

Efficiently transform contracts
written in Peyton Jones Contract
Descriptive language to Solidity

V. U. Wickramarachchi

ii

Efficiently transform contracts written in
Peyton Jones contract descriptive language to

Solidity

V. U. Wickramarachchi
Index No: 14001543

Supervisor: Dr. Chamath Keppitiyagama
Co-Supervisor: Dr. Kasun Gunawardena

January 2019

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4124)

iii

DECLARATION

I certify that this dissertation does not incorporate, without acknowledgement, any material

previously submitted for a degree or diploma in any university and to the best of my

knowledge and belief, it does not contain any material previously published or written by

another person or myself except where due reference is made in the text. I also hereby give

consent for my dissertation, if accepted, be made available for photocopying and for

interlibrary loans, and for the title and abstract to be made available to outside organizations.

Candidate Name: V. U. Wickramarachchi

………………………………………………
Signature of Candidate Date:

This is to certify that this dissertation is based on the work of

Ms. V. U. Wickramarachchi

under my supervision. The thesis has been prepared according to the format stipulated and
is of acceptable standard.

Principle Supervisor’s Name: Dr. Chamath Keppitiyagama

………………………………………………
Signature of Principal Supervisor Date:

Co-Supervisor’s Name: Dr. Kasun Gunawardena

………………………………………………
Signature of Co-Supervisor Date:

iv

ABSTRACT

Financial contracts play a major role in the modern economy. Due to a large variation of

contracts being traded in financial markets, a standard representation for contracts was

required in order to eliminate the ambiguity imposed by natural languages. Peyton Jones et

al. catered this need by proposing a combinator library embedded in Haskell which enabled

contract representation and valuation. However, every financial contract represented as such

suffered from the same fundamental problem. If a contract is executable, the parties

involved in the contract needed to trust a central counterparty to give them the correct results

after execution. The interference of this middleman introduced certain risks as well as a

significant amount of overhead.

In this dissertation, a novel approach to facilitate autonomous contract execution was

proposed, exploiting the features and use cases of the Ethereum blockchain and its scripting

language, Solidity. The approach involves transforming contracts written in the Peyton

Jones’ Contract Descriptive language to Solidity using a special purpose compiler. The

result of this transformation is a smart contract equivalent to the traditional financial

contract. The transformed smart contract is deployed and executed on the Ethereum

blockchain using an Ethereum client.

The proposed solution was evaluated against existing attempts to design autonomous

financial contracts. The research shows that a contract written in the Peyton Jones’ Contract

Descriptive language can be transformed to a smart contract which executes autonomously

in a trustless environment. As a result, it was concluded that financial contracts could

operate without a central counterparty with increased performance and reduced overheads.

v

PREFACE

Transformation of a financial contract to a smart contract is a novel approach proposed in

this study. The objectives and aims of this study has not been explored by any other previous

research of this particular domain. A novel design was introduced in order to facilitate this

transformation. Two parts used in the design model; extending of the Peyton Jones’ Contract

Descriptive Language and the external contract (Marketplace) has been inspired by a

parallel work done in this domain. Apart from that, the proposed design was solely my own

work and a method similar has not been proposed in any other study relevant to this domain.

The implementation methodology used in order to build the compiler was proposed by

myself. Even though a parallel work related to this concept was identified towards the latter

part of this study, the objectives, aims, design and the implementation of that is drastically

different from what is proposed in this study. The evaluation model used in this study falls

in the line of a standard evaluation model of proof-of-concept. However, it was further

improved by myself with the input of my supervisors.

vi

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my principal supervisor, Dr. Chamath

Keppitiyagama and co-supervisor Dr. Kasun Gunawardena for their constant guidance and

encouragement, without which this work would not have been possible. For their

unwavering support, I am truly grateful.

I would also like to extend my sincere gratitude to all the examiners and evaluators of my

research for providing feedback on my research proposal and interim evaluation to improve my

study.

My sincere thanks go out to our final year computer science project coordinator

Dr. H. E. M. H. B. Ekanayake for his encouragement and support in keeping this research

focused and on-track.

Foremost my special thanks to my parents for providing me a solid foundation in education

and all the courage and love gave me on every moment. They are the guiding stars which

strengthen me to become the person who I am today.

Finally, I express my sincere gratitude to all my friends who supported and encouraged me

on all cause of challenges I faced during this research. All the help given by everyone to

make this research a success owns my great appreciation.

vii

TABLE OF CONTENTS

Declaration ...iii

Abstract ..iv

Preface ... v

Acknowledgement ..vi

Table of Contents .. vii

List of Figures ...iii

List of Tables ..iv

List of Acronyms .. v

Chapter 1 - Introduction ... 1

1.1 Background to the Research .. 1

1.1.1 Financial Markets and Contracts.. 1

1.1.2 Peyton Jones’ Contract Descriptive Language ... 3

1.1.3 Ethereum Blockchain and Smart Contracts .. 4

1.1.4 Transactions and Execution Costs on Ethereum ... 5

1.2 Research Problem and Research Questions .. 6

1.2.1 Research Problem.. 6

1.2.2 Research Question 01 .. 6

1.2.3 Research Question 02 .. 7

1.3 Research Aim and Objectives .. 7

1.4 Justification for the research .. 7

1.5 Methodology ... 9

1.6 Outline of the Dissertation ... 11

1.7 Delimitations of Scope .. 11

1.8 Summary ... 12

Chapter 2 – Literature Review .. 13

2.1 Introduction ... 13

viii

2.2 DSLs for Financial Contracts... 13

2.2 Smart Contracts and its Applications ... 16

2.3 Source-To-Source Compiling .. 18

Chapter 3 – Design ... 20

3.1 Introduction ... 20

3.2 Research Design .. 20

3.3 Extending the Peyton Jones’ CDL ... 21

3.4 Compiler Design ... 22

3.4.1 Source Language ... 22

3.4.2 Target Language ... 22

3.4.3 Compiler Construction .. 23

3.5 Smart contract Design ... 25

3.6 Justification for the methodology... 29

3.7 Summary ... 30

Chapter 4 - Implementation .. 31

4.1 Introduction ... 31

4.2 Technologies and Software Tools .. 31

4.3 Extending the Language .. 31

4.3.1 Shallow Embedding .. 31

4.3.1 Deep Embedding ... 32

4.4 Source-to-Source Compiling ... 34

4.4.1 ANTLR Grammar for the Peyton Jones’ Language.. 34

4.4.2 Lexer and Parser Generation.. 35

4.4.3 Abstract Syntax Tree and Tree Walker .. 38

4.4.4 Base Contract .. 39

4.4.5 Synergy Marketplace ... 41

4.4.6 Solidity Source Creation .. 43

4.4.8 Summary ... 44

Chapter 5 – Results and Evaluation .. 45

5.1 Introduction ... 45

ix

5.2 Transformed Contracts .. 45

5.2.1 Parse tree for a Basic Contract ... 45

5.2.2 Parse Tree for a Complex Contract .. 47

5.2.3 Basic Contract in Solidity .. 48

5.2.4 Order of Execution .. 49

5.3 Evaluation ... 50

5.3.1 Evaluation Model .. 50

5.3.2 Semantic Comparison .. 51

5.3.3 Evaluation of Implementation Choices .. 56

5.4 Synergy over Traditional financial contracts .. 59

5.5 Summary ... 60

Chapter 6 – Conclusions ... 61

6.1 Introduction ... 61

6.2 Conclusions about research questions (aims/objectives) .. 61

6.3 Conclusions about research problem .. 62

6.4 Limitations .. 63

6.5 Future Work .. 65

6.5.1 Compiler Improvements .. 65

6.5.2 Debt Enforcement ... 65

6.5.3 Reducing Compiler Overhead.. 65

References .. 66

Appendix A – Code Listings ... 69

iii

LIST OF FIGURES

Figure 1.1: Combinators for contracts……………………………………………………..3

Figure 1.2: High-level diagram of proposed research methodology..................................10

Figure 2.1: Combinators for observables…………………………………………………14

Figure 2.2: Compilation process of the Fork to baseline compiler…………….…………18

Figure 2.3: Translation based IR………………………………………………………….19

Figure 3.1: High-level architecture of the proposed solution……..................................... 20

Figure 3.2: The design of the compiler……………………………………………………24

Figure 3.3: The structure of a complex specific contract…………………………………25

Figure 3.4: Structure of a basic contract component……………………………………...26

Figure 3.5: Solidity source generation…………………………………………………….28

Figure 3.6: Final Solidity Contract Code………………………………………………….28

Figure 4.1: Complex contract railroad diagram……………………………………………37

Figure 4.2: Basic contract railroad diagram……………………………………………….38

Figure 5.1: One Contract TestRig output………………………………………………….45

Figure 5.2: Parse tree output of a Zero Coupon Bond…………………………………….46

Figure 5.3: Parse tree for a complex contract……………………….…………………….47

Figure 5.4 – Order of execution of a contract……………………………..………………50

Figure 5.5 – Contract correctness evaluation………………………………………..….…51

Figure 5.6 – Comparison of transaction costs…………………………………………….59

iv

LIST OF TABLES

Table 3.1: Features of shallow and deep embedding of a DSL.. 21

Table 3.2: Comparison of the languages for smart contract development…….……….. 22

Table 3.3: Additional information required to execute smart contracts…………………27

Table 5.1 – Contract transformation output comparison…………….…….…………….56

Table 5.2 – Autonomous execution and execution guarantee comparison……..……….57

v

LIST OF ACRONYMS

CDL Contract Descriptive Language

DSL Domain Specific Language

DSEL Domain Specific Embedded Language

HDL Hardware Description Language

HOL Higher Order Logic

EBNF Extended Backus-Naur Form

ANTLR Another Tool for Language Recognition

NFA Non-deterministic Finite Automata

EAC Ethereum Alarm Clock

EVM Ethereum Virtual Machine

IR Intermediate Representation

AST Abstract Syntax Tree

1

Chapter 1 - INTRODUCTION

1.1 BACKGROUND TO THE RESEARCH

With the rapid development of digitization of the world, everything from our own identities

to the cars we drive, the businesses we run, the markets we operate in are all digitized and

linked to the Internet. Technological advancement in such a scale will open many avenues

for modern businesses, governments and financial markets. However, along with these

advancements, an open question remains. If everything is being digitized and information

is readily accessible by anyone anywhere, are today’s centralized authorities the best way

to look forward to the future?

1.1.1 FINANCIAL MARKETS AND CONTRACTS

A financial market is a market in which people trade financial securities and derivatives

such as futures and options at low transaction costs. A financial market performs thousands

of transactions per second. The New York Stock exchange is one such example of a

financial market.

The adverse effects of centralized control are highlighted drastically in financial markets

[1]. The digitization of financial markets started in the 1970’s. Along with digitization, the

trading volumes in these markets have increased massively. Trading in these markets

happen through financial instruments such as financial derivatives (referred to as ‘financial

contracts’ or ‘contracts’). Derivatives are financial contracts, which derive their value off a

spot price time-series, which is called ‘the underlying’. The underlying asset can be equity,

index, commodity, or any other asset.

Few examples of financial contracts are;

• Zero Coupon Bond - A bond that is issued at a deep discount to its face value but

pays no interest.

2

• American Option - A put option or call option that can be exercised at any time on

or before its expiration date.

• European Option - May be exercised only at the expiration date of the option, i.e. at

a single pre-defined point in time

Traditional financial contracts require a third party for the purpose of executing the contract

in addition to the parties involved in the agreement due to its centralized nature. The

involvement of such third parties increases the security risk of exercising contracts because

the result of the execution solely depends on the third party. The parties involved in the

contract need to trust the third party to provide them the correct result.

The high-level goal of this research is to redefine the financial markets and financial

contracts in a highly-automated, trustless, transparent environment.

The benefits of such an environment are as follows.

• High availability – With the increase in trading volumes, availability of the market

is a critical component of financial trading. A trustless environment eliminates the

single point-of-failure and reduces downtime of the market.

