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Abstract 

Wildfire modeling and simulation has been one of the major subjects under intense 

experimental research and theoretical work to address the ever-growing crisis of wildfire. Many 

researchers have benefitted from these work and have developed multiple wildfire propagation 

prediction systems for decision support. Despite the large-scale effort undertaken by the scientific 

community, it can be also observed that these advancements have become limited to the developed 

countries of the world. This can be attributed to the fact that a reliably accurate wildfire behavior 

model requires many input variables and acquiring these variables requires a great deal of 

infrastructure already in place. These infrastructures can be quite costly, making it infeasible for the 

developing countries to develop a wildfire propagation prediction system. The purpose of this 

research is to enhance an existing wildfire model in a manner that it requires less infrastructure at an 

acceptable accuracy level.  

The study was begun by analyzing the existing models for extensibility and enhanceability. 

It was discovered that the Rothermel’s Surface Fire behavior model can be enhanced by eliminating 

some of its many variables. Therefore a set of variables were selected through some rationale and 

were experimented upon using GIS platforms to observe the effect they have on the Rothermel’s 

model. The study was conducted using historical wildfire data and the primary measure used was 

the Jaccard Similarity Coefficient. To assess the practicality of the model, a novel framework named 

‘MOD (Most Occurring Data) Sign’ analysis was proposed. 

The results of the study show that ‘fuel particle moisture’ and ‘live fuel load’ variables have 

significantly less effect on the Rothermel’s model. It was also discovered through the MOD Sign 

Analysis that ‘fuel particle moisture’ was the more practical variable to eliminate rather than ‘live 

fuel load’. Finally, it was concluded that a simplified model can be derived from the Rothermel’s 

model by eliminating ‘fuel particle moisture’ variable and while ‘live fuel load’ may also be 

eliminated, the resulting model will not be suitable for decision making. 
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Chapter 01 

Introduction 

Wildfire is a phenomenon that has occurred for millions of years since the appearance of 

terrestrial plants. While as a natural occurrence, wildfires were integral for the equilibrium of 

Earth’s ecology, various human activities and recent climate changes are causing the increase of the 

frequency and severity of extreme weather conditions, which will in return increase the probability 

of a wildfire occurrences around the world. The severity of the crisis is steadily increasing that 

wildfires will be longer, produce more smoke and burn larger areas by the year 2050. [1] In another 

note, it is important to emphasize that wildfires contribute significantly to the world’s greenhouse 

gas emission that drives global warming [1]. 

One of the major solutions that were applied to address this crisis was wildfire propagation 

modeling. Initially, this was to understand the phenomenon of wildfire. A few notable researchers 

such as Rothermel [2], Wagner [3], [4], Albini [5] Anderson [6], [7] have contributed tremendously 

to the understanding of the wildfire phenomenon and these models are now integrated into many 

applications such as FARSITE [8], BEHAVE [9], Firemap [10] etc. that are utilized for disaster 

management purposes in some regions of the world. 

In this particular research, the possibility of optimizing one such model is investigated. 

Particularly in the context of reducing the number of variables in the mathematical model proposed 

by Rothermel [2]. Therefore some variables were identified and reduced from the mathematical 

equation to observe its effect on the overall behavior of the model. Insights gained from the 

observations were then incorporated into the research to create an enhanced model from the 

Rothermel’s model [2]. 

1.1 Motivation 

 As noted before, many research has been conducted to understand the phenomenon of 

wildfires. And the mathematical models that resulted from these have been utilized in many 

solutions deployed across many regions of the world. But if one were to investigate where these 
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disaster management solutions have been deployed in, it would be obvious that most of them are 

located in developed regions. One of the initial motivations this study had was to discover why such 

solutions were not deployed in developing regions even if they are heavily threatened by the wildfire 

crisis. From the investigations done, it was found that the most probable culprits for this particular 

dilemma were the lack of resources, infrastructure, and complexity of models. 

 Therefore the main motivation of the research was to discover a way to reduce the above-

said barriers. To optimize a wildfire behavior model by reducing its complexity so that it would 

require fewer resources and infrastructure effectively reducing the effect of the previously 

mentioned barriers. Furthermore, the proposed derivative model should perform at an acceptable 

level of accuracy when compared to its base model.    

1.2 Research Question 

 How to enhance an existing wildfire spread prediction model so that it requires less 

resources and infrastructure? 

The primary problem that is to be addressed is to investigate the possibility of an enhanced 

wildfire model. As a secondary focus, the effects of the individual variables to the overall model is 

investigated as well. 

1.3 Aims & Objectives 

Aim 

To investigate the possibility of simplifying or optimizing an existing wildfire behavior 

model in order to remove economical and/or practical constraints when developing a real-time 

wildfire propagation prediction system in developing countries. 

Objectives 

 To study existing wildfire propagation models and related literature. 

 To select a suitable wildfire propagation model that can be simplified/optimized. 
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 To identify a suitable benchmark dataset that contains necessary attributes that are required 

as input parameters for the selected model. 

 To investigate the possibility of optimization/simplification of the selected model by altering 

the model. 

 To validate enhanced models using benchmark data by comparing the base model results 

with altered model results. 

 To draw conclusions and implement the optimized model. 

 Compile a thesis detailing the background, research methodology & design, results, and 

evaluation process. 

1.4 Research Approach 

The research approach shall be a mixed research approach since design science is used to 

investigate, how to enhance an available wildfire spread prediction model and quantitative data to 

evaluate the said enhanced model. 

The wildfire spread models were identified in the initial phase of the research in order to 

investigate the possibility of enhancing one of them by reducing one or more input variables from 

the original model. To ensure that the altered model provides an acceptable accuracy rate, the model 

shall be evaluated using a benchmark dataset on wildfires.   

1.5 Scope 

The scope of this study is to, a) evaluate the existing wildfire behavior models to identify the 

gaps and opportunities to improve and optimization b) find out the variables used in each wildfire 

behavior model and explore the gravity of each variable c) analyze and investigate how to 

manipulate or eliminate the use of these variables maintaining the accuracy of the model as much as 

possible, and  d) evaluate the results of altered model with real spread of a wildfire to   determine the 

accuracy.  

One problem identified with existing fire behavior models is as mentioned in the objectives 

section is the use of a larger number of parameters. In the Rothermel’s fire behavior model [2] it 
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uses more than 20 parameters to calculate the rate of spread. So the main approach of the research is 

to reduce these number of parameters used and investigate to what extent the predictions can make 

accurately.  

For the modeling purpose, the fire behavior module of GRASS GIS will be used. Wildfire 

and weather data are obtained from the United States’ National Wildfire Coordination Group 

(NWCG). The completed research is expected to simplify the wildfire behavior modeling so the 

enhanced model can be used in situations where complex infrastructure is not available.  

1.6 Delimitations 

The following are the delimitation of this study, 

 A fire behavioral model will not be developed from scratch. Only alterations would be made 

to an existing model.  

 The possibility of predicting the spread of wildfire using a fewer number of variables shall 

be investigated. But the prediction may not be 100% accurate when compared with the 

benchmark.  

 The fire behavioral model shall not be adapted to the Sri Lankan context due to the 

unavailability of detailed historical data making it impossible to evaluate the model as of 

now. 

1.7 Structure of the Thesis 

The related literature surrounding the problem domain is studied and analyzed in the Chapter 

2. The design of research architecture and assumptions are included in the Chapter 3. The Chapter 4 

describes the implementation process undertaken in the study and the Chapter 5 describes the 

experimental protocol, experimentation process, and the results gained in the study. Finally the 

Chapter 6 concludes the research by providing the conclusion and future works. 
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Chapter 02  

Background 

In this chapter, the background of the research context is explored. An introductory 

background to the context is given initially and then a comprehensive study is done on the related 

literature. Various mathematical models and related systems are investigated and in the end, they are 

analyzed and compared in an objective manner in order to provide hard facts on them. 

2.1 Introduction 

Wildfire occurs in an area of combustible vegetation mostly in the countryside. For a 

wildfire to ignite, the three basic elements of the fire triangle should be fulfilled. To name them, an 

Oxidizing agent (oxygen), Heat and Fuel [11]. Furthermore, depending on the conditions that caused 

the ignition, environmental variables, and the vegetation, a wildfire can be categorized into three 

main classifications. Ground fire, Surface fire, and Crown fire [11]. A ground fire generally occurs 

below the surface of the soil. It consumes subterranean roots and organic matter in the soil to sustain 

itself. An occurrence of ground fire can be observed via the smoke that is visible above the surface. 

While its spread is very slow compared to other classifications, ground fires have the capability to 

burn for days to months.  In contrast, surface fires occur above ground consuming fallen tree leaves, 

bushes and other undergrowth obtaining some moderate height. The fire burns at relatively low 

temperature when compared to surface fires and the rate of spread is comparatively low as well. 

Crown fire as its name suggests, burns and spreads at the canopy level of trees [11]. Such fires have 

the potential to consume whole swathes of forests and property depending on the environmental and 

other conditions. The fires burn at a much higher temperature than other wildfire classifications and 

the rate of spread is much higher as well [11]. 

There may be several causes of wildfire ignition. But primarily there are two categories [11], 

1) Wildfire caused by natural phenomenon. 2) Wildfire caused by human activities. Wildfires may 

occur due to a natural phenomenon such as lightning strikes or ignitions caused by trees rubbing 

with each other. However as humanity’s footprint continues to encroach the ecology of the world, 

more often than not most wildfires occurring around the globe are caused directly or indirectly by 
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human activities [11]. To name a few negligence, plantations, hunting, arson etc. But even with 

these natural or unnatural causes, a wildfire requires a set of conditions to ignite and spread. These 

conditions are high temperature, strong winds, low humidity etc. There are specific weather seasons 

that support such conditions and they are commonly known as fire seasons. These fire seasons may 

vary from one geographical location to another. [11] 

2.2 Wildfire Propagation Modeling 

Modeling of wildfire behavior has been an active scientific field since as early as the 1920s 

[37]. The first known work was by Hawley [39] and Gisborne [40], [41] who introduced the concept 

that measurements, observations, and theoretical considerations may affect the behavior of wildfires. 

These studies were done even when the consistent funding was not readily available [37]. The 

situation somewhat changed in the 1930s onwards due to studies conducted by Curry and Fons [42], 

[43] and Fons [15] who brought a more rigorous and methodical physical approach to the modeling 

and measuring of the behavior of wildfires. In the 1950s and 1960s, a considerable effort and 

resources were put into the field due to the insurgence of research initiatives conducted by State and 

Federal forestry agencies around the world. Most of these initiatives were State defense oriented 

initially. Therefore by 1970s, the interest in the field pummeled relatively low. But then again in the 

1980s, more studies were conducted by those who had direct interests in studying the behavior of 

wildfires and by 1990s and onwards, the applied research in the field considerably increased due to 

technologies such as Geographical Information Systems and remote sensing [37]. 

Initially, when it came to the domain of disaster management, wildfire detection and 

prevention could be considered as the main pillars. Yet with the time, it has become obvious that the 

wildfire propagation prediction is also similarly an important aspect since the spread is the aspect 

that increases the intensity of the disaster [14]. As noted above, these wildfire models can be further 

enhanced with new technologies that enable predictions that would drastically improve the reaction 

times of responsible stakeholders. 

Mathematical models themselves can be used to calculate wildfire spread. In order to create 

a mathematical model for wildfire spread, the variables which can affect the spread of wildfire such 

as wind velocity, wind direction, Slope or elevation of the area, the temperature of the wildfire and 

fuel bed moisture etc. are required [12]. Then to construct the equations, two types of approaches 

have taken by the researchers. The first approach is using available historical wildfire data or 
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artificially creating the wildfire conditions on experiment labs and then try to find the variable 

combinations. This approach is considered as the Empirical approach [5], [6]. The second approach 

is to create the wildfire spread equations using physics principles, the main physics laws were used 

like heat flux, conductivity, thermodynamics etc. This approach is known as the physical approach 

[13]. Finally, those equations were combined to create a final mathematical model for the wildfire 

spread prediction. The reliability and accuracy are high in the wildfire spread models which were 

created using artificial tests and historic fire data [1], [2]. The main reason for that is the data which 

are taken in the field will not be accurate as the data taken from advanced sensors in the lab. Those 

data infields are mostly the data which is taken from nearest stations so the distance between that 

station and place where the wildfire occur matters. The artificial wildfires which are created in labs 

do not have such limitations. Therefore, most of the available wildfire models are created using 

artificial wildfires and finalized using checking them with actual data. 

2.3 Literature Review 

As noted in section 2.2, the history of wildfire propagation models started as early as the 

1920s [37]. Therefore, almost a century worth of scientific advancement is available in the context. 

Thus only a few key models are discussed in the below section. Figure 2.1 illustrates the taxonomy 

of selected wildfire propagation models according to a classifications provided by Sullivan [36], 

[37], [38] and Perry [33]. Figure 2.2 represents how a fire is represented in a simulation [33]. 
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Figure 2.1: Wildfire propagation model classification 
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Figure 2.2: Fire representation in fire spread modeling 

 One of the first attempts to describe the behavior of wildfire spread via a mathematical 

model was done by W. Fons [15]. The focus of this study was the fire front or the head of the fire. It 

is in the fire front that affects an adjacent non-consumed fuel in the fuel bed by bringing them to 

ignition temperature. Thus Fons suggested that visualization of the wildfire spread can be taken as a 

series of fuel ignitions, in which the rate is controlled by the distance between particles and the 

ignition time. Fons’ findings have been confirmed by the works of Tarrifa and Torraldo [16] later 

and were the basis for many influential studies in the context in the future.  

Van Wagner [3] proposed a model for simply calculating the spread of the wildfire using 

basic physics. The model gives that the wildfire will spread in a semi-elliptical shape. The narrow 

end of the ellipse will be at the side of the direction of the wind. The model is simple and can be 

easily used for instances, where it is needed to act quickly by taking a rough idea of how the fire will 

spread. 

 Wagner [4] again proposed some criteria for the initiation of crown fire combustion and for 

minimum rates of spread and heat transfer to the crown fire combustion zone. His arguments 

depended upon three attributes of forest crowns: height above ground, foliar moisture content, foliar 

bulk density. Wagner proposed a simple but yet somewhat incomplete model where the initial 
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surface fire intensity, crown fire spread rate, and the rate of forward heat transfer to the unburned 

crown fuel are considered and it was one of the earlier forays into the crown fire modeling context 

that was vital to later studies on crown fire. 

One of the initial attempts at modeling wildfire spotting was conducted by Frank Albini [17]. 

Fire spotting is considered somewhat a chance event. The unpredictability of the event limits the 

capability to present it in the form of a mathematical model. Thus Albini proposed a set of sub 

models based on assumptions, inadequately supported empirical relationships, and approximations. 

These models would be refined throughout the next set of studies conducted by Albini. Some of 

them are noted below as well. 

Albini et al. [20] proposed a model, an improvement to the models proposed in [17], to 

predict the maximum potential fire spotting distance from an active crown fire. In the study, the 

authors have presented several sub-models; a model for the height and tilt angle of the wind-blown 

line-fire flame front, a model for the burning rate of a wooden cylinder in cross flow, a 2-D model 

for wind-blown buoyant plume from the fire. The proposed model has shown some promise when 

compared with the existing information on crown fire spotting. 

Albini [5] also presented a speculative model for forest fire spotting phenomenon. The 

author based his model on the assumptions that particles are lofted by the thermals generated by the 

fire and that thermals are generated due to the fluctuations in the fire intensity with time due to the 

variations in wind speed or the “gustiness” of the wind. Due to these speculative assumptions, the 

model can be considered as a theoretical construct and the author presumes that it will remain so 

even if the field test has shown it to be reasonably accurate.  

