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Abstract 

 

Course timetabling in general is considered a complex, and time-consuming task to be performed 

manually due to its NP-hard nature. The problem domain can be defined as assignment of events 

conducted by a set of lecturers into timeslots and rooms subject to a given set of hard and soft 

constraints. A timetable that satisfies all hard constraints is known as a feasible schedule. Even 

though the feasibility of a timetable depends on hard constraints, quality relies on soft constraints 

the system needs to satisfy. Minimizing the number of soft constraint violations increase the quality 

of the solution as it would satisfy user requirements to a greater extent. This implies that the quality 

of a timetable can be predicted with the unmet amount of soft constraints and the total number of 

soft constraints the system includes. But time is not a factor as such that can be foreseen. The 

amount of time that a system requires to generate a timetable may increase with the number of soft 

constraints to be met, for there are more conditions to check. Yet in contrast, it might even lead to 

a lesser time consumption with more constraints because there can be fixed/known allocations as 

well. Thus in this research an attempt was made to explore the impact of applying soft constraints 

on generation of timetables. The research involves an implementation of a software solution that 

incorporates a genetic algorithm. The genetic algorithm was selected for the implementation due 

to its evolving and global optimization nature. According to results generated by the system, there 

was no direct impact found on performance when trying to satisfy soft constraints, and the 

executions depended solely on hard constraints. Furthermore it was found that the size of initial 

population can make a great impact on the performance of genetic algorithm. Results showed that 

setting a higher amount of chromosomes as the initial population could minimize the number of 

generations to be evolved to find a solution, and also it could prevent premature convergence up to 

some extent. 
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Chapter 1: Introduction 

 

1.1 Overview 

Educational administrators face a lot of hardships when generating timetables, especially when 

there is a considerable amount of classes to be scheduled, as they must ensure a various set of 

conditions to be fulfilled. Some of these conditions include the availability of adequate teaching 

resources for subjects, teacher availability in the appropriate classrooms with the appropriate 

student groups, presence of required hardware resources (computers, projectors etc.) in a classroom 

etc. Because of this complex nature of the task, planners are not always able to build schedules that 

are consistent with teaching requirements, and the schedules they come up with may not always 

satisfy teacher or student needs. 

Due to the NP-Hard (Nondeterministic Polynomial time Hard) nature [1] of timetabling problem, 

there seems to be no shortcut or easy solution for it. Finding a single, simple answer from a general 

computer program, even with a high performance computer, is merely impossible as the amount of 

inputs (constraints and resource allocations) get increased. However, a computer system which is 

intelligent and has constraint optimization capabilities could assist generating a better solution for 

timetabling problem while consuming a shorter amount of time compared to linear solutions. 

 

1.2 The problem 

The problem domain can be defined as assignment of events conducted by a set of lecturers into 

timeslots and rooms subject to a given set of constraints such as the number of classrooms 

available, room capacities, number of students, lecturers’ preferences and units they teach, 

available equipment in classrooms etc.  

All of these requirements mentioned above can be further broken down or grouped into two 

categories, which are ‘Hard Constraints’ and ‘Soft Constraints’. Hard constraints are those, which 

must be strictly satisfied under any circumstances for a schedule to be identified as feasible. 

Violation of a hard constraint would end up with infeasible timetables. ‘Soft Constraints’ as the 

name implies, are desirable, yet do not necessarily have to be satisfied for the timetable to be 
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feasible. Minimizing the number of soft constraint violations increase the quality of the solution as 

it would satisfy user requirements to a greater extent. Therefore an equation as below can be 

derived to identify the relationship between the quality of a timetable and the count of soft 

constraints. 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑛𝑜 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑛𝑜 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
 

Even though the quality can be predicted as above, time is not a factor as such that can be foreseen. 

The amount of time that a system requires to generate a timetable may increase with the number 

of soft constraints to be met, for there are more conditions to check. Yet in contrast, it might even 

lead to a lesser time consumption with more constraints because there can be fixed/known 

allocations as well. Thus the goal of this research is to study whether there is a specific pattern of 

time variance as per the increase of soft constraint count. 

Currently, thousands of automated systems are available to generate feasible time tables, but most 

of them are capable of satisfying only the hard constraints. The intension of this research is to study 

the impact of increasing the number of soft constraints in generating feasible and high quality 

timetables and to develop an intelligent system in order to assist the study by generating timetables 

for postgraduate courses at UCSC. The system is intended to implement in a way that it would be 

capable of satisfying as many soft constraints as possible. 

 

1.3 Aims & objective of project 

Research Question: What are the impacts of applying soft constraints into generation of feasible 

time tables? 

The aim of this research is to study the impact of increasing the number of soft constraints in 

generating feasible and high quality timetables. Following objectives have been accomplished to 

achieve this aim. 

 Review existing timetabling systems to gain an insight into how they perform, what type 

of hard constraints they have met and determine the type of algorithms that have been 

incorporated in such systems. 
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 Identify all required hard and soft constraints. 

 Design and develop a system to generate timetables for postgraduate courses at UCSC with 

zero hard constraint violations while satisfying as many soft constraints as possible with 

the use of most suitable algorithm identified at the literature review. 

 Evaluate the system to identify the effect of increasing the amount of soft constraints on 

feasibility and quality of the timetable generated. 

 Prepare necessary documentations. 

