

Performance Analysis of Parallel

Bucket Sort

H.I.S.Wijayabandara

2018

1

Performance Analysis of Parallel

Bucket Sort

A dissertation submitted for the Degree of Master

of Computer Science

H.I.S. Wijayabandara

University of Colombo School of Computing

2018

i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: HIS Wijayabandara

Registration Number: 2013/MCS/075

Index Number: 13440757

Signature: Date: 13/07/2018

This is to certify that this thesis is based on the work of

Mr./Ms. HIS Wijayabandara

under my supervision. The thesis has been prepared according to the format stipulated and is of

acceptable standard.

Certified by:

Supervisor Name: Mr M.K. Silva

Signature: Date:

ii

Abstract

One of the most fascinating problems in computer science is sorting. Starting from small

scale applications, Sorting algorithms are used in variety of applications such as large scale

databases and large scale search engines.

 Thus, optimizing the sorting algorithms has a big advantage. Bucket sort is one of the most

popular comparison based integer sorting algorithm.

Optimizing the bucket sort is an interesting research area. Threads, SSE instructions and GPU

programing is used to optimize the algorithm. GPUs (graphics processing units) are becoming

an attractive computing platform not only for traditional graphics computation but also for

general-purpose computation, because of the computational power, programming capabilities

and their comparatively low cost modern GPUs have. This improvement of GPUs with highly

parallel programming environments such as CUDA has led to a variety of complex general

purpose applications with remarkable performance improvements.

Algorithm is implemented and tested on windows platform. Visual studio is used to do the

implementation. Two methods are used to do the profiling of the algorithm. Own profiler is

created using windows timer and Intel Inspector is used as a third party tool for profiling.

CUDA was used to for do the General Purpose Computing on Graphics Processing

Unit(GPGPU).

Results shown that how the algorithm works with different kind of parallelization. For small

number of elements, it is better to do the sorting in single thread. Increasing the number of

threads doesn’t give any positive results for the optimization. Bottleneck of GPU and CPU is

shown on this research clearly. CPU base parallelization is enough for bucket sort which is

proven on this research.

iii

Acknowledgements

I would like to take this opportunity to state my appreciation for all who has helped me out by

spending their valuable time for making this research a success.

I am truly grateful for the invaluable guidance and assistance provided through-out by my

supervisor, Mr M.K Silva, senior lecturer at University of Colombo School of Computing, at

all times. Without his thorough experience and constant advice, the work presented here

would be incomplete.

Special thanks for my office staff members at Simcentric Technologies for given me the

technical helps and courage for complete the thesis successfully.

Finally, I would like to express my heartfelt thanks towards my family for backing me up and

encouraged me through many days and nights dedicated to the completion of this thesis.