 Anderson et al. [21] have proposed the concept of Huygens’ Principle for fire propagation. 

The fire front is propagated as a continuous expanding fire polygon at specific timesteps. Each 

vertex of the fire polygon is considered to be independent. The spread rate and wind direction are 

taken into computation at each vertex and it will determine how the fire polygon is propagated. 

Anderson [22] also proposed based on his previous study that the wildfires spread in an elliptical 

manner and the length to width of the ellipse is based on wind velocity. These ratios also have been 

identified by using past studies on different vegetation. While Huygens’ wavelet principle for fire 

propagation simulation was formally introduced by Anderson et al. [21], the concept itself could be 

found in previous studies by Sanderlin and Van Gelder [44] and Sanderlin and Sunderson [45] for 
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their wildfire propagation modeling system called FIREFIGHTER and also in researches done by 

Curry and Fons [43] and Van Wagner [3]. 

Richards [46] proposed a framework considering the modeling of fire spread in two 

dimensions for heterogeneous fuel and meteorological conditions. In the study, several shapes to 

describe the two-dimensional fire spread are examined. It was proposed that there may be other 

shapes than the elliptical model proposed the studies noted above. These complex shapes are double 

ellipse, teardrop, and lemniscate.  

 Rothermel [2] proposed a semi-empirical model for identifying the propagation of surface 

wildfire in different environments. It is a complex model which need lots of environmental data 

such as fuel behavior, slope, wind, temperature etc. It’s used by the United States national forest 

department and tested in many wildfires and said to be the most accurate available surface fire 

propagation prediction model. Many computerized propagation tools/systems such as FARSITE 

[23], FLAMmap [24] etc. use the Rothermel model as the surface fire propagation spread model. 

Another of Rothermel’s major contributions to the domain was his proposed model for 

crown fire behavior [25]. In his study, the proposed model was intended to aid well-trained fire 

behavior analysts to use the model without computed assisted aid to determine the characteristics of 

a live crown fire. The outcomes in the model are the spread rate, intensity and the size of the crown 

fire. The model was proposed as a method of first approximation of a live crown fire in the Northern 

Rocky Mountains in the USA. But however, it has been integrated to predict the crown fire 

propagation in both FARSITE [23] and FLAMmap [24]. 

Weber [13] created a mathematical model to model wildfire propagation due to radiation. 

Thus it can be considered a physical model. The spread is calculated based on the heat energy, 

which is transferred to the fuel in the front of the fire using the radiation. This model is based, 

mainly on the thermodynamics laws and assumptions and therefore using this model in the practical 

scenario should be validated prior hand. 

Karafyllidis [26] tried to use the approach of genetic algorithm in order to optimize wildfire 

models or the algorithms. A pool of algorithms is mutated and tested for the outcome with a set of 

test data. If the derived or the mutated algorithm show a greater accuracy or greater fitness as they 

are measured, it can be taken as the next generation of an algorithm that can predict the wildfire 

spread.  
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 A study was conducted by Yongzhong et al. [27] to expand the Rothermel’s [2] model by 

considering the spatial and temporal dynamics within Cellular Automation framework. For this 

purpose, the authors have devised a one-neighbor ignition algorithm in order to describe the fire 

propagation by employing a hexagon-based cellular automata model. The advantages in the use of 

cellular automata method are that it is a rather powerful modeling technique and it is a preferred 

choice when modeling spatial and temporal variability. While it expands on an already tested fire 

propagation model, the drawbacks the base model had were such as multiple parameters required for 

calculation etc. may still affect a system implemented in this approach. 

 Karouni et al. [28] proposed a semi-empirical model that may better suit a developing 

country such as Lebanon, where they intended to implement a fire behavior prediction system. They 

used the experimental results that were used in Anderson’s study [22] and relied on the Surface fire 

behavior model of Rothermel [2]. Parameters used in the model were weather, topography, wind 

direction, wind speed, slope coefficient, and fuel moisture content. 

Kreye et al [50] suggested that there is not much effect from the fuel load to the rate of 

spread according to their experiments on the wildfire propagations using test wildfires. They have 

used the surface fuels from forests and use them in controlled environments in order to find the 

effect from each variable, fuel load and fuel moisture. Though the compactness increase with the 

increasing of fuel load which eventually increase the fuel bed bulk density, as per their experiment it 

didn’t inhibit any sign of affecting of the rate of spread of wildfire. Thus the fuel load, which is a 

variables that is present in the Rothermel’s surface fire behavior model have the potential to be 

removed with the experiments.   

 In 1998 Lopes, et al. came up with FireStation [29] a system that uses a raster-based GIS 

platform and Rothermel’s surface fire spread model [2] to predict the spread. It uses both single and 

double ellipse template depending on the wind speed and is also capable of identifying the spread of 

the fire from cell to cell in a GIS platform. 

 Another GIS-based research was conducted by Guariso & Baracani [47]. In the study, they 

used two layered raster based cellular automata, one layer representing the forest canopy and its 

combustion and the other representing surface fuel and its combustion. They used this concept to 

present a simulation software that is intended for small-scale fires in the Mediterranean region. 

Variables other than the two represented in raster layers are introduced through the Rothermel’s 
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surface fire behavior model [2]. The modeling software is capable of real-time fire behavior 

prediction. 

 Vaclav [51] has conducted wildfire modeling using the r.ros and r.spread modules in Grass 

GIS. The model which was implemented is not changed but the basic of resources that are needed 

for running a wildfire simulation is presented there. A new module is tested and implemented as 

r.fire.spread which helps to get the intermediate output of the wildfire based on the time given as a 

parameter. Furthermore the simulations can be done based on changing moisture and wind 

conditions using that module in Grass GIS which cannot be done using normal r.ros and r.spread 

modules. 

 In 2004 Finney [23] came up with FARSITE, a fire growth simulation modeling system. It 

uses spatial information and uses many existing models for calculating the fire spread. Because of 

its complexity, only the users with proper fire behavior training should use FARSITE for making 

decisions. FARSITE can be used to compute wildfire growth and behavior for a long time under 

heterogeneous conditions which will be an added advantage if the fire couldn't be stopped at the first 

stage. It incorporates the existing models to a 2-dimensional fire growth model which makes this 

fire model an accurate but simple model. A specialty about FARSITE is that it is one of the first 

attempts at incorporating many aspects of fire behavior that have already been studied and verified 

individually. To be exact, FARSITE incorporates existing surface fire, crown fire, point-source fire 

acceleration, spotting, and fuel moistures models and studies. Thus it is rather useful in exploring 

the connections between the above-stated fire behavior models and understand them. 

 Coen et al. [30] proposed a wild land fire behavior model called WRF-Fire, which was 

integrated into the Weather Research and Forecasting (WRF) public domain numerical weather 

prediction model. What makes this approach unique is that it incorporates both surface fire 

behavioral models and atmospheric model. In an abstract manner, the model takes near-surface 

winds from the atmospheric model. These winds are passed to the fire propagation model and along 

with the local fuel characteristics and topography gradients, they are used to calculate the fire spread 

rate and direction. When the fires are ignited and the fuel is consumed, it would release sensible and 

latent heat fluxes into the atmospheric model’s lower layers, driving boundary-layer circulations. 

Thus the combined model continues to explore the sensitivity of the simulated fire characteristics 

such as perimeter shape, spread rate, fire intensity, terrain, fuel, wind etc. The dynamic nature of the 

WRF-Fire provides more in-depth insight into the fire propagation in a realistic manner. 



14 

  

 G. Perry, A. Sparrow, and I. Owens [34] proposed PYROCART, proposed a raster-based 

wildfire propagation prediction system that incorporates Rothermel’s [2] model and GIS. The study 

was intended as a test to investigate whether models such as Rothermel’s [2] can be applied in New 

Zealand’s ecosystem. And the tool was shown to have an accuracy rate of 80% in its predictive 

results.  

BEHAVE [9] is a fire modeling and behavior prediction system that is better suited for real-

time wildfire propagation predictions or unplanned ignition prescribed wildfires. Such a system 

would be particularly useful in supporting decisions when it comes to managing assets and resources 

in an active fire damage mitigation scenario (ex:- firefighters, aerial drones etc..). The system itself 

incorporates many wildfire behavior models such as Rothermel [2], [25], Albini [17], Albini et al. 

[18], Wagner [4] etc. It also incorporates ArcGIS as well. 

IGNITE [48] is another fire behavior modeling system, which was developed by D. Green 

and A. Tridgell. It is yet another GIS-based cellular automata and it was intended not as a real-time 

disaster management decision support system, but as an educational tool. By using IGNITE, users 

can simulate major historical fires where it would allow the users to simulate specific conditions or 

actions that could affect the wildfire scenario. Therefore the users can observe the effect of the 

action on the wildfire and learn whether the action was a mistake or not. Such training would be 

invaluable since actions leading to disasters in a real-world wildfire scenario may result in loss of 

life and property, whereas IGNITE allows them to experiment without risk. 

Coleman and Sullivan [49] presented a wildfire behavior prediction application called 

SiroFire, which was to be used by fire control officers to support decision making in wildfire 

scenarios. It incorporates several fire behavior models such as Rothermel’s surface fire model [2], 

McArthur’s model [20] etc. The application can run under Microsoft Windows operating system in a 

PC in DOS protected mode. The application was intended for Australian region by configuring the 

propagation models to better suit Australian Grasslands and forest litter fuel. The application was 

never used operationally and currently exists as a prototype due to ceased developments. Though it 

was continued to be used as a training tool for volunteer bush fighters.   
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2.4 Comparison 

 

Figure 2.3: Evolution of wildfire propagation modeling 

As noted in figure 2.3, there are several wildfire propagation models. Earlier models have 

contributed to the later models and the principles of those models have become more fine-tuned as 

of today, with continuous findings. Even though there are multiple fire behavior models available, 

they do not address the same context. As noted in the section 2.1, there are different aspects to a 

wildfire. More often than not, these aspects are related (ex:- crown fire is initiated after a surface fire 

fulfils a certain criteria, spot fires are chance occurrences and can occur with both surface and crown 

fires etc..). Thus to provide a more comprehensive wildfire behavior predictive solution, several 

models such as Wagner’s crown fire model [4], Rothermel’s surface fire model [2], Anderson’s 

elliptical fire spread model [22] etc. need to be combined. A good example for such tool would be 

FARSITE [23]. However there are some tools that integrate traditional mathematical models and 

some external but vital aspects such a WRF-Fire [30] system. Its use of an atmospheric model along 

with the surface fire behavior model and adds some dynamic nature that represents the real-world 

fire behavior than a static model. 

Van Wagner’s [3] simple fire growth model which can be considered as one of the most 

preliminary approaches to all surface fire spread models. Wagner’s model is based on Anderson’s 

elliptical fire spread model [22] which was created by using results from test fire. Rothermel [2] 

uses the same variables used in the Wagner but also it also uses the fuels, moisture and many other 
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variables, which are not included in the Wagner [3] or Anderson [22]. Therefore, Rothermel’s model 

can be taken as an improvement of above-mentioned surface fire models. 

Rothermel’s model [2] in particular seems to have a larger impact since it is integrated into 

most of the wildfire spread prediction system such as Firemap [31], FARSITE [23], SiroFire [49], 

IGNITE [48] etc. According to Karouni et al. [28], Rothermel’s model has been proven and tested in 

both theory and practice. But one of its drawbacks lies in the high number of input parameters 

required, which is about 24 [28]. Karouni et al. also notes that there is a possibility of optimizing the 

Rothermel’s model [2] by eliminating parameters that have less effect on the overall output. But in 

doing so, it might reduce the accuracy of the overall model. But achieving an acceptable amount of 

prediction accuracy while reducing one or more variables could be considered as an achievement.  

Nelson [32] suggested a dead fuel moisture model to divide the fuel in the fuel bed of the 

vegetation. Fuel plays an important part in wildfire propagation. Rothermel [2] uses the dead fuel 

moisture in calculating the fire spread. Nelson’s [32] dead fuel moisture model alone cannot be used 

to model the wildfire spread accurately, but by integrating it with another model, it may enhance the 

accuracy of the spread prediction of that model as in the Rothermel [2] by giving an enhanced view 

of the fuel bed of the vegetation. Therefore in this aspect as well, Rothermel’s model can be 

considered as the superior. 

While surface fire models seem to be at the forefront when it comes to applicability, other 

aspects of wildfire such as crown fire and spot fire is present as well. But they seem to be less 

prominent since both of them are considered to be less understood phenomenon than surface fires 

and inaccurate, particularly spot fires. Frank Albini was one of the pioneers in studying the spot fire 

phenomenon. Due to the unpredictable nature of the phenomenon, he has often stated that the 

models are rather speculative [5], [17].  

Though the above situation is not exactly applicable for crown fires, Perry [33] noted that 

crown fire too is a poorly understood phenomenon. This statement is further established by the fact 

that there seems to be comparatively rather low number of studies on crown fire rather than surface 

fire. Furthermore, crown fires do not usually occur spontaneously. Furthermore, for a crown fire to 

initiate, a certain minimum temperature at the base of the crown layer or a surface intensity is 

necessary [4]. In the wildfire behavior modeling context, this criterion is represented usually by a 

surface fire reaching a certain intensity leading to a fire initiation at the crown layer. Thus to model 

a crown fire, one may also require a surface fire model to simulate the initiation conditions. But the 



17 

  

fact is that all surface fires do not convert to crown fires, and probability of such occurrence is low 

as well [33].  

There also seem to be several researches that attempts to localize overseas models such as 

Rothermel’s [2] to suit a local ecosystem. Coleman and Sullivan’s SiroFire [49] and Karouni et al.’s 

[28] study are some examples in this context. Such research are certainly viable since, almost all of 

the mathematical models are implemented while keeping a certain set of geographical attributes in 

mind. But these geographical attributes changes from one geographical area to another. One may not 

find the same fuel bed content in USA and in Sri Lanka, the climates may differ, while one region 

considers crown fires a highly destructive force of nature, some regions may consider them a minor 

annoyance due to certain climate conditions. Thus these overseas models need to be configured for 

them to be really applicable to the local context.  

Therefore, it can be concluded that of mathematical models representing aspects of a 

wildfire, surface fire is the most studied and understood phenomenon. Thus optimization attempts or 

new developments are somewhat difficult in the sub context. But crown fire and spot fire shows 

some good opportunities for improvements or from-scratch models, provided that there are 

necessary historical data for validation and most importantly, laboratory based test environments 

[36], [2] to conduct experimentation in order to gain more accurate results in an ethical manner. 

These conditions are also applicable to wildfire behavior model localizations as well. 

But it is to be noted that in this particular research, historical wildfire data in the Sri Lankan 

region or a laboratory environment is not available. Thus a viable and accurate method to conduct 

experimentation on crown fires, spot fire phenomenon are seemingly unavailable. Although, since 

surface fire models such as Rothermel’s [2] is already tested and accurate, any new models or 

existing model optimizations can be easily compared against for validation purposes. 

Furthermore, there are many wildfire behavior prediction systems available. While some of 

them are prototypes such as SiroFire [49], there are several systems that are used for decision 

supporting even today. Feature comparison between some of the leading systems are given below in 

table 2.1. 
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Table 2.1: Comparison of leading systems for wildfire propagation prediction 

 BEHAVE [9] FIREMAP [31] FARSITE [23] I-REACT [1] 

Available online NO YES NO YES 

Use real-time sensor data NO Some Extent NO YES 

Has alerting real time NO NO NO YES 

Rothermel model used YES YES YES YES 

The table 2.1 is a comparison of features in a selected few propagation systems currently in 

usage. While all the systems are seen to be using the Rothermel’s model [2], I-REACT [1] is the 

only system that provides real time alerting of wildfire situations. I-REACT also employs real-time 

sensor data where as other systems do not except for FIREMAP [31] where sensor data are used to 

some extent but not in real-time. I-REACT and FIREMAP are the only system among the compared 

systems to be available online. 

