### 3.2.2 The Haversine Formula

For any two points on a sphere, the haversine of the central angle between them is given by

$$
\begin{equation*}
\operatorname{hav}\left(\frac{d}{r}\right)=\operatorname{hav}\left(\varphi_{2}-\varphi_{1}\right)+\cos \varphi_{1} \cos \varphi_{2} \operatorname{hav}\left(\lambda_{2}-\lambda_{1}\right) \tag{3.10}
\end{equation*}
$$

Where;
$d$ - Great circle distance between two points
$r$ - Radius of the sphere
$\varphi_{1}$ - Latitude of point 1 in radians
$\varphi_{2}$ - Latitude of point 2 in radians
$\chi_{1}$ - Longitude of point 1 in radians
$\lambda_{2}$ - Longitude of point 2 in radians
$d=2 r \sin ^{-1}\left(\sqrt{\sin ^{2}\left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)+\cos \varphi_{1} \cos \varphi_{2} \sin ^{2}\left(\frac{\lambda_{2}-\lambda_{1}}{2}\right)}\right)$
Using the equation 3.11 the distance between two points on a sphere's surface can be calculated.

### 3.3 Summary

In this chapter, at first, theories and the process of Kalman filter were elaborated thoroughly while explaining the model equations and the two phases of the process. Then the discussion was moved on to haversine formula which will be used for converting geocoordinates in to
distances. In the next chapter, implementation process and the algorithm used to determine the solution will be discussed with the selection of data parameters and data pre-processing.

## Chapter 4 Implementation

This chapter will elaborate on selection of parameters and data pre-processing at first. Then it will move on to elaborate on the implementation of the Kalman filter based solution while describing the steps of the implementation.

### 4.1 Filter Parameters of Interest from Data Received via AIS

As mentioned earlier, AIS messages sends various static and dynamic data about vessels. Thus, Siyara VTMS has a very large database. Necessary data for this research study to be carried out, had to be extracted from the huge database of Siyara VTMS.

Parameters such as longitude, latitude, speed over ground, course over ground and time the message received were selected as the parameters of interest. Formats of those selected parameters as they were transmitted via AIS as follows[24].

- Longitude in $1 / 10000$ minutes $(+/-180$ degrees, East = positive (as per 2's complement), West $=$ negative $($ as per 2's complement). 181degrees $=$ not available $=$ default $)$
- Latitude in $1 / 10000$ minutes $(+/-90$ degrees, North $=$ positive (as per 2's complement), South $=$ negative $($ as per 2's complement). 91 degrees $=$ not available $=$ default $)$
- Speed over ground in $1 / 10$ knot steps ( $0-102.2$ knots) $1023=$ not available, $1022=$ 102.2 knots or higher.
- Course over ground in $1 / 10=(0-3599) .3600=$ not available $=$ default. $3601-4095$ should not be used.
- Timestamp - UTC second when the report was generated by the electronic position system (EPFS) (0-59, or 60 if time stamp is not available, which should also be the default value, or 61 if positioning system is in manual input mode, or 62 if electronic position fixing system operates in estimated (dead reckoning) mode, or 63 if the positioning system is inoperative)

These raw data have to be pre-processed to use for the solution as inputs.

### 4.2 Data Pre-processing

Since the parameters of interest are in different domains (SOG is on knots, time is in seconds), data has to converted in to the same domain to apply them to Kalman filter.

### 4.2.1 Converting Speed Over Ground

Speed over ground is received via AIS as nautical miles per hour which is also known as knots. Since we are going to deal with meters and seconds on this research, SOG has to be converted from knots to meters per second ( $\mathrm{ms}^{-1}$ ).

1 nautical mile is exactly 1.852 kilometres. Which means 1 nautical mile is 1852 meters. Thus, in order to convert SOG from knots to $\mathrm{ms}^{-1}$, SOG value has to be multiplied by $\frac{1852}{3600}$.

$$
1 \mathrm{knot}=\frac{1852}{3600} \mathrm{~ms}^{-1}
$$

Thus,

$$
\begin{equation*}
1 \mathrm{knot}=0.54444 \mathrm{~ms}^{-1} \tag{4.1}
\end{equation*}
$$

Then the converted SOG values have to be divided into resolution components on x and y directions.

Since the AIS transmits Course Over Ground and the course over ground is determined by the bearing of the ship with respect to the north, SOG can be divided into X and Y direction components using the COG.

If X direction SOG component is $\dot{x}$ and Y direction SOG component is $\dot{y}$. Then,

$$
\begin{align*}
\dot{x} & =S O G \sin C O G  \tag{4.2}\\
\dot{y} & =S O G \cos C O G \tag{4.3}
\end{align*}
$$

### 4.2.2 Converting Geocoordinates into Distances

Since the latitude and longitude values cannot be used as inputs for Kalman filter and all the measurements are on meters and seconds domain, geo-coordinates have to be converted in to distance values. In this research, the distance values were calculated from the point $(0,0)$ of the world. For the purpose of distance calculations, haversine formula was used.

For the calculations of distances, haversine formula needs the radius of the sphere under consideration. In this case, it is the earth. Thus, the radius of the earth was considered as $6,371,000$ meters. Distances were calculated separately on X direction and Y direction.

Implementation of the converting geocoordinates into distance is as follows (Figure 4.1).

```
public static double getDistance(double lat1, double lat2, double lon1, double lon2)
    double distance;
    double latDiff = Math.toRadians(lat2 - lat1);
    double lonDiff = Math.toRadians(lon2 - lon1);
    lat1 = Math.toRadians(lat1);
    lat2 = Math.toRadians(lat2);
    double r = 6371000;
    double a = Math.pov(Math.sin(latDiff / 2), 2) + Math.cos(lat1) * Math.cos(lat2) * Math.pov(Math.sin(lonDiff / 2), 2);
    double c = 2 * Math.atan2 (Math.sqrt(a), Math.sqrt(1 - a));
    distance = r * c;
    return distance;
}
```

Figure 4.1 - Implementation of Coordinate to Distance Conversion

### 4.3 Kalman Filter

In order to implement a Kalman filter based solution, latitude, longitude coordinates, SOG ( $V$ ) and $\operatorname{COG}(\theta)$ are selected as the interested properties for the prediction process.

In order for the prediction to be accurate, as mentioned earlier, geocoordinates and SOG had to be converted into same domain of measurements. Instead of geocoordinate values, distances were used in meters while SOG was converted from nautical miles per hour to meters per second.

### 4.3.1 Time Update Process

As the first step of the solution, state transition function had to be defined. Since the prediction is being carried out on X and Y directions using distances and velocities, kinematic equations can be used to define the state transition.

Suppose;
$x$ - Distance on X axis
$y$ - Distance on Y axis
$\dot{x}$ - Velocity on $X$ direction $(V \sin \theta)$
$\dot{y}-$ Velocity on $Y$ direction $(V \cos \theta)$
$\ddot{x}$ - Acceleration on X direction
$\ddot{y}$ - Acceleration on Y direction
Time $=\mathrm{t}+1$
Position $\left(x_{t+1}, y_{t+1}\right)$
Velocities $=\dot{x}_{t+1}, \dot{y}_{t+1}$
Accelerations $=\ddot{x}_{t+1}, \ddot{y}_{t+1}$
$y_{t+1^{-}} y_{t}$

Time $=\mathrm{t}$
Figure 4.2 - Sample Movement of Vessel
Position $\left(x_{t}, y_{t}\right)$
Velocities $=\dot{x}_{t}, \dot{y}_{t}$
Accelerations $=\ddot{x}_{t}, \ddot{y}_{t}$

Consider Figure 4.2.
Then using $S=u t+\frac{1}{2} a t^{2}$ on X direction
$x_{t+1}-x_{t}=\dot{x}_{t} d t+\frac{1}{2} \ddot{x}_{t}(d t)^{2}$
$x_{t+1}=x_{t}+\dot{x}_{t} d t+\frac{1}{2} \ddot{x}_{t}(d t)^{2}$
Furthermore, using $v=u+a t$ on X direction
$\dot{x}_{t+1}=\dot{x}_{t}+\ddot{x}_{t} d t$
These linear equations can be written in matrix form as
$\binom{x_{t+1}}{\dot{x}_{t+1}}=\left(\begin{array}{cc}1 & d t \\ 0 & 1\end{array}\right)\binom{x_{t}}{\dot{x}_{t}}+\binom{\frac{(d t)^{2}}{2}}{d t} \ddot{x}_{t}$
It is possible to similarly show that,
$\binom{y_{t+1}}{\dot{y}_{t+1}}=\left(\begin{array}{cc}1 & d t \\ 0 & 1\end{array}\right)\binom{y_{t}}{\dot{y}_{t}}+\binom{\frac{(d t)^{2}}{2}}{d t} \ddot{y}_{t}$
According to equations 4.6 and 4.7 state vectors can be determined as;
$\binom{X}{\dot{X}}$
$\binom{Y}{\dot{Y}}$
In this research, it uses two parameters for the state vector at once. Thus, the computations are done twice to achieve values for 4 parameters.

State transition matrix for the solution is - $\left(\begin{array}{cc}1 & d t \\ 0 & 1\end{array}\right)$
Control input matrix for this solution is - $\binom{\frac{d t^{2}}{2}}{d t}$

Control vector for this solution is the acceleration on either direction. Which would be $\ddot{x}$ and $\ddot{y}$. For the initial process covariance calculation, a process covariance matrix was defined with variances of parameters on the states, placed on diagonals and the covariance between parameters on the off diagonals. Process noise covariance matrix $Q=I . q$ Where I is an identity matrix and q is a positive integer.

### 4.3.2 Measurement Update Phase

In this phase, it is needed to have a measurement vector for the process to make correction. In this case, the calculations cannot wait till the next AIS data point. Instead the solution has to determine next location by using previous data. For this research as the measurement vector, calculated output of distance and velocity were provided as measurements.

Measurement for distance on x direction was taken as $x_{t}+\dot{x}_{t} d t+\frac{\ddot{1}}{2} \ddot{x}_{t}(d t)^{2}$
Measurement for velocity on x direction was determined as $\dot{x}_{t}+\ddot{x}_{t} d t$
It is possible to similarly determine measurement values for distance and velocity on Y direction.

After determining the measurement vector, using equations 3.5, 3.6, 3.7 and 3.8 respectively, calculation of measurement residual, calculation of Kalman gain, updating of estimate with measurement and updating of error covariance can be done.

For these processes following matrices were assumed.
Measurement noise covariance matrix $R_{t}-\left(\begin{array}{cc}\operatorname{Var}(X) & 0 \\ 0 & \operatorname{Var}(\dot{X})\end{array}\right)$ and $\left(\begin{array}{cc}\operatorname{Var}(Y) & 0 \\ 0 & \operatorname{Var}(\dot{Y})\end{array}\right)$ Where; $\operatorname{Var}(X)$ - variance of X

Transformation matrix H was assumed as an identity matrix since the parameters on measurement vector and state vector are same.

### 4.3.3 Kalman Filter Algorithm

Pseudo code snippet for the algorithm used for the solution is as follows. This algorithm continuously executes recursively.

Void kalmanPrediction (initialPosition, timeInterval) \{

> While(true) \{

Calculate measurements for $x, y, \dot{x}, \dot{y}$;
Project next state;
Project process covariance;
Compute Kalman Gain;

Update estimate with measurement;

Update process covariance;


Figure 4.3 - Process with Inputs and Outputs

### 4.3.4 Distance to Geocoordinates Conversion

After each iteration of the recursion a position value is returned as two distance values $\left(x_{t}, y_{t}\right)$. These distance values have to be converted into latitude and longitude values in order to compare them and visualize them to conduct the analysis and evaluation.

These distance values contain distances from $(0,0)$ point of earth. By using the haversine formula, distances can be converted back in to the latitudes and longitudes.

