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ABSTRACT

A medical prescription is a very familier document to any person and is a one that
is usually believed impossible to read. There are several reasons for that well known
conclustion. First, the sloppy handwriting of the doctors and second, the lack of
the domain knowledge. Because of these difficulties in reading a prescription have
a high probability of ending up in misreading the content. These misreading often
lead to many health issues with regard to the patient and even a threat to their
lives. But unfortunatly both the mentioned reasons for such situations cannot be
changed.

In the present, one of the leading research area is Optical Character Recogni-
tion. Among that, handwritten character recognition takes a significant interest in
researchers. Taking these advantaged into account and with the help of the do-
main knowledge, this research is to find a way to accuratly read the content of a
medical prescription. This research uses a neural network approach for the charater
recognition process and a knowledge base matching to accuralty output the result.
The outcome of this research has been a successfull enhancement in the prescription
identification domain and has established for further improvements.



PREFACE

The work presented in this study has utilize image processing and neural network.
The system has been built using python, OpenCV and TensorFlow. The design
and implementation of the neural network is based on the work found in githubhar-
ald/SimpleHTR repository on GitHub. Knowledge base has been constructed by
the author and been overlooked by the advisor. Integration of the knowledge base
to the recogntion system is also been done by the author. The evaluation of the
study is done in collaboration with the domain advisor.
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1. CHAPTER 1 - INTRODCUTION

1.1 Background to the Research

Prescriptions are mostly used as note on prescribed or recommended drugs for a
certain patient. A prescription contains the name of the drug (sometimes even the
brand name or the company name of the manufacturer), dosage of the drug and
the duration of use. In practice, most of the doctors write their prescriptions at
their convenience rather than in a manner that can be identified by everyone and
they have a specific pattern on how to write these prescriptions. So most of the
times, patient or any other normal person cannot understand what the prescription
says about the drugs that they are supposed to use. Other than that, for many
doctors, they have their own method of writing too. Fig 1. Shows few such sample
prescriptions.
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Fig. 1.1: Sample Prescriptions

Because of these differences, prescription identification are prone to errors
and mis-identifications. Identifying either the drug, dosage or the duration wrong
may lead to some serious problems regarding the patient’s health and may even lead
to deaths. One of such incident is described in the case summary below.



Case summary . e -
Mrs D was a 65-year-old female who had been unwell [ - Time |
following surgery two weeks earlier. She had developed % ORD
difficulty swallowing so her oral medication had been con- S L = ) :

verted to liquid. Her digoxin 187.5ug each morning was frres: NI bt | ‘
endorsed by the ward pharmacist with ‘= 3.75ml’ and a s ol ) I e :lbfii

60ml bottle of digoxin elixir 50pg per ml was supplied. fitional instructions Ph-lrr.m’wy l
When writing *=’, the pharmacist’s pen trailed ink resulting T O~ ‘
in the *=" looking like ‘2°. A junior nurse misread the phar- = a - :
macist’s endorsement as 23.75ml. The nurse double- i 1 o A U‘SODB
checked this volume with two senior nurses, asking if they ' AU D 13

‘read the endorsement as 23.75ml’, and both senior < [Freq. Fouke Stad dete. | HEINN
nurses agreed that this was the dose. » | aAYS \ )(_‘ Qs J ] 00|
Mrs D was given 23.75ml digoxin liquid (equivalent to e p——— Pharmacy
1187.5p4, over six times the prescribed dose). Later that C

evening, Mrs D became increasingly unwell and brady- Faclsimile of misréaﬁ e e otk

cardic. She did not present any of the typical signs of

digoxin toxicity. had occurred and alerted the doctors. Mrs D made a full
The following day, the same pharmacist was asked to sup-  recovery from the digoxin overdose after she received
ply more digoxin elixir (the original supply should have three vials of digoxin antibody (Digibind — each vial binds
lasted for two weeks). The pharmacist recognised an error ~ @PProximately 500g of digoxin).

Fig. 1.2: Case Summary

There are so many other instances where patients are given the wrong
drug, wrong dosage or in a wrong duration. When writing prescriptions, there is
a certain set of abbreviations used by the doctors. The wikipedia article “List of
abbreviations used in medical prescriptions” list this set of abbreviations. In this
list also they have mentioned the possible misreadings. Fig 3 shows few of them.

al,as auris laeva, auris sinistra left ear "a" can be mistaken as an "o" which could read "0.s." or "o I', meaning left eye
au. auris utrague both ears "a" can be mistaken as an "o" which could read "o.u.", meaning both eyes

BDS, bds. bis die sumendum twice daily

bib bibe drink

bis bis twice

bid,bd. bis in die twice daily AMA siyle avoids use of this abbreviation (spell out "twice a day")

bis ind. bis indies twice a day

bt bedtime mistaken for "b.i.d", meaning twice daily

huee hucea buceal finside cheek)

Fig. 1.3: Abbreviations that are possible for being misread

Together with the illegible handwriting, reading prescriptions is also sub-
jected to human errors. A study was conducted in National District Hospital, Bloem-
fontein to identify who can read the prescriptions best among doctors, nurses and
pharmacists. The expected outcome of this research was that the pharmacists should
be able to read the prescription best. But the actual outcome was unfavorable and
it showed that the pharmacists are the party who make most of the mistakes in
reading prescription.



Figure 1: Percentage of errors per prescription

W Doctor

12%F ENurse 12% 129
O Pharmacist 11%)
10%

8%

9%
6%
5%
4%/
3% 3%
el 2% H
. . [

Name Dosage Dosage interval

PERCENTAGE (%)

Fig. 1.4: Percentage of errors per prescription

The above study also states that the Doctors’ sloppy handwriting kills
more than 7000 people annually. And also preventable medication errors affect
more than 1.5 million Americans annually because of the unclear abbreviations and
doses and illegible handwriting.

There is an algorithm that can be used to read prescriptions which is
currently performed by the doctors, nurses and pharmacists. But up until now there
had been no studies performed to automate this algorithm so that the public can
use it to read the prescriptions. That is the main motivation behind this research.



1.2 Research Problem and Research Questions

It is hard to read doctor’s prescription for normal people who does not have any
knowledge on the drugs. Even or people who have domain knowledge it is not
possible to read illegible prescriptions. So because of similar looking drug names,
similar usage directions and dosages, misreading of prescriptions can cause critical
health problems, even death. The main concern in this research is those problems
that are caused by misreading medical prescriptions and finding ways to minimize
those problems.

1.2.1 Research Question

e How to identify the content of a handwritten medical prescription using the
image of the prescription

1.2.2 Research Aim

The goal of this project is to identify a methodology for the computers to properly
identify the content of a handwritten medical prescription. The aim is to identify
and automate the current identification methods that are used in practice by doctors
and pharmacists

1.2.3 Research Objectives

e Review a literature to identify different approaches, tools and technologies used
in image binarization, intelligent classification systems, character recognition
systems and domain specific character recognition.

e Apply a suitable technology to preprocess the images of prescriptions

e Use a suitable intelligent classification system to identify and classify the con-
tent of the prescription.

e Train and evaluate the classification.

e Publish a research paper on “Medical Prescription Identification Solution”

1.3 Justification for the research

Properly identify the content of a medical prescription is crucial to the preservation
of life of the recipient of the treatment as well as to a proper recovery.

When it comes to optical character recognition (OCR), there are many
existing methods classified into online, offline as well as handwritten and typed.
But when in comes to the medical prescriptions, the recognition method should be
a offline handwritten character recognition method. Even though it would be better
to identify the content real-time using online methods, as the foundation, developing
an offline handwritten recognition scheme must be explored.



1.4 Methodolody

This research is to find a method to accuralty identify the content of a medical
prescription. Input to the system will be a colored image of the prescription. The
preprocessing step will take place in order to make the image ready for the recogni-
tion process. In the preprocssing step, first the image will be segmented into single
lines. These segmented imaged will then be resize to cater to the requirement of
the recongition system which in the dimension of 128x32px. Then the resized image
will be converted into gray scale.

The preprocessed image will then be input to the recognition system. First
a CNN is used to extract the relevent feature of the input image. The extracted
features will then be input to the RNN to identify the content of the image. Output
of this phase will be a word which is recognised by the RNN.

The recongnized word will then be compared against the knowledge base
inorder to find the mose suitable drug name. The output of the entire system would
be the most matching drug name of the input image.

1.5 Outline of the Disseration

The remainder of the document is structured as explained in this section. This
section also contains details of each of the chapters that make the remainder of the
document.

Chapter 2 is the Literature Review which contains the review of the related
work. This review was conducted with the purpose of finding any similar researches
conducted in the area of interest, identify the strength and weaknesses of the existing
methods, gaps in the available body of work and to identify ways to improve the
existing methods. It also helped to finalize the proposing research design.

Chapter 3 contain the Design of the research. High level architecture of
the research is dicussed in detail in this chapter which is followed by details of the
subsystems as well.

Chapter 4 contains the details of the Implementation of the proposed
solution. This chapter includes details on the technologies that are used for the
proposing method as well as details on the implementation.

Chapter 5 discuss the results and the evaluation.

Chapter 6 contains the conclution of the research carried out.