 

1.4 Scope of project 

Timetabling problem can be viewed in various forms such as school timetabling, examination 

timetabling and university curriculum based course timetabling. From these types, curriculum 

based course timetabling has been addressed to narrow down the scope of the project.  

Evaluation has been done by studying the effect of increasing the amount of soft constraints on 

feasibility and quality of the timetable generated, with the use of actual UCSC postgraduate course 

details. For this purpose postgraduate course details (subject selection by students, availability of 

lecturers and lecture rooms etc.) of past two semesters (2015 – semester 2 and semester 4) has used. 

Following hard constraints have been identified and finalized to establish a solid problem scope. 

 Course assignment constraint - all the available courses should be included in the solution. 

 Student assignment constraint - one student should not be assigned for two courses at a 

given time. 

 Lecturer assignment constraint - one lecturer should not be assigned for multiple courses at 

a given time. 

 Lecture room capacity constraint – number of seats of a lecture room should be sufficient 

for the students who will be attending the lecture. 

Following are the soft constraints that have used to implement the project. 

 Resource assignment constraint - all the resources (like chairs, computers, projectors etc.) 

should be available in an allocation. 



4 

 Max time preference constraint – maximum teaching hours of lecturers should not exceed 

their preference. 

 Room space constraint - large rooms should not be assigned for courses with small number 

of students. 

 

1.5 Structure of the thesis 

The whole report consists of six main chapters, and the organization of chapters are as follows: 

Chapter 2 of this report outlines the literature review studies carried out including a definition of 

the timetabling problem, followed by an extensive research made on several approaches to the 

timetabling problem. Chapter 3 covers the design aspects of the system, which looks into design 

strategies that will be used in order to aid with the implementation process. Chapter 4 of the report 

covers implementation details along with details about how a solution has proposed to timetabling 

problem in UCSC. Chapter 5 is about evaluation results while Chapter 6 concludes the report with 

further work than can be done to improve the system. 
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Chapter 2: Background 
 

2.1 Introduction 

This chapter of the report is wholly based on literature review studies that were carried out in order 

to gain an insight into the course timetabling problem, which includes gaining knowledge on what 

the timetabling problem is in general, followed by a thorough study on existing solutions for 

timetabling problem, how they perform, what type of constraints they have met and most 

importantly about what type of algorithms that have been incorporated in such systems. 

 

2.2 Timetabling problem in general  

The timetabling problem may be viewed in various forms such as school timetabling, examination 

timetabling and University curriculum based course timetabling. The timetabling problem itself in 

general is considered a hard task to perform manually since it involves in a lot of ‘decision making’, 

and therefore it is classed amongst the NP-hard (Nondeterministic Polynomial time hard) problems.  

As this project mainly focuses on the curriculum based course timetabling problem, it is first 

important to understand the key properties on which the solution should be built upon. 

Consequently, a thorough literature study has been carried out targeting its core constraints that 

should be met in order to produce a feasible timetable, which can be seen in the following sections. 

In the university curriculum based course timetabling problem, each course consists of a fixed 

number of lectures that should be allocated to distinct time slots, which are attended by student 

groups and a single lecturer who should not be present in more than one class at a time.  

Rooms are identified by specific capacities (seating availability). In this case, rooms should provide 

sufficient resources for student groups that attend those classes. Correspondingly, rooms should 

also meet material requirements. For instance, if a lab session is to be held, then the room 

accommodating that class should be equipped with necessary lab material for all the students.  

Thus in brief, a curriculum can be defined as a set of courses which can/may contain students in 

common. i.e. “Mobile Computing” and “e-Learning Concepts and Technologies” are common for 

both MCS and MIT students. 
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2.3 Existing systems 

As the timetabling problem has been subject to an extensive research area since the past half 

century [2], there exists a range of solutions implemented in order to automate the problem by 

various researchers and individuals using many different algorithms. 

The FET - Free Timetabling Software is one such open source system written in C++, licensed 

under GNU GPL; that allows scheduling of school, high school and university curriculum based 

timetables [3]. The FET project first began on the 31st of October 2002, and it was initially 

implemented using a Genetic Algorithm. However, considering it performance wise, the algorithm 

was found to be consuming a lot of time to solve schedules and only had the capability of solving 

only easy timetables. As a result later in June 2007, a new algorithm had been discovered by FET 

researchers that is capable of solving difficult timetables and in less amount of time, which they 

have named it ‘recursive swapping’ (a heuristic approach). With the newly implemented recursive 

swapping algorithm, the FET system is capable of solving complicated problems within a time 

frame of 5-20 minutes, where simpler timetables would be solved in less than 5 minutes; and much 

larger, extremely difficult timetables taking a longer time as a matter of hours. 

‘Automated System for University Timetabling’ is another system which is based on an iterative 

forward search algorithm and developed by Keith Murray and Tomas Muller using the Enterprise 

Edition of Java 2 (J2EE), Hibernate, and Oracle Database [4]. They have tested the system for large 

data sets, (I.e. 800 classes, 50 rooms, 86,000 class requests) and the system could be able to provide 

better and stable solutions for each and every test. Authors have stated that it took approximately 

10 minutes for the system to come up with a complete and high quality solution, which is a 

substantial progress over a week of manual work. 