• Reliability – The approach used in this research to build a trustless environment for

financial markets eliminates risks such as credit risks (The risk of failure of a

counterparty to perform its obligation as per the contract), which as a result increases

the reliability of the agreement.

• Efficiency – An automated process of executing contracts is much more efficient

than a manual execution by a third party. Decreases contract execution overhead

significantly.

In order to build such an environment, this research maps two existing domains; namely;

The Peyton Jones’ Contract Descriptive language and Smart contracts for Ethereum.

3

1.1.2 PEYTON JONES’ CONTRACT DESCRIPTIVE LANGUAGE

Financial contracts portray a major role in the finance sector and the modern economy. The

finance industry has an enormous vocabulary of jargon (options, swaps, futures, swaptions,

etc.) to catalogue all typical combinations of such financial contracts. Due to the inherent

ambiguity of natural language, it is considered unsuitable to express financial contracts. The

financial domain lacked a universal domain specific language (DSL) to describe financial

contracts in the past.

An influential paper by Simon Peyton Jones [2] is one of many attempts to create a DSL

that would mitigate controversy and stimulate automated processing of complex contracts.

It leverages ideas from functional programming such as Haskell and uses a precise set of

primitive combinators to express financial agreements. A key feature of this notation is

composability: new indefinitely complex contracts can be defined based on existing simpler

ones. Due to their nested structure and composability, this DSL is well-suited for automated

processing, including contract valuation and to describe unforeseen contracts. The usage of

this has been proven through commercialization of the concept as well [3]. Figure 1.1 shows

the combinators introduced by Peyton Jones’ et al. to describe financial contracts.

Figure 1.1 – Combinators for defining contracts

4

1.1.3 ETHEREUM BLOCKCHAIN AND SMART CONTRACTS

The introduction to Bitcoin [4] in 2009 led the world to a new era of decentralized

technologies in finance and other industries. Out of these distributed platforms, the most

interesting technology is Ethereum [5] for this study. Ethereum is a decentralized platform

with mutually distrusting nodes, for running smart contracts.

Smart contracts are applications that run just the way they are programmed, with virtually

zero possibility of any censorship, fraud, third party interference or downtime [6]. The idea

of smart contracts, notably Ethereum, became the first practical implementation of the

concept of autonomous contracts. The term ‘smart contract’ evolved even before the

emergence of blockchains [7]. One could even simply consider a vending machine as a

primitive predecessor of a smart contract which enforces the agreement that a coin can be

traded for i.e. a can of soda. However, the definition in concern for this study would be, “A

program code that enforces agreements on the Ethereum blockchain among peers in the

network.” The significant feature of a smart contract is, once initiated, the participating

parties cannot stop or reverse the transaction, unless allowed by the same or another smart

contract. This immutability feature reduces security vulnerabilities that could affect

financial contracts and its parties, enabling us to build the autonomous, trustless

environment required. Since everyone in the Ethereum network could see how smart

contracts execute and due to their immutable nature, each participant could independently

verify that the system is fair.

Basically, smart contracts are programs stored and executed on an embedded virtual

machine by participants in the Ethereum peer-to-peer network. Programs may perform any

number of actions, such as updating its state, executing other programs or sending values to

users or programs. Anyone can execute or deploy programs to the network for a small fee.

The participants in the network continuously verify that they agree on the states of the

deployed programs.

5

In the high-level languages currently used for Ethereum contract development, contracts are

structured much like modules or classes in traditional programming languages. One such

language is Solidity [8], the Turing-complete scripting language for Ethereum. Contracts

are ultimately encoded as byte code for the Ethereum Virtual Machine (EVM) that is

embedded in all clients in the network [9].

Ethereum has two main entities: user accounts and contract accounts that send messages

between each other. If the recipient of a message is a contract, it will execute a bit of code,

which might send new messages to other users or contracts. The contract accounts are

controlled by the program which constitutes the contract. Contract accounts have access to

a non-shared persistent memory, which they use to store their state [9]. Each account has

exactly one automatically generated address, which is used as its unique identifier [9].

Additionally, all accounts have an ether balance. Ether is a transferable asset that is built

into the Ethereum system.

1.1.4 TRANSACTIONS AND EXECUTION COSTS ON ETHEREUM

The simplest kind of message in a transaction is to transfer a certain amount of ether from

one account to another. If a contract receives a message, its code gets executed and a value

may be returned to the sender. All transactions are executed by nodes participating in the

network known as verifiers. Since the EVM is Turing-complete, there is a possibility that

contracts would enter into infinite loops. In order to prevent this, users have to pay a certain

fee at a fixed price for each execution step they trigger. This is done using gas, a resource

bought using ether. Gas is necessary to execute contracts and the amount of gas supplied in

the message limits the length of the computations it triggers. Before a transaction is made,

the user specifies a gas price and a maximum limit of gas to be used for the transaction.

6

1.2 RESEARCH PROBLEM AND RESEARCH QUESTIONS

1.2.1 RESEARCH PROBLEM

Financial contracts are a vital underpinning of the modern financial domain. With the

ongoing technological advancement in the world, business and finance are increasingly

being automated. As a result, the incentives to let computer programs interpret, enforce and

execute contracts have also increased. There have already been several efforts to design

formal languages and combinator libraries [2] [10] [11] to analyze or execute financial

contracts. Hence, the idea of deterministic representation of contracts and reducing

ambiguity is more common.

However, all of the existing implementations suffer from the same fundamental problem: if

a financial contract is executable, the involved parties have to trust the executor to give them

the correct result. Financial contracts are even exposed to a number of risks including the

counterparty risk, where a certain party involved may opt out before the expiry date of the

contract and credit risk, which is the loss that may occur from the failure of any party to

abide by the terms and conditions of the financial contract.

In order to mitigate risks of a third-party involvement, this study proposes to have the

contract execute itself, without any possibility of interference from an executor or other

third parties. The solution involves mapping the traditional financial contract domain to the

smart contract domain. As a result, the trustless environment required for contract execution

is obtained. Further, the risks mentioned above are also eliminated as smart contracts feature

autonomous execution and immutability, making it impossible for the parties involved in

the contract to opt out of the agreement in an unconventional manner.

1.2.2 RESEARCH QUESTION 01
Is it possible to facilitate an efficient transformation of a contract written in Peyton Jones’

contract descriptive language to a self-executing smart contract in Solidity?

7

1.2.3 RESEARCH QUESTION 02
Is it possible to preserve the properties of the Peyton Jones’ language while accommodating

the blockchain features in a transformed contract?

1.3 RESEARCH AIM AND OBJECTIVES

The main aim of this research is to eliminate the dependence on third-parties to execute

financial contracts and to facilitate autonomous execution of contracts in a trustless

environment in order to reduce risks encountered when exercising financial contracts. This

study focuses on achieving this by combining properties of the Peyton Jones’ Contract

Descriptive Language and the properties of the Ethereum blockchain such as immutability

and decentralization.

The objectives of the research are as follows.

• Enhance financial contracts written in Peyton Jones’ Contract Descriptive language,

to embed properties required in the Ethereum blockchain domain

• Develop a source-to-source compiler to transform a Peyton Jones’ financial contract

to a smart contract

• Explore the advantages of transforming a Peyton Jones’ financial contract to a smart

contract

• Explore the ability of the transformed contract to act as the original contract

• Discover the abilities of the transformed contract to execute at a future date

1.4 JUSTIFICATION FOR THE RESEARCH

Taking into consideration the importance of financial contracts to the economy, the

motivation behind this study is to enhance the uses of them by automating its functions and

eliminating the need of a middle man to execute the contracts. This idea is both possible

and practical, as a result of emerging technologies such as smart contracts based on the

Ethereum blockchain. As the blockchain technology is a trending area of research in the

present context, accommodating the features of the blockchain to contracts will be a turning

8

point in the financial domain. The use of distributed ledger technology for the finance

domain has been a topic of interest since the dawn of blockchains [3] and financial markets

such as the London Stock Exchange have already begun discussions on how best to

incorporate blockchain technologies to the financial domain, which validates the importance

of the proposed solution in this study.

Most of the existing formal languages for financial contracts are functional in nature.

Contracts defined using many of these languages are compositional where complex

contracts are created by combining smaller contracts. It has been shown that contractual

agreements are very well suited to be expressed in formal languages which are purely

functional [12] over imperative languages.

Therefore, rather than re-writing financial contracts as smart contracts, it is more beneficial

to efficiently transform them from the domain specific language (Peyton Jones’ Contract

Descriptive Language) to the scripting language (Solidity) of the Ethereum blockchain

which is used to represent smart contracts. Thus, the best of both worlds is exploited;

unambiguity and the composability of a concise declarative domain specific language

(DSL) and trustless, autonomous execution of blockchain based smart contracts.

Researchers have successfully introduced DSLs in the past which could describe and

evaluate smart contracts with specific operational semantics [2] [13] [14]. A functional

language with an extensive type system (Idris) has also been introduced for safer

development of smart contracts [15]. Further, approaches have been introduced where

financial agreements could be securely managed using self-executing smart contracts. One

such approach includes introducing a financial declarative DSL which is executed by the

nodes of a blockchain network [16].

However, even if there are examples of re-implementations of financial contracts in the

Ethereum blockchain platform, no evidence has been found in transforming the readily

described financial contracts in one of the most stable financial declarative DSLs (Peyton

Jones’ Contract Descriptive Language) to the smart contracts.

9

The significance of the problem lies in the need to derive the best of both domains where

the motive is to preserve the compositional nature and also to exploit the advantages of

executing financial contracts in a trustless environment. The importance of the outcome of

this research is pointed towards both the financial domain and the computer science research

areas respective to blockchain technologies.

1.5 METHODOLOGY

As the first step of the research approach, the existing representation of financial contracts

is refined in order to facilitate multiple representations of financial contracts. This is

required in order to map the existing contracts to a different domain. The next step focuses

on developing a source-to-source compiler to transform contracts written in Peyton Jones’

Contract Descriptive language to Solidity. The approach followed for this step is discussed

in detail in sections 3 and 4.

The final step focuses on devising a mechanism to evaluate the transformed contract,

identify benefits of such a transformation and the extent to which the properties of the

Peyton Jones’ contract are preserved. This step would also include determining the

methodology to embed properties specific to smart contracts with relevance to gas

consumption, self-execution at a future date, etc. The problems faced with regards to gas

usage and self-execution will be thoroughly analyzed and discussed. The complete analysis

and discussion of this step is included in section 5.

Figure 1.2 represents a high-level diagram of the proposed research methodology.

10

Figure 1.2: High-level diagram of proposed research methodology

11

1.6 OUTLINE OF THE DISSERTATION

The dissertation is structured as follows. Chapter two explores the existing approaches to

create DSLs for financial contracts and the re-implementations of financial contracts for the

Ethereum blockchain. Chapter three describes the proposed research design and

methodology. Potential ways of addressing the research problem is discussed in this chapter.

Chapter four demonstrates the implementation details of the proposed methodology.

Chapter five presents the evaluation model and the evaluation results of the proposed

approaches. The last chapter, chapter six provides the conclusion of the dissertation and

outlines the future work.

1.7 DELIMITATIONS OF SCOPE

The proposed methodology of this study utilizes only the Peyton Jones’ Contract descriptive

language [2] as the source language for the compiler. The input to the compiler has been

formatted in order to best suit the transformation. However, the formatting of the input does

not change the semantics of the contract and as a result there is no particular effect to the

processing of the contract. (This is described in detail in section 3)

The combinators proposed by Peyton Jones’ et al. [2], the notion of horizon for contracts is

utilized in order to generate an identical smart contract to the financial contract. Further,

additional properties which are required for the smart contract to execute on the blockchain

is embedded during the transformation.

