

Masters Project Final Report

(MCS)

March 2018

Project Title

Impact of dynamic soft constraints on generation of timetables for UCSC

postgraduate courses

Student Name P. B.K.P. Bogahawatta

Registration No.

& Index No.

2014/MCS/009

14440093

Supervisor’s

Name

Mr. G. P. Seneviratne

For Office Use ONLY

S

E1

E2

For Office Use Only

Impact of dynamic soft constraints on

generation of timetables for UCSC

postgraduate courses

P. B. K. P. Bogahawatta

2018

Impact of dynamic soft constraints on

generation of timetables for UCSC

postgraduate courses

A dissertation submitted for the Degree of Master of

Computer Science

P. B. K. P. Bogahawatta

University of Colombo School of Computing

2018

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name:

Registration Number:

Index Number:

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

i

Abstract

Course timetabling in general is considered a complex, and time-consuming task to be performed

manually due to its NP-hard nature. The problem domain can be defined as assignment of events

conducted by a set of lecturers into timeslots and rooms subject to a given set of hard and soft

constraints. A timetable that satisfies all hard constraints is known as a feasible schedule. Even

though the feasibility of a timetable depends on hard constraints, quality relies on soft constraints

the system needs to satisfy. Minimizing the number of soft constraint violations increase the quality

of the solution as it would satisfy user requirements to a greater extent. This implies that the quality

of a timetable can be predicted with the unmet amount of soft constraints and the total number of

soft constraints the system includes. But time is not a factor as such that can be foreseen. The

amount of time that a system requires to generate a timetable may increase with the number of soft

constraints to be met, for there are more conditions to check. Yet in contrast, it might even lead to

a lesser time consumption with more constraints because there can be fixed/known allocations as

well. Thus in this research an attempt was made to explore the impact of applying soft constraints

on generation of timetables. The research involves an implementation of a software solution that

incorporates a genetic algorithm. The genetic algorithm was selected for the implementation due

to its evolving and global optimization nature. According to results generated by the system, there

was no direct impact found on performance when trying to satisfy soft constraints, and the

executions depended solely on hard constraints. Furthermore it was found that the size of initial

population can make a great impact on the performance of genetic algorithm. Results showed that

setting a higher amount of chromosomes as the initial population could minimize the number of

generations to be evolved to find a solution, and also it could prevent premature convergence up to

some extent.

ii

Acknowledgement

I would like to express my sincerest gratitude to Mr. G. P. Seneviratne, my supervisor, who has

guided me with great kindness over the course of this project.

I would also like to thank all the staff members of Postgraduate unit of University of Colombo,

School of Computing for all the help given along the way.

Finally I would like to thank all the authors of references that have used throughout this project.

iii

Table of Contents

Chapter 1: Introduction .. 1

1.1 Overview ... 1

1.2 The problem .. 1

1.3 Aims & objective of project .. 2

1.4 Scope of project .. 3

1.5 Structure of the thesis ... 4

Chapter 2: Background .. 5

2.1 Introduction ... 5

2.2 Timetabling problem in general .. 5

2.3 Existing systems ... 6

2.4 Algorithms .. 7

2.4.1 Graph coloring ... 7

2.4.2 Integer linear programming ... 7

2.4.3 Tabu search .. 8

2.4.4 Particle swarm optimization .. 9

2.4.5 Simulated annealing .. 10

2.4.6 Genetic algorithms ... 12

2.5 Conclusion .. 12

Chapter 3: Analysis and Design .. 14

3.1 Introduction ... 14

3.2 Alternate solutions .. 14

3.3.1 Particle swarm optimization .. 14

3.3.2 Simulated annealing .. 15

3.3 Problem representation ... 16

3.4 Conclusion .. 19

iv

Chapter 4: Proposed Solution .. 20

4.1 Introduction ... 20

4.2 Algorithm perspective ... 20

4.3 Technology perspective .. 20

4.3.1 Crossover ... 22

4.3.2 Mutation .. 23

3.3.3 Fitness function ... 25

4.4 Conclusion .. 26

Chapter 5: Evaluation and Results .. 27

5.1 Introduction ... 27

5.2 Functional evaluation .. 27

5.3 Performance evaluation .. 28

5.4 Test results .. 32

Chapter 6: Conclusion and Further Work.. 34

6.1 Introduction ... 34

6.2 Conclusion .. 34

6.3 Further work ... 34

References ... 36

Appendix A: Test Results .. 38

v

List of Figures

Figure 3.1: Basic steps of PSO .. 15

Figure 3.2: Basic steps of SA .. 16

Figure 3.3: Binary coding representation of a chromosome ... 17

Figure 3.4: Integer coding representation of a chromosome ... 17

Figure 3.5: Decimal coding representation of a chromosome ... 17

Figure 3.6: Basic steps of GA .. 18

Figure 3.7: Chromosome representation for course timetabling problem 18

Figure 4.1: Creation of a random chromosome ... 21

Figure 4.2: Produce offsprings and prevent premature convergence .. 22

Figure 4.3: Crossover Operation ... 23

Figure 4.4: Mutation Operation ... 24

Figure 4.5: Special Mutation Operation .. 24

Figure 4.6: Fitness Function .. 26

Figure 5.1: System performance with 500 population count... 28

Figure 5.2: System performance with 1000 population count... 31

Figure 5.3: Best solution generated by system .. 33

vi

List of Abbreviations

NP-hard - Nondeterministic Polynomial time hard

UCSC - University of Colombo School of Computing

PSO - Particle Swarm Optimization

SPSO - Standard Particle Swarm Optimization

SA - Simulated Annealing

GA - Genetic Algorithm

SGA - Simple Genetic Algorithm

HGA - Hybrid Genetic Algorithm

1

Chapter 1: Introduction

1.1 Overview

Educational administrators face a lot of hardships when generating timetables, especially when

there is a considerable amount of classes to be scheduled, as they must ensure a various set of

conditions to be fulfilled. Some of these conditions include the availability of adequate teaching

resources for subjects, teacher availability in the appropriate classrooms with the appropriate

student groups, presence of required hardware resources (computers, projectors etc.) in a classroom

etc. Because of this complex nature of the task, planners are not always able to build schedules that

are consistent with teaching requirements, and the schedules they come up with may not always

satisfy teacher or student needs.