Another system developed for Purdue University by Keith Murray, Tomas Muller and Hanna 

Rudova, provided a solution for course timetabling problem via a search for a complete assignment 

of times and rooms to classes, taking all hard and soft constraints into account [5]. They have used 

two types of algorithms namely generic iterative forward search with conflict-based statistics, and 

branch and bound. The solution is already in use on most of the course timetabling problems 

encountered each term at Purdue University. 
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2.4 Algorithms 

Following are some of the algorithms that researchers have incorporated in their solutions to 

timetabling problem. 

 

2.4.1 Graph coloring 

Graph coloring is a technique of coloring the entities of a graph in a way that no two adjacent 

entities are of same color. Different limitations can be set on the graph, or on the way a color is 

assigned, or even on the color itself. Details of the problem define the structure of the graph. The 

corresponding graph contains a vertex for every entity and an edge for every conflicting pair of 

entities. 

In 1967, Welsh and Powell [6] highlighted the similarity between timetabling problem and the 

coloring of the vertices of a graph by taking the vertices to be equivalent to courses and the arcs 

between them to represent conflicts. In that approach, coloring the graph is equal to placing courses 

in appropriate periods. A similar algorithm was presented by Broder [7] where vertices are ordered 

according to degree and the coloring of graph was attempted without using an upper limit on the 

number of colors.  

Another approach that uses a combination of graph coloring and room allocation algorithms was 

proposed by a group of researchers in the Department of Computer Science at the University of 

Nottingham [8]. In that solution, the problems of intractability have been overcome by producing 

a spreadsheet type system that the user can guide in an informed manner. As a result, the users of 

the solution were given the control of the search and the possibility of backtracking where no 

realistic solution is found. 

 

2.4.2 Integer linear programming 

Integer linear programming is a mathematical optimization technique in which some or all of the 

variables are restricted to be integers. In this approach the objective function and the constraints 

are linear and binary decision variables indicate whether an entity is assigned to another or not. 
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The Department of Electrical and Computer Engineering of the University of Patras in Greece uses 

a binary linear integer programming model developed by Daskalaki and the group. [9] The 

objective of the model is to minimize a linear cost function. There are two major terms that the cost 

function consists of as follows; 

 cost of allocating a module to a given time slot 

 cost of allocating modules to a given day of the week 

Another binary integer programming approach for course timetabling problem was introduced by 

Schimmelpfeng and Helber [10] and used in the School of Economics and Administration of the 

University of Hannover in Germany. With the use of an objective function that focuses on 

minimizing violations of soft constraints, the researchers could achieve good results in a way that 

99% of the respondents (lecturers) were satisfied with the new system. 

However, the assumptions made in linear programming are unrealistic at times, because a linear 

relationship assumes that factors never really change, when in reality they do. Finally, limiting the 

range of the problem also limits the possible solutions that are given in the problem. 

 

2.4.3 Tabu search 

Tabu Search is a meta-heuristic local (neighborhood) search algorithm that is used in optimization 

problems. It was formally introduced by Fred Glover in 1989. [11] As mentioned earlier, it makes 

use of a ‘neighborhood’ search procedure to recursively move from one solution (X) to an 

improved solution of it (X1) in the neighborhood. To find a feasible solution, this process would 

take place until a threshold score has been met for the solution, which is usually referred to as the 

satisfaction of stopping criteria. 

In general, all local search procedures comprise of a minor drawback that is, when exploring their 

neighborhoods, they often get stuck in poor scoring areas which are known as Plateaus and Ridges 

where no better solution can be found - resulting in them being all equally fit. In order to avoid 

these anomalies, and explore the rest of the search space that is left unexplored by search 

procedures, Tabu search makes use of a set of memory structures called the Tabu list, which is a 

set of rules and recently visited spaces in order to filter future visits to solutions in the 

neighborhood. 
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To define further, the memory structures used in Tabu search can be divided into three main 

sections: 

 Short term: list of recently considered solutions, if one of these solutions in the list are to 

be reconsidered by a potential solution, it will be restricted (cannot be revisited) until it has 

reached its expiration.  

 Immediate term: a set of rules that biases the search towards promising areas.  

 Long term: rules that aid in backtracking the search; in other words if an anomaly is met 

then these rules diverts the search to another route. 

In relation to the timetabling problem, Hertz [12] and Schaerf [13] have proposed solutions with 

the use of Tabu search. In the methods both of them have proposed that a feasible solution could 

be found by joining the generated potential solutions continuously, rather than a random 

generation. This enables the neighboring solutions to repair their objective functions effectively 

which improves the quality of scheduling by keeping the number of conflicts to the minimum. 

A major issue with Tabu search is that it works at its best (effective) only in discrete spaces. In 

order to overcome this problem however, a similarity measure can be implemented to reject 

solutions that violate the similarity threshold. 

Yet once again if a search space is too large in terms of dimensionality, there is a possibility that 

the search will be limited to a smaller area. Therefore in the implementation of a Tabu search, it is 

always important to consider the problem in smaller portions rather than as a whole. 

 

2.4.4 Particle swarm optimization 

Particle Swarm Optimization (PSO) is an intelligent simulation of birds foraging behavior, which 

is as the name implies used as an optimization algorithm to discover distributed solutions to 

complex problems, using interactions between simple agents and their environment. It was 

developed by Kennedy and Eberhart [14] in 1995. In PSO, each individual, named as a particle, 

update its own velocity and the position (pbest – personal best) in each iteration. And also they 

refer to the information from other members of the group (gbest – global best) and then use that 

information as well to choose the next best foraging sites. As iterations go on, each individual 
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would be able to choose a best site eventually. At the end of an iteration, the performance of all 

particles will be evaluated by some predefined cost functions. 