2.5 Summary 

In this chapter, the related background and literature were studied. The focus was given to 

wildfire behavior prediction systems and to a few leading wildfire propagation prediction systems 

available. The models were then compared and analyzed in order to determine a model that can be 

enhanced. Several taxonomies on wildfire propagation models were illustrated as well. 
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Chapter 03  

Design 

In this chapter, the methodology and the design of the proposed wildfire propagation model 

are presented. A special focus is given on how the Rothermel’s surface fire behavior model [2] was 

analyzed and how the variables in the model were investigated to determine their effect on the 

overall model. The chapter also discusses how the necessary data was collected as well. The 

research is to follow a mixed approach that combines design science [52] and quantitative analysis 

[53]. 

3.1 High Level Overview of Approach 

 

Figure 3:1: High-level architecture of the research 

I. Model Selection  

As the purpose of this research was to enhance a wildfire propagation model, literature 

relating to the context were studied and multiple models that address various aspects of wildfire 

phenomenon was analyzed. The selection of the final model-to-be-enhanced occurred in two steps. 

1) Studying the general domain and identifying key propagation models. 2) Analyzing the key 

models for optimization possibilities. 3) Weighing the potential advantages and significance of 

exploiting the identified possibilities. 4) Weighing the feasibility of exploiting the identified 
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possibilities. 5) Weighing the testability or the evaluability of the said possibility. While the 1) and 

2) activities were sequential, other activities were conducted in a parallel manner.   

As described in section 2.3, related literature was studied and key propagation models were 

identified. There were several types of propagation models addressing several aspects of wildfires 

such as surface fire, crown fire, spot fire, radiative fire transfer etc. While there were numerous 

models, throughout the almost a century-long scientific history of the domain, few models stood out. 

Rothermel’s surface fire model [2], Wagner’s crown fire initiation model [4], Rothermel’s crown 

fire model [25], Albini’s spot fire model [17], [20] etc.  

The identified key models were then analyzed for potential enhancements. Due to the 

comparatively low number of studies done on crown fires and spot fires and the general lack of 

proper understanding about the said phenomenon, it was determined that one of the models in the 

said categories may very well be worth studying and enhancing. Then again, while the Rothermel’s 

surface fire behavior model [2] was discovered to be used in almost all of the wildfire propagation 

systems and has been tested and proven in the practicality of the model, there seems to be a 

drawback in it. Karouni et al. [28] note that The Rothermel’s model [2] requires 24 input variables 

in order to execute the simulation. To measure these input variables, a number of infrastructure and 

resources needs to be allocated. And for a country that lacks such resources, an undertaking of such 

project may very well be unfeasible. Thus Karouni et al. [28] also note that it may be possible to 

optimize the model by eliminating one or more of the input variables in Rothermel’s model. Another 

potential and applicable enhancement are to localize an overseas model to suit a local ecosystem. 

Since most of the available propagation models are initially developed for North American region or 

European region, applying such models to a local context requires a considerable amount of effort. 

In the next phase, the enhancement possibilities are examined for their potential advantages, 

significance, feasibility, and evaluability. As noted in the analysis in section 2.4, due to the low 

number of studies in both crown fires and spot fires [33] when compared to surface fires, the 

significance of enhancing a model from one of these categories are rather high. It is the same with a 

model localization as well. But the speculative nature of spot fires [5], [17] and its chance nature 

limits the historical fire data availability. In such a scenario, the best possible manner to evaluate an 

enhanced spot fire model would be to use laboratory environments. Unfortunately for this particular 

study, such facilities were unavailable. The same arguments can be made for crown fire models as 
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well but to a lesser extent. While the significance of such research may be rather high, the feasibility 

and evaluability aspects suffer. 

Localization attempt to configure a model such as Rothermel’s model [2] would have been 

an ideal research avenue for this particular study. But the lack of local historical wildfire data and 

support from the local authorities have led to abandoning such study. It is also a high significance 

but low feasibility and evaluability study, similar to the above-noted enhancement possibilities. 

As a research gap exists in reducing the number of input variables in the Rothermel’s model 

[2] as noted by Karouni et al. [28], as also noted in the section 2.4, it is a viable study. There is a 

considerable significance in the study and historical data can be easily collected from regions where 

such data were meticulously collected and the Rothermel’s model was implemented with the 

ecosystem of USA in mind. Thus such study is highly feasible and evaluable.  

Therefore, according to the analysis in section 2.4 and the model selection rationale, the 

Rothermel’s [2] surface fire behavior model was selected as the model-to-be-enhanced. 

II. Benchmark Dataset 

An accurate dataset is critical for a successful evaluation of the findings. Thus a credible data 

source that contains historical wildfire data is necessary. Furthermore, the dataset needs to contain 

certain variables that are needed as input variables for the Rothermel’s surface fire behavior model 

[2]. As examples, the location of wildfire origin, elevation, aspect and environment parameters such 

as temperature, humidity, wind speed, wind direction etc. are just some of the necessary data that 

should be included in the dataset. Another criterion for the benchmark dataset collection was the 

size of the dataset. The candidate dataset should be of a substantial size so that after preprocessing 

the data, an adequate amount of data can be used for the evaluation purposes.  

The above rationale was used to identify an appropriate dataset. The National Wildfire 

Coordination Group (NWCG) from the United States has been collecting the weather data for each 

wildfire that has occurred in the USA since the 1970s. Another positive aspect was that the data 

were freely available from their website. Furthermore, it was the only credible data source that 

appears to have the necessary data required for this research that could be found.   
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II. Data Preparation 

Even though the required data can obtain from the National Wildfire Coordination Group 

(NWCG), these data cannot be directly used in this research. The necessary inputs for the research 

are included in two different data files. One file includes the weather parameter data and the other 

contains the data such as the date of wildfire, location of origin etc. Therefore these two files should 

be merged by using the weather station numbers referenced in both files. 
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Table 3.1: Attributes of weather data file in W Weather Observation Data Transfer Format, 2013. Attributes 

that will be used for the analysis are shaded in gray. 

1. 

Record type 

2. 

Station 

Number 

3. 

Observation 

date 

4. 

Observation 

time 

5. 

Observation 

type 

6. 

State of 

weather code 

7. 

Dry bulb 

temperature 

8. 

Atmospheric 

moisture 

9.  

Wind 

direction 

10. 

Average wind 

speed over a 

10-minute 

11. 

Measured 10-

hour time lag 

fuel moisture 

12. 

Maximum 

Temperature 

13. 

Minimum 

Temperature 

14. 

Maximum 

relative 

humidity 

15. 

Minimum 

relative 

humidity 

16. 

Precipitation 

duration 

17.  

 Precipitation 

amount based 

on 

Measurement 

Type code 

18. 

Wet flag 

19. 

Herbaceous 

greenness 

factor 

20. 

Shrub 

greenness 

factor 

21. 

Moisture 

Type code 

22. 

Measurement 

Type code 

23. 

Season code 

24. 

Solar 

radiation 

25. 

Wind 

direction of 

peak gust 

during the 

hour 

26. 

Speed of 

peak gust 

during the 

hour 

27. 

Snow Flag 

(Y/N) 

 

 

 

 

 

 



24 

  

Table 3.2: Attributes of wildfire occurrence file in PCHA Fire Output Format. Attributes that will be used for 

the analysis are shaded in gray. 

1. 

REPORTING FS 

REGION 

2. 

REPORTING FS 

UNIT 

3. 

FIRE NUMBER 

4. 

DISTRICT 

NUMBER 

5. 

STATISTICAL 

CAUSE 

6. 

GENERAL CAUSE 

7. 

SPECIFIC CAUSE 

8. 

CLASS OF 

PEOPLE 

9.  

FIRE SIZE 

CLASS 

10. 

TOTAL AREA 

BURNED 

11. 

FS AREA 

BURNED 

12. 

NON-FS, UNDER 

FS PROTECTION 

AREA BURNED 

13. 

NON-FS AREA 

BURNED 

14. 

VEGETATION 

COVER TYPE 

15. 

NFMAS ASPECT 

16. 

TOPOGRAPHY 

CODE 

17.  

 FMZ_CODE 

18. 

BLANK 

19. 

REPRESENTATIVE 

WEATHER STATION 

NUMBER 

20. 

NFDRS FUEL 

MODEL 

21. 

FIRE 

INTENSITY 

LEVEL 

 

22. 

FIRE 

INTENSITY 

SOURCE 

23.  

LATITUDE 

24. 

LONGITUDE  

25. 

TOWNSHIP 

26. 

RANGE 

27. 

SECTION 

28. 

SUB-SECTION 

29. 

PRINCIPAL 

MERIDIAN 

30. 

SLOPE PERCENT 

31. 

ASPECT CLASS 

32.  

ELEVATION 

(FEET) 

33. 

STATE CODE 

34. 

COUNTY CODE 

35. 

PROTECTION 

AGENCY 

36. 

OWNERSHIP AT 

ORIGIN 

37. 

PRESCRIBED FIRE 

(Y/N) 

38. 

ESCAPED FIRE 

(Y/N) 

39. 

INITIAL 

SUPPRESSION 

STRATEGY 

40. 

FFF COST, IN 

DOLLARS 

41. 

FIRE IGNITION 

DATE 

(YYYYMMDD) 

42.  

FIRE IGNITION 

TIME (HH24MI) 

43. 

FIRE DISCOVERY 

DATE 

44. 

FIRE 

DISCOVERY 

TIME 

45.  

FIRST ACTION 

DATE 

46.  

FIRST ACTION 

TIME 

47. 

SECOND 

ACTION DATE 

48.  

SECOND ACTION 

TIME 

49. 

DECLARED 

WILDFIRE DATE 

50. 

DECLARED 

WILDFIRE 

TIME 

51. 

FIRE 

CONTAINED 

DATE 

52. 

FIRE 

CONTAINED 

TIME 

53.  

FIRE 

CONTROLLED 

DATE 

54.  

FIRE 

CONTROLLED 

TIME 

55.  

FIRE OUT DATE 

56. 

FIRE OUT 

TIME 

57.  

FIRE NAME 

58.  

FIRE ID 

59.  

PCODE 

60. 

WILDERNESS 
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Since the data comes in a simple text file, some preprocessing has to be performed to 

separate the data into relevant attributes and the incomplete records are ignored. Then these data are 

loaded into a SQL database as two different tables. As stated above, all relevant data about a 

wildfire, including weather data, can be accessed from a simple select operation. Weather data table 

and wildfire data table respectively have 27 (Table 3.1) columns and 60 columns (Table 3.2). But 

for the research, only 18 attributes will be used. One reason being, some of the wildfire records 

lacks some important information related to fire such as the area burnt or the temperature. These 

types of data cannot be used for benchmarking purposes and these data rows are removed from the 

data set. Furthermore, a reduction was done to remove the unwanted attributes from the end table. 

As an example, the dataset contains data fields such as fire_id, Fire_name, Organization identified 

etc. Those fields are useless for benchmarking the model and therefore, they can be eliminated from 

the data set. The sample of the data which can be used for the comparison with the model is selected 

based on the quality of the final aggregated dataset taken from the preprocessing.  

In GRASS GIS, the data cannot be directly fed in txt or CSV formats. GRASS GIS employs 

the reusability. Therefore each input variable should be fed into the system as a separate file. The 

implemented model uses 11 data fields for running the model and there are 11 separate data files for 

each wildfire. Thus the selected sample benchmark data set should be converted to that format. One 

dominant function of the research is to create these files from the available data. 

II. Altering the Base Model 

As stated before, one of the objectives in the research is to simplify a fire behavior model by 

reducing the number of input parameters required and investigate to what extent the predictions are 

similar to the actual spread of a wildfire. One requirement in this process was to select a modeling 

platform to run the fire behavior models.  The open source platform GRASS GIS catered all the 

modeling specification from its fire behavior module.  The wildfire spread simulation in GRASS 

GIS is done using three modules, namely r.ros, r.spread and r.spreadpath. Since the source codes of 

these modules are available for the public and the modified or newly created modules can be locally 

installed using the GRASS g.extension, the alterations of fire behavior models and visualization 

became possible. Primarily the fire behavior model in GRASS GIS use Rothermel’s surface fire  

model. The model alteration process is illustrated in the figure 3.2 and a simulation of a wildfire in 

GRASS GIS in two separate lag times is depicted in the figure 3.3. 
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Figure 3.2: Base model alteration process 

 

Figure 3.3: A fire simulation of a wildfire using GRASS GIS; A spread of a wildfire in different time intervals. 

Left: 10 min after ignition, Right: 20 min after ignition 
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II. Evaluation 

Initially a pilot study was conducted by altering the default data available in GRASS GIS. 

The shapefile of the base model prediction is compared against each of the predictions in the five 

altered models. Statistical measures used in this analysis is the 1) Jaccard similarity coefficient and 

2) Euclidean distance between mean coordinates of the base model and altered model spreads. Thus 

the results are evaluated in 2 statistical methods to ensure its validity. 

After the pilot study, random sampling is applied to the dataset and an unbiased sample of 10 

wildfires were selected. These wildfires are then configured into the GRASS GIS and then the base 

Rothermel’s propagation prediction spreads are computed for each of the wildfires. 

Jaccard Similarity Coefficient 

 Jaccard Similarity Coefficient is a statistical index by P. Jaccard [54] in 1901. It is a rather 

straightforward comparison method particularly suited for geometric shape comparisons such as 

wildfire spread shapes [55].  The value is defined by dividing the intersection burned area of two 

different wildfire spreads by the union of the two spreads. Thus initially base model spreads and 

altered model spreads for each of the sample objects are computed and then all the 7 spreads (1 base 

model + 5 altered models) are input into the QGIS. Then the intersections and unions are computed 

for each of the base - altered spread combinations. This process is continued to other sample objects 

as well. Intersection and union operations are somewhat computationally intensive due to the large 

attribute tables for each spread. The Jaccard Similarity Score is often involved in evaluating wildfire 

propagation simulations according to J. Filippi, V. Mallet and B. Nader [55]. Thus it is considered to 

be the primary evaluation method in this study. 
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Figure 3.4: a) Base model spread, b) altered model spread, c) intersection between a & b, d) union between a 

& b. 

Consider,  

 Spread of base model =  

 Spread of altered model =  

 

 (1) 

Score range - [0, 1] 

Best score - 1 

Euclidean distance between mean coordinates 

The second statistical measure employed in the study is the Euclidean distance MOD (Most 

Occurring Data) Sign analysis between mean coordinates of the base model spread and the altered 

model spreads. While the Jaccard Similarity Coefficient can be used to measure the similarity 

between shapes, to provide a more sound statistical evaluation, mean coordinates for all spreads are 

calculated. Then the scatter plots are drawn for each alteration. If the distance between the mean 

coordinates of an altered model and the base model is 0, it can be considered as an exact match.  
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Only the sign of the distance measure is used for the analysis using this method. The sign is 

measured using a relativity measure. If the size of the altered model wildfire spread is larger than the 

base model, the distance is calculated from the center coordinate/mass of the altered model to the 

base and relative to that the sign is given as positive(+). If the altered model spread is smaller than 

the base the distance is measured from the base model center to altered model center and the sign is 

given as negative(-). The sign of the 0’s also taken as positive (+). For all the wildfires used for 

study, these signs were tabulated and get the MOD(Most Occurring Data) sign as the sign of that 

altered model respective to the base model. The positive (+) and the negative (-) signs assigned to 

the measured Euclidean distances are to identify the practicality of the altered models. The models 

which have a MOD sign positive are taken as practical models than models which show negative (-) 

MOD sign. 