iv

Contents

Abstract ... ii

Acknowledgements ... iii

List of Figures ... vi

List of Abbreviations .. vii

Chapter 1 .. 1

Introduction .. 1

1.1 Aims and Objectives ... 2

1.2 Scope ... 3

1.3 Expected Contribution .. 3

1.4 Outline .. 4

Chapter 2 .. 5

Background ... 5

2.1 Introduction .. 5

2.2 CPUs in High Performance Computing ... 5

2.3 GPU’s in High Performance Computing .. 6

2.4 Threads and Process Binding .. 8

2.5 Registry Level Sort .. 8

2.6 Computer Unified Device Architecture (CUDA) .. 8

2.7 Related work ... 10

Chapter 3 .. 12

Methodology .. 12

 3.1 System Architecture.. 12

3.2 Single Threaded Bucket Sort ... 13

3.3 Bucket Sort with Multi-Threaded Environment. .. 14

3.4 Bucket Sort in GPU .. 16

Chapter 4 .. 18

Implementation .. 18

4.1 Hardware and Software Environments .. 18

4.2 Algorithm Implementation ... 18

4.2.1 Single Threaded Bucket Sort .. 19

4.2.2 Multi-Threaded Bucket Sort .. 19

v

4.2.3 Bucket Sort in GPU ... 20

Chapter 5 .. 22

Evaluation and Results .. 22

5.1 Results ... 22

5.1.1 Bucket Sort in std::threads Results .. 23

5.1.2 Bucket Sort in OpenMp Results ... 24

5.1.3 Bucket Sort in GPU ... 25

5.2 Analysis and Discussion .. 26

Chapter 6 .. 28

Conclusion and Future Works ... 28

6.1 Conclusion ... 28

6.2 Future works ... 29

References .. 30

vi

List of Figures

Figure 1.1 : Heterogeneous Computing Mode ... 7

Figure 2.1 : Floating-Point Operations per Second for the CPU and GPU[5].. 9

Figure 2.2 CUDA Architecture [7] ... 10

Figure 2.3 Grids of Thread Blocks ... 13

Figure 3.1: Architecture Diagram ... 13

Figure 3.2 Bucket Sort ... 15

Figure 3.3 Bucket Sort with threads ... 16

Figure 3.4 Execution of a CUDA program ... 17

Figure 3.5 Thread representation of buckets ... 23

Figure 5.1: Bucket sort in single thread without optimization ... 23

Figure 5.2 Bucket sort in std::thread ... 25

Figure 5.3 Bucket sort in OpenMp .. 25

Figure 5.4 compare std::threads with Open Mp .. 26

Figure 5.5 Intel Inspector view of Analysis ... 26

Figure 5.6 GPU sorting .. 27

Figure 5.7 Compare Single thrrad std::thread openMP and GPU .. 27

vii

List of Abbreviations

CPU - Central Processing Unit

GPU - Graphics Processing Unit

API – Application Programing Interface

GPGU - General Purpose Computation on Graphics Processor

SSE – Streaming SIMD Extensions

SIMD – Single Instruction Multiple Data

1

Chapter 1

 Introduction

One of the most fascinating problems in computer science is sorting. Starting from small

scale applications its use by large scale databases and large scale search engines, sort

algorithms are used. Thus, optimizing the sorting algorithms have a big advantage.

Bucket sort is one of the most popular comparison based integer sorting algorithm.

Optimizing the bucket sort is an interesting research area. Bucket sort is a non- comparison

sorting algorithm in which elements are scattered over the buckets. Researchers are using

different algorithms to sort the bucket. Some research has proposed ways to optimize the

sorting elements and some propose to parallelize algorithms inside the CPU or GPU.

With the single core processor increase the number of transistors doesn’t improve the

performances of the system. Development of the multi core processor is given one of the

solution for improving the performances. Multi core computing will improve the user

experience in many ways. Such as improving the performance of activities that are

bandwidth-intensive and compute, boosting the number of PC tasks that can be performed

simultaneously. Various companies such as Intel, AMD. AMR and VIA have already worked

on this multi-core solutions [1].

Over the past few years Graphics Processing Unit (GPU) has become competitive computer

hardware against (Central Processing Unit) CPU [2]. The GPU has grown into a powerful

programmable processor with application programming interfaces and also hardware which

supports for programming aspects. Today GPU’s provide highly parallel programmable

processor which does not support only for graphic. In early general approach to GPU is bit

difficult. The standard graphic APIs like OpenGL and DirectX were supported only one way

to communicate with GPU because it uses only for rendering purposes. But now it provides

like CUDA\C, OpenCL lead to map complex non graphical interfaces to the GPU. General

Purpose Computation on Graphics Processor (GPGPU) also known as GPU Computing and

this feature leads GPU to the next generation of high performance computing with accessible

programming interfaces. Heterogeneous computing model of CPU and GPU is shown in

figure 1.1 below.

2

Figure 1.1 : Heterogeneous Computing Mode

.

1.1 Aims and Objectives

The research is to evaluate the Bucket sorting algorithm with various parallelize

techniques. Since buckets works independently it is easy to apply any parallel techniques to

optimize this sorting algorithm. Since GPU is going to be the most powerful and efficient

device that can be used to optimize the Bucket sort algorithm`. Comparison between both

GPU and CPU for bucket sort is done on this research; since we have large number of data

to copy form CPU to GPU and again from GPU to CPU it would going to be an interesting

analysis.

In present CPU has number of cores and thread affinity is handled by the computer

operating system. So we hope to break the buckets into number of threads and look on how

the threads are context switch and work with multi cores. Since Soring is not going to be a

IO operation it could be interest to find how the soring algorithm will with the large number

of thread count.

GPU is consisting of number of Cores and buckets can be run in parallel without context

switching issue in CPU threads. Since large number of data have to be copy from CPU to

GPU and GPU to CPU, PCI bus has to copy all those data it will going to be an interesting

algorithm to compare with CPU optimized algorithms.

3

1.2 Scope

 This research would be to evaluate Bucket sort with some parallel techniques. Bucket

sort is done on multicore environment and with a CUDA supported VGA. Sorting is done

with single threaded environment, multithreaded environment and inside the GPU.

Comparison is done among various element sizes start from small number of elements to

large scale of elements. Pre generated number set will be used for do the comparison.