A meta-heuristic algorithm, based on the principles of PSO was proposed by Der-Fang [15] to 

solve the course timetabling problem. In this algorithm both instructors and students are allowed 

to specify their preferences. For example, instructors have the choice to maximize teaching free 

hours, and they can state the preferred lecturing format for course sections. Results of this study 

have demonstrated that the proposed algorithm was better than the approach of Genetic Algorithms 

proposed in the literature. 

A new PSO named standard PSO (SPSO) was proposed by Ruey-Maw Chen and Hsiao-Fang Shih 

[16] to solve the university course timetabling problem. In their approach the particles were 

encoded based on timeslots rather than study hours to reduce the computational complexity. 

Moreover, an interchange heuristic has used to search for neighborhood solution space and thus 

enhanced the quality of solution. 

PSO is a promising scheme for solving complex problems due to its fast convergence, fewer 

parameter settings and ability to fit dynamic environmental characteristics. 

 

2.4.5 Simulated annealing 

Annealing is a concept of heating physical solid objects and altering their state in order to increase 

the ductility, ultimately making them more flexible to work around. The process involves in heating 

objects above their critical temperature, secondly maintaining that temperature in a sustainable 

manner, and then lastly cooling at a gradual pace. Annealing an object enables it to be stretched by 

softening the object, which makes it to relieve its internal atomic stresses and refine its structure 

by making it homogenous. 

The concept of Simulated Annealing (SA) was first suggested and applied by David Abramson 

(1991), where he implemented it on a local search technique that transpired universal concentration 

keeping the probabilities to the minimal [17]. In the same year, Abramson applied the technique to 

the timetabling problem as well, where he substituted (simulated) the properties of annealing to the 

problem as follow. 
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The actual physical objects (particles) are substituted with the subject elements and the system 

energy with the cost of the timetable (the cost accumulated to model the timetable). Firstly, an 

initial allocation is made on subjects, where they are allocated to randomly chosen timeslots. Next, 

the initial cost is calculated along with a predetermined temperature value. In the application, the 

cost function comprises of a major role that determines the feasibility or the fitness of the solution; 

just as in the original process, the system energy function determines the ductility of a particle 

being annealed. The temperature in this case is used to control the increase of cost in terms of 

probability and can be linked with a temperature of an actual physical object (particle). 

Another researcher, Phillip Kostuch [18] proposed an algorithm with the use of graph coloring 

heuristics to check for the feasibility and then used Simulated Annealing methodology to satisfy 

the soft constraints, by ordering time slots and then swapping events between them. He has used 

cooling schedule criteria to reach the optimum. To be briefer, Kostuch used Simulated Annealing 

techniques to provide an optimal solution to course timetabling problem by swapping individual 

elements between time slots. 

Ruggero Bellio et al have also proposed a solution for curriculum-based course timetabling 

problem based on Simulated Annealing techniques. [19] In their approach, classrooms play an 

important role for the cost of a solution. The cost component was named ‘RoomStability’ which 

states that all lectures of the same course should be conducted in the same room. They have also 

used a non-geometric cooling scheme for Simulated Annealing, in which the temperature decreases 

quickly in the beginning of the search and then slowly towards the end, to speed-up the process at 

high temperatures. 

Simulated Annealing is considered to be an iterative concept, and as mentioned above the typical 

algorithm accepts a new solution if the cost is found to be lower than the cost of the solution it 

iterated from. Similarly, there is also a probability that new solutions are accepted even at higher 

costs as long as they are within the margin of a set temperature. This specific acceptance criterion 

enables the algorithm to overcome anomalies like local minima. 
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2.4.6 Genetic algorithms 

The Genetic Algorithm (GA) in its simplest terms can be explained as a model of machine 

learning/search heuristic, where its behavior has derived from the process of natural evolution. In 

heuristic terms, the GA reaches an optimal solution by evolving an initial set of individuals from a 

population towards a better solution, where new generations (optimized solutions) are created at 

each iteration of evolution. The candidate solutions or the individuals consist of a set of properties, 

which are usually altered and mutated in the process of evolution. 

GAs have been used to provide solutions for timetabling problem since 1990 [20]. Since then there 

are a plenty of papers have been published investigating and applying GA methods for the 

curriculum based course timetabling problem. 

One of them is the guided search genetic algorithm proposed by Naseem and Yang. In their 

approach a guided as well as s local search technique are integrated into a steady state genetic 

algorithm [21]. In the research paper it has also been mentioned that the authors believe, this is the 

first such algorithm aimed at the domain of course timetabling problem. They have tested the 

performance of proposed algorithm, by carrying out some experiments based on a set of benchmark 

problems to compare it with a set of state-of-the-art methods from the literature. The experimental 

results have been demonstrated that the proposed solution is competitive and work well across all 

problem instances in comparison with other approaches studied in their literature. 

Enzhe Yu and Ki-Seok Sung have proposed another solution for university weekly course 

timetabling problem, with the use of a sector-based genetic algorithm [22]. They have introduced 

the concept of "sector" and applied it to the initialization, crossover, and mutation procedures. A 

routine named "check-and repair" has been adopted with hard constraints to keep the solutions in 

a feasible space. According to the experiments that were carried out to evaluate the proposed 

solution they could achieve promising results even on a university's real data. 