Implementation of this process is as follows (Figure 4.4).

```
public static double getCoordinateValues(double distance, boolean isLat) {
    double lat1 = Math.toRadians(0);
    double lat1 = Math.toRadians(0)
    double c = distance / 6371000:
    if (isLat) {
        double lon2 = Math.toRadians(0)
        double lat2 = Math.asin(Math.sin(lat1) * Math.cos(c) + Math.cos(lat1) * Math.sin(c) * Math.cos(Math.toRadians(0)));
        lat2 = Math.toDegrees(lat2);
        return lat2;
    } else {
        double lat2 = Math.toRadians(0);
        double lon2 = lon1 + Math.atan2(Math.sin(Math.toRadians(90)) * Math.sin(c) * Math.cos(lat1), Math.cos(c) - Math.sin(lat1) * Math.sin(lat2))
        1on2 = Math.toDegrees(lon2);
        lon2 = (1on2 + 540) & 360-180;
        return lon2;
    }
```

Figure 4.4 - Implementation of Distance to Coordinate Conversion

### 4.4 Summary

In this chapter, at first, the data parameter selection and pre-processing of data for the algorithm was discussed. Then discussion moved on to the Kalman filter algorithm and the process of the algorithm while depicting how this research problem will be implemented with the Kalman filter algorithm and selection of vectors and matrices for the process. At the end of this chapter, it was discussed how the output of the solution should be processed in order to analyse and evaluate. In next chapter, the evaluation and analysis will be discussed.

## Chapter 5 Evaluation and Results

This chapter will first elaborate on the test cases, respective test results with an analysis on the errors. After that an evaluation on the solution will be discussed.

### 5.1 Test Data Collection

Test data were gathered from Siyara VTMS of UCSC as it has a large historical database of AIS data since few years. Few test cases were selected from the database which are available for a continuous period of time. These data had to be pre-processed and values for latitude, longitude, SOG, COG and time difference between the location points had to be extracted in order to do the prediction process.

As mentioned in earlier chapter, longitude and latitude values will be converted into meter distances while SOG values will be converted from knots to meters per second. After the process output distances and velocities will be converted back to latitude, longitude and knots.

### 5.2 Test Results for Initial Solution

As the initial solution, a simple conventional Kalman Filter based solution had been implemented. For the measurement update phase of the solution, next true values were used as measurement values in order to implement the initial solution. A sample data set had been tested with that solution and been compared with the true values.

### 5.2.1 Comparison

## Longitude

Figure 5.1 shows the comparison of predicted and actual values of longitude values with time.


Figure 5.1- Comparison of Longitude with Time for Solution 1

## Latitude

Figure 5.2 shows the comparison of predicted and actual values of latitude values with time.


Figure 5.2 - Comparison of Latitude with Time for Solution 1

## Speed on X Direction

Figure 5.3 shows the comparison of predicted and actual values of X direction speed values with time.


Figure 5.3 - Comparison of Speed on X Direction with Time for Solution 1


## Speed on Y Direction

Figure 5.4 shows the comparison of predicted and actual values of $Y$ direction speed values with time.


Figure 5.4 - Comparison of Speed on Y Direction with Time for Solution 1

Even though it gives good results for all four parameters on most occasions, there are few deviations. Thus, the solution had to be optimized further.

### 5.2.2 Test Results for Second Solution

As an optimization in the second solution, when the error covariance matrix is calculated for the prediction, only the current value and previous two values were taken in to account instead of all the values.

### 5.2.3 Comparison

## Longitude

Figure 5.5 shows the comparison of predicted and actual values of longitude values with time.


Figure 5.5 - Longitude Comparison for Solution 2

## Latitude

Figure 5.6 shows the comparison of predicted and actual values of latitude values with time.


Figure 5.6 - Latitude Comparison for Solution 2


## Speed on X Direction

Figure 5.7 shows the comparison of predicted and actual values of X direction speed values with time.


Figure 5.7 - Speed on X Direction Comparison for Solution 2

## Speed on Y Direction

Figure 5.8 shows the comparison of predicted and actual values of Y direction speed values with time.


Figure 5.8 - Speed on Y Direction Comparison for Solution 2


These results show that the errors in speed prediction values were not very significant while there were small errors in the last few coordinate value predictions. Thus, this $2^{\text {nd }}$ initial solution will be the base for the final solution.

### 5.3 Test Results for Final Solution

Using the $2^{\text {nd }}$ method of the initial solution, the real-time location prediction solution was implemented. In this solution, measurements for the measurement update phase was calculated by the solution. Prediction was done every one second time interval until a new position value from the data set was being taken as an input when its time value is reached by the algorithm.

### 5.3.1 First Test Case

First test case is conducted on ship named Glovis Passion and has the MMSI number 311048200 on 2017-03-07 from 1701h to 1607h. Test results for this test case as follows.

First the test will compare predicted and actual longitude values.

## Longitude

Figure 5.9 shows the predicted and actual values for the longitudes for test case 1 aligns with each other.


Figure 5.9 - Longitude Comparison for Test Case 1
Next comparison will be done on distances on X direction.

## Distance on X Direction

Figure 5.10 elaborates the predicted and actual distances on the X direction overlaps with each other.


Figure 5.10 - X Direction Distance Comparison for Test Case 1
Furthermore, there were total of 286 data points to be predicted. Out of that 218 data points were with an error less than 10 meters while only 68 data points gave errors greater than or equal to 10 meters.

Next, it is needed to compare the latitudes.

## Latitude

Figure 5.11 showed same kind of results as were for longitude comparison. The actual values and the predicted values aligned on each other.


Figure 5.11 - Latitude Comparison for Test Case 1
Next comparison will be done on Y direction distances.
Distance on Y Direction


Figure 5.12 - Y Direction Distance Comparison for Test Case 1
This comparison (Figure 5.12) provided further conclusive evidence that the predictions on the Y direction will overlap with the actual values. Furthermore, there were 285 data points, out of

total 286 data points were with an error less than 10 meters while the remaining data point gave an error of 12 meters. Out of those 285 data points 280 data points gave an error less than 5 meters.

### 5.3.2 Test Results for Test Case 2

First test case is conducted on ship named Red Zed 1and has the MMSI number 306095000 on 2017-03-07 from 1701h to 1955h. In this case, there is 22-minute gap between $1^{\text {st }}$ and $2^{\text {nd }}$ data point. Test results for this test case as follows.

First the comparison will be done on longitude values.

## Longitude

Figure 5.13 shows that apart from the first two points, where there is 22-minute gap, the actual and predicted values align with each other.


Figure 5.13 - Longitude Comparison for Test Case 2
Next comparison will be done on X direction distances.

Distance on X Direction


Figure 5.14 - X Direction Distance Comparison for Test Case 2
Figure 5.14 showed similar characteristics to longitude comparison chart. Apart from the first two data points all the predicted and actual values overlap with each other. There was a total of 352 data points to predict. Out of those 352 data points, there were 326 data points with an error less than 10 meters while only 26 data points with an error greater than or equal to 10 meters were present.

As the next step, the comparison was done on latitudes.

## Latitude

During the latitude comparison (Figure 5.15), it showed that apart from the first two points, all the other predicted and actual value pair were aligned with each other.


Figure 5.15 - Latitude Comparison for Test Case 2
In order to confirm this, a comparison with the Y direction distances was considered next.

## Distance on Y Direction



Figure 5.16 - Y Direction Distance Comparison for Test Case 2
Figure 5.16 showed similar results compared to latitude comparison. Apart from the first two data points, all the predicted and actual values overlap with each other. Out of 352 data points
there were 329 data points with an error less than 10 meters while only 23 data points had an error greater than or equal to 10 meters.

### 5.4 Analysis

First, the analysing will be done on the positions to look if there are any deviations. Then the analysis will move on to runtime of the solution.

### 5.4.1 Analysis of Positions

In order to analyse and compare actual and predicted positions, first it is needed to look and have a better idea on the following two charts which were drawn for the two test cases.

In first test case, the predicted and actual value curves align and overlap with each other.
For the second test case, there is a difference around two points even though the rest of the data points align and overlap with each other. Reason for the difference at the beginning is that there is time gap of 22 minutes. For that kind of a longer prediction without any AIS value, there should be a few measurement vectors with at least 3-5 minutes of time interval since for a 22 minutes a vessel can be faced with many navigational changes like inverting its course. With this solution, it can be predicted maybe up to 5 minutes as during these two-test case solutions has already tackled few cases where prediction had to be carried out for more than 4 minutes.


Figure 5.17 - Position Comparison for Test Case 1


Figure 5.18 - Position Comparison for Test Case 2
After analysing these two charts, it can be concluded that apart from the two data points where there is a gap of 22 minutes, solution provided fair results for position predictions. Thus, it is safe to say that there is conclusive evidence that this solution provides correct predictions for cases which are not very abnormal.

### 5.4.2 Analysis on Runtime of the Solution

For the first test case, it was needed to carry out the prediction for 3959 times as the prediction continued for 3959 seconds and the prediction's time interval was set as one second. For the 3959 predictions, the system calculated while recursively running the Kalman filter algorithm, solution took approximately 300 milliseconds. That's $\frac{300}{3959}$ milliseconds per prediction which is approximately 0.075 milliseconds ( 75 micro seconds).

For the second test case, the prediction process had to be carried out for 10439 times as the prediction continued for 10439 seconds. In this case, it took 900 milliseconds. Which means $\frac{900}{10439}$ milliseconds per prediction. Which is roughly 0.086 milliseconds ( 86 micro seconds).

In order to fulfil the objective of this research, solution should be able to predict at least 20 times per second which is 50 milliseconds per prediction as it would make the movements more realistic. 50 milliseconds are much higher than what this solution will take to do even a few
predictions on a somewhat low-end computer even though the test cases were tested on a highend computer. Thus, it can be concluded that this system is capable of providing a solution to the objective of this research.

### 5.5 Summary

This chapter provided test results for both of the initial solutions and the comparison of those solutions outputs at first. Then the discussion moved on to the final solutions test cases and their output comparisons. After that the discussion moved on to analysis of the position outputs and the running time analysis. In the next chapter, discussion will elaborate on the conclusion of the research project and the future work that can be carried out on this research project.

## Chapter 6 Conclusion and Future Work

This chapter will discuss on the conclusion of this research and future work that need to be carried out with this research.

### 6.1 Conclusion

According to the analysis done on the previous chapter and experience had during the research project following conclusions can be made.

- The solution is capable of providing correct position outputs for almost all the cases where cases are not abnormal.
- Prediction can be carried on for about few minutes without an AIS update if there are no abnormal behaviours for ships even though the objective was to predict the next location point.
- Solution is capable providing predictions within few milliseconds which is more than enough to satisfy the objective of this research.
- If there is another sensor (other than the GPS sensor coupled with AIS) on the vessel which can provide the measurements, if the error of those measurements is known, then the predictions will be more accurate since in the current solution, calculated measurements are used.
- If there is a way to get the acceleration of the vessel, then the solution will be able to produce results with higher accuracy. Since AIS does not send acceleration, it has to be calculated.


### 6.2 Future Work

As the first task of the future work on this research project should be to plug this solution into Siyara VTMS. Next step should be to look new ways to improve the accuracy of the solution even though it is very accurate at present it would be better if it can be made further accurate. Next task should be improving the efficiency even though the efficiency of this system is more than enough for the task it wouldn't hurt if it can be made further efficient.

After that, the next most important task should be to implement a particle filter based solution as there are some evidence that it will provide better accuracy than a particle filter based solution on some occasions. Thus, it is necessary to check whether if a particle filter based solution would provide better accuracy even though it may be less efficient than the current particle filter based solution. At the start of this research, there was an intention of completing a solution with a particle filter based approach even though due to time related issues it could not be fulfilled.

Then there are other possibilities like having a solution with both the Kalman filter and Particle filter. This Kalman filter and particle filter fusion solution must be able to predict position using both the algorithms and should provide a single value after corrections applied to both outputs from the two algorithms.

Then there should be a location predicter for VTMS where non-linear data are present. For that case, an extended Kalman Filter can be used even though there are other possibilities.