1.6 Definitions

Through out this document the terms prescription will be used to refer to the medical
prescription written by the doctor, network will be used to refer to the classification
neural network. Image will refer to the preprocessed image of a single line of the
prescription which will be in a predefined size. The term knowlege base will refer
to the database of drug names, list of abbreviations and list of other prescription
details.

Any further definitions related to the project wil be discussed under the regarding
topic.



1.7 Delimitation of the Scope

Since the range of drugs that are in use are wide and their combination for illnesses
can be even wider than the number of drugs, the scope of this research is limited to
few common illnesses like

e Diabetes
e Cholesterol

e High blood pressure

Even in this much limited scope, this research will have a bit of a com-
plexity when in comes to the classification system.

Usually prescriptions have details of several prescribed drugs. But the pro-
posed method only identifies individual lines of the prescription, which will contain
only one drug and it’s prescription information.

In the identification phase, gray-scaled image will be input to the network
and the output will be the recognized word in the image. It is then compared
with the drug names to get the best match and identify the drug. Writing pieces
characters which cannot be used to extract handwriting features will be considered as
misclassified. Segments that have no best matching will be considered misclassified
as well as the drug names that are not in the database.

The knowledge base will only have drug details for diabetes, cholesterol
and high blood pressure. But the prescriptions may contain various other drugs
that are intended for other diseases. Those will be misclassified in the system.

1.8 Conclusion

This concludes the introductory chapter of this dissertation. The intention of this
chapter is to give the readers, a detailed idea of the background of the research and
the area of interest. This chapter introduce the research problem, research question
along with the aim and the objective of the research. Then the justification for the
research is provided followed by a brief introduction of the methodolody. Given this,
the dissertation will proceed with a detailed insight of the research.



2. CHAPTER 2 - LITERATURE REVIEW

2.1 Image Binarization

Throughout the years there were lots of research on proper ways to binarize images
of documents without damaging the details.

In 1970 Nobuyuki Otsu proposed a method to select the threshold of the
gray-level histograms in his paper “A Threshold Selection Method from Gray-Level
Histograms”. The suggested method was described as a nonparametric and unsuper-
vised method of automatic threshold selection for picture segmentation. The paper
presented a new method is proposed from the viewpoint of discriminant analysis; it
directly approaches the feasibility of evaluating the ”goodness” of threshold and au-
tomatically selecting an optimal threshold. The proposed method was to calculate
the intra-class variance and the inter-class variance and then select the threshold
such that intra-class variance is minimal and the inter-class variance is maximal.

Then in 1997 Sauvola et al. proposed another adaptive document bi-
narization method. Document image understanding methods require logical and
semantic content preservation during thresholding. For example, a letter connectiv-
ity must be maintained for optical character recognition and textual compression.
This requirement narrows down the use of a global threshold in many cases. There
are many important points that we need to keep in mind when it comes to docu-
ment image binarization. First, a document image usually contains many regions
with differing structure and semantic content, for example picture, text, background
and line drawing. Therefore, specialized methods are needed to analyze the various
types of regions. Second, the state and degree of a degradation can vary signifi-
cantly within a document image due to various sources of error, such as scanning,
copying and poor source material (paper and print quality etc.). Their proposed
method was as follows.The grey-level document image is first analyzed to deter-
mine the surface properties. Then, according to analysis information the recognized
surface properties are treated with two different binarization methods. For back-
ground and ‘scene’ type areas an algorithm utilizing the soft decision method in a
new contextis performed. For textual and badly illuminated regions a histogram
method is applied. Our algorithm was tested with several severe cases of degrada-
tions, natural and synthetic. The test results show that the algorithm adapts well to
even severe degradations, enhancing for example the OCR rate in badly degraded
images from non-recognizable to correct or near-correct results. Furthermore the
algorithm’s custom parametrization is minimized with the use of soft decision meth-
ods and special analysis procedures. The main features of their approach include
locally adaptive threshold selection, information content preserving analysis, and
seamless applicability to various types of documents.

In 2000 again Sauvola et al. proposed another method for adaptive docu-
ment image binarization. Here for adaptive document image binarization, where the



page is considered as a collection of subcomponents such as text, background and
picture. The problems caused by noise, illumination and many source type-related
degradations are addressed. Two new algorithms are applied to determine a local
threshold for each pixel. Their method uses two algorithms to binarized textual and
non-textual regions. Comparison was carried out between the proposing method,
Eikvil, Niblack, Bernsen and Parker’s methods. Researchers were able to prove that
the proposed method performs better than the other 4 binarization methods. Their
method includes region analysis and switching, binarization of non-textual compo-
nents using weighted bound calculation, transient difference calculation, membership
function generation and soft decision rules and defuzzification, binarization of tex-
tual components and finally interpolative threshold selection. Key features of this
research are using hybrid approach and taking document region class properties into
consideration and aimed at generic document types coping also with severe cases of
different types of degradation.

After that in 2005 Gatos et al. proposed a new method in their paper
“Adaptive degraded document image binarization”. It was new adaptive approach
for the binarization and enhancement of degraded documents The proposed method
does not require any parameter tuning by the user and can deal with degradations
which occur due to shadows, non-uniform illumination, low contrast, large signal-
dependent noise, smear and strain. Compares the proposed system with Otsu’s
method, Niblack’s method, Sauvola et al. method, Kim et al. method. They were
able to prove that the proposed method performs better than the other 4 compar-
ing methods. Their methodology included pre-processing procedure using a low-
pass Wiener filter, a rough estimation of foreground regions, a background surface
calculation by interpolating neighboring background intensities, a thresholding by
combining the calculated background surface with the original image while incorpo-
rating image up-sampling and finally a post-processing step in order to improve the
quality of text regions and preserve stroke connectivity. As future work they have
mentioned that further research will focus on the challenges that emerge from the
binarization of low resolution images and videos found on the Web.

A double-threshold image binarization method based on edge detector was
proposed in 2007 by Chena et al. the proposed method was stated to be effective on
the binarization of images with low contrast, noise and non-uniform illumination.
The proposed methodology is as follows. Generate the edge image by using the
Canny edge detector, Determine seeds, low and high thresholds, edge connection,
binarize the image with the high threshold, seed filling, combine the low-threshold
binary image, remove noising and generate result image. Compares the results
with Otsu’s method, Bernsen’s method, Niblack’s method, Yanowitz—Bruckstein’s
method, Sauvola’s method, Gatos’s method. The test results show that the method
has several good properties, such as less loss of object information, and high robust-
ness, and has better overall performance than several classic binarization methods.

In 2012 another separate approach was proposed by Shaikh et al., A new
image binarization method using iterative partitioning. It is said to be a new method
for image binarization that uses an iterative partitioning approach, especially for
degraded documents and graphic images and suitable for a multi-core processing
environment as it can be split into multiple parallel units of executions after the
initial partitioning. They have compared the proposing technique with other 4 ma-
jor binarization techniques and have proved that the proposing technique perform



well than the other methods by presenting the evaluation criteria and error percent-
ages. When is comes to the methodology, they uses otsu method for selecting the
threshold. first compute the sharp peaks. if only 2 peaks, binarization using otsu,
otherwise partition the image into 4 sub images, compute sharp peaks in each. If 2
peaks binarization using otsu. Otherwise partition image again and repeat for every
sub image until the minimum subimage size is reached. This method perform very
well compared to otsu, niblack, sauvola and bernsen.

2.2 Domain Specific Handwritten Character Recognition

Throughout the years, there have been many attempts on finding a proper way
to make the machines read human handwriting. Among those researches there
are general character recognition researches as well as domain specific character
recognition researches.

Rajavelu et al. has proposed the neural network approach for character
recognition in 1989 in [7]. Their purpose was to develop an algorithm which ef-
fectively reduces image processing time while maintaining efficiency and versatility.
Their method has optimal selection of features as well as parallel computational
capability of neural network that ensures a high speed of recognition which is cru-
cial for commercial application. They have used Walsh function in order to reduce
the computational time. Their neural network has an input layer of 20 nodes, one
hidden layer of 20 nodes, output layer of 7 nodes and the learning was done using
backpropagation. They were able to gain a successful recognition rate of over 98%.

Pradeep et al. has proposed a diagonal based feature extraction for hand-
written character recognition system using neural networks in [1]. Purpose of this
research is to design a system for off-line handwritten alphabetical character recogni-
tion using multilayer feedforward neural network. They have used a neural network
with an input layer of 54/69 nodes, two hidden layers of 100 nodes each, an output
layer of 26 nodes and log sigmoid function as the activation function. The extracted
features from the preprocessing was input to the neural network which did the classi-
fication and the recognition. They were able to achieve a good recognition accuracy
of 96.52% with 54 features and 97.84% with 69 features.

When it comes to the domain specific character recognition most of the
character recognition researches were done on mail delivery systems where the focus
of the research is to successfully identify the handwritten address/ZIP code on the
envelope.