 

2.5 Conclusion 

In this chapter, several heuristic approaches are seen with regards to the timetabling problem, with 

their core objectives being producing feasible timetables; in other words, being able to generate 

timetables that are clash free for each activity, given those that share the same resources. Every 
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approach looked at, consists of at least a minor amount of difficulties in being able to produce 

feasible timetables satisfying all soft and hard constraints. In contrast, GA provides functionalities 

to maintain a diversity among good solutions while allowing to have multiple solutions. Generally 

GA is used to solve multi-objective optimization problems, when there is an idea on what a solution 

looks like but cannot figure out the way to reach that solution. In order to reach the solution GA 

facilitates traversing the state space in parallel without much of communication delays. 

Considering all these factors, in this specific problem, the GA would suit to provide a better 

solution mainly due its evolving and global optimization nature. 
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Chapter 3: Analysis and Design 

 

3.1 Introduction 

From this chapter of the report, it is intended to cover the design aspects of the solution. These 

aspects include the design process and strategies that have been used for the implementation. 

Therefore this chapter discusses about some selected algorithms that would be appropriate to 

generate timetables efficiently, along with the means that the problem can be encoded into each of 

that algorithm. 

 

3.2 Alternate solutions 

As concluded in the previous chapter, the implementation will be consisting on GA to solve the 

timetabling problem. Even though GA is the selected algorithm, SA and PSO are also good fits 

because they also are evolutionary algorithms. This section of the chapter explains about how SA 

and PSO can be used to solve the timetable generation problem. 

 

3.3.1 Particle swarm optimization 

In PSO, a bird in a flock is represented as a particle, and the swarm is composed of a group of such 

particles. The position of a particle is regarded as a candidate solution to an optimization problem. 

Particles are given a fitness function designed with regard to the problem. When each particle 

moves to a new position in the search space, it remembers its personal best (Pbest) and exchange 

information with other particles to remember the global best (Gbest). Then, each particle revises 

its velocity and direction according to the Pbest and the Gbest in memory to move towards the 

optimal value and find the optimal solution eventually. This whole process has been depicted in 

Figure 3.1. 
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Figure 3.1: Basic steps of PSO 

 

With regard to the timetabling problem, a candidate solution or a feasible timetable has to be 

considered as a particle. Therefore a particle can be represented with a structure consisting of a 

timeslot, a room and a class to solve the timetabling problem with the use of PSO. 

 

3.3.2 Simulated annealing 

In SA, the first step is to define a starting point together with an initial temperature value assigned 

to the function. The function is re-evaluated at a new point after making a random move, away 

from the initial position. If the new value is an improvement (superior value), the details of the 

movement is preserved in memory. If not, the temperature details will be used to compare with a 

randomly generated value which is within the range of the maximum and minimum temperatures. 

If this random generated value is less than the current temperature, a move will be made. Otherwise 

the move has to be ignored and continue the process. The temperature is reduced by a small value 

after each iteration for the function to be terminated properly. The diagram below is a graphical 

representation of this process. 
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Figure 3.2: Basic steps of SA 

 

A feasible timetable can be represented by a particular position a particle resides after a move. A 

cooling schedule should also be defined consisting of starting temperature, temperature decrement 

function, and termination condition.  

 

3.3 Problem representation  

Scheduling process of a curriculum based course timetable comprises of five main properties in 

general, which are:  

 Set of time periods  

 Room allocations  

 Subject allotments  

 Groups of students  

 Lecturer assignments (to classes/subjects/student groups)  

These major properties will be used to encode the problem in to algorithmic representation of GA 
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The GA process usually starts from a population of randomly selected individuals, and this process 

is known as ‘Initialization’. These individuals are generally represented by Chromosomes, in a way 

that they consist of a fixed length sequence, and are usually represented in the form of binary 

multiple coding (Figure 3.3) with zeros and ones also known as Strings. 

 

Figure 3.3: Binary coding representation of a chromosome 

 

However, in order to facilitate the representation according to the problem, it is possible to utilize 

other forms as well to represent individuals, such as an integer coding representation or a decimal 

coding representation. Figure 3.4 and Figure 3.5 below depicts these two representations. 

 

Figure 3.4: Integer coding representation of a chromosome 

 

 

Figure 3.5: Decimal coding representation of a chromosome 

 

All initialized individuals comprise of a fitness value; and in the selection process, based on each 

individual’s fitness function it is decided who get to proceed for Crossover (to reproduce) from 

their environments. The above-mentioned fitness function that is used to select the fittest 

individuals may be implemented in two forms. The simplest form being the fitness proportionate 

selection, where individuals are simply selected through a fitness measure, based on the fitness 

function and decided who will be the most suitable to undergo GA operations such as Crossover. 

The other implementation is called the tournament selection, where it is based on a model that 

randomly selects individuals from a subgroup and makes them compete amongst themselves in 

order to select the fittest. 

In terms of optimizing a GA, mutation can be seen as an important aspect of the evolution process. 