The complete design overview is depicted in the figure 3.5. 

 

Figure 3.5: Design overview 

3.2 Design Assumptions 

The following are considered as the design assumptions taken for this particular study. 

 The output spread by the Rothermel’s [2] base model is considered as the actual spread of 

the historical wildfire in the primary analysis. The spread is then considered as a benchmark 

to evaluate altered models.  
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 Some parameters are taken from the closest weather station to the fire origin coordinates. 

These parameters are assumed to be the actual coordinates affecting the wildfire. 

 It is assumed that benchmark data are accurate. 

 When altering the base model by eliminating a variable, it is assumed that the effect of the 

eliminated variable to the overall model is isolated and not correlated with other variables. 

3.3 Rothermel’s Surface Fire Behavioral Model 

 

Rate of spread (ft/min)  (2) 

 

Reaction intensity (Btu/ft 2-min) (3) 

 

 

Optimum reaction velocity (min-1) (4) 

 

Maximum reaction velocity (min-1) (5) 

 

Optimum packing ratio (6) 

 

Packing ratio  (7) 

 

 

Moisture damping coefficient (8) 

 

Mineral damping coefficient (9) 

 Propagating flux ratio (10) 

 

 

Wind factor (11) 
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Slope factor (12) 

 

Effective heating number (13) 

 

Heat of pre-ignition (Btu/lb) (14) 

3.1.1 Rate of Spread (2) 

In a wildfire propagation simulation, the final equation that the simulation needs to calculate 

is the Rate of spread equation (ROS). But to determine the variables necessary for such calculation, 

there are numerous mathematical equations that are necessary for calculating other variables that 

matter. It would affect the accuracy of the model to an unacceptable level if one were to eliminate a 

variable from the final equation itself.  A more reasonable approach would be to simply eliminate 

variables in secondary equations to gauge their effect on the final outcome.  

 

 

 

 Rate of spread (ft./min) 

 

Reaction intensity (B.t.u./  min.) 

 

Wind coefficient 

 

Slope coefficient 

 

Ovendry bulk density (lb./ ) 

 

Effective heating number 

 

Heat of pre-ignition (B.t.u/lb.) 
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3.1.2 Reaction Intensity (3) 

The heat release rate per unit area of the fire front is called the reaction intensity [2]. The 

heat release rate is determined by the burning gases produced by burning organic matter in the fuels. 

Reaction velocity is another major equation that highly affects the final outcome of the model and 

similarly to ROS, it is appropriate to affect the variables of the equation indirectly. 

  

 

 

Reaction intensity (Btu/ft 2-min) 

 Potential reaction velocity (min.-l) 

 Net initial fuel loading (lb./ft.2) 

 Heat content of fuel (B.t.u./lb.)  

 Moisture damping coefficient having values ranging from 1 to 0, dimensionless.  

 Mineral damping coefficient having values ranging from 1 to 0, dimensionless.  

 3.1.3 Optimum reaction velocity (4) 

Reaction velocity is the ratio of the reaction zone efficiency to the reaction time [2]. It is 

another major equation relevant to the fire propagation. From it, the completeness and the rate of 

fuel consumption can be determined.  

   (4) 

     (4) 

   (5) 

     (6) 

       (7) 
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 Potential reaction velocity (min.-l) 

 Packing ratio (dimensionless) 

 

Optimum packing ratio (dimensionless) 

 

Fuel particle surface area to volume ratio (ft.-2) 

 
Optimum fuel particle surface area to volume ratio (ft.-2) 

 fuel array bulk density (lb ./ft.3) 

 
fuel particle density (lb./ft.3) 

3.4 Summary 

 In this chapter, a detailed description on the architecture of the research was given. Model 

selection criteria, selection benchmark data, data pre-processing, model alteration and evaluation 

were elaborated in a detailed manner and design assumptions were given as well. Furthermore, the 

Rothermel’s [2] model was analyzed noting its equations and variables as well. 
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Chapter 04  

Implementation 

Implementation was done through the Grass GIS open source software. Grass GIS is used 

because it has an integrated wildfire spread simulation module. This chapter describes the 

implementation methods and decisions taken in the process of implementation. Implementation of 

the design could be done in 3 steps. Importing the data as layers to the Grass GIS, Run the ROS 

model and then run the r.spread module to get the spread. As prerequisite Grass GIS software should 

be installed and it should be in an Ubuntu or Linux based computer. The Grass GIS in Microsoft 

Windows doesn't allow to install extensions from different paths. After the alteration r.ros module 

with the altered main file should be installed separately in order to gain the final outcome. 

Therefore, an operating system with a Linux kernel base should be used. 

4.1 GRASS GIS 

GRASS GIS is a free and open source Geographic Information System software platform, 

which is used in geospatial data management and analysis, image processing, graphics and maps 

production, spatial modeling, and visualization. When compared with other solutions, GRASS GIS 

is used mostly for scientific purposes. Currently, GRASS GIS is used by researchers, universities, 

and government agencies.   

With the approach of the research, there were two possibilities, either to develop the 

modeling and visualization from the scratch or use existing tools. The requirements of the study 

were to run the fire behavior model, visualize the results and comparison. The r.ros module of the 

GRASS GIS implements the Rothermel’s surface fire behavior model and since the software is open 

source, the changes to the model can be done conveniently.  
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4.2 Fragmentation of the benchmark dataset 

The benchmark data set consist of data from 1964 to 2017. The dataset is very large and 

using all the data of wildfires for the benchmarking purposes is not practical. Thus that before 

creating the database from the set of files which downloaded from the National Wildfire 

Coordination Group (NWCG) a sample should be selected. The wildfire data set consist of wildfire 

data from 35 regions and the weather data set consist of data from 52 regions. 

Hence the wildfire dataset has a comparatively smaller number of regions and also it’s the 

main focus of the research based on that the sample is selected. For selecting the sample a simple 

random sampling was done. The threshold was set to 10 regions thus that the data set is manageable 

within the time frame for the research. 

After selecting the random 10 regions and related weather data as a sample, the main sample 

is again divided into 4 main samples based on the area(high and low) that it covers and the year of 

occurrence(before 2000 and after). The main rationale behind these 2 sample fragmentation was, 

1. Area: - The changed wildfire model should be compatible in using in any fire like the base 

model. If the changed model shows a high error rate when the area is small/ large but good 

with only one aspect (small/large), that alteration cannot be taken as stable.  Thus to take the 

alteration as stable wildfires in both aspects should show low errors which means low area 

changes from the real area. From the selected sample 2 sets of data were created as wildfires 

with high area burnt and wildfires with low areas burnt. 

2. Year of occurrence: - The wildfire data which were taken in past days like 1964 can be error-

prone. The details given could be stated as approximately due to difficulties like reaching the 

place as well as the errors of the equipment used at that time. But the data from the years 

before 2000 cannot be neglected because many wildfire models were created based on the 

data from that era. Thus that the altered model should be tested with wildfires of both 

aspects. For that this sampling was done. 

The end of this process, a sample of 10 wildfires was selected and was consequently 

experimented upon. 
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 4.3 Generating Custom Dataset for Fire Simulation 

Generating a custom data set other than the demo set provided, is one of the biggest 

challenges that was faced during the implementation. The documentation provided by Grass GIS 

didn’t mention any detail on how to create a custom data set. After researching through available 

documentation, articles, from the user email list of Grass GIS, some leads were found regarding the 

preparation of a custom dataset. As custom data, many files should be created and those should be 

created using the modules in the Grass GIS. The benchmark dataset contains all the necessary data 

and using that data, custom data sets for many wildfires can be created. Main files that should be 

created per one wildfire in order to simulate a wildfire are slope, wind direction, wind speed, slope, 

aspect, fuel model, fire origin, live moisture. 

 4.3.1 Generating aspect and slope files 

To generate the slope and aspect files the elevation map of the respective area should be 

inserted to the Grass GIS. Those elevations files can from the United States Geological Survey 

(USGS) Earth Explorer database and then it can be imported to the Grass GIS. Thus that using the 

r.slope.aspect this can be  

 

Figure 4.1: (a) Elevation map obtained from United States Geological Survey (USGS); (b) Aspect map 

generated from (a); Slope map generated from (a) 
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4.3.2 Generating the fire origin  

The ignition point of a specified wildfire can be obtained from the data gathered from the 

National Wildfire Coordination Group (Table 3.2). To mark this point in a raster map GRASS GIS 

raster digitizer can be used. It provides facility to mark a point in a map and this will be used as the 

ignition point. 

4.2.3 Generating the fuel model 

To create fuel model raster file we collect land cover maps from the Multi-Resolution Land 

Characteristics Consortium (MRLC). 

 

Figure 4.2: A land cover map obtained from Multi-Resolution Land Characteristics Consortium; Left: 

Unprocessed map, Right: Processed map by changing colors interactively according to categories. 
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Table 4.1: Multi-Resolution Land Characteristics Consortium (MRLC) National Land Cover Database 2011 

(NLCD) Legend. 

 11 Open Water  51 Dwarf Scrub 

 12 Perennial Ice/ Snow  52 Shrub/Scrub 

 21 Developed, Open Space  71 Grassland/Herbaceous 

 22 Developed, Low Intensity  72 Sedge/Herbaceous 

 23 Developed, Medium Intensity  73 Lichens 

 24 Developed, High Intensity  74 Moss 

 31 Barren Land (Rock, Sand, Clay)  81 Pasture/Hay 

 41 Deciduous Forest  82 Cultivated Crops 

 42 Evergreen Forest  90 Woody Wetlands 

 43 Mixed Forest  95 Emergent Herbaceous Wetlands 

4.3.4 Generating the wind speed and wind direction 

Wind speed and wind direction raster files can be manually created from the r.mapcalc 

module using the data collected from National Wildfire Coordination Group (Table 3.1). Example 

commands to create these raster files are as below. 

r.mapcalc --overwrite expression=wind_speed = 120 

r.mapcalc --overwrite expression=wind_direction = 156 

4.3.5 Generating the live moisture 

The land cover map obtained from the MRLC contained 20 categories. The next step is to 

create raster file assigning live moisture values for each of the 20 categories.   
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4.4 Importing Dataset to GRASS GIS 

At the start of the GRASS session (figure 4.3), the demo data or the custom data that are 

going to be used for wildfire simulation has to be selected. The process can be done in 2 methods, 

1. Use demo data which is available in the Grass GIS documentation can be 

downloaded, extracted and make use of it. 

2. Generate custom data set using the benchmark dataset 

The demo data provided by the Grass GIS are relevant to one specific fire and the exact 

location of the fire origin is also not included in the data, thus it could be only used for demo 

purposes or pilot studies. As explained in section 4.1, custom data sets can be generated from the 

benchmark dataset. This is the methodology used in the implementation. 

The path to the data should be selected from the starting screen depicted in figure 4.3 and 

then the session can be started. 
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Figure 4.3: The First screen of Grass GIS 

The Grass will start with two screens and one screen is for layer management, which is 

named layer manager as shown in figure 4.4. The layers which need to be seen on the visualization 

or the layers which can be used for any type of computation can be seen in this window. The other 

screen, Map display screen is the main display, which shows visualizations of the map layers. 

Several map layers can be imported to the layer manager at once and specific layers, which need to 

be seen from the map display window can be selected.  
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Figure 4.4: Layer Manager and Map display screens of Grass GIS 

To run the wildfire spread calculation, all raster layers that provide the necessary data should 

be imported. The files are 1hour_moisture, aspect, elevation, fie origin, fuel_model, live_moisture, 

slope, wind_direction, wind_speed. All these files should be generated and imported per one 

wildfire to simulate the wildfire. 

4.5 Altering the Implemented Rothermel’s Model 

The base model (Rothermel’s surface fire spread model) is implemented in the Grass GIS in 

C language. The file named as main is positioned inside the r.ros module. After installing the Grass 

GIS the file cannot be accessed directly. For that, the source code of the Grass GIS should be 

downloaded separately. Inside the Source code in the extensions section, the r.ros module can be 

seen as a folder. The main file resides inside that folder and the changes can be done by opening file 

with an editor. The C file consists of the basic variables and equations of the Rothermel’s model. 

The alterations can be done by removing or altering the variables and equations from the file and 

installing using the following command. 

g.extension extension=<name> url=<url> 

After running the command, the altered main file will be installed as the basic model for 

running the wildfire simulation. 
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4.6 Executing the r.ros module 

Module r.ros is the wildfire modeling module of the Grass GIS. Rothermel [2] is the 

implemented basic wildfire spread model here. After importing the layers those layers can be 

separately inserted into the module. There are 2 ways for inserting the imported layers into the 

module and run. 

1. Selecting the files from the GUI and run 

2. Selecting the files from a command in the console and run.  

4.6.1 Select the files from GUI 

Go to raster→ wildfire modeling → Rate of spread (r.ros) in the layer manager window. 

Then from the next window that appears in the required tab, the files from the folder that was 

selected at the start of the session have to be selected. All files in the tab are required and if one file 

is missing, the module will not run. The main files that need to be selected here are fuel model, live 

moisture, and output raster maps for base ROS, Maximum ROS and direction of the maximum 

ROS. 

In the next tab which is mentioned as optional, it also contains another set of files that need 

to be selected in order to run the wildfire modeling. The files that should select in the optional tab 

are 1-hour moisture, midflame wind velocity, wind direction, slope, elevation, aspect and output 

raster map for maximum spotting distance. Spotting here is an optional behavior so that files related 

to that are optional for running the module.  

After selecting all relevant files, in the top of the optional tab, there is an option “Allow 

output files to overwrite files” this option should be enabled since if the existing files have data and 

if those files do not support overwriting, the data which generated from running the simulation 

cannot be stored there. It will lead to a loss of information. Thus this particular option should be 

enabled in order to preserve the data when running the simulation. After selecting the 

aforementioned the run button has to pressed and it will show in a console window the status of the 

simulation as completed or not and if any error happened the error as well. 
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4.6.2 Select the files from the command line 

The most convenient and nimble way to execute r.ros module is using the command line. 

Here r.ros command will be used to initiate the execution by using input and output raster files as 

parameters. Following is a sample command to execute r.ros module.  

r.ros --overwrite --quiet model=fuel_model@demomapset 

moisture_1h=1hour_moisture@demomapset moisture live=live_moisture@demomapset 

velocity=wind_speed@demomapset direction=wind_direction@demomapset 

slope=slope@demomapset aspect=aspect@demomapset elevation=elevation@demomapset 

base_ros=my_ros.base max_ros=my_ros.max direction_ros=my_ros.maxdir 

spotting_distance=my_ros.spotdist  

In this command, we use fuel model, moisture_1h, moisture_live, velocity, direction, slope, 

aspect, elevation raster files and create three output files as the base rate of spread, max rate of 

spread and direction of the max rate of spread. These output files later used in r.spread module as 

the input 

4.7 Execution the r.spread 

r.spread module is used for simulating elliptical spreads along with time. Following the r.ros 

module, this r.spread module should be run using the ROS calculated in the r.ros module. The 

visualization of the wildfire with the time is done in this module. 