Comparison is going to be done on

1. Single thread vs Multi-threaded environments.

2. GPU vs CPU

3. Number of elements with single thread and with various numbers of threads.

Ultimate goal of this comparison is to find an optimal way to do the bucker sorting algorithm.

1.3 Expected Contribution

When considering implementation of bucket sort algorithm as mention below there are

algorithms implemented for optimized the sorting algorithms. But no one has done a detailed

analysis to find, how bucket sort can be optimized using CPU threads and GPU threads. This

research is done using new generation GPUs and CPUs and latest version of CUDA. This

analysis is done in detail with those factors.

This research will give the idea of how the threads will optimize the bucket sort and how the

modern GPUs will optimize the soring algorithms. So this is going to be an interesting

research topic.

4

1.4 Outline

The rest of the document is structured as follows.

Chapter 2 - Literature Review: Detailed literature survey based on the entire project, includes

background areas of the project and related researches and their contribution.

Chapter 3 - Methodology: Heterogeneous computing model (GPU and CPU usage models),

the design of Bucket Sort algorithm and memory access patterns are discussed in this chapter.

Different sorting optimization techniques used to optimize is declared here.

Chapter 4 is the implementation part. Four type of implementations are done here. Bucket

sort in main thread, Bucket sort in threads, Bucket sort with SSE instructions and bucket sort

in GPU using CUDA.

Chapter 5 will evaluate the algorithm implementation and find the best possible scenario for

bucket sort.

Chapter 6 will summarize the worked done here. And describe future plans on this chapter.

5

Chapter 2

Background

2.1 Introduction

Sorting is one of the interesting research areas in computer science. Sorting can be optimizing

by changing the algorithm or using high performance computing. Development of the

multicore processors and with general purpose computing with GPUs there was a huge

change in high performance computing. Multicore processor can run instructions separately

on a processor core. Single processor core can run multiple instructions at the same time.

With the introduce of general purpose computing in GPU more processor power was taken

for process run a program. There are number of physical processor that can run parallel.

Although there are multi cores still one thread can run on one processor core. With the

context switching thread will switch and works. So it the processor is i7 only 7 threads can be

run at a time. But with GPU there are huge number of processors we can run multiple threads

in parallel.

pThreads, std::threads and OpenMp can used to parallelize the algorithms in CPU. CUDA\C

/OpenGL can be used to optimize the algorithm in hardware leave in GPU. Capabilities in the

CPU as well as GPU are used to analysis the parallelism of the Bucket sort algorithm.

On this chapter soring the bucket level and hardware level optimization is discussed in deep.

How these technologies can be applied to optimize the bucket sort will be the purpose of this

chapter.

2.2 CPUs in High Performance Computing

In past years Central Processing Units (CPUs) had been increased their performance by

adding more transistors to the microprocessor and increasing the clock frequency. Since

2003, microprocessor venders have switched to implement multi-core and many-core models

to increase the processing power of microprocessors. As a result of this advantage of

performance improvement in multi-core processors, parallel programming became more

popular in computer industry intend of traditional sequential programming. The high

6

performance community has been developed parallel programs since late 1980s and early

1990s, but practicing in parallel programming was limited to a small number of software

developers because of those parallel programmed applications need to execute on expensive,

large scale computers.

There are many concepts that can use in applications to get the advantages of modern CPU’s.

Managing the work on each node, Managing the works for each core, Vectorising the loops

and Minimizing the communication are some of them. Managing the work in each node is

considered as domain parallelism. During the application work assign to a node should be

isolated. OpenMP can be used to achieve this. Managing the work for each core or thread will

need one level down of control. It’s better to execute independent tasks in each core or

thread. OpenMP or PGAS can be used to achieve it. By minimizing the communication

between the CPU and RAM will make more effective when running an algorithm more

efficiently. For all those concepts developer should have a good knowledge in the algorithm

and how it works [3].

.

2.3 GPU’s in High Performance Computing

Parallelism is the future of computer science. Microprocessors developer will consider on

adding cores rather than work on a single core. The GPU is basically designed as a fix

function processor design for rendering graphics. But in present GPU has become a powerful

programmable processor, with both application programming interfaces (APIs) and hardware

increasingly focusing on the programmable aspects of the GPU. The GPU is a processor with

the enormous arithmetic capability.