The purpose of the mutation function is to maintain diversity on generated individuals of a 

population to the next, and the freedom is all up to the user, how he wishes to manipulate the 

mutation function; however it is always important to keep the mutation rate or the probability, set 

0 1 1 1 0 1 0 0 1 0 

1 3 4 -2 9 0 1 

1.3 -4.8 2.1 3.001 9.99 
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to a low difference. As higher the rate of probability the search will become too random in terms 

of generating fit population of individuals. 

Figure 3.6 below depicts the whole process explained above in detail. 

 

Figure 3.6: Basic steps of GA 

 

Considering the timetabling problem, it is first important to identify the scheduling problem in 

terms of genes to be able to map it into functionality of the Genetic Algorithms. This mapping of 

problem properties into genes, and then to the genetic algorithm consists of a number of encoding 

and decoding procedures. A schedule for a whole week was identified as a possible solution 

(chromosome) which defines how a curriculum should be arranged including which time slots to 

place, in which room should be allocated, and which courses should be allotted. Figure 3.7 below 

depicts the format of a candidate solution for course timetabling problem. 

 

Figure 3.7: Chromosome representation for course timetabling problem 

 

In this diagram TS stand for “Time Slot” and a class is a collection of a specific subject, a lecturer 

and a student group. Fitness would be calculated according to reward on achievement approach. 

For every satisfaction of a constraint, individuals will be rewarded with one point. If an individual 
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breaks a rule at any time slot it will not be rewarded with points. Finally the fitness would be 

calculated by summing up all the rewards an individual has earned. 

 

3.4 Conclusion 

In this chapter it has been discussed about several algorithms that would be appropriate to solve 

the timetabling problem. Further the chapter explained how the timetabling problem has been 

encoded into Genetic Algorithm. 
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Chapter 4: Proposed Solution 

 

4.1 Introduction 

As concluded in the previous chapters, the implementation consists on a Genetic algorithm to solve 

the timetabling problem. With the utilization of GA framework, feasible solutions may be reached 

or found in a polynomial time, which can be accepted. From this chapter, it is intended to cover the 

areas of identification and implementation of base classes, how the algorithm has been put in use, 

and the system’s technical aspects etc. 

 

4.2 Algorithm perspective 

It is mentioned in the previous chapter how individuals of a population should be represented by 

chromosomes or genes as an initial step in order to proceed with operations of evolution. The 

solution starts with a population of randomly generated chromosomes and its quality is evaluated 

through the fitness function. This fitness evaluation determines whether the chromosome needs to 

be reserved as an elite object or if it needs to be improved by further operations like crossover and 

mutation. If all the hard constraints are satisfied, the fitness score will be returned with a value of 

1.0, and the algorithm terminates since a solution has found. 

 

4.3 Technology perspective 

In the solution, Chromosomes are represented by a List of TimeSlot objects. A TimeSlot object 

contains details about lecture (module and the lecturer who teaches it), lecture room, start and end 

time of a lecture and the day of week the lecture is going to be scheduled. During the initialization 

of chromosomes lectures that are to be scheduled are allocated into randomly selected lecture room 

and a time. Initialization procedure completes once all the lectures are allocated into available 

timeslots and the population count becomes the size specified in database. Some meta-data like 

population count, replace count, crossover and mutation probabilities are stored in the database so 

that it is easier to check the performance of generating feasible solution for dynamic values of 

above mentioned variables.  
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Java method depicted by Figure 4.1 below shows how a random chromosome is initialized. 

 

Figure 4.1: Creation of a random chromosome 

 

Once the initial population of chromosomes is generated, the system performs crossover and 

mutation operations to generate offsprings. This process continues until the offspring count reaches 

the value of replace count specified in database or an offspring with fitness value 1.0 is generated. 

When generating offspring chromosomes with less fitness values get replaced by the ones with 

higher fitness so that the population always contains better solutions, ensuring the theory of 

“Survival of the fittest”. 

As a result of replacing poor solutions with better ones there can be a situation where the population 

contains chromosomes with same fitness values. Because of this the mean fitness of population 

might not be increased together with the generation count. This kind of situations are called 

“Premature Convergence” [23] and to prevent such situations special correction and mutation 

methodology has been utilized. 

Code snippet mentioned below as Figure 4.2 shows how offsprings are generated in the system and 

how it prevents situations like premature convergence. 
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Figure 4.2: Produce offsprings and prevent premature convergence 

 

4.3.1 Crossover 

The Genetic Algorithm’s actual evolution process (reproduction) starts from the crossover 

operation where it combines information (DNA in terms of Biology) of two parents and creates 

offsprings as a result. In referring to the following code segment of the Crossover operation shown 

in Figure 10, same chromosome has been used as both the parents to avoid any missing of lectures 

during crossover operation. Also in this way offspring will be diverged enough from its parent and 

because of that the population will contain a good set of candidate solutions with a huge variety. 

The process can be described as follows: 

 Pick a random point to divide the "slots" list into two 

 Split the list into two portions 

 Insert lecture details of second portion from first index of the offspring 

 Append the first portion of parent into offspring  
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 Calculate fitness of the generated offspring 

 

Figure 4.3: Crossover Operation 

 

4.3.2 Mutation 

Exchange mutation methodology has been used as the mutation operation, where in each mutation 

attempt, two random positions from slots are chosen and the lectures in those positions are 

swapped. Code segment of the mutation operation is shown in Figure 4.4 below. 
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Figure 4.4: Mutation Operation 

 

Other than the mutation operation mentioned above, a special mutation methodology has also been 

utilized in the system to prevent premature convergence. In this method mutation probability has 

not checked and therefore the chromosome mutates forcefully. The new methodology adhere the 

rules of insertion mutation operation and a randomly picked up lecture is inserted into a random 

timeslot where another lecture is not currently available. Figure 4.5 below depicts the code for this 

operation. 

