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ABSTRACT 
 
 
Financial contracts play a major role in the modern economy. Due to a large variation of 

contracts being traded in financial markets, a standard representation for contracts was 

required in order to eliminate the ambiguity imposed by natural languages. Peyton Jones et 

al. catered this need by proposing a combinator library embedded in Haskell which enabled 

contract representation and valuation. However, every financial contract represented as such 

suffered from the same fundamental problem. If a contract is executable, the parties 

involved in the contract needed to trust a central counterparty to give them the correct results 

after execution. The interference of this middleman introduced certain risks as well as a 

significant amount of overhead. 

 

In this dissertation, a novel approach to facilitate autonomous contract execution was 

proposed, exploiting the features and use cases of the Ethereum blockchain and its scripting 

language, Solidity. The approach involves transforming contracts written in the Peyton 

Jones’ Contract Descriptive language to Solidity using a special purpose compiler. The 

result of this transformation is a smart contract equivalent to the traditional financial 

contract. The transformed smart contract is deployed and executed on the Ethereum 

blockchain using an Ethereum client. 

 

The proposed solution was evaluated against existing attempts to design autonomous 

financial contracts. The research shows that a contract written in the Peyton Jones’ Contract 

Descriptive language can be transformed to a smart contract which executes autonomously 

in a trustless environment. As a result, it was concluded that financial contracts could 

operate without a central counterparty with increased performance and reduced overheads.   
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PREFACE 
 
Transformation of a financial contract to a smart contract is a novel approach proposed in 

this study. The objectives and aims of this study has not been explored by any other previous 

research of this particular domain. A novel design was introduced in order to facilitate this 

transformation. Two parts used in the design model; extending of the Peyton Jones’ Contract 

Descriptive Language and the external contract (Marketplace) has been inspired by a 

parallel work done in this domain. Apart from that, the proposed design was solely my own 

work and a method similar has not been proposed in any other study relevant to this domain.  

 

The implementation methodology used in order to build the compiler was proposed by 

myself. Even though a parallel work related to this concept was identified towards the latter 

part of this study, the objectives, aims, design and the implementation of that is drastically 

different from what is proposed in this study. The evaluation model used in this study falls 

in the line of a standard evaluation model of proof-of-concept. However, it was further 

improved by myself with the input of my supervisors.  
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Chapter 1 - INTRODUCTION 
 

1.1 BACKGROUND TO THE RESEARCH 
 
With the rapid development of digitization of the world, everything from our own identities 

to the cars we drive, the businesses we run, the markets we operate in are all digitized and 

linked to the Internet. Technological advancement in such a scale will open many avenues 

for modern businesses, governments and financial markets. However, along with these 

advancements, an open question remains. If everything is being digitized and information 

is readily accessible by anyone anywhere, are today’s centralized authorities the best way 

to look forward to the future? 

1.1.1 FINANCIAL MARKETS AND CONTRACTS 
 
A financial market is a market in which people trade financial securities and derivatives 

such as futures and options at low transaction costs. A financial market performs thousands 

of transactions per second. The New York Stock exchange is one such example of a 

financial market. 

 

The adverse effects of centralized control are highlighted drastically in financial markets 

[1]. The digitization of financial markets started in the 1970’s. Along with digitization, the 

trading volumes in these markets have increased massively. Trading in these markets 

happen through financial instruments such as financial derivatives (referred to as ‘financial 

contracts’ or ‘contracts’). Derivatives are financial contracts, which derive their value off a 

spot price time-series, which is called ‘the underlying’. The underlying asset can be equity, 

index, commodity, or any other asset. 

 

Few examples of financial contracts are; 

• Zero Coupon Bond - A bond that is issued at a deep discount to its face value but 

pays no interest. 
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• American Option - A put option or call option that can be exercised at any time on 

or before its expiration date. 

• European Option - May be exercised only at the expiration date of the option, i.e. at 

a single pre-defined point in time 

 

Traditional financial contracts require a third party for the purpose of executing the contract 

in addition to the parties involved in the agreement due to its centralized nature. The 

involvement of such third parties increases the security risk of exercising contracts because 

the result of the execution solely depends on the third party. The parties involved in the 

contract need to trust the third party to provide them the correct result.  

 

The high-level goal of this research is to redefine the financial markets and financial 

contracts in a highly-automated, trustless, transparent environment.  

 

The benefits of such an environment are as follows. 

 

• High availability – With the increase in trading volumes, availability of the market 

is a critical component of financial trading. A trustless environment eliminates the 

single point-of-failure and reduces downtime of the market. 

• Reliability – The approach used in this research to build a trustless environment for 

financial markets eliminates risks such as credit risks (The risk of failure of a 

counterparty to perform its obligation as per the contract), which as a result increases 

the reliability of the agreement. 

• Efficiency – An automated process of executing contracts is much more efficient 

than a manual execution by a third party. Decreases contract execution overhead 

significantly. 

In order to build such an environment, this research maps two existing domains; namely; 

The Peyton Jones’ Contract Descriptive language and Smart contracts for Ethereum. 
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1.1.2 PEYTON JONES’ CONTRACT DESCRIPTIVE LANGUAGE 
 
Financial contracts portray a major role in the finance sector and the modern economy. The 

finance industry has an enormous vocabulary of jargon (options, swaps, futures, swaptions, 

etc.) to catalogue all typical combinations of such financial contracts. Due to the inherent 

ambiguity of natural language, it is considered unsuitable to express financial contracts. The 

financial domain lacked a universal domain specific language (DSL) to describe financial 

contracts in the past. 

 

An influential paper by Simon Peyton Jones [2] is one of many attempts to create a DSL 

that would mitigate controversy and stimulate automated processing of complex contracts. 

It leverages ideas from functional programming such as Haskell and uses a precise set of 

primitive combinators to express financial agreements. A key feature of this notation is 

composability: new indefinitely complex contracts can be defined based on existing simpler 

ones. Due to their nested structure and composability, this DSL is well-suited for automated 

processing, including contract valuation and to describe unforeseen contracts. The usage of 

this has been proven through commercialization of the concept as well [3]. Figure 1.1 shows 

the combinators introduced by Peyton Jones’ et al. to describe financial contracts. 

 
Figure 1.1 – Combinators for defining contracts 
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1.1.3 ETHEREUM BLOCKCHAIN AND SMART CONTRACTS 
 
The introduction to Bitcoin [4] in 2009 led the world to a new era of decentralized 

technologies in finance and other industries. Out of these distributed platforms, the most 

interesting technology is Ethereum [5] for this study. Ethereum is a decentralized platform 

with mutually distrusting nodes, for running smart contracts.  

 

Smart contracts are applications that run just the way they are programmed, with virtually 

zero possibility of any censorship, fraud, third party interference or downtime [6]. The idea 

of smart contracts, notably Ethereum, became the first practical implementation of the 

concept of autonomous contracts. The term ‘smart contract’ evolved even before the 

emergence of blockchains [7]. One could even simply consider a vending machine as a 

primitive predecessor of a smart contract which enforces the agreement that a coin can be 

traded for i.e. a can of soda. However, the definition in concern for this study would be, “A 

program code that enforces agreements on the Ethereum blockchain among peers in the 

network.” The significant feature of a smart contract is, once initiated, the participating 

parties cannot stop or reverse the transaction, unless allowed by the same or another smart 

contract. This immutability feature reduces security vulnerabilities that could affect 

financial contracts and its parties, enabling us to build the autonomous, trustless 

environment required. Since everyone in the Ethereum network could see how smart 

contracts execute and due to their immutable nature, each participant could independently 

verify that the system is fair. 

 

Basically, smart contracts are programs stored and executed on an embedded virtual 

machine by participants in the Ethereum peer-to-peer network. Programs may perform any 

number of actions, such as updating its state, executing other programs or sending values to 

users or programs. Anyone can execute or deploy programs to the network for a small fee. 

The participants in the network continuously verify that they agree on the  states of the 

deployed programs. 
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In the high-level languages currently used for Ethereum contract development, contracts are 

structured much like modules or classes in traditional programming languages. One such 

language is Solidity [8], the Turing-complete scripting language for Ethereum. Contracts 

are ultimately encoded as byte code for the Ethereum Virtual Machine (EVM) that is 

embedded in all clients in the network [9]. 

 

Ethereum has two main entities: user accounts and contract accounts that send messages 

between each other. If the recipient of a message is a contract, it will execute a bit of code, 

which might send new messages to other users or contracts. The contract accounts are 

controlled by the program which constitutes the contract. Contract accounts have access to 

a non-shared persistent memory, which they use to store their state [9]. Each account has 

exactly one automatically generated address, which is used as its unique identifier [9]. 

Additionally, all accounts have an ether balance. Ether is a transferable asset that is built 

into the Ethereum system. 

 

1.1.4 TRANSACTIONS AND EXECUTION COSTS ON ETHEREUM 
 
The simplest kind of message in a transaction is to transfer a certain amount of ether from 

one account to another. If a contract receives a message, its code gets executed and a value 

may be returned to the sender. All transactions are executed by nodes participating in the 

network known as verifiers. Since the EVM is Turing-complete, there is a possibility that 

contracts would enter into infinite loops. In order to prevent this, users have to pay a certain 

fee at a fixed price for each execution step they trigger. This is done using gas, a resource 

bought using ether. Gas is necessary to execute contracts and the amount of gas supplied in 

the message limits the length of the computations it triggers. Before a transaction is made, 

the user specifies a gas price and a maximum limit of gas to be used for the transaction.  
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1.2 RESEARCH PROBLEM AND RESEARCH QUESTIONS 
 

1.2.1 RESEARCH PROBLEM 
 
Financial contracts are a vital underpinning of the modern financial domain. With the 

ongoing technological advancement in the world, business and finance are increasingly 

being automated. As a result, the incentives to let computer programs interpret, enforce and 

execute contracts have also increased. There have already been several efforts to design 

formal languages and combinator libraries [2] [10] [11] to analyze or execute financial 

contracts. Hence, the idea of deterministic representation of contracts and reducing 

ambiguity is more common. 

 

However, all of the existing implementations suffer from the same fundamental problem: if 

a financial contract is executable, the involved parties have to trust the executor to give them 

the correct result. Financial contracts are even exposed to a number of risks including the 

counterparty risk, where a certain party involved may opt out before the expiry date of the 

contract and credit risk, which is the loss that may occur from the failure of any party to 

abide by the terms and conditions of the financial contract. 

 

In order to mitigate risks of a third-party involvement, this study proposes to have the 

contract execute itself, without any possibility of interference from an executor or other 

third parties. The solution involves mapping the traditional financial contract domain to the 

smart contract domain. As a result, the trustless environment required for contract execution 

is obtained. Further, the risks mentioned above are also eliminated as smart contracts feature 

autonomous execution and immutability, making it impossible for the parties involved in 

the contract to opt out of the agreement in an unconventional manner. 

 

1.2.2 RESEARCH QUESTION 01 
Is it possible to facilitate an efficient transformation of a contract written in Peyton Jones’ 

contract descriptive language to a self-executing smart contract in Solidity? 
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1.2.3 RESEARCH QUESTION 02 
Is it possible to preserve the properties of the Peyton Jones’ language while accommodating 

the blockchain features in a transformed contract? 