## References

[1] Y. Xiao, H. Zhang, and S. Li, "Dynamic Data Driven Multi-agent Simulation in Maritime Traffic," in 2009 International Conference on Computer and Automation Engineering, 2009, vol. 0, pp. 234-237.
"Vessel traffic service." [Online]. Available: http://en.wikipedia.org/wiki/Vessel_traffic_service. [Accessed: 20-Apr-2016].
[3] W. Ren, G. Li, and J. Lv, "Analysis of Adopting Mobile Position System Based on GPSOne Technique in VTS System," in 2010 International Conference on Intelligent System Design and Engineering Application, 2010, vol. 1, pp. 281-284.
[4] A. Karbassi and M. Barth, "Vehicle route prediction and time of arrival estimation techniques for improved transportation system management," IEEE IV2003 Intell. Veh. Symp. Proc. (Cat. No.03TH8683), pp. 511-516, 2003.
[5] C. Hu, W. Chen, Y. Chen, and D. Liu, "Adaptive Kalman Filtering for Vehicle Navigation," Positioning, vol. 1, no. 4, p. 0, 2009.
[6] F. Mazzarella, V. F. Arguedas, and M. Vespe, "Knowledge-based vessel position prediction using historical AIS data," 2015 Sens. Data Fusion Trends, Solut. Appl., pp. 1-6, 2015.
[7] L. P. Perera and C. G. Soares, "Ocean Vessel Trajectory Estimation and Prediction Based on Extended Kalman Filter," Second Int. Conf. Adapt. Self-Adaptive Syst. Appl., no. c, pp. 14-20, 2010.
[8] L. P. Perera, P. Oliveira, and C. Guedes Soares, "Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1188-1200, 2012.
[9] "Automatic Identification System." [Online]. Available: http://en.wikipedia.org/wiki/Automatic_Identification_System. [Accessed: 20-Apr2016].
[10] N. Sawano, "Current Situation of Digitalized Ship Navigation System for Safety," in 22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008), 2008, vol. 0, pp. 1134-1137.
[11] Y. Shijun, L. Ying, and X. Peng, "Application of AIS in Marine Search and Rescue Radar," in 2010 Second WRI Global Congress on Intelligent Systems, 2010, vol. 2, pp.

65-68.
[12] K. Hata, K. Hasegawa, K. Niwa, and H. Fukuda, "AIS Simulator and ITS Applications," in Proceedings ELMAR 2006, 2006, vol. 0, no. June, pp. 223-226.
[13] N. Willems, "Visualization of Vessel Traffic," Technische Universiteit Eindhoven, 2011.
[14] G. Pallotta, M. Vespe, and K. Bryan, "Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction," Entropy, vol. 15, no. 6, pp. 2218-2245, 2013.
[15] R. E. Kalman and others, "A new approach to linear filtering and prediction problems," J. basic Eng., vol. 82, no. 1, pp. 35-45, 1960.
[16] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," In Pract., vol. 7, no. 1, pp. 1-16, 2006.
[17] L. Kleeman, "Understanding and applying Kalman filtering," Proc. Second Work. Perceptive ..., p. 17, 1996.
[18] "Map Projection." [Online]. Available: https://en.wikipedia.org/wiki/Map_projection. [Accessed: 17-Nov-2016].
[19] "What is a Map Projection?" [Online]. Available: https://www.gislounge.com/mapprojection/. [Accessed: 17-Nov-2016].
[20]
"Haversine formula." [Online]. Available: https://en.wikipedia.org/wiki/Haversine_formula. [Accessed: 20-Nov-2016].
[21] "Haversine Formula - Calculate geographic distance on earth." [Online]. Available: http://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/.
[Accessed: 20-Nov-2016].
[22] R. Faragher, "Understanding the basis of the kalman filter via a simple and intuitive derivation [lecture notes]," IEEE Signal Process. Mag., vol. 29, no. 5, pp. 128-132, 2012.
[23] "Versine." [Online]. Available: https://en.wikipedia.org/wiki/Versine. [Accessed: 20-Nov-2016].
[24] "CLASS A AIS POSITION REPORT (MESSAGES 1, 2, AND 3)." [Online]. Available: https://www.navcen.uscg.gov/?pageName=AISMessagesA. [Accessed: 23-Dec-2016].

## Appendices

## Appendix A Source Code for Implementation of Kalman Filter

Project State Ahead

```
public static Matrix findXkp(double dt, double x, double v, double a) {
    Matrix }\mathbb{A}= new Matrix(new double[]{1, 0, dt, 1}, 2)
    Matrix Xkminus1 = new Matrix (new double[]{x, v}, 2);
    Matrix B = new Matrix (new double[]{((dt * dt) / 2), dt}, 2);
    Matrix uk = new Matrix(new double[]{a}, 1)://
    return A.times (Xkminus1) .plus (B.times (uk));
}
```

Figure 0.1 - Source Code to Project Next State

## Project Process Covariance

```
//Predicted Process Covariance
public static Matrix findPPC(double dt, Matrix m) {
    Matrix A = new Matrix(new double[]{1, 0, dt, 1}, 2);
    Matrix Temp = A.times (m);
    Matrix AT = A.transpose();
    Matrix Q = Matrix.identity(2, 2);
    return Temp.times(AT).plus (Q);
}
```

Figure 0.2 - Source Code for Project Process COvariance
Calculate Kalman Gain

```
public static Matrix findKalmanGain(double dt, Matrix PPC, double xSD, double dxSD) {
    Matrix H = Matrix.identity(2, 2);
    Matrix R = new Matrix(new double[]{xSD, 0, 0, dxSD}, 2);
    Matrix HT = H.transpose();
    Matrix Temp = H.times (PPC);
    Temp = Temp.times (HT);
    Temp = Temp.plus(R);
    Temp = Temp.inverse();
    Matrix K = PPC.times(HT);
    K = K.times (Temp);
    return K;
}
```

Figure 0.3 - Source Code for Calculate Kalman Gain

## Calculate Measurement Residual

```
public static Matrix findYk(double x, double v) {
    Matrix C = Matrix.identity(2, 2);
    Matrix Ykm = new Matrix (new double[]{x, v}, 2);
    Matrix Vk = new Matrix(new double[]{0.1, 0.00001}, 2);//
    return C.times (Ykm).plus(Vk);
}
```

Figure 0.4 - Source Code for Calculate Measurement Residual

## Update Next State

```
public static Matrix findXk(Matrix Xkp, Matrix K, Matrix Yk) {
    Matrix H = Matrix.identity(2, 2);
    Matrix Temp = H.times (Xkp);
    Temp = Yk.minus (Temp);
    Temp = K.times (Temp);
    return Xkp.plus (Temp);
}
```

Figure 0.5 - Source Code for Update Next State with Measurements

## Update Process Covariance

```
//Update Process Covariance
public static Matrix updatePC(Matrix K, Matrix PPC) {
    Matrix H = Matrix.identity(2, 2);
    Matrix I = Matrix.identity(2, 2);|
    Matrix Temp = K.times(H);
    Temp = I.minus(Temp);
    return Temp.times(PPC);
}
```

Figure 0.6 - Source Code for Update Process Covariance

## Appendix B Few Output Values for Test Cases

## Test Case 1

Longitude

| Time | Predicted Value | True Value | Error | Error Percentage |
| :--- | :--- | :--- | :--- | :--- |
| 132 | 80.84078438 | 80.8399617 | 0.000822685 | $0.0010176711 \%$ |
| 228 | 80.83230738 | 80.831805 | 0.000502375 | $0.0006215072 \%$ |
| 240 | 80.83079435 | 80.8307867 | $7.6501 \mathrm{E}-06$ | $0.0000094643 \%$ |
| 252 | 80.82977605 | 80.8297633 | $1.27501 \mathrm{E}-05$ | $0.0000157740 \%$ |
| 276 | 80.82774031 | 80.8277217 | $1.86135 \mathrm{E}-05$ | $0.0000230286 \%$ |
| 288 | 80.82676447 | 80.8267817 | $1.72339 \mathrm{E}-05$ | $0.0000213220 \%$ |
| 324 | 80.82373211 | 80.8237117 | $2.04058 \mathrm{E}-05$ | $0.0000252473 \%$ |
| 348 | 80.82168871 | 80.82166 | $2.87135 \mathrm{E}-05$ | $0.0000355270 \%$ |
| 360 | 80.82070277 | 80.8206367 | $6.60661 \mathrm{E}-05$ | $0.0000817441 \%$ |


| 372 | 80.81963128 | 80.8196133 | $1.79834 \mathrm{E}-05$ | 0.0000222513\% |
| :---: | :---: | :---: | :---: | :---: |
| 384 | 80.81860788 | 80.8185083 | $9.95834 \mathrm{E}-05$ | 0.0001232186\% |
| 396 | 80.81750288 | 80.8174883 | $1.45834 \mathrm{E}-05$ | 0.0000180449\% |
| 408 | 80.81648288 | 80.8164633 | $1.95834 \mathrm{E}-05$ | 0.0000242319\% |
| 432 | 80.81445078 | 80.814495 | $4.42173 \mathrm{E}-05$ | 0.0000547145\% |
| 444 | 80.81348435 | 80.81347 | $1.43501 \mathrm{E}-05$ | 0.0000177571\% |
| 456 | 80.81245935 | 80.812355 | 0.00010435 | 0.0001291264\% |
| 468 | 80.81134435 | 80.8114133 | $6.89499 \mathrm{E}-05$ | 0.0000853220\% |
| 479 | 80.81048704 | 80.810385 | 0.00010204 | 0.0001262708\% |
| 492 | 80.80928997 | 80.8093617 | $7.17338 \mathrm{E}-05$ | 0.0000887692\% |
| 504 | 80.80835628 | 80.8083367 | $1.95834 \mathrm{E}-05$ | 0.0000242344\% |
| 528 | 80.80631371 | 80.8063717 | $5.79865 \mathrm{E}-05$ | 0.0000717598\% |
| 539 | 80.80545024 | 80.8052633 | 0.000186937 | 0.0002313424\% |
| 552 | 80.80417394 | 80.8041517 | $2.22359 \mathrm{E}-05$ | 0.0000275182\% |
| 564 | 80.80314105 | 80.8032133 | $7.22499 \mathrm{E}-05$ | 0.0000894146\% |
| 576 | 80.80220788 | 80.8021867 | $2.11834 \mathrm{E}-05$ | 0.0000262164\% |
| 588 | 80.80118128 | 80.8011617 | $1.95834 \mathrm{E}-05$ | 0.0000242365\% |
| 599 | 80.80023544 | 80.8001333 | 0.00010214 | 0.0001264106\% |
| 612 | 80.79904394 | 80.7991067 | $6.27641 \mathrm{E}-05$ | 0.0000776792\% |
| 624 | 80.79809605 | 80.7979917 | 0.00010435 | 0.0001291494\% |
| 636 | 80.79698628 | 80.7970483 | $6.20166 \mathrm{E}-05$ | 0.0000767560\% |
| 648 | 80.79604288 | 80.7960217 | $2.11834 \mathrm{E}-05$ | 0.0000262184\% |
| 659 | 80.79509544 | 80.79508 | $1.544 \mathrm{E}-05$ | 0.0000191100\% |
| 672 | 80.79399064 | 80.79397 | $2.06359 \mathrm{E}-05$ | 0.0000255414\% |
| 684 | 80.79296458 | 80.79286 | 0.000104583 | 0.0001294463\% |
| 696 | 80.79184935 | 80.7919183 | $6.89499 \mathrm{E}-05$ | 0.0000853426\% |
| 708 | 80.79091288 | 80.790895 | $1.78834 \mathrm{E}-05$ | 0.0000221354\% |
| 719 | 80.78996874 | 80.7898683 | 0.00010044 | 0.0001243225\% |
| 732 | 80.78877894 | 80.7888483 | $6.93641 \mathrm{E}-05$ | 0.0000858585\% |
| 744 | 80.78784288 | 80.7877433 | $9.95834 \mathrm{E}-05$ | 0.0001232655\% |
| 756 | 80.78673788 | 80.786805 | $6.71166 \mathrm{E}-05$ | 0.0000830787\% |
| 768 | 80.78579958 | 80.7857833 | $1.62834 \mathrm{E}-05$ | 0.0000201563\% |
| 779 | 80.78486184 | 80.78476 | 0.000101837 | 0.0001260595\% |
| 792 | 80.78367064 | 80.78373 | $5.93641 \mathrm{E}-05$ | 0.0000734852\% |
| 804 | 80.78272458 | 80.7827067 | $1.78834 \mathrm{E}-05$ | 0.0000221377\% |
| 816 | 80.78170128 | 80.7816783 | $2.29834 \mathrm{E}-05$ | 0.0000284512\% |
| 829 | 80.78058894 | 80.7805667 | $2.22359 \mathrm{E}-05$ | 0.0000275263\% |
| 840 | 80.77964044 | 80.7795417 | $9.874 \mathrm{E}-05$ | 0.0001222339\% |
| 852 | 80.77853628 | 80.7785167 | $1.95834 \mathrm{E}-05$ | 0.0000242433\% |
| 865 | 80.77742734 | 80.777485 | $5.76641 \mathrm{E}-05$ | 0.0000713864\% |
| 876 | 80.77656354 | 80.776465 | $9.85369 \mathrm{E}-05$ | 0.0001219871\% |
| 889 | 80.77537564 | 80.77544 | $6.43641 \mathrm{E}-05$ | 0.0000796828\% |
| 900 | 80.77451854 | 80.774505 | $1.35369 \mathrm{E}-05$ | 0.0000167588\% |
| 925 | 80.77240858 | 80.7723883 | $2.02801 \mathrm{E}-05$ | 0.0000251077\% |
| 936 | 80.77146684 | 80.7714567 | $1.01369 \mathrm{E}-05$ | 0.0000125501\% |
| 949 | 80.77036734 | 80.7703567 | $1.06359 \mathrm{E}-05$ | 0.0000131681\% |
| 960 | 80.76948395 | 80.769425 | $5.89466 \mathrm{E}-05$ | 0.0000729813\% |
| 972 | 80.76841958 | 80.76841 | $9.5834 \mathrm{E}-06$ | 0.0000118653\% |
| 985 | 80.76732064 | 80.7673983 | $7.76641 \mathrm{E}-05$ | 0.0000961578\% |
| 996 | 80.76648192 | 80.7662983 | 0.000183616 | 0.0002273420\% |
| 1009 | 80.76526651 | 80.7652833 | $1.67917 \mathrm{E}-05$ | 0.0000207908\% |
| 1020 | 80.76436692 | 80.7643567 | $1.02157 \mathrm{E}-05$ | 0.0000126488\% |
| 1032 | 80.76340442 | 80.763255 | 0.000149424 | 0.0001850154\% |
| 1045 | 80.76222321 | 80.7622433 | $2.00917 \mathrm{E}-05$ | 0.0000248776\% |
| 1056 | 80.76132184 | 80.7612267 | $9.51369 \mathrm{E}-05$ | 0.0001178002\% |
| 1069 | 80.76013734 | 80.7602167 | $7.93641 \mathrm{E}-05$ | 0.0000982713\% |
| 1080 | 80.75929524 | 80.7592833 | $1.19369 \mathrm{E}-05$ | 0.0000147808\% |
| 1092 | 80.75827788 | 80.7582733 | $4.5834 \mathrm{E}-06$ | 0.0000056755\% |
| 1105 | 80.75724151 | 80.757175 | $6.65083 \mathrm{E}-05$ | 0.0000823559\% |
| 1116 | 80.75630225 | 80.75625 | $5.22466 \mathrm{E}-05$ | 0.0000646966\% |
| 1129 | 80.75521284 | 80.75515 | $6.28364 \mathrm{E}-05$ | 0.0000778110\% |

