A Blockchain Based Approach For

Secure E-Voting system

M.D. Sanjaya

A Blockchain Based Approach
for Secure E-Voting System

M.D. Sanjaya
Index No: 14001284

Supervisor: Dr. T.N.K De Zoysa

January 2019

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4124)

Declaration

| certify that this dissertation does not incorporate, without acknowledgement, any
material previously submitted for a degree or diploma in any university and to the best
of my knowledge and belief, it does not contain any material previously published or
written by another person or myself except where due reference is made in the text. |
also hereby give consent for my dissertation, if accepted, be made available for
photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.
Candidate Name: Mr. M.D. Sanjaya

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of
Mr. M.D. Sanjaya

under my supervision. The thesis has been prepared according to the format stipulated

and is of acceptable standard.

Principle/Co- Supervisor’s Name: Dr. T.N.K. De Zoysa

Signature of Supervisor Date:

Abstract

Voting is the process of representation of democracy in a country, to select a person
for parliament, approve a bill in a parliament and decision making in board meetings
etc. Voting systems have been around of hundreds of years and but they were evolving
very slowly. Many solutions were proposed in the history, but most of them were
rejected because of some security issues and limitations. Finally at the 21" century, e-

voting systems started to bloom with the development of the web technologies

With the development of the blockchain 2.0, the researchers started to go towards a
new destination by applying blockchain to software engineering applications. E-voting
systems were developed based on Ethereum as well as Zcash and bitcoin. But they
were not full e-voting frameworks. Due to the limitations of proposed solution, those

were unable to exist with the modern world.

In order to prove feasibility of developing a secure e-voting system by combining
some concepts of Zcash with the ethereum platform, this research is a proof of concept
to implement a full e-voting framework with voter registration, voter verification,
voting, tallying and end to end verification. To maintain user privacy, zk-SNARK
which is a concept used in Zcash for maintaining private transactions, was used. To
write Immutable codes, a concept called smart contract which is used in ethereum, was
used. Due to the experiment and testing done, it is very clear that this system is a

practical solution and works well by protecting voter privacy.

Preface

Some of novel ideas were proposed in this research. The whole research is a novel
idea, because of the previous related works targeted to solve some specific particular
problem in e-voting scenarios. But this research consists of full e-voting framework
consists of voter registration methodology, candidate registration methodology,
candidate verification methodology, voting methodology, votes tallying methodology
and votes verification methodology with less number of limitations. The concept used
for the voter registration by using secret phrase, was solely my own idea and has not
been proposed in any other study related to e-voting. The concept of applying zero
knowledge proof and smart contracts with the e-voting scenarios in this approach was
my own idea and implementation is my own work. The ethereum tool kit called as
Zokrates is used to generate proof and verifier solidity contract. However, the
development of the arithmetic circuit code was done by myself and has not been
proposed in any other study related to the domain of e-voting. The evaluation model
introduced in here was a novel idea for this domain and has not been used in any other
research with domain of “e-voting with blockchain”. The experiment done with the ten
voter accounts is my own work and has not been used in any other study related to e-

voting.

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Dr. T.N.K. De
Zoysa, senior lecturer of University of Colombo School of computing and my research
co-supervisor, Mr. T.G.A.S.M. De Silva, instructor of University of Colombo School
of computing for providing me continuous guidance and supervision throughout the
research. Both of them listened to my thoughts and made suggestions and

improvements to this e-voting framework and finally finished the dissertation.

| also take the opportunity to acknowledge the assistance provided by Dr. H.E.M.H.B.

Ekanayake as the final year computer science project coordinator.

| would like to express my gratitude to my friend Nandika Herath who gave me

suggestions and encouragement to finish this dissertation and the software.

Finally 1 would like to thank my parents who were always supporting me with their

best wishes.

Vi

Table of Contents

.. i
DT F= U= L 1 o] o iii
N 0151 1 =T PR iv
o =T PN v
ACKNOWIEAGEMENT ...ceeieiiiiiiieccinnreeeeieeiiesesnnneteeesesssesssssnnssesssssssssssssnsssessssssssssssnnnns Vi
QL= o] (30 @0 g1 =T o £ vii
LiST Of FIQUIES «euueieeereeiiiiiiiciinnneetissiissssssnnnnessssssssssssssnnsessssssssssssssnnnassssssssssssssnnnans X
[T o 1 o LN Xi
LISt OF ACIONYMS .uueiiiiiiiiiiiiiirsnnneeeiiiiisssssssnnnesssssessssssssssssssssssssssssssssnasassssssssssssnnnns Xii
Chapter 1 - INtrodUCTION ciiiieicceeeeeeteeeecccccnnnneee e e ee s e e ssnnneseessssssesssssnnnnesasssans 1
1.1 Background t0 the RESEAICHcceviierinireeieeeee e 2
1.2 Research Problem and Research QUESLIONSccvevveecieeiieiiee e 3
1.3 Justification for the reSEarch ... 4
IRV 1= 1 g oo (o] [0 o | P 5
1.5 Outline of the DISSErtationcccccevereririreeieieere e 6
1.6 DEFINITIONS.eeiiiesiieiecieeee ettt sttt sttt e et aesae e 6
1.7 Delimitations Of SCOPE.....c.cviirieieeeereerte et 7
1.8 CONCIUSION ...t ettt sttt ettt saee st e naeeneas 7
Chapter 2 - Literature REVIEWeeeeeiiiiiiiccisssnneeeiiiesiissssssnesessssssssssssssnsnessssses 8
2.1 INTFOUUCTION ...ttt st sttt e s sbe st 8
2.2 VOUING SYSTEIMSeeeieiieeeiie ettt ettt ettt e et e st e et e e sseeeabeesreaenbeessaeeaseas 8
2.3 Key concepts of Blockchain based VOtINGccccvevieeeeneevesiereeeeeereeieene 11
2.4 Voting and privacy solutions based on Blockchainscccocovvevieiiieniecnenne, 13