 

1.3 RESEARCH AIM AND OBJECTIVES 
 
The main aim of this research is to eliminate the dependence on third-parties to execute 

financial contracts and to facilitate autonomous execution of contracts in a trustless 

environment in order to reduce risks encountered when exercising financial contracts. This 

study focuses on achieving this by combining properties of the Peyton Jones’ Contract 

Descriptive Language and the properties of the Ethereum blockchain such as immutability 

and decentralization.  

 

The objectives of the research are as follows. 

• Enhance financial contracts written in Peyton Jones’ Contract Descriptive language, 

to embed properties required in the Ethereum blockchain domain 

• Develop a source-to-source compiler to transform a Peyton Jones’ financial contract 

to a smart contract 

• Explore the advantages of transforming a Peyton Jones’ financial contract to a smart 

contract 

• Explore the ability of the transformed contract to act as the original contract 

• Discover the abilities of the transformed contract to execute at a future date 

1.4 JUSTIFICATION FOR THE RESEARCH 
 
Taking into consideration the importance of financial contracts to the economy, the 

motivation behind this study is to enhance the uses of them by automating its functions and 

eliminating the need of a middle man to execute the contracts. This idea is both possible 

and practical, as a result of emerging technologies such as smart contracts based on the 

Ethereum blockchain. As the blockchain technology is a trending area of research in the 

present context, accommodating the features of the blockchain to contracts will be a turning 
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point in the financial domain. The use of distributed ledger technology for the finance 

domain has been a topic of interest since the dawn of blockchains [3] and financial markets 

such as the London Stock Exchange have already begun discussions on how best to 

incorporate blockchain technologies to the financial domain, which validates the importance 

of the proposed solution in this study. 

 

Most of the existing formal languages for financial contracts are functional in nature. 

Contracts defined using many of these languages are compositional where complex 

contracts are created by combining smaller contracts. It has been shown that contractual 

agreements are very well suited to be expressed in formal languages which are purely 

functional [12] over imperative languages. 

 

Therefore, rather than re-writing financial contracts as smart contracts, it is more beneficial 

to efficiently transform them from the domain specific language (Peyton Jones’ Contract 

Descriptive Language) to the scripting language (Solidity) of the Ethereum blockchain 

which is used to represent smart contracts. Thus, the best of both worlds is exploited; 

unambiguity and the composability of a concise declarative domain specific language 

(DSL) and trustless, autonomous execution of blockchain based smart contracts. 

 

Researchers have successfully introduced DSLs in the past which could describe and 

evaluate smart contracts with specific operational semantics [2] [13] [14]. A functional 

language with an extensive type system (Idris) has also been introduced for safer 

development of smart contracts [15]. Further, approaches have been introduced where 

financial agreements could be securely managed using self-executing smart contracts. One 

such approach includes introducing a financial declarative DSL which is executed by the 

nodes of a blockchain network [16]. 

 

However, even if there are examples of re-implementations of financial contracts in the 

Ethereum blockchain platform, no evidence has been found in transforming the readily 

described financial contracts in one of the most stable financial declarative DSLs (Peyton 

Jones’ Contract Descriptive Language) to the smart contracts. 
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The significance of the problem lies in the need to derive the best of both domains where 

the motive is to preserve the compositional nature and also to exploit the advantages of 

executing financial contracts in a trustless environment. The importance of the outcome of 

this research is pointed towards both the financial domain and the computer science research 

areas respective to blockchain technologies. 

1.5 METHODOLOGY 
 
As the first step of the research approach, the existing representation of financial contracts 

is refined in order to facilitate multiple representations of financial contracts. This is 

required in order to map the existing contracts to a different domain. The next step focuses 

on developing a source-to-source compiler to transform contracts written in Peyton Jones’ 

Contract Descriptive language to Solidity. The approach followed for this step is discussed 

in detail in sections 3 and 4.  

 

The final step focuses on devising a mechanism to evaluate the transformed contract, 

identify benefits of such a transformation and the extent to which the properties of the 

Peyton Jones’ contract are preserved. This step would also include determining the 

methodology to embed properties specific to smart contracts with relevance to gas 

consumption, self-execution at a future date, etc. The problems faced with regards to gas 

usage and self-execution will be thoroughly analyzed and discussed. The complete analysis 

and discussion of this step is included in section 5. 

 

Figure 1.2 represents a high-level diagram of the proposed research methodology. 
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Figure 1.2: High-level diagram of proposed research methodology 
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1.6 OUTLINE OF THE DISSERTATION 
 
The dissertation is structured as follows. Chapter two explores the existing approaches to 

create DSLs for financial contracts and the re-implementations of financial contracts for the 

Ethereum blockchain. Chapter three describes the proposed research design and 

methodology. Potential ways of addressing the research problem is discussed in this chapter. 

Chapter four demonstrates the implementation details of the proposed methodology. 

Chapter five presents the evaluation model and the evaluation results of the proposed 

approaches. The last chapter, chapter six provides the conclusion of the dissertation and 

outlines the future work. 

 

1.7 DELIMITATIONS OF SCOPE 
 
The proposed methodology of this study utilizes only the Peyton Jones’ Contract descriptive 

language [2] as the source language for the compiler. The input to the compiler has been 

formatted in order to best suit the transformation. However, the formatting of the input does 

not change the semantics of the contract and as a result there is no particular effect to the 

processing of the contract. (This is described in detail in section 3)  

 

The combinators proposed by Peyton Jones’ et al. [2], the notion of horizon for contracts is 

utilized in order to generate an identical smart contract to the financial contract. Further, 

additional properties which are required for the smart contract to execute on the blockchain 

is embedded during the transformation.  

 

The intention of this research is not to develop a new library or domain specific language 

specialized on describing specific types of contracts. Further, due to time constraints, it is 

outside the scope of this research to deliver a complete, optimized or readily usable 

compiler. It is also not in the scope of this research to address existing platform limitations 

and risks of the Ethereum blockchain when executing smart contracts. 
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1.8 SUMMARY 
 
Financial contracts are widely used in the modern economy. The description of a financial 

contract includes a large vocabulary of financial jargon. Therefore, natural language is not 

suited to represent financial contracts due to its ambiguous nature. In order to address this 

problem Peyton Jones’ et al. [2] introduced a domain specific embedded language (DSEL) 

which could describe financial contracts. Many other researchers who were inspired by this, 

continued to build DSELs which extended the language introduced by Peyton Jones et al. 

However, all these representations suffered from the same fundamental problem of the need 

to trust a third party to provide correct results of contract execution. Therefore, it is more 

desirable for a financial contract to facilitate autonomous, trustless execution in order to 

eliminate the risks involved in a centralized execution system.  

 

This chapter mainly highlights the background of the research, the research problem and 

the research questions. Then the research was justified, the methodology was briefly 

described, the dissertation was outlined, and the limitations were given. On these 

foundations, the dissertation can proceed with a detailed description of the research. 
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Chapter 2 – LITERATURE REVIEW 
2.1 INTRODUCTION 
 
This chapter illustrates the current status of the research domain, especially targeting the 

Peyton Jones’ Contract Descriptive language and how contract management is done. Next, 

the introduction of Ethereum, it’s functionalities, smart contract applications in the past are 

thoroughly explored in section 2.2. Finally, an overview of source-to-source compiling done 

in previous researches are analyzed in section 2.3. 

2.2 DSLS FOR FINANCIAL CONTRACTS 
 
The past decade has been rich in terms of newly emerging DSLs for various purposes. 

Among them, several DSLs have emerged for financial contracts as well. Features and 

functionalities of few such DSLs will be explored in here. 

 

The basic foundation to develop a DSL for financial contracts were laid by Peyton Jones et 

al. [2]. They introduced a combinator library to represent contracts and observables. The 

purpose of this library was to represent financial contracts in an unambiguous way. They 

also sketched an implementation of valuation semantics, using as an example a simple 

interest rate model and its associated lattice. A key feature of this library was that the 

combinators facilitated composability. Due to the compositional nature of the approach, 

complex contracts could be easily composed through the use of primitives for observables 

and primitives for contracts. 

 

The combinator library was built using Haskell as the host language and as a result exploited 

Haskell’s functional nature and lazy evaluation to a large extent.  

 

An example contract in the Peyton Jones Contract Descriptive language takes the below 

format. 

Zero Coupon Bond – get ( truncate “date” ( scale k ( one USD ))) 
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Figure 1.1 in chapter 1 showed the combinators introduced by Peyton Jones et al. to describe 

contracts. Figure 2.1 shows the combinators introduced for observables. 

 

 
 

Figure 2.1 – Combinators for observables 

 

This paper also introduced the notion of a horizon for a contract. The horizon of a contract 

was defined as the latest date the contract can be acquired. After the horizon of a contract, 

it will be automatically void if not acquired by any party. Further improvements on the 

combinators were done through a book chapter [17] [18] released by Peyton Jones et al. at 

a later date where the notion of the horizon was discarded. However, our research has been 

based solely on the developments of the original composing contracts paper [2]. 

 

Based on the work of Peyton Jones et al. [2], DSLs were built as language extensions. One 

such approach was the DSL created by Gaillourdet [10]. The formal language developed in 

here was capable of expressing financial contracts themselves. She also introduced some 

denotational semantics which enables a notion of equivalence among contracts. A much 

broader DSL was developed by Andersen, et al. [19] which allowed description of multi-
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party contracts as well. Additionally, they give denotational and operational semantics for 

that language, which allows to decide whether a trace of steps in the real world conforms to 

a specified contract or not. Hence, the real world applicability of the developed DSL has 

also been explored by them. 

 

The central counterparty (CCP) of a financial contract is responsible for executing a 

financial contract. A central counterparty can make or break a contract as correct execution 

of contract logic is the sole responsibility of a central counterparty. An approach in the 

recent past has attempted to build a DSL to specify operations of a central counterparty [20] 

as well. This was conducted after identifying a research gap of CCP rules not been explored 

in the context of DSLs, even though CCPs were considered crucial for contract execution. 

In this study, it was proved that the Haskell combinator library introduced by Peyton Jones 

et al. [2] could be used to define CCP rules as well.  

 

A financial contract has a dynamic timeline due to its uncertain nature. The parties involved 

in the contract needs to keep track of when the contract logic should be executed. If not, 

execution at the correct date may not happen due to misconducts of the CCP. Balalla V. R. 

et al. [21] conducted a study in the recent past to extract the contract calendar from a 

financial contract, based on the work of Peyton Jones et al. This study introduced a model 

with the capability of generating a calendar for a given contract. The model consists of a 

calendar definition, set of combinators for calendars and a set of evaluation semantics for 

the conversion from a contract to the calendar. 