Jonathan et al. has proposed a blackboard based approach to recog-
nise handwritten ZIP codes in his paper [4] in 1988. For character recognition the
blackboard model provides flexibility, a coordinated method of integrating differ-
ent knowledge sources, and a means of hierarchical data organization. Given a
high-resolution image of a hand-written address block, the solution invokes routines
capable of hypothesizing the location of the ZIP Code, segmenting and recognizing
ZIP Code digits, locating and recognizing City and State names, and looking-up the
results in a dictionary. The main steps of the methodology was thresholding, test-
ing for machine or handwritten text, horizontal line removal, text line segmentation,
text word segmentation, ZIP Code location, ZIP Code segmentation, parallel digit
recognition algorithm and ZIP Code dictionary lookup. As the results, 31% of the
ZIP Codes were read correctly, 9.4% of the images did not contain a ZIP Code and



were rejected. Thus, 40.4% of the pieces were correctly processed. An erroneous
ZIP Code was assigned to 2.3% of the pieces and 57.3% contained a valid ZIP Code
and were rejected.

Cun et al. has proposed a method to recognize handwritten zip codes
with multilayer network [2]. Purpose of their research was to apply backpropagation
network with minimal preprocessing of data. But the network is highly constrained
because it is specifically designed for this task. They have use both handwritten
and printed samples on the dataset where printed dataset contain more than 35
fonts and handwritten dataset is collected from the USPS. The feature extraction
have used feature maps and these feature maps were input to the neural network.
The network, as they describe is a combination of statistical and the structural
model. The connection patterns were guided by the knowledge of the researchers,
thus making the neural network highly constrained and specific for this research.
The network had 4 hidden layers, two for shared-weight feature extraction and
another two for averaging/subsampling. The learning was based on neocognitron
architecture but instead of unsupervised learning they have used backpropagation
learning.

Another approach for handwritten ZIP code recognition[3] was proposed
by Dzuba et al. in 1997. It is a real-time system intended to recognize the 5-digit
ZIP code part of DPC. The results of ZIP code recognition are cross-validated with
those of city and state names recognition. This approach recognize words as a whole
without preliminary letter identification which uses handwritten character features.
Input to the system is a digitized image of an address block. The process includes
line segmentation, CSZ block extraction, CSZ block segmentation, recognition and
cross-validation of segmentation hypotheses. The output of the system is the ZIP
code string with the confidence value. The system achieves a throughput of 40.000
address blocks per hour. With the performance of 73% recognition rate with 1.0%
error rate.

In 1993, Kimura et al. presented a method suggesting improvements of
a lexicon directed algorithm for recognition of unconstrained handwritten words
[5] like cursive, discrete or mixed. Their method include image binarization us-
ing Otsu’s algorithm, slant correction, calculate cumulative chain code histogram,
feature extraction, calculate character likelihood, segmentation recognition and post
processing. To improve the accuracy in the method, they have done an error analysis,
pre segmentation which includes parameter optimization in valley point detection
and single-run stretch splitter, word length estimation, improvement of character
classifier with design sample size and refinement of feature extraction process and
finally splitting cost function. Since the segmentation recognition are repeated for
all lexicon words having the word length within the estimated wordlength interval,
the processing time increases proportionally to the lexicon size .Daemons for feature
extraction and character likelihood calculation were introduced to avoid unnecessary
calculations. In total the results for 10, 100. and 1000 lexicon sizes were improved
by 4.47%. 7.77% and 10.57% and amounted to 98.01% 95.46%. and 91.49% respec-
tively.

There was another research for interpreting handwritten addresses in US
mailstream by Sargur et al. [6]. Their methodology includes binarization, noise
(postal marks underlines, etc.) removal, skew correction, address lines separation,
identification of word categories (e.g. ZIP field, street number field), recognition
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of words and digit strings, and determining the destination point code (DPC) of
the address. Word recognition was done using a new method that was built using
both Hypothesis Generate and Reduce (HGR) paradigm and Hidden Markov Model
(HMM). They were able to achieve 44% encode rate with j 6% error rate.

In 2011 Cries et al. proposed a method, “Convolutional Neural Network
Committees For Handwritten Character Classification”. At some stage in the classi-
fier design process one usually has collected a set of reasonable classifiers. Typically
one of them yields best performance. Intriguingly, however, the sets of patterns
misclassified by different classifiers do not necessarily greatly overlap. Here they
have focused on improving recognition rates using committees of neural networks.
Their goal was to produce a group of classifiers whose errors on various parts of the
training set differ as much as possible. Other approaches aiming at optimally com-
bining neural networks do not do this, thus facing the problem of strongly correlated
individual predictors. Furthermore, they simply average individual committee mem-
ber outputs, instead of optimizing their combinations , which would cost additional
valuable training data. Simple training data pre-processing gave them experts with
errors less correlated than those of different nets trained on the same or bootstrapped
data. Hence committees that simply average the expert outputs considerably im-
prove recognition rates. Their committee-based classifiers of isolated handwritten
characters were the first on par with human performance, and can be used as basic
building blocks of any OCR system.

In 1988 Kunihiko Fukushima proposed ”Neocognitron: A Hierarchical
Neural Network Capable of Visual Pattern Recognition”. As has been shown here,
the neocognitron has many remarkable properties which most modern computers
and pattern-recognizers do not possess. Since the neocognitron can learn, it can
be trained to recognize not only Arabic numerals, but also other sets of patterns,
like letters of the alphabet, geometrical shapes, or others. Hence, it is possible to
design a neocognitron as a universal pattern-recognizer, which can be used, after
training, for an individual purpose. If the number of categories of the patterns to be
recognized is increased, the number of cell-planes in each layer of the network also
has to be increased. The number of cell-planes, however, need not be increased in
proportion to the number of categories of the patterns. It is enough to increase it
m less than linear proportion, because local features to be extracted at lower stages
are usually contained in common in patterns of different categories. If we want to
construct a system which can recognize more complex patterns like Chinese charac-
ters, it is recommended to increase the number of stages (or layers) in the network
depending on the complexity of the patterns to be recognized. The principles of
the neocognitron are not restricted to the processing of visual information only, but
can also be applied to other sensory information. For example, it would be possi-
ble to construct a speech-recognition system with a little modification. Although
the neocognitron has forward (i.e., afferent or bottom-up) connections only, the
information-processing ability of the network can be greatly increased if backward
(i.e., afferent or top-down) connections are added. The model of selective attention
recently proposed by the author is an example of such an advanced system. We
are continuing the research, and we hope to develop an artificial brain closer to the
human brain.

In 1996 a survey was done in pattern recognition by Oivind et al. Their
survey states its results as follows. “Optical character recognition (OCR) is one of
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the most successful applications of automatic pattern recognition. Since the mid
1950s, OCR has been a very active field for research and development. Today,
reasonably good OCR packages can be bought for as little as $100. However, these
are only able to recognize high quality printed text documents or neatly written
hand-printed text. The current research in OCR is now addressing documents that
are not welt handled by the available systems, including severely degraded, omnifont
machine-printed text and (unconstrained) handwritten text. Also, efforts are being
made to achieve lower substitution error rates and reject rates even on good quality
machine-printed text, since an experienced human typist still has a much lower error
rate, albeit at a slower speed. Selection of feature extraction method is probably the
single most important factor in achieving high recognition performance. Given the
large number of feature extraction methods reported in the literature, a newcomer to
the field is faced with the following question: Which feature extraction method is the
best for a given application? This question led us to characterize the available feature
extraction methods, so that the most promising methods could be sorted out. An
experimental evaluation of these few promising methods must still be performed to
select the best method for a specific application. Devijver and Kittler define feature
extraction as the problem of ”extracting from the raw data the information which is
most relevant for classification purposes, in the sense of minimizing the within-class
pattern variability while enhancing the between-class pattern variability”. In this
paper, we reviewed feature extraction methods including,

e template matching

e deformable templates

e unitary image transforms

e graph description

e projection histograms

e contour profiles

e zoning

e geometric moment invariants
e Zernike moments

e spline curve approximation

e Fourier descriptors

Each of these methods may be applied to one or more of the following representation
forms:

e gray-level character image
e binary character image

e character contour

12



e character skeleton or character graph.

For each feature extraction method and each character representation form, we dis-
cussed the properties of the extracted features. Before selecting a specific feature
extraction method, one needs to consider the total character recognition system in
which it will operate. The process of identifying the best feature extraction method
was illustrated by considering the digits in the hydrographic map as an example. It
appears that Zernike moments would be good features in this application. However,
one really needs to perform an experimental evaluation of a few of the most promis-
ing methods to decide which feature extraction method is the best in practice for
each application. The evaluation should be performed on large data sets that are
representative for the particular application.
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3. CHAPTER 3 - RESEARCH DESIGN

This research is design to address the following.

e Identify the separate drugs in the prescription image
e Preprocess the image to make it suitable for the recognition system
e Recognize the characters in the input image

e Match the output of the recognition system with the knowledge base to get
the exact word

3.1 A Conceptual Overview of the Project

[ Raw Input Image ]

Preprocessing

128px X 32px Gray
Scale Image

I

Recognition
Neural Network

il

4 N\
Recognized Word
- J

Matching with
Knowledge Base

Recognized Drug
Name

Fig. 3.1: High Level Architecture

When talking about the tasks that are mentioned above, a high level architecture
of the system is shown in Figure 3.1. As shown in there, the complete system has
three main sub systems.



e Preprocessing Subsystem
e Recognition Subsystem
e Knowledge Base Matching Subsystem

The raw input image is input to the preprocessing subsystem. In here, the image is
processed to made suitable for the recognition neural network. The output of the
preprocessing subsystem is 128 x 32px gray scale image which is then input into
the recognition neural network. The recognition NN will identify the characters
in the input image and the output will be the word recognized by the NN. This
word is then matched with the knowledge base inorder to identify the relavent word
with regard to the domain. Each subsystem will be discussed in details in the next
section.