Due to the NP-Hard (Nondeterministic Polynomial time Hard) nature [1] of timetabling problem,

there seems to be no shortcut or easy solution for it. Finding a single, simple answer from a general

computer program, even with a high performance computer, is merely impossible as the amount of

inputs (constraints and resource allocations) get increased. However, a computer system which is

intelligent and has constraint optimization capabilities could assist generating a better solution for

timetabling problem while consuming a shorter amount of time compared to linear solutions.

1.2 The problem

The problem domain can be defined as assignment of events conducted by a set of lecturers into

timeslots and rooms subject to a given set of constraints such as the number of classrooms

available, room capacities, number of students, lecturers’ preferences and units they teach,

available equipment in classrooms etc.

All of these requirements mentioned above can be further broken down or grouped into two

categories, which are ‘Hard Constraints’ and ‘Soft Constraints’. Hard constraints are those, which

must be strictly satisfied under any circumstances for a schedule to be identified as feasible.

Violation of a hard constraint would end up with infeasible timetables. ‘Soft Constraints’ as the

name implies, are desirable, yet do not necessarily have to be satisfied for the timetable to be

2

feasible. Minimizing the number of soft constraint violations increase the quality of the solution as

it would satisfy user requirements to a greater extent. Therefore an equation as below can be

derived to identify the relationship between the quality of a timetable and the count of soft

constraints.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑛𝑜 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑛𝑜 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Even though the quality can be predicted as above, time is not a factor as such that can be foreseen.

The amount of time that a system requires to generate a timetable may increase with the number

of soft constraints to be met, for there are more conditions to check. Yet in contrast, it might even

lead to a lesser time consumption with more constraints because there can be fixed/known

allocations as well. Thus the goal of this research is to study whether there is a specific pattern of

time variance as per the increase of soft constraint count.

Currently, thousands of automated systems are available to generate feasible time tables, but most

of them are capable of satisfying only the hard constraints. The intension of this research is to study

the impact of increasing the number of soft constraints in generating feasible and high quality

timetables and to develop an intelligent system in order to assist the study by generating timetables

for postgraduate courses at UCSC. The system is intended to implement in a way that it would be

capable of satisfying as many soft constraints as possible.

1.3 Aims & objective of project

Research Question: What are the impacts of applying soft constraints into generation of feasible

time tables?

The aim of this research is to study the impact of increasing the number of soft constraints in

generating feasible and high quality timetables. Following objectives have been accomplished to

achieve this aim.

 Review existing timetabling systems to gain an insight into how they perform, what type

of hard constraints they have met and determine the type of algorithms that have been

incorporated in such systems.

3

 Identify all required hard and soft constraints.

 Design and develop a system to generate timetables for postgraduate courses at UCSC with

zero hard constraint violations while satisfying as many soft constraints as possible with

the use of most suitable algorithm identified at the literature review.

 Evaluate the system to identify the effect of increasing the amount of soft constraints on

feasibility and quality of the timetable generated.

 Prepare necessary documentations.

1.4 Scope of project

Timetabling problem can be viewed in various forms such as school timetabling, examination

timetabling and university curriculum based course timetabling. From these types, curriculum

based course timetabling has been addressed to narrow down the scope of the project.

Evaluation has been done by studying the effect of increasing the amount of soft constraints on

feasibility and quality of the timetable generated, with the use of actual UCSC postgraduate course

details. For this purpose postgraduate course details (subject selection by students, availability of

lecturers and lecture rooms etc.) of past two semesters (2015 – semester 2 and semester 4) has used.

Following hard constraints have been identified and finalized to establish a solid problem scope.

 Course assignment constraint - all the available courses should be included in the solution.

 Student assignment constraint - one student should not be assigned for two courses at a

given time.

 Lecturer assignment constraint - one lecturer should not be assigned for multiple courses at

a given time.

 Lecture room capacity constraint – number of seats of a lecture room should be sufficient

for the students who will be attending the lecture.

Following are the soft constraints that have used to implement the project.

 Resource assignment constraint - all the resources (like chairs, computers, projectors etc.)

should be available in an allocation.

4

 Max time preference constraint – maximum teaching hours of lecturers should not exceed

their preference.

 Room space constraint - large rooms should not be assigned for courses with small number

of students.

1.5 Structure of the thesis

The whole report consists of six main chapters, and the organization of chapters are as follows:

Chapter 2 of this report outlines the literature review studies carried out including a definition of

the timetabling problem, followed by an extensive research made on several approaches to the

timetabling problem. Chapter 3 covers the design aspects of the system, which looks into design

strategies that will be used in order to aid with the implementation process. Chapter 4 of the report

covers implementation details along with details about how a solution has proposed to timetabling

problem in UCSC. Chapter 5 is about evaluation results while Chapter 6 concludes the report with

further work than can be done to improve the system.

5

Chapter 2: Background

2.1 Introduction

This chapter of the report is wholly based on literature review studies that were carried out in order

to gain an insight into the course timetabling problem, which includes gaining knowledge on what

the timetabling problem is in general, followed by a thorough study on existing solutions for

timetabling problem, how they perform, what type of constraints they have met and most

importantly about what type of algorithms that have been incorporated in such systems.

2.2 Timetabling problem in general

The timetabling problem may be viewed in various forms such as school timetabling, examination

timetabling and University curriculum based course timetabling. The timetabling problem itself in

general is considered a hard task to perform manually since it involves in a lot of ‘decision making’,

and therefore it is classed amongst the NP-hard (Nondeterministic Polynomial time hard) problems.

As this project mainly focuses on the curriculum based course timetabling problem, it is first

important to understand the key properties on which the solution should be built upon.

Consequently, a thorough literature study has been carried out targeting its core constraints that

should be met in order to produce a feasible timetable, which can be seen in the following sections.

In the university curriculum based course timetabling problem, each course consists of a fixed

number of lectures that should be allocated to distinct time slots, which are attended by student

groups and a single lecturer who should not be present in more than one class at a time.