The performance of the GPU is higher than a CPU, programing model and the architecture

has a bit different than a single chip processor. The GPU has become a competitive hardware

solution for parallel programming against the CPU because GPU provides hundreds of

computing cores and it is more than a fixed function graphic pipeline with programming

capabilities for other general purpose problems. Performance analysis of GPU and CPU is

given in the figure 2.1 below. This huge gap makes the developers more fascinated in moving

the more complex part into GPU. This attempt is simply known as General Purpose

Computation on Graphics Processor (GPGPU) [6].

7

Inputs to a GPU is a list of geometric primitives in 3D coordinate system. GPU uses

graphical pipelines. There are so many barriers when working with GPUs considering with

the CPU. Programming environment is tightly constrained and the underlying architectures

are largely secret. As a solution for the above problem in 2007, Compute Unified Device

Architecture (CUDA) was released by the leading GPU manufacture in the industry called

NVIDIA. CUDA is more popular and widely used for GPU related programing. CUDA

provides c interface for the developer [4].

Figure 2.1:Floating-Point Operations per Second for the CPU and GPU[5]

8

2.4 Threads and Process Binding

Considering of Optimize the algorithm in the CPU, process binding is going to be an

interesting topic. OpenMP and MPI are some of the APIs provided for bind the threads into a

processor die.

2.5 Registry Level Sort

Modern High-performance processors provide multiple hardware threads within one

processor. Many processors also provide a set of Single Instruction Multiple Data (SIMD)

instructions, such as the SSE instruction set [10] or the VMX instruction set [11]. From the

generation to generation improvements in CPU has improved rapidly. Some of the changes

may optimize the program without the acknowledge of the programmer and some of them

depended on the capability of the programmer. As an example, in modern CPU’s and OS’s

thread affinity setting is not necessary to set. To take the SMID capability implicitly it is

needed to vectorize a code. Modern CPU’s are up to a factor 4 in most CPUs(AVX) and up to

8(AVX-512) on the KNL. SMID instructions are not implicitly work on data processing

algorithms because it is not designed for data processing algorithms [12].

There are some special kind of CPUS that the size of SIMD- vector and the number of cores

in the chip has been increased impressively. Intel Knights Landing(KNL) processor is an

example to this. It will support AVX-512 instruction set.

Streaming SIMD Extension (SSE) is and SIMD instruction set extension to the x86

architecture designed by Intel and introduced in 1999 in their Pentium III serious. CPU

instruction is said to be SIMD when same operation is applied to multiple data at the same

time.

2.6 Computer Unified Device Architecture (CUDA)

CUDA is a parallel computing platform as well as an application programming interface

(API) created by NVIDA allowed to use in CUDA enabled GPUs, used for General Purpose

Computing on Graphics Processing Unit (GPGPU). This gives a direct access for the GPU.

9

CUDA works with C, C++, Java, python, .Net and Fortran. Considering prior APIs like

Direct3D and OpenGL which required advanced skills in graphics programming

CUDA has several advantages over traditional general-purpose computation on GPUs

(GPGPU) using graphics APIs:

 Scattered reads

 Unified virtual memory

 Unified memory

 Shared memory- memory can be shared among the threads

 Faster downloads and readbacks to and from the GPU

 Full support for integer and bitwise operations, including integer texture lookups [7].

Figure 2.2: CUDA Architecture [7]

Figure 2.2 shows the architecture of CUDA. CUDA includes CPU serial code and GPU

parallel code which includes functions that are executed many times, but on different data

independently. Portions of codes that are compiled for the GPU are called the kernel. Kernel

operations are executed by a set of threads to take the advantage of data parallelism. The

operations which are represented in CUDA kernel function executed by a single thread.

CUDA arrange those threads into a hierarchy called blocks and grids. Block contains set of

independent threads which are worked as a work-group, grid contains a set of independent

thread blocks and kernel is executed by a grid of thread blocks. Figure 2.3 shows the

hierarchy of grid of thread blocks [7]. Each thread is uniquely identified by its global ID or

10

by a combination of its local ID and work-group ID. Each block also has its own unique

block ID. The grid layouts can be 1, 2, or 3-dimensional.

Figure 2.3 : Grids of Thread Blocks

2.7 Related work

Neetu Faujdar has done a detail analysis for bucket sort. Insertion, count and merge sort has

been done for the buckets. Sorting benchmark has been used for testing the algorithm. He

has found that if the range of key element increases then count sort will be worst in

comparison to other sorting algorithms in both memory and time aspects [8].