 

In an overall perspective, it could be seen that many researchers are interested in exploring 

the area of financial markets and financial contracts. Most of the researches in this area has 

been based on the influential paper by Peyton Jones et al. in developing precise combinators 

to represent contracts. Even though this study covered a major research gap at that time, it 

did not provide a solution to most risks involved in financial contracts. However, the 

declarative representation of contract proposed by Peyton Jones et al. opened many doors 

for further improvements on financial contracts. 
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2.2 SMART CONTRACTS AND ITS APPLICATIONS 
 
The idea of decentralization has been emerging in the world over the past decade. People 

are more keen on moving towards decentralization, leaving behind centralized authorities 

and autonomous power of a single entity. The concept emerged at a larger scale with the 

introduction of Bitcoin [4] in the year 2009. This new frontier of decentralization was 

adopted by many industries including finance. The next revolution in decentralization was 

the introduction of Ethereum [5]. The specialty of Ethereum beyond Bitcoin technologies 

was its scripting language Solidity [5] [22]. With the presence of Solidity it was possible to 

create pieces of codes that could run on the blockchain. These were called smart contracts.  

 

A simple smart contract written in Solidity would have the following format. 

 
pragma solidity ^0.4.0; 
 
contract SimpleStorage { 
    uint storedData; 
 
    function set(uint x) public { 
        storedData = x; 
    } 
 
    function get() public view returns (uint) { 
        return storedData; 
    } 
} 
 
A contract in the sense of Solidity is a collection of code (its functions) and data (its state) 

that resides at a specific address on the Ethereum blockchain. The functions set and get 

can be used to modify or retrieve the value of the variable storedDate. This contract allows 

anyone to store a single number that is accessible by anyone in the world [8]. 

 

The Ethereum white paper [5], introduced many novel concepts including autonomous 

contracts, execution in a trustless environment, state transitions on the blockchain though 

message passing which facilitated users to build an entirely decentralized financial system. 

 

Many researches were inspired by the concept of smart contracts after the introduction of 

Ethereum. Eksandari S. et al. [23] explored the feasibility of decentralized derivative 
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markets where they presented Velocity, a decentralized market deployed on Ethereum for 

trading a custom type of derivative option. Further, they have explored the security of smart 

contracts and the use of smart contracts in modelling financial systems. Through their study 

they have identified that smart contracts are a fascinating idea that can revolutionize the 

technology be removing the middleman involved in financial transactions. However, they 

have also stated that the infrastructure to build this system is still in a proof-of-concept state 

rather than in a production state in the present context. 

 

Egelund-Müller et al. have also explored automated execution of financial contracts on the 

blockchain [24]. The paper investigates financial contract management on distributed 

ledgers and provides a working solution implemented on the Ethereum blockchain. The 

system is based on a domain-specific language for financial contracts that is capable of 

expressing complex multi-party derivatives and is conducive to automated execution. The 

authors also propose an architecture for separating contractual terms from contract 

execution. However, they have completely ignored the use cases of a DSEL to represent a 

financial contract and have looked at a re-implementation of financial contracts on the 

Ethereum blockchain. This have eliminated the composable nature of contracts in the 

original work of Peyton Jones et al. 

 

Safer smart contracts through type-driven development has been explored by Pettersson et 

al. [14] in the past where they have shown how dependent and polymorphic types can make 

smart contract development safer. This has been demonstrated by using the functional 

language Idris to describe smart contracts on the Ethereum platform. Same as the previous 

approach, they have too implemented a novel functional language for smart contract 

development on Ethereum. They have not explored the possibilities of using existing DSELs 

for the task. 

 

As such, the smart contract domain has been thoroughly explored by researchers as well, 

similar to the financial contract domain. However, the approaches in all previous work has 

been independent to the respective domain. Bridging the gap of these two domains haven’t 

been proposed by any previous work in the domains. 
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2.3 SOURCE-TO-SOURCE COMPILING 
 

The objective of this study is achieved by building a source-to-source compiler (also known 

as a transpiler). The frontend of the compiler was built using ANTLR4. This is a popular, 

commercial tool which has been used in many previous work when conducting language 

translations. One such study by Cheng Zhou [25] was the implementation of a source to 

source compiler that translates Fork language to REPLICA baseline language. The Fork 

language is a high-level programming language designed for the PRAM (Parallel Random 

Access Machine) model. The baseline language is a low-level parallel programming 

language for the REPLICA architecture which implements the PRAM computing model. 

To support the Fork language on REPLICA, a compiler that translates Fork to baseline was 

built in this study. 

The compilation process of the Fork to baseline compiler is described in figure 2.2. 

 

Figure 2.2 - Compilation process of the Fork to baseline compiler 



   
 

  
 

19 

ANTLR was used in this study to generate the parse tree and the intermediate representation 

(IR). The following figure 2.3 shows the translated baseline IR. 

 

Figure 2.3 – Translated baseline IR 

 

They have concluded that the Fork language is supported for the REPLICA architecture by 

building the source to source compiler and supporting libraries. This study showcases the 

significant use of ANTLR [26] for source-to-source compiler building. 
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Chapter 3 – DESIGN 

3.1 INTRODUCTION 
This chapter mainly elaborates the proposed solutions to the research problem. It consists 

of four major sections, namely; Research Design, Extending the Peyton Jones’ language, 

Compiler Design and Smart Contract Design. 

3.2 RESEARCH DESIGN 
The research design comprises of three main sections: Extending the DSL, Source-to-source 

compilation and the Transformed contract deployment. The final implementation of the 

compiler and the Ethereum client is called Synergy. Figure 3.1 showcases a high-level 

diagram of the relationship of these sections. 

 
Figure 3.1: High-level architecture of the proposed solution 
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The first phase of the research focused on building a source-to-source compiler in order to 

transform a contract written in Peyton Jones’ contract descriptive language to Solidity.  

 

3.3 EXTENDING THE PEYTON JONES’ CDL 
 
The current implementation of the Peyton Jones’ CDL is embedded in the functional 

programming language, Haskell. In order to write a compiler, the combinators introduced 

by Peyton Jones et al. [2] needed to be embedded in Haskell in an extensible manner. 

 

There are two key methods of implementing a DSL: shallow embedding and deep 

embedding [27]. These were introduced as two approaches to embedding a hardware 

description language (HDL) in higher-order logic (HOL). The features of shallow and deep 

embedding are shown in Table 3.1 below. 

 
Table 3.1: Features of shallow and deep embedding of a DSL 

 

Shallow Embedding Deep Embedding 

Represents elements by their semantics  
(A one-to-one mapping from elements to 
semantics) 

Represents elements by how they are 
constructed 

DSL constructs are composed purely of 
host language constructs 

Program exists as data (E.g.: AST) 

Uses the interpreter of the host language Host language implements an interpreter 
More elegant (when it works out) Easier to extend (To add new operations, 

run functions, optimizations, etc.) 
 

When considering Haskell, it is understood that a shallow embedding implies the use of 

functions (or more commonly known as combinators) to represent operations in the DSL. 

The Peyton Jones’ CDL is one of the best examples for such a shallow embedding. In order 

to build a compiler for this language, it was required to have different representations of the 

same function (i.e.: Contract Description, Contract Abstract Syntax Tree, etc.). However, 

different definitions of the same function led to complications because it had to maintain a 

huge tuple for all the definitions. As a solution to this, the original language proposed by 
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Peyton Jones et al. was extended to a deep embedding in Haskell. In here, the DSL was 

represented as a Haskell data structure, which could be interpreted by other functions. 

(Discussed in detail in section 4) 

3.4 COMPILER DESIGN 
 
3.4.1 SOURCE LANGUAGE 
 
The choice of the source language for this study, the Peyton Jones’ CDL was the foundation 

to formulate a process to automate financial contracts. This language represents financial 

contracts in an unambiguous manner and is composable in nature, which allows to create 

complex contracts as a combination of simple primitives defined as combinators. 

3.4.2 TARGET LANGUAGE 
 
When designing a compiler for a source language to be executed in the EVM, there are four 

possible target languages for the code generator: directly into assembly 

instructions/bytecode, LLL (Low-Level LISP), Serpent and Solidity. Conversion to 

assembly instructions directly may impose some risks in using this compiler in future, as 

the EVM is subject to changes as it improves in the future. Therefore, conversions directly 

to the bytecode may become obsolete. A comparison of the available higher-level languages 

are shown in Table 3.2 below. 

 
Table 3.2: Comparison of the languages for smart contract development 

 

 Data Structures Contract Functions Macros Targets 

LLL No No Yes Bytecode 

Serpent Yes Yes Yes LLL 

Solidity Yes Yes No Bytecode 

 

Both LLL and Serpent are lower-level languages than Solidity where LLL has the 

advantages of lower runtime overhead and smaller binary output than code written in the 
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other two languages. However, due to the low level nature of LLL the following concerns 

prevail.  

• The only way to access persistent memory is through direct reading and writing to 

addresses. 

• Complex data types/structures such as arrays and lists are not supported. Therefore, 

allocating and aligning memory positions for complex data types needs to be done 

explicitly, which is non-trivial. 

• There is no concept of functions. Therefore, all programs have a single entry point, 

requiring all user-defined functions to be implemented as conditional checks [28]. 

Even though Serpent’s compiler handles some of the above while still giving flexibility to 

access assembly instructions, it is not maintained and has an increase in runtime overhead 

and code size compared to Solidity. Considering all of the above, Solidity has been chosen 

as the target language for this study as it is the most-widely used, maintained and feature-

rich language, with syntax similar to JavaScript. 

 

3.4.3 COMPILER CONSTRUCTION 
 
The compiler of this study has been designed from the beginning to support new compiler 

backends. Even though Solidity has been chosen as the target language, it is possible to 

develop a new compiler backend and use the intermediate representation generated by the 

compiler frontend to convert the financial contract to other suitable languages as well.  The 

main phases of the compiler are as follows. 

 

Tokenization and Parsing – A grammar was written for the Peyton Jones’ CDL. Based 

on the grammar, the lexer and the parser was generated. The contract input (composed 

of primitive combinators) was given to the lexer, which tokenized the input string into 

tokens. Next, the tokens are given as an input to the parser, which builds the parse tree 

for the given input.  

Intermediary transformation – The nodes of the Abstract Syntax Tree (AST) is 

obtained from the parse tree in order to facilitate the target language code generation. 
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Tree walker – The abstract syntax tree is walked using a tree walker which conducts 

the transformations of the contract combinators, mapping the necessary logic of the 

Haskell combinators to the target language. The tree walker performs the final code 

generation of the Solidity source code for a contract. 

 
The complete compiler design is shown in Figure 3.2 below. 

 

 

 
 

Figure 3.2: The design of the compiler which transforms Peyton Jones’ contracts to Solidity 
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3.5 SMART CONTRACT DESIGN 
 
The design and the specificities of the transformed smart contract were decided based on 

the nature of the parse tree generated. There are many approaches that could be followed in 

order to generate the Solidity source code. One such approach is to have a series of nested 

Solidity contract objects for each combinator in the contract input. However, this method 

would drastically increase the transaction cost when executing the contracts in the Ethereum 

blockchain, as each contract creation would cost a considerable amount of gas. Therefore, 

the proposed methodology in this study minimizes the number of nested contracts created 

when transforming a contract to Solidity. 

 

The nature of a complex specific contract is shown in Figure 3.3 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: The structure of a complex specific contract 
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A basic contract component would have a set of standard basic primitives (combinators). 

The following figure 3.4 showcases the structure of a basic contract component (extracted 

from the AST). Depending on the input, a basic contract component would consist of one 

or more combinators stated in the structure below. 