Rooms are identified by specific capacities (seating availability). In this case, rooms should provide

sufficient resources for student groups that attend those classes. Correspondingly, rooms should

also meet material requirements. For instance, if a lab session is to be held, then the room

accommodating that class should be equipped with necessary lab material for all the students.

Thus in brief, a curriculum can be defined as a set of courses which can/may contain students in

common. i.e. “Mobile Computing” and “e-Learning Concepts and Technologies” are common for

both MCS and MIT students.

6

2.3 Existing systems

As the timetabling problem has been subject to an extensive research area since the past half

century [2], there exists a range of solutions implemented in order to automate the problem by

various researchers and individuals using many different algorithms.

The FET - Free Timetabling Software is one such open source system written in C++, licensed

under GNU GPL; that allows scheduling of school, high school and university curriculum based

timetables [3]. The FET project first began on the 31st of October 2002, and it was initially

implemented using a Genetic Algorithm. However, considering it performance wise, the algorithm

was found to be consuming a lot of time to solve schedules and only had the capability of solving

only easy timetables. As a result later in June 2007, a new algorithm had been discovered by FET

researchers that is capable of solving difficult timetables and in less amount of time, which they

have named it ‘recursive swapping’ (a heuristic approach). With the newly implemented recursive

swapping algorithm, the FET system is capable of solving complicated problems within a time

frame of 5-20 minutes, where simpler timetables would be solved in less than 5 minutes; and much

larger, extremely difficult timetables taking a longer time as a matter of hours.

‘Automated System for University Timetabling’ is another system which is based on an iterative

forward search algorithm and developed by Keith Murray and Tomas Muller using the Enterprise

Edition of Java 2 (J2EE), Hibernate, and Oracle Database [4]. They have tested the system for large

data sets, (I.e. 800 classes, 50 rooms, 86,000 class requests) and the system could be able to provide

better and stable solutions for each and every test. Authors have stated that it took approximately

10 minutes for the system to come up with a complete and high quality solution, which is a

substantial progress over a week of manual work.

Another system developed for Purdue University by Keith Murray, Tomas Muller and Hanna

Rudova, provided a solution for course timetabling problem via a search for a complete assignment

of times and rooms to classes, taking all hard and soft constraints into account [5]. They have used

two types of algorithms namely generic iterative forward search with conflict-based statistics, and

branch and bound. The solution is already in use on most of the course timetabling problems

encountered each term at Purdue University.

7

2.4 Algorithms

Following are some of the algorithms that researchers have incorporated in their solutions to

timetabling problem.

2.4.1 Graph coloring

Graph coloring is a technique of coloring the entities of a graph in a way that no two adjacent

entities are of same color. Different limitations can be set on the graph, or on the way a color is

assigned, or even on the color itself. Details of the problem define the structure of the graph. The

corresponding graph contains a vertex for every entity and an edge for every conflicting pair of

entities.

In 1967, Welsh and Powell [6] highlighted the similarity between timetabling problem and the

coloring of the vertices of a graph by taking the vertices to be equivalent to courses and the arcs

between them to represent conflicts. In that approach, coloring the graph is equal to placing courses

in appropriate periods. A similar algorithm was presented by Broder [7] where vertices are ordered

according to degree and the coloring of graph was attempted without using an upper limit on the

number of colors.

Another approach that uses a combination of graph coloring and room allocation algorithms was

proposed by a group of researchers in the Department of Computer Science at the University of

Nottingham [8]. In that solution, the problems of intractability have been overcome by producing

a spreadsheet type system that the user can guide in an informed manner. As a result, the users of

the solution were given the control of the search and the possibility of backtracking where no

realistic solution is found.

2.4.2 Integer linear programming

Integer linear programming is a mathematical optimization technique in which some or all of the

variables are restricted to be integers. In this approach the objective function and the constraints

are linear and binary decision variables indicate whether an entity is assigned to another or not.

8

The Department of Electrical and Computer Engineering of the University of Patras in Greece uses

a binary linear integer programming model developed by Daskalaki and the group. [9] The

objective of the model is to minimize a linear cost function. There are two major terms that the cost

function consists of as follows;

 cost of allocating a module to a given time slot

 cost of allocating modules to a given day of the week

Another binary integer programming approach for course timetabling problem was introduced by

Schimmelpfeng and Helber [10] and used in the School of Economics and Administration of the

University of Hannover in Germany. With the use of an objective function that focuses on

minimizing violations of soft constraints, the researchers could achieve good results in a way that

99% of the respondents (lecturers) were satisfied with the new system.

However, the assumptions made in linear programming are unrealistic at times, because a linear

relationship assumes that factors never really change, when in reality they do. Finally, limiting the

range of the problem also limits the possible solutions that are given in the problem.

2.4.3 Tabu search

Tabu Search is a meta-heuristic local (neighborhood) search algorithm that is used in optimization

problems. It was formally introduced by Fred Glover in 1989. [11] As mentioned earlier, it makes

use of a ‘neighborhood’ search procedure to recursively move from one solution (X) to an

improved solution of it (X1) in the neighborhood. To find a feasible solution, this process would

take place until a threshold score has been met for the solution, which is usually referred to as the

satisfaction of stopping criteria.

In general, all local search procedures comprise of a minor drawback that is, when exploring their

neighborhoods, they often get stuck in poor scoring areas which are known as Plateaus and Ridges

where no better solution can be found - resulting in them being all equally fit. In order to avoid

these anomalies, and explore the rest of the search space that is left unexplored by search

procedures, Tabu search makes use of a set of memory structures called the Tabu list, which is a

set of rules and recently visited spaces in order to filter future visits to solutions in the

neighborhood.

9

To define further, the memory structures used in Tabu search can be divided into three main

sections:

 Short term: list of recently considered solutions, if one of these solutions in the list are to

be reconsidered by a potential solution, it will be restricted (cannot be revisited) until it has

reached its expiration.

 Immediate term: a set of rules that biases the search towards promising areas.

 Long term: rules that aid in backtracking the search; in other words if an anomaly is met

then these rules diverts the search to another route.

In relation to the timetabling problem, Hertz [12] and Schaerf [13] have proposed solutions with

the use of Tabu search. In the methods both of them have proposed that a feasible solution could

be found by joining the generated potential solutions continuously, rather than a random

generation. This enables the neighboring solutions to repair their objective functions effectively

which improves the quality of scheduling by keeping the number of conflicts to the minimum.