Panu Horsmalahti compared radix and bucket sort algorithms against the memory

consumption and time usage for different inputs. This has been shown that bucket sort was

faster than radix sort but in some cases more memory is occupied by the bucket sort. Burak

takmaz et al determined some improvement using some different sorting technique. The

11

author has mixed the bucket and shell sort. New approach is suggested and it works with

greater performance [9].

N. K. Govindaraju, J. Gray, R. Kumar and D. Manocha are proposed GPUTeraSort. It is an

improvement for bitonic merge sort. The bitonic merge sort has computational complexity of

O(N.log(N)
2
) and it can be executed by up to N processors in parallel. Comparing with AA-

sort to the GPUTeraSort, both of them can be giving thread level parallelism and SIMD

instruction implementation. An advantage of our AA-sort is smaller computational

complexity of O(N.log(N)) compared to complexity of O(N.log(N)
2
) for the GPUTeraSort

[14].

Berenger Bramas discussed CPU Vectorization. The term called SMID-vectors to call the

data type managed by the CPU. He discussed SSE [14], AVX [15], and AVX-512 [4],

supporting SIMD-vectors of size 128, 256 and 512 bits, respectively. He has discussed new

sorting strategies using the AVX-512 instruction set on the Intel KNL. And it works only for

special type of processors [12].

12

Chapter 3

Methodology
This chapter describes the analysis and design of bucket sort algorithm with different

approaches. Some existing solutions and algorithms are discussed in chapter 2. After analysis

them, I have come with better solution for bucket sort optimization.

Bucket sort will be tested on both CPU’s and GPU’s. OpenMP and std::threads will used to

parallelize the algorithm in CPU. CUDA will used to parallelize the algorithm in GPU. C++

is used as the language to implement the algorithm. Visual Studio 2013 is used as the

development tool used to develop algorithm in c++ and CUDA.

As the literature review done on above chapter 2 normally processing power of GPU is

greater than a multi core CPU. But the issue behind the GPU is copping data from CPU to

GPU and GPU to CPU.

3.1 System Architecture

The bucket sort algorithm will be run on both CPU and GPU. In figure 3.1 there is a sample

overview of the system going be implemented. Input data will be predefined and generated

by a program. A Profiler will run for calculating the running time of algorithm. A timer

creates with QueryPerformanceCounter and Interl Inspector 2017 is used to calculate the

runtime of the algorithm. Run time is displayed as the result. Runtime is taken as total time

taken for run the algorithm.

13

Figure 3.1 : Architecture Diagram

 The implementation of the algorithm is done in different way.

 Normal Single Threaded Bucket Sort.

 Bucket Sort with std::thread

 Bucket Sort with OpenMP

 Bucket Sort in GPU

3.2 Single Threaded Bucket Sort

 Sorting is done in main thread. Array (arr) and number of bucket is taken as n. Function is

used to divide the array in to buckets. Interval count is calculating using

 float interval = float(max - min + 1) / bucket_count;

min - Minimum number in the array

max – Maximum number in the array

to find the index of the element

int index = (arr[i] - min) / interval;

14

i denote the index of the array.

After breaking into buckets these individual buckets are sort separately.

Figure 3.2: Bucket Sort

For individual bucket we have apply std::sort. All buckets are sorted in main thread and give

the output.

3.3 Bucket Sort with Multi-Threaded Environment.

Std::thread class and openMp are used to create the multithreaded environment. Each bucket

is sorted individually applying sorting algorithms separately for buckers. Bucket sort is a

generalization of pigeonhole sort and is a cousin of radix sort. The figure 3.3 describe the

overview of bucket sorting with threads.

15

Figure 3.3: Bucket Sort with threads

When working with threads there are two issues one is thread affinity and next one is cache

line invalidation issue. As discussed on chapter 2 Literature analysis modern OS’s support

this issue, we don’t need to set thread affinity explicitly. Only issue we should address is

cache line invalidation issue. This issue will be going to address in the implementation. Input

array will process and created buckets. Each bucket will sort in threads and merge into array

after all the buckets are sorted. Here number of threads can be changed. With changing the

number of buckets and threads runtime will be calculated.

16

3.4 Bucket Sort in GPU

As mentioned in earlier chapters GPGPU or GPU Computing is a heterogeneous computing

model and it allows executing the serial part of the program on the CPU and parallel part on

the GPU. This CUDA architecture enables massively parallel execution of general purpose

applications in GPU.

CUDA program consists of one or more phases that are executed on either the host CPU or

device such as GPU. There is no data parallelism implemented in host code. The host code is

ANSI C code and it runs as an ordinary CPU process. Device code is also written ANSI C

extended with keywords which are supported for data parallel functions called kernels.