 

 
 

Figure 3.4: Structure of a basic contract component 

 

When a ‘get’ combinator is obtained by the tree walker while traversing the AST, a Solidity 

source file is generated for the basic contract component. The required logic of the basic 

contract will be embedded in the Solidity source. Apart from the contract logic expressed 

in the Peyton Jones’ contract input, there are additional information required by the 

Ethereum blockchain in order to execute a contract on the blockchain. In order to embed 

the additional information required and also to modularize the contracts, two external 

contracts were introduced: Synergy Marketplace Contract and the Base Contract. 

 

The base contract provides a skeleton to the specific contracts are generated based on the 

Peyton Jones’ contract input while the Synergy Marketplace contract achieves contract 

modularization (Implementation explained in detail in section 4). Modularized contracts are 
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of vital importance to reduce execution cost of a contract on the blockchain. The additional 

information required by the smart contract and how they are facilitated are shown in Table 

3.3 below. 

 
Table 3.3: Additional information required to execute smart contracts 

 

Information Description Facilitation 

Contract parties In order to execute a contract 
on the blockchain, the account 
addresses of the parties 
involved in the agreement is 
required 

Contract owner: Embed in 
the Synergy marketplace 
contract at the time of 
deployment.  
 
Contract Holder: Embed in 
the Synergy marketplace 
contract at the time of 
proposing the contract to the 
holder 
 

Functions to propose 
and sign contracts, 
receive and send 
currency, etc. 

Contract enforcement happens 
via function calls on the 
Ethereum blockchain 

The Synergy marketplace 
contract would have 
implementations for all the 
required functions. 
 

Self-destruct or kill a 
contract once the 
horizon of a contract 
is exceeded 

After the horizon of a contract, 
it should be made void 
automatically as it should not 
be possible to acquire a 
contract after its horizon 
 

The base contract includes a 
function for destroying the 
contract. 
 
kill() function 

Contract storage to 
store contract 
addresses and 
balances 

This is required in order to 
keep track of all the contracts 
and user balances 

Member variables are 
introduced in the Synergy 
marketplace contract 
 

Execute contracts at a 
future date 
 

Smart contracts need to be 
executed automatically without 
the involvement of a third 
party. Therefore, the future 
execution dates need to be 
monitored to execute contract 
logic at the correct date. 

The Ethereum Alarm Clock1 
 
A service that allows to 
schedule transactions to be 
executed at a future date on 
the Ethereum blockchain. 
Up-front payments are done 
for gas costs of transactions. 

                                                
1 Ethereum Alarm Clock https://www.ethereum-alarm-clock.com/ 
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Figure 3.5 and Figure 3.6 shows how the specific contract is created in Solidity and the 

format of the transformed Solidity contract respectively. 

 

 
 

Figure 3.5: Solidity source generation 

 

 

 
 

Figure 3.6: Final Solidity Contract Code 
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After the Solidity source file is generated, it is uploaded and deployed to the blockchain 

using the decentralized application (DApp) which was built. The contract code lives in the 

blockchain until its logic is executed with the assistance of the Ethereum Alarm Clock 

service. More details about the contract execution is discussed in section 4. 

3.6 JUSTIFICATION FOR THE METHODOLOGY 
The methodology proposed in this study is built based on a DSEL, the Peyton Jones’ 

contract descriptive language. The main reason to choose a DSEL opposed to a standalone 

language is that it allows to reuse the host language’s advanced type system and flexible 

syntax. Further, it has been identified that a financial contract is best represented using a 

domain specific language. This is due to a characteristic property of DSLs where it is 

possible to write code in terms closer to the level of abstraction of the initial problem 

domain. However, since a DSL has a high level of abstraction related to the domain, 

interoperability is a crucial problem. Therefore, DSLs are often integrated to a host language 

(Haskell in here) and are converted to DSELs. 

 

Peyton Jones’ contract descriptive language has been the basis of many work in this 

particular area [10] [15]. 

 

A deep embedding was done to the original language proposed by Peyton Jones’ et al. 

because, representing the language in a different domain required different representations 

of the same function.  

 

Previous researchers have implemented methodologies in re-writing financial contracts as 

smart contracts in order to facilitate autonomous execution. Opposed to such approaches, 

this study mainly proposed a  transformation of traditional financial contracts  written in the 

Peyton Jones’ CDL to smart contracts written in Solidity due to few key reasons. 

• The need of preserving the composable nature of the DSEL 

• Make use of Haskell’s advanced type system and flexibility 

• Financial contracts are best represented using a DSEL 

• Rewriting existing contracts would incur additional overhead 
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3.7 SUMMARY 
This chapter provided a detailed description on the research design. It encompasses  three 

main phases; namely Extending the Peyton Jones’ CDL, Compiler Design and Smart 

Contract Design. The language is extended in order to support multiple definitions of the 

same functions. Once the compiler design was done, the smart contract was generated with 

various embeddings in order to suit the Ethereum blockchain. The generated contract is then 

deployed using a decentralized application (DApp) to the blockchain.
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Chapter 4 - IMPLEMENTATION 

4.1 INTRODUCTION 
This chapter provides implementation details of the proposed solutions. Section 4.2 

describes the software tools utilized for the implementation process, section 4.3 illustrates 

how the Peyton Jones’ language was extended, section 4.4 describes the implementation 

details of the compiler and section 4.5 explains how the transformed contracts are deployed 

and executed on the blockchain. 

4.2 TECHNOLOGIES AND SOFTWARE TOOLS 
The Peyton Jones’ CDL extension was done using the Haskell language (GHC 8.4.3, Stack 

1.7.1).  The frontend of the compiler was built using Another Tool for Language 

Recognition V4 (ANTLR4). The BNF grammar for the Peyton Jones’ CDL was written 

based on ANTLR. The lexer and the parser was generated in JavaScript. The tests on 

contracts were run using TestRig 2 . ANTLR provides a single consistent notation for 

specifying lexers, parsers, tree parsers, etc. opposed to other tools available. The TestRig 

component of ANTLR allows to obtain a graphical representation of the parse tree as well. 

A mixture of go-ethereum (geth), Parity, Mist, Remix and MetaMask were used to simulate 

transformed contracts and interact with an Ethereum blockchain (Ropsten Testnet). 

4.3 EXTENDING THE LANGUAGE 

4.3.1 SHALLOW EMBEDDING 

The Peyton Jones’ CDL has utilized a shallow embedding to include the combinators in the 

host language Haskell. However, this method of embedding is suited only if one 

representation of a particular contract is required.  

 

type Contract = String  

                                                
2 TestRig https://www.antlr.org/api/JavaTool/org/antlr/v4/gui/TestRig.html 
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and :: Contract -> Contract -> Contract 

and c1 c2 = "And(" ++ c1 ++ "," ++ c2 ++ ")"  
 

 

In here, the type keyword is used to cast the type ‘Contract’ to type ‘String’. This 

representation prints the complex contract given, as a string. If another representation is 

required, for example, to count the number of combinators a particular contract has, the 

logic should be re-implemented. 

 

type Contract = Int 

  
and :: Contract -> Contract -> Contract 
and c1 c2 = 1 + c1 + c2 

 
This brings out a conflict as the same function cannot have two different representations. 

Therefore, if shallow embedding is used in order to have different representations of the 

same function, all the interpretations needs to be returned within the function. 

 

type Contract = (String, Int)  

and :: Contract -> Contract -> Contract 

and c1 c2 = ("And(" ++ c1 ++ "," ++ c2 ++ ")", 1 + c1 + c2) 
 

 

This method becomes very cumbersome if there are a large number of interpretations for 

the same function. Therefore, this is not suitable because having to maintain a huge tuple 

for every possible permutation of options is not a practical solution. 

4.3.1 DEEP EMBEDDING 

In order to transform a contract written in Peyton Jones’ CDL, it is required to have different 

interpretations for the same contract. These representations could be the contract text as 

Haskell combinators, contract parse tree, contract abstract syntax tree for different types of 

contracts.  In order to obtain all these interpretations for the same contract, it is clear that a 

deep embedding is required because in a deep embedding the DSL is represented as a 
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Haskell data structure. This data structure can be interpreted by other functions making it 

possible to have several interpretations on the same function.  

 

This particular data declaration mentions that a value of type ‘Contract’ can be constructed 

by calling Zero, One USD, Give c, etc. 

 

data Contract contract 

    = Zero 

    | One  Currency 

    | Give contract 

    | Get contract 

    | And  contract contract 

    | Or   contract contract 

    | Scale   (Obs Int) contract 

    deriving (Eq, Show) 

 

The deep embedding done above solves the problem of multiple interpretations on the same 

function. The render and count interpretations were modified as follows. 

 
render :: Contract -> String 

  
render Zero = "Zero" 

render (One currency) = "One(" ++ show currency ++ ")" 
render (Give contract) = "Give(" ++ render contract ++ ")" 

render (Get contract) = "Get(" ++ render contract ++ ")" 

render (And contract1 contract2)="And("++render contract1++","++render contract2++")" 

render (Or contract1 contract2) = "Or("++render contract1++","++render contract2++")" 

  
 
count :: Contract -> Int  
count Zero = 1 
count (One _) = 1 

count (Give contract) = 1 + (count contract) 

count (Get contract) = 1 + (count contract 

count (And contract1 contract2) = 1 + (count contract1) + (count contract2) 

count (Or contract1 contract2) = 1 + (count contract1) + (count contract2) 
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However, due to the deep embedding the appearance of the original contract may change. 

Therefore, constructors were defined in order to retain the original syntax. 

 

zcb :: Date -> Double -> Currency -> Contract 

zcb t x k = scaleK x (get (truncate t (one k))) 

  
zcb' :: Date -> Double -> Currency -> Contract 

zcb' t x k = Scale (Const x) (Get (Truncate t (One k)))  
scaleK x c = Scale (Const x) c 

get c = Get c 

truncate t c = Truncate t c 

one k = One k 

 

4.4 SOURCE-TO-SOURCE COMPILING 
 
Once the Peyton Jones’ language was extended to facilitate multiple interpretations, the 

transformation of the contract was done in the following steps. 

 

• EBNF grammar using ANTLR4 for the Peyton Jones’ language 

• Lexer generation 

• Parser generation 

• Built the abstract syntax tree generator 

• Built the tree walker 

• Generation of the Solidity version of the financial contract 

o Creation of the base contract 

o Creation of the Synergy marketplace contract 

o Generation of the specific contract with a wrapper 

 

4.4.1 ANTLR GRAMMAR FOR THE PEYTON JONES’ LANGUAGE 

The first phase of building a source-to-source compiler (also known as a transpiler) is 

developing the grammar for the source language; Peyton Jones’ CDL in this particular 
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study. The grammar written for the language consists of two components; the lexer rules 

and the parser rules. The lexer rules are responsible of generating the lexer which is used 

for tokenization of the language input and the parser rules are responsible for generating the 

parser which is used to parse the tokens from the lexer and build the parse tree for the input. 

 

4.4.2 LEXER AND PARSER GENERATION 
 
The lexer rules for the Peyton Jones’ contract descriptive language is as follows. 