A major issue with Tabu search is that it works at its best (effective) only in discrete spaces. In

order to overcome this problem however, a similarity measure can be implemented to reject

solutions that violate the similarity threshold.

Yet once again if a search space is too large in terms of dimensionality, there is a possibility that

the search will be limited to a smaller area. Therefore in the implementation of a Tabu search, it is

always important to consider the problem in smaller portions rather than as a whole.

2.4.4 Particle swarm optimization

Particle Swarm Optimization (PSO) is an intelligent simulation of birds foraging behavior, which

is as the name implies used as an optimization algorithm to discover distributed solutions to

complex problems, using interactions between simple agents and their environment. It was

developed by Kennedy and Eberhart [14] in 1995. In PSO, each individual, named as a particle,

update its own velocity and the position (pbest – personal best) in each iteration. And also they

refer to the information from other members of the group (gbest – global best) and then use that

information as well to choose the next best foraging sites. As iterations go on, each individual

10

would be able to choose a best site eventually. At the end of an iteration, the performance of all

particles will be evaluated by some predefined cost functions.

A meta-heuristic algorithm, based on the principles of PSO was proposed by Der-Fang [15] to

solve the course timetabling problem. In this algorithm both instructors and students are allowed

to specify their preferences. For example, instructors have the choice to maximize teaching free

hours, and they can state the preferred lecturing format for course sections. Results of this study

have demonstrated that the proposed algorithm was better than the approach of Genetic Algorithms

proposed in the literature.

A new PSO named standard PSO (SPSO) was proposed by Ruey-Maw Chen and Hsiao-Fang Shih

[16] to solve the university course timetabling problem. In their approach the particles were

encoded based on timeslots rather than study hours to reduce the computational complexity.

Moreover, an interchange heuristic has used to search for neighborhood solution space and thus

enhanced the quality of solution.

PSO is a promising scheme for solving complex problems due to its fast convergence, fewer

parameter settings and ability to fit dynamic environmental characteristics.

2.4.5 Simulated annealing

Annealing is a concept of heating physical solid objects and altering their state in order to increase

the ductility, ultimately making them more flexible to work around. The process involves in heating

objects above their critical temperature, secondly maintaining that temperature in a sustainable

manner, and then lastly cooling at a gradual pace. Annealing an object enables it to be stretched by

softening the object, which makes it to relieve its internal atomic stresses and refine its structure

by making it homogenous.

The concept of Simulated Annealing (SA) was first suggested and applied by David Abramson

(1991), where he implemented it on a local search technique that transpired universal concentration

keeping the probabilities to the minimal [17]. In the same year, Abramson applied the technique to

the timetabling problem as well, where he substituted (simulated) the properties of annealing to the

problem as follow.

11

The actual physical objects (particles) are substituted with the subject elements and the system

energy with the cost of the timetable (the cost accumulated to model the timetable). Firstly, an

initial allocation is made on subjects, where they are allocated to randomly chosen timeslots. Next,

the initial cost is calculated along with a predetermined temperature value. In the application, the

cost function comprises of a major role that determines the feasibility or the fitness of the solution;

just as in the original process, the system energy function determines the ductility of a particle

being annealed. The temperature in this case is used to control the increase of cost in terms of

probability and can be linked with a temperature of an actual physical object (particle).

Another researcher, Phillip Kostuch [18] proposed an algorithm with the use of graph coloring

heuristics to check for the feasibility and then used Simulated Annealing methodology to satisfy

the soft constraints, by ordering time slots and then swapping events between them. He has used

cooling schedule criteria to reach the optimum. To be briefer, Kostuch used Simulated Annealing

techniques to provide an optimal solution to course timetabling problem by swapping individual

elements between time slots.

Ruggero Bellio et al have also proposed a solution for curriculum-based course timetabling

problem based on Simulated Annealing techniques. [19] In their approach, classrooms play an

important role for the cost of a solution. The cost component was named ‘RoomStability’ which

states that all lectures of the same course should be conducted in the same room. They have also

used a non-geometric cooling scheme for Simulated Annealing, in which the temperature decreases

quickly in the beginning of the search and then slowly towards the end, to speed-up the process at

high temperatures.

Simulated Annealing is considered to be an iterative concept, and as mentioned above the typical

algorithm accepts a new solution if the cost is found to be lower than the cost of the solution it

iterated from. Similarly, there is also a probability that new solutions are accepted even at higher

costs as long as they are within the margin of a set temperature. This specific acceptance criterion

enables the algorithm to overcome anomalies like local minima.

12

2.4.6 Genetic algorithms

The Genetic Algorithm (GA) in its simplest terms can be explained as a model of machine

learning/search heuristic, where its behavior has derived from the process of natural evolution. In

heuristic terms, the GA reaches an optimal solution by evolving an initial set of individuals from a

population towards a better solution, where new generations (optimized solutions) are created at

each iteration of evolution. The candidate solutions or the individuals consist of a set of properties,

which are usually altered and mutated in the process of evolution.

GAs have been used to provide solutions for timetabling problem since 1990 [20]. Since then there

are a plenty of papers have been published investigating and applying GA methods for the

curriculum based course timetabling problem.

One of them is the guided search genetic algorithm proposed by Naseem and Yang. In their

approach a guided as well as s local search technique are integrated into a steady state genetic

algorithm [21]. In the research paper it has also been mentioned that the authors believe, this is the

first such algorithm aimed at the domain of course timetabling problem. They have tested the

performance of proposed algorithm, by carrying out some experiments based on a set of benchmark

problems to compare it with a set of state-of-the-art methods from the literature. The experimental

results have been demonstrated that the proposed solution is competitive and work well across all

problem instances in comparison with other approaches studied in their literature.

Enzhe Yu and Ki-Seok Sung have proposed another solution for university weekly course

timetabling problem, with the use of a sector-based genetic algorithm [22]. They have introduced

the concept of "sector" and applied it to the initialization, crossover, and mutation procedures. A

routine named "check-and repair" has been adopted with hard constraints to keep the solutions in

a feasible space. According to the experiments that were carried out to evaluate the proposed

solution they could achieve promising results even on a university's real data.