Kernel function generates a large number of threads to make use of data parallelism. Figure

3.5 shows execution of a CUDA program.

Figure 3.4: Execution of a CUDA program

17

Not like with std::threads number of threads can be run on GPU, we can sort more number of

buckets in parallel. Copy data through GPU to CPU and CPU to GPU is an overhead. So it’s

a must to reduce the communication between this main memory and device memory

communications.

When we consider efficient memory access pattern blocking become core strategy.

1. Parallelism among threads within a single block

2. Parallelism among threads within a multiple blocks

Bucket sort optimization has mainly we have to consider these factors.

1. Pruning the array and preprocessing done in CPU

2. Create buckets in host memory and move them into GPU

3. Sort the buckets inside device memory

4. Copy the device vectors to host memory.

Figure 3.5: Thread representation of buckets

Figure 3.5 represent the bucket representation on the GPU memory. Each bucket assign to a new

thread each thread runs on its own. Finally we have to copy each buckets in to main memory.

18

Chapter 4

Implementation

This chapter explains the steps taken to implement the proof of concept for Bucket sort with

different approaches. According to the analysis here we discussed technologies used,

frameworks, APIs with the justifications.

4.1 Hardware and Software Environments

We have test the system with following hardware and software

Interl(R) Core(TM) 7i-6700HQ CPU @ 2.60GHz

16GB ram

NVDIA Geforce GTX 960M

C++ Is use to implement the algorithm, Visual Studio 2013 is used as the tool for

development. CUDA and std is used as packages for development.

Intel Inspector is used as an external profiler.

4.2 Algorithm Implementation

There are four type of implementations are mainly considering here.

 Single Threaded Bucket Sort

 Bucket Sort with thread

 Bucket Sort with OpenMp

 Bucket Sort in GPU

19

4.2.1 Single Threaded Bucket Sort

With this algorithm we will done the implementation in one single thread. Pseudocode is

given below.

bucketSort(float arr[], int bucket_count)

{

std::map<int, std::vector<float>> Buckets;

var max = max value of array

var min = min value of array

var interval = (max - min + 1) / bucket_count;

do while i < num_of_element_in_array

var index = (arr[i] - min) / interval;
Buckets[index].push_back(arr[i])

End while

do while i < size_of_bucket

 // sort each bucket with std::sort

End while

}

Total algorithm is running on a single thread.

4.2.2 Multi-Threaded Bucket Sort

Mainly pruning part is done on main thread. Create buckets and assign the values on to

buckets are done in main thread. After that according to the bucket count we will create

separate threads for each. In modern OS it is support thread affinity so here we don’t go to

handle that issue. The only issue we are going to address is cache line invalidation here. It

will discuss separately.

20

bucketSort(float arr[], int bucket_count)

{

std::map<int, std::vector<float>> Buckets;

var max = max value of array

var min = min value of array

var interval = (max - min + 1) / bucket_count;

do while i < num_of_element_in_array

var index = (arr[i] - min) / interval;
Buckets[index].push_back(arr[i])

End while

do while i < size_of_bucket

 // create threads and sort the bucket seperalty

End while

}

4.2.3 Bucket Sort in GPU

As mentioned in Design phase GPGPU or GPU Computing is a heterogeneous computing

model and it allows executing the serial part of the program on the CPU and parallel part on

the GPU. This CUDA architecture enables massively parallel execution of general purpose

applications in GPU.

Mainly pruning part is done on CPU. Create buckets and assign the values on to buckets are

done in CPU. After that each bucket is sort in GPU.

bucketSort(float arr[], int bucket_count)

{

21

std::map<int, host_vector<float>> Buckets;//

device_vector[numb_of_buckets]

var max = max value of array

var min = min value of array

var interval = (max - min + 1) / bucket_count;

do while i < num_of_element_in_array

var index = (arr[i] - min) / interval;
Buckets[index].push_back(arr[i])

End while

While j == num_of_buckets

Copy host_vector -- device_vector

End while

Sort host_vectors

Copy device_vectors -- host_vectors

End while

}

The pseudocode implementation is given above and trust::sort is done instead of std::sort

here. I have use my own timer with QueryPerformanceCounters to calculate the time gone for

executes the algorithm and Intel inspector also used to calculate the execution time. Calculate

the median value for depict the final results through graphs.

22

Chapter 5

Evaluation and Results

We are going to do a detail statically analysis to find the best approach for the bucket sorting

algorithm. Following implementations are done for the bucket sort.