Vii

2.5 SUMMIAIY ..ttt ettt st e st e e st e e sabt e e sabaeesabaeesabaeesabeeesabeeenanes 15

(@3 gF=T o1 £=] GRC TR B T=1S{ T | R 16
3L INTrOTUCTION ...ttt ettt b et e e e saeeeesanens 16
3.2. RESEAICN DESIGN.....eiitieiieiieciiete ettt ettt ae st et e e e te e e ereesteenaesnnens 16
3.3 High-level architecture of off-chain and on-chain componentsc.ccce...... 19
3.4. ReQISIratioN PNASEcccvieeeireeieiiesteete et ete st reeae s esteetesseesteese e e e saeensesneens 22
3.5. Registration verification PRAaseccceeceeveeiieiieiieeeeese et 23
3.6. Election preparation Phase...........cceverirenenenieeeeeseese e 24
3.7. VO NG PNASE ..ottt ettt ettt ettt et e s e st et e sra e te e s e eraesteenseennens 24
3.8, TAllYING PRASE.......ciiiiieriieiee ettt 26
3.9. Verification PhasSec.ocveiuieiiieieseee ettt 26
3,10, SUMIMAIY ..eeiiiie ettt ettt e s e e s be e e sbt e e sbaeesbeeesabeeesabeeennseeenanes 26

Chapter 4 - IMplemMeNtationcccccceeeiiiiiiiiinsseneneieiniincssssnereeessssssssssssnsnessssses 27
4.1, INEFOUUCTION ...ttt sttt ettt e s b et sbeese e e e neesesbeseeas 27
4.2, SOTEWAIE TO0IS ...ttt 27
4.3. Secret Phrase generationcccveceereeriereereerie et ste e ae e te e sse e eneas 28
4.4. Sha256 hash calCulation...........ccceceeieieiiniscee e 30
4.5. GeNerate the ProOT........ccovieiieeeeece e 31
4.6, SMAIT CONLIACTS........eeeiieieieetee ettt ettt ettt sae e s re et eseeesseesneesaeeeas 33
A7, SUMMAIY ..eteeiieeteesite et sie et et e et e site s sbeesate e bt e sateesbeesaseenseesateesseesnseenssesseesaseans 36

Chapter 5- Results and Evaluation........ccceevveeeeeiiiiiiisssssnnneeeseinssssssssnnnessssses 37
5.1, INErOTUCTION ...ttt st st ne s 37
5.2, COSE ANAIYSIS ..veeuveeeieieeiieteseete et e et te st re et e e s te et e eseesteeteereesteeneeneens 37
TR = o 1=1 111 1=T o S PR 38
5.4, EValuation PrOPEItIES ...cc.eecveeiiiecieectee et estee et ee ettt e b aae e re e saaeebeeeens 45
5.5, EVAlUGLION CIITEIIA ...cviviiieiieiieiieeete sttt 46

0.5, SUMIMAIY ...ttt e s e e s e e e sabe e e sabe e e nans 47

(@3 gF=T o) =] g IR @0 o To] 11 1] o] g SRR 48
6.1 INEFOTUCTION ...ttt sttt st se et e et esaeenaeesesnnens 48
6.2 Conclusions about research questions (aims/objectives)cccveevveeceeriverienennns 48
6.3 Conclusions about research problemc.coeeievieiiiiineninneee e 49
6.4 LIMITATIONS ..c.veiienieieiesieseetee ettt st st sttt ae e b 50
6.5 Implications for further reSEarch............oceeveciereeii e 51

APPENTIX A DIAQIaAMS.ciiiiiiiirersnnreeetiisiesssssssnsnessssssssssssssnnsesssssssssssssssnssssssssssssssns 56

ApPpPendiX B: Code LiStINGS ..ccevvrrreeeerieiiieerrssnneeeeeiesisessssssnneessssssssssssssnnsssssssssssssnns 57