 

 

Figure 4.5: Special Mutation Operation 
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3.3.3 Fitness function 

The next stage of the implementation is to relate a fitness evaluation to chromosomes to determine 

the feasibility and accuracy of the solution. In this case, when evaluating the fitness function only 

hard constraints are taken into account, and the rules are as follow. The code snippet for fitness 

function is depicted in Figure 4.6. 

 Check if the same lecture has not been allocated multiple times  

 Check for lecture room capacity 

 Check for lab equipment requirements 

 Check for student overlapping 

 Check for lecturer overlapping 
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Figure 4.6: Fitness Function 

 

4.4 Conclusion 

In this chapter it has been discussed about implementation details of the solution for UCSC course 

timetable scheduling system in both algorithmic and technological perspectives. 
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 Chapter 5: Evaluation and Results 

 

5.1 Introduction 

This chapter provides an evaluation on the solution provided for timetable scheduling in UCSC for 

postgraduate courses. Evaluation of the system is experiment based, and has done by studying the 

performance of the system, with the use of actual UCSC postgraduate course details. For this 

purpose postgraduate course details (subject selection by students, availability of lecturers and 

lecture rooms etc.) of semester2 and semester 4, 2015 (two semesters) has been used. The basis of 

semester selection is the nature of courses students have to follow. Semester 2 contains compulsory 

courses that all the students should attend and Semester 4 has optional courses that students can 

select. 

 

5.2 Functional evaluation 

When executing the system, at initial stages there were some situations where fitness get random 

values without increasing as per the increase of generation count. The root cause for this behavior 

is found after several runs and the reason was identified as removing random chromosomes and 

inserting any offspring into population, generated from crossover and mutation operations. System 

executed for about 30,000 – 50,000 generations without a proper result. As a solution fitness value 

was checked before removing a chromosome from population and inserting a new one. 

Then the program was executed for more than 5 hours with no fitness change even though the 

generation count increased up to 20,000. Research papers suggested that increasing the population 

size [24], dynamic application of crossover and mutation operators and partial re-initialization of 

population can avoid such occurrences of premature convergence [25]. Therefore a new mutation 

mechanism was introduced with the intension of changing the model of available solutions 

drastically. And that method was performed forcefully without checking a mutation probability 

because the probability of performing a mutation is only 3%. With the introduction of that new and 

forceful mutation mechanism system started to provide results with a 20 – 30 minutes time span, 

but there were still some executions where fitness was at a constant value. 
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As a solution to this problem another operation which is similar to mutation was applied to check 

for some constraint violations manually such as lab requirement satisfaction and lecture room 

capacity satisfaction, and fixed any violation if available. This methodology improved the system 

so that it can now always provide a solution within 10 – 20 minutes. 

 

5.3 Performance evaluation 

Program execution time and the number of generations the solutions have evolved are the basic 

criteria to evaluate system performance. After implementing the final solution performance of the 

system was evaluated by changing population size. Figures 14 depicts the evolution of fitness 

values when initial population is 500 and the replace count is 300. Table 5.1 contains fitness data 

used to plot the chart in Figure 5.1. 

 

Figure 5.1: System performance with 500 population count 
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Generation Best fitness Average fitness 

0 0.92 0.834 

1 0.92 0.85286 

2 0.92 0.86490001 

3 0.93 0.873580004 

4 0.93 0.880859999 

5 0.93 0.887279994 

6 0.93 0.892879991 

7 0.93 0.898159991 

8 0.93 0.903359994 

9 0.93 0.909579999 

10 0.93 0.915700009 

11 0.93 0.921100016 

12 0.93 0.921540015 

13 0.93 0.922660014 

14 0.93 0.923920013 

15 0.93 0.925600011 

16 0.93 0.928480009 

17 0.93 0.930000007 

18 0.94 0.930600007 

19 0.94 0.931400006 

20 0.94 0.932640005 

21 0.94 0.934360003 

22 0.94 0.936880001 

23 0.94 0.939979998 

24 0.94 0.939999998 

25 0.94 0.939999998 

26 0.94 0.939999998 

27 0.95 0.940019998 

28 0.95 0.940059998 

29 0.95 0.940059998 

30 0.95 0.940099998 

31 0.95 0.940219997 

32 0.95 0.940459997 

33 0.95 0.940739997 

34 0.95 0.940999997 

35 0.95 0.941579996 

36 0.95 0.942279995 

37 0.95 0.943459994 

38 0.95 0.945339993 

39 0.95 0.94821999 

40 0.95 0.949999988 

41 0.96 0.950499988 

42 0.96 0.951339987 

43 0.96 0.952099986 

44 0.96 0.953419985 
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Generation Best fitness Average fitness 