Table B. 1 - Longitude Data for Test Case 1
$\square$

## Latitude

| Time | Predicted Value | True Value | Error | Error Percentage |
| :---: | :---: | :---: | :---: | :---: |
| 132 | 5.851932344 | 5.85197333 | $4.09856 \mathrm{E}-05$ | 0.00070\% |
| 228 | 5.849821953 | 5.84971333 | 0.000108623 | 0.00186\% |
| 240 | 5.849428034 | 5.84942667 | $1.36413 \mathrm{E}-06$ | 0.00002\% |
| 252 | 5.849141374 | 5.84913833 | $3.04413 \mathrm{E}-06$ | 0.00005\% |
| 276 | 5.848566626 | 5.84856833 | $1.70355 \mathrm{E}-06$ | 0.00003\% |
| 288 | 5.84829848 | 5.84831 | $1.15201 \mathrm{E}-05$ | 0.00020\% |
| 324 | 5.847506133 | 5.84746833 | $3.78034 \mathrm{E}-05$ | 0.00065\% |
| 348 | 5.846896626 | 5.84691 | $1.33736 \mathrm{E}-05$ | 0.00023\% |
| 360 | 5.84664015 | 5.84662167 | $1.84799 \mathrm{E}-05$ | 0.00032\% |
| 372 | 5.846318571 | 5.84633167 | $1.3099 \mathrm{E}-05$ | 0.00022\% |
| 384 | 5.846028571 | 5.84601333 | $1.5241 \mathrm{E}-05$ | 0.00026\% |
| 396 | 5.845710231 | 5.84571667 | $6.43903 \mathrm{E}-06$ | 0.00011\% |
| 408 | 5.845413571 | 5.84543 | $1.6429 \mathrm{E}-05$ | 0.00028\% |
| 432 | 5.844822658 | 5.84488167 | $5.90116 \mathrm{E}-05$ | 0.00101\% |
| 444 | 5.844596374 | 5.84459333 | $3.04413 \mathrm{E}-06$ | 0.00005\% |
| 456 | 5.844308034 | 5.84428333 | $2.47041 \mathrm{E}-05$ | 0.00042\% |
| 468 | 5.843998034 | 5.84402333 | $2.52959 \mathrm{E}-05$ | 0.00043\% |
| 479 | 5.843761917 | 5.84373667 | $2.5247 \mathrm{E}-05$ | 0.00043\% |
| 492 | 5.843427493 | 5.84344667 | $1.91766 \mathrm{E}-05$ | 0.00033\% |
| 504 | 5.843143571 | 5.84315333 | $9.75903 \mathrm{E}-06$ | 0.00017\% |
| 528 | 5.842581626 | 5.84259 | $8.37355 \mathrm{E}-06$ | 0.00014\% |
| 539 | 5.84231227 | 5.84226833 | $4.39401 \mathrm{E}-05$ | 0.00075\% |
| 552 | 5.841939864 | 5.84194833 | $8.46605 \mathrm{E}-06$ | 0.00014\% |
| 564 | 5.841663034 | 5.841675 | $1.19659 \mathrm{E}-05$ | 0.00020\% |
| 576 | 5.841371901 | 5.84138 | $8.09903 \mathrm{E}-06$ | 0.00014\% |
| 588 | 5.841076901 | 5.84108667 | $9.76903 \mathrm{E}-06$ | 0.00017\% |
| 599 | 5.840825257 | 5.84079333 | $3.1927 \mathrm{E}-05$ | 0.00055\% |
| 612 | 5.840464864 | 5.84050333 | $3.8466 \mathrm{E}-05$ | 0.00066\% |
| 624 | 5.840218034 | 5.840185 | $3.30341 \mathrm{E}-05$ | 0.00057\% |
| 636 | 5.839881901 | 5.83991333 | $3.1429 \mathrm{E}-05$ | 0.00054\% |
| 648 | 5.839610231 | 5.83962 | $9.76903 \mathrm{E}-06$ | 0.00017\% |
| 659 | 5.839358587 | 5.83934667 | $1.1917 \mathrm{E}-05$ | 0.00020\% |
| 672 | 5.839018204 | 5.83903167 | $1.3466 \mathrm{E}-05$ | 0.00023\% |
| 684 | 5.838728571 | 5.83870667 | $2.1901 \mathrm{E}-05$ | 0.00038\% |
| 696 | 5.838421374 | 5.838435 | $1.36259 \mathrm{E}-05$ | 0.00023\% |
| 708 | 5.838131901 | 5.83813667 | $4.76903 \mathrm{E}-06$ | 0.00008\% |
| 719 | 5.837875257 | 5.83784167 | $3.3587 \mathrm{E}-05$ | 0.00058\% |
| 732 | 5.837513204 | 5.83754167 | $2.8466 \mathrm{E}-05$ | 0.00049\% |
| 744 | 5.837238571 | 5.83721 | $2.8571 \mathrm{E}-05$ | 0.00049\% |
| 756 | 5.836906901 | 5.83693667 | $2.9769 \mathrm{E}-05$ | 0.00051\% |
| 768 | 5.836633571 | 5.83664 | $6.42903 \mathrm{E}-06$ | 0.00011\% |
| 779 | 5.83636227 | 5.83634833 | $1.39401 \mathrm{E}-05$ | 0.00024\% |
| 792 | 5.836019864 | 5.83605833 | $3.8466 \mathrm{E}-05$ | 0.00066\% |
| 804 | 5.835755231 | 5.83576667 | $1.1439 \mathrm{E}-05$ | 0.00020\% |
| 816 | 5.835463571 | 5.83547833 | $1.4759 \mathrm{E}-05$ | 0.00025\% |
| 829 | 5.835149864 | 5.83516667 | $1.6806 \mathrm{E}-05$ | 0.00029\% |
| 840 | 5.834905257 | 5.834875 | $3.0257 \mathrm{E}-05$ | 0.00052\% |
| 852 | 5.834571901 | 5.83458833 | $1.6429 \mathrm{E}-05$ | 0.00028\% |
| 865 | 5.834259864 | 5.8343 | $4.0136 \mathrm{E}-05$ | 0.00069\% |
| 876 | 5.83402227 | 5.83400667 | $1.56001 \mathrm{E}-05$ | 0.00027\% |
| 889 | 5.833678204 | 5.83371167 | $3.3466 \mathrm{E}-05$ | 0.00057\% |
| 900 | 5.83343394 | 5.83344167 | $7.72986 \mathrm{E}-06$ | 0.00013\% |
| 925 | 5.832808993 | 5.83281667 | $7.67689 \mathrm{E}-06$ | 0.00013\% |
| 936 | 5.83253894 | 5.83254333 | $4.38986 \mathrm{E}-06$ | 0.00008\% |
| 949 | 5.832214864 | 5.83221667 | $1.80605 \mathrm{E}-06$ | 0.00003\% |
| 960 | 5.831953944 | 5.83194167 | $1.22738 \mathrm{E}-05$ | 0.00021\% |
| 972 | 5.831638571 | 5.83163833 | $2.40967 \mathrm{E}-07$ | 0.00000\% |
| 985 | 5.831309864 | 5.83134167 | $3.1806 \mathrm{E}-05$ | 0.00055\% |
| 996 | 5.831047722 | 5.83102167 | $2.60518 \mathrm{E}-05$ | 0.00045\% |
| 1009 | 5.830710941 | 5.83072667 | $1.57291 \mathrm{E}-05$ | 0.00027\% |


| 1020 | 5.830432722 | 5.830455 | $2.22782 \mathrm{E}-05$ | $0.00038 \%$ |
| :--- | :--- | :--- | :--- | :--- |
| 1032 | 5.830168271 | 5.830135 | $3.32713 \mathrm{E}-05$ | $0.00057 \%$ |
| 1045 | 5.829824271 | 5.829835 | $1.07291 \mathrm{E}-05$ | $0.00018 \%$ |
| 1056 | 5.82955727 | 5.82954 | $1.72701 \mathrm{E}-05$ | $0.00030 \%$ |
| 1069 | 5.829211534 | 5.82924333 | $3.1796 \mathrm{E}-05$ | $0.00055 \%$ |
| 1080 | 5.8289656 | 5.828975 | $9.39986 \mathrm{E}-06$ | $0.00016 \%$ |
| 1092 | 5.828671901 | 5.82868 | $8.09903 \mathrm{E}-06$ | $0.00014 \%$ |
| 1105 | 5.828369271 | 5.82835833 | $1.09409 \mathrm{E}-05$ | $0.00019 \%$ |
| 1116 | 5.828095604 | 5.82808833 | $7.27377 \mathrm{E}-06$ | $0.00012 \%$ |
| 1129 | 5.827795889 | 5.82776667 | $2.92188 \mathrm{E}-05$ | $0.00050 \%$ |