Similar to the way that r.ros module ran stated in the 4.5 section, the r.spread module too can be 

run in two methods, 

1. Run using GUI 

2. Run using the command line 

4.7.1 Execution using GUI 

Go to raster → wildfire modeling → anisotropic spread simulation (r.spread) from the layer 

manager window. Afterward, when the next window appears, the input files should be selected. 

From the input tab, the files to be selected are files for base ROS, Maximum ROS, the direction of 



44 

  

the maximum ROS (Which were considered as the output files when running the r.ros module), 

starting source (fire_origin), wind speed and maximum spotting distance. In the output tab, the file 

for output spread time observed has to be selected. Afterward, from the optional tab, select the 

‘allow output files to overwrite existing files’ option is to be selected to save the outputs from the 

simulation as well as to enable reuse. At last, press the ‘run’ button and it will take some time for 

running and in the map display window, it will display the simulated wildfire spread. 

4.7.2 Execution using the command line 

The r.spread module also can run in the console with r.spread module. Again the input and 

output raster files are used as parameters. Here the rate of spread files generated from r.ros module 

the ignition point of the fire, wind speed and direction will be used as input files and it generates. 

 Following is a sample command to execute r.ros module. 

r.spread --overwrite base_ros=my_ros.base@demomapset       max_ros=my_ros.max@demomapset 

direction_ros=my_ros.maxdir@demomapset start=fire_origin@demomapset 

spotting_distance=my_ros.spotdist@demomapset wind_speed=wind_speed@demomapset 

output=spread_time_observed 

The output of this module is the visualization of wildfire spread in the map display window 

as the illustrated in figure 4.5.  
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Figure 4.5: The output from running the base Rothermel model for demo data 

4.8 Summary 

 This chapter elaborates on the configuration of GRASS GIS and implantation of altered 

models in a highly technical detail. The main topics discussed in the chapter are the data sample 

selection process, custom dataset generation, importing data to GRASS GIS, alteration of GRASS 

GIS and execution of r.spread and r.ros modules in GRASS GIS. 
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Chapter 05 

Evaluation & Results 

Evaluating the precision of a wildfire spread simulation is a critically important task. In 

general, the spread of a wildfire is measured using the area burned. However, the measuring of the 

performance of a wildfire model does not have a specific evaluation technique. The performance of 

the existing wildfire model can be measured using the area which given as output. In this chapter, 

the pilot data and sample data are experimented and analyzed upon to determine the similarities 

between the base model propagations and altered model propagations. The primary statistical 

measure used in this venture is the Jaccard Similarity Coefficient. Secondarily the Euclidean 

distances between the mean coordinates of propagations are measured. 

5.1 Evaluation Experiment 

5.1.1 The Aim of the Experiment 

The aim of this evaluation experiment is to consider the similarity between the outputs of 

Rothermel’s [2] model and the altered models that were derived from the Rothermel’s model by 

eliminating variables. Each of the five models defined has a single variable of the base Rothermel 

model eliminated and the effects of the each eliminated variable on the base model is assessed. 

5.1.2 Experiment Design 

The main Apparatus used for the evaluation experiment is GRASS GIS, r.ros & r.spread 

modules. The diagrammatical representation of the evaluation experiment and experimental protocol 

are given below. 
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Figure 5.1: Design of the evaluation Experiment 
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Experimental Protocol 

Table 5.1: Experimental protocol 

Purpose  A possibility exists in optimizing Rothermel’s [2] model by reducing its variables [28]. 

Thus five variables have been identified from the related literature and it should be 

investigated to determine whether these variables can be eliminated. 

Materials   Rothermel’s Surface Fire Behavior Model [2], Dataset: National Wildfire Coordination 

Group (NWCG), GRASS GIS sample dataset. 

Method  1. Create an altered instance of Rothermel’s model for each of the identified 

variables (eliminate the variable from the base model). 

2. Run each of the altered models for sample objects. 

3. Acquire shapefiles for each instance in step 2. 

4. Calculate the Jaccard Similarity Coefficient and Euclidean distance of mean 

coordinates. (refer to section 3.1) 

Controls  Fire spread shapefiles for each sample object by executing Rothermel’s model [2]. 

 

5.1.3 Variables 

 Independent Variables 

o Ovendry fuel loading 

o Optimum packing ratio 

o Mineral damping coefficient 

o No live fuel load 

o No fuel particle moisture 

 Dependent variable 

o Area of spread 

o Mean coordinate of the spread 
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 Fixed variables 

o Other input variables of Rothermel’s model except for independent variables. 

5.1.4 Experiment 

The experiment was done using the base model and the altered models. Initially, a sample of 

wildfires was selected from a historical wildfire dataset with the necessary weather data. Afterward, 

the base model was run with the data and the spreads are exported as a shapefile. The other altered 

models were executed after the base model and their shapefiles were exported respectively as well. 

The shapefiles were then imported to the QGIS software and afterward, each of these altered model 

shapefiles was compared with the base model shapefile. The union and the intersection of the two 

selected spreads were calculated, for calculation of the Jaccard Similarity Coefficient [55]. 

Thereafter, the Euclidean distance between the centers of masses of two spreads should be 

calculated. The mean coordinate module in QGIS executes an algorithm for calculating the center of 

mass of each spread and output a point for each spread. Then the measure line tool in QGIS can be 

used to measure the distance between those two points to get the Euclidean distance. 

The positive and negative signs were given based on the direction of mean coordinate when 

compared to the base model. The distance is measured from the center of mass (mean coordinate) in 

the base model spread to the center of mass in the altered model spread. If the direction of 

measuring was towards the fire origin from the base model simulation, the Euclidean Distance is 

taken as negative (-). If the direction is away from the fire origin the Euclidean distance is taken as 

positive (+). The rationale behind the giving signs is if these models were used for wildfire disaster 

management system the simulated spreads should be larger than or equal to the real spread. The 

negative(-) spreads shows a smaller area than the actual spreads hence if that happens the wildfire 

will spread more than the predicted area destroying people, infrastructure, and resources. Therefore, 

such risks have to be taken under consideration in wildfire disaster management. The models were 

evaluated based on the positive (+) and negative (-) aspects of its spread. The positive (+) sign 

models were chosen from the study to reduce the risks in false alert due to the model. 



50 

  

5.2 Pilot Study 

As an initial study on how a wildfire simulation would behave based on the changes that 

were done to the Rothermel’s model, the demo data of the wildfire, which were provided in the 

GRASS GIS were used. It contains the data of a single wildfire. The results of this pilot study are 

included in this chapter. 

5.2.1 Variable Elimination 

I. Eliminating the “Optimum Packing Ratio” 

Kreye et al. [35] states that ‘surface fuel loading’ is weakly correlated with the ROS (Rate of 

Spread) while wind and fuel attribute hold high correlation. Thus the variables that are related to the 

surface fuel loading such as ‘optimum packing ratio’, which calculates the optimum ratio for 

packing the fuel for efficient spread of a fire can be eliminated. After the said elimination, the spread 

is altered as follows. 

 

Figure 5.2: The output of the Rothermel model without optimum packing ratio 
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II. Eliminating the Ovendry Fuel Loading 

As stated in the Sullivan [36], the fuel load is the weakest identified correlation with the 

ROS. Oven-dry fuel loading is the dried load of the fuel in that area. Thus with that information, a 

rationale can be created that if that variable removed it will not affect the simulation. After the 

elimination, the spread is altered as follows. 

 

Figure 5.3: Output of the Rothermel model without oven-dry fuel loading 
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III. Eliminating the Mineral Damping Coefficient 

The mineral content in fuels can be effective for a spread of fire. The mineral content in most 

wild fuels is at a very much low level. The reason for that is most fuels are consist of biodegradable 

material like plants in a forest. The base Rothermel model [2] gives a small number for the mineral 

content in wildfires in all fuel models used. Based on that rationale the mineral damping coefficient 

is removed and checked the effect. 

 

Figure 5.4: Output from the Rothermel model without mineral damping coefficient 
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IV. Eliminating the Live Moisture/ Live fuel load 

The live moisture is the moisture which is at the top of the fuel bed. Mainly the moisture 

from the air the precipitation is measured as the live moisture. After a wildfire is initiated, the 

radiation [13] effect from the fire front can evaporate the moisture in the fuel instantly. Thus that the 

effect from the live moisture can be removed based on that rationale. 

 

Figure 5.5: Output from the Rothermel model without live moisture 
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V. Eliminating Fuel Particle Moisture 

The fuel particle moisture is calculated based on moisture (lb) and Ovendry wood (lb). The 

amount of moisture which is absorbed by the wood is the final outcome. Thus the absorbed moisture 

can be evaporated by increasing the temperature of wildfire. The effect from the absorbed moisture 

can be in a low state to the spread of the wildfire due to the high temperature on most fire fronts. 

Based on that rationale the alteration was done. 

 

Figure 5.6: Output from the Rothermel model without Fuel particle moisture 

Results from these alterations were used for evaluation of the altered models with the output 

from the base model and the past wildfires. The visualized output maps were exported as shapefiles 

separately. The output shapefiles are then imported into QGIS platform and the symmetrical 

difference between altered models and the base model is taken. The results of the pilot run showed 

the level of deviation of altered models from the base model. 
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5.2.2 Results of the Pilot Study 

I. Jaccard Similarity Coefficient 

Table 5.2: Jaccard Similarity Coefficient - Pilot study 

Model Area of Spread Jaccard Similarity Coefficient 

No Ovendry fuel Loading 39,059 0.01998 

No Optimum packing ratio  1,107,598 0.56668 

No mineral damping coefficient  5,949,304 0.32853 

No Live fuel load 630,522 0.32259 

No fuel particle moisture  6,496,926 0.30084 

 

The Jaccard Similarity Coefficient was calculated according to the (1) equation. It was 

discovered that the best score of 0.56668 was found in the altered models with ‘optimum packing 

ratio’ variable eliminated. Both models with ‘mineral damping coefficient’ and ‘fuel particle 

moisture’ reduced had Jaccard scores of 0.32853 and 0.30084 respectively. The models with ‘live 

fuel load’ and ‘Ovendry fuel loading’ reduced, produced scores of 0.32259 and 0.01998 respectively 

in the pilot study.  

II. Euclidean Distance between mean coordinates 

Results from the alterations and the base model were converted to point layers using the 

mean coordinate module in QGIS. The Euclidean distances between the points were measured for 

the comparison. The benchmark set for the distance is 0. An exact match of the 2 spreads is 

considered as a Euclidean distance 0. The Euclidean distances generally depend on the size of the 

area of spread in the wildfire. Thus the acceptable deviation from the base model may vary from fire 

to fire. 
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Table 5.3: Euclidean distances - Pilot study 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 563.270(-) 

No fuel particle moisture 852.393(+) 

No mineral damping coefficient 800.514(+) 

No Optimum packing ratio 249.442(+) 

No Ovendry fuel Loading 1208.348(-) 

It was discovered that the lowest Euclidean distance of 249.442 meters was found between 

the centroid of the altered model with ‘optimum packing ratio’ variable eliminated and the centroid 

of the base model. Both models with ‘mineral damping coefficient’ and ‘fuel particle moisture’ 

reduced had distances of 800.514 meters and 852.393 meters respectively. The models with ‘live 

fuel load’ and ‘Ovendry fuel loading’ reduced, produced distances of 563.270(-) meters and 

1208.348(-) meters respectively in the pilot study. 

5.2.2 Analysis 

I. Jaccard Similarity Coefficient 

The similarity scores observed in the pilot study depicts average to low scores. Therefore 

these results alone seem to convey that the eliminated variables have a much larger impact on the 

Rothermel’s [2] model than anticipated. But it should be also noted that the terrain used in the demo 

data of GRASS GIS depicts a mostly flat surface without many obstacles that obstruct the fire 

spread in an elliptical shape. Thus the demo data is much more sensitive to any changes when 

compared with terrain that has variable elevations that can be found in most wildfires.  
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II. Euclidean Distance between mean coordinates 

 

Figure 5.7: Mean coordinate deviation - Pilot study  

As compared with the evaluation technique 1 results, the results from the evaluation 

technique 2 also showed nearly the same results. ‘No Live fuel load’, ‘No fuel particle moisture’, 

and ‘No mineral damping coefficient’ models had similar similarity coefficients in the Jaccard 

analysis. Similarly, the Euclidean distances between base spread and altered models are closer to 

each other compared to other distances according to table 5.3. ‘No Optimum packing ratio’ model 

could be observed to have the highest similarity score and the lowest Euclidean distance measured 

while the ‘No Ovendry fuel Loading’ model can be observed to have the lowest similarity score and 

the highest Euclidean distance.  

As noted in section 5.1.2, the positive (+) and the negative (-) signs assigned to the measured 

Euclidean distances are to identify the practicality of the altered models. But since it is not possible 

to derive a viable model from the pilot study itself, the measure will not be that much of a use in this 

scenario. But it is possible to reject (-) models as possible contenders for the viable altered models. 
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 5.3 Sample Data 

The sample of the historical wildfires used for the study is given in the table 5.4. 

Table 5.4: Sample data 

Wildfire 

Name 

State Fire Ignition Fire Containment Lag Time 

(mins) 

Area 

Affected 

(ha) 

Date Time 

(hr) 

Date Time 

(hr) 

McKenna New 

Mexico 

2016/05/06  1300 2016/09/07  0800 178260 10210.0 

Barrel South 

Dakota 

2011/07/19 1500 2011/09/02 1500 64800  3213.0 

Seven Mile Arkansas 2015/10/16 1604 2015/11/06 1315 30071 20.8 

Blue Gravel North 

Carolina 

2015/04/11 1300 2015/04/24 0930 18510 521.0 

Old Timer Idaho 2011/10/01 1500 2011/10/21 1006 28506 117.0 

Rush California 2014/01/19 0800 2014/01/20 1607 1927 0.1 

Tom Basin Nevada 2011/09/30 2200 2011/10/19 2000 27240 5125.0 

West Fork 

Road 

Montana 2015/03/28 1330 2015/04/06 1300 12930 398.0 

Chipmunk 

Spring 

Arizona 2014/07/08 

 

 

1735 2014/07/21 1606 18631 14.0 

Devenport Utah 2016/08/26 1623 2016/09/26 1145 44362 320.0 
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5.4 Results Analysis 

5.4.1 Jaccard Similarity Coefficient Analysis 

I. Analysis: Eliminating the ‘Optimum Packing Ratio’ 

The figure 5.8 illustrates the variability of the Jaccard Similarity Coefficients for the model, 

in which the ‘optimum packing ratio’ variable is eliminated from the base model. Scores are 

calculated for each of the 10 wildfires in the sample. 

 

Figure 5.8: Variability of Jaccard score - ‘Optimum Packing Ratio’ 

The mean of the Jaccard Similarity Coefficient for eliminating the optimum packing ratio 

from the base model is 0.47091 which is calculated based on 10 wildfires from the benchmark 

dataset.  

Mean Jaccard Similarity Coefficient = 0.47091 

The score variability can be affected due to the environment as well. So the score can be 

affected by noise or outlier variables in the environment. However, as seen from the mean of the 

score this model is near to the half of the perfect Jaccard Similarity Coefficient of 1. Thus this model 

can be taken as a weak model when compared to the base model, though it shows a perfect 
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alignment in a few instances. As an example, a perfect match can be observed in Tom basin 

wildfire. But as an average, it greatly underperforms the benchmark level to be selected as a good 

alteration derived from the base model. 

II. Analysis: Eliminating the ‘Ovendry Fuel Loading’ 

The figure 5.9 illustrates the variability of the Jaccard Similarity Coefficients for the model, 

in which the ‘Ovendry fuel loading’ variable is eliminated from the base model. Scores are 

calculated for each of the 10 wildfires in the sample. 