List of Figures

Figure 1.1: The research approacCh.........ccccceeueeieniecie et 5
Figure 3.1: ReSearch DeSign SEEPScccuevuererierirerieieeeee ettt 16
Figure 3.2: High level architecture of On-chain and off-chain component.................. 19
Figure 3.3: Contracts in the VOtING SYSTEMccceviiiieiirieeeeeeee e 21
Figure 3.4: High-level architecture of contracts and user interface components 21
Figure 4.1: Secret phrase eneration......coccueeeieciiee i i 28
Figure 4.2: Base 2 t0 Base 10 CONVEISIONuuiiiiiiiiiiiiiiiiiiiiiiicisesss s s nnen 30
Figure 4.3 : Sha256generate arithmetic Circuitcccovvveieeiii i, 31
Figure 4.4: Arithmetic circuit of proving pre-image for sha256hash..........ccceeeennneee. 32
FIGUrE 4.5: ThE ProOOf. ... e e e e e e e e rereeaeaeeeas 32
Figure 4.6 : Arithmetic circuit for proving pre-image for list of hashes 33
Figure 4.7 : Voter details StrUCLUIEocoi e 34
Figure 4.8 : Reset USer aCCOUNT s 34
Figure 4.9 : Candidate details Structure........cccceveee e, 35
Figure 4.10 : Functions of Election CONtractcceevevvrveeeeeeeeicciiieeeee e 35
Figure 4.11: Sha256hashTest smart contractcccccvviiieieei e 36
Figure 5.1 : Apply for Election user interfaceccocevvvveeeeeieeiccciiieeeee e 42
Figure 5.2 : user interface of generated secret phraseccccccevevvvvveeeeieeieciccinnveeeeeeenn, 42
Figure 5.3 : user interface of big integer representation of secret phrase................... 42
Figure 5.4 : user interface of voter profile.......ccceeoeeeeiieeeiii e, 43
Figure 5.5 : User interface of acceptance/ reject a voter........cccceeeeeeeecveeecieeeccneeeennen. 43
Figure 5.6 : User interface of VOTINGcooocvviiiiiiiiee ettt 43
Figure 5.7: User interface of election resultS........cccoccciiiieieei e, 44
Figure 5.8 : User interface of Candidate managementcccceevvvvveeeeeeerieiicinnveneeeeenn. 44
Figure 5.9 : Success of Proof verificationcccccee i, 44
Figure A.1 : Transactions listing in the election smart contractcccccccoeevvvvvvenneeennn. 56
Figure A.2: Account of SMart CONTIaCt......ccovveeiiiieiieiiiiiiieeeee e 56
Figure A.3: ACCOUNT OF VOTEIuiiiiiiee e e e e 56

List of Tables

Table 5.1: Transaction COSt fOr VOTercoouiiiiiiiiiieeeeeeeeeee e 37
Table 5.2: Transaction cost for election authority in an election.........ccccceeeecvveeeennnee. 38
Table 5.3: Voter details in the experimentcccceeveiiiiiiniiee e 38
Table 5.4: Evaluation MOdEel...........cccoveiiiiiiiieeeeeee s 46

Xi

List of Acronyms

EVM Ethereum Virtual Machine

zk-SNARK Zero Knowledge Succinct Non interactive Argument of Knowledge
ZKP Zero Knowledge Proof

ABI Application Binary Interface

IDE Integrated Development Environment

TX Transaction

API Application programming interfaces

GUI Graphical User Interface

DApp Decentralized application

Xii

Chapter 1 - Introduction

Election, the formal process of selecting a person for public office or of accepting or
rejecting a political proposition by voting [1]. Voting systems have been around of
hundreds of years and but they were evolving very slowly. In Sri Lanka, still uses
paper ballots based voting methodology for government elections. But current existing
paper ballot based voting methodologies have lot of drawbacks. Some of them are
Voter have to wait in a queue, Results are not trustworthy because of voting process is
not visible to the public, Cost is very high because, have to pay for all the officers who
work at polling locations as well as counting locations, Voter participation is less [2],
Takes some time to release the results, results depend on the physical security, have to
trust the officers in the polling locations as well as tallying locations, people who live

in abroad are not able to cast their vote etc.

E voting, a system supports online voting by mobile phones, Desktop or laptop
computers and Tablets. And the voter registration, voting, vote verification and vote
counting will be done via the system. In E-voting scenarios Security and
Trustworthiness is a must thing. So there should be a way to store e-voting transactions
in a secure environment. Since traditional database storage is a centralized server

based solution, it cannot be used to store e-voting transactions.

Blockchain is a distributed decentralized public ledger which can be used to store e-
voting transactions securely. So it can be used as a substitution to a database approach.
Transactions that are stored in a blockchain is publicly visible. But in e-voting
scenarios all the voting transactions should be anonymous. [3] That means “To whom
the voter voted should be publicly visible” but the details of the person who voted
should not be publicly visible.

There are some blockchains that support for anonymous transactions. But there are
other disadvantages as well in those blockchains. In this paper the solution is based on

Ethereum blockchain which is not supported for anonymous transactions. The reason

1

for using that kind of blockchain was based on literature review. The concept called
zero knowledge proof (ZKSnarks) was used to allow for the authentication of

transactions without giving any personal information to the contract.

1.1 Background to the Research

Since the e-voting have to run top of the network, the main challenge is to reduce the
risk, it might cause. In the history, many solutions have been proposed based on the
homomorphic encryption, blind signature, public key cryptography, visual
cryptography and ring signature etc. As well as nowadays researchers are doing

experiments to apply blockchain to the e voting application.