The intention of this research is not to develop a new library or domain specific language

specialized on describing specific types of contracts. Further, due to time constraints, it is

outside the scope of this research to deliver a complete, optimized or readily usable

compiler. It is also not in the scope of this research to address existing platform limitations

and risks of the Ethereum blockchain when executing smart contracts.

12

1.8 SUMMARY

Financial contracts are widely used in the modern economy. The description of a financial

contract includes a large vocabulary of financial jargon. Therefore, natural language is not

suited to represent financial contracts due to its ambiguous nature. In order to address this

problem Peyton Jones’ et al. [2] introduced a domain specific embedded language (DSEL)

which could describe financial contracts. Many other researchers who were inspired by this,

continued to build DSELs which extended the language introduced by Peyton Jones et al.

However, all these representations suffered from the same fundamental problem of the need

to trust a third party to provide correct results of contract execution. Therefore, it is more

desirable for a financial contract to facilitate autonomous, trustless execution in order to

eliminate the risks involved in a centralized execution system.

This chapter mainly highlights the background of the research, the research problem and

the research questions. Then the research was justified, the methodology was briefly

described, the dissertation was outlined, and the limitations were given. On these

foundations, the dissertation can proceed with a detailed description of the research.

13

Chapter 2 – LITERATURE REVIEW
2.1 INTRODUCTION

This chapter illustrates the current status of the research domain, especially targeting the

Peyton Jones’ Contract Descriptive language and how contract management is done. Next,

the introduction of Ethereum, it’s functionalities, smart contract applications in the past are

thoroughly explored in section 2.2. Finally, an overview of source-to-source compiling done

in previous researches are analyzed in section 2.3.

2.2 DSLS FOR FINANCIAL CONTRACTS

The past decade has been rich in terms of newly emerging DSLs for various purposes.

Among them, several DSLs have emerged for financial contracts as well. Features and

functionalities of few such DSLs will be explored in here.

The basic foundation to develop a DSL for financial contracts were laid by Peyton Jones et

al. [2]. They introduced a combinator library to represent contracts and observables. The

purpose of this library was to represent financial contracts in an unambiguous way. They

also sketched an implementation of valuation semantics, using as an example a simple

interest rate model and its associated lattice. A key feature of this library was that the

combinators facilitated composability. Due to the compositional nature of the approach,

complex contracts could be easily composed through the use of primitives for observables

and primitives for contracts.

The combinator library was built using Haskell as the host language and as a result exploited

Haskell’s functional nature and lazy evaluation to a large extent.

An example contract in the Peyton Jones Contract Descriptive language takes the below

format.

Zero Coupon Bond – get (truncate “date” (scale k (one USD)))

14

Figure 1.1 in chapter 1 showed the combinators introduced by Peyton Jones et al. to describe

contracts. Figure 2.1 shows the combinators introduced for observables.

Figure 2.1 – Combinators for observables

This paper also introduced the notion of a horizon for a contract. The horizon of a contract

was defined as the latest date the contract can be acquired. After the horizon of a contract,

it will be automatically void if not acquired by any party. Further improvements on the

combinators were done through a book chapter [17] [18] released by Peyton Jones et al. at

a later date where the notion of the horizon was discarded. However, our research has been

based solely on the developments of the original composing contracts paper [2].

Based on the work of Peyton Jones et al. [2], DSLs were built as language extensions. One

such approach was the DSL created by Gaillourdet [10]. The formal language developed in

here was capable of expressing financial contracts themselves. She also introduced some

denotational semantics which enables a notion of equivalence among contracts. A much

broader DSL was developed by Andersen, et al. [19] which allowed description of multi-

15

party contracts as well. Additionally, they give denotational and operational semantics for

that language, which allows to decide whether a trace of steps in the real world conforms to

a specified contract or not. Hence, the real world applicability of the developed DSL has

also been explored by them.

The central counterparty (CCP) of a financial contract is responsible for executing a

financial contract. A central counterparty can make or break a contract as correct execution

of contract logic is the sole responsibility of a central counterparty. An approach in the

recent past has attempted to build a DSL to specify operations of a central counterparty [20]

as well. This was conducted after identifying a research gap of CCP rules not been explored

in the context of DSLs, even though CCPs were considered crucial for contract execution.

In this study, it was proved that the Haskell combinator library introduced by Peyton Jones

et al. [2] could be used to define CCP rules as well.

A financial contract has a dynamic timeline due to its uncertain nature. The parties involved

in the contract needs to keep track of when the contract logic should be executed. If not,

execution at the correct date may not happen due to misconducts of the CCP. Balalla V. R.

et al. [21] conducted a study in the recent past to extract the contract calendar from a

financial contract, based on the work of Peyton Jones et al. This study introduced a model

with the capability of generating a calendar for a given contract. The model consists of a

calendar definition, set of combinators for calendars and a set of evaluation semantics for

the conversion from a contract to the calendar.

In an overall perspective, it could be seen that many researchers are interested in exploring

the area of financial markets and financial contracts. Most of the researches in this area has

been based on the influential paper by Peyton Jones et al. in developing precise combinators

to represent contracts. Even though this study covered a major research gap at that time, it

did not provide a solution to most risks involved in financial contracts. However, the

declarative representation of contract proposed by Peyton Jones et al. opened many doors

for further improvements on financial contracts.

16

2.2 SMART CONTRACTS AND ITS APPLICATIONS

The idea of decentralization has been emerging in the world over the past decade. People

are more keen on moving towards decentralization, leaving behind centralized authorities

and autonomous power of a single entity. The concept emerged at a larger scale with the

introduction of Bitcoin [4] in the year 2009. This new frontier of decentralization was

adopted by many industries including finance. The next revolution in decentralization was

the introduction of Ethereum [5]. The specialty of Ethereum beyond Bitcoin technologies

was its scripting language Solidity [5] [22]. With the presence of Solidity it was possible to

create pieces of codes that could run on the blockchain. These were called smart contracts.

A simple smart contract written in Solidity would have the following format.

pragma solidity ^0.4.0;

contract SimpleStorage {
 uint storedData;

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint) {
 return storedData;
 }
}

A contract in the sense of Solidity is a collection of code (its functions) and data (its state)

that resides at a specific address on the Ethereum blockchain. The functions set and get

can be used to modify or retrieve the value of the variable storedDate. This contract allows

anyone to store a single number that is accessible by anyone in the world [8].

The Ethereum white paper [5], introduced many novel concepts including autonomous

contracts, execution in a trustless environment, state transitions on the blockchain though

message passing which facilitated users to build an entirely decentralized financial system.

Many researches were inspired by the concept of smart contracts after the introduction of

Ethereum. Eksandari S. et al. [23] explored the feasibility of decentralized derivative

17

markets where they presented Velocity, a decentralized market deployed on Ethereum for

trading a custom type of derivative option. Further, they have explored the security of smart

contracts and the use of smart contracts in modelling financial systems. Through their study

they have identified that smart contracts are a fascinating idea that can revolutionize the

technology be removing the middleman involved in financial transactions. However, they

have also stated that the infrastructure to build this system is still in a proof-of-concept state

rather than in a production state in the present context.

Egelund-Müller et al. have also explored automated execution of financial contracts on the

blockchain [24]. The paper investigates financial contract management on distributed

ledgers and provides a working solution implemented on the Ethereum blockchain. The

system is based on a domain-specific language for financial contracts that is capable of

expressing complex multi-party derivatives and is conducive to automated execution. The

authors also propose an architecture for separating contractual terms from contract

execution. However, they have completely ignored the use cases of a DSEL to represent a

financial contract and have looked at a re-implementation of financial contracts on the

Ethereum blockchain. This have eliminated the composable nature of contracts in the

original work of Peyton Jones et al.

Safer smart contracts through type-driven development has been explored by Pettersson et

al. [14] in the past where they have shown how dependent and polymorphic types can make

smart contract development safer. This has been demonstrated by using the functional

language Idris to describe smart contracts on the Ethereum platform. Same as the previous

approach, they have too implemented a novel functional language for smart contract

development on Ethereum. They have not explored the possibilities of using existing DSELs

for the task.

As such, the smart contract domain has been thoroughly explored by researchers as well,

similar to the financial contract domain. However, the approaches in all previous work has

been independent to the respective domain. Bridging the gap of these two domains haven’t

been proposed by any previous work in the domains.

18

2.3 SOURCE-TO-SOURCE COMPILING

The objective of this study is achieved by building a source-to-source compiler (also known

as a transpiler). The frontend of the compiler was built using ANTLR4. This is a popular,

commercial tool which has been used in many previous work when conducting language

translations. One such study by Cheng Zhou [25] was the implementation of a source to

source compiler that translates Fork language to REPLICA baseline language. The Fork

language is a high-level programming language designed for the PRAM (Parallel Random

Access Machine) model. The baseline language is a low-level parallel programming

language for the REPLICA architecture which implements the PRAM computing model.

To support the Fork language on REPLICA, a compiler that translates Fork to baseline was

built in this study.

The compilation process of the Fork to baseline compiler is described in figure 2.2.

Figure 2.2 - Compilation process of the Fork to baseline compiler

19

ANTLR was used in this study to generate the parse tree and the intermediate representation

(IR). The following figure 2.3 shows the translated baseline IR.

Figure 2.3 – Translated baseline IR

They have concluded that the Fork language is supported for the REPLICA architecture by

building the source to source compiler and supporting libraries. This study showcases the

significant use of ANTLR [26] for source-to-source compiler building.

20

Chapter 3 – DESIGN

3.1 INTRODUCTION
This chapter mainly elaborates the proposed solutions to the research problem. It consists

of four major sections, namely; Research Design, Extending the Peyton Jones’ language,

Compiler Design and Smart Contract Design.

3.2 RESEARCH DESIGN
The research design comprises of three main sections: Extending the DSL, Source-to-source

compilation and the Transformed contract deployment. The final implementation of the

compiler and the Ethereum client is called Synergy. Figure 3.1 showcases a high-level

diagram of the relationship of these sections.

Figure 3.1: High-level architecture of the proposed solution

21

The first phase of the research focused on building a source-to-source compiler in order to

transform a contract written in Peyton Jones’ contract descriptive language to Solidity.

3.3 EXTENDING THE PEYTON JONES’ CDL

The current implementation of the Peyton Jones’ CDL is embedded in the functional

programming language, Haskell. In order to write a compiler, the combinators introduced

by Peyton Jones et al. [2] needed to be embedded in Haskell in an extensible manner.

There are two key methods of implementing a DSL: shallow embedding and deep

embedding [27]. These were introduced as two approaches to embedding a hardware

description language (HDL) in higher-order logic (HOL). The features of shallow and deep

embedding are shown in Table 3.1 below.

Table 3.1: Features of shallow and deep embedding of a DSL

Shallow Embedding Deep Embedding

Represents elements by their semantics
(A one-to-one mapping from elements to
semantics)

Represents elements by how they are
constructed

DSL constructs are composed purely of
host language constructs

Program exists as data (E.g.: AST)

Uses the interpreter of the host language Host language implements an interpreter
More elegant (when it works out) Easier to extend (To add new operations,

run functions, optimizations, etc.)

When considering Haskell, it is understood that a shallow embedding implies the use of

functions (or more commonly known as combinators) to represent operations in the DSL.

The Peyton Jones’ CDL is one of the best examples for such a shallow embedding. In order

to build a compiler for this language, it was required to have different representations of the

same function (i.e.: Contract Description, Contract Abstract Syntax Tree, etc.). However,

different definitions of the same function led to complications because it had to maintain a

huge tuple for all the definitions. As a solution to this, the original language proposed by

22

Peyton Jones et al. was extended to a deep embedding in Haskell. In here, the DSL was

represented as a Haskell data structure, which could be interpreted by other functions.

(Discussed in detail in section 4)

3.4 COMPILER DESIGN

3.4.1 SOURCE LANGUAGE

The choice of the source language for this study, the Peyton Jones’ CDL was the foundation

to formulate a process to automate financial contracts. This language represents financial

contracts in an unambiguous manner and is composable in nature, which allows to create

complex contracts as a combination of simple primitives defined as combinators.