Operator : '`and`' | '`or`'; 

     

Currency : 'USD' | 'GBP' | 'ETH'; 
  
OneKeyword : 'one'; 
  
ZeroKeyword : 'zero'; 
  
//Keywords 
Scale : 'scale'; 

Give : 'give'; 
And : 'and'; 
Or : 'or'; 
Truncate : 'truncate'; 
Then : 'then'; 
Get : 'get'; 
Anytime : 'anytime'; 
  
Date : DateInString; 
DateInString : StringLiteral; 
  
ObsDouble //Decimal Number 
  : [0-9]+ ( '.' [0-9]* )? ( [eE] [0-9]+ )?; 

  
//Contract variables 
ID : IdentifierStart IdentifierPart* ; 

fragment 
IdentifierStart : [a-zA-Z] ; 

fragment 
IdentifierPart : [0-9] ; 

StringLiteral : '"' DoubleQuotedStringCharacter* '"' 
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              | '\'' SingleQuotedStringCharacter* '\''; 

fragment 
DoubleQuotedStringCharacter : ~["\r\n\\] | ('\\' .); 

fragment 

SingleQuotedStringCharacter : ~['\r\n\\] | ('\\' .);  
BACKQUOTE : '`';  
WS : [\t\u000B\u000C\u0020\u00A0]+ -> channel(HIDDEN); 

     
 

 

The parser rules for the Peyton Jones’ contract descriptive language is as follows. 

complexContract 

    : basicContract | basicContract Operator complexContract; 

  
basicContract 
    : basicPrimitive | compositePrimitve; 

     

basicPrimitive 
    : zeroContract #ZERO | oneContract #ONE; 

  
zeroContract 
    : ZeroKeyword; 

  
oneContract 
    : OneKeyword Currency; 

  
compositePrimitve 
    : scale #SCALE_CONTRACT 

    | give #GIVE_CONTRACT 

    | truncate #TRUNCATE_CONTRACT 

    | then #THEN_CONTRACT 

    | get #GET_CONTRACT 

    | anytime #ANYTIME_CONTRACT; 

     

scale 
    : Scale ObsDouble '(' complexContract ')'; 

  
give 
    : Give '(' complexContract ')'; 

  
truncate 
    : Truncate Date '(' complexContract ')'; 
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then 
    : Then '(' complexContract complexContract ')'; 

  
get 
    : Get '(' complexContract ')'; 

  
anytime 
    : Anytime '(' complexContract ')'; 

 
The parser generated by the above parser rules is a LL(1) parser. It reads the input from left-

to-right, descend into parse tree children from left-to-right and utilizes a single lookahead 

token. A parser with a single lookahead token is one of the weakest forms of parsers. 

However, it is sufficient for this purpose as the Peyton Jones’ CDL has a handful of 

combinators.  

 

ANTLR4 does not support left recursion3. Therefore, the input to the compiler should be 

presented with prefix operations. An example input to the  compiler is as follows. 

 

European Option 
get ( truncate “15 Jan 2019” ( or ( scale 100 ( get ( truncate “30 Jan 

2019” ( one GBP ))) zero ))) 

 

The entry point to the compiler is the complexContract parser rule. The parser generated 

from the above parser rules is compatible with basic contracts as well as complex contracts.  

Figure  4.1 and 4.2 shows the railroad diagrams for the parser rules which accepts complex 

contracts and basic contracts respectively. 

 
Figure 4.1: Complex contract railroad diagram 

 

                                                
3 Left Recursive rule: A rule that invokes itself without consuming a token. 
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Figure 4.2: Basic contract railroad diagram 

 

 

To make parsing decisions, the parser tests the current lookahead token against the 

alternatives’ lookahead sets. The lookahead set computation (FIRST and FOLLOW) is done 

by ANTLR4. Naturally, the lookahead sets predicting the alternatives are disjoint in here as 

what has been built is a deterministic LL(1) parser. 

 

4.4.3 ABSTRACT SYNTAX TREE AND TREE WALKER 
 

The next step of the compiler implementation was to build the intermediate representation 

(Abstract Syntax Tree - AST) for the language. The AST holds key tokens and records the 

grammatical relationships. An AST was built because it has the following advantages over 

a parse tree. 

• Easier and faster to walk 

• Easier to identify subtrees 

• Dense – No unnecessary nodes 

• Emphasizes operators, operands and the relationship between them rather than the 

artifacts of the grammar. Therefore, it is insensitive to changes in the grammar. 

(Easily maintainable if the Peyton Jones’ CDL improves in the future) 

The following code segment represents the parse tree traversal in order to build the AST. 
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function recurse (tree, list) { 

    let a = ['(', ')', '<EOF>']; 

    if(tree.getChildCount() == 0) { 

        if(!a.includes(tree.getText())) { 

            list.push(tree.getText()); 

            return; 

        } 

    } 

    for(let i=0; i < tree.getChildCount(); i++) { 

        recurse(tree.getChild(i), list); 

    } 

} 
  

Once the AST was generated, a tree walker was written in order to traverse the AST and 

generate the Solidity code based on the tree structure of the input. It was built to collect the 

necessary information of all the combinators of the input. The contract Solidity source was 

created when the tree walker meets a get/give combinator. The Solidity source of the 

contract includes the instantiated base contract, imported Synergy marketplace contract, 

implementation of the specific contract and the wrapper methods in a single file. 

 

The horizons of contracts are monitored at get/give combinators if the contract is a basic 

contract while it is monitored at and/or operators if the contract is a complex contract 

(Discussed in detail in the next sub-section). Ultimately, the information about contract(s) 

at the root of the tree is returned to a wrapper contract, which provides the entry point for 

contract execution. The wrapper is needed for contract enforcement when it is deployed to 

the blockchain. (Code listings included in Appendix C) 

 

4.4.4 BASE CONTRACT 
 

The specific Solidity source is created by inheriting the base contract referenced above. It 

is an abstract base class for the transformed contracts that allows to interact with a contract 

in a standardized manner. The base contract has few important features. It exposes a 

proceed() method. The actual behavior of this function is implemented when the specific 
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contracts inherit the base contract. Further, it provides a modifier to check whether a 

particular contract is alive before any function is applied. This will only permit a function 

to execute if the _alive member variable is true. 

 

contract BaseContract { 

  
    enum KillReason {EXECUTED, UNTIL, HORIZON, FAILED}  
    event Killed(BaseContract.KillReason killReason);  
    Marketplace public marketplace_; 
    int public scale_; 

    address public creator_; 
    bool public alive_ = true; 

    constructor(Marketplace marketplace, int scale) public { 
     marketplace_ = marketplace; 

     scale_ = scale; 

     creator_ = msg.sender; 

    }  
    function proceed() public; 
  
    function receive(Marketplace.Commodity commodity, int quantity) internal alive { 
        marketplace_.receive(commodity, quantity); 

    } 

  
    function kill(BaseContract.KillReason killReason) internal alive { 
        alive_ = false; 

        emit Killed(killReason); 

    } 

  
    modifier alive { 
        require(alive_); 

        _; 

    } 

} 
 

The function to kill the contract is protected by the internal keyword. When this keyword is 

present in a function, it could only be called by the smart contract itself. Therefore, one 

smart contract cannot kill another smart contract. 
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4.4.5 SYNERGY MARKETPLACE 
 

As mentioned in section 4.4.3, a specific contract imports certain functionality from an 

external contract; Synergy Marketplace Contract. This particular contract plays a major role 

in modularizing the codebase of the compiler and contract execution. The functions to all 

contract executions are included in the marketplace contract. Further, information such as 

contract addresses, user balances, commodities, etc. are also kept in here. For every contract 

creator, an instance of the marketplace is deployed to the blockchain before deploying any 

specific contracts. 

 

The marketplace contract has few important functions which assists contract execution. 

Initially, a couple of data structures are declared. Commodity represent the commodities that 

can be traded in this market and ContractMetadata has information about current state of 

a contract. The parties involved in a contract are stored in here, where Counterparty is the 

party that sells the contract while Holder is the party that buys the contract. Few member 

variables are also stored in here. The contracts_ mapping keeps track of all the contracts 

that have been proposed through the marketplace, while the balances_ mapping keeps 

track of each individual user’s balance in each commodity. 

pragma solidity ^0.4.23; 

pragma experimental ABIEncoderV2; 

  
contract Marketplace { 
      enum Commodity {USD, GBP} 

  
      struct ContractMetadata { 
          address counterparty; 

          address holder; 

          address creator; 

          bool signed; 

      } 

  
      event Proposed(address contractAddress, address indexed to); 
      event Signed(address contractAddress); 

  
      address public creator_; 
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      mapping(address => ContractMetadata) public contracts_; 
      mapping(address => mapping(uint => int)) public balances_; 
  
      constructor() public { 
          balances_[msg.sender][uint(Commodity.USD)] = 0; 

          balances_[msg.sender][uint(Commodity.GBP)] = 0; 

          creator_ = msg.sender; 

      } 
 

Few key functions in the marketplace contract enables contract execution on the blockchain.  

The propose method allows a counterparty to propose (sell) a contract to another party. 

Once a contract is proposed, it creates a contract metadata object with the necessary 

information and emits an event. When an event is emitted the information gets stored in a 

transaction log. This can be checked by other functions or from outside the contract. The 

sign method then allows the holder (to whom the contract is proposed) to agree to the 

contract, which starts executing immediately. During the signing process of the contract the 

state of the contract is changed to ‘signed’. 

function propose(address contractAddress, address to) public { 

    require(contractAddress.creator_() == msg.sender); 

    require(!contracts_[contractAddress].signed); 

    contracts_[contractAddress] = ContractMetadata(msg.sender, to, msg.sender, 

false);    

    emit Proposed(contractAddress, to); 

} 

  
function sign(address contractAddress) public { 
    require(msg.sender == contracts_[contractAddress].holder); 

    require(!contracts_[contractAddress].signed); 

    contracts_[contractAddress].signed = true; 

    BaseContract baseContract = BaseContract(contractAddress); 

    baseContract.proceed(); 

    emit Signed(contractAddress); 

} 
 
The following functions can only be called by signed contracts. The receive method allows 

the counterparty to transfer a certain amount of the commodity traded, to the holder. In the 

case of a nested contract, multiple instances of contracts would be created. The get method 
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is used to assign the authorities from the parent contract to the child contract whereas the 

give method does the same with the counterparty and holder reversed. 

 

 

function receive(Commodity commodity, int quantity) public { 

      ContractMetadata storage c = contracts_[msg.sender]; 

      require(c.signed == true); 

      balances_[c.counterparty][uint(commodity)] -= quantity; 

      balances_[c.holder][uint(commodity)] += quantity; 

  
function delegate(address newContract) public { 
      require(contracts_[msg.sender].signed == true); 

      contracts_[newContract] = ContractMetadata( 

          contracts_[msg.sender].counterparty, 

          contracts_[msg.sender].holder, 

          msg.sender, 

          true 

      ); 

      emit Delegated(msg.sender, newContract); } 

function give(address newContract) public { 
     require(contracts_[msg.sender].signed == true); 

     contracts_[newContract] = ContractMetadata( 

         contracts_[msg.sender].holder, 

         contracts_[msg.sender].counterparty, 

         msg.sender, 

         true 

     ); 

     emit Delegated(msg.sender, newContract); 

} 
 

4.4.6 SOLIDITY SOURCE CREATION 
 
The final step of the contract transformation is generating the Solidity code for the contract. 