2.5 Conclusion

In this chapter, several heuristic approaches are seen with regards to the timetabling problem, with

their core objectives being producing feasible timetables; in other words, being able to generate

timetables that are clash free for each activity, given those that share the same resources. Every

13

approach looked at, consists of at least a minor amount of difficulties in being able to produce

feasible timetables satisfying all soft and hard constraints. In contrast, GA provides functionalities

to maintain a diversity among good solutions while allowing to have multiple solutions. Generally

GA is used to solve multi-objective optimization problems, when there is an idea on what a solution

looks like but cannot figure out the way to reach that solution. In order to reach the solution GA

facilitates traversing the state space in parallel without much of communication delays.

Considering all these factors, in this specific problem, the GA would suit to provide a better

solution mainly due its evolving and global optimization nature.

14

Chapter 3: Analysis and Design

3.1 Introduction

From this chapter of the report, it is intended to cover the design aspects of the solution. These

aspects include the design process and strategies that have been used for the implementation.

Therefore this chapter discusses about some selected algorithms that would be appropriate to

generate timetables efficiently, along with the means that the problem can be encoded into each of

that algorithm.

3.2 Alternate solutions

As concluded in the previous chapter, the implementation will be consisting on GA to solve the

timetabling problem. Even though GA is the selected algorithm, SA and PSO are also good fits

because they also are evolutionary algorithms. This section of the chapter explains about how SA

and PSO can be used to solve the timetable generation problem.

3.3.1 Particle swarm optimization

In PSO, a bird in a flock is represented as a particle, and the swarm is composed of a group of such

particles. The position of a particle is regarded as a candidate solution to an optimization problem.

Particles are given a fitness function designed with regard to the problem. When each particle

moves to a new position in the search space, it remembers its personal best (Pbest) and exchange

information with other particles to remember the global best (Gbest). Then, each particle revises

its velocity and direction according to the Pbest and the Gbest in memory to move towards the

optimal value and find the optimal solution eventually. This whole process has been depicted in

Figure 3.1.

15

Figure 3.1: Basic steps of PSO

With regard to the timetabling problem, a candidate solution or a feasible timetable has to be

considered as a particle. Therefore a particle can be represented with a structure consisting of a

timeslot, a room and a class to solve the timetabling problem with the use of PSO.

3.3.2 Simulated annealing

In SA, the first step is to define a starting point together with an initial temperature value assigned

to the function. The function is re-evaluated at a new point after making a random move, away

from the initial position. If the new value is an improvement (superior value), the details of the

movement is preserved in memory. If not, the temperature details will be used to compare with a

randomly generated value which is within the range of the maximum and minimum temperatures.

If this random generated value is less than the current temperature, a move will be made. Otherwise

the move has to be ignored and continue the process. The temperature is reduced by a small value

after each iteration for the function to be terminated properly. The diagram below is a graphical

representation of this process.

16

Figure 3.2: Basic steps of SA

A feasible timetable can be represented by a particular position a particle resides after a move. A

cooling schedule should also be defined consisting of starting temperature, temperature decrement

function, and termination condition.

3.3 Problem representation

Scheduling process of a curriculum based course timetable comprises of five main properties in

general, which are:

 Set of time periods

 Room allocations

 Subject allotments

 Groups of students

 Lecturer assignments (to classes/subjects/student groups)

These major properties will be used to encode the problem in to algorithmic representation of GA

17

The GA process usually starts from a population of randomly selected individuals, and this process

is known as ‘Initialization’. These individuals are generally represented by Chromosomes, in a way

that they consist of a fixed length sequence, and are usually represented in the form of binary

multiple coding (Figure 3.3) with zeros and ones also known as Strings.

Figure 3.3: Binary coding representation of a chromosome

However, in order to facilitate the representation according to the problem, it is possible to utilize

other forms as well to represent individuals, such as an integer coding representation or a decimal

coding representation. Figure 3.4 and Figure 3.5 below depicts these two representations.

Figure 3.4: Integer coding representation of a chromosome

Figure 3.5: Decimal coding representation of a chromosome

All initialized individuals comprise of a fitness value; and in the selection process, based on each

individual’s fitness function it is decided who get to proceed for Crossover (to reproduce) from

their environments. The above-mentioned fitness function that is used to select the fittest

individuals may be implemented in two forms. The simplest form being the fitness proportionate

selection, where individuals are simply selected through a fitness measure, based on the fitness

function and decided who will be the most suitable to undergo GA operations such as Crossover.

The other implementation is called the tournament selection, where it is based on a model that

randomly selects individuals from a subgroup and makes them compete amongst themselves in

order to select the fittest.

In terms of optimizing a GA, mutation can be seen as an important aspect of the evolution process.

The purpose of the mutation function is to maintain diversity on generated individuals of a

population to the next, and the freedom is all up to the user, how he wishes to manipulate the

mutation function; however it is always important to keep the mutation rate or the probability, set

0 1 1 1 0 1 0 0 1 0

1 3 4 -2 9 0 1

1.3 -4.8 2.1 3.001 9.99

18

to a low difference. As higher the rate of probability the search will become too random in terms

of generating fit population of individuals.

Figure 3.6 below depicts the whole process explained above in detail.

Figure 3.6: Basic steps of GA

Considering the timetabling problem, it is first important to identify the scheduling problem in

terms of genes to be able to map it into functionality of the Genetic Algorithms. This mapping of

problem properties into genes, and then to the genetic algorithm consists of a number of encoding

and decoding procedures. A schedule for a whole week was identified as a possible solution

(chromosome) which defines how a curriculum should be arranged including which time slots to

place, in which room should be allocated, and which courses should be allotted. Figure 3.7 below

depicts the format of a candidate solution for course timetabling problem.

Figure 3.7: Chromosome representation for course timetabling problem

In this diagram TS stand for “Time Slot” and a class is a collection of a specific subject, a lecturer

and a student group. Fitness would be calculated according to reward on achievement approach.

For every satisfaction of a constraint, individuals will be rewarded with one point. If an individual

19

breaks a rule at any time slot it will not be rewarded with points. Finally the fitness would be

calculated by summing up all the rewards an individual has earned.