3.4.2 TARGET LANGUAGE

When designing a compiler for a source language to be executed in the EVM, there are four

possible target languages for the code generator: directly into assembly

instructions/bytecode, LLL (Low-Level LISP), Serpent and Solidity. Conversion to

assembly instructions directly may impose some risks in using this compiler in future, as

the EVM is subject to changes as it improves in the future. Therefore, conversions directly

to the bytecode may become obsolete. A comparison of the available higher-level languages

are shown in Table 3.2 below.

Table 3.2: Comparison of the languages for smart contract development

 Data Structures Contract Functions Macros Targets

LLL No No Yes Bytecode

Serpent Yes Yes Yes LLL

Solidity Yes Yes No Bytecode

Both LLL and Serpent are lower-level languages than Solidity where LLL has the

advantages of lower runtime overhead and smaller binary output than code written in the

23

other two languages. However, due to the low level nature of LLL the following concerns

prevail.

• The only way to access persistent memory is through direct reading and writing to

addresses.

• Complex data types/structures such as arrays and lists are not supported. Therefore,

allocating and aligning memory positions for complex data types needs to be done

explicitly, which is non-trivial.

• There is no concept of functions. Therefore, all programs have a single entry point,

requiring all user-defined functions to be implemented as conditional checks [28].

Even though Serpent’s compiler handles some of the above while still giving flexibility to

access assembly instructions, it is not maintained and has an increase in runtime overhead

and code size compared to Solidity. Considering all of the above, Solidity has been chosen

as the target language for this study as it is the most-widely used, maintained and feature-

rich language, with syntax similar to JavaScript.

3.4.3 COMPILER CONSTRUCTION

The compiler of this study has been designed from the beginning to support new compiler

backends. Even though Solidity has been chosen as the target language, it is possible to

develop a new compiler backend and use the intermediate representation generated by the

compiler frontend to convert the financial contract to other suitable languages as well. The

main phases of the compiler are as follows.

Tokenization and Parsing – A grammar was written for the Peyton Jones’ CDL. Based

on the grammar, the lexer and the parser was generated. The contract input (composed

of primitive combinators) was given to the lexer, which tokenized the input string into

tokens. Next, the tokens are given as an input to the parser, which builds the parse tree

for the given input.

Intermediary transformation – The nodes of the Abstract Syntax Tree (AST) is

obtained from the parse tree in order to facilitate the target language code generation.

24

Tree walker – The abstract syntax tree is walked using a tree walker which conducts

the transformations of the contract combinators, mapping the necessary logic of the

Haskell combinators to the target language. The tree walker performs the final code

generation of the Solidity source code for a contract.

The complete compiler design is shown in Figure 3.2 below.

Figure 3.2: The design of the compiler which transforms Peyton Jones’ contracts to Solidity

25

3.5 SMART CONTRACT DESIGN

The design and the specificities of the transformed smart contract were decided based on

the nature of the parse tree generated. There are many approaches that could be followed in

order to generate the Solidity source code. One such approach is to have a series of nested

Solidity contract objects for each combinator in the contract input. However, this method

would drastically increase the transaction cost when executing the contracts in the Ethereum

blockchain, as each contract creation would cost a considerable amount of gas. Therefore,

the proposed methodology in this study minimizes the number of nested contracts created

when transforming a contract to Solidity.

The nature of a complex specific contract is shown in Figure 3.3 below.

Figure 3.3: The structure of a complex specific contract

26

A basic contract component would have a set of standard basic primitives (combinators).

The following figure 3.4 showcases the structure of a basic contract component (extracted

from the AST). Depending on the input, a basic contract component would consist of one

or more combinators stated in the structure below.

Figure 3.4: Structure of a basic contract component

When a ‘get’ combinator is obtained by the tree walker while traversing the AST, a Solidity

source file is generated for the basic contract component. The required logic of the basic

contract will be embedded in the Solidity source. Apart from the contract logic expressed

in the Peyton Jones’ contract input, there are additional information required by the

Ethereum blockchain in order to execute a contract on the blockchain. In order to embed

the additional information required and also to modularize the contracts, two external

contracts were introduced: Synergy Marketplace Contract and the Base Contract.

The base contract provides a skeleton to the specific contracts are generated based on the

Peyton Jones’ contract input while the Synergy Marketplace contract achieves contract

modularization (Implementation explained in detail in section 4). Modularized contracts are

27

of vital importance to reduce execution cost of a contract on the blockchain. The additional

information required by the smart contract and how they are facilitated are shown in Table

3.3 below.

Table 3.3: Additional information required to execute smart contracts

Information Description Facilitation

Contract parties In order to execute a contract
on the blockchain, the account
addresses of the parties
involved in the agreement is
required

Contract owner: Embed in
the Synergy marketplace
contract at the time of
deployment.

Contract Holder: Embed in
the Synergy marketplace
contract at the time of
proposing the contract to the
holder

Functions to propose
and sign contracts,
receive and send
currency, etc.

Contract enforcement happens
via function calls on the
Ethereum blockchain

The Synergy marketplace
contract would have
implementations for all the
required functions.

Self-destruct or kill a
contract once the
horizon of a contract
is exceeded

After the horizon of a contract,
it should be made void
automatically as it should not
be possible to acquire a
contract after its horizon

The base contract includes a
function for destroying the
contract.

kill() function

Contract storage to
store contract
addresses and
balances

This is required in order to
keep track of all the contracts
and user balances

Member variables are
introduced in the Synergy
marketplace contract

Execute contracts at a
future date

Smart contracts need to be
executed automatically without
the involvement of a third
party. Therefore, the future
execution dates need to be
monitored to execute contract
logic at the correct date.

The Ethereum Alarm Clock1

A service that allows to
schedule transactions to be
executed at a future date on
the Ethereum blockchain.
Up-front payments are done
for gas costs of transactions.

1 Ethereum Alarm Clock https://www.ethereum-alarm-clock.com/

28

Figure 3.5 and Figure 3.6 shows how the specific contract is created in Solidity and the

format of the transformed Solidity contract respectively.

Figure 3.5: Solidity source generation

Figure 3.6: Final Solidity Contract Code

29

After the Solidity source file is generated, it is uploaded and deployed to the blockchain

using the decentralized application (DApp) which was built. The contract code lives in the

blockchain until its logic is executed with the assistance of the Ethereum Alarm Clock

service. More details about the contract execution is discussed in section 4.

3.6 JUSTIFICATION FOR THE METHODOLOGY
The methodology proposed in this study is built based on a DSEL, the Peyton Jones’

contract descriptive language. The main reason to choose a DSEL opposed to a standalone

language is that it allows to reuse the host language’s advanced type system and flexible

syntax. Further, it has been identified that a financial contract is best represented using a

domain specific language. This is due to a characteristic property of DSLs where it is

possible to write code in terms closer to the level of abstraction of the initial problem

domain. However, since a DSL has a high level of abstraction related to the domain,

interoperability is a crucial problem. Therefore, DSLs are often integrated to a host language

(Haskell in here) and are converted to DSELs.

Peyton Jones’ contract descriptive language has been the basis of many work in this

particular area [10] [15].

A deep embedding was done to the original language proposed by Peyton Jones’ et al.

because, representing the language in a different domain required different representations

of the same function.

Previous researchers have implemented methodologies in re-writing financial contracts as

smart contracts in order to facilitate autonomous execution. Opposed to such approaches,

this study mainly proposed a transformation of traditional financial contracts written in the

Peyton Jones’ CDL to smart contracts written in Solidity due to few key reasons.

• The need of preserving the composable nature of the DSEL

• Make use of Haskell’s advanced type system and flexibility

• Financial contracts are best represented using a DSEL

• Rewriting existing contracts would incur additional overhead

30

3.7 SUMMARY
This chapter provided a detailed description on the research design. It encompasses three

main phases; namely Extending the Peyton Jones’ CDL, Compiler Design and Smart

Contract Design. The language is extended in order to support multiple definitions of the

same functions. Once the compiler design was done, the smart contract was generated with

various embeddings in order to suit the Ethereum blockchain. The generated contract is then

deployed using a decentralized application (DApp) to the blockchain.

31

Chapter 4 - IMPLEMENTATION

4.1 INTRODUCTION
This chapter provides implementation details of the proposed solutions. Section 4.2

describes the software tools utilized for the implementation process, section 4.3 illustrates

how the Peyton Jones’ language was extended, section 4.4 describes the implementation

details of the compiler and section 4.5 explains how the transformed contracts are deployed

and executed on the blockchain.

4.2 TECHNOLOGIES AND SOFTWARE TOOLS
The Peyton Jones’ CDL extension was done using the Haskell language (GHC 8.4.3, Stack

1.7.1). The frontend of the compiler was built using Another Tool for Language

Recognition V4 (ANTLR4). The BNF grammar for the Peyton Jones’ CDL was written

based on ANTLR. The lexer and the parser was generated in JavaScript. The tests on

contracts were run using TestRig 2 . ANTLR provides a single consistent notation for

specifying lexers, parsers, tree parsers, etc. opposed to other tools available. The TestRig

component of ANTLR allows to obtain a graphical representation of the parse tree as well.

A mixture of go-ethereum (geth), Parity, Mist, Remix and MetaMask were used to simulate

transformed contracts and interact with an Ethereum blockchain (Ropsten Testnet).

4.3 EXTENDING THE LANGUAGE

4.3.1 SHALLOW EMBEDDING

The Peyton Jones’ CDL has utilized a shallow embedding to include the combinators in the

host language Haskell. However, this method of embedding is suited only if one

representation of a particular contract is required.

type Contract = String

2 TestRig https://www.antlr.org/api/JavaTool/org/antlr/v4/gui/TestRig.html

32

and :: Contract -> Contract -> Contract

and c1 c2 = "And(" ++ c1 ++ "," ++ c2 ++ ")"

In here, the type keyword is used to cast the type ‘Contract’ to type ‘String’. This

representation prints the complex contract given, as a string. If another representation is

required, for example, to count the number of combinators a particular contract has, the

logic should be re-implemented.

type Contract = Int

and :: Contract -> Contract -> Contract
and c1 c2 = 1 + c1 + c2

This brings out a conflict as the same function cannot have two different representations.

Therefore, if shallow embedding is used in order to have different representations of the

same function, all the interpretations needs to be returned within the function.

type Contract = (String, Int)

and :: Contract -> Contract -> Contract

and c1 c2 = ("And(" ++ c1 ++ "," ++ c2 ++ ")", 1 + c1 + c2)

This method becomes very cumbersome if there are a large number of interpretations for

the same function. Therefore, this is not suitable because having to maintain a huge tuple

for every possible permutation of options is not a practical solution.

4.3.1 DEEP EMBEDDING

In order to transform a contract written in Peyton Jones’ CDL, it is required to have different

interpretations for the same contract. These representations could be the contract text as

Haskell combinators, contract parse tree, contract abstract syntax tree for different types of

contracts. In order to obtain all these interpretations for the same contract, it is clear that a

deep embedding is required because in a deep embedding the DSL is represented as a

33

Haskell data structure. This data structure can be interpreted by other functions making it

possible to have several interpretations on the same function.

This particular data declaration mentions that a value of type ‘Contract’ can be constructed

by calling Zero, One USD, Give c, etc.

data Contract contract

 = Zero

 | One Currency

 | Give contract

 | Get contract

 | And contract contract

 | Or contract contract

 | Scale (Obs Int) contract

 deriving (Eq, Show)

The deep embedding done above solves the problem of multiple interpretations on the same

function. The render and count interpretations were modified as follows.

render :: Contract -> String

render Zero = "Zero"

render (One currency) = "One(" ++ show currency ++ ")"
render (Give contract) = "Give(" ++ render contract ++ ")"

render (Get contract) = "Get(" ++ render contract ++ ")"

render (And contract1 contract2)="And("++render contract1++","++render contract2++")"

render (Or contract1 contract2) = "Or("++render contract1++","++render contract2++")"

count :: Contract -> Int
count Zero = 1
count (One _) = 1

count (Give contract) = 1 + (count contract)

count (Get contract) = 1 + (count contract

count (And contract1 contract2) = 1 + (count contract1) + (count contract2)

count (Or contract1 contract2) = 1 + (count contract1) + (count contract2)

34

However, due to the deep embedding the appearance of the original contract may change.