A wrapper contract was introduced in order to wrap the base contract, marketplace contract 

and the specific contract together. The wrapper contract includes few wrapper methods 

which assists in contract invocation. The contract logic is adequately combined in here. 
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The most important function in the wrapper contract is the proceed method, which is the 

entry point for contract execution. 

 
Finally, the transformed contract was deployed to the Ethereum blockchain using a 

decentralized application (more commonly known as a DApp in Ethereum terminology). 

 

4.4.8 SUMMARY 
 

In this chapter, the software tools and technologies utilized to implement the proposed 

solution was elaborated followed by the important functionalities of the proposed solution. 

The steps followed to create the source-to-source compiler were explained in detail in each 

subsection. The base contract and the Synergy marketplace contract which was needed to 

build the specific Solidity contract was also introduced.  
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Chapter 5 – RESULTS AND EVALUATION 

5.1 INTRODUCTION 
 
This chapter elaborates the obtained results, how they are evaluated and the success level of the 

proposed solutions. An improved proof-of-concept evaluation model has been proposed in here 

to evaluate the results. Section 5.2 highlights the results obtained at each phase. Section 5.3 

elaborates the evaluation model and section 5.4 evaluates the results obtained in comparison to 

approaches in previous works. 

5.2 TRANSFORMED CONTRACTS 
 
The frontend of the compiler is capable of generating the parse tree for any contract, 

irrespective of its complexity. The grammar was written in such a way that the composable 

nature of the Peyton Jones’ CDL is preserved. Therefore, the parse tree of complex contracts 

showcases this composable nature as well. 

5.2.1 PARSE TREE FOR A BASIC CONTRACT 

The graphical representation of a parse tree can be obtained by ANTLR4’s TestRig. Figure 

5.1 shows the parse tree obtained from TestRig GUI for the ‘one’ contract in the Peyton 

Jones’ CDL. 

 
Figure 5.1 – One Contract TestRig output 
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Similarly, figure 5.2 shows the parse tree obtained for the Zero Coupon Bond, “receive 

$100 on the “10th of January 2019””. 

 

Representation in Peyton Jones’ CDL: 
get ( truncate "10 Jan 2019" ( scale 100 ( one USD ))) 

 

 
Figure 5.2 – Parse tree output of a Zero Coupon Bond 
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5.2.2 PARSE TREE FOR A COMPLEX CONTRACT 
 
A complex contract is composed using basic contract components. Figure 5.3 shows the 

parse tree obtained from the compiler frontend for a complex contract. 

 
Representation in Peyton Jones’ CDL: 
get ( scale 30 ( one GBP)) `and`  get ( truncate "t1" (scale 120 ( one 
GBP))) 
 

 
Figure 5.3 – Parse tree for a complex contract 
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5.2.3 BASIC CONTRACT IN SOLIDITY 
 
Once the input of Peyton Jones’ CDL is processed by the compiler, the transformed contract 

in Solidity was obtained. The contract was generated by the tree walker after walking the 

AST. The below code shows the Solidity version of the basic ‘one’ contract, where 1 GBP 

is immediately received at contract execution. 

 

pragma solidity ^0.4.21; 

pragma experimental ABIEncoderV2; 

import {BaseContract, Marketplace} from './Marketplace.sol'; 

  
contract one is baseContract { 
    constructor(Marketplace marketplace, string horizon, int value) public 

BaseContract(marketplace, value, horizon) { 

    } 

    function proceed() public{ 

        marketplace_.receive(Marketplace.Commodity.GBP, 1); 

    } 

} 

  
contract wrapper is baseContract { 
    constructor(Marketplace marketplace, string horizon, int value) public 

BaseContract(marketplace, value, horizon) { 

    } 

    function proceed() public{ 

        baseContract c = new c(); 

        marketplace_.get(c); 

        c.proceed(); 

        kill(); 

    } 

} 
 

Contract invocation is done by calling the proceed() method in the wrapper contract which 

will instantiate the specific ‘one contract’ and call its proceed() function. The contract 

logic execution happens through this particular function. 

 

Next, the Solidity contract code for a basic contract component (introduced before) is shown 

below. (i.e.: Receive $100 on a particular date in future) 
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pragma solidity ^0.4.21; 

pragma experimental ABIEncoderV2; 

import {BaseContract, Marketplace} from './Marketplace.sol';  
contract c is baseContract { 

   constructor(Marketplace marketplace, string horizon, int value) public 

BaseContract(marketplace, value, horizon) { 

   } 

   function proceed() public{ 

       marketplace_.receive(Marketplace.Commodity.USD, 100); 

   } 

}  
contract wrapper is baseContract { 

   constructor(Marketplace marketplace, string horizon, int value) public 

BaseContract(marketplace, value, horizon) { 

   } 

   function proceed() public whenAlive { 

       baseContract c = new c(); 

       marketplace_.get(c); 

       c.proceed(); 

       kill(); 

   } 

} 
 

5.2.4 ORDER OF EXECUTION 

Figure 5.4 shows the order of execution of the Synergy framework. The process starts with 

the transformation of the Peyton Jones’ contract and ends when the transformed contract 

logic is executed on the Ethereum blockchain. 
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Figure 5.4 – Order of execution of a contract from transformation to contract logic execution 

 

5.3 EVALUATION 

5.3.1 EVALUATION MODEL 
 
In order to evaluate the results obtained, the evaluation model was based on few key 

implementation choices and the success of those choices. Further, these choices were 

compared with three other alternatives; Merchant contracts [29], Findel contracts [16], 

traditional financial contracts. 
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The correctness of the contract was checked using the following model showed in figure 

5.5. 

 
 

Figure 5.5 – Contract correctness evaluation 

 

The semantic correctness of a contract was checked by comparing the operational semantics 

of an original Peyton Jones’ contract with the operational semantics of the transformed 

Solidity version of the same contract. The transformed contract was executed and tested 

using Remix4, the Solidity IDE. 

5.3.2 SEMANTIC COMPARISON 
 
The contract semantics could be mapped out as follows. The comparison is done between a 

financial contract written in natural language, a financial contract represented in Peyton 

Jones’ CDL and the contract which was transformed to a smart contract. 

 

 

 

                                                
4 Remix https://remix.ethereum.org/ 
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Zero Contract 

• Natural language – Do nothing. 

• Peyton Jones’ CDL – ‘Zero’ 

• Smart contract code snippet 

pragma solidity ^0.5.2; 

pragma experimental ABIEncoderV2; 

import {BaseContract, Marketplace} from './Marketplace.sol'; 

  
contract zero is BaseContract { 
    constructor(Marketplace marketplace, string memory horizon, int scale) public 

BaseContract(marketplace, horizon, scale) {}  
    //No transaction performed as a result of this function  
    function proceed() public alive{ 
        kill(BaseContract.KillReason.EXECUTED); 

    } 

} 

contract wrapper is BaseContract { 

    constructor(Marketplace marketplace, string memory horizon, int scale) public 

BaseContract(marketplace, horizon, scale) {} 

  
    function proceed() public alive{ 
        zero newContract = new zero(marketplace_, horizon_, scale_); 

        marketplace_.get(newContract); 

        newContract.proceed(); 

        kill(BaseContract.KillReason.EXECUTED); 

    } 

} 
 

The ‘zero’ contract is one of the most basic contracts in the financial contract world. It 

simply says to ‘Do nothing’. Peyton Jones et al. have defined the ‘zero’ combinator, in order 

to specify the contract which does nothing. The transformed Solidity code of this basic 

combinator does not execute any action (The proceed() function in the ‘zero’ contract does 

not include any transaction). It simply kills the contract as soon as it is executed with no 

transaction happening. There is no action as a result of the contract. Therefore, the ‘zero’ 

combinator and the ‘zero contract in Solidity’ operates in the same manner which makes 

them semantically equivalent. 
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One Contract 

• Natural language – Receive $1 immediately. 

• Peyton Jones’ CDL – ‘one USD’ 

• Smart contract code snippet (complete contract code is included in the Appendix) 

marketplace_.receive(Marketplace.Commodity.USD, 1); 

 

function receive(Commodity commodity, int quantity) public { 

     ContractMetadata storage c = contracts_[msg.sender]; 

     require(c.signed == true); 

     balances_[c.counterparty][uint(commodity)] -= quantity; 

     balances_[c.holder][uint(commodity)] += quantity; 

} 
 
The ‘one’ contract is the other most basic contract among financial contracts. The semantics 

of this contract mentions that the counterparty should receive $1 immediately from the 

holder of the contract. Peyton Jones et al. have introduced the ‘one’ combinator for this and 

the contract is written as ‘one USD’. When the transformed Solidity code of this contract is 

executed, the receive() function of the marketplace contract is called and it transfers $1 from 

the holder’s account to the counterparty’s account. Therefore, the behavior of the 

transformed contract is the same as how the semantics suggests in the Peyton Jones’ 

contract. As such, the transformed ‘one contract’ is semantically equivalent to the Peyton 

Jones’ one contract. 

 

 Contract Component (i.e.: Zero Coupon Bond) 

• Natural language – Receive $100 on the 31st of January 2019. 

• Peyton Jones’ CDL – ‘get ( truncate “31 January 2019” ( scale 100 ( one USD)))’ 

• Smart contract code snippet 

marketplace_.receive(Marketplace.Commodity.USD, 100); 
 

A basic contract component was introduced in this study in chapter 3, where it could have 

one or more combinators from one, scale, truncate and get/give. A zero coupon bond is one 

such contract which includes all these combinators. The semantics of this particular contract 
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states that $100 should be received by the counterparty at the specified future date. The 

transformed Solidity code of this particular contract transfers 100 units of USD to the 

counterparty on the said date when the propose() function of the wrapper contract is 

invoked. Therefore, the semantics stand correct for the basic contract component introduced 

as well. 

 

Complex Contract (i.e.: A contract with operators and/or) 

• Natural language – Receive $100 on the 31st of January 2019 `and` give $10 on the 

5th February 2019. 

• Peyton Jones’ CDL – ‘get ( truncate “31 January 2019” ( scale 100 ( one USD ))) 
`and` give ( truncate “5 February 2019” ( scale 10 ( one USD )))’ 

• Smart contract code snippet 

pragma solidity ^0.5.2; 

pragma experimental ABIEncoderV2; 

import {BaseContract, Marketplace} from './Marketplace.sol'; 

  
contract c1 is BaseContract { 
    constructor(Marketplace marketplace, string memory horizon, int scale) public    

BaseContract(marketplace, horizon, scale) {} 

    function proceed() public alive { 

        marketplace_.receive(Marketplace.Commodity.USD, 100); 

        kill(BaseContract.KillReason.EXECUTED); 

    } 

}  
contract c2 is BaseContract { 
    constructor(Marketplace marketplace, string memory horizon, int scale) public 

BaseContract(marketplace, horizon, scale) {} 

    function proceed() public alive { 

        marketplace_.receive(Marketplace.Commodity.USD, 10); 

        kill(BaseContract.KillReason.EXECUTED); 

    } 

} 

contract wrapper is BaseContract { 
    constructor(Marketplace marketplace, string memory horizon, int scale) public 

BaseContract(marketplace, horizon, scale) { 

    } 

    function proceed() public alive { 

        c1 newContract1 = new c1(marketplace_, horizon_, scale_); 
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        c2 newContract2 = new c2(marketplace_, horizon_, scale_); 

        marketplace_.get(newContract1); 

        marketplace_.give(newContract2); 

        newContract1.proceed(); 

        newContract2.proceed(); 

        kill(BaseContract.KillReason.EXECUTED); 

    } 

} 
A complex contract has the nature of being combined by one or more operators (and/or). 