3.4 Conclusion

In this chapter it has been discussed about several algorithms that would be appropriate to solve

the timetabling problem. Further the chapter explained how the timetabling problem has been

encoded into Genetic Algorithm.

20

Chapter 4: Proposed Solution

4.1 Introduction

As concluded in the previous chapters, the implementation consists on a Genetic algorithm to solve

the timetabling problem. With the utilization of GA framework, feasible solutions may be reached

or found in a polynomial time, which can be accepted. From this chapter, it is intended to cover the

areas of identification and implementation of base classes, how the algorithm has been put in use,

and the system’s technical aspects etc.

4.2 Algorithm perspective

It is mentioned in the previous chapter how individuals of a population should be represented by

chromosomes or genes as an initial step in order to proceed with operations of evolution. The

solution starts with a population of randomly generated chromosomes and its quality is evaluated

through the fitness function. This fitness evaluation determines whether the chromosome needs to

be reserved as an elite object or if it needs to be improved by further operations like crossover and

mutation. If all the hard constraints are satisfied, the fitness score will be returned with a value of

1.0, and the algorithm terminates since a solution has found.

4.3 Technology perspective

In the solution, Chromosomes are represented by a List of TimeSlot objects. A TimeSlot object

contains details about lecture (module and the lecturer who teaches it), lecture room, start and end

time of a lecture and the day of week the lecture is going to be scheduled. During the initialization

of chromosomes lectures that are to be scheduled are allocated into randomly selected lecture room

and a time. Initialization procedure completes once all the lectures are allocated into available

timeslots and the population count becomes the size specified in database. Some meta-data like

population count, replace count, crossover and mutation probabilities are stored in the database so

that it is easier to check the performance of generating feasible solution for dynamic values of

above mentioned variables.

21

Java method depicted by Figure 4.1 below shows how a random chromosome is initialized.

Figure 4.1: Creation of a random chromosome

Once the initial population of chromosomes is generated, the system performs crossover and

mutation operations to generate offsprings. This process continues until the offspring count reaches

the value of replace count specified in database or an offspring with fitness value 1.0 is generated.

When generating offspring chromosomes with less fitness values get replaced by the ones with

higher fitness so that the population always contains better solutions, ensuring the theory of

“Survival of the fittest”.

As a result of replacing poor solutions with better ones there can be a situation where the population

contains chromosomes with same fitness values. Because of this the mean fitness of population

might not be increased together with the generation count. This kind of situations are called

“Premature Convergence” [23] and to prevent such situations special correction and mutation

methodology has been utilized.

Code snippet mentioned below as Figure 4.2 shows how offsprings are generated in the system and

how it prevents situations like premature convergence.

22

Figure 4.2: Produce offsprings and prevent premature convergence

4.3.1 Crossover

The Genetic Algorithm’s actual evolution process (reproduction) starts from the crossover

operation where it combines information (DNA in terms of Biology) of two parents and creates

offsprings as a result. In referring to the following code segment of the Crossover operation shown

in Figure 10, same chromosome has been used as both the parents to avoid any missing of lectures

during crossover operation. Also in this way offspring will be diverged enough from its parent and

because of that the population will contain a good set of candidate solutions with a huge variety.

The process can be described as follows:

 Pick a random point to divide the "slots" list into two

 Split the list into two portions

 Insert lecture details of second portion from first index of the offspring

 Append the first portion of parent into offspring

23

 Calculate fitness of the generated offspring

Figure 4.3: Crossover Operation

4.3.2 Mutation

Exchange mutation methodology has been used as the mutation operation, where in each mutation

attempt, two random positions from slots are chosen and the lectures in those positions are

swapped. Code segment of the mutation operation is shown in Figure 4.4 below.

24

Figure 4.4: Mutation Operation

Other than the mutation operation mentioned above, a special mutation methodology has also been

utilized in the system to prevent premature convergence. In this method mutation probability has

not checked and therefore the chromosome mutates forcefully. The new methodology adhere the

rules of insertion mutation operation and a randomly picked up lecture is inserted into a random

timeslot where another lecture is not currently available. Figure 4.5 below depicts the code for this

operation.

Figure 4.5: Special Mutation Operation

25

3.3.3 Fitness function

The next stage of the implementation is to relate a fitness evaluation to chromosomes to determine

the feasibility and accuracy of the solution. In this case, when evaluating the fitness function only

hard constraints are taken into account, and the rules are as follow. The code snippet for fitness

function is depicted in Figure 4.6.

 Check if the same lecture has not been allocated multiple times

 Check for lecture room capacity

 Check for lab equipment requirements

 Check for student overlapping

 Check for lecturer overlapping

26

Figure 4.6: Fitness Function

4.4 Conclusion

In this chapter it has been discussed about implementation details of the solution for UCSC course

timetable scheduling system in both algorithmic and technological perspectives.

27

 Chapter 5: Evaluation and Results

5.1 Introduction

This chapter provides an evaluation on the solution provided for timetable scheduling in UCSC for

postgraduate courses. Evaluation of the system is experiment based, and has done by studying the

performance of the system, with the use of actual UCSC postgraduate course details. For this

purpose postgraduate course details (subject selection by students, availability of lecturers and

lecture rooms etc.) of semester2 and semester 4, 2015 (two semesters) has been used. The basis of

semester selection is the nature of courses students have to follow. Semester 2 contains compulsory

courses that all the students should attend and Semester 4 has optional courses that students can

select.

5.2 Functional evaluation

When executing the system, at initial stages there were some situations where fitness get random

values without increasing as per the increase of generation count. The root cause for this behavior

is found after several runs and the reason was identified as removing random chromosomes and

inserting any offspring into population, generated from crossover and mutation operations. System

executed for about 30,000 – 50,000 generations without a proper result. As a solution fitness value

was checked before removing a chromosome from population and inserting a new one.