Therefore, constructors were defined in order to retain the original syntax.

zcb :: Date -> Double -> Currency -> Contract

zcb t x k = scaleK x (get (truncate t (one k)))

zcb' :: Date -> Double -> Currency -> Contract

zcb' t x k = Scale (Const x) (Get (Truncate t (One k)))
scaleK x c = Scale (Const x) c

get c = Get c

truncate t c = Truncate t c

one k = One k

4.4 SOURCE-TO-SOURCE COMPILING

Once the Peyton Jones’ language was extended to facilitate multiple interpretations, the

transformation of the contract was done in the following steps.

• EBNF grammar using ANTLR4 for the Peyton Jones’ language

• Lexer generation

• Parser generation

• Built the abstract syntax tree generator

• Built the tree walker

• Generation of the Solidity version of the financial contract

o Creation of the base contract

o Creation of the Synergy marketplace contract

o Generation of the specific contract with a wrapper

4.4.1 ANTLR GRAMMAR FOR THE PEYTON JONES’ LANGUAGE

The first phase of building a source-to-source compiler (also known as a transpiler) is

developing the grammar for the source language; Peyton Jones’ CDL in this particular

35

study. The grammar written for the language consists of two components; the lexer rules

and the parser rules. The lexer rules are responsible of generating the lexer which is used

for tokenization of the language input and the parser rules are responsible for generating the

parser which is used to parse the tokens from the lexer and build the parse tree for the input.

4.4.2 LEXER AND PARSER GENERATION

The lexer rules for the Peyton Jones’ contract descriptive language is as follows.

Operator : '`and`' | '`or`';

Currency : 'USD' | 'GBP' | 'ETH';

OneKeyword : 'one';

ZeroKeyword : 'zero';

//Keywords
Scale : 'scale';

Give : 'give';
And : 'and';
Or : 'or';
Truncate : 'truncate';
Then : 'then';
Get : 'get';
Anytime : 'anytime';

Date : DateInString;
DateInString : StringLiteral;

ObsDouble //Decimal Number
 : [0-9]+ ('.' [0-9]*)? ([eE] [0-9]+)?;

//Contract variables
ID : IdentifierStart IdentifierPart* ;

fragment
IdentifierStart : [a-zA-Z] ;

fragment
IdentifierPart : [0-9] ;

StringLiteral : '"' DoubleQuotedStringCharacter* '"'

36

 | '\'' SingleQuotedStringCharacter* '\'';

fragment
DoubleQuotedStringCharacter : ~["\r\n\\] | ('\\' .);

fragment

SingleQuotedStringCharacter : ~['\r\n\\] | ('\\' .);
BACKQUOTE : '`';
WS : [\t\u000B\u000C\u0020\u00A0]+ -> channel(HIDDEN);

The parser rules for the Peyton Jones’ contract descriptive language is as follows.

complexContract

 : basicContract | basicContract Operator complexContract;

basicContract
 : basicPrimitive | compositePrimitve;

basicPrimitive
 : zeroContract #ZERO | oneContract #ONE;

zeroContract
 : ZeroKeyword;

oneContract
 : OneKeyword Currency;

compositePrimitve
 : scale #SCALE_CONTRACT

 | give #GIVE_CONTRACT

 | truncate #TRUNCATE_CONTRACT

 | then #THEN_CONTRACT

 | get #GET_CONTRACT

 | anytime #ANYTIME_CONTRACT;

scale
 : Scale ObsDouble '(' complexContract ')';

give
 : Give '(' complexContract ')';

truncate
 : Truncate Date '(' complexContract ')';

37

then
 : Then '(' complexContract complexContract ')';

get
 : Get '(' complexContract ')';

anytime
 : Anytime '(' complexContract ')';

The parser generated by the above parser rules is a LL(1) parser. It reads the input from left-

to-right, descend into parse tree children from left-to-right and utilizes a single lookahead

token. A parser with a single lookahead token is one of the weakest forms of parsers.

However, it is sufficient for this purpose as the Peyton Jones’ CDL has a handful of

combinators.

ANTLR4 does not support left recursion3. Therefore, the input to the compiler should be

presented with prefix operations. An example input to the compiler is as follows.

European Option
get (truncate “15 Jan 2019” (or (scale 100 (get (truncate “30 Jan

2019” (one GBP))) zero)))

The entry point to the compiler is the complexContract parser rule. The parser generated

from the above parser rules is compatible with basic contracts as well as complex contracts.

Figure 4.1 and 4.2 shows the railroad diagrams for the parser rules which accepts complex

contracts and basic contracts respectively.

Figure 4.1: Complex contract railroad diagram

3 Left Recursive rule: A rule that invokes itself without consuming a token.

38

Figure 4.2: Basic contract railroad diagram

To make parsing decisions, the parser tests the current lookahead token against the

alternatives’ lookahead sets. The lookahead set computation (FIRST and FOLLOW) is done

by ANTLR4. Naturally, the lookahead sets predicting the alternatives are disjoint in here as

what has been built is a deterministic LL(1) parser.

4.4.3 ABSTRACT SYNTAX TREE AND TREE WALKER

The next step of the compiler implementation was to build the intermediate representation

(Abstract Syntax Tree - AST) for the language. The AST holds key tokens and records the

grammatical relationships. An AST was built because it has the following advantages over

a parse tree.

• Easier and faster to walk

• Easier to identify subtrees

• Dense – No unnecessary nodes

• Emphasizes operators, operands and the relationship between them rather than the

artifacts of the grammar. Therefore, it is insensitive to changes in the grammar.

(Easily maintainable if the Peyton Jones’ CDL improves in the future)

The following code segment represents the parse tree traversal in order to build the AST.

39

function recurse (tree, list) {

 let a = ['(', ')', '<EOF>'];

 if(tree.getChildCount() == 0) {

 if(!a.includes(tree.getText())) {

 list.push(tree.getText());

 return;

 }

 }

 for(let i=0; i < tree.getChildCount(); i++) {

 recurse(tree.getChild(i), list);

 }

}

Once the AST was generated, a tree walker was written in order to traverse the AST and

generate the Solidity code based on the tree structure of the input. It was built to collect the

necessary information of all the combinators of the input. The contract Solidity source was

created when the tree walker meets a get/give combinator. The Solidity source of the

contract includes the instantiated base contract, imported Synergy marketplace contract,

implementation of the specific contract and the wrapper methods in a single file.

The horizons of contracts are monitored at get/give combinators if the contract is a basic

contract while it is monitored at and/or operators if the contract is a complex contract

(Discussed in detail in the next sub-section). Ultimately, the information about contract(s)

at the root of the tree is returned to a wrapper contract, which provides the entry point for

contract execution. The wrapper is needed for contract enforcement when it is deployed to

the blockchain. (Code listings included in Appendix C)

4.4.4 BASE CONTRACT

The specific Solidity source is created by inheriting the base contract referenced above. It

is an abstract base class for the transformed contracts that allows to interact with a contract

in a standardized manner. The base contract has few important features. It exposes a

proceed() method. The actual behavior of this function is implemented when the specific

40

contracts inherit the base contract. Further, it provides a modifier to check whether a

particular contract is alive before any function is applied. This will only permit a function

to execute if the _alive member variable is true.

contract BaseContract {

 enum KillReason {EXECUTED, UNTIL, HORIZON, FAILED}
 event Killed(BaseContract.KillReason killReason);
 Marketplace public marketplace_;
 int public scale_;

 address public creator_;
 bool public alive_ = true;

 constructor(Marketplace marketplace, int scale) public {
 marketplace_ = marketplace;

 scale_ = scale;

 creator_ = msg.sender;

 }
 function proceed() public;

 function receive(Marketplace.Commodity commodity, int quantity) internal alive {
 marketplace_.receive(commodity, quantity);

 }

 function kill(BaseContract.KillReason killReason) internal alive {
 alive_ = false;

 emit Killed(killReason);

 }

 modifier alive {
 require(alive_);

 _;

 }

}

The function to kill the contract is protected by the internal keyword. When this keyword is

present in a function, it could only be called by the smart contract itself. Therefore, one

smart contract cannot kill another smart contract.

41

4.4.5 SYNERGY MARKETPLACE

As mentioned in section 4.4.3, a specific contract imports certain functionality from an

external contract; Synergy Marketplace Contract. This particular contract plays a major role

in modularizing the codebase of the compiler and contract execution. The functions to all

contract executions are included in the marketplace contract. Further, information such as

contract addresses, user balances, commodities, etc. are also kept in here. For every contract

creator, an instance of the marketplace is deployed to the blockchain before deploying any

specific contracts.

The marketplace contract has few important functions which assists contract execution.

Initially, a couple of data structures are declared. Commodity represent the commodities that

can be traded in this market and ContractMetadata has information about current state of

a contract. The parties involved in a contract are stored in here, where Counterparty is the

party that sells the contract while Holder is the party that buys the contract. Few member

variables are also stored in here. The contracts_ mapping keeps track of all the contracts

that have been proposed through the marketplace, while the balances_ mapping keeps

track of each individual user’s balance in each commodity.

pragma solidity ^0.4.23;

pragma experimental ABIEncoderV2;

contract Marketplace {
 enum Commodity {USD, GBP}

 struct ContractMetadata {
 address counterparty;

 address holder;

 address creator;

 bool signed;

 }

 event Proposed(address contractAddress, address indexed to);
 event Signed(address contractAddress);

 address public creator_;

42

 mapping(address => ContractMetadata) public contracts_;
 mapping(address => mapping(uint => int)) public balances_;

 constructor() public {
 balances_[msg.sender][uint(Commodity.USD)] = 0;

 balances_[msg.sender][uint(Commodity.GBP)] = 0;

 creator_ = msg.sender;

 }

Few key functions in the marketplace contract enables contract execution on the blockchain.

The propose method allows a counterparty to propose (sell) a contract to another party.

Once a contract is proposed, it creates a contract metadata object with the necessary

information and emits an event. When an event is emitted the information gets stored in a

transaction log. This can be checked by other functions or from outside the contract. The

sign method then allows the holder (to whom the contract is proposed) to agree to the

contract, which starts executing immediately. During the signing process of the contract the

state of the contract is changed to ‘signed’.

function propose(address contractAddress, address to) public {

 require(contractAddress.creator_() == msg.sender);

 require(!contracts_[contractAddress].signed);

 contracts_[contractAddress] = ContractMetadata(msg.sender, to, msg.sender,

false);

 emit Proposed(contractAddress, to);

}

function sign(address contractAddress) public {
 require(msg.sender == contracts_[contractAddress].holder);

 require(!contracts_[contractAddress].signed);

 contracts_[contractAddress].signed = true;

 BaseContract baseContract = BaseContract(contractAddress);

 baseContract.proceed();

 emit Signed(contractAddress);

}

The following functions can only be called by signed contracts. The receive method allows

the counterparty to transfer a certain amount of the commodity traded, to the holder. In the

case of a nested contract, multiple instances of contracts would be created. The get method

43

is used to assign the authorities from the parent contract to the child contract whereas the

give method does the same with the counterparty and holder reversed.

function receive(Commodity commodity, int quantity) public {

 ContractMetadata storage c = contracts_[msg.sender];

 require(c.signed == true);

 balances_[c.counterparty][uint(commodity)] -= quantity;

 balances_[c.holder][uint(commodity)] += quantity;

function delegate(address newContract) public {
 require(contracts_[msg.sender].signed == true);

 contracts_[newContract] = ContractMetadata(

 contracts_[msg.sender].counterparty,

 contracts_[msg.sender].holder,

 msg.sender,

 true

);

 emit Delegated(msg.sender, newContract); }

function give(address newContract) public {
 require(contracts_[msg.sender].signed == true);

 contracts_[newContract] = ContractMetadata(

 contracts_[msg.sender].holder,

 contracts_[msg.sender].counterparty,

 msg.sender,

 true

);

 emit Delegated(msg.sender, newContract);

}

4.4.6 SOLIDITY SOURCE CREATION

The final step of the contract transformation is generating the Solidity code for the contract.