The semantics of a contract which has two basic contract components combined by ‘and’ 

implies that both basic contract components should be executed. The transformed Solidity 

code behaves in such a way, where both c1 and c2 contracts are executed on the blockchain. 

Each line in the Solidity code is executed sequentially which enables both c1 and c2 to 

proceed their contract logic. This replicates the functionality of the ‘and’ combinator 

introduced by Peyton Jones et al. Therefore, two basic contract components tied together 

with an ‘and’ behaves as expected in par with the representation of Peyton Jones’ CDL. 

 

Since the composable nature of contracts introduced in the Composing Contracts by Peyton 

Jones’ et al. [2] is preserved through the compiler built in this study, it could be showed that 

if semantics are equivalent for the basic contract components and the operators of the 

transformed contracts, it is also equivalent for unforeseen complex contracts. The inductive 

logic of semantic equivalence was built as follows. 

 

𝐵𝑎𝑠𝑒	𝐶𝑎𝑠𝑒	(𝑘 = 1) ; 𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒	

𝑘 ; 	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	

𝑘 + 1 ; 	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	`𝑎𝑛𝑑/𝑜𝑟`	𝐵𝑎𝑠𝑖𝑐	𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡

≡ 𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	`𝑎𝑛𝑑/𝑜𝑟`	𝐵𝑎𝑠𝑖𝑐	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡	

∴ 𝑘 = 𝑛 ; 	𝑃𝑒𝑦𝑡𝑜𝑛	𝐽𝑜𝑛𝑒𝑠:	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑤𝑖𝑡ℎ	`𝑛`	𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

≡ 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦	𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑤𝑖𝑡ℎ	`𝑛`	𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 

 

Therefore, it was concluded that the transformed contract behaves as expected by the Peyton 

Jones’ CDL representation and that the transformed contracts are semantically equivalent 

to Peyton Jones’ contracts. 
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5.3.3 EVALUATION OF IMPLEMENTATION CHOICES 
 
The implementation choices made in this study and certain features has been compared with 

one previous work [16] (referred to as Findel) and one parallel work [29] (referred to as 

Merchant). Implementation choices of this study are stated under ‘Synergy’, the name of 

the compiler for this study. 

 
1. Contract transformation output 

Table 5.1 shows the comparison of three implementations in terms of how the Peyton Jones’ 

contract transformation to Solidity is achieved. 

 
Table 5.1 – Contract transformation output comparison 

 

 Findel Merchant Synergy 

Choice Only the marketplace 
contract is deployed. 
Creation of Findel 
contracts happen by 
calling functions in 
the marketplace 
contract. 

A Solidity contract is 
created at each 
combinator which 
results in a nested 
series of contracts 
for a single input. 
The marketplace is 
deployed separately 
along with the 
contracts created for 
combinator. 

The marketplace contract 
is deployed separately 
which includes common 
functions required for 
specific contracts. A new 
contract is created only at 
a get/give, and/or 
combinator. Information 
about the specific contract 
is retrieved and stored by 
the tree walker from the 
parse tree of the contract 
input, up until that point. 
 

Evaluation No need for a special-
purpose compiler. 
Findel language was 
introduced and it is a 
deep embedding in 
Solidity. 

A contract has been 
considered as a NFA 
and each combinator 
as a state of the 
NFA. As transition 
to each state requires 
a creation of a new 
contract, the 
efficiency is very 
low. (Contract 
creation is the single 
most expensive 

The approach has been 
designed in a way to keep 
the number of contracts 
created at a minimal. For 
a contract that has one 
operator, only 3 specific 
contracts will be created 
in here; two for the basic 
contract components and 
one for the operator. 
Therefore, this method is 
much efficient opposed to 
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operation on 
Ethereum – costs 
32000 gas) 

creating a nested series of 
contracts such as in 
Merchant [29]. 
 

 

 

2. Autonomous execution and execution guarantee 

Table 5.2 shows the comparison of three implementations in terms of whether contracts 

have autonomous execution and whether there is an execution guarantee for contracts. 

 

Table 5.2 – Autonomous execution and execution guarantee comparison 

 

 Findel Merchant Synergy 

Choice Findel is a language 
embedded in Solidity. 
Therefore, inherently 
Findel contracts are 
smart contracts. 
However, Findel 
contracts are not 
guaranteed to execute. 

Contract 
enforcement should 
be initiated 
externally. There is 
no autonomous 
execution. If a 
contract is not 
enforced, it is 
considered as a 
mutual agreement to 
void the contract. 
 

Contract enforcement 
happens autonomously 
through the Ethereum 
alarm clock (EAC) 
service. The timeline of 
the contract is not 
required to be tracked as 
the EAC service monitors 
the horizons of the 
contracts and executes at 
the correct date. 

Evaluation If there is no 
execution guarantee, 
the timeline of the 
financial contracts 
would not be 
functional. Therefore, 
this is a limitation in 
the system. 

One of the key 
objectives of 
autonomous 
execution is not met. 
Explicit invocation 
is not very feasible. 
Therefore, there is 
no execution 
guarantee as well.  

EAC is an incentive based 
service. The users will be 
given an incentive for 
invoking a call to the 
contract. This is initiated 
by the service itself. This 
meets the objective of 
autonomous contracts in a 
trustless environment. 
However some 
preprocessing is required 
such as pre-payment of 
gas, incentives to the 
random user who will be 
doing the invocation, etc. 
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3. Execution cost 

The execution cost on the Ethereum blockchain is measured in units of gas on the Ethereum 

blockchain. A gas estimation is done beforehand and then adequate number of gas units are 

specified for a contract. If the execution runs out of gas before completion, the contract gets 

void and the gas is lost. The executor cannot regain the gas spent. Therefore, it is critical to 

specify adequate number of gas units for execution completion. 

 

Gas price is very competitive on the Ethereum blockchain among the peers. As of January 

2019, the price of one Ether is about $158. Additionally, the minimum cost per unit of gas 

is approximately 1.1 Gwei (2 x 10-9 Ether). The cost to deploy the Findel [16] marketplace, 

for example, is calculated as follows; 

 

 

2	 ×	10HI 		
𝐸𝑡ℎ𝑒𝑟	
𝑔𝑎𝑠 	× 	

	$	158
𝐸𝑡ℎ𝑒𝑟 		× 	1797270	𝑔𝑎𝑠	 = $	0.568	 

 

 

Remix, the in-browser Solidity compiler and blockchain simulator was used in this study to 

compile, deploy and measure the contracts. All contracts were compiled with the Solidity 

compiler --optimize flag enabled. Remix reports both transaction cost and execution cost.  

 

Figure 5.6 shows the comparison of transaction costs of different actions of Findel contracts, 

Merchant contracts and Synergy contracts. 
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Figure 5.6 – Comparison of transaction costs in terms of gas units on the Ethereum blockchain 

 

The graph indicates that Synergy contracts are more efficient in terms of creation of specific 

contracts, executing different actions, etc. than the other two contract frameworks. The main 

reason for the low transaction cost of contract creation in Synergy is due to the fact that 

minimal number of contracts being created compared to Merchant. This makes the overall 

execution efficient and less costly for the owners of contracts. 

5.4 SYNERGY OVER TRADITIONAL FINANCIAL CONTRACTS 
 
The main objective of this study was to facilitate autonomous execution of a financial 

contract in a trustless environment without the interference of a CCP. Traditional financial 

contracts suffer from the fundamental risk of not being executed at the correct date and also 

the parties in the contract have to trust the CCP in order to give them the correct result. 

Therefore, the main motivation behind this study was to map two domains (financial 

contract domain and the smart contract domain) to eliminate the CCP and achieve better 

contract execution. Therefore, the proposed solution in this study has the following 

advantages over traditional contracts. 
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• Autonomous execution; no need of tracking a contract timeline. 

• Execution in a trustless environment; a CCP is not required. 

• Less errors than handcrafting manual contracts. 

• Time-to-market is low because complex contracts are composed using basic 

contracts than being written from scratch. 

 

5.5 SUMMARY 
 
This chapter elaborated on the proposed evaluation model for contract transformation from 

the financial contract domain to the smart contract domain. The results obtained were 

explained in detail and an evaluation framework was proposed. The Synergy contracts of 

this study were compared with other approaches in the past and also with a parallel work 

and the benefits of the proposed solution was highlighted over the others. Finally, the latter 

part of this chapter stated how the main objectives of this study has been achieved and why 

it contains a benefit over traditional financial contracts.  
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Chapter 6 – CONCLUSIONS 

6.1 INTRODUCTION 
 
This chapter includes a review of the research aims and objectives, research problem, 

limitations of the current work and implications for further research. 

 

6.2 CONCLUSIONS ABOUT RESEARCH QUESTIONS 
(AIMS/OBJECTIVES) 
 
The main aim (included in the first research question) of this study was to eliminate the 

CCP of financial contracts in order to reduce execution risks of financial contracts. In order 

to achieve this aim, the opportunity was captured with the emergence of Ethereum and smart 

contracts, where autonomous execution in a trustless environment was possible. The 

proposed solution to achieve the objective in this study consisted of few steps. The Peyton 

Jones’ CDL was extended to a deep embedding, a source-to-source compiler was built in 

order to convert financial contracts to smart contracts, enhanced the compiler to preserve 

the composable nature of the Peyton Jones’ CDL and finally the converted contracts were 

deployed to the Ethereum blockchain to check their functionality. We identified that even 

though there were few semantic differences between the Peyton Jones’ CDL and Solidity, 

it was possible to build a compiler which performed the contract conversion successfully. 

Through this, we managed to achieve the main objective of this study. 

 

The second research question was about preserving the properties of the Peyton Jones’ CDL 

in the transformed contract. Through the evaluation framework proposed in this study, we 

identified that the semantics were preserved in the transformed contract. Further, the 

composable nature of the Peyton Jones’ contracts was also preserved through the compiler 

built in this study as the transformed contract too portrayed composability. It was possible 

to let the transformed contract execute at a future date through the Ethereum Alarm Clock 

service which guaranteed autonomous execution at a future date. An initial objective of this 



   
 

  
 

62 

study was to explore the contract calendar of a transformed contract. A dynamic contract 

calendar was built in a previous work [21] for traditional financial contracts. Even though 

it was highlighted in this paper, that a contract calendar is a must to observe the dynamic 

nature of contracts, we identified that a contract calendar is of no use for the contract 

execution in our solution. This is due to the fact that it facilitates autonomous execution as 

a result of the financial contract being a smart contract. Thus, it can be concluded that the 

proposed solution in this study is a feasible mechanism to eliminate the CCP of financial 

contracts and facilitate autonomous execution in a trustless environment. 