The topic of electronic voting has been discarded before the concept called blockchain
[4] coming in to the industry. There were significant number of people who argues that
electronic voting systems cannot be trusted enough to be used in government elections
due to authentication problems and integrity problems of the votes. But everyone
agreed on there is a need to introduce e-voting system due to paper based systems are
outdated.

Many researchers were trying to propose an e-voting protocols and a set of people
have proposed good solutions using blockchain based solutions. But they were not up

to the level which can be used to fill the current research gap.

“Internet voting using Zcash” [5] , a paper provides Zcash [6] based solution to the e
voting problem. The solution was suggested by T. Pavel and H. Tewari. In Zcash,

There is a special kind of transaction called as private transactions. They have
developed private transactions based e-voting solution. That means receiver and
transaction details will not be available to the public. Hence it is easy to handle e
voting transactions via private addresses by keeping the anonymity feature of the
voters. But it is not capable of writing custom logic in Zcash [6] like smart contracts
[7] in ethereum [8]. Hence this solutions doesn’t provide good logic to handle this
problem. And also under the future works section of this paper, they have mentioned

that “The ethereum protocol has been established early on in the work as a potential

2

candidate to become the platform for our voting protocol”. According to these papers,
we can make a conclusion like “Ethereum [8] will be the future of e voting problem”.

According to these papers it is very clear that still there is a research gap in this area

1.2 Research Problem and Research Questions

After suggesting many solutions also, the director boards, government still uses paper
based voting methodologies for their elections. It seems like current proposed
solutions still don’t fulfill the requirements of the top level managers of the companies
and presidents in countries. But normal people (people who voting) don’t like the
current existing voting methodologies. It can be easily understood by looking at the
less participation of elections in recent years [2]. The traditional paper based voting
methodologies requires voters to cast in appointed polling stations, which usually very
time costly. So it is very clear that there is a requirement of secure e-voting system
which can fulfill all the requirements in e-voting scenarios. And it is very clear that
still there is a research gap in this area.

In summary, there is a need for a trustworthy, transparent, privacy protected, e2e
verifiability [9] [10] , decentralized and multi-party secure e-voting system. More
specifically the following sub research questions need to be addressed

1. What are the current industry practice, to make the e-voting transactions
decentralized by using blockchains [4]?

2. How to make the e-voting transactions transparent?

3. How to protect the privacy of the voters who participate in the e-voting transaction?

4. How to make the E2E verifiability [9] in an e-voting transaction?

Nowadays many researchers trying to apply blockchain for many applications. [11]
Among those one of their intention is to give a solution to e-voting problem using
blockchain based solution. Some reasonable attempts were made by some researchers
using ethereum [8] based solutions, and Zcash based solutions. But still there is no

proper solution to cover all the needs of e voting system.

3

One of the needed feature of e voting is the transparency. When some voter voted for
some candidate it should be transparent to the audience. That means there should be a

mechanism to show that someone has voted for a particular candidate.

The voting details “who voted” should not be available to the public. Only thing that
should be available to the public is “there is a transaction happening now and it is
pointed to that particular candidate”. That means proposed solution should have a

mechanism to handle privacy of the voter.

Verifiability [9]- the voter could be able to verify that their own vote has been casted
as intended. The proposed solution should have a mechanism to view this verifiability
[9] feature. With use of blockchain [4] , when there is a transaction, it returns the
transaction address. By using that address the voter can check whether their vote has
been casted as intended. So that problem will be automatically solved by using a

blockchain to store e-voting transactions.

By looking at the sub research questions, a final research question can be generated
like this.

e How to take a blockchain based approach, to develop a trustworthy,

transparent, privacy protected, e2e verifiability, decentralized and multi-party

secure e-voting system?

1.3 Justification for the research

Previous researchers failed to produce a complete e-voting solution to this field. But
this research contains e-voting framework that fulfils the requirement of voting
scenarios. Mainly this research contains a solution to the voter privacy protection
problem. According to the solution there is no interaction between the election
authority and voter. That means only one set of information is sent to the verifier for
verification, therefore there is no back and forth communication between the prover
and verifier. [12] Here prover means the voter and verifier means the election
authority. So any person can’t detect who the voter was. This was done using zk-

4

SNARK [12]. And the tallying is not done by a person. It will be calculated by self-
executing contract called smart contract [7]. There is no third parties involved in this
process and this is more secure compared to the current existing paper ballot based

solution in Sri Lanka.

1.4 Methodology

This study was first review various type of existing solutions to the secure e-voting
problem. [13] At the second step, based on this previous works, suitable existing
protocols were evaluated. At the third step some of suitable existing protocols were
selected among existing solution pool. At the fourth step, it was taken a try to combine
existing protocols. At finally a new protocol was developed by combining existing

protocols to accomplish the above objectives of the Research.

According to the literature review which is explained in chapter 2, it is clear that future
solution to the e-voting problem will be based on combination of Zcash [6] [5] and

Ethereum [8]. Figure 1.1 represent the research approach used in this research.