3.1.1 Preprocessing Subsystem

( Raw Input Image )

Line Segmentation
(Manual)

v
( Single Line Image )

Image Resize

w
[128px X 32px Image)

Color Converstion
(RGB to Gray Scale)

b4
128px X 32px Gray
Scale Input Image

Fig. 3.2: High Level Architecture of the Preprocessing Subsystem

Enm[ﬂw.\? 1o my hd
Fig. 3.3: Example Raw Input Images

High level architecture of the preprocessing subsystem is as of figure 3.2. Input for
this subsystem is the raw image of the prescriptions. Sample images are shown in
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the Figure 3.3. Since there are several lines in a single prescription, each prescription
needs to be segmented into individual lines before inputing to the recognition NN.
This segmentation can be done using projection histograms, but the problem with
prescriptions is that, the lines are not always perfectly horizontal. Two of such
images are shown in Fig 3.4. So the segmentation is done manualy. Output of this
segmentation is as in Fig 3.5.
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@ Hﬂwﬁw M(ﬂ,\‘.
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Fig. 3.4: Problametic Raw Input Images

Enmlwn/vd’ 1o my ho
Fig. 3.5: Segmented Images
Then these segmented images are resize to make the dimension 128 X
32px. When resizing, the image is scaled untile either the height becomes 32px or

the width becomes 128px. When the either of these is achieved, the rest is filled
with white pixels to get the final image. An example is shown in Fig 3.6.

Enalapw | — |[Enalapw

Fig. 3.6: Resizing the Image

Upto this point the images used are color images. But to feed into the
recognition NN, the image needs to be in gray-scale. So after resizing the image, the
color scheme of the image is converted to gray scale from RGB. Finally, the output
of this preprocessing subsystem will be a gray-scaled, single line prescription image
with the dimension of 128 X 32px. (Fig 3.7)
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Fnalapw

Fig. 3.7: Output of Preprocessing Subsystem

3.1.2 Recognition Subsystem

128px X 32px Gray
Scale Input Image

CNN
(5 Layers)

Extracted Features

RNN
(2 Layers)

C CTC Loss ) C CTC Decode )

Fig. 3.8: High Level Architecture of the Recognition Subsystem

As shown in Fig 3.8, the recognition subsystem uses a NN for the task. This system
consists of Convolutional NN (CNN) layers, Recurrent NN (RNN) layers and a final
Connectionist Temporal Classification (CTC) layer. In a more formal way, the NN
can also be represented as a function (Fig 3.9) which maps an image (or matrix) M
of size WxH to a character sequence (cl, ¢2, ...) with a length between 0 and L.
As you can see, the text is recognized on character-level, therefore words or texts
not contained in the training data can be recognized too (as long as the individual
characters get correctly classified).

NN: M = (c, C2, ..., Cn)
WxH O=n=L

Fig. 3.9: The NN written as a mathematical function which maps an image M to a char-
acter sequence (cl, 2, ...)
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Convolutional Neural Network

The input image is fed into the CNN layers. These layers are trained to extract
relevant features from the image. Each layer consists of three operation. First, the
convolution operation, which applies a filter kernel of size 5x5 in the first two layers
and 3x3 in the last three layers to the input. Then, the non-linear RELU function is
applied. Finally, a pooling layer summarizes image regions and outputs a downsized
version of the input. While the image height is downsized by 2 in each layer, feature
maps (channels) are added, so that the output feature map (or sequence) has a size
of 32x256

Recurrent Neural Network

The feature sequence contains 256 features per time-step, the RNN propagates rel-
evant information through this sequence. The popular Long Short-Term Memory
(LSTM) implementation of RNNs is used, as it is able to propagate information
through longer distances and provides more robust training-characteristics than
vanilla RNN. The RNN output sequence is mapped to a matrix of size 32x80. The
IAM dataset consists of 79 different characters, further one additional character is
needed for the CTC operation (CTC blank label), therefore there are 80 entries for
each of the 32 time-steps.

Connectionist Temporal Classification

While training the NN, the CTC is given the RNN output matrix and the ground
truth text and it computes the loss value. While inferring, the CTC is only given
the matrix and it decodes it into the final text. Both the ground truth text and the
recognized text can be at most 32 characters long.

3.1.3 Knowledge Base Matching Subsystem

Recognized
Word

Knowledge ) Matching
[ Base ] [ Algorithm

y
Matching Drug name
of the recognized word

Fig. 3.10: High level Architecture of the Knowledge Base Matching Subsystem

As shown in Fig 3.10, the input to this subsystem is the recognized word which is
the output of the recognition NN. The matching algorithm will then compare the
recognized word against the Knowledge base to get the most suitable drug name.
Output of this subsystem as well as the output of the entire system will be the most
suitable drug name.
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3.2 Knowledge Base

The knowledge base of this system contains drug names, both the generic names
and the brand names of the drugs that are used as treatments to Diabetes, High
Blood Pressure and Cholesterol. The size of the knowledge base is as follows.

e Diabetes : 166 entries
e High Blood Pressure : 200 entries

e Cholesterol : 48 entries

3.3 Evaluation Design

When it comes to the evaluation phase of the research, expert help was needed since
it’s the medical domain. The segmented single line prescription images were labeled
by the domain advisors as the first step. After the entire process of recognition is
completed, as the evaluation phase, what was left to do was to compare the output
of the system with the label of the corresponding segmented single line image.

3.4 Chapter Summary

With this chapter the conceptual overview of the project has been discussed followed
by a brief discussion about the architecture of the subsystems, knowledge base and
the evaluation design. Implementation details of the mentioned process will be then
discussed in the next chapter, Chapter 4.
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4. IMPLEMENTATION

4.1 Technologies Used

4.1.1 Adobe Photoshop CC 2015

Since the segmentation of the prescription image could not be done using programtic
methods, to segment the lines of the prescription image, Adobe Photoshop CC 2015
was used. While segmenting the image, the drastic noice areas were also removed
inorder to make the best out of the recognition NN. Areas that are considered to be
noisy were the areas with stains or any other degraded areas.

When talking about tool, Photoshop CC 2015 was released on June 15,
2015. Adobe added various creative features including Adobe Stock, which is a
library of custom stock images. It also includes and have the ability to have more
than one layer style. For example, in the older versions of Photoshop, only one
shadow could be used for a layer but in CC 2015, up to ten are available. Other
minor features like Export As, which is a form of the Save For Web in CC 2014 were
also added. The updated UI as of November 30, 2015 delivers a cleaner and more
consistent look throughout Photoshop, and the user can quickly perform common
tasks using a new set of gestures on touch-enabled devices like Microsoft Surface
Pro.CC 2015 also marks the 25th anniversary of Photoshop.

4.1.2 Python 3.5

Python is a multi-paradigm programming language. Object-oriented programming
and structured programming are fully supported, and many of its features support
functional programming and aspect-oriented programming (including by metapro-
gramming and metaobjects (magic methods)). Many other paradigms are supported
via extensions, including design by contract and logic programming. When it comes
to NN and image processing, python have many supporting libraries to integrate
required technologies with the project.

OpenCV2

OpenCV (Open source computer vision) is a library of programming functions
mainly aimed at real-time computer vision. Originally developed by Intel, it was
later supported by Willow Garage then Itseez (which was later acquired by Intel).
The library is cross-platform and free for use under the open-source BSD license.
OpenCV supports the deep learning frameworks TensorFlow, Torch/PyTorch and
Caffe. In this project, OpenCV is used in combination with python to resize the
input image and for the color conversion.



TensorFlow

TensorFlow is an open-source software library for dataflow programming across a
range of tasks. It is a symbolic math library, and is also used for machine learning
applications such as neural networks. It is used for both research and production at
Google. TensorFlow was developed by the Google Brain team for internal Google
use. It was released under the Apache 2.0 open-source license on November 9, 2015.
Tensorflow integrated with python is used to develop the recognition NN, train and
validate the NN and to test with the whole system in this project.

4.2 'Training Dataset - IAM Handwriting Database

The TAM Handwriting Database contains forms of handwritten English text which
can be used to train and test handwritten text recognizers and to perform writer
identification and verification experiments. The database was first published in
at the ICDAR 1999. Using this database an HMM based recognition system for
handwritten sentences was developed and published in at the ICPR 2000. The
segmentation scheme used in the second version of the database is documented in
and has been published in the ICPR 2002. The IAM-database as of October 2002 is
described in . We use the database extensively in our own research, see publications
for further details. The database contains forms of unconstrained handwritten text,
which were scanned at a resolution of 300dpi and saved as PNG images with 256 gray
levels. The figure below provides samples of a complete form, a text line and some
extracted words. All forms and also all extracted text lines, words and sentences
are available for download as PNG files, with corresponding XML meta-information
included into the image files. All texts in the IAM database are built using sentences
provided by the LOB Corpus .