 

6.3 CONCLUSIONS ABOUT RESEARCH PROBLEM 
 
The risks of central counterparty involvement in financial contracts has been a major 

concern. The need was out there to build autonomous contracts which did not need a central 

counterparty to manage the transactions. There were many attempts in the past to re-

implement financial contracts in the Ethereum blockchain domain [16] [24] . However, they 

suffered from certain issues due to the error-prone nature of Solidity and Ethereum platform 

limitations. After much research on the domain, we identified that a financial contract is 

best represented using a DSEL. Therefore, re-implementing it on the smart contract domain 

did not seem beneficial as it will eliminate important properties of the DSEL. Therefore, a 

solution which was more beneficial was to transform the contract from one domain to the 

other. There were no proper implementation in converting a financial contract to a smart 

contract in past researches. This was a clear research gap identified after conducting the 

literature review. 

 

This study has contributed to the financial contract domain significantly as it reduces certain 

risks imposed on contracts due to manual traditional methods that are being used in the 

present context. For example, the proposed solution of this study was able to eliminate the 

CCP risk, mitigate counterparty risk and credit risks. This improves the reliability and 

efficiency of contracts drastically. Further, having autonomous execution would eliminate 

the need for the counterparties to keep track of the contract calendar manually. 
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A source-to-source compiler was built in this study which is a significant computer 

scientific contribution. The compiler can be extended to transform contracts to any suitable 

scripting language. Solidity was chosen in here as it is the most used and tested scripting 

language for the Ethereum blockchain. However, it is just an intermediate language for the 

transformation purpose.  

 

With the contributions of this study, it could be concluded that smart contracts could be the 

first step to formulate a reliable, fast and transparent financial market. Having shown that 

financial contracts can be represented on a decentralized network such as the blockchain, 

this study takes one step closer to the reality of a transparent, trustless financial market in 

future. 

 

In summary, this study has proposed a source-to-source compiler to convert financial 

contracts to smart contracts, explored the functionality of such transformed contracts when 

executed on the Ethereum blockchain and has proven that financial constructs suggested by 

Peyton Jones et al. can be easily expressed on a blockchain. Overall, it was shown that it is 

possible to achieve autonomous financial contracts to execute in a trustless environment 

making the CCP involvement insignificant for contract execution. 

 

6.4 LIMITATIONS 
 
The language extension done in this study was only for the combinators of contracts. The 

combinators for observables weren’t extended nor utilized for the transformation in the 

compiler. Further, the study was restricted to the Peyton Jones’ CDL as the source language 

and did not explore any other DSEL for financial contracts due to time constraints. A readily 

usable, optimized compiler was not built through this study, but only a workable version of 

the compiler was developed due to time constraints.  

 

The extent to which a transformed contract is reliable, transparent and efficient depends on 

the facilitations by the Ethereum platform as well. Since the Ethereum platform and Solidity 
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is still under development, certain limitations are imposed on our results as well. Few such 

limitations are discussed below. 

 

• Reliability of contract execution is mostly weighed upon the Ethereum platform. One 

major dependency of contract execution in this study was facilitating autonomous 

execution through the Ethereum Alarm Clock service. This is a third party service which 

needs to be integrated explicitly as a separate smart contract. The lifetime of autonomous 

execution of contracts proposed in this study depends on how long this service would 

be maintained by the developers/community. 

 

• Efficiency is another major problem when it comes to financial contracts. Financial 

markets operate on the scale of milliseconds [18]. However, operations on the 

blockchain cannot accommodate such speed efficiency. As of now, it takes 15 seconds 

approximately for a block to be mined and to be added to the blockchain and the 

maximum throughput of the Ethereum blockchain is approximately 15 transactions per 

second. By contrast, the NYSE Group processes around 200 trades per second. 

Therefore, the blockchain does not seem to facilitate the speed required by financial 

markets. However, this is still an ongoing area of research [19]. 

 
• Transparency is achieved on the blockchain by the distributed ledger system. Each 

peer on the network would be aware of all transactions and contract executions on the 

blockchain. However, since Ethereum addresses are not tied up with public identities, 

transparency in terms of who performs a transaction is limited. This creates a problem 

of liability on the network in terms of debt enforcement when executing contract logic. 

 

Even though these limitations have minor impact on our proposed solution, further research 

and development is required to mitigate these in order to use such a system in a real financial 

market. 
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6.5 FUTURE WORK 
 

6.5.1 COMPILER IMPROVEMENTS 
 
The correctness of the compiler needs to be proved before using Synergy in a live 

environment. Popular DApp frameworks such as Truffle or Embark could be used to build 

a test suite for contracts as they include a test framework as well. Further, the compiler could 

be extended to support observables. This is a key extension that will be required as most 

derivatives execute based on observable values. The compiler could be optimized even more 

in future to reduce the number of contracts created for a particular input. This would reduce 

execution costs and increase performance of contract execution on the blockchain.  

 

6.5.2 DEBT ENFORCEMENT 
 
The proposed solution does not state the consequences of executing a contract when the 

holder’s commodity balance is zero. In such a situation, there would be no commodities to 

transfer to the counterparty when the contract is executed, resulting in addition of debt for 

the holder. How debt is handled on the Ethereum blockchain remain a complex and 

unsolved issue. This would require extensive further work in order to come up with a 

solution. 

 

6.5.3 REDUCING COMPILER OVERHEAD 
 
The proposed solution in this study required the contracts to be compiled to an intermediary 

language, Solidity. However, a more optimized solution would be to directly compile 

contracts to the Ethereum Virtual Machine bytecode from the Peyton Jones’ CDL. This 

would reduce the overhead in compilation. This would require significant development 

effort in the future. 
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APPENDIX A – CODE LISTINGS 
 
The following code segment shows the implementation of the tree walker of the compiler. 
 
function recurse (tree, list) { 

    let tempList = []; 

    let currentKeyword; 

  
    if (tree.getChildCount() == 0) { 
        let nodeText = tree.getText(); 

        if (nodeText === "(" || nodeText === ")") { 

            return list; 

        } 

        list.push(tree.getText()); 

        //console.log(list); 

        return list; 

    } 

  
    for (let i = 0; i < tree.getChildCount(); i++) { 
        tempList = recurse(tree.getChild(i), tempList); 

    } 

  
    for (let i = 0; i < tempList.length; i++) { 
        let keywordList = ['get', 'scale', 'one', 'zero', 'give', 'truncate', 'then', 

'anytime', '`and`', '`or`']; 

        for (let j = 0; j < keywordList.length; j++) { 

            if (keywordList[j] === tempList[i]) { 

                currentKeyword = tempList[i]; 

  
            } 
        } 

    } 

  
    switch (currentKeyword) { 
        case 'scale': { 

            list.push(tempList[1]); 

            list.push(tempList[2]); 

            return list; 

        } 

        case 'get': { 

            let commodity = tempList[1].contractValue[1]; 
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            let quantity = tempList[1].contractValue[0]; 

            let contractName = "c"; 

            let contract = `` + 

                `contract ${contractName} is BaseContract {\n` + 

                `   constructor(Marketplace marketplace, string memory horizon, int 

scale) public BaseContract(marketplace, horizon, scale) {\n` + 

                `   }\n` + 

                `   function proceed() public alive{\n` + 

                `       marketplace_.receive(Marketplace.Commodity.${commodity}, 

${quantity});\n` + 

                `       kill(BaseContract.KillReason.EXECUTED);\n`+ 

                `   }\n` + 

                `}\n`; 

  
            fs.appendFile("./contractFiles/test.sol", contract, function (err) { 
                if (err) { 

                    return console.log(err); 

                } 

  
                console.log("The file was saved!"); 
            }); 

            list.push('gt'); 

            return list; 

        } 

        case 'give': { 

  
            let contractName = "c"; 
            let commodity = tempList[1].contractValue[1]; 

            let quantity = tempList[1].contractValue[0]; 

            let contract = `` + 

                `contract ${contractName} is BaseContract {\n` + 

                `   constructor(Marketplace marketplace, string memory horizon, int 

scale) public BaseContract(marketplace, horizon, scale) {\n` + 

                `   }\n` + 

                `   function proceed() public alive{\n` + 

                `       marketplace_.receive(Marketplace.Commodity.${commodity}, 

${quantity});\n` + 

                `       kill(BaseContract.KillReason.EXECUTED);\n`+ 

                `   }\n` + 

                `}\n`; 

  
  
            fs.appendFile("./contractFiles/test.sol", contract, function (err) { 
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                if (err) { 

                    return console.log(err); 

                } 

  
                console.log("The file was saved!"); 
            }); 

            list.push('gv'); 

            return list; 

        } 

        case 'truncate': { 

            let truncateObj = {}; 

            truncateObj.horizon = tempList[1]; 

            truncateObj.contractValue = [tempList[2], tempList[3]]; 

            list.push(truncateObj); 

            return list; 

        } 

        case 'one': { 

            return [tempList[1]]; 

        } 

        default: { 

            if(list.length > 0){ 

                for(let i=0; i<tempList.length;i++) 

                    list.push(tempList[i]); 

                return list; 

            } 

            return tempList; 

        } 

    } 

} 
 
 
The following code segment shows the implementation of the Solidity contract creation. 
 
function contractCreation(tree) { 

    let list = []; 

    let contractName = "wrapper"; 

    let headers = `` + 

        `pragma solidity ^0.5.2;\n` + 

        `pragma experimental ABIEncoderV2;\n` + 

        `import {BaseContract, Marketplace} from './Marketplace.sol';\n`; 

  
    fs.writeFileSync("./contractFiles/test.sol", headers, function(err) { 
        if(err) { 
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            return console.log(err); 

        } 

  
        console.log("The file was saved!"); 
    }); 

    let contract = ``; 

    list = recurse(tree, list); 

    console.log(list); 

    if( list[0] === 'gt'){ 

        contract = contract + `contract ${contractName} is BaseContract {\n` + 

            `   constructor(Marketplace marketplace, string memory horizon, int 

scale) public BaseContract(marketplace, horizon, scale) {\n` + 

            `   }\n`+ 

            `   function proceed() public alive{\n` + 

            `       c newContract = new c(marketplace_, horizon_, scale_);\n` + 

            `       marketplace_.get(newContract);\n` + 

            `       newContract.proceed();\n` + 

            `       kill(BaseContract.KillReason.EXECUTED);\n`+ 

            `   }\n` + 

            `}\n`; 

    } 

    else if(list[0] === 'gv'){ 

        contract = contract + `contract ${contractName} is BaseContract {\n` + 

            `   constructor(Marketplace marketplace, string memory horizon, int 

scale) public BaseContract(marketplace, horizon, scale) {\n` + 

            `   }\n`+ 

            `   function proceed() public alive{\n` + 

            `       c newContract = new c(marketplace_, horizon_, scale_);\n` + 

            `       marketplace_.give(newContract);\n` + 

            `       newContract.proceed();\n` + 

            `       kill(BaseContract.KillReason.EXECUTED);\n`+ 

            `   }\n` + 

            `}\n`; 

    } 

    console.log(contract); 

    fs.appendFile("./contractFiles/test.sol", contract, function (err) { 

        if (err) { 

            return console.log(err); 

        } 

  
        console.log("The file was saved!"); 
    }); 

} 
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