Then the program was executed for more than 5 hours with no fitness change even though the

generation count increased up to 20,000. Research papers suggested that increasing the population

size [24], dynamic application of crossover and mutation operators and partial re-initialization of

population can avoid such occurrences of premature convergence [25]. Therefore a new mutation

mechanism was introduced with the intension of changing the model of available solutions

drastically. And that method was performed forcefully without checking a mutation probability

because the probability of performing a mutation is only 3%. With the introduction of that new and

forceful mutation mechanism system started to provide results with a 20 – 30 minutes time span,

but there were still some executions where fitness was at a constant value.

28

As a solution to this problem another operation which is similar to mutation was applied to check

for some constraint violations manually such as lab requirement satisfaction and lecture room

capacity satisfaction, and fixed any violation if available. This methodology improved the system

so that it can now always provide a solution within 10 – 20 minutes.

5.3 Performance evaluation

Program execution time and the number of generations the solutions have evolved are the basic

criteria to evaluate system performance. After implementing the final solution performance of the

system was evaluated by changing population size. Figures 14 depicts the evolution of fitness

values when initial population is 500 and the replace count is 300. Table 5.1 contains fitness data

used to plot the chart in Figure 5.1.

Figure 5.1: System performance with 500 population count

0.75

0.8

0.85

0.9

0.95

1

1.05

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

Fi
tn

es
s

V
al

u
e

Generations

best fitness

average fitness

29

Generation Best fitness Average fitness

0 0.92 0.834

1 0.92 0.85286

2 0.92 0.86490001

3 0.93 0.873580004

4 0.93 0.880859999

5 0.93 0.887279994

6 0.93 0.892879991

7 0.93 0.898159991

8 0.93 0.903359994

9 0.93 0.909579999

10 0.93 0.915700009

11 0.93 0.921100016

12 0.93 0.921540015

13 0.93 0.922660014

14 0.93 0.923920013

15 0.93 0.925600011

16 0.93 0.928480009

17 0.93 0.930000007

18 0.94 0.930600007

19 0.94 0.931400006

20 0.94 0.932640005

21 0.94 0.934360003

22 0.94 0.936880001

23 0.94 0.939979998

24 0.94 0.939999998

25 0.94 0.939999998

26 0.94 0.939999998

27 0.95 0.940019998

28 0.95 0.940059998

29 0.95 0.940059998

30 0.95 0.940099998

31 0.95 0.940219997

32 0.95 0.940459997

33 0.95 0.940739997

34 0.95 0.940999997

35 0.95 0.941579996

36 0.95 0.942279995

37 0.95 0.943459994

38 0.95 0.945339993

39 0.95 0.94821999

40 0.95 0.949999988

41 0.96 0.950499988

42 0.96 0.951339987

43 0.96 0.952099986

44 0.96 0.953419985

30

Generation Best fitness Average fitness

45 0.96 0.955479983

46 0.96 0.95849998

47 0.96 0.959999979

48 0.96 0.959999979

49 0.96 0.959999979

50 0.96 0.959999979

51 0.96 0.959999979

52 0.96 0.959999979

53 0.96 0.959999979

54 0.96 0.959999979

55 0.96 0.959999979

56 0.96 0.959999979

57 0.96 0.959999979

58 0.96 0.959999979

59 0.96 0.959999979

60 0.96 0.959999979

61 0.96 0.959999979

62 0.96 0.959999979

63 0.96 0.959999979

64 0.96 0.959999979

65 0.96 0.959999979

66 0.96 0.959999979

67 0.96 0.959999979

68 0.96 0.959999979

69 0.96 0.959999979

70 0.96 0.959999979

71 0.96 0.959999979

72 0.96 0.959999979

73 0.96 0.959999979

74 0.96 0.959999979

75 0.96 0.959999979

76 0.96 0.959999979

77 0.96 0.959999979

78 0.96 0.959999979

79 0.96 0.959999979

80 0.96 0.959999979

81 0.96 0.959999979

82 0.96 0.959999979

83 0.96 0.959999979

84 0.96 0.959999979

85 0.96 0.959999979

86 0.96 0.959999979

87 0.98 0.960039979

88 0.98 0.960039979

89 0.98 0.960159979

31

Generation Best fitness Average fitness

90 0.98 0.960279979

91 0.98 0.960399979

92 0.98 0.96063998

93 0.98 0.96091998

94 0.98 0.961319981

95 0.98 0.961999983

96 0.98 0.962719984

97 0.98 0.963719986

98 0.98 0.965119989

99 0.98 0.967719994

100 0.98 0.971240001

101 0.98 0.976480012

102 0.98 0.980000019

103 0.98 0.980000019

104 0.98 0.980000019

105 0.98 0.980000019

106 0.98 0.980000019

107 0.98 0.980000019

108 0.98 0.980000019

109 1 0.980200019

Table 5.1: Fitness details with 1000 population count

Fitness evolution for execution with 1000 population size and 700 replace count is displayed in

Figure 5.2 and fitness data that were used to plot the chart are displayed in Table 5.2.

Figure 5.2: System performance with 1000 population count

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fi
tn

es
s

V
al

u
e

Generations

best fitness

average fitness

32

Generation Best fitness Average fitness

0 0.92 0.833399998

1 0.92 0.863510002

2 0.93 0.880579998

3 0.93 0.892599991

4 0.93 0.900999991

5 0.93 0.907560001

6 0.93 0.914780022

7 0.93 0.919550017

8 0.93 0.927550009

9 0.93 0.930000007

10 0.94 0.930060007

11 0.94 0.930250007

12 0.94 0.930540007

13 0.94 0.931160006

14 0.94 0.932450005

15 0.94 0.935090002

16 0.94 0.939999998

17 0.97 0.940329998

18 0.97 0.940569998

19 0.97 0.941079999

20 0.97 0.94229

21 0.97 0.944780002

22 0.97 0.948870007

23 0.97 0.957690015

24 0.97 0.970000029

25 0.97 0.970000029

26 0.98 0.970590028

27 0.98 0.971160028

28 1 0.974290025

Table 5.2: Fitness details with 1000 population count

5.4 Test results

Figure 5.3 below depicts the best solution provided by the system after 10 runs. All the results

received during 10 runs are included in Appendix A.

33

Figure 5.3: Best solution generated by system

34

Chapter 6: Conclusion and Further Work

6.1 Introduction

This chapter discuss summary of the work has been done during this project, its limitations and

future work.