Characteristics The IAM Handwriting Database 3.0 is structured as fol-
lows:

657 writers contributed samples of their handwriting

1 539 pages of scanned text

5 685 isolated and labeled sentences

e 13 353 isolated and labeled text lines
e 115 320 isolated and labeled words

The words have been extracted from pages of scanned text using an automatic
segmentation scheme and were verified manually. The segmentation scheme has
been developed at our institute. All form, line and word images are provided as PNG
files and the corresponding form label files, including segmentation information and
variety of estimated parameters, are included in the image files as meta-information
in XML format which is described in XML file and XML file format (DTD).
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4.3 Implementation

4.3.1 Data
Input

It is a gray-value image of size 128x32. Usually, the images from the dataset do not
have exactly this size, therefore image is resized (without distortion) until it either
has a width of 128 or a height of 32. Then, image is copied into a (white) target
image of size 128x32. This process is shown in the previous chapter. Finally, the
gray-values of the image are normalize which simplifies the task for the NN. Data
augmentation can easily be integrated by copying the image to random positions
instead of aligning it to the left or by randomly resizing the image.

CNN Output
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Fig. 4.1: Features in the input image

Fig. 4.1 shows the output of the CNN layers which is a sequence of length 32. Top
image shows 256 feature per time-step are computed by the CNN layers while the
middle image shows the input image and the bottom image plot of the 32nd feature,
which has a high correlation with the occurrence of the character “e” in the image.
Each entry contains 256 features. Of course, these features are further processed
by the RNN layers, however, some features already show a high correlation with
certain high-level properties of the input image: there are features which have a
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high correlation with characters (e.g. “e”), or with duplicate characters (e.g. “tt”),
or with character-properties such as loops (as contained in handwritten “I”s or “e”s).

RNN output
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Fig. 4.2: Top: output matrix of the RNN layers. Middle: input image. Bottom: Proba-
bilities for the characters “1”, “i”, “t”, “¢” and the CTC blank label.

Fig. 4.2 shows a visualization of the RNN output matrix for an image containing the
text “little”. The matrix shown in the top-most graph contains the scores for the
characters including the CTC blank label as its last (80th) entry. The other matrix-
entries, from top to bottom, correspond to the following characters: “ !I”#&’()*+,-
./0123456789:;7ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopqrstuvwxyz” .
It can be seen that most of the time, the characters are predicted exactly at the
position they appear in the image (e.g. compare the position of the “i” in the image
and in the graph). Only the last character “e” is not aligned. But this is OK, as
the CTC operation is segmentation-free and does not care about absolute positions.
From the bottom-most graph showing the scores for the characters “17, “i”, “t”, “e”
and the CTC blank label, the text can easily be decoded: just take the most probable
character from each time-step, this forms the so called best path, then throw away
repeated characters and finally all blanks: “l—ii—t-t-1-...-e¢” -; “I—i—t-t-1-...-€” -},
“little”.
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4.3.2 Using TensorFlow

The implementation consists of 4 modules:

e SamplePreprocessor.py: prepares the images from the IAM dataset for the NN

e Dataloader.py: reads samples, puts them into batches and provides an iterator-
interface to go through the data

e Model.py: creates the model as described above, loads and saves models, man-
ages the TF sessions and provides an interface for training and inference

e main.py: puts all previously mentioned modules together and compare the
output with the knowledge base.

CNN

For each CNN layer, create a kernel of size kxk to be used in the convolution oper-
ation.

kernel = tf.Variable(tf.truncated_normal([k, k, chIn, chOut], stddev=8.1))

conv = tf.nn.conv2d{inputTensor, kernel, padding='SAME', strides=(1, 1, 1, 1})

Fig. 4.3: CNN Kernel

Then, feed the result of the convolution into the RELU operation and
then again to the pooling layer with size pxxpy and step-size sxxsy.

relu

tf.nn.relu{conv)

pool = tf.nn.max_pool{relu, (1, px, pv, 1), {1, sx, sy, 1), *VALID')

Fig. 4.4: CNN Relu and Pool

These steps are repeated for all layers in a for-loop.

RNN
Create and stack two RNN layers with 256 units each.

cells = [tf.contrib.rnn.L5TMCell({num_units=256, state_is_tuple=True) for _ in range(2)]

stacked = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
Fig. 4.5: Creating RNN

Then, create a bidirectional RNN from it, such that the input sequence
is traversed from front to back and the other way round. As a result, we get two
output sequences fw and bw of size 32x256, which we later concatenate along the
feature-axis to form a sequence of size 32x512. Finally, it is mapped to the output
sequence (or matrix) of size 32x80 which is fed into the CTC layer.

((fw, bw), ) = tf.nn.bidirectional dynamic rnn(cell fw=stacked, cell bw=stacked, inputs=rnnIn3d, dtype=rnnIn3d.dtype)

Fig. 4.6: Bidirectional
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For loss calculation, we feed both the ground truth text and the matrix to the
operation. The ground truth text is encoded as a sparse tensor. The length of the
input sequences must be passed to both CTC operations.

zelf.gtTexts = tf.SparseTensor(tf.placeholder (tf.inte4, shape=[llon=, 2]1) .,
tf.placeholder (tf.int32, [MHone]l), tf.placeholder (tf.inted, [2]1))
self.seglen = tf.placeholdex(tf.int32, [Hone]

Fig. 4.7: Setting up

We now have all the input data to create the loss operation and the
decoding operation.

loss = tf.nn.ctc_loss(labels=gtTexts, inputs=inputTensor, sequence_length=seglen, ctc_merge_repeated=True)
decoder = tf.nn.ctc_greedy decoder(inputs=inputTensor, sequence_length=seqlen)

Fig. 4.8: CTC Loss and Decoder

Training

The mean of the loss values of the batch elements is used to train the NN: it is fed
into an optimizer such as RMSProp.

optimizer = tf.train.RMSPropOptimizer(@.0881).minimize(loss)
Fig. 4.9: Training NN

4.3.3 Matching with Knowledge Base

After the recognition NN, the output will be the recognized word. To match it

against the knowledge base, first the knowledge base is loaded to seperate lists using
the csv files.

dizcol =("d")

hbpcol =("p")

chlcol =("c")

diz = pandas.read csv('Hyp rglycemia.csv', names=dbcol)
hbp pandas.read csv(' n.csv',,names=hbpcol)

chl pandas.read csv('Hypsrlipidemia.csv',names=chlcol)
diaketes = db.d.tolistc ()

pressure = hbp.p.tolistc()

chol = chl.c.tolist ()

Fig. 4.10: Loading the Knowledge Base

After the knowledge base is loaded, the recognized word is match with
all the entries in the knowledge base and a matching ration is calculated for each
separate lists.
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for eled in diabetes:
seqgd = difflibk.SequenceMatcher (lone, wWord,eled)
dd = segd.ratio() *100
dibr.append (dd)

for eleh in pressure:
segh= difflikb.SeqguenceMatcher (llones, word,eleh)
dh = segh.ratio()*100
hbpr. append (dh)

for elec in chol:
seqgqe = difflibk.SequenceMatcher (Hone, word,elec)
dc = segc.ratio()*100
chlr.append (dc)

Fig. 4.11: Calculate the matching ratio

After the ratio is calculated as stored, maximum value from the each
three lists will be obtained since the relevent illness of the corresponding drug is not
known in advance. Among the three maxumum values, again the maximum of all is
calculated to obtain the most suitable drug name. After the value is obtained, the
corresponding drug name is retrieved from the list and output as the final result.

db max = max(dbr)
db max in = dbr.index(db max)

hbp max = max (hbpr)
hbp max in = hbpr.index (hbp max)

chl max = max(chlr)
chl max in = chlr.index(chl max)

max _val = [db max,hbp max,chl max]
max of all = max (max val)
max of all in = max val.index(max of all)

if max of all in ==

name = diabetes[db max in]
£lif max of all in ==

name = pressure[hbp max in]

name = chol[chl max in]
print{('found:"', '""' + name + "'"')

Fig. 4.12: Obtaining the maximum value and the resulting drug name

4.4 Chapter Summary

This chapter provides the detailed description of the implenetation of the project. A
brief description is provided on the technologies used which is followed by a detailed
description of the implementation of each of the three subsystems. Results and the
evaluation will be discussed in the next chapter.
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5. RESULTS AND EVALUATION

5.1 FEvaluation Dataset

The recognition network was trained using the IAM Handwritten Character dataset
and evaluation using the prescription images dataset. The prescription images
dataset consists of the following components.

e 176 Prescription Images

e 412 Segmented Single line images.

5.2 Final Evaluation

Since the evaluation involves external parties, specially domain advisors, evaluation
was planned with their availability and feasibility in mind. So as the fisrt step, all
the dataset or the set of segmented images are labeled with the advisor’s help. After
that the preprocessing is done and the recognition process is carried on as usual.
As the final evaluation, the labels was compared with the output of the recognition
process for each image to evaluate whether the recognition was successfull or not.
Following section contains the first 50 images of evaluation dataset and the results.