 

Figure 5.9: Variability of Jaccard score - ‘Ovendry Fuel Loading’ 

The mean of the Jaccard Similarity Coefficient for eliminating the Ovendry Fuel Loading 

from the base model is 0.34275 which is calculated based on 10 wildfires from the benchmark 

dataset.  

Mean Jaccard Similarity Coefficient =0.34275 

As seen from the mean this model also shows a weak correlation to the base model. While 

the model scored perfectly in one instance, to all other sample objects below average correlation is 

given. 
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III. Analysis: Eliminating the ‘Mineral Damping Coefficient’ 

The figure 5.10 illustrates the variability of the Jaccard Similarity Coefficients for the model, 

in which the ‘Mineral Damping Coefficient’ variable is eliminated from the base model. Scores are 

calculated for each of the 10 wildfires in the sample. 

 

Figure 5.10: Variability of Jaccard score - ‘Mineral damping coefficient’ 

The mean of the Jaccard Similarity Coefficient for eliminating the mineral damping 

coefficient from the base model is 0.35578 which is calculated based on 10 wildfires from the 

benchmark dataset.  

Mean Jaccard Similarity Coefficient = 0.35578 

As seen from the Jaccard Similarity Coefficient mean, this model too, is not significantly 

matched with the base model. The figure 5.10 shows a high reduction of the intersection of final 

areas of the wildfires. Thus this model may be used to identify the influence of the mineral damping 

coefficient.  
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IV. Analysis: Eliminating the Live Moisture 

The figure 5.11 illustrates the variability of the Jaccard Similarity Coefficients for the model, 

in which the ‘Live moisture’ variable is eliminated from the base model. Scores are calculated for 

each of the 10 wildfires in the sample. 

 

Figure 5.11: Variability of Jaccard score - ‘live fuel load’ 

The mean of the Jaccard Similarity Coefficient for eliminating the ‘live fuel load’ from the 

base model is 0.82279 which is calculated based on 10 wildfires from the benchmark dataset.  

Mean Jaccard Similarity Coefficient = 0.82279 

Due to the high mean Jaccard Similarity Coefficient observed from the sample of 10 fires 

exceeding that of the 3rd quartile of the optimum score, the model can be considered as a success. 

Even Though there is some error, due to the trade-off between the accuracy and eliminating input 

variables, the error may be considered as negligible depending on the context. 
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V. Analysis: Eliminating ‘Fuel Particle Moisture’ 

The figure 5.12 illustrates the variability of the Jaccard Similarity Coefficients for the model, 

in which the ‘Fuel Particle Moisture’ variable is eliminated from the base model. Scores are 

calculated for each of the 10 wildfires in the sample. 

 

Figure 5.12: Variability of Jaccard score - ‘fuel particle moisture’ 

The mean of the Jaccard Similarity Coefficient for eliminating the ‘fuel particle moisture’ 

from the base model is 0.91826, which is calculated based on 10 wildfires from the benchmark 

dataset.  

    Mean Jaccard Similarity Coefficient = 0.91826 

This particular model shows even greater accuracy than the previous model with 0.82279. 

Thus the eliminated variable can be considered to have a lesser effect on the overall model. Thus 

eliminating the variable from the base model may be possible. 
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VI. Analysis of a minor alteration: ’Modified moisture’ 

The figure 5.13 illustrates the variability of the Jaccard Similarity Coefficients for the model 

where live moisture is replaced with 1-hour moisture related to vegetation. Scores are calculated for 

each of the 10 wildfires in the sample. 

 

Figure 5.13: Variability of Jaccard score - ‘modified moisture’  

The mean of the Jaccard Similarity Coefficient for eliminating the fuel particle moisture 

from the base model is 0.94327, which is calculated based on 10 wildfires from the benchmark 

dataset.  

    Mean Jaccard Similarity Coefficient = 0.94327 

The minor change to the model to have produced an acceptable accuracy rate. Even Though 

the modification to the input variables for the base Rothermel model is minor in this case, a minor 

change in input data has produced a valid output relevant to the base model. This also can be used in 

practical scenarios to improve the performance of a model. 
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5.4.2 Euclidean Distances Analysis / MOD Sign Analysis 

The Euclidean distance measure was taken based on the center of mass of each spread. The 

distance measure was intended as a validation method for the results gained from the Jaccard 

Similarity Coefficient and present a strong and novel final argument. 

The distances were changing based on the size of the wildfire. Thus only the sign of the 

distance was used. The sign is measured using a relativity measure. If the size of the altered model 

wildfire spread is larger than the base model, the distance is calculated from the center 

coordinate/mass of the altered model to the base and relative to that the sign is given as positive (+) 

while if the altered model spread is smaller than the base the distance is measured from the base 

model center to altered model center and the sign is given as negative (-). 

Table 5.5: Euclidean distances MOD (Most Occurring Data) Sign analysis 

Model No fuel 

particle 

moisture 

No mineral 

damping 

coefficient 

No Live 

fuel load 

No 

Optimum 

packing 

ratio 

No Ovendry 

fuel Loading 

Modified 

moisture 

Mackenna - + - + + - 

Barrel + + - - - - 

seven mile - + - - - - 

Blue Gravel + + - + - - 

Old Timer - + - + + - 

Rush 0 + 0 + + 0 

Tom basin 0 0 0 0 0 0 

Westfork road 0 + - + + - 

Chipmunk 

Spring 

+ + + + + + 

Devenport - + - + + - 
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If we consider the 0’s also as positives a MOD (Most Occurring Data) sign can be calculated 

based on the signs. The final sign will be the sign which most occurs than the average number of 

cases. Based on that rationale a MOD (Most Occurring Data) sign analysis can be done as follows. 

Since the analysis was done based on 10 wildfires the number of signs in positive (+) or negative (-) 

should be more than 5 to be selected as the MOD sign. 

 No fuel particle moisture :- (+) 

 No mineral damping coefficient :-(+) 

 No Live fuel load :-(-) 

 No Optimum packing ratio :-(+) 

 No Ovendry fuel loading :-(+) 

 Modified moisture :-(+) 

5.4.3 Consensus of Analysis 

When considering the Jaccard Similarity Coefficient Analysis, models that had ‘live fuel 

load’ and ‘fuel particle moisture’ variables eliminated had the highest scores. Other models such as 

‘No mineral damping coefficient’, ‘No Optimum packing ratio’, ‘No Ovendry fuel loading’ were 

observed to have less than moderate scores in the similarity analysis. Therefore when compared to 

the first two models mentioned, the latter three models can be considered less than optimal. But 

nevertheless, these results can be taken as a measure of effect of each variable on the Rothermel’s 

[2] model. The model with a minor alteration of live fuel moisture, based on vegetation named the 

‘Modified moisture’ was observed to have a high similarity score as well.  

When the MOD Sign analysis is considered, most models can be observed to have positive 

signs. Eventhough the ‘No live fuel load’ model had a high similarity score, it is the only model that 

scored negatively. Therefore the ‘No fuel particle moisture’ model can be considered as the most 

optimal model from both analysis. 
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5.5 Individual Sample Wildfire Analysis 

 

 

Figure 5.14: Flow of wildfire analysis 

 

 

 



68 

  

 

5.5.1 MacKenna Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.6: Jaccard Similarity Coefficient - Mackenna wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 396,297,630 * 

No fuel particle moisture 361,209,731 0.91146 

No mineral damping coefficient 2,125,100,890 0.18648 

No Live fuel load 322,226,955 0.81309 

No Optimum packing ratio 1,747,672,548 0.22675 

No Ovendry fuel Loading 2,425,341,496 0.16339 

Modified moisture 358,384,321 0.90433 

* The benchmark model  

‘No particle moisture’, ‘No live fuel load’, and ‘Modified moisture’ models can be observed 

to have high similarity scores of 0.91146, 0.81309, and 0.90433 and other models such as, ‘No 

mineral damping coefficient’, ‘No optimum packing ratio’, and ‘No overdry fuel loading’ models 

can be observed to have rather low similarity scores of 0.18648, 0.22675, and 0.16339. 
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II. Euclidean distance between mean coordinates  

Table 5.7: Euclidean distances - Mackenna wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 3430.094(-) 

No fuel particle moisture 1697.574(-) 

No mineral damping coefficient 9215.572(+) 

No Optimum packing ratio 42,254.861(+) 

No Ovendry fuel Loading 41,273.322(+) 

Modified moisture 1697.574(-) 

 In the Mackenna wildfire, it was discovered that the lowest Euclidean distance from the base 

model spread mean coordinate to altered model coordinates of 1697.574 meters was found in both 

‘No fuel particle moisture’ model and ‘Modified moisture’ model. While ‘No live fuel load’ model 

also displayed somewhat lesser Euclidean distances, the other two models seemingly have a high 

deviation with very large Euclidean distances. The diagrammatic representation of the Euclidean 

distances is given below. 

 

Figure 5.15: Mean coordinate deviation - Mackenna wildfire 
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 Similarly to the Jaccard similarity analysis, the ‘No Live fuel load’, ‘No fuel particle 

moisture’, ‘Modified moisture’ have reasonably similar propagation. Especially the latter two 

models. But in other models, there seem to be very high deviations even having very large 

Euclidean distances more than 40km. 

5.5.2 Barrel Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.8: Jaccard Similarity Coefficient - Barrel wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 719,214,630 * 

No fuel particle moisture 750,390,225 0.95845 

No mineral damping coefficient 858,833,043 0.83743 

No Live fuel load 510,030,084 0.70914 

No Optimum packing ratio 164,986,094 0.22939 

No Ovendry fuel Loading 446,574,980 0.62092 

Modified moisture 718,781,354 0.99939 

* The benchmark model  

As noted in the above table, when compared with other models, ‘No fuel particle moisture’ 

model and ‘No mineral damping coefficient’ model shows high correlations of 0.95845 and 0.83743 

respectively, to the base model. While both ‘No Live fuel load’ and ‘No Ovendry fuel Loading’ 

respectively shows average Jaccard Similarity Coefficient scores of 0.70914 and 0.62092, ‘No 

Optimum packing ratio’ model shows the least correlation of 0.22939. 
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II. Euclidean distance between mean coordinates  

Table 5.9: Euclidean distances - Barrel wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 2448.982(-) 

No fuel particle moisture 332.229(+) 

No mineral damping coefficient 2353.783(+) 

No Optimum packing ratio 6570.379(-) 

No Ovendry fuel Loading 3913.646(-) 

Modified moisture 1.905(-) 

It was discovered that the lowest Euclidean distance of 332.229 meters was found between 

the mean coordinate of the altered model with ‘fuel particle moisture’ variable eliminated and the 

mean coordinate of the base model. Both models with ‘mineral damping coefficient’ and ‘Live fuel 

load’ reduced had distances of 2353.783 meters and 2448.982(-) meters respectively. The models 

with ‘optimum packing ratio’ and ‘ovendry fuel loading’ reduced, produced distances of 6570.379(-

) meters and 3913.646(-) meters respectively in the study. The diagrammatic representation of 

Euclidean distance between mean coordinate deviations from the base model mean coordinate is 

illustrated in the figure 5.16. 
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Figure 5.0:16: Mean coordinate deviation - Barrel wildfire 

5.5.3 Seven Mile Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.10: Jaccard Similarity Coefficient - Seven Mile wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 120,754  * 

No fuel particle moisture 66,259 0.54871 

No mineral damping coefficient 507,167 0.23809 

No Live fuel load 40,880 0.33854 

No Optimum packing ratio 43,900 0.36354 

No Ovendry fuel Loading 52,880 0.43791 

Modified moisture 107,411 0.88949 

* The benchmark model   



73 

  

The ‘Seven Mile’ wildfire only produces average to low similarity coefficient scores when 

compared with the Rothermel model’s spread except for ‘Modified moisture’ model. While the 

‘Modified moisture’ model can be observed to have a similarity value of 0.88949, the next highest 

similarity score is the 0.54871 score of ‘No fuel particle moisture’ model. ‘No Ovendry fuel 

loading’, ‘No Optimum packing ratio’, ‘No Live fuel load’, and ‘No mineral damping coefficient’ 

models display similarity scores of 0.43791, 0.36354, 0.33854, and 0.23809 respectively.  

II. Euclidean distance between mean coordinates  

Table 5.11: Euclidean distances - Seven Mile wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 31,528.352(-) 

No fuel particle moisture 21,072.510(-) 

No mineral damping coefficient 32,856.01(+) 

No Optimum packing ratio 10,258.53(-) 

No Ovendry fuel Loading 38,672.240(-) 

Modified moisture 9,528(-) 

 The Euclidean distances between the mean coordinate for the base model and mean 

coordinates for the altered models in ‘Seven Mile’ wildfire, also reflects its Jaccard Similarity 

analysis. ‘Modified moisture’ model holds the lowest Euclidean distance of 9528m and the 

Euclidean distances for ‘No Optimum packing ratio’, ‘No fuel particle moisture’, ‘No Live fuel 

load’, ‘No Ovendry fuel Loading’, and ‘No mineral damping coefficient’ are 10,258.53, 21,072.510, 

31,528.352, 38,672.240, and 38,672.240. The deviations of altered models stated in the table 5.11 

can be illustrated in the figure 5.17. 
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Figure 5.17: Mean coordinate deviation - Seven Mile wildfire 

5.5.4 Blue Gravel Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.12: Jaccard Similarity Coefficient - Blue Gravel 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 1,923,055  * 

No fuel particle moisture 2,173,423 0.88480 

No mineral damping coefficient 6,091,734 0.31568 

No Live fuel load 1,867,353 0.97103 

No Optimum packing ratio 1,728,010 0.89857 

No Ovendry fuel Loading 904,747 0.47047 

Modified moisture 1,916,817 0.99675 

* The benchmark model  
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In the Blue Gravel wildfire, it can be observed that ‘No fuel particle moisture’, ‘No Live fuel 

load’, and ‘No Optimum packing ratio’ can be observed to show high coefficient scores when 

compared with other models. They are respectively 0.88480, 0.97103, and 0.89857. ‘No mineral 

damping coefficient’ and ‘No Ovendry fuel loading’ both show low coefficient scores of 0.31568 

and 0.47047. 

II. Euclidean distance between mean coordinates  

Table 5.13: Euclidean distances - Blue Gravel wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 15,900.000(-) 

No fuel particle moisture 1907.864(+) 

No mineral damping coefficient 17,991.055(+) 

No Optimum packing ratio 3136.562(+) 

No Ovendry fuel Loading 26,394.390(-) 

Modified moisture 8.373(-) 

 

It was discovered that the lowest Euclidean distance of 1907.864 meters was found between 

the mean coordinate of the altered model with ‘fuel particle moisture’ variable eliminated and the 

mean coordinate of the base model. Both models with ‘mineral damping coefficient’ and ‘Live fuel 

load’ reduced, had distances of 17,991.055 meters and 15,900 meters respectively. The models with 

‘optimum packing ratio’ and ‘ovendry fuel loading’ reduced, produced Euclidean distances of 

3136.562 meters and 26,394.390 meters respectively in the study. The diagrammatic representation 

of mean coordinate deviations from the table 5.13 is illustrated in the figure 5.18. 
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Figure 5.18:  Mean coordinate deviation - Blue Gravel wildfire 

5.5.5 Old Timer Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.14: Jaccard Similarity Coefficient - Old Timer wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 25,847,578  * 

No fuel particle moisture 26,069,581 0.99148 

No mineral damping coefficient 924,580,885 0.02795 

No Live fuel load 22,620,147 0.87513 

No Optimum packing ratio 10,136,539 0.39216 

No Ovendry fuel Loading 490,602,070 0.05268 

Modified moisture 25,300,278 0.97882 

* The benchmark model  
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For the ‘Old Timer’ wildfire, it was discovered that ‘No fuel particle moisture’, ‘No live fuel 

load’, and ‘Modified moisture’ models present a good level of correlation to the base model. Their 

Jaccard Similarity Coefficients are 0.99148, 0.87513, and 0.97882. But ‘No Optimum packing 

ratio’, ‘No mineral damping coefficient’, and ‘No ovendry fuel loading’ display low level of 

correlations of 0.39216, 0.02795, and 0.05268. 