6.2 Conclusion

This project is aimed at studying the impact of applying soft constraints on generation of timetables

with the use of data of UCSC postgraduate courses. In order to achieve this aim a system was

generated using genetic algorithm, java and a postgres database. Genetic algorithm was selected

after a performing a widespread research study. During the research, algorithms such as graph

coloring, integer liner programming, tabu search, particle swarm optimization, simulated annealing

and genetic algorithm were studied, and genetic algorithm was selected to implement a timetable

generation system due its evolving and global optimization nature.

When developing the system it was hard to incorporate soft constraints into fitness function due to

score changes. Therefore soft constraints were applied after generating a feasible solution where

no hard constraints are violated. Due to this methodology of soft constraints application to the

system there is no impact of satisfying soft constraints on performance of the system, and the

executions solely depends on hard constraints.

During the testing and evaluation phase, it was found that the size of initial population can make a

great impact on the performance of genetic algorithm. Higher the initial population size is

generations to be evolved to find a solution becomes fewer. And also higher amount of initial

population can prevent premature convergence into some extend.

6.3 Further work

The system can be further improved to generate timetables for undergraduate courses as well.

Moreover introducing more soft and hard constraints will also improve the system.

35

Another area that may be considered on improving is the actual algorithm. The current algorithm

employed in the system is basically a Simple Genetic Algorithm (SGA) that consists of basic

operations. This algorithm however can be more uniformed by transforming it into a Hybrid

Genetic Algorithm (HGA). In order to implement such HGAs, mechanics such as ‘Branch and

Bound’ can be used on the SGA. This improvement was suggested because given a difficult dataset;

the system may consume a lot of time to generate a feasible solution

36

References

[1] T. Cooper, J. Kingston, “The complexity of timetable construction problems” in Practice and Theory of

Automated Timetabling , E. Burke and P. Ross, Eds. Springer Berlin Heidelberg, 1996, pp. 281–295.

[2] S.A. MirHassani, F. Habibi, 2013. “Solution approaches to the course timetabling problem” Artificial

Intelligence Review, vol. 39, No. 2, pp.133-49

[3] FET - Free Timetabling Software. [Online] Available: http://www.lalescu.ro/liviu/fet/

[4] K. Murray, T. Muller, “Automated System for University Timetabling” In 6th international conference

on the Practice and Theory of Automated Timetabling, 2006.

[5] H. Rudová,, T. Müller, K. Murray, 2011. “Complex university course timetabling” in Journal of

Scheduling , Vol 14, No 02, pp.187-207.

[6] D. J. A. WELSH, M. B. POWELL, 1967. “An Upper Bound for the Chromatic Number of a Graph and

Its Application” in Timetabling Problems Comp. Jrnl, Vol 10, pp.85-86.

[7] S. BRODER, 1964 “Final Examination Scheduling” in Comm. A.C.M. Vol 7, pp.494-498.

[8] E.K.Burke, D.G.Elliman, R.Weare, “A University Timetabling System based on Graph Coloring and

Constraint Manipulation”

[9] S. Daskalaki, T. Birbas, E. Housos, “An integer programming formulation for a case study in university

timetabling,” in European Journal of Operational Research, vol. 153, No. 1, pp. 117–135, 2004

[10] K. Schimmelpfeng, S. Helber, “Application of a real-world university-course timetabling model solved

by integer programming,” in OR Spectrum, vol. 29, No. 4, pp. 783–803, 2007.

[11] F. Glover, 1989, “Tabu Search” in ORSA Journal on Computing,Vol. 1, No 3, pp.190-206.

[12] A. Hertz, 1991, “Tabu search for large scale timetabling problems”, in European Journal of

Operational Research, Vol. 54, pp.39-47.

[13] A. Schaerf, 1996, “Tabu Search Techniques for Large High-School Timetabling Problems”, In

Proceedings of the Thirteenth National Conference on Artificial Intelligence. Portland, 1996.

[14] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”, in Proceedings of the Fourth IEEE

International Conference on Neural Networks, pp. 1942–1948, 1995.

37

[15] D. Shiau, 2011, “A Hybrid Particle Swarm Optimization for a University Course Scheduling Problem

with Flexible Preferences”, in Expert Systems with Applications, Vol. 38, pp.235–248

[16] “Particle Swarm Optimization Based Najran University Course Timetable Scheduling” in NNGT

[17] D. Abramson, 1991. “Constructing school timetables using Simulated Annealing: sequential and

parallel algorithms”, in Management Science, Vol. 37, No. 1, pp.98-113.

[18] P. Kostuch, 2005. “The University Course Timetabling problem with a Three Phase Approach”, E.

Burke & M. Trick, eds, in Practice and Theory of Automated Timetabling V, Springer Berlin Heidelberg,

pp.109-25

[19] R. Bellio, et al., 2013, “A simulated annealing approach to the curriculum-based course timetabling

problem”, In 6th Multidisciplinary International Conference on Scheduling: Theory and Applications, 2013.

[20] A. Colorni, M. Dorigo, V. Maniezzo, 1990, “Genetic algorithms - A new approach to the timetable

problem”, M. Akgül, H.W. Hamacher & S. Tüfekçi, eds, in Combinatorial Optimization, Springer Berlin

Heidelberg, pp.235-39.

[21] S. J. Naseem, S. Yang, 2009. “A Guided Search Genetic Algorithm for the University Course

Timetabling Problem”, In Multidisciplinary International Conference on Scheduling : Theory and

Applications. Dublin, 2009.

[22] E. Yu, K. Sung, 2002, “A Genetic Algorithm for a University Weekly Courses Timetabling Problem”,

in International Transactions in Operational Research, Vol. 9, pp.703-17.

[23] Premature Convergence. [Online] Available: https://en.wikipedia.org/wiki/Premature_convergence

[24] L. Yee, et al.,1997. “Degree of Population Diversity||A Perspective on Premature Convergence in

Genetic Algorithms and its Markov Chain Analysis” in IEEE Transactions on Neural Networks, Vol 8, No

5, pp.1165-1176

[25] E. S Nicoara, 2009, “Mechani sms to Avoid the Premature Convergence of Genetic Algorithms.”

38

Appendix A: Test Results

39

40

41