A wrapper contract was introduced in order to wrap the base contract, marketplace contract

and the specific contract together. The wrapper contract includes few wrapper methods

which assists in contract invocation. The contract logic is adequately combined in here.

44

The most important function in the wrapper contract is the proceed method, which is the

entry point for contract execution.

Finally, the transformed contract was deployed to the Ethereum blockchain using a

decentralized application (more commonly known as a DApp in Ethereum terminology).

4.4.8 SUMMARY

In this chapter, the software tools and technologies utilized to implement the proposed

solution was elaborated followed by the important functionalities of the proposed solution.

The steps followed to create the source-to-source compiler were explained in detail in each

subsection. The base contract and the Synergy marketplace contract which was needed to

build the specific Solidity contract was also introduced.

45

Chapter 5 – RESULTS AND EVALUATION

5.1 INTRODUCTION

This chapter elaborates the obtained results, how they are evaluated and the success level of the

proposed solutions. An improved proof-of-concept evaluation model has been proposed in here

to evaluate the results. Section 5.2 highlights the results obtained at each phase. Section 5.3

elaborates the evaluation model and section 5.4 evaluates the results obtained in comparison to

approaches in previous works.

5.2 TRANSFORMED CONTRACTS

The frontend of the compiler is capable of generating the parse tree for any contract,

irrespective of its complexity. The grammar was written in such a way that the composable

nature of the Peyton Jones’ CDL is preserved. Therefore, the parse tree of complex contracts

showcases this composable nature as well.

5.2.1 PARSE TREE FOR A BASIC CONTRACT

The graphical representation of a parse tree can be obtained by ANTLR4’s TestRig. Figure

5.1 shows the parse tree obtained from TestRig GUI for the ‘one’ contract in the Peyton

Jones’ CDL.

Figure 5.1 – One Contract TestRig output

46

Similarly, figure 5.2 shows the parse tree obtained for the Zero Coupon Bond, “receive

$100 on the “10th of January 2019””.

Representation in Peyton Jones’ CDL:
get (truncate "10 Jan 2019" (scale 100 (one USD)))

Figure 5.2 – Parse tree output of a Zero Coupon Bond

47

5.2.2 PARSE TREE FOR A COMPLEX CONTRACT

A complex contract is composed using basic contract components. Figure 5.3 shows the

parse tree obtained from the compiler frontend for a complex contract.

Representation in Peyton Jones’ CDL:
get (scale 30 (one GBP)) `and` get (truncate "t1" (scale 120 (one
GBP)))

Figure 5.3 – Parse tree for a complex contract

48

5.2.3 BASIC CONTRACT IN SOLIDITY

Once the input of Peyton Jones’ CDL is processed by the compiler, the transformed contract

in Solidity was obtained. The contract was generated by the tree walker after walking the

AST. The below code shows the Solidity version of the basic ‘one’ contract, where 1 GBP

is immediately received at contract execution.

pragma solidity ^0.4.21;

pragma experimental ABIEncoderV2;

import {BaseContract, Marketplace} from './Marketplace.sol';

contract one is baseContract {
 constructor(Marketplace marketplace, string horizon, int value) public

BaseContract(marketplace, value, horizon) {

 }

 function proceed() public{

 marketplace_.receive(Marketplace.Commodity.GBP, 1);

 }

}

contract wrapper is baseContract {
 constructor(Marketplace marketplace, string horizon, int value) public

BaseContract(marketplace, value, horizon) {

 }

 function proceed() public{

 baseContract c = new c();

 marketplace_.get(c);

 c.proceed();

 kill();

 }

}

Contract invocation is done by calling the proceed() method in the wrapper contract which

will instantiate the specific ‘one contract’ and call its proceed() function. The contract

logic execution happens through this particular function.

Next, the Solidity contract code for a basic contract component (introduced before) is shown

below. (i.e.: Receive $100 on a particular date in future)

49

pragma solidity ^0.4.21;

pragma experimental ABIEncoderV2;

import {BaseContract, Marketplace} from './Marketplace.sol';
contract c is baseContract {

 constructor(Marketplace marketplace, string horizon, int value) public

BaseContract(marketplace, value, horizon) {

 }

 function proceed() public{

 marketplace_.receive(Marketplace.Commodity.USD, 100);

 }

}
contract wrapper is baseContract {

 constructor(Marketplace marketplace, string horizon, int value) public

BaseContract(marketplace, value, horizon) {

 }

 function proceed() public whenAlive {

 baseContract c = new c();

 marketplace_.get(c);

 c.proceed();

 kill();

 }

}

5.2.4 ORDER OF EXECUTION

Figure 5.4 shows the order of execution of the Synergy framework. The process starts with

the transformation of the Peyton Jones’ contract and ends when the transformed contract

logic is executed on the Ethereum blockchain.

50

Figure 5.4 – Order of execution of a contract from transformation to contract logic execution

5.3 EVALUATION

5.3.1 EVALUATION MODEL

In order to evaluate the results obtained, the evaluation model was based on few key

implementation choices and the success of those choices. Further, these choices were

compared with three other alternatives; Merchant contracts [29], Findel contracts [16],

traditional financial contracts.

51

The correctness of the contract was checked using the following model showed in figure

5.5.

Figure 5.5 – Contract correctness evaluation

The semantic correctness of a contract was checked by comparing the operational semantics

of an original Peyton Jones’ contract with the operational semantics of the transformed

Solidity version of the same contract. The transformed contract was executed and tested

using Remix4, the Solidity IDE.

5.3.2 SEMANTIC COMPARISON

The contract semantics could be mapped out as follows. The comparison is done between a

financial contract written in natural language, a financial contract represented in Peyton

Jones’ CDL and the contract which was transformed to a smart contract.

4 Remix https://remix.ethereum.org/

52

Zero Contract

• Natural language – Do nothing.

• Peyton Jones’ CDL – ‘Zero’

• Smart contract code snippet

pragma solidity ^0.5.2;

pragma experimental ABIEncoderV2;

import {BaseContract, Marketplace} from './Marketplace.sol';

contract zero is BaseContract {
 constructor(Marketplace marketplace, string memory horizon, int scale) public

BaseContract(marketplace, horizon, scale) {}
 //No transaction performed as a result of this function
 function proceed() public alive{
 kill(BaseContract.KillReason.EXECUTED);

 }

}

contract wrapper is BaseContract {

 constructor(Marketplace marketplace, string memory horizon, int scale) public

BaseContract(marketplace, horizon, scale) {}

 function proceed() public alive{
 zero newContract = new zero(marketplace_, horizon_, scale_);

 marketplace_.get(newContract);

 newContract.proceed();

 kill(BaseContract.KillReason.EXECUTED);

 }

}

The ‘zero’ contract is one of the most basic contracts in the financial contract world. It

simply says to ‘Do nothing’. Peyton Jones et al. have defined the ‘zero’ combinator, in order

to specify the contract which does nothing. The transformed Solidity code of this basic

combinator does not execute any action (The proceed() function in the ‘zero’ contract does

not include any transaction). It simply kills the contract as soon as it is executed with no

transaction happening. There is no action as a result of the contract. Therefore, the ‘zero’

combinator and the ‘zero contract in Solidity’ operates in the same manner which makes

them semantically equivalent.

53

One Contract

• Natural language – Receive $1 immediately.

• Peyton Jones’ CDL – ‘one USD’

• Smart contract code snippet (complete contract code is included in the Appendix)

marketplace_.receive(Marketplace.Commodity.USD, 1);

function receive(Commodity commodity, int quantity) public {

 ContractMetadata storage c = contracts_[msg.sender];

 require(c.signed == true);

 balances_[c.counterparty][uint(commodity)] -= quantity;

 balances_[c.holder][uint(commodity)] += quantity;

}

The ‘one’ contract is the other most basic contract among financial contracts. The semantics

of this contract mentions that the counterparty should receive $1 immediately from the

holder of the contract. Peyton Jones et al. have introduced the ‘one’ combinator for this and

the contract is written as ‘one USD’. When the transformed Solidity code of this contract is

executed, the receive() function of the marketplace contract is called and it transfers $1 from

the holder’s account to the counterparty’s account. Therefore, the behavior of the

transformed contract is the same as how the semantics suggests in the Peyton Jones’

contract. As such, the transformed ‘one contract’ is semantically equivalent to the Peyton

Jones’ one contract.

 Contract Component (i.e.: Zero Coupon Bond)

• Natural language – Receive $100 on the 31st of January 2019.

• Peyton Jones’ CDL – ‘get (truncate “31 January 2019” (scale 100 (one USD)))’

• Smart contract code snippet

marketplace_.receive(Marketplace.Commodity.USD, 100);

A basic contract component was introduced in this study in chapter 3, where it could have

one or more combinators from one, scale, truncate and get/give. A zero coupon bond is one

such contract which includes all these combinators. The semantics of this particular contract

54

states that $100 should be received by the counterparty at the specified future date. The

transformed Solidity code of this particular contract transfers 100 units of USD to the

counterparty on the said date when the propose() function of the wrapper contract is

invoked. Therefore, the semantics stand correct for the basic contract component introduced

as well.

Complex Contract (i.e.: A contract with operators and/or)

• Natural language – Receive $100 on the 31st of January 2019 `and` give $10 on the

5th February 2019.

• Peyton Jones’ CDL – ‘get (truncate “31 January 2019” (scale 100 (one USD)))
`and` give (truncate “5 February 2019” (scale 10 (one USD)))’

• Smart contract code snippet

pragma solidity ^0.5.2;

pragma experimental ABIEncoderV2;

import {BaseContract, Marketplace} from './Marketplace.sol';

contract c1 is BaseContract {
 constructor(Marketplace marketplace, string memory horizon, int scale) public

BaseContract(marketplace, horizon, scale) {}

 function proceed() public alive {

 marketplace_.receive(Marketplace.Commodity.USD, 100);

 kill(BaseContract.KillReason.EXECUTED);

 }

}
contract c2 is BaseContract {
 constructor(Marketplace marketplace, string memory horizon, int scale) public

BaseContract(marketplace, horizon, scale) {}

 function proceed() public alive {

 marketplace_.receive(Marketplace.Commodity.USD, 10);

 kill(BaseContract.KillReason.EXECUTED);

 }

}

contract wrapper is BaseContract {
 constructor(Marketplace marketplace, string memory horizon, int scale) public

BaseContract(marketplace, horizon, scale) {

 }

 function proceed() public alive {

 c1 newContract1 = new c1(marketplace_, horizon_, scale_);

55

 c2 newContract2 = new c2(marketplace_, horizon_, scale_);

 marketplace_.get(newContract1);

 marketplace_.give(newContract2);

 newContract1.proceed();

 newContract2.proceed();

 kill(BaseContract.KillReason.EXECUTED);

 }

}
A complex contract has the nature of being combined by one or more operators (and/or).

The semantics of a contract which has two basic contract components combined by ‘and’

implies that both basic contract components should be executed. The transformed Solidity

code behaves in such a way, where both c1 and c2 contracts are executed on the blockchain.

Each line in the Solidity code is executed sequentially which enables both c1 and c2 to

proceed their contract logic. This replicates the functionality of the ‘and’ combinator

introduced by Peyton Jones et al. Therefore, two basic contract components tied together

with an ‘and’ behaves as expected in par with the representation of Peyton Jones’ CDL.