 Sorting in single thread.

 Multi-threaded environment using std::thread and OpenMp.

 General Purpose Computation on Graphics GPGPU) (used CUDA)

What I need is to do a comparison among them. Comparison is done between,

 Among Multithread environments. (Look on std::thread and OpenMp. This is done to see

whether std::thread done with full optimization)

 Threads with GPGPU.

 Single thread and multi-threaded environment.

5.1 Results

Before moving to optimizations let’s have a look on basic one without optimizations. This

works on a single threaded environment. Here the execution time shown in milliseconds in y

axis. And number of buckets shown in y axis. Figure 5.1 shows the results.

23

Figure5.1: Bucket sort in single thread without optimization

5.1.1 Bucket Sort in std::threads Results

In this result number of threads change according to the bucket count and check how the

number of threads and bucket count can change the running time of the algorithm. Number of

CPUs the machine used to optimization is 7, along with hyper threading 8 threads can run

parallel. Figure 5.2 shows the results.

0

50

100

150

200

250

300

1 8 10 20 50 100

Ti
m

e
In

 m
s

Number of buckets

Single Thread

bucket 1 Bucket 8 Bucket 10 Bucket 50

Bucket 100 Bucket 200 Bucket 300

24

Figure 5.2 Bucket sort in std::thread

5.1.2 Bucket Sort in OpenMp Results

Std::threads and OpenMp both are multithreaded environments used in CPU. But to see the

optimization on std::thread and OpenMp also used to do the optimization on bucket sort.

Figure 5.3 shows the test results.

Figure 5.3: Bucket sort in OpenMp

0

50

100

150

200

250

300

1 8 10 20 50 100

Ti
m

e
In

 m
s

Number of Buckets

std::Thread

bucket 1 Bucket 8 Bucket 10 Bucket 50

Bucket 100 Bucket 200 Bucket 300

0

10

20

30

40

50

60

70

80

90

1 8 10 20 50 100

Ti
m

e
In

 m
s

Axis Title

Open MP

bucket 1 Bucket 8 Bucket 10 Bucket 50 Bucket 100 Bucket 200 Bucket 300

25

Let’s do a comparison between std::threads and OpenMP. Figure 5.4 shows the test results.

Figure 5.4: compare std::threads with OpenMp

5.1.3 Bucket Sort in GPU

This is our main scenario that that what need to test is the optimization on GPU. Figure 5.5 shows

how the results shown in Intel inspector.

Figure 5.5: Intel Inspector view of Analysis

Sort the bucket inside the GPU and copy in back to main memory. This is the time calculated as the

total time taken. thrust::sort is used to do the sorting.

26

Figure 5.6: GPU sorting

5.2 Analysis and Discussion

Let’s consider figure 5.1 and bucket sort happen on single thread. And it shows that this will

works fine when the size of the array is small but when considering large number of data size

and large number of buckers soring with single thread doesn’t give good performance for a

small number of element size using a GPU optimization is a waist.

Let’s consider figure 5.2 and 5.3 together. Both of these are shows how the soring happens on

multi-threaded environment. If the number of buckets gone high, number of threads also

gone high. So we should assume that run time should go down. But according to the given

diagrams that shows that thread 8 will be give the best results. Number of threads that can be

run on this CPU simultaneously is also 8. So that shows how the thread context switching is

depends on run time of the algorithm. On this scenario context switching of threads highly

effected for the runtime of algorithm. It has slow down the runtime of algorithm.

Figure 5.4 shows a comparison between std::threads and OpenMp. According to this diagram

OpenMp work more efficiently than std::thread.With the figure 5.7 we show the performance

0

50

100

150

200

250

1 8 10 20 50 100

Ti
m

e
In

 m
s

Axis Title

GPU

bucket 1 Bucket 8 Bucket 10 Bucket 50

Bucket 100 Bucket 200 Bucket 300

27

of bucket sort in GPU. But considering with other optimizations with other algorithms it

looks medium performance. This will happen because copy large array into GPU and again

have to copy back them into CPU. According to figure 5.5 also more time is allocated to

malloc the memory on GPU and copy data into GPU.

Figure 5.7 Compare Single thrrad std::thread OpenMP and GPU

 Final results for the observations are, OpenMP is become the best way to do the bucket sort

optimization. There is no any relationship with performance with the number of threads. If

the numbers of threads are nearly equal to CPU count performance get high for bucket sort

algorithm. This doesn’t mean that GPU computing is not worth for bucket sort. Copy data

into GPU have to optimize more. If that part is optimize sorting an array doesn’t take a

considerable time. When going to optimize GPU the researches have to more concern on

optimizing the copy data from CPU to GPU.