5.2.1 Segmented Single Line images
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Fig. 5.1: Segmented Single Line images

Tab. 5.1: Results.

Image 1D Label Recognized Matched True/False
1 pioglitazone piogltanons pioglitazone TRUE
2 Acarbose pcaabos Acarbose TRUE
3 Atacand -tairs Starlix FALSE
4 enalapril inalapoes enalapril TRUE
5 - alimomecamines | mecamylamine FALSE
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Image ID Label Recognized Matched True/False
6 metformin rerefrin ertugliflozin FALSE
7 - ecrracrait verapamil FALSE
8 metformin mor-fomon metformin TRUE
9 amlodipine Amboaipive amlodipine TRUE
10 atorvastatin Arvastutsn atorvastatin TRUE
11 glipizide sidmside torsemide FALSE
12 glibenclamide Glbomlomdr Altocor FALSE
13 metformin metfoomn metformin TRUE
14 Acarbose pcabore Acarbose TRUE
15 Acarbose Aearbuse Acarbose TRUE
16 atenolol Sitencll atenolol TRUE
17 enalapril inclopit fosinopril FALSE
18 amlodipine Amlodipue amlodipine TRUE
19 atorvastatin proveatatin rosuvastatin FALSE

20 metformin meosoun metformin TRUE
21 Acarbose Pcctior- Actos FALSE
22 pioglitazone riosltaron rosiglitazone FALSE
23 ieodeta Riomet FALSE
24 atenolol Atinoli atenolol TRUE
25 enalapril Enclapris enalapril TRUE
26 amlodipine Auloctipie amlodipine TRUE
27 atorvastatin blirovistatin lovastatin FALSE
28 metformin mnetformi- metformin TRUE
29 Tolbutamide Folbntanide- Tolbutamide TRUE
30 Acarbose Acahose Acarbose TRUE
31 pioglitazone poghstinoue prazosin FALSE
32 metformin Tutformin- metformin TRUE
33 Tolbutamide Plintanide pramlintide FALSE
34 atorvastatin Atorvastatn atorvastatin TRUE
35 Acarbose Acarbose Acarbose TRUE
36 pioglitazone proghtegue pioglitazone TRUE
37 amlodipine Alodn Amlobenz FALSE
38 pioglitazone pioglitatons pioglitazone TRUE
39 pioglitazone Roglitooo- miglitol FALSE
40 Acarbose pcirtore spironolactone FALSE
41 Tolbutamide solbutanide Tolbutamide TRUE
42 atenolol ctiendod atenolol TRUE
43 enalapril EEnalapnt enalapril TRUE
44 amlodipine Aolodipine amlodipine TRUE
45 atorvastatin Arorvastation atorvastatin TRUE
46 metformin Mersormin metformin TRUE
47 pioglitazone piogritasane pioglitazone TRUE
48 Acarbose prarbosee Acarbose TRUE
49 pioglitazone progltanpone pioglitazone TRUE
50 atenolol Atrololl metoprolol FALSE
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6. CONCLUTIONS

6.1 Introcution

This chapter focuses on the conclusions drawn upon the completion of the research.
The aim of the research as stated in Section 1.2.2 has been accomplished by using
Neural networks and knowledge base mapping. These technologies become more
and more advanced day by day by the introduction of more sophisticated machine
learning techniques. Developing a system that can accurately identify the content
of a prescription using these technologies will help the effectiveness of the treatment
by reducing misreading and dispensing wrong drug to the patients.

The subsequent sections in this chapter will discuss further the conclusions
of this research.

6.2 Conclusion about the Research QQuestion

e How to identify the content of a handwritten medical prescription using the
image of the prescription

This research proposes method to accuratly identify the content of a medical pre-
scription using image processing and neural networks. The system is developed
under the specifications mentioned in Section 4.3. Methodology proposed in this
research utilizes the CNN’s ability to extract features of a handwritten character
image and RNN’s ability to correctly identify them. To make the output more accu-
rate, a mapping with a domain knowledge base in included so that the result would
be an actual drug name which is most suitable for the recognized image rather than
a simply recognized word, since the recognition system may not output the actual
drug name. Evaluating on the dataset, the proposed method is able to identify the
drug name with 63.10% accuracy. To conclude this question, this study present
a method to accuratly identify the content of a medical prescription using image
processing and neural networks. The study has further avenues to be explored that
will be discussed in Section 6.5.

6.3 Conclusion about the Research Problem

This research has implemented a method to accuralty identify the content of a
medical prescription. Using this method, the users can read the prescriptions even
though they do not have a domain knowledge on the prescriped drugs.

6.4 Limitations

There are several limitations to this research.



Segmentation of the prescription image cannot be done using any other method
than manual

Content that are identified will be only the entries from the knowledge base.

Only single line segmented images can be identified by the NN.

Entries in the knowledge base is limited to three illnesses.

6.5 Implications for further research

This research can be further improved in many ways. First and formost, the seg-
mentation and the preprocessing phase needed to be automated. Then the content
of the knowledge base can be expanded to identify more drugs than the current
amount. Also this system can be improved to read the whole prescription rather
than a single line. Also this research need to expanded id identify drugs prescriobed
for other illnesses than the mentioned.
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APPENDICES



CODE LISTING

7.1 dataloader.py

from \_\_future\_\_ import division
from\ _\ _future\_\_. import print\_function

import os

import random

import numpy as np

import cv2

from SamplePreprocessor import preprocess

class Sample:
"sample from the dataset”
def \_\_init\_\_(self, gtText, filePath):
self.gtText = gtText
self . filePath = filePath

class Batch:
"batch containing images and ground truth texts”
def \_\_init\_\_(self, gtTexts, imgs):
self.imgs = np.stack (imgs, axis=0)
self . gtTexts = gtTexts
class DataLoader:
"loads data which corresponds to IAM
format , see: http://www.fki.inf.unibe.ch/

databases /iam—handwriting—database”

def \_\_init\_\_(self, filePath , batchSize,
imgSize , maxTextLen):
"loader for dataset at given location
preprocess images and text according
to parameters”

assert filePath[—1]=="/"

self .dataAugmentation = False
self .currldx = 0



self.batchSize = batchSize
self.imgSize = imgSize
self .samples = []

f=open(filePath+’words.txt ")
chars = set ()

bad\ _samples = []

bad\ _samples\ _reference =

[7a01 —117—05—02.png’, ’'r06—022—03—05.png |
for line in f:
\# ignore comment line
if not line or line[0]=="\#"
continue
lineSplit = line.strip ().split(’ 7)
assert len(lineSplit) >= 9

\# filename: partl—part2—part3 —>
partl/partl—part2/partl—part2—part3.png
fileNameSplit = lineSplit [0].split(’—")
fileName = filePath + ’'words/’ +

fileNameSplit [0] + '/’ + fileNameSplit [0] +
'—’ + fileNameSplit [1] + '/’ + lineSplit [0] +

\# GT text are columns starting at 9
gtText = self.truncateLabel(’ ’.join(lineSplit [¢

maxTextLen)
chars = chars.union(set (list (gtText)))

\# check if image is not empty

if not os.path.getsize (fileName):
bad\ _samples.append(lineSplit [0] + ’.pn;
continue

\# put sample into list

self .samples.append(Sample(gtText, fileName))
\# some images in the IAM dataset are known to be damaged,
don’t show warning for them

if set(bad\_samples) != set(bad\_samples\ _reference):
print (" Warning , damaged images found:”, bad)\ _sar
print (” Damaged images expected:”, bad\_samples)

\# split into training and validation set: 95\% — 5\%
splitldx = int (0.95 % len(self.samples))

self . trainSamples = self.samples[: splitldx]
self.validationSamples = self.samples|[splitIdx :]
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\# put words into lists
self . trainWords = [x.gtText for x in self.trainSamples]
self.validationWords = [x.gtText for x in self.validatio

\# number of randomly chosen samples per epoch for trair
self .numTrainSamplesPerEpoch = 25000

\# start with train set
self . trainSet ()

\# list of all chars in dataset
self.charList = sorted(list (chars))

def truncateLabel(self , text, maxTextLen):

\# ctc\_loss can’t compute loss if it cannot find a map
\# labels. Repeat letters cost double because of the blank symb

\# If a too—long label is provided, ctc\_loss returns ai

cost = 0
for 1 in range(len(text)):
if i != 0 and text[i] = text[i—1]:
cost += 2
else:
cost 4+=1

if cost > maxTextLen:
return text [:1]
return text

def trainSet(self):
"switch to randomly chosen subset of training set”
self.dataAugmentation = True
self .currldx = 0
random . shuffle (self.trainSamples)
self .samples = self.trainSamples[: self.numTrainSamplesP

def validationSet (self):
”switch to validation set”

self .dataAugmentation = False
self . currldx = 0
self .samples = self.validationSamples

def getlteratorInfo(self):
?current batch index and overall number of batches”
return (self.currldx // self.batchSize + 1, len(self.sax

def hasNext(self):
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"iterator”

return self.currldx + self.batchSize <= len(self.sample:

def getNext(self):