Since the composable nature of contracts introduced in the Composing Contracts by Peyton

Jones’ et al. [2] is preserved through the compiler built in this study, it could be showed that

if semantics are equivalent for the basic contract components and the operators of the

transformed contracts, it is also equivalent for unforeseen complex contracts. The inductive

logic of semantic equivalence was built as follows.

𝐵𝑎𝑠𝑒	𝐶𝑎𝑠𝑒	(𝑘 = 1) ; 𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒	

𝑘 ; 	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	

𝑘 + 1 ; 	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	`𝑎𝑛𝑑/𝑜𝑟`	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡

≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	`𝑎𝑛𝑑/𝑜𝑟`	𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	

∴ 𝑘 = 𝑛 ; 	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑤𝑖𝑡ℎ	`𝑛`	𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

≡ 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑤𝑖𝑡ℎ	`𝑛`	𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

Therefore, it was concluded that the transformed contract behaves as expected by the Peyton

Jones’ CDL representation and that the transformed contracts are semantically equivalent

to Peyton Jones’ contracts.

56

5.3.3 EVALUATION OF IMPLEMENTATION CHOICES

The implementation choices made in this study and certain features has been compared with

one previous work [16] (referred to as Findel) and one parallel work [29] (referred to as

Merchant). Implementation choices of this study are stated under ‘Synergy’, the name of

the compiler for this study.

1. Contract transformation output

Table 5.1 shows the comparison of three implementations in terms of how the Peyton Jones’

contract transformation to Solidity is achieved.

Table 5.1 – Contract transformation output comparison

 Findel Merchant Synergy

Choice Only the marketplace
contract is deployed.
Creation of Findel
contracts happen by
calling functions in
the marketplace
contract.

A Solidity contract is
created at each
combinator which
results in a nested
series of contracts
for a single input.
The marketplace is
deployed separately
along with the
contracts created for
combinator.

The marketplace contract
is deployed separately
which includes common
functions required for
specific contracts. A new
contract is created only at
a get/give, and/or
combinator. Information
about the specific contract
is retrieved and stored by
the tree walker from the
parse tree of the contract
input, up until that point.

Evaluation No need for a special-
purpose compiler.
Findel language was
introduced and it is a
deep embedding in
Solidity.

A contract has been
considered as a NFA
and each combinator
as a state of the
NFA. As transition
to each state requires
a creation of a new
contract, the
efficiency is very
low. (Contract
creation is the single
most expensive

The approach has been
designed in a way to keep
the number of contracts
created at a minimal. For
a contract that has one
operator, only 3 specific
contracts will be created
in here; two for the basic
contract components and
one for the operator.
Therefore, this method is
much efficient opposed to

57

operation on
Ethereum – costs
32000 gas)

creating a nested series of
contracts such as in
Merchant [29].

2. Autonomous execution and execution guarantee

Table 5.2 shows the comparison of three implementations in terms of whether contracts

have autonomous execution and whether there is an execution guarantee for contracts.

Table 5.2 – Autonomous execution and execution guarantee comparison

 Findel Merchant Synergy

Choice Findel is a language
embedded in Solidity.
Therefore, inherently
Findel contracts are
smart contracts.
However, Findel
contracts are not
guaranteed to execute.

Contract
enforcement should
be initiated
externally. There is
no autonomous
execution. If a
contract is not
enforced, it is
considered as a
mutual agreement to
void the contract.

Contract enforcement
happens autonomously
through the Ethereum
alarm clock (EAC)
service. The timeline of
the contract is not
required to be tracked as
the EAC service monitors
the horizons of the
contracts and executes at
the correct date.

Evaluation If there is no
execution guarantee,
the timeline of the
financial contracts
would not be
functional. Therefore,
this is a limitation in
the system.

One of the key
objectives of
autonomous
execution is not met.
Explicit invocation
is not very feasible.
Therefore, there is
no execution
guarantee as well.

EAC is an incentive based
service. The users will be
given an incentive for
invoking a call to the
contract. This is initiated
by the service itself. This
meets the objective of
autonomous contracts in a
trustless environment.
However some
preprocessing is required
such as pre-payment of
gas, incentives to the
random user who will be
doing the invocation, etc.

58

3. Execution cost

The execution cost on the Ethereum blockchain is measured in units of gas on the Ethereum

blockchain. A gas estimation is done beforehand and then adequate number of gas units are

specified for a contract. If the execution runs out of gas before completion, the contract gets

void and the gas is lost. The executor cannot regain the gas spent. Therefore, it is critical to

specify adequate number of gas units for execution completion.

Gas price is very competitive on the Ethereum blockchain among the peers. As of January

2019, the price of one Ether is about $158. Additionally, the minimum cost per unit of gas

is approximately 1.1 Gwei (2 x 10-9 Ether). The cost to deploy the Findel [16] marketplace,

for example, is calculated as follows;

2	 ×	10HI 		
𝐸𝑡ℎ𝑒𝑟	
𝑔𝑎𝑠 	× 	

	$	158
𝐸𝑡ℎ𝑒𝑟 		× 	1797270	𝑔𝑎𝑠	 = $	0.568	

Remix, the in-browser Solidity compiler and blockchain simulator was used in this study to

compile, deploy and measure the contracts. All contracts were compiled with the Solidity

compiler --optimize flag enabled. Remix reports both transaction cost and execution cost.

Figure 5.6 shows the comparison of transaction costs of different actions of Findel contracts,

Merchant contracts and Synergy contracts.

59

Figure 5.6 – Comparison of transaction costs in terms of gas units on the Ethereum blockchain

The graph indicates that Synergy contracts are more efficient in terms of creation of specific

contracts, executing different actions, etc. than the other two contract frameworks. The main

reason for the low transaction cost of contract creation in Synergy is due to the fact that

minimal number of contracts being created compared to Merchant. This makes the overall

execution efficient and less costly for the owners of contracts.

5.4 SYNERGY OVER TRADITIONAL FINANCIAL CONTRACTS

The main objective of this study was to facilitate autonomous execution of a financial

contract in a trustless environment without the interference of a CCP. Traditional financial

contracts suffer from the fundamental risk of not being executed at the correct date and also

the parties in the contract have to trust the CCP in order to give them the correct result.

Therefore, the main motivation behind this study was to map two domains (financial

contract domain and the smart contract domain) to eliminate the CCP and achieve better

contract execution. Therefore, the proposed solution in this study has the following

advantages over traditional contracts.

60

• Autonomous execution; no need of tracking a contract timeline.

• Execution in a trustless environment; a CCP is not required.

• Less errors than handcrafting manual contracts.

• Time-to-market is low because complex contracts are composed using basic

contracts than being written from scratch.

5.5 SUMMARY

This chapter elaborated on the proposed evaluation model for contract transformation from

the financial contract domain to the smart contract domain. The results obtained were

explained in detail and an evaluation framework was proposed. The Synergy contracts of

this study were compared with other approaches in the past and also with a parallel work

and the benefits of the proposed solution was highlighted over the others. Finally, the latter

part of this chapter stated how the main objectives of this study has been achieved and why

it contains a benefit over traditional financial contracts.

61

Chapter 6 – CONCLUSIONS

6.1 INTRODUCTION

This chapter includes a review of the research aims and objectives, research problem,

limitations of the current work and implications for further research.

6.2 CONCLUSIONS ABOUT RESEARCH QUESTIONS
(AIMS/OBJECTIVES)

The main aim (included in the first research question) of this study was to eliminate the

CCP of financial contracts in order to reduce execution risks of financial contracts. In order

to achieve this aim, the opportunity was captured with the emergence of Ethereum and smart

contracts, where autonomous execution in a trustless environment was possible. The

proposed solution to achieve the objective in this study consisted of few steps. The Peyton

Jones’ CDL was extended to a deep embedding, a source-to-source compiler was built in

order to convert financial contracts to smart contracts, enhanced the compiler to preserve

the composable nature of the Peyton Jones’ CDL and finally the converted contracts were

deployed to the Ethereum blockchain to check their functionality. We identified that even

though there were few semantic differences between the Peyton Jones’ CDL and Solidity,

it was possible to build a compiler which performed the contract conversion successfully.

Through this, we managed to achieve the main objective of this study.

The second research question was about preserving the properties of the Peyton Jones’ CDL

in the transformed contract. Through the evaluation framework proposed in this study, we

identified that the semantics were preserved in the transformed contract. Further, the

composable nature of the Peyton Jones’ contracts was also preserved through the compiler

built in this study as the transformed contract too portrayed composability. It was possible

to let the transformed contract execute at a future date through the Ethereum Alarm Clock

service which guaranteed autonomous execution at a future date. An initial objective of this

62

study was to explore the contract calendar of a transformed contract. A dynamic contract

calendar was built in a previous work [21] for traditional financial contracts. Even though

it was highlighted in this paper, that a contract calendar is a must to observe the dynamic

nature of contracts, we identified that a contract calendar is of no use for the contract

execution in our solution. This is due to the fact that it facilitates autonomous execution as

a result of the financial contract being a smart contract. Thus, it can be concluded that the

proposed solution in this study is a feasible mechanism to eliminate the CCP of financial

contracts and facilitate autonomous execution in a trustless environment.

6.3 CONCLUSIONS ABOUT RESEARCH PROBLEM

The risks of central counterparty involvement in financial contracts has been a major

concern. The need was out there to build autonomous contracts which did not need a central

counterparty to manage the transactions. There were many attempts in the past to re-

implement financial contracts in the Ethereum blockchain domain [16] [24] . However, they

suffered from certain issues due to the error-prone nature of Solidity and Ethereum platform

limitations. After much research on the domain, we identified that a financial contract is

best represented using a DSEL. Therefore, re-implementing it on the smart contract domain

did not seem beneficial as it will eliminate important properties of the DSEL. Therefore, a

solution which was more beneficial was to transform the contract from one domain to the

other. There were no proper implementation in converting a financial contract to a smart

contract in past researches. This was a clear research gap identified after conducting the

literature review.

This study has contributed to the financial contract domain significantly as it reduces certain

risks imposed on contracts due to manual traditional methods that are being used in the

present context. For example, the proposed solution of this study was able to eliminate the

CCP risk, mitigate counterparty risk and credit risks. This improves the reliability and

efficiency of contracts drastically. Further, having autonomous execution would eliminate

the need for the counterparties to keep track of the contract calendar manually.

63

A source-to-source compiler was built in this study which is a significant computer

scientific contribution. The compiler can be extended to transform contracts to any suitable

scripting language. Solidity was chosen in here as it is the most used and tested scripting

language for the Ethereum blockchain. However, it is just an intermediate language for the

transformation purpose.

With the contributions of this study, it could be concluded that smart contracts could be the

first step to formulate a reliable, fast and transparent financial market. Having shown that

financial contracts can be represented on a decentralized network such as the blockchain,

this study takes one step closer to the reality of a transparent, trustless financial market in

future.

In summary, this study has proposed a source-to-source compiler to convert financial

contracts to smart contracts, explored the functionality of such transformed contracts when

executed on the Ethereum blockchain and has proven that financial constructs suggested by

Peyton Jones et al. can be easily expressed on a blockchain. Overall, it was shown that it is

possible to achieve autonomous financial contracts to execute in a trustless environment

making the CCP involvement insignificant for contract execution.

6.4 LIMITATIONS

The language extension done in this study was only for the combinators of contracts. The

combinators for observables weren’t extended nor utilized for the transformation in the

compiler. Further, the study was restricted to the Peyton Jones’ CDL as the source language

and did not explore any other DSEL for financial contracts due to time constraints. A readily

usable, optimized compiler was not built through this study, but only a workable version of

the compiler was developed due to time constraints.

The extent to which a transformed contract is reliable, transparent and efficient depends on

the facilitations by the Ethereum platform as well. Since the Ethereum platform and Solidity

64

is still under development, certain limitations are imposed on our results as well. Few such

limitations are discussed below.