End to end verifiable
system

Ethereum Bitcoin Zcash

Smart contract Zk SNARK

Voting App

Figure 1.1: The research approach

There were some properties that cannot be addressed solely using the Blockchain, for
example authentication of the voters requires additional mechanism to be integrated.
For the authentication, Ethereum addresses and automatically generated secret phrase
based solution was proposed. Then hash value of the secret phrase was stored at the
smart contract for authenticating the voters. After the registration and voter registration
verification, an arithmetic circuit need to be created by the election authority using
hash values of all the voters. For the voter privacy protecting part, zk-SNARK based
solution was proposed. According to the solution voters need to generate a proof
which proves that they know a pre-image for a hash value which are stored at the
arithmetic circuit. If a voter generate valid proof then he must be a valid voter.

Verification of that proof is done without any interaction between two parties.

1.5 Outline of the Dissertation

The thesis is structured as follows. Chapter two describes the voting problem we solve
in this report as well as current existing methodologies regards to the domain and their
problems and limitations. Chapter three describes the research design and the
methodology more deeply. Chapter four demonstrate the implementation details of the
blockchain based e-voting solution. Chapter five discuss the evaluation method and
results obtained from the evaluation method. The chapter 6, which is last chapter,

describes the conclusion and future works.

1.6 Definitions

E-Voting: Electronic system that allows a voter to record his/her ballot electronically
Voter: Person who cast the vote

Candidate: A person being considered for some kind of position by an election
Ether: Programmable tokens that are used as currency on ethereum network

Gwei: Gwei is a denomination of ether (1 Ether = 1x10° Gwei)

dApps: Decentralized applications

1.7 Delimitations of Scope

All the transactions were done using ethereum test net called Rinkeby [14] and
assumed that those test net blockchain is very similar to the Ethereum blockchain. All
the e-voting transactions were tested using fake ethers and assumed the real transaction
which can be done using real ethers is very similar to this process. The proposed
solution is mainly focused on government elections, bill approval elections in the
parliament and director board kind of multi-party elections. According to the solution
only one candidate are allowed to represent one party. The solution is not focused on
provincial elections kind of elections. Assume that all the voters have proper computer

literacy to use the system as well as generate proofs.

1.8 Conclusion

This chapter laid the foundations for the dissertation. It introduced the research
problem, main research question and sub research questions. Then the research was
justified, definitions were presented, the methodology was briefly described and
justified, the dissertation was outlined, and the limitations were given. On these
foundations, the dissertation can proceed with a detailed description of the research.

Chapter 2 - Literature Review

2.1 Introduction

Importance of developing a secure decentralized e-voting system has long been
recognized by the industry. However, numerous electronic systems have been
proposed and implemented, they were not used in the real environment. Many
researchers were trying to propose an e-voting protocols and a set of researchers have
proposed good solutions using public key cryptography, Ring signature, visual
cryptography etc. But all the e-voting requirements were not satisfied by those
solutions. In this chapter, describes the related works on e-voting and their limitations
as well as drawbacks. Section 2.2 explains the related works which were done without
using blockchain. Section 2.3 mainly focusing on explaining theories with regards to
blockchain based e-voting. Section 2.4 describes related works which were proposed

based on blockchain and their limitations and drawbacks.

2.2 Voting systems

A preliminary literature review shows that past studies are primarily focused on
particular type of solution such as homomorphic encryption [15] , End to end system
[9], Ethereum based solutions [8] [16] and Zcash based solutions [6] [5] etc. Below it’s
able to see some previous solutions and their problems.

In 2000, e-voting has been used in US election, although it is an experiment in some

area of Florida, it was a milestone in the development of e-voting. [17]

E2E systems: True voter- Verifiable elections. [9] In 2004, David chaum proposed a
solution with E2E verifiability [9]. E2E verifiability means that the voter can verify
that their own vote has been casted as intended and that the vote is accurately counted.

Here he introduced a new form of receipt using visual cryptography. The receipt

contains two parts and when one part is laid top on other, then only can see the result.
Only In the voting booth, the voter can see his or her choices clearly printed on the
receipt. After taking one part of the receipt out from the booth, the voter can use it to
ensure that the vote it contains are correctly included in the final tally. But, because the
choices are safely encrypted, before it is removed from the booth, the receipt cannot be
used to show others how the voter voted. According to the chaum’s solution, after you
input your choices using a touch screen or other input method, a small device that
looks like a cash register printer generate printout (part of which will become your
receipt). The printouts lists the name of the candidates you chose along with their party
affiliations. If your receipt is correctly posted, you can be sure that your vote will be
included correctly in the tally. A receipt that is not properly posted is physical
evidence of a failure of the election system. According to the paper this approach is

still some form of paper based approach.

E-voting using homomorphic encryption scheme. [15] Homomorphic encryption is a
form of encryption that allows computations to be carried out on cipher text, thus
generating an encrypted result which, when decrypted, matches the results of
operations performed on the plain text. Paillier cryptosystem is asymmetric algorithm
for public key cryptography. An important feature of the Paillier cryptosystem is
homomorphic property. It allows the user to register itself so that it can cast a vote.
Voter registration is done at the registration system where he enters all his required
details and is given a unique voter id. Using this unique voter id and password entered
by him, will be able to login at the client side voting page. Since this is a centralized
server based application, it is hard to guarantee the security of this homomorphic

encryption scheme application also.