"iterator”

batchRange = range(self.currldx, self.currldx + self.ba

gtTexts = [self.samples|[i].gtText for i in batchRange]

imgs = [preprocess(cv2.imread(self.samples[i]. filePath

cv2 . IMREAD\ GRAYSCALE), self.imgSize, self.dataAugmenta
for i in batchRange]

self.currldx += self.batchSize

return Batch(gtTexts, imgs)

7.2 samplepreprocessor.py

from\ _\ _future\_\_ import division
from \_\_future\_\_. import print\_function

import random
import numpy as np
import cv2

def preprocess(img, imgSize, dataAugmentation=False):
"put img into target img of size imgSize, transpose for
TF and normalize gray—values”

\# there are damaged files in IAM dataset — just use black imag
if img is None:
img = np.zeros ([imgSize[1], imgSize[0]])

\# increase dataset size by applying random stretches to the im
if dataAugmentation:

stretch = (random.random () — 0.5) \#

—-0.5 .. +0.5

wStretched = max(int (img.shape[l] % (1 + stretch)),

1) \# random width, but at least 1

img = cv2.resize (img, (wStretched, img.shape[0]))

\# stretch horizontally by factor 0.5 .. 1.5

\# create target image and copy sample image into it
(wt, ht) = imgSize

(h, w) = img.shape

fx =w / wt

fy = h / ht

f = max(fx, fy)

newSize = (max(mln( int(w / f)), 1), max(min(ht,

int(h / £)), 1)) \# scale according to f (result at least
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1 and at most wt or ht)

img = cv2.resize (img, newSize)

target = np.ones([ht, wt]) * 255

target [0:newSize[1l], O:newSize[0]] = img

\# transpose for TF

img = cv2.transpose (target)
\# normalize

(m, s) = cv2.meanStdDev (img)
m =m[0][0]

s = s[0][0]

img = img — m

img = img / s if s>0 else img
return img

7.3 Model.py

from \_\_future\_\_ import division
from \_\ _future\_\_ import print\ _function

import sys
import tensorflow as tf

class DecoderType:
BestPath = 0
BeamSearch = 1
WordBeamSearch = 2

class Model:
"minimalistic TF model for HIR”

\# model constants
batchSize = 50
imgSize = (128, 32)
maxTextLen = 32

def \_\_-init\_\_(self, charList, decoderType=
DecoderType. BestPath, mustRestore=False ):
7init model: add CNN, RNN and CITC and initialize TF”
self.charList = charList
self .decoderType = decoderType
self . mustRestore = mustRestore
self .snaplD = 0

\# CNN
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self .inputlmgs = tf.placeholder (tf.float32 ,

shape=(Model. batchSize , Model.imgSize [0] ,
Model . imgSize [1]))

cnnOutdd = self.setupCNN(self.inputlmgs)

\# RNN
rnnOut3dd = self.setupRNN (cnnOutdd)

\# CTIC
(self.loss, self.decoder) = self.setupCTC(rnnOut3d)

\# optimizer for NN parameters
self.batchesTrained = 0

self . learningRate = tf.placeholder (tf.float32
shape=|])

self .optimizer = tf.train.RMSPropOptimizer
(self.learningRate ). minimize(self.loss)

\# initialize TF
(self.sess, self.saver) = self.setupTF ()

def setupCNN(self, cnnln3d):
"create CNN layers and return output of these layers”
cnnlndd = tf.expand\_dims(input=cnnln3dd, axis=3)

\# list of parameters for the layers
kernelVals = [5, 5, 3, 3, 3]

featureVals = [1, 32, 64, 128, 128, 256]
strideVals = poolVals = [(2,2), (2,2), (1,2),
(1,2), (1,2)]

numLayers = len(strideVals)

\# create layers

pool = cnnlndd \# input to first CNN layer

for i in range(numLayers):
kernel = tf.Variable(tf.truncated)\ _norma
I ([kernelVals[i], kernelVals|[i], featureVals][i]
featureVals[i + 1]], stddev=0.1))
conv = tf.nn.conv2d(pool, kernel,
padding="SAME’, strides=(1,1,1,1))
relu = tf.nn.relu(conv)
pool = tf.nn.max\ _pool(relu, (1, poolVals
[i][0], poolVals[i][1], 1), (1, strideVals[i][O]
strideVals[i][1], 1), 'VALID")

return pool
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def setupRNN(self, rnnln4d):
"create RNN layers and return output of these layers”
rnnln3d = tf.squeeze(rnnlndd, axis=[2])

\# basic cells which is used to build RNN
numHidden = 256

cells = [tf.contrib.rnn.LSTMCell (num\ _units=
numHidden, state\_is\_tuple=True) for \. in
range (2)] \# 2 layers

\# stack basic cells
stacked = tf.contrib.rnn. MultiRNNCell(cells ,

state\ _is\_tuple=True)

\# bidirectional RNN

\# BxTxF — BxTx2H

((fw, bw), \_) = tf.nn.bidirectional\_dynamic) _
rnn ( cell\ _fw=stacked , cell\_bw=stacked, inputs=
rnnIn3d, dtype=rnnln3d.dtype)

\# BxTxH + BxTxH —> BxTx2H —> BxTx1X2H
concat = tf.expand\_dims(tf.concat ([fw, bw],
2), 2)

\# project output to chars (including blank):
BxTx1x2H —> BxTx1xC —> BxTxC

kernel = tf.Variable(tf.truncated\ _normal ([1, 1
, numHidden % 2, len(self.charList) + 1], stddev

=0.1))
return tf.squeeze(tf.nn.atrous\_conv2d(value=
concat , filters=kernel, rate=1, padding="SAME’) ,

axis=[2])

def setupCTC(self, ctcIn3d):

"create CTC loss and decoder and return them”

\# BxTxC — TxBxC

ctcIn3dTBC = tf.transpose(ctcIn3dd, [1, 0, 2])

\# ground truth text as sparse tensor
self.gtTexts = tf.SparseTensor (tf.placeholder
(tf.int64 , shape=[None, 2]) , tf.placeholder(tf.int32,
[None]), tf.placeholder(tf.int64, [2]))

\# calc loss for batch

self .seqLen = tf.placeholder (tf.int32, [None])
loss = tf.nn.ctc\ _loss(labels=self.gtTexts,
inputs=ctcIn3dTBC, sequence\ _length=

self .seqlen, ctc\ _merge\_repeated=True)
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\# decoder: either best path decoding or beam search de
if self.decoderType = DecoderType.
BestPath:
decoder = tf.nn.ctc\ _greedy\ _decoder
(inputs=ctcIn3dTBC, sequence)\ _length=self.seqLe1
elif self.decoderType = DecoderType
.BeamSearch:
decoder = tf.nn.ctc\_beam)\ _search)_
decoder (inputs=ctcIn3dTBC, sequence
length=self.seqLen, beam\_width=50, merge\ _repe:
elif self.decoderType = DecoderType.
WordBeamSearch :
\# import compiled word beam search
operation (see https://github.com/githubharald

/CTCWordBeamSearch)
word\ _beam\ _search\ _module = tf.load

\_op\_-library (’TFWordBeamSearch.so ")

\# prepare information about language
(dictionary , characters in dataset, characters
forming words)

chars = str().join(self.charList)

wordChars = open ( ’../model/wordCharList . txt ’).
read (). splitlines ()[0]

corpus = open ( ../ data/corpus.txt ’).read()

\# decode using the ”Words” mode of word

beam search

decoder = word\ _beam)\ _search\ _module.
word\ _beam\ _search (tf.nn.softmax (ctcIn3d
TBC, dim=2), 50, "Words’, 0.0, corpus.encode
("utf8’), chars.encode(’utf8’), wordChars.encod
e(’utf8’))

\# return a CTC operation to compute the loss and

a CIC operation to decode the RNN output
return (tf.reduce\ _mean(loss), decoder)

def setupTF (self):

“initialize TF”

print (’Python: ’+sys.version)
print (’ Tensorflow: '+tf.\ _\_version\_\-)

sess=tf.Session () \# TF session
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saver = tf.train.Saver (max\_to\_keep=1) \#
saver saves model to file

modelDir = ’../model/’
latestSnapshot = tf.train.latest\_checkpoint (modelDir)

\# is there a saved model?