0

50

100

150

200

250

1 8 10 20 50 100 200 300

Ti
m

e
In

 m
s

Axis Title

comparison

Single Thread Std::thread OpenMp GPU

Bucket 100 Bucket 200 Bucket 300

28

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this research work, highly parallel architecture of GPU and parallel architecture of CPU is

used. Using the GPU will be give more performance than any other parallel algorithms was

guess done before the research start. Use small scale of arrays to 10
6

numbers of elements to

do the final analysis for the given optimizations.

After doing the analysis we came up with several conclusions:

 Working on single thread for small number of elements are more effective

 Maximizing the number of threads doesn’t optimize the bucket sort

 When the numbers of threads are equal to CPU core count, give the maximum

performance

 Context switching and waiting will affect more on performance of the algorithm

 GPU doesn’t give more optimization for bucket sort

The final thing we found was GPU doesn’t support as expected doesn’t mean that GPU

doesn’t do a massive change on parallelism. It may cause because of copy the huge array for

both sides. Figure 5.5 confirm that copy data from CPU to GPU take more time. There are

two waits on this GPU optimization. One is waiting until sorting finish. And other wait is for

copy GPU memory for CPU. These things may directly effect for the runtime of the

algorithm. Optimizing more on memory allocation on GPU will reduce the run time of bucket

sort algorithm.

29

6.2 Future works

This performance analysis is done using both CPU optimization and GPU optimization. But

some issues can be arisen when working with large vectors. Its call cache line invalidation

issue. This issue will be addressed with the future improvements. On this research we haven’t

look into the vectorization issue. SSE instructions can be used to optimize an algorithm. So

better going for SSE instruction for do a performance analysis on a future research. When

optimizing a code have to think more on memory allocation, branch predictions and etc.

Minimizing the copying data from GPU to CPU and CPU to GPU will make the algorithm

more efficient. Rather than CUDA, OpenCL is becoming the standard architecture in

GPGPU. Achieving cross platform support for sorting may be lead to better performance with

better vendor support capability.

30

References

[1]] Multi-Core Program Optimization: Parallel Quick Sort in Intel Cilk Plus, Muhammad

Ikram Lali(University of Gujrat) M. Saqib Nawaz(Peking University) Aboubakar

Nauman(Sarhad University of Science & IT)

[2] D. Luebke S. Green J. E. Stone J. D. Owens, M. Houston and J. C. Phillips. Gpu

computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[3] Programming for High Performance Processors by MichaelS

[4] GPU Computing By John D. Owens, Mike Houston, David Luebke, Simon Green, John

E. Stone, and James C. Phillips

[5] Architectural Exploration and Scheduling Methods for Coarse Grained Reconfigurable

Arrays by Giovanni Ansaloni and Laura Pozzi

[6] D. Luebke S. Green J. E. Stone J. D. Owens, M. Houston and J. C. Phillips. Gpu

computing. Proceedings of the IEEE, 96(5):879–899, May 2008

[7] NVIDIA CUDA C Programming Guide Version 4.2

[8] The Detailed Experimental Analysis of Bucket Sort by Neetu Faujdar, Department of

CSE,Amity University, Noida India, Shipra Saraswat ,Department of CSE,Amity University,

Noida India

[9] Takmaz, Burak, and Murat Akin, “A new approach to bucket sort,” Proceedings of the 7th

WSEAS International Conference on Software Engineering, Parallel and Distributed

Systems, World Scientific and Engineering Academy and Society (WSEAS), pp. 184-186,

February 2008

[10] Graefe, G. (2006) Implementing sorting in database systems. ACM Computing Surveys

(CSUR), 38, 10.

[11] Bishop, L., Eberly, D., Whitted, T., Finch, M., and Shantz, M. (1998) Designing a pc

game engine. IEEE Computer Graphics and Applications

[12] Fast Sorting Algorithms using AVX-512 on Intel Knights Landing , Berenger Bramas ,

Max Planck Computing and Data Facility (MPCDF)

https://www.researchgate.net/profile/Laura_Pozzi3

31

[13] T. Furtak, J. N. Amaral, and R. Niewiadomski. Using SIMD Registers and Instructions

to Enable InstructionLevel Parallelism in Sorting Algorithms. In Proceedings of the ACM

Symposium on Parallelism in Algorithms and Architectures, pp. 348–357, 2007.