45 0.96 0.955479983 

46 0.96 0.95849998 

47 0.96 0.959999979 

48 0.96 0.959999979 

49 0.96 0.959999979 

50 0.96 0.959999979 

51 0.96 0.959999979 

52 0.96 0.959999979 

53 0.96 0.959999979 

54 0.96 0.959999979 

55 0.96 0.959999979 

56 0.96 0.959999979 

57 0.96 0.959999979 

58 0.96 0.959999979 

59 0.96 0.959999979 

60 0.96 0.959999979 

61 0.96 0.959999979 

62 0.96 0.959999979 

63 0.96 0.959999979 

64 0.96 0.959999979 

65 0.96 0.959999979 

66 0.96 0.959999979 

67 0.96 0.959999979 

68 0.96 0.959999979 

69 0.96 0.959999979 

70 0.96 0.959999979 

71 0.96 0.959999979 

72 0.96 0.959999979 

73 0.96 0.959999979 

74 0.96 0.959999979 

75 0.96 0.959999979 

76 0.96 0.959999979 

77 0.96 0.959999979 

78 0.96 0.959999979 

79 0.96 0.959999979 

80 0.96 0.959999979 

81 0.96 0.959999979 

82 0.96 0.959999979 

83 0.96 0.959999979 

84 0.96 0.959999979 

85 0.96 0.959999979 

86 0.96 0.959999979 

87 0.98 0.960039979 

88 0.98 0.960039979 

89 0.98 0.960159979 



31 

Generation Best fitness Average fitness 

90 0.98 0.960279979 

91 0.98 0.960399979 

92 0.98 0.96063998 

93 0.98 0.96091998 

94 0.98 0.961319981 

95 0.98 0.961999983 

96 0.98 0.962719984 

97 0.98 0.963719986 

98 0.98 0.965119989 

99 0.98 0.967719994 

100 0.98 0.971240001 

101 0.98 0.976480012 

102 0.98 0.980000019 

103 0.98 0.980000019 

104 0.98 0.980000019 

105 0.98 0.980000019 

106 0.98 0.980000019 

107 0.98 0.980000019 

108 0.98 0.980000019 

109 1 0.980200019 

Table 5.1: Fitness details with 1000 population count 

 

Fitness evolution for execution with 1000 population size and 700 replace count is displayed in 

Figure 5.2 and fitness data that were used to plot the chart are displayed in Table 5.2. 

 

Figure 5.2: System performance with 1000 population count 
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Generation Best fitness Average fitness 

0 0.92 0.833399998 

1 0.92 0.863510002 

2 0.93 0.880579998 

3 0.93 0.892599991 

4 0.93 0.900999991 

5 0.93 0.907560001 

6 0.93 0.914780022 

7 0.93 0.919550017 

8 0.93 0.927550009 

9 0.93 0.930000007 

10 0.94 0.930060007 

11 0.94 0.930250007 

12 0.94 0.930540007 

13 0.94 0.931160006 

14 0.94 0.932450005 

15 0.94 0.935090002 

16 0.94 0.939999998 

17 0.97 0.940329998 

18 0.97 0.940569998 

19 0.97 0.941079999 

20 0.97 0.94229 

21 0.97 0.944780002 

22 0.97 0.948870007 

23 0.97 0.957690015 

24 0.97 0.970000029 

25 0.97 0.970000029 

26 0.98 0.970590028 

27 0.98 0.971160028 

28 1 0.974290025 

Table 5.2: Fitness details with 1000 population count 

 

5.4 Test results 

Figure 5.3 below depicts the best solution provided by the system after 10 runs. All the results 

received during 10 runs are included in Appendix A. 
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Figure 5.3: Best solution generated by system 
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Chapter 6: Conclusion and Further Work 

 

6.1 Introduction 

This chapter discuss summary of the work has been done during this project, its limitations and 

future work. 

 

6.2 Conclusion 

This project is aimed at studying the impact of applying soft constraints on generation of timetables 

with the use of data of UCSC postgraduate courses. In order to achieve this aim a system was 

generated using genetic algorithm, java and a postgres database. Genetic algorithm was selected 

after a performing a widespread research study. During the research, algorithms such as graph 

coloring, integer liner programming, tabu search, particle swarm optimization, simulated annealing 

and genetic algorithm were studied, and genetic algorithm was selected to implement a timetable 

generation system due its evolving and global optimization nature. 

When developing the system it was hard to incorporate soft constraints into fitness function due to 

score changes. Therefore soft constraints were applied after generating a feasible solution where 

no hard constraints are violated. Due to this methodology of soft constraints application to the 

system there is no impact of satisfying soft constraints on performance of the system, and the 

executions solely depends on hard constraints.  

During the testing and evaluation phase, it was found that the size of initial population can make a 

great impact on the performance of genetic algorithm. Higher the initial population size is 

generations to be evolved to find a solution becomes fewer. And also higher amount of initial 

population can prevent premature convergence into some extend. 

 

6.3 Further work 

The system can be further improved to generate timetables for undergraduate courses as well. 

Moreover introducing more soft and hard constraints will also improve the system. 
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Another area that may be considered on improving is the actual algorithm. The current algorithm 

employed in the system is basically a Simple Genetic Algorithm (SGA) that consists of basic 

operations. This algorithm however can be more uniformed by transforming it into a Hybrid 

Genetic Algorithm (HGA). In order to implement such HGAs, mechanics such as ‘Branch and 

Bound’ can be used on the SGA. This improvement was suggested because given a difficult dataset; 

the system may consume a lot of time to generate a feasible solution 
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Appendix A: Test Results 
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