Table B. 2 - Latitude Data for Test Case 1

## Distance on X Direction

| Time | Actual Distance | Predicted Distance | Difference | <10 |
| :---: | :---: | :---: | :---: | :---: |
| 132 | 8988993.611 | 8989085.09 | 91.47839 | FALSE |
| 228 | 8988086.628 | 8988142.489 | 55.8616 | FALSE |
| 240 | 8987973.398 | 8987974.248 | 0.850652 | TRUE |
| 252 | 8987859.601 | 8987861.019 | 1.417746 | TRUE |
| 276 | 8987632.585 | 8987634.655 | 2.069724 | TRUE |
| 288 | 8987528.062 | 8987526.146 | 1.916325 | TRUE |
| 324 | 8987186.694 | 8987188.963 | 2.269025 | TRUE |
| 348 | 8986958.555 | 8986961.748 | 3.192793 | TRUE |
| 360 | 8986844.769 | 8986852.115 | 7.346212 | TRUE |
| 372 | 8986730.972 | 8986732.972 | 1.999662 | TRUE |
| 384 | 8986608.102 | 8986619.175 | 11.07317 | FALSE |
| 396 | 8986494.683 | 8986496.305 | 1.6216 | TRUE |
| 408 | 8986380.708 | 8986382.886 | 2.177574 | TRUE |
| 432 | 8986161.843 | 8986156.927 | 4.916736 | TRUE |
| 444 | 8986047.869 | 8986049.464 | 1.595658 | TRUE |
| 456 | 8985923.886 | 8985935.489 | 11.6032 | FALSE |
| 468 | 8985819.174 | 8985811.507 | 7.666879 | TRUE |
| 479 | 8985704.832 | 8985716.179 | 11.34633 | FALSE |
| 492 | 8985591.046 | 8985583.07 | 7.976434 | TRUE |
| 504 | 8985477.072 | 8985479.249 | 2.177574 | TRUE |
| 528 | 8985258.574 | 8985252.126 | 6.447807 | TRUE |
| 539 | 8985135.325 | 8985156.112 | 20.78643 | FALSE |
| 552 | 8985011.721 | 8985014.193 | 2.472518 | TRUE |
| 564 | 8984907.376 | 8984899.342 | 8.033822 | TRUE |
| 576 | 8984793.223 | 8984795.578 | 2.355486 | TRUE |
| 588 | 8984679.248 | 8984681.426 | 2.177574 | TRUE |
| 599 | 8984564.895 | 8984576.253 | 11.35745 | FALSE |
| 612 | 8984450.742 | 8984443.763 | 6.979051 | TRUE |
| 624 | 8984326.76 | 8984338.363 | 11.6032 | FALSE |
| 636 | 8984221.859 | 8984214.963 | 6.895932 | TRUE |
| 648 | 8984107.706 | 8984110.062 | 2.355486 | TRUE |
| 659 | 8984002.994 | 8984004.711 | 1.716845 | TRUE |
| 672 | 8983879.567 | 8983881.862 | 2.294606 | TRUE |
| 684 | 8983756.141 | 8983767.77 | 11.62914 | FALSE |
| 696 | 8983651.429 | 8983643.762 | 7.666879 | TRUE |
| 708 | 8983537.643 | 8983539.632 | 1.988543 | TRUE |
| 719 | 8983423.479 | 8983434.648 | 11.16841 | FALSE |
| 732 | 8983310.06 | 8983302.347 | 7.712938 | TRUE |
| 744 | 8983187.19 | 8983198.263 | 11.07317 | FALSE |
| 756 | 8983082.856 | 8983075.393 | 7.463026 | TRUE |
| 768 | 8982969.248 | 8982971.059 | 1.810631 | TRUE |
| 779 | 8982855.462 | 8982866.786 | 11.32374 | FALSE |
| 792 | 8982740.931 | 8982734.33 | 6.600988 | TRUE |


| 804 | 8982627.146 | 8982629.134 | 1.988543 | TRUE |
| :---: | :---: | :---: | :---: | :---: |
| 816 | 8982512.793 | 8982515.348 | 2.555637 | TRUE |
| 829 | 8982389.189 | 8982391.661 | 2.472518 | TRUE |
| 840 | 8982275.214 | 8982286.193 | 10.97938 | FALSE |
| 852 | 8982161.239 | 8982163.416 | 2.177574 | TRUE |
| 865 | 8982046.519 | 8982040.107 | 6.411957 | TRUE |
| 876 | 8981933.1 | 8981944.057 | 10.9568 | FALSE |
| 889 | 8981819.125 | 8981811.969 | 7.156963 | TRUE |
| 900 | 8981715.158 | 8981716.663 | 1.505231 | TRUE |
| 925 | 8981479.792 | 8981482.047 | 2.255045 | TRUE |
| 936 | 8981376.203 | 8981377.33 | 1.127168 | TRUE |
| 949 | 8981253.888 | 8981255.071 | 1.182657 | TRUE |
| 960 | 8981150.288 | 8981156.843 | 6.554561 | TRUE |
| 972 | 8981037.425 | 8981038.491 | 1.065625 | TRUE |
| 985 | 8980924.929 | 8980916.293 | 8.635855 | TRUE |
| 996 | 8980802.615 | 8980823.032 | 20.41714 | FALSE |
| 1009 | 8980689.752 | 8980687.885 | 1.867153 | TRUE |
| 1020 | 8980586.719 | 8980587.855 | 1.135936 | TRUE |
| 1032 | 8980464.215 | 8980480.831 | 16.61525 | FALSE |
| 1045 | 8980351.719 | 8980349.485 | 2.234096 | TRUE |
| 1056 | 8980238.679 | 8980249.257 | 10.57874 | FALSE |
| 1069 | 8980126.372 | 8980117.547 | 8.824887 | TRUE |
| 1080 | 8980022.582 | 8980023.91 | 1.327319 | TRUE |
| 1092 | 8979910.276 | 8979910.785 | 0.50965 | TRUE |
| 1105 | 8979788.15 | 8979795.546 | 7.395384 | TRUE |
| 1116 | 8979685.295 | 8979691.104 | 5.809555 | TRUE |
| 1129 | 8979562.98 | 8979569.968 | 6.987088 | TRUE |

Table B. 3 - X Direction Data for Test Case 1

## Distance on Y Direction

| Time | Actual Distance | Predicted Distance | Difference | <10 | <5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | 650709.7452 | 650705.1878 | 4.557395 | TRUE | TRUE |
| 228 | 650458.4446 | 650470.523 | 12.07834 | FALSE | FALSE |
| 240 | 650426.5695 | 650426.7212 | 0.151685 | TRUE | TRUE |
| 252 | 650394.5075 | 650394.846 | 0.338492 | TRUE | TRUE |
| 276 | 650331.1264 | 650330.937 | 0.189426 | TRUE | TRUE |
| 288 | 650302.4014 | 650301.1205 | 1.280978 | TRUE | TRUE |
| 324 | 650208.812 | 650213.0156 | 4.203547 | TRUE | TRUE |
| 348 | 650146.7285 | 650145.2415 | 1.487071 | TRUE | TRUE |
| 360 | 650114.6677 | 650116.7226 | 2.05487 | TRUE | TRUE |
| 372 | 650082.4212 | 650080.9646 | 1.456546 | TRUE | TRUE |
| 384 | 650047.0234 | 650048.7181 | 1.694718 | TRUE | TRUE |
| 396 | 650014.0363 | 650013.3203 | 0.715988 | TRUE | TRUE |
| 408 | 649982.1601 | 649980.3332 | 1.826825 | TRUE | TRUE |
| 432 | 649921.1885 | 649914.6268 | 6.561786 | TRUE | FALSE |
| 444 | 649889.1266 | 649889.4651 | 0.338492 | TRUE | TRUE |
| 456 | 649854.6562 | 649857.4031 | 2.746974 | TRUE | TRUE |
| 468 | 649825.7455 | 649822.9327 | 2.812772 | TRUE | TRUE |
| 479 | 649793.8704 | 649796.6777 | 2.80734 | TRUE | TRUE |
| 492 | 649761.6238 | 649759.4915 | 2.132344 | TRUE | TRUE |
| 504 | 649729.0059 | 649727.9207 | 1.085155 | TRUE | TRUE |
| 528 | 649666.3665 | 649665.4354 | 0.931096 | TRUE | TRUE |
| 539 | 649630.5984 | 649635.4843 | 4.885921 | TRUE | TRUE |
| 552 | 649595.016 | 649594.0746 | 0.941382 | TRUE | TRUE |
| 564 | 649564.6231 | 649563.2926 | 1.330544 | TRUE | TRUE |
| 576 | 649531.8206 | 649530.92 | 0.900571 | TRUE | TRUE |
| 588 | 649499.2038 | 649498.1175 | 1.086267 | TRUE | TRUE |
| 599 | 649466.5859 | 649470.136 | 3.550122 | TRUE | TRUE |
| 612 | 649434.3393 | 649430.0621 | 4.277229 | TRUE | TRUE |
| 624 | 649398.9427 | 649402.6159 | 3.673228 | TRUE | TRUE |
| 636 | 649368.7343 | 649365.2396 | 3.494749 | TRUE | TRUE |
| 648 | 649336.1175 | 649335.0313 | 1.086267 | TRUE | TRUE |


| 659 | 649305.7246 | 649307.0497 | 1.325111 | TRUE | TRUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 672 | 649270.6982 | 649269.2009 | 1.497356 | TRUE | TRUE |
| 684 | 649234.5599 | 649236.9951 | 2.435276 | TRUE | TRUE |
| 696 | 649204.3515 | 649202.8364 | 1.515127 | TRUE | TRUE |
| 708 | 649171.1788 | 649170.6485 | 0.530292 | TRUE | TRUE |
| 719 | 649138.3763 | 649142.111 | 3.734706 | TRUE | TRUE |
| 732 | 649105.0178 | 649101.8525 | 3.16528 | TRUE | TRUE |
| 744 | 649068.1378 | 649071.3147 | 3.176947 | TRUE | TRUE |
| 756 | 649037.7448 | 649034.4347 | 3.310165 | TRUE | TRUE |
| 768 | 649004.7567 | 649004.0418 | 0.714876 | TRUE | TRUE |
| 779 | 648972.3244 | 648973.8745 | 1.550073 | TRUE | TRUE |
| 792 | 648940.0779 | 648935.8007 | 4.277229 | TRUE | TRUE |
| 804 | 648907.6468 | 648906.3748 | 1.271962 | TRUE | TRUE |
| 816 | 648875.5848 | 648873.9437 | 1.64113 | TRUE | TRUE |
| 829 | 648840.9298 | 648839.0611 | 1.868747 | TRUE | TRUE |
| 840 | 648808.4976 | 648811.862 | 3.364426 | TRUE | TRUE |
| 852 | 648776.6214 | 648774.7945 | 1.826825 | TRUE | TRUE |
| 865 | 648744.5605 | 648740.0976 | 4.462925 | TRUE | TRUE |
| 876 | 648711.9437 | 648713.6784 | 1.734657 | TRUE | TRUE |
| 889 | 648679.1412 | 648675.42 | 3.721255 | TRUE | TRUE |
| 900 | 648649.1186 | 648648.2591 | 0.859521 | TRUE | TRUE |
| 925 | 648579.6218 | 648578.7681 | 0.853631 | TRUE | TRUE |
| 936 | 648549.2277 | 648548.7396 | 0.48813 | TRUE | TRUE |
| 949 | 648512.9048 | 648512.704 | 0.200823 | TRUE | TRUE |
| 960 | 648482.3262 | 648483.691 | 1.364781 | TRUE | TRUE |
| 972 | 648448.5963 | 648448.6231 | 0.026794 | TRUE | TRUE |
| 985 | 648415.6092 | 648412.0726 | 3.536671 | TRUE | TRUE |
| 996 | 648380.0269 | 648382.9237 | 2.896824 | TRUE | TRUE |
| 1009 | 648347.2244 | 648345.4754 | 1.749 | TRUE | TRUE |
| 1020 | 648317.016 | 648314.5388 | 2.477227 | TRUE | TRUE |
| 1032 | 648281.4337 | 648285.1332 | 3.699594 | TRUE | TRUE |
| 1045 | 648248.0752 | 648246.8821 | 1.193026 | TRUE | TRUE |
| 1056 | 648215.2727 | 648217.193 | 1.920352 | TRUE | TRUE |
| 1069 | 648182.2845 | 648178.7489 | 3.535559 | TRUE | TRUE |
| 1080 | 648152.4475 | 648151.4023 | 1.045216 | TRUE | TRUE |
| 1092 | 648119.645 | 648118.7445 | 0.900571 | TRUE | TRUE |
| 1105 | 648083.877 | 648085.0935 | 1.216568 | TRUE | TRUE |
| 1116 | 648053.8543 | 648054.6631 | 0.808806 | TRUE | TRUE |
| 1129 | 648018.0874 | 648021.3364 | 3.24898 | TRUE | TRUE |