E-voting protocol based on public key cryptography. [18] This solution comprises of 3
stages. Those are system access control process, voting process and collecting data
process. At the first phase user will be given a public key via a text message by using
the mobile details which was given at the user registration. At the registration phase
the voter data will be saved in a special election server then pass that data to mobile
phone Company for advance process. At the second phase users should enter the

received public key and submit his selected candidate. Then the voter data will be

9

encrypted by implementing RSA encryption algorithm with the received public key.
Then the cipher text will be sent to the government election server. At the final phase
received cipher text will be decrypted by using RSA private key and the final result of
the election will be announced. This solution is also a centralized server based

solution. So we cannot make 100% trust on a single server based solution.

Anonymous voting by two-round public discussion [19]. This solution is bit different
from above other solutions. Because it requires no trusted third parties or private
channels. It is able to execute the protocol by sending two round public messages. This
solution has self-tallying functionality. Compared with the other solution it is very

efficient solution.

Efficient maximal privacy in boardroom voting and anonymous broadcast [20]. In this
solution Kiayias and young introduced the concept of elections with perfect ballot
secrecy. That paper consists of two contributions to the e-voting research area. First
contribution is a new voting scheme. Second contribution is to construct and

anonymous broadcast channel with perfect message secrecy.

Self-tallying elections and perfect ballot secrecy. [21]. The primary objective of this
solution was to protect the privacy of users. This paper introduced three new
contributions to the e-voting domain. Those are Perfect ballot secrecy, Self-tallying,
Dispute freeness. According to this solution final vote counting process is allowed
only after voting is done by all the remaining voters. The implementation behind this
was a special method called multiparty computation. According to the solution votes
are stored as part wise with many nodes and when the election ended up, the final
results will be formed using a function which is focused on adding those multi parties.
After the election anyone can check whether the tallying phase is correct or not.

10

2.3 Key concepts of Blockchain based Voting

Blockchain: Blockchain [4] is a public distributed immutable ledger that is capable of
storing e-money based transactions. But nowadays it is used for storing application
specific transactions also. Most important feature of the blockchain is, it allows value
exchange without the need for trust or central authority. There is a special method to
check validation as well. It is needed to order the transaction (timestamp), to validate
them and get prevented from the double spending problem. Hence the network select
some random transactions from the pool of transaction (unconfirmed transaction) and
order them by putting together into groups called blocks. Blocks are therefore
organized in to one after the other in time related chain. That gives the name to this
data structure: Blockchain. Each block contains the hash value of previous block to
maintaining the immutable property of the blockchain. To add a new block to the
blockchain, every node have to find the answer to the cryptography non reversible
hash function. It could take about a year for a typical computer to guess the right
number. Since there are lot of nodes in a blockchain network, it is possible to solve a
block averagely once every 10 minutes. Then it broadcast that block to the whole

network saying that this is a valid block and containing valid transactions.

Transactions: In a cryptocurrency transaction, it is needed to sign the transaction by
private key of the sender. And the new transaction should contains previous
transaction id. That means hash value of the previous transaction and public key of the
new owner. And also signature of the previous owner. Hence looking at new
transaction, it is able to detect sender and receiver. In our case it is capable of storing e
voting transactions in a blockchain since it provides immutable property. Especially in
e voting scenarios it is not good to trust any third parties. Since blockchain is a
decentralized thing, the most suitable data structure to store e voting transactions is a

blockchain.
Proof of work [4] is a requirement to define an expensive computer calculation , also

called mining , that need to be performed in order to create new group of trustworthy

transactions (the so called block) on a distributed ledger called blockchain

11

Networks: There are different kind of networks in ethereum and other blockchains.
Main network is the ethereum public blockchain where the production applications
running and real transactions happening. It is accessible by anyone. Mining process is
going on the main net. Testnet is also a public blockchain but for testing purposes
only, not for the productions. Ex: Ropsten, Rinkeby and Kovan. A mining process is
going on the test net also. An ethereum network is a private network if the nodes are
not connected to the main network nodes. Mining process is not going on private
networks. Private deployment might use different consensus, typically does not need

incentives for participants.

Accounts: To communicate with the blockchain and to write a smart contract we need
to have a valid accounts. There are two types of accounts in ethereum. Those are
externally owned accounts (EOASs) and contract accounts. EOAs has an ether balance
and is capable of sending transactions (Ether transfer). These accounts are controlled
by private keys and has no associated code. Contract account is type of account has an
ether balance and associated code. Code execution is triggered by transactions or
messages (calls) received from other contracts. Every time a contract account receives
a transaction, its code is executed as instructed by the input parameters sent as part of

the transaction.

Public key cryptography: Public key cryptography [18] is a way of encrypting and
decrypting messages which uses two keys, one public and one private. Public key is
used to encrypt the data. Data encrypted with the public key can only be decrypted by
using the private key. Private Key is used to sign the data. Data signed with private
key can be verified using the public key. The private key cannot be derived from the

public key. But the public key can be derived from the private key.