\# if model must be restored (for inference),

there must be a snapshot

if self.mustRestore and not latestSnapshot:
raise Exception(’No saved model found

in: ’ + modelDir)

\# load saved model if available

if latestSnapshot:
print (’Init with stored values from ’ +
latestSnapshot)
saver.restore (sess, latestSnapshot)

else:
print (’Init with new values’)
sess.run(tf.global\ _variables\ _initializer ())

return (sess ,saver)

def toSparse(self, texts):

"put ground truth texts into sparse tensor for ctc) _loss
indices = []

values = []

shape = [len(texts), 0] \# last entry must be
max(labelList [i])

\# go over all texts
for (batchElement, text) in enumerate(texts):
\# convert to string of label (i.e. class—ids)
labelStr = [self.charList.index(c) for ¢ in text
\# sparse tensor must have size of max.
label —string
if len(labelStr) > shape[1]:
shape[1] = len(labelStr)
\# put each label into sparse tensor
for (i, label) in enumerate(labelStr):
indices .append ([ batchElement, i])
values .append(label)

return (indices , values, shape)

def decoderOutputToText (self , ctcOutput):
"extract texts from output of CIC decoder”
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\# contains string of labels for each batch
element

encodedLabelStrs = [[] for i in range
(Model. batchSize )]

\# word beam search: label strings terminated by blank
if self.decoderType = DecoderType.WordBeamSearch:
blank=len (self.charList)
for b in range(Model.batchSize ):
for label in ctcOutput[b]:
if label=blank:
break
encodedLabelStrs [b].append(labe

\# TF decoders: label strings are contained in sparse te
else:
\# ctc returns tuple, first element is SparseTe
decoded=ctcOutput [0][0]

\# go over all indices and save mapping: batch -

idxDict = { b : [] for b in range(Model.batchSi:
for (idx, idx2d) in enumerate(decoded.indices ):
label = decoded.values [idx]

batchElement = idx2d [0] \# index accord]
encodedLabelStrs [batchElement | . append ( 1:

\# map labels to chars for all batch elements
return [str().join ([self.charList[c] for ¢ in labelStr]
for labelStr in encodedLabelStrs]

def trainBatch(self, batch):
"feed a batch into the NN to train it”
sparse = self.toSparse(batch.gtTexts)
rate = 0.01 if self.batchesTrained < 10 else
(0.001 if self.batchesTrained < 10000 else
0.0001) \# decay learning rate

(\-, lossVal) = self.sess.run([self.optimizer,
self.loss|, { self.inputlmgs : batch.imgs, self.
gtTexts : sparse , self.seqLen : [Model.max

TextLen] % Model.batchSize, self.learningRate : rate} )
self . batchesTrained 4= 1
return lossVal

def inferBatch(self , batch):
"feed a batch into the NN to recngnize the
texts”
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decoded = self.sess.run(self.decoder, {

self .inputlmgs : batch.imgs, self.seqlLen
[Model . maxTextLen] % Model.batchSize } )
return self.decoderOutputToText (decoded)

def save(self):
"save model to file”
self .snaplD += 1
self.saver.save(self.sess, ’../model/snapshot’,

global\ _step=self .snaplD)

7.4 main.py

from \_\_future\_\_ import division
from \_\_future\_\_ import print\_function

import sys

import argparse

import cv2

import editdistance

import pandas

import difflib

from DatalLoader import DatalLoader, Batch
from Model import Model, DecoderType
from SamplePreprocessor import preprocess

class FilePaths:
"filenames and paths to data”

fnCharList = ’../model/charList.txt’
fnAccuracy = ’../model/accuracy.txt’
fnTrain = ’../data/’

fnInfer = ’../data/images/54—01.png’
fnCorpus = ’../data/corpus.txt’

def train (model, loader):
"train NN”
epoch = 0 \# number of training epochs
since start
bestCharErrorRate = float ("inf’) \# best
valdiation character error rate
nolmprovementSince = 0 \# number of
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epochs no improvement of character
error rate occured
earlyStopping = 5 \# stop training after
this number of epochs without improvement
while True:

epoch += 1

print ("Epoch:’, epoch)

\# train

print (" Train NN’)

loader . trainSet ()

while loader.hasNext ():
iterInfo = loader.getlteratorInfo ()
batch = loader.getNext ()
loss = model.trainBatch (batch)

print (’Batch:’, iterInfo[0],’ /",
iterInfo [1], ’'Loss:’, loss)
\# validate
charErrorRate = validate (model, loader)

\# if best validation accuracy so far, save
model parameters
if charErrorRate < bestCharErrorRate:
print (’Character error rate improved,
save model ")
bestCharErrorRate = charErrorRate
nolmprovementSince = 0
model . save ()
open(FilePaths.fnAccuracy, 'w’).write
(’Validation character error rate of saved mode

)

%t%% % (charErrorRate«100.0))

else:
print (*Character error rate not improved’)
nolmprovementSince += 1

\# stop training if no more improvement in the last x ej
if nolmprovementSince >= earlyStopping:
print (’No more improvement since
%d epochs. Training stopped.’ % earlyStopping)
break
def validate (model, loader):
"validate NN”
print (’Validate NN")
loader.validationSet ()
numCharErr = 0
numCharTotal = 0
numWordOK = 0
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numWordTotal = 0
while loader.hasNext ():
iterInfo = loader.getlteratorInfo ()
print (’Batch:’, iterInfo[0],’/’, iterInfo[1])
batch = loader.getNext ()
recognized = model.inferBatch (batch)

print (’Ground truth —> Recognized ’)

for i in range(len(recognized)):
numWordOK += 1 if batch.
gtTexts[i] == recognized[i]| else 0
numWordTotal += 1
dist = editdistance.eval
(recognized [i], batch.gtTexts[i])
numCharErr += dist
numCharTotal 4= len
(batch.gtTexts[i])
print ("[OK] " if dist==0 else
"[ERR:%d ]’ % dist,’”’ +
batch.gtTexts[i] + 77, '—=>", 7’
+ recognized [i] + 77 7)

\# print validation result
charErrorRate = numCharErr /
numCharTotal

wordAccuracy = numWordOK /
numWordTotal

print (’Character error rate: %f%%.
Word accuracy: %f%%.” % (charErrorRatex
100.0, wordAccuracy=*100.0))

return charErrorRate

def infer (model, fnlmg):

"recognize text in image provided by

file path”

img = preprocess(cv2.imread (fnlmg,

cv2 .IMREAD\ GRAYSCALE), Model.imgSize)
batch = Batch(None, [img] % Model.
batchSize) \# fill all batch elements with
same input image

recognized = model.inferBatch (batch)

\# recognize text

\#print ("Recognized:’, 7’ +

recognized [0] + 7 7) \# all batch elements hold same result
return recognized [0]

def main():
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"main function”

\# optional command line args

parser = argparse.ArgumentParser ()
parser .add\ _argumen

t("——train”, help="train the NN”,
action="store\ _true”)

parser .add\ _argument

("——validate”, help="validate the NN”
action="store\ _true”)

parser .add\ _argument

("——beamsearch”, help="use beam search
instead of best path decoding”, action="store\_true”)

parser .add\ _argument(”"——wordbeamsearch” |
help="use word beam search instead of best
path decoding”, action="store\ _true”)

args = parser.parse\_args ()

decoderType = DecoderType.BestPath
if args.beamsearch:

decoderType = DecoderType.BeamSearch
elif args.wordbeamsearch:

decoderType = DecoderType.WordBeamSearch

\# train or validate on IAM dataset
if args.train or args.validate:
\# load training data, create TF model
loader = DataLoader (FilePaths.fnTrain,
Model. batchSize , Model.imgSize , Model.maxTextLen)

\# save characters of model for inference mode
open(FilePaths.fnCharList, 'w’).write(str ()
.join (loader.charList))

\# save words contained in dataset into file
open(FilePaths.fnCorpus, ’'w’).write(str(’ 7).
join (loader.trainWords + loader.validationWords))

\# execute training or validation

if args.train:
model = Model(loader.charList , decoderType)
train (model, loader)

elif args.validate:
model = Model(loader.charList , decoderType,
mustRestore=True)
validate (model, loader)

\# infer text on test image
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else:
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model = Model (open(FilePaths.fnCharList
read (), decoderType, mustRestore=True)
word = infer (model, FilePaths.fnInfer)
print (FilePaths. fnlnfer)
print (’Recognized:’, 7’ + word + 7 7)
dbcol =("d’)
hbpcol =("p’)
chlcol =("c¢”)
db = pandas.read) _
csv ("Hypo—Hyperglycemia.csv ’ ,names=dbco
hbp = pandas.read) -
csv (’Hypertension.csv’  names=hbpcol)
chl = pandas.read) -
csv ('Hyperlipidemia.csv’ ,names=chlcol)
diabetes = db.d. tolist ()
pressure = hbp.p.tolist ()
chol = chl.c.tolist ()
dbr = []
hbpr = []
chlr = []
for eled in diabetes:
seqd = difflib.
SequenceMatche
r (None, word, eled)
dd = seqd.ratio()*100
dbr.append (dd)

for eleh in pressure:
seqh= difflib .
SequenceMatcher
(None, word, eleh)
dh = seqh.ratio()*100
hbpr . append (dh)

for elec in chol:
seqc = difflib.
SequenceMatcher (None, w
dc = seqc.ratio()*100
chlr . append(dc)

db\_max = max(dbr)

db\ _max\ _in = dbr.index (db\_max)

hbp\_max = max(hbpr)
hbp\_max\ _in = hbpr.index (hbp\_max)

chl\_max = max(chlr)



chl\ _max\_in = chlr.index(chl\_max)
max\ -val = [db\_max, hbp\_max, chl\ _max]
max\ _of\ _all = max(max\ _val)

max\ _of\ _all\ _in = max\ _val.index (max\ _

if max\_of\_all\_in = O0:

name = diabetes [db\_max\ _in ]
elif max\ _of\ _all\_in = 1:

name = pressure [hbp\_max\ _in |
else:

name = chol[chl\_max\ _in |
print ("found:’, 7’ + name + '7)

if \_\name\_\_. = 7\ _\_main\_\_":

main ()
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