Table B. 4 - Y Direction Data for Test Case 1

## Test Case 2

## Longitude

| Time | Predicted Value | True Value | Error | Error Percentage |
| :--- | :--- | :--- | :--- | :--- |
| 79 | 80.10501559 | 80.10523 | 0.00021441 | $0.0002676605 \%$ |
| 1399 | 80.18899177 | 80.152685 | 0.036306767 | $0.0452970061 \%$ |
| 1419 | 80.15306366 | 80.1531133 | $4.96419 \mathrm{E}-05$ | $0.0000619339 \%$ |
| 1440 | 80.15351178 | 80.15355 | $3.82153 \mathrm{E}-05$ | $0.0000476776 \%$ |
| 1459 | 80.1539104 | 80.15394 | $2.95978 \mathrm{E}-05$ | $0.0000369262 \%$ |
| 1539 | 80.15546351 | 80.15549 | $2.64855 \mathrm{E}-05$ | $0.0000330426 \%$ |
| 1560 | 80.15588638 | 80.1558767 | $9.684 \mathrm{E}-06$ | $0.0000120815 \%$ |
| 1579 | 80.15614935 | 80.15622 | $7.06472 \mathrm{E}-05$ | $0.0000881369 \%$ |
| 1599 | 80.15650829 | 80.1565733 | $6.50063 \mathrm{E}-05$ | $0.0000810992 \%$ |
| 1620 | 80.15687611 | 80.156955 | $7.88926 \mathrm{E}-05$ | $0.0000984226 \%$ |
| 1659 | 80.15751544 | 80.1575983 | $8.28639 \mathrm{E}-05$ | $0.0001033762 \%$ |
| 1680 | 80.15790076 | 80.15794 | $3.9241 \mathrm{E}-05$ | $0.0000489546 \%$ |
| 1699 | 80.15821391 | 80.158245 | $3.10867 \mathrm{E}-05$ | $0.0000387817 \%$ |
| 1719 | 80.15853242 | 80.1585617 | $2.92772 \mathrm{E}-05$ | $0.0000365241 \%$ |
| 1740 | 80.15886438 | 80.1589033 | $3.89233 \mathrm{E}-05$ | $0.0000485576 \%$ |
| 1800 | 80.15976995 | 80.1597867 | $1.67473 \mathrm{E}-05$ | $0.0000208924 \%$ |
| 1819 | 80.16006042 | 80.1600617 | $1.28382 \mathrm{E}-06$ | $0.0000016016 \%$ |


| 1859 | 80.16063853 | 80.160625 | $1.35319 \mathrm{E}-05$ | 0.0000168810\% |
| :---: | :---: | :---: | :---: | :---: |
| 1899 | 80.16120158 | 80.1611617 | $3.98832 \mathrm{E}-05$ | 0.0000497538\% |
| 1919 | 80.16135965 | 80.161445 | $8.53528 \mathrm{E}-05$ | 0.0001064761\% |
| 1959 | 80.16183983 | 80.1619717 | 0.000131866 | 0.0001645000\% |
| 1999 | 80.16236768 | 80.1624883 | 0.000120617 | 0.0001504651\% |
| 2019 | 80.16268406 | 80.16274 | $5.59438 \mathrm{E}-05$ | 0.0000697878\% |
| 2039 | 80.16293754 | 80.1629867 | $4.91643 \mathrm{E}-05$ | 0.0000613305\% |
| 2059 | 80.16318465 | 80.163235 | $5.03528 \mathrm{E}-05$ | 0.0000628128\% |
| 2079 | 80.16343273 | 80.1634633 | $3.05723 \mathrm{E}-05$ | 0.0000381375\% |
| 2099 | 80.16366116 | 80.1637033 | $4.21351 \mathrm{E}-05$ | 0.0000525614\% |
| 2120 | 80.16391113 | 80.16397 | $5.88739 \mathrm{E}-05$ | 0.0000734418\% |
| 2140 | 80.16416773 | 80.1642117 | $4.39723 \mathrm{E}-05$ | 0.0000548528\% |
| 2159 | 80.16439977 | 80.1644433 | $4.3529 \mathrm{E}-05$ | 0.0000542997\% |
| 2180 | 80.16465012 | 80.1646933 | $4.31814 \mathrm{E}-05$ | 0.0000538659\% |
| 2200 | 80.16489125 | 80.1649467 | $5.54528 \mathrm{E}-05$ | 0.0000691734\% |
| 2219 | 80.1651348 | 80.1652033 | $6.8503 \mathrm{E}-05$ | 0.0000854522\% |
| 2240 | 80.16550611 | 80.1655067 | $5.92554 \mathrm{E}-07$ | 0.0000007392\% |
| 2260 | 80.16579479 | 80.1657917 | $3.08623 \mathrm{E}-06$ | 0.0000038498\% |
| 2279 | 80.16606325 | 80.1660717 | $8.44827 \mathrm{E}-06$ | 0.0000105385\% |
| 2300 | 80.16637385 | 80.166365 | $8.85418 \mathrm{E}-06$ | 0.0000110448\% |
| 2320 | 80.16665081 | 80.16666 | $9.19185 \mathrm{E}-06$ | 0.0000114659\% |
| 2339 | 80.16693088 | 80.1669583 | $2.7416 \mathrm{E}-05$ | 0.0000341986\% |
| 2360 | 80.16726115 | 80.1672733 | $1.2149 \mathrm{E}-05$ | 0.0000151545\% |
| 2380 | 80.16755973 | 80.1675767 | $1.69712 \mathrm{E}-05$ | 0.0000211697\% |
| 2399 | 80.16784935 | 80.1678483 | $1.05283 \mathrm{E}-06$ | 0.0000013133\% |
| 2420 | 80.16815098 | 80.1681683 | $1.73233 \mathrm{E}-05$ | 0.0000216086\% |
| 2440 | 80.16845341 | 80.16849 | $3.65946 \mathrm{E}-05$ | 0.0000456471\% |
| 2459 | 80.16876014 | 80.1687833 | $2.31615 \mathrm{E}-05$ | 0.0000288910\% |
| 2480 | 80.16908402 | 80.1691133 | $2.92812 \mathrm{E}-05$ | 0.0000365242\% |
| 2500 | 80.16940139 | 80.1694267 | $2.53138 \mathrm{E}-05$ | 0.0000315753\% |
| 2519 | 80.16970014 | 80.1697133 | $1.31597 \mathrm{E}-05$ | 0.0000164147\% |
| 2539 | 80.16999841 | 80.1700517 | $5.32946 \mathrm{E}-05$ | 0.0000664770\% |
| 2560 | 80.17035385 | 80.1703883 | $3.44458 \mathrm{E}-05$ | 0.0000429658\% |
| 2579 | 80.17065762 | 80.1706917 | $3.40847 \mathrm{E}-05$ | 0.0000425151\% |
| 2620 | 80.17127283 | 80.171365 | $9.21702 \mathrm{E}-05$ | 0.0001149665\% |
| 2639 | 80.17163588 | 80.17169 | $5.4116 \mathrm{E}-05$ | 0.0000675001\% |
| 2659 | 80.17197697 | 80.1720333 | $5.63329 \mathrm{E}-05$ | 0.0000702651\% |
| 2680 | 80.17232766 | 80.1724067 | $7.9044 \mathrm{E}-05$ | 0.0000985925\% |
| 2700 | 80.17277827 | 80.1727483 | $2.99675 \mathrm{E}-05$ | 0.0000373787\% |
| 2719 | 80.17310133 | 80.173125 | $2.36683 \mathrm{E}-05$ | 0.0000295215\% |
| 2740 | 80.17352063 | 80.1735317 | $1.10736 \mathrm{E}-05$ | 0.0000138120\% |
| 2759 | 80.17388473 | 80.1739167 | $3.19683 \mathrm{E}-05$ | 0.0000398737\% |
| 2819 | 80.17504015 | 80.1752167 | 0.000176551 | 0.0002202060\% |
| 2839 | 80.17567599 | 80.17568 | $4.0081 \mathrm{E}-06$ | 0.0000049991\% |
| 2879 | 80.17660494 | 80.17664 | $3.50599 \mathrm{E}-05$ | 0.0000437284\% |
| 2899 | 80.17709929 | 80.1771317 | $3.24081 \mathrm{E}-05$ | 0.0000404206\% |
| 2920 | 80.17760522 | 80.17767 | $6.47754 \mathrm{E}-05$ | 0.0000807898\% |
| 2979 | 80.179026 | 80.17925 | 0.000223997 | 0.0002793699\% |
| 3239 | 80.18659343 | 80.18736 | 0.000766568 | 0.0009559709\% |
| 3260 | 80.18800662 | 80.1880683 | $6.16826 \mathrm{E}-05$ | 0.0000769224\% |
| 3279 | 80.1886497 | 80.188715 | $6.52974 \mathrm{E}-05$ | 0.0000814296\% |
| 3299 | 80.18932694 | 80.1893967 | $6.97563 \mathrm{E}-05$ | 0.0000869894\% |
| 3320 | 80.19012936 | 80.19008 | $4.93587 \mathrm{E}-05$ | 0.0000615522\% |
| 3339 | 80.19073385 | 80.190795 | $6.11549 \mathrm{E}-05$ | 0.0000762618\% |
| 3360 | 80.19150658 | 80.1914817 | $2.48755 \mathrm{E}-05$ | 0.0000310201\% |
| 3380 | 80.19216477 | 80.1921683 | $3.52767 \mathrm{E}-06$ | 0.0000043990\% |
| 3399 | 80.19281728 | 80.192825 | $7.7227 \mathrm{E}-06$ | 0.0000096302\% |
| 3420 | 80.19354217 | 80.1935567 | $1.45299 \mathrm{E}-05$ | 0.0000181186\% |
| 3440 | 80.19423977 | 80.1942183 | $2.14723 \mathrm{E}-05$ | 0.0000267754\% |