Smart contracts [8]: Ethereum has some special feature called smart contract [20].
Smart contracts are self-executing with the terms of the agreement between buyer and
seller being directly written in to lines of code. Contracts are written in high level
scripting language like solidity, serpent or LLL. Every contract that reside on the
ethereum blockchain is stored in a specific format called EVM bytecode which is an

ethereum specific binary format

12

Metamask: [22] is a browser extension that lets ethereum users run dApps without
being part of the ethereum network as an ethereum Node. Metamask manage the
ethereum wallet, which contains your ethers, and allows you to send and receive ethers
a dApp of interest. It is easy to use ethereum network via the metamask browser

extension.

zk-SNARK: [12] A zero knowledge proof allows one party, the prover, to convince
another party, the verifier, that a given statement is true, without revealing any
information beyond the validity of the statement itself. A zk-SNARK is a variant of
zero knowledge proof that enables a prover to succinctly convince the any verifier of
the validity of a given statement and achieves computational zero knowledge without

requiring interaction between the prover and the verifier.

2.4 Voting and privacy solutions based on Blockchains

Zcash based approach with zk-SNARKS. [5]. Zcash support both anonymous and
transparent transactions as it has two types of addresses differs from the bitcoin single
address. Those anonymous transactions are called as private transactions. One of the
biggest difference between Zcash and ethereum is the proof of work system, where
Zcash relies on zero knowledge proofs. The private transactions of Zcash are based on
the zero knowledge proving system. To facilitate these private transactions without
disclosing to the others, Zcash implements zk-SNARKS (Zero Knowledge Succinct
Non-Interactive Argument of Knowledge). Zcash contribute our e-voting problem by
protecting the anonymity of users who participate for a particular transaction. But
Ethereum growing very fast and challenging to the Zcash. Ethereum supports creation
of contracts which are operated by the EVM. Contracts are the agents that bring about
the generic functionality of Ethereum and allow one to create custom behavior for

one’s blockchain application.

13

The Ethereum blockchain [8] works under concept called smart contract. Smart
contracts are meaningful pieces of codes, to be integrated with the blockchain [4] and
executed as scheduled in every step of blockchain updates. Developers started to apply
the concept behind the Ethereum platform to the other applications because it was very
easy to integrate the custom logic to the Ethereum blockchain [8]. But in our case
Ethereum doesn’t support to protect the privacy of the voter who voted for a particular
candidate. There are many researches that use ethereum to e-voting system. But they
failed to protect the privacy of the voter. The future ethereum aims to make use of zk-
SNARK to add privacy and anonymity of transactions. [23] [24] So the Future of the
e-voting solution will be combination of Zcash [6] and ethereum.

Decentralizing privacy: using blockchain to protect personal data. [25] In this paper
their main target was to keep user data themselves without giving it to third party
storage service. So their main target was to protect the user privacy. They mainly
focused this research on mobile app services and mobile users. According to their
solution when someone install new application, permissions given to the application
service will be stored in the blockchain. All the data exist in off chain. When the
service need to access particular data from the user, then they have to query the
blockchain. If particular service has access to particular data, then only they can access
the user data. User can change that permissions any time with making new transactions
on the blockchain.

On November 15, 2017, the first digital zug id was officially registered on the
Ethereum blockchain in front of a live press audience. Uport [26] launched a pilot
program to register residents’ IDs on the blockchain to unlock access to government e-

services like online voting and proof of residency [26].

14

2.5 Summary

This chapter mainly focused on reviewing previous similar works which was done
without using blockchain and with using blockchain. Their advantages, disadvantages
as well as the limitations were discussed in this chapter. Background theories which is
needed to understand the blockchain also were discussed in this chapter. Privacy
protection methods which were taken by previous researchers and how will be the

future of this domain also were discussed.

15

Chapter 3- Design

3.1. Introduction

This chapter covers proposed solutions for the research questions and step by step
design phases towards the final research aim. Research design steps consists of six
phases named as preparation phase, Registration phase, Registration verification,
Voting phase, tallying phase, Verification phase. And research approach will be deeply
explained in this chapter and research design and final product architecture also will be

explained.

3.2. Research Design

To reach the final step, several steps were passed and some steps were dropped since it
IS not the most suitable way of doing it. Some steps were deeply analyzed since it
contributed to take the research towards the aim. The Figure 3.1 displays the research

design steps.

. . Use Ganache L
Suitable blockchain blockehain Write simple smart Deploy Contract to

selection(ethereum) simulator contract the blockchain

v

Used Metamask
—> browser extension
for sign transactions

Voting prototype Test Simple e voting Moved to Rinkeby
app transactions testnet

v

Write smart
contracts (election, ——>
voting, users etc)

Integrate zero

e R, ——> | Finalize web app

Figure 3.1: Research Design Steps

16

The one of primary requirement of e voting system is end to end verifiability [9]. End
to end verifiability means voter should be able to check whether their vote has been
casted as intended. According to the literature review, to achieve end to end
verifiability previously the developers have used public bulletin boards to publish
voter details. Bulletin board is some form of notice boards. But in large scale elections,
this is not a practical solution since it cannot be publish large amount of details in a

bulletin board.

Then they have used authenticated web page to publish voter details rather than using
bulletin board. Since it is a single server base solution, it is not able to guarantee the

consistency of data. Web page based solution is not the exactly what they want.

In 2009, satoshi Nakamoto implemented the first blockchain database. [4] Then with
the era of blockchain 2.0, researchers tried to check whether is it possible to store e

voting transactions in a blockchain rather than publishing it in a web page.