II. Euclidean distance between mean coordinates 

Table 5.15: Euclidean distances - Old Timer wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 630.836(-) 

No fuel particle moisture 49.391(-) 

No mineral damping coefficient 19,574.587(+) 

No Optimum packing ratio 1725.655(+) 

No Ovendry fuel Loading 16,986.660(+) 

Modified moisture 94.519(-) 

 Similarly to the Jaccard Similarity Coefficient for the ‘Old Timer’ wildfire, ‘No fuel particle 

moisture’, ‘No Live fuel load’, and ‘Modified moisture’ models’ mean coordinates show closer 

Euclidean distances to the base model mean coordinates. Especially ‘No fuel particle moisture’ and 

‘Modified moisture’ models. They show 49.391m and 94.519m Euclidean distances respectively. 

Except for ‘No Live fuel load’, which shows 630.836m Euclidean distance, other models show 

rather high Euclidean distances. The diagrammatic representation of mean coordinate deviations 

from the table 5.15 is illustrated in the figure 5.19. 



78 

  

 

Figure 5.19: Euclidean distances - Old Timer wildfire 

5.5.6 Rush Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.16: Jaccard Similarity Coefficient - Rush wildfire 

Model  Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 30,605  * 

No fuel particle moisture 30,605 1.00000 

No mineral damping coefficient 381,666 0.08018 

No Live fuel load 30,605 1.00000 

No Optimum packing ratio 504,537 0.06065 

No Ovendry fuel Loading 2,137,870 0.01431 

Modified moisture 30,605 1.00000 

* The benchmark model  
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Similarly to the ‘Old Timer’ wildfire, ‘Rush’ wildfire displays a good Similarity score for 

‘No fuel particle moisture’, ‘No live fuel load’, and ‘modified moisture’ models. But in this case, 

they seem to be at perfect accuracy. While the previously noted models show such accuracy, ‘No 

mineral damping coefficient’, ‘No optimum packing ratio’, and ‘No ovendry fuel loading’ display 

abysmal similarity rates of 0.08018, 0.06065, and 0.01431.   

II. Euclidean distance between mean coordinates 

Table 5.17: Euclidean distances - Rush wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 0.000 

No fuel particle moisture 0.000 

No mineral damping coefficient 272.983(+) 

No Optimum packing ratio 610.072(+) 

No Ovendry fuel Loading 855.772(+) 

Modified moisture 0.000 

It was observed that in ‘Rush’ wildfire, since the spread output for the base model, ‘No fuel 

particle moisture’, ‘No live fuel load’, and ‘modified moisture’ were the same, there were no 

Euclidean distances between them. Though the other models too displayed lesser Euclidean 

distances between their spread mean coordinates and base model mean coordinates when compared 

to previous wildfires observed, this may be mainly due to the smaller size of this particular wildfire. 

The diagrammatic representation of Euclidean distances depicted in the table 5.17 is illustrated in 

the figure 5.20. 
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Figure 5.20: Mean coordinate deviation - Rush wildfire 

5.5.7 Tom Basin Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.18: Jaccard Similarity Coefficient - Tom Basin wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 548,424  * 

No fuel particle moisture 548,424 1.00000 

No mineral damping coefficient 548,424 1.00000 

No Live fuel load 548,424 1.00000 

No Optimum packing ratio 548,424 1.00000 

No Ovendry fuel Loading 548,424 1.00000 

Modified moisture 548424 1.00000 

* The benchmark model   
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In the ‘Tom Basin’ wildfire, all altered models and the base model displayed the same spread 

output leading to perfect similarity scores for all models. 

II. Euclidean distance between mean coordinates 

Table 5.19: Euclidean distances - Tom Basin wildfire 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 0.000 

No fuel particle moisture 0.000 

No mineral damping coefficient 0.000 

No Optimum packing ratio 0.000 

No Ovendry fuel Loading 0.000 

Modified moisture 0.000 

 As noted in the similarity analysis above, since the spread output is the same for all models, 

the mean coordinates are the same for each model. Thus the Euclidean distances are 0. The 

diagrammatic representation of the table 5.19 is illustrated in the figure 5.21 s well. 

 

Figure 5.21: Mean coordinate deviation - Tom Basin wildfire 
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5.5.8 Westfork Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.20: Jaccard Similarity Coefficient - Westfork Road wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 816,177,851  * 

No fuel particle moisture 816,177,851 1.00000 

No mineral damping coefficient 3,264,711,404 0.25004 

No Live fuel load 627,549,115 0.76688 

No Optimum packing ratio 1,428,311,239 0.57142 

No Ovendry fuel Loading 2,530,151,338 0.32258 

Modified moisture 613,972,798 0.75225 

* The benchmark model   

Again, ‘No fuel particle moisture’, ‘No live fuel load’, and ‘modified moisture’ models can 

be observed to have good similarity scores. Particularly ‘No fuel particle moisture’ have perfect 

similarity. The other two models display 0.76688 and 0.75225 similarity scores respectively. 

Though ‘No mineral damping coefficient’, ‘No Optimum packing ratio’, and ‘No Ovendry fuel 

loading’ models can be observed to have comparably low similarity scores of 0.25004, 0.57142, and 

0.32258 respectively.  
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II. Euclidean distance between mean coordinates 

Table 5.21: Euclidean distances - Westfork Road wildfire 

Model  Euclidean Distance from base model Center (in Meters) 

No Live fuel load 1312.680(-) 

No fuel particle moisture 0.000 

No mineral damping coefficient 23,054.204(+) 

No Optimum packing ratio 36,833.638(+) 

No Ovendry fuel Loading 40,811.292(+) 

Modified moisture 1176.679(-) 

 While ‘No fuel particle moisture’ model shows no Euclidean distance to the base model 

mean coordinates due to being identical to the base model in the spread,  both ‘No live fuel load’ 

and ‘Modified moisture model’ can be observed to have Euclidean distances of 1312.680 and 

1176.679. While >1km can be considered a relatively high error, due to the size of the wildfire, it 

can be considered acceptable. The diagrammatical representation of the Euclidean distances in table 

5.21 is illustrated in figure 5.22.  
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Figure 5.22: Mean coordinate deviation - Westfork Road wildfire 

5.5.9 Chipmunk Spring Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.22: Jaccard Similarity Coefficient - Chipmunk Spring wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 521,120,477  * 

No fuel particle moisture 520,550,664 0.99890 

No mineral damping coefficient 1,302,801,193 0.41000 

No Live fuel load 507,726,563 0.97429 

No Optimum packing ratio 1,615,473,478 0.32258 

No Ovendry fuel Loading 4,585,860,197 0.11363 

Modified moisture 514,010,588 0.98635 

* The benchmark model  
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In the ‘Chipmunk Spring’ wildfire, ‘No fuel particle moisture’, ‘No live fuel load’, and 

‘Modified moisture’ models have near perfect Jaccard Similarity Scores of 0.99890, 0.97429, and 

0.98635. Although other 3 models display average to low similarity scores of 0.41000, 0.32258, and 

0.11363 respectively in ‘No mineral damping coefficient’, ‘No optimum packing ratio’, and ‘No 

ovendry fuel loading’. 

II. Euclidean distance between mean coordinates 

Table 5.23: Euclidean distances - Chipmunk Spring 

Model Euclidean Distance from base model Center (in Meters) 

No Live fuel load 176.431(+) 

No fuel particle moisture 98.569(+) 

No mineral damping coefficient 4285.572(+) 

No Optimum packing ratio 30,346.306(+) 

No Ovendry fuel Loading 29,146.993(+) 

Modified moisture 110.561(+) 

 The near-perfect similarity scores displayed in the evaluation technique 01 for ‘Chipmunk 

Spring’ wildfire is also reflected in the Euclidean distance analysis. ‘No live fuel load’, ‘No fuel 

particle moisture’, and ‘Modified moisture’ model mean coordinates can be observed to have 

Euclidean distances to the base model mean coordinate of respectively, 176.431, 98.659, and 

110.561 in meters. Though comparably, other models can be observed to have rather high Euclidean 

distances. The diagrammatic representation of the Euclidean distance given in the table 5.23 is 

illustrated in figure 5.23. 
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Figure 5.23: Mean coordinate deviation - Chipmunk Spring wildfire 

5.5.10 Devenport Wildfire 

I. Jaccard Similarity Coefficient 

Table 5.24: Jaccard Similarity Coefficient - Devenport wildfire 

Model Area of spread(m2) Jaccard Similarity Coefficient 

Base(Rothermel model) 122,360,860  * 

No fuel particle moisture 137,669,788 0.88880 

No mineral damping coefficient 577,157,759 0.21201 

No Live fuel load 95,418,316 0.77981 

No Optimum packing ratio 189,988,979 0.64404 

No Ovendry fuel Loading 528,263,951 0.23163 

Modified moisture 113,230,887 0.92538 

* The benchmark model  
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Similarly to previous samples, ‘No particle moisture’, ‘No fuel load’, and ‘Modified 

moisture’ models display high similarity scores of 0.88880, 0.77981, and 0.92538. But ‘No mineral 

damping coefficient’ and ‘No ovendry fuel loading’ models display low similarity scores of 0.21201 

and 0.23163 and ‘No optimum packing ratio’ only displays a moderate similarity score of 0.64404.  

II. Euclidean distance between mean coordinates 

Table 5.25: Euclidean distances - Devenport wildfire 

Model  Euclidean Distance from base model Center (in Meters) 

No Live fuel load 962.119(-) 

No fuel particle moisture 599.823(-) 

No mineral damping coefficient 6411.359(+) 

No Optimum packing ratio 1173.777(+) 

No Ovendry fuel Loading 7483.117(+) 

Modified moisture 38.387(-) 

 

 ‘No live fuel load’, ‘No fuel particle moisture’, and ‘Modified moisture’ model mean 

coordinates can be observed to have Euclidean distances to the base model mean coordinate of 

respectively, 962.119, 599.823, and 38.387 in meters. ‘No optimum packing ratio’ has a moderately 

lesser Euclidean distance, but ‘No mineral damping coefficient’ and ‘No oven dry fuel loading’ 

display large Euclidean distances of 6411.359 and 7483.117 respectively. The diagrammatical 

representation of the Euclidean distances in table 5.25 can be illustrated in the figure 5.24. 
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Figure 5.24: Mean coordinate deviation - Devenport wildfire 

5.6 Discussion 

 Among the six altered models investigated in chapter 5, it was discovered that the models 

that had ‘fuel particle moisture’ and ‘live fuel load’ variables eliminated, had the best Jaccard 

Similarity scores of 0.91826 and 0.82279. Furthermore, the ‘modified moisture’ model too had a 

similarity coefficient of 0.94327. But since the purpose of the research was to enhance an existing 

wildfire propagation model by eliminating barriers that obstructed the implementation of the said 

model in a real-time wildfire propagation prediction system in developing countries, the former two 

findings can be considered as the major findings of the research. Furthermore, the Euclidean 

distance analysis between centers of masses of model spreads indicates that the better model 

between ‘No fuel particle moisture’ and ‘No live fuel load’ in a practical perspective, is the ‘No fuel 

particle moisture’ model, based on their MOD signs as well as the similarity coefficient.  

 As another finding of the research, the ‘modified moisture’ model can be presented. The 

accuracy of a model can be enhanced using the modified moisture input in wildfire simulation. 

Another secondary discovery was that some of the rationale taken for the selection of potential 

variables that could be eliminated, were conflicted when compared with the results of this study. 

The design of the study was to determine the correlation of the selected variables. Sullivan [36] 

noted that the fuel load is the weakest identified correlation with the rate of spread. But when 
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‘Ovendry fuel loading’ variable was eliminated, only a similarity score of 0.34275 was achieved. 

The variable, ‘Optimum packing ratio’ was selected from Kreye et al.’s [35] statement that ‘surface 

fuel loading’ is the weakest correlation with the rate of spread. But when ‘Optimum packing ratio’, a 

variable that is related to deriving the surface fuel loading was eliminated, the resulting correlation 

was as low as 0.47091. Similarly ‘Mineral damping coefficient’ variable can be observed to have a 

larger impact on the Rothermel’s model that it was presumed to be. The similarity coefficient 

acquired for the ‘No mineral damping coefficient’ was as low as 0.35578. 

The novelty of the study lies in the fact that even though there have been many enhancement 

on existing fire behavior models as noted in the sections 2.3 and 2.4, there haven’t been any attempt 

at enhancing the Rothermel’s model [2] by eliminating its variables and achieving an acceptable 

accuracy rate to the extent of the knowledge of the research team. The closest study that was found 

by the authors of this research was by Karouni et al. [28], who proposed a semi-empirical model that 

may better suit a developing country such as Lebanon. While they proposed a semi-empirical model 

by simplifying Rothermel’s model [2] combining with Andersons’s [6] experimental study, even 

though it was intended for the ecosystem of Lebanon, it was not validated by using historical 

wildfires. Thus unlike Karouni et al.’s [28] study, the purpose of this particular research was to 

differentiate itself by investigating the Rothermel’s model for weaker input variables and enhancing 

the model by eliminating those variables. In order to ensure the realism of the findings, a set of 

historical wildfire data was used for evaluation as well, unlike Karouni et al.’s study. Furthermore, 

the authors proposed a novel wildfire propagation model analysis framework to assess the 

practicality of a wildfire propagation model in real world. It was named MOD (Most Occurring 

Data) Sign analysis and is a simple measure that is easy to understand and use. 

 There are several limitations to the study. One is that even though there are 24 variables in 

the Rothermel’s model, the research only investigates five variables, although they are based on 

some rationale. Some variables such as wind direction, wind speed, elevation, fire origin etc. have a 

very high impact on the model output, thus cannot be eliminated. But the effect of eliminating these 

variables could have been still investigated. Another limitation is that even if the effects of a single 

variable elimination was investigated in the research, there could still be combinations of the 

selected variables that could produce an even better result. Yet another weakness was the inability to 

produce real fire spreads for the sample wildfires in order to compare them against the Rothermel’s 

model and altered models. The benchmark considered in the study is the Rothermel’s model, not the 
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real spread. Thus any attempt to prove the superiority of altered models over the Rothermel’s model 

is not possible in this study. 

5.7 Summary 

 This chapter elaborated on the evaluation experiment and result analysis of the research. A 

set of models were derived from the Rothermel’s surface fire behavior model and the analysis was 

carried out in two phases. 1) Pilot wildfire analysis 2) Sample wildfire analysis. The primary 

measure taken was the Jaccard Similarity Coefficient. As a secondary measure, Euclidean distances 

from the center of mass of the benchmark model to each altered model center of mass and MOD 

Sign analysis was applied to measure the practicality of the altered models.  
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Chapter 06 

Conclusion 

 In this chapter, a conclusion and a summary of the study in relation to its research aims & 

objectives, research problem, and limitations of the current work is given. Furthermore, at the end of 

the chapter, suggestions for future works are discussed as well. 