Table B. 5 - Longitude Data for Test Case 2

## Latitude

| Time | Predicted Value | True Value | Error | Error Percentage |
| :---: | :---: | :---: | :---: | :---: |
| 79 | 5.911872413 | 5.91172 | 0.000152413 | 0.00258\% |
| 1399 | 5.940038454 | 5.90957667 | 0.030461784 | 0.51546\% |
| 1419 | 5.909569128 | 5.90955333 | $1.57982 \mathrm{E}-05$ | 0.00027\% |
| 1440 | 5.909572453 | 5.90952167 | $5.0783 \mathrm{E}-05$ | 0.00086\% |
| 1459 | 5.90952675 | 5.90949333 | $3.342 \mathrm{E}-05$ | 0.00057\% |
| 1539 | 5.909549844 | 5.90940333 | 0.000146514 | 0.00248\% |
| 1560 | 5.909381801 | 5.909375 | $6.80129 \mathrm{E}-06$ | 0.00012\% |
| 1579 | 5.90936476 | 5.90935667 | $8.08999 \mathrm{E}-06$ | 0.00014\% |
| 1599 | 5.909365254 | 5.90934 | $2.52536 \mathrm{E}-05$ | 0.00043\% |
| 1620 | 5.909354086 | 5.90931667 | $3.74156 \mathrm{E}-05$ | 0.00063\% |
| 1659 | 5.909306152 | 5.90927833 | $2.78221 \mathrm{E}-05$ | 0.00047\% |
| 1680 | 5.909282303 | 5.90926167 | $2.06329 \mathrm{E}-05$ | 0.00035\% |
| 1699 | 5.909288012 | 5.90923833 | $4.96822 \mathrm{E}-05$ | 0.00084\% |
| 1719 | 5.90923242 | 5.90922167 | $1.07498 \mathrm{E}-05$ | 0.00018\% |
| 1740 | 5.909230705 | 5.90920833 | $2.23753 \mathrm{E}-05$ | 0.00038\% |
| 1800 | 5.909238057 | 5.909155 | $8.30568 \mathrm{E}-05$ | 0.00141\% |
| 1819 | 5.909158554 | 5.90914333 | $1.5224 \mathrm{E}-05$ | 0.00026\% |
| 1859 | 5.909171195 | 5.90912 | $5.11949 \mathrm{E}-05$ | 0.00087\% |
| 1899 | 5.909138254 | 5.909095 | $4.32536 \mathrm{E}-05$ | 0.00073\% |
| 1919 | 5.909109995 | 5.90908 | $2.99946 \mathrm{E}-05$ | 0.00051\% |
| 1959 | 5.909085423 | 5.90906667 | $1.87527 \mathrm{E}-05$ | 0.00032\% |
| 1999 | 5.909116853 | 5.909045 | $7.18527 \mathrm{E}-05$ | 0.00122\% |
| 2019 | 5.909034309 | 5.90903833 | $4.02128 \mathrm{E}-06$ | 0.00007\% |
| 2039 | 5.909043706 | 5.90903 | $1.37062 \mathrm{E}-05$ | 0.00023\% |
| 2059 | 5.909051383 | 5.90902833 | $2.30529 \mathrm{E}-05$ | 0.00039\% |
| 2079 | 5.909036916 | 5.90902833 | $8.58603 \mathrm{E}-06$ | 0.00015\% |
| 2099 | 5.909040122 | 5.90903167 | $8.45244 \mathrm{E}-06$ | 0.00014\% |
| 2120 | 5.909054143 | 5.90902833 | $2.58134 \mathrm{E}-05$ | 0.00044\% |
| 2140 | 5.909036916 | 5.90902833 | $8.58603 \mathrm{E}-06$ | 0.00015\% |
| 2159 | 5.909042556 | 5.909025 | $1.75556 \mathrm{E}-05$ | 0.00030\% |
| 2180 | 5.90902392 | 5.90902667 | $2.74964 \mathrm{E}-06$ | 0.00005\% |
| 2200 | 5.909048053 | 5.909025 | $2.30529 \mathrm{E}-05$ | 0.00039\% |
| 2219 | 5.909042263 | 5.90901833 | $2.39332 \mathrm{E}-05$ | 0.00041\% |
| 2240 | 5.909032416 | 5.908985 | $4.74156 \mathrm{E}-05$ | 0.00080\% |
| 2260 | 5.908988762 | 5.90895333 | $3.5432 \mathrm{E}-05$ | 0.00060\% |
| 2279 | 5.908933866 | 5.90892833 | $5.53554 \mathrm{E}-06$ | 0.00009\% |
| 2300 | 5.90892723 | 5.908895 | $3.22297 \mathrm{E}-05$ | 0.00055\% |
| 2320 | 5.908874531 | 5.908865 | $9.53128 \mathrm{E}-06$ | 0.00016\% |
| 2339 | 5.90884092 | 5.90883667 | $4.25008 \mathrm{E}-06$ | 0.00007\% |
| 2360 | 5.908855793 | 5.908795 | $6.0793 \mathrm{E}-05$ | 0.00103\% |
| 2380 | 5.908779389 | 5.908765 | $1.43885 \mathrm{E}-05$ | 0.00024\% |
| 2399 | 5.90875476 | 5.90873667 | $1.809 \mathrm{E}-05$ | 0.00031\% |
| 2420 | 5.908745705 | 5.90869667 | $4.90353 \mathrm{E}-05$ | 0.00083\% |
| 2440 | 5.908671342 | 5.908655 | $1.63423 \mathrm{E}-05$ | 0.00028\% |
| 2459 | 5.908626305 | 5.90861833 | $7.97515 \mathrm{E}-06$ | 0.00013\% |
| 2480 | 5.90860196 | 5.90858333 | $1.86303 \mathrm{E}-05$ | 0.00032\% |
| 2500 | 5.908587092 | 5.90854833 | $3.8762 \mathrm{E}-05$ | 0.00066\% |
| 2519 | 5.908547294 | 5.90851333 | $3.39637 \mathrm{E}-05$ | 0.00057\% |
| 2539 | 5.908488002 | 5.90847667 | $1.13323 \mathrm{E}-05$ | 0.00019\% |
| 2560 | 5.90847557 | 5.90842 | $5.55697 \mathrm{E}-05$ | 0.00094\% |
| 2579 | 5.908386693 | 5.90837167 | $1.50229 \mathrm{E}-05$ | 0.00025\% |
| 2620 | 5.908300985 | 5.90827667 | $2.43148 \mathrm{E}-05$ | 0.00041\% |
| 2639 | 5.90825259 | 5.90823667 | $1.59201 \mathrm{E}-05$ | 0.00027\% |
| 2659 | 5.908225912 | 5.90817333 | $5.2582 \mathrm{E}-05$ | 0.00089\% |
| 2680 | 5.9081213 | 5.90811167 | $9.63016 \mathrm{E}-06$ | 0.00016\% |
| 2700 | 5.908052025 | 5.908055 | $2.97542 \mathrm{E}-06$ | 0.00005\% |
| 2719 | 5.907998325 | 5.90799667 | $1.65486 \mathrm{E}-06$ | 0.00003\% |
| 2740 | 5.907968303 | 5.90791833 | $4.99733 \mathrm{E}-05$ | 0.00085\% |
| 2759 | 5.907861655 | 5.90785 | $1.16549 \mathrm{E}-05$ | 0.00020\% |
| 2819 | 5.907714074 | 5.90758667 | 0.000127404 | 0.00216\% |


| 2839 | 5.907499007 | 5.90748667 | $1.23366 \mathrm{E}-05$ | $0.00021 \%$ |
| :--- | :--- | :--- | :--- | :--- |
| 2879 | 5.907344914 | 5.907265 | $7.99136 \mathrm{E}-05$ | $0.00135 \%$ |
| 2899 | 5.907177337 | 5.907135 | $4.23366 \mathrm{E}-05$ | $0.00072 \%$ |
| 2920 | 5.907009037 | 5.90700167 | $7.36673 \mathrm{E}-06$ | $0.00012 \%$ |
| 2979 | 5.906746387 | 5.90657333 | 0.000173057 | $0.00293 \%$ |
| 3239 | 5.905196918 | 5.90392 | 0.001276918 | $0.02163 \%$ |
| 3260 | 5.90370061 | 5.903635 | $6.56099 \mathrm{E}-05$ | $0.00111 \%$ |
| 3279 | 5.903426228 | 5.90337667 | $4.95585 \mathrm{E}-05$ | $0.00084 \%$ |
| 3299 | 5.903156884 | 5.903095 | $6.18837 \mathrm{E}-05$ | $0.00105 \%$ |
| 3320 | 5.902828555 | 5.902795 | $3.35554 \mathrm{E}-05$ | $0.00057 \%$ |
| 3339 | 5.902530754 | 5.90246667 | $6.40841 \mathrm{E}-05$ | $0.00109 \%$ |
| 3360 | 5.902149283 | 5.90215167 | $2.3871 \mathrm{E}-06$ | $0.00004 \%$ |
| 3380 | 5.901861403 | 5.90183333 | $2.80726 \mathrm{E}-05$ | $0.00048 \%$ |
| 3399 | 5.901557611 | 5.90153167 | $2.59411 \mathrm{E}-05$ | $0.00044 \%$ |
| 3420 | 5.901226857 | 5.90119 | $3.6857 \mathrm{E}-05$ | $0.00062 \%$ |
| 3440 | 5.900899733 | 5.90088167 | $1.80626 \mathrm{E}-05$ | $0.00031 \%$ |

Table B. 6 - Latitude Data for Test Case 2

## Distance on X Direction

| Time | Actual Distance | Predicted Distance | Difference | <10 | <5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 79 | 8907295.174 | 8907271.332 | 23.84131195 | FALSE | FALSE |
| 1399 | 8912571.929 | 8916609.057 | 4037.128246 | FALSE | FALSE |
| 1419 | 8912619.554 | 8912614.034 | 5.51993042 | TRUE | FALSE |
| 1440 | 8912668.113 | 8912663.863 | 4.24934648 | TRUE | TRUE |
| 1459 | 8912711.479 | 8912708.187 | 3.291124089 | TRUE | TRUE |
| 1539 | 8912883.831 | 8912880.886 | 2.945051691 | TRUE | TRUE |
| 1560 | 8912926.83 | 8912927.907 | 1.07681142 | TRUE | TRUE |
| 1579 | 8912965.003 | 8912957.147 | 7.855606869 | TRUE | FALSE |
| 1599 | 8913004.288 | 8912997.06 | 7.228375031 | TRUE | FALSE |
| 1620 | 8913046.731 | 8913037.959 | 8.77245177 | TRUE | FALSE |
| 1659 | 8913118.263 | 8913109.049 | 9.214043479 | TRUE | FALSE |
| 1680 | 8913156.258 | 8913151.895 | 4.36340346 | TRUE | TRUE |
| 1699 | 8913190.173 | 8913186.716 | 3.45668765 | TRUE | TRUE |
| 1719 | 8913225.388 | 8913222.133 | 3.255473919 | TRUE | TRUE |
| 1740 | 8913263.372 | 8913259.044 | 4.32806794 | TRUE | TRUE |
| 1800 | 8913361.602 | 8913359.74 | 1.86221871 | TRUE | TRUE |
| 1819 | 8913392.181 | 8913392.038 | 0.14275475 | TRUE | TRUE |
| 1859 | 8913454.817 | 8913456.321 | 1.504681729 | TRUE | TRUE |
| 1899 | 8913514.495 | 8913518.93 | 4.43481409 | TRUE | TRUE |
| 1919 | 8913545.996 | 8913536.506 | 9.490798021 | TRUE | FALSE |
| 1959 | 8913604.563 | 8913589.9 | 14.66287997 | FALSE | FALSE |
| 1999 | 8913662.006 | 8913648.594 | 13.41195025 | FALSE | FALSE |
| 2019 | 8913689.994 | 8913683.773 | 6.220665621 | TRUE | FALSE |
| 2039 | 8913717.426 | 8913711.959 | 5.466823401 | TRUE | FALSE |
| 2059 | 8913745.035 | 8913739.436 | 5.598975601 | TRUE | FALSE |
| 2079 | 8913770.421 | 8913767.022 | 3.399486789 | TRUE | TRUE |
| 2099 | 8913797.108 | 8913792.423 | 4.68521259 | TRUE | TRUE |
| 2120 | 8913826.764 | 8913820.217 | 6.54647707 | TRUE | FALSE |
| 2140 | 8913853.64 | 8913848.75 | 4.889498809 | TRUE | TRUE |
| 2159 | 8913879.392 | 8913874.552 | 4.840209231 | TRUE | TRUE |
| 2180 | 8913907.191 | 8913902.389 | 4.801553881 | TRUE | TRUE |
| 2200 | 8913935.368 | 8913929.202 | 6.16606972 | TRUE | FALSE |
| 2219 | 8913963.9 | 8913956.283 | 7.617182489 | TRUE | FALSE |
| 2240 | 8913997.637 | 8913997.571 | 0.06588901 | TRUE | TRUE |
| 2260 | 8914029.327 | 8914029.671 | 0.343173001 | TRUE | TRUE |
| 2279 | 8914060.462 | 8914059.523 | 0.939404521 | TRUE | TRUE |
| 2300 | 8914093.076 | 8914094.06 | 0.984539511 | TRUE | TRUE |
| 2320 | 8914125.878 | 8914124.856 | 1.02208695 | TRUE | TRUE |
| 2339 | 8914159.047 | 8914155.999 | 3.048518099 | TRUE | TRUE |
| 2360 | 8914194.074 | 8914192.723 | 1.3509054 | TRUE | TRUE |
| 2380 | 8914227.81 | 8914225.923 | 1.887113979 | TRUE | TRUE |
| 2399 | 8914258.011 | 8914258.128 | 0.117069371 | TRUE | TRUE |