• Reliability of contract execution is mostly weighed upon the Ethereum platform. One

major dependency of contract execution in this study was facilitating autonomous

execution through the Ethereum Alarm Clock service. This is a third party service which

needs to be integrated explicitly as a separate smart contract. The lifetime of autonomous

execution of contracts proposed in this study depends on how long this service would

be maintained by the developers/community.

• Efficiency is another major problem when it comes to financial contracts. Financial

markets operate on the scale of milliseconds [18]. However, operations on the

blockchain cannot accommodate such speed efficiency. As of now, it takes 15 seconds

approximately for a block to be mined and to be added to the blockchain and the

maximum throughput of the Ethereum blockchain is approximately 15 transactions per

second. By contrast, the NYSE Group processes around 200 trades per second.

Therefore, the blockchain does not seem to facilitate the speed required by financial

markets. However, this is still an ongoing area of research [19].

• Transparency is achieved on the blockchain by the distributed ledger system. Each

peer on the network would be aware of all transactions and contract executions on the

blockchain. However, since Ethereum addresses are not tied up with public identities,

transparency in terms of who performs a transaction is limited. This creates a problem

of liability on the network in terms of debt enforcement when executing contract logic.

Even though these limitations have minor impact on our proposed solution, further research

and development is required to mitigate these in order to use such a system in a real financial

market.

65

6.5 FUTURE WORK

6.5.1 COMPILER IMPROVEMENTS

The correctness of the compiler needs to be proved before using Synergy in a live

environment. Popular DApp frameworks such as Truffle or Embark could be used to build

a test suite for contracts as they include a test framework as well. Further, the compiler could

be extended to support observables. This is a key extension that will be required as most

derivatives execute based on observable values. The compiler could be optimized even more

in future to reduce the number of contracts created for a particular input. This would reduce

execution costs and increase performance of contract execution on the blockchain.

6.5.2 DEBT ENFORCEMENT

The proposed solution does not state the consequences of executing a contract when the

holder’s commodity balance is zero. In such a situation, there would be no commodities to

transfer to the counterparty when the contract is executed, resulting in addition of debt for

the holder. How debt is handled on the Ethereum blockchain remain a complex and

unsolved issue. This would require extensive further work in order to come up with a

solution.

6.5.3 REDUCING COMPILER OVERHEAD

The proposed solution in this study required the contracts to be compiled to an intermediary

language, Solidity. However, a more optimized solution would be to directly compile

contracts to the Ethereum Virtual Machine bytecode from the Peyton Jones’ CDL. This

would reduce the overhead in compilation. This would require significant development

effort in the future.

66

REFERENCES

[1] B. K. a. R. Martin, "Decentralized versus centralized financialsystems: is there a

case for local capitalmarkets?," Journal of Economic Geography 5, no. Advance

Access published on 22 June 2005 , p. 387–421, 2005.

[2] J.-M. E. J. S. Simon Peyton Jones, "Composing contracts: an adventure in financial

engineering (functional pearl)," in ICFP '00 Proceedings of the fifth ACM SIGPLAN

international conference on Functional programming, New York, NY, USA, 2000.

[3] "Structuring, pricing and processing complex financial products with MLFi, Tech.

Rep.," [Online]. Available:

http://www.lexifi.com/files/resources/MLFiWhitePaper.pdf. [Accessed May 2018].

[4] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.

[5] V. Buterin, "Ethereum: A next-generation smart contract and decentralized

application platform," 2013.

[6] "Ethereum for dummies," Coinmama, 14 March 2016. [Online]. Available:

https://www.coinmama.com/blog/ethereum-for-dummies. [Accessed 2018 April].

[7] N. Szabo, "The idea of smart contracts," 1997.

[8] "Solidity Documentation," [Online]. Available:

https://solidity.readthedocs.io/en/v0.4.24/. [Accessed May 2018].

[9] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," 2014.

[Online]. Available: http://gavwood.com/Paper.pdf. [Accessed May 2018].

[10] D. I. J. M. Gaillourdet, "A software language approach to derivative contracts in

finance," CEUR Workshop Proceedings, vol. 750, pp. 39-43, 2011.

[11] A. Mediratta, "A Generic Domain Specific Language For Financial Contracts,"

Graduate School—New Brunswick Rutgers, 2007.

67

[12] N. Szabo, "A Formal Language for Analyzing Contracts.," 2002. [Online].

Available: https://web. archive. org/web/20160810220820/http://szabo. best. vwh.

net/contr actlanguage.html . [Accessed March 2018].

[13] D. C. W. K. M. B. R. A. M. J. B. A. I. …. B. M. Mills, "Distributed Ledger

Technology in Payments, Clearing, and Settlement. SSRN.," 2016.

[14] J. a. E. R. Pettersson, "Safer smart contracts through type-driven development.,"

Chalmers University of Technology, Göteborg, 2016.

[15] S. S., "Decomposing contracts," University of Bonn, 2014.

[16] A. K. D. &. T. S. Biryukov, "Findel: secure derivative contracts for Ethereum,"

International Conference on Financial Cryptography and Data Security, pp. 453-

467, 2017.

[17] J. G. a. O. d. Moor, "Composing Contracts," in The fun of programming, Palgrave

Macmillan, 2003.

[18] S. L. P. J. a. J.-M. Eber, "How to write a financial contract," in The Fun of

Programming,, 2003.

[19] E. E. F. H. J. G. S. a. C. S. J. Andersen, "Compositional specification of commercial

contracts," International Journal on Software Tools for Technology Transfer (STTT),

vol. 8, no. 6, p. 485–516, 2006.

[20] C. &. N. C. Keppitiyagama, "Domain specific language for specifying operations of

a central counterparty," in Seventeenth International Conference on Advances in ICT

for Emerging Regions (ICTer), 2017.

[21] C. I. K. K. G. G. V. R. Balalla, "Use of Peyton Jones’ Contract Descriptive

Language to Evaluate Different Value Processes," 2017.

[22] C. Dannen, Introducing Ethereum and Solidity., Berkeley: Apress., 2017.

[23] S. C. J. S. V. A. M. Eskandari, "On the feasibility of decentralized derivatives

markets," 2017.

[24] B. E. M. H. F. R. O. Egelund-Müller, "Automated Execution of Financial Contracts

on Blockchains," Business and Information Systems Engineering, 2017.

68

[25] C. Zhou, "A source-to-source compiler for the PRAM language Fork to the

REPLICA many-core architecture," Linköping University, 2012.

[26] "ANTLR," [Online]. Available: http://www.antlr.org. [Accessed October 2018].

[27] R. G. A. &. G. M. Boulton, "Experience with embedding hardware description

languages in HOL," in IFIP, 1992.

[28] G. Wood, "LLL PoC 6," 2014. [Online]. Available: https://github.com/chriseth/cpp-

ethereum/wiki/LLL-PoC-6. [Accessed March 2018].

[29] R. Gardiner, "Free Trade: Composable Smart Contracts," University of Bristol,

2018.

69

APPENDIX A – CODE LISTINGS

The following code segment shows the implementation of the tree walker of the compiler.

function recurse (tree, list) {

 let tempList = [];

 let currentKeyword;

 if (tree.getChildCount() == 0) {
 let nodeText = tree.getText();

 if (nodeText === "(" || nodeText === ")") {

 return list;

 }

 list.push(tree.getText());

 //console.log(list);

 return list;

 }

 for (let i = 0; i < tree.getChildCount(); i++) {
 tempList = recurse(tree.getChild(i), tempList);

 }

 for (let i = 0; i < tempList.length; i++) {
 let keywordList = ['get', 'scale', 'one', 'zero', 'give', 'truncate', 'then',

'anytime', '`and`', '`or`'];

 for (let j = 0; j < keywordList.length; j++) {

 if (keywordList[j] === tempList[i]) {

 currentKeyword = tempList[i];

 }
 }

 }

 switch (currentKeyword) {
 case 'scale': {

 list.push(tempList[1]);

 list.push(tempList[2]);

 return list;

 }

 case 'get': {

 let commodity = tempList[1].contractValue[1];

70

 let quantity = tempList[1].contractValue[0];

 let contractName = "c";

 let contract = `` +

 `contract ${contractName} is BaseContract {\n` +

 ` constructor(Marketplace marketplace, string memory horizon, int

scale) public BaseContract(marketplace, horizon, scale) {\n` +

 ` }\n` +

 ` function proceed() public alive{\n` +

 ` marketplace_.receive(Marketplace.Commodity.${commodity},

${quantity});\n` +

 ` kill(BaseContract.KillReason.EXECUTED);\n`+

 ` }\n` +

 `}\n`;

 fs.appendFile("./contractFiles/test.sol", contract, function (err) {
 if (err) {

 return console.log(err);

 }

 console.log("The file was saved!");
 });

 list.push('gt');

 return list;

 }

 case 'give': {

 let contractName = "c";
 let commodity = tempList[1].contractValue[1];

 let quantity = tempList[1].contractValue[0];

 let contract = `` +

 `contract ${contractName} is BaseContract {\n` +

 ` constructor(Marketplace marketplace, string memory horizon, int

scale) public BaseContract(marketplace, horizon, scale) {\n` +

 ` }\n` +

 ` function proceed() public alive{\n` +

 ` marketplace_.receive(Marketplace.Commodity.${commodity},

${quantity});\n` +

 ` kill(BaseContract.KillReason.EXECUTED);\n`+

 ` }\n` +

 `}\n`;

 fs.appendFile("./contractFiles/test.sol", contract, function (err) {

71

 if (err) {

 return console.log(err);

 }

 console.log("The file was saved!");
 });

 list.push('gv');

 return list;

 }

 case 'truncate': {

 let truncateObj = {};

 truncateObj.horizon = tempList[1];

 truncateObj.contractValue = [tempList[2], tempList[3]];

 list.push(truncateObj);

 return list;

 }

 case 'one': {

 return [tempList[1]];

 }

 default: {

 if(list.length > 0){

 for(let i=0; i<tempList.length;i++)

 list.push(tempList[i]);

 return list;

 }

 return tempList;

 }

 }

}

The following code segment shows the implementation of the Solidity contract creation.

function contractCreation(tree) {

 let list = [];

 let contractName = "wrapper";

 let headers = `` +

 `pragma solidity ^0.5.2;\n` +

 `pragma experimental ABIEncoderV2;\n` +

 `import {BaseContract, Marketplace} from './Marketplace.sol';\n`;

 fs.writeFileSync("./contractFiles/test.sol", headers, function(err) {
 if(err) {

72

 return console.log(err);

 }

 console.log("The file was saved!");
 });

 let contract = ``;

 list = recurse(tree, list);

 console.log(list);

 if(list[0] === 'gt'){

 contract = contract + `contract ${contractName} is BaseContract {\n` +

 ` constructor(Marketplace marketplace, string memory horizon, int

scale) public BaseContract(marketplace, horizon, scale) {\n` +

 ` }\n`+

 ` function proceed() public alive{\n` +

 ` c newContract = new c(marketplace_, horizon_, scale_);\n` +

 ` marketplace_.get(newContract);\n` +

 ` newContract.proceed();\n` +

 ` kill(BaseContract.KillReason.EXECUTED);\n`+

 ` }\n` +

 `}\n`;

 }

 else if(list[0] === 'gv'){

 contract = contract + `contract ${contractName} is BaseContract {\n` +

 ` constructor(Marketplace marketplace, string memory horizon, int

scale) public BaseContract(marketplace, horizon, scale) {\n` +

 ` }\n`+

 ` function proceed() public alive{\n` +

 ` c newContract = new c(marketplace_, horizon_, scale_);\n` +

 ` marketplace_.give(newContract);\n` +

 ` newContract.proceed();\n` +

 ` kill(BaseContract.KillReason.EXECUTED);\n`+

 ` }\n` +

 `}\n`;

 }

 console.log(contract);

 fs.appendFile("./contractFiles/test.sol", contract, function (err) {

 if (err) {

 return console.log(err);

 }

 console.log("The file was saved!");
 });

}

73