6.1 Conclusion 

In this thesis, a study was conducted to enhance an existing wildfire behavior model to use 

fewer resources in a practical implementation as the research problem. To achieve this, initially the 

background literature was studied to select a suitable model and the Rothermel’s surface fire 

behavior model was selected based on a set of criteria. Afterward, a set of altered models were 

implemented by eliminating a few variables from the Rothermel’s model and a sample of historical 

fires was acquired from a benchmark dataset. Then an implementation and configuration process 

was carried out via GRASS GIS. Finally, the output spread files for altered models were compared 

against benchmark Rothermel’s model output using the Jaccard Similarity score and Euclidean 

distance between the centers of masses in spreads. 

It was discovered in the analysis that among the altered models, acceptable high similarity 

scores were found in models where ‘fuel particle moisture’ and ‘live fuel load’ variables were 

eliminated. But from the MOD Sign analysis, it was conveyed that in practical perspective, ‘No fuel 

particle moisture’ model was better than ‘No live fuel load’. A secondary finding was the ‘Modified 

moisture’ model that performed with high accuracy when compared with the benchmark spread. 

The significance of the high similarity coefficients in the ‘no fuel particle moisture’ and ‘no 

live fuel load’ models is that these eliminated variables have very less effect on the overall 

Rothermel’s model. Therefore it may be possible to eliminate the variable altogether from the model 

albeit at the cost of a small reduction in the overall accuracy. But eliminating these variables may 

lead to the reduction of resources, effort, and cost required to establish the infrastructure for 

acquiring the inputs for the model. Rothermel’s model is one of the most essential propagation 
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models in the current day and many propagation prediction systems make use of the model due to its 

accuracy and applicability. But the model itself has 24 variables. For a country or a region that has 

fewer resources in hand but a real need to implement a wildfire propagation prediction system, they 

can use an altered model with less variables instead of Rothermel’s model with an acceptable loss of 

accuracy.  

Furthermore, the study proposed a novel assessment framework to evaluate the practical 

feasibility of the altered models by calculating the MOD sign for each altered models. Since the 

altered models were supposed to simplify the Rothermel’s model, errors in accuracy were expected. 

In a particular wildfire scenario, if the model output spread area is greater than that of the actual 

wildfire spread, the decisions taken considering the model output can be adjusted from the feedback 

from local firefighters and remote sensors. But if the predicted spread is lesser than the actual 

spread, then it may result in directing assets to areas already under threat. Thus decisions based on 

this information may lead assets into danger more than the alternative. MOD Sign analysis was 

intended as a simple mean to ensure that the altered models do not possess operational dangers when 

associated with real-time wildfire disaster management and decision making.  

6.2 Future Work 

The approach used in the study is novel and can be used for further researches as well as 

adding improvements for the methodology used. The Grass GIS doesn't provide a complete guide on 

conducting wildfire simulations using the software and therefore, a separate tool which helps for 

easy alteration of the base model and integration with a GIS can be explored. The Rothermel model 

is used as the base model for the study but there are some other models which are used for other 

aspects like crown fire, spotting etc. These models too can be explored for alteration and 

optimization opportunities. The Rothermel model is developed by adding other aspect models as 

well in the modern wildfire simulation systems. An approach to compare the performance of those 

improved wildfire simulation models with basic models can be explored in future researches using 

this type of GIS-based visualization methodology. 

 Another possible avenue would be to localize a fire behavior model so that it would better 

represent the behavior of a fire in a specific region. In this case, modifying a fire behavior model 

that is optimized to better suit a forest area in Sri Lanka that is heavily under wildfire threat is a 

great opportunity for a future study.  
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 As this research only explored the wildfire propagation prediction, it is also possible to 

investigate the possibility of integrating wildfire detection as well. Such a thing can be achieved via 

IoT sensor kits, UAVs or even by continuing in the same avenue of GIS by utilizing satellites as 

wildfire detection and monitoring agents. Furthermore, a real-time web application can be 

developed that has both the wildfire detection and propagation prediction capabilities as well. 



94 

  

References 

[1] C. Bielski et al., "Coupling early warning services, crowdsourcing, and modelling for 

improved decision support and wildfire emergency management", 2017 IEEE International 

Conference on Big Data (Big Data), 2017. 

[2] R. Rothermel, “A mathematical model for predicting fire spread in wildland fuels”. 

Intermountain Forest And Range Experiment Station., 1972 

[3] C. Wagner, "A Simple Fire Growth Model", Department of fisheries and forestry, Petawawa 

Forest Experiment Station, Chalk River, Ontario, 1969. 

[4] C. Wagner. “Condition for the start and spread of a crown fire”. Ontario: Canadian Forest 

service petawawa forest experiment station, pp. 23-34, 1977 

[5] F. Albini, M. Alexander, and M. Cruz, “A mathematical model for predicting the maximum 

potential spotting distance from a crown fire”. International Journal of Wildland Fire, 2012 

[6] H. Anderson, “Predicting Wind- Driven Wild Land Fire Size and Shape”. Intermountain 

Forest and Range Experiment Station Ogden, UT 84401,1983 

[7] D. Anderson, E. Catchpole, N. De Mestre and T. Parkes, "Modelling the spread of grass 

fires", 1982. 

[8] M. Finney, “FARSITE”. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Rocky 

Mountain Research Station, 2004. 

[9] P. Andrews, “BEHAVE: fire behaviour prediction and fuel modelling system – 

BURNsubsystem,Part1”, USDAForestService, Intermountain Forest and Range Experiment 

Station, General Technical Report INT194, 1986. 

 

 



95 

  

[10] D.  Crawl, J.  Block, K.  Lin and I.  Altintas, "Firemap: A Dynamic Data-Driven Predictive 

Wildfire Modeling and Visualization Environment", Procedia Computer Science, vol. 108, 

pp. 2230-2239, 2017. 

[11] "Wildfire and People", Ruk, no. 33, pp. 1-36, 2017. 

[12] "Mathematical Modeling", Mat.univie.ac.at, 2018. [Online]. Available: 

https://www.mat.univie.ac.at/~neum/model.html. [Accessed: 15- Nov- 2018]. 

[13] R.O. Weber, “Analytical models for fire spread due to radiation”, Combustion and Flame vol. 

78, pp. 398-408, 1989 

[14] "Software can model how a wildfire will spread", The Economist, 2018. [Online]. Available: 

https://www.economist.com/science-and-technology/2018/08/02/software-can-model-how-a-

wildfire-will-spread. [Accessed: 15- Nov- 2018]. 

[15] W. L. Fons, “Analysis of fire spread in light forest fuels”. Journal of Agricultural Research, 

pp. 93-121, 1946. 

[16] Tarifa, C. S., and A. M. Torralbo, “Flame propagation along the interface between a gas and a 

reacting medium”. Eleventh Symposium (International) on Combustion (Berkeley, California 

1967). Pittsburgh: The Combust. Inst, Pp. 533-544, 1967. 

[17] F. Albini, “Spot fire distance from burning trees - a predictive model”, USDA Forest Service, 

Intermountain Forest and Range Experimental Station, General Technical Report INT-56, 

1979. 

[18] Albini et al., “Calibration of a large fuel burnout model”, International Journal of Wildland 

Fire, vol. 5, pp. 81-91, 1995. 

[19] F. Albini, M. Alexander, “Potential Spotting Distance from Wind-Driven Surface Fires”. 

Intermountain Forest And Range Experiment Station., 1983 

[20] A. McArthur, “Weather and grassland fire behavior”, Leaflet 100, Commonwealth 

Department of National Development, Forestry and Timber Bureau, 1966. 



96 

  

[21] A. Grishin, “Steady-state propagation of the front of a high-level forest fire”. Soviet physics, 

Doklady, vol. 28, no. 4, pp. 328-330, 1984. 

[22] G. Dorrer, “A model of the spreading of a forest fire”, Heat Transfer - Soviet Research, vol. 

16, pp. 39 -55, 1984. 

[23] M. Finney, “FARSITE”. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Rocky 

Mountain Research Station, 2004. 

[24] Finney, M. A. 2006. “An overview of FlamMap fire modeling capabilities”. In: Fuels 

management—how to measure success: conference proceedings. 2006 March 28-30; Portland, 

Oregon. Proceedings RMRS-P-41. Fort Collins, CO: U.S. Department of Agriculture, Forest 

Service, Rocky Mountain Research Station: pp. 213-220. 

[25] R. Rothermel, “Predicting Behavior and Size of Crown Fires in Northern Rocky Mountains”. 

Intermountain Forest And Range Experiment Station, 1991 

[26] Karafyllidis I, “Acceleration of cellular automata algorithms using genetic algorithms” 

Advances in Engineering Software, vol. 30, no. 6, pp.  419–437, 1999. 

[27] Zhang Yongzhong, E. Youhao, Han Tao, Zou Songbing and Wang Jihe, "A CA-based 

information system for surface fire spreading simulation", 2018. 

[28] A. Karouni, B. Daya, S. Bahlak and P. Chauvet, "A Simplified Mathematical Model for Fire 

Spread Predictions in Wildland Fires Combining between the Models of Anderson and 

Rothermel", International Journal of Modeling and Optimization, vol. 4, no. 3, pp. 197-200, 

2014. 

[29] Lopes A, Cruz M, Viegas D, “Firestation – an integrated system for the simulation of wind 

flow and fire spread over complex topography”, in III International Conference on Forest 

Fire Research and 14th Conference on Fire and Forest Meteorology, Luso, Portugal, Nov. 

1998, pp. 16–20. 

 

 



97 

  

[30] J. Coen, M. Cameron, J. Michalakes, E. Patton, P. Riggan and K. Yedinak, "WRF-Fire: 

Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting 

Model", Journal of Applied Meteorology and Climatology, vol. 52, no. 1, pp. 16-38, 2013. 

[31] D.  Crawl, J.  Block, K.  Lin and I.  Altintas, "Firemap: A Dynamic Data-Driven Predictive 

Wildfire Modeling and Visualization Environment", Procedia Computer Science, vol. 108, 

pp. 2230-2239, 2017. 

[32] R.M. Nelson, “Prediction of diurnal change in 10-h fuel stick moisture content”, Canadian 

Journal of Forest Research, 30:1071-1087 2000 

[33] G. Perry, "Current approaches to modelling the spread of wildland fire: a review", Progress in 

Physical Geography, vol. 22, no. 2, pp. 222-245, 1998. 

[34] G. Perry, A. Sparrow and I. Owens, "A GIS-supported model for the simulation of the spatial 

structure of wildland fire, Cass Basin, New Zealand", Journal of Applied Ecology, vol. 36, no. 

4, pp. 502-518, 1999. 

[35] J. Kreye, L. Kobziar and W. Zipperer, "Effects of fuel load and moisture content on fire 

behaviour and heating in masticated litter-dominated fuels", International Journal of 

Wildland Fire, vol. 22, pp. 440–445, 2013. 

[36] A. Sullivan, "Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-

empirical models", CSIRO Sustainable Ecosystems and CSIRO Climate Adaptation Flagship, 

2009. 

[37] A. Sullivan, "Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-

physical models", CSIRO Sustainable Ecosystems and CSIRO Climate Adaptation Flagship, 

2009. 

[38] A. Sullivan, "Wildland surface fire spread modelling, 1990–2007. 3: Simulation and 

mathematical analogue models", CSIRO Sustainable Ecosystems and CSIRO Climate 

Adaptation Flagship, 2009. 

 



98 

  

[39] L. Hawley, “Theoretical considerations regarding factors which influence forest fires”, 

Journal of Forestry, vol. 24, no. 7, pp. 756–763, 1926 

[40] H. Gisborne, “The objectives of forest fire-weather research”, Journal of Forestry, vol. 24, 

no. 7, pp. 756–763, 1927. 

[41] H. Gisborne, “The complicated controls of fire behavior”, Journal of Forestry, vol. 24, no. 7, 

pp. 756–763, 1929. 

[42] J. Curry, W. Fons, “Rate of spread of surface fires in the Ponderosa pine type of California”, 

Journal of Agriculture Research, vol. 57, no. 4, pp. 239-267, 1938. 

[43] J. Curry, W. Fons, “Forest-fire behavioral studies”, Mechanical Engineering, vol. 62, pp. 219-

225, 1940. 

[44] J. Sanderlin, J. Sunderson, “Simulation for wildland fire management and planning support 

(fireman): executive summary”, Mission Research Corp, spec. 200, 1975. 

[45] J. Sanderlin, R. Van Gelder, “Simulation of fire behavior and suppression effectiveness for 

operational support”, in Wildland Fire Management. Proceedings of the First International 

Conference on Mathematical Modeling, Rolla, MO, Sept. 1977, vol. 2, pp. 619-630. 

[46] G. Richards, “A general mathematical framework for modeling two-dimensional woodland 

fire spread”, International Journal of wildland fire, vol. 5, pp. 63-72, 1995. 

[47] G. Guariso, and M. Baracani. “A simulation software of forest fires based on two-level 

cellular automata”, in Proceedings of the IV International Conference on Forest Fire 

Research, 2002 Wildland Fire Safety Summit, Luso, Portugal, Nov. 2002, pp. 100. 

[48] D. Green, A. Tridgell and A. Gill, "Interactive simulation of bushfires in heterogeneous 

fuels", Mathematical and Computer Modelling, vol. 13, no. 12, pp. 57-66, 1990. 

[49] J. Coleman and A. Sullivan, "A real-time computer application for the prediction of fire 

spread across the Australian landscape", SIMULATION, vol. 67, no. 4, pp. 230-240, 1996. 

 



99 

  

[50] J. Kreye, L. Kobziar and W. Zipperer, "Effects of fuel load and moisture content on fire 

behaviour and heating in masticated litter-dominated fuels", 2018. 

[51] V. Petras, "Wildfire modeling in GRASS GIS", Geospatial Modeling and Analysis North 

Carolina State University, 2014. 

[52] P. Offermann, O. Levina, M. Schönherr and U. Bub, "Outline of a design science research 

process", Proceedings of the 4th International Conference on Design Science Research in 

Information Systems and Technology - DESRIST '09, 2009. 

[53] G. Morgan, J. Gliner and R. Harmon, "Quantitative Research Approaches", Journal of the 

American Academy of Child & Adolescent Psychiatry, vol. 38, no. 12, pp. 1595-1597, 1999. 

[54] P. Jaccard, “E´tude comparative de la distribution florale dans une portion des Alpes et des 

Jura”, Bulletin de la Socie´te´ Vaudoise des Sciences Naturelles, vol. 37, pp. 547–579, 1901. 

[55] J. Filippi, V. Mallet and B. Nader, "Representation and evaluation of wildfire propagation 

simulations", 2018. 

[56] P. Thomas, “Some aspects of the spread and growth of fire in the open”, Forestry, vol. 20, pp. 

139-164, 1967. 

[57] R. Weber, “Thermal theory for determining the burning velocity of a laminar flame using the 

inflection point in the temperature profile”, Combustion and Flame, vol. 78, pp. 398-408, 

1989. 

[58] R. Weber, “Modelling fire spread through fuel beds”, Progress in Energy and Combustion 

Science, vol. 17, pp. 67-82, 1991. 

[59] C. Chandler, P. Cheney, P. Thomas, L. Trabaud, and D. Williams, “Fire in forestry”, Forest 

fire behavior and effects, vol. 1, pp. 39-52, 1983. 

[60] B. Stocks, B. Lawson, M. Alexander, C. van Wagner, R. McAlphine, T. Lynham, and C. 

Dubé, “The Canadian Forest Fire Danger Rating System: an overview”, Forestry Chronicle, 

vol. 65, pp. 450-457, 1989. 

 