| 2420 | 8914293.593 | 8914291.667 | 1.92625754 | TRUE | TRUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2440 | 8914329.365 | 8914325.296 | 4.06913583 | TRUE | TRUE |
| 2459 | 8914361.978 | 8914359.403 | 2.57544432 | TRUE | TRUE |
| 2480 | 8914398.673 | 8914395.417 | 3.25591643 | TRUE | TRUE |
| 2500 | 8914433.521 | 8914430.706 | 2.81476292 | TRUE | TRUE |
| 2519 | 8914465.39 | 8914463.926 | 1.463286851 | TRUE | TRUE |
| 2539 | 8914503.018 | 8914497.092 | 5.926091099 | TRUE | FALSE |
| 2560 | 8914540.446 | 8914536.616 | 3.83020081 | TRUE | TRUE |
| 2579 | 8914574.183 | 8914570.393 | 3.79004159 | TRUE | TRUE |
| 2620 | 8914649.05 | 8914638.801 | 10.24886126 | FALSE | FALSE |
| 2639 | 8914685.189 | 8914679.171 | 6.017422639 | TRUE | FALSE |
| 2659 | 8914723.362 | 8914717.098 | 6.26393747 | TRUE | FALSE |
| 2680 | 8914764.882 | 8914756.093 | 8.789290229 | TRUE | FALSE |
| 2700 | 8914802.866 | 8914806.198 | 3.33223789 | TRUE | TRUE |
| 2719 | 8914844.753 | 8914842.121 | 2.631795419 | TRUE | TRUE |
| 2740 | 8914889.976 | 8914888.745 | 1.23132813 | TRUE | TRUE |
| 2759 | 8914932.786 | 8914929.232 | 3.554713311 | TRUE | TRUE |
| 2819 | 8915077.34 | 8915057.708 | 19.63153222 | FALSE | FALSE |
| 2839 | 8915128.856 | 8915128.411 | 0.44568049 | TRUE | TRUE |
| 2879 | 8915235.603 | 8915231.705 | 3.898486029 | TRUE | TRUE |
| 2899 | 8915290.278 | 8915286.674 | 3.603616411 | TRUE | TRUE |
| 2920 | 8915350.134 | 8915342.931 | 7.202692239 | TRUE | FALSE |
| 2979 | 8915525.822 | 8915500.915 | 24.90729456 | FALSE | FALSE |
| 3239 | 8916427.613 | 8916342.375 | 85.23845739 | FALSE | FALSE |
| 3260 | 8916506.372 | 8916499.514 | 6.85879402 | TRUE | FALSE |
| 3279 | 8916578.282 | 8916571.021 | 7.26073537 | TRUE | FALSE |
| 3299 | 8916654.084 | 8916646.327 | 7.75654595 | TRUE | FALSE |
| 3320 | 8916730.063 | 8916735.552 | 5.488440959 | TRUE | FALSE |
| 3339 | 8916809.568 | 8916802.767 | 6.800116161 | TRUE | FALSE |
| 3360 | 8916885.925 | 8916888.691 | 2.76603015 | TRUE | TRUE |
| 3380 | 8916962.272 | 8916961.879 | 0.39225954 | TRUE | TRUE |
| 3399 | 8917035.293 | 8917034.435 | 0.858724931 | TRUE | TRUE |
| 3420 | 8917116.655 | 8917115.039 | 1.61565344 | TRUE | TRUE |
| 3440 | 8917190.221 | 8917192.609 | 2.38761363 | TRUE | TRUE |

Table B. 7 - X Direction Data for Test Case 2

## Distance on Y Direction

| Time | Actual Distance | Predicted Distance | Difference | $<10$ | $<5$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 79 | 657353.2717 | 657370.2193 | 16.94759 | FALSE | FALSE |
| 1399 | 657114.9443 | 660502.1401 | 3387.196 | FALSE | FALSE |
| 1419 | 657112.349 | 657114.1057 | 1.756681 | TRUE | TRUE |
| 1440 | 657108.8286 | 657114.4754 | 5.646808 | TRUE | FALSE |
| 1459 | 657105.6773 | 657109.3935 | 3.716138 | TRUE | TRUE |
| 1539 | 657095.6698 | 657111.9614 | 0.756269 | FRUSE | FALSE |
| 1560 | 657092.5196 | 657093.2759 | 0.899566 | TRUE | TRUE |
| 1579 | 657090.4814 | 657091.381 | 2.80807 | TRUE | TRUE |
| 1599 | 657088.6278 | 657091.4359 | 4.160429 | TRUE | TRUE |
| 1620 | 657086.0336 | 657090.1941 | 2.093676 | TRUE | TRUE |
| 1659 | 657081.7704 | 657084.8641 | 5.524403 | TRUE | TRUE |
| 1680 | 657079.9179 | 657082.2122 | 1.195326 | TRUE | FALSE |
| 1699 | 657077.3226 | 657082.847 | 2.488015 | TRUE | TRUE |
| 1719 | 657075.4701 | 657076.6654 | 9.235491 | TRUE | FALSE |
| 1740 | 657073.9868 | 657076.4748 | 1.692826 | TRUE | TRUE |
| 1800 | 657068.0568 | 657077.2922 | 5.692613 | TRUE | FALSE |
| 1819 | 657066.7591 | 657068.4519 | 4.809582 | TRUE | TRUE |
| 1859 | 657064.1649 | 657061.3851 | 657066.1946 |  |  |
| 1899 |  |  |  |  |  |


| 1919 | 657059.7171 | 657063.0524 | 3.335248 | TRUE | TRUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | 657058.2349 | 657060.3201 | 2.085208 | TRUE | TRUE |
| 1999 | 657055.8253 | 657063.815 | 7.989654 | TRUE | FALSE |
| 2019 | 657055.0836 | 657054.6365 | 0.447146 | TRUE | TRUE |
| 2039 | 657054.1574 | 657055.6815 | 1.524062 | TRUE | TRUE |
| 2059 | 657053.9717 | 657056.5351 | 2.56337 | TRUE | TRUE |
| 2079 | 657053.9717 | 657054.9264 | 0.954723 | TRUE | TRUE |
| 2099 | 657054.3431 | 657055.283 | 0.939869 | TRUE | TRUE |
| 2120 | 657053.9717 | 657056.842 | 2.870318 | TRUE | TRUE |
| 2140 | 657053.9717 | 657054.9264 | 0.954723 | TRUE | TRUE |
| 2159 | 657053.6014 | 657055.5535 | 1.952093 | TRUE | TRUE |
| 2180 | 657053.7871 | 657053.4814 | 0.305747 | TRUE | TRUE |
| 2200 | 657053.6014 | 657056.1648 | 2.56337 | TRUE | TRUE |
| 2219 | 657052.8597 | 657055.521 | 2.661246 | TRUE | TRUE |
| 2240 | 657049.1536 | 657054.426 | 5.272378 | TRUE | FALSE |
| 2260 | 657045.6321 | 657049.5719 | 3.939864 | TRUE | TRUE |
| 2279 | 657042.8522 | 657043.4677 | 0.615524 | TRUE | TRUE |
| 2300 | 657039.1461 | 657042.7299 | 3.583779 | TRUE | TRUE |
| 2320 | 657035.8102 | 657036.8701 | 1.05983 | TRUE | TRUE |
| 2339 | 657032.6601 | 657033.1327 | 0.472587 | TRUE | TRUE |
| 2360 | 657028.0266 | 657034.7865 | 6.759869 | TRUE | FALSE |
| 2380 | 657024.6907 | 657026.2907 | 1.599929 | TRUE | TRUE |
| 2399 | 657021.5406 | 657023.5521 | 2.011515 | TRUE | TRUE |
| 2420 | 657017.0928 | 657022.5453 | 5.452472 | TRUE | FALSE |
| 2440 | 657012.4593 | 657014.2765 | 1.817183 | TRUE | TRUE |
| 2459 | 657008.3818 | 657009.2686 | 0.886796 | TRUE | TRUE |
| 2480 | 657004.49 | 657006.5615 | 2.071594 | TRUE | TRUE |
| 2500 | 657000.5981 | 657004.9083 | 4.310143 | TRUE | TRUE |
| 2519 | 656996.7063 | 657000.4829 | 3.776596 | TRUE | TRUE |
| 2539 | 656992.6299 | 656993.89 | 1.260096 | TRUE | TRUE |
| 2560 | 656986.3285 | 656992.5076 | 6.179068 | TRUE | FALSE |
| 2579 | 656980.9544 | 656982.6249 | 1.670474 | TRUE | TRUE |
| 2620 | 656970.3909 | 656973.0946 | 2.703685 | TRUE | TRUE |
| 2639 | 656965.9431 | 656967.7134 | 1.770232 | TRUE | TRUE |
| 2659 | 656958.9 | 656964.7469 | 5.846849 | TRUE | FALSE |
| 2680 | 656952.0438 | 656953.1146 | 1.070825 | TRUE | TRUE |
| 2700 | 656945.7423 | 656945.4115 | 0.330851 | TRUE | TRUE |
| 2719 | 656939.2563 | 656939.4403 | 0.184012 | TRUE | TRUE |
| 2740 | 656930.5453 | 656936.1021 | 5.556778 | TRUE | FALSE |
| 2759 | 656922.9474 | 656924.2433 | 1.295961 | TRUE | TRUE |
| 2819 | 656893.6664 | 656907.8331 | 14.16665 | FALSE | FALSE |
| 2839 | 656882.5469 | 656883.9187 | 1.371772 | TRUE | TRUE |
| 2879 | 656857.8983 | 656866.7843 | 8.885989 | TRUE | FALSE |
| 2899 | 656843.443 | 656848.1506 | 4.70762 | TRUE | TRUE |
| 2920 | 656828.6174 | 656829.4365 | 0.819143 | TRUE | TRUE |
| 2979 | 656780.9882 | 656800.2312 | 19.24308 | FALSE | FALSE |
| 3239 | 656485.9513 | 656627.9381 | 141.9868 | FALSE | FALSE |
| 3260 | 656454.2608 | 656461.5562 | 7.295487 | TRUE | FALSE |
| 3279 | 656425.5358 | 656431.0464 | 5.510651 | TRUE | FALSE |
| 3299 | 656394.2155 | 656401.0967 | 6.881157 | TRUE | FALSE |
| 3320 | 656360.857 | 656364.5882 | 3.73119 | TRUE | TRUE |
| 3339 | 656324.3484 | 656331.4742 | 7.125822 | TRUE | FALSE |
| 3360 | 656289.322 | 656289.0566 | 0.265433 | TRUE | TRUE |
| 3380 | 656253.9242 | 656257.0457 | 3.121533 | TRUE | TRUE |
| 3399 | 656220.3811 | 656223.2657 | 2.884515 | TRUE | TRUE |
| 3420 | 656182.3892 | 656186.4875 | 4.098307 | TRUE | TRUE |
| 3440 | 656148.1044 | 656150.1129 | 2.008471 | TRUE | TRUE |

Table B. 8 - Y Direction Data for Test Case 2