Since blockchain is decentralized thing and it’s safe and secure eco system, took
developers and researchers towards developing blockchain based applications for e-

voting systems.

The research approach started with above background. Then the problem exist at that
time was to check whether it is possible to use Bitcoin blockchain for e-voting
systems. Then they realized that, with the Bitcoin network, it is possible to assume that
Bitcoin sender is the voter and Bitcoin receiver is the Candidate. Then it is possible to
calculate number of transactions for bitcoin address of Particular candidate and take it
as a voting count. But the ecosystem of bitcoin blockchain doesn’t provide best
environment for developing applications. Bitcoin blockchain doesn’t allow to write

custom logics. Hence, main problem in bitcoin blockchain is logic resides in off-chain.

Then researchers were moving towards Ethereum [8] based solution. The ethereum
blockchain focuses on running any program written in something called smart
contracts [7], in Ethereum virtual machine. The main strength of ethereum blockchain

is the smart contracts. It facilitates to write contracts between the sender and receiver.
17

In our case Voter and candidate. But the problem in ethereum is it doesn’t provide
private transactions. Because of that the details like who voted, to whom the voter

voted for etc. will be publicly visible.

Then researchers were moving towards Zcash [6] like coins which provide private
transaction and enables to hide transaction details from the public. But the problem in

Zcash is, it also doesn’t provide smart contact like concepts to write custom logics.

In this paper we decided to take the logic behind private transactions of Zcash and
apply it to ethereum. Since the logic behind Zcash [6] is zk-SNARK to protect the
privacy of users and logic behind ethereum was to write immutable contracts, the
combination of both of this will work best for e-voting scenarios. Then our intention
was to integrate zk-SNARK and smart contract together and apply that into e-voting
problem.

According to that solution, securely vote storing problem, verification problem etc can
be solved using blockchain but it’s unable to use blockchain directly for user
registration and privacy protection. If the voters were asked to download wallet or do
some configuration to communicate with the blockchain then it will not be practical.
But if it can be easily distribute ethereum addresses using browser extension
application called metamask, [22] that browser extension is the most suitable thing for
this component. Our intention was to give digital identity [27] to each and every voter
using ethereum addresses. With use of the digital identity, it is able to identify each
voter uniquely. Because according to the proposed solution identity will be hidden to
the smart contract. But smart contract can check whether this is a valid identity or not.
The logic that trying to implement that kind of privacy protected method is zero
knowledge proof.

18

3.3 High-level architecture of off-chain and on-chain

components

Here, the connection to the blockchain from user interfaces were handled via web3.js
(Ethereum JavaScript API). It’s a collection of libraries which allows to interact with
a local or remote ethereum node using HTTP or IPC connection. The figure 3.2

displays the high level architecture of on-chain and off-chain components.

Figure 3.2: High level architecture of On-chain and off-chain component

The solution consists of six contracts and those are running in ethereum virtual
machine. To communicate with the blockchain, it should contain with pre specified
interfaces called as ABI definitions. Libsnark c++ library is an implementation of
zkSNARK. It was used to protect voter privacy in smart contracts [8]. The proof was
generated using an ethereum tool kit called as Zokrates. Html,css react js files are

running as off-chain components.

The contract called as “Authentication.sol” is used to store initial user details and
maintain logic for sign-in to the system and maintain the user profile. The ethereum
address of logged in account and address of the default metamask account should be
same for every request to the blockchain except the request which is used for voting.

Because in the voting request, different address will be used.

19

The contract named as “voter.sol” consists of the logic for voter registration and voter
state update functions. After the registration for an election, they can track their
registration requests. Their registered ethereum addresses will be converted to a
verified accounts after the accounts are verified by required legislation authorities.
With every New Year the user details will be updated and verified for maintaining the
consistency. For verification process voters have to go for the grama nildhari and have
to handover valid documents within defined time period from their temporary
registration. Before registration starts at each year the verified status of all the voters
will be set to null. The grama niladhari maintains two states of voters called as “new
names recommended for acceptance” and “names recommended for rejection”. Then
the account verification/rejection process will be done via the district office. Voter.sol
smart contract will be used for these kind of state update things. In this report detailed

description for each phase will be provided.

The contract called as “candidate.sol” consists of the logic to manage candidates.
Candidate registration is done via this contract. The verification process of the
candidates is done same as the voter verification. Only the verified candidate will be
used to create Election smart contract.

The contract named “Election.sol” is used to create the election. To create an election,
only the valid candidate list will be needed. No need of valid voter list. Because
authentication process of voters will be done via zero knowledge proof. The election

contracts consist of the voting functions as well as tallying functions
The contract named as “sha256hashTest.sol” consists of the verification function to
take the parameters of the zero knowledge proof. After taking those parameters those

parameters will be passed to the verifier.sol smart contract.

The figure 3.3 displays the contracts which were used in the e-voting solution and they

are categorized according to their functionality.

20

Registration Contracts Election Contracts Zero knowledge Proof

Election.sol

Candidate.sol
Verifier.sol

Voter.sol

sha256hash.sol

Authentication.sol

Figure 3.3: Contracts in the voting system

The contract named as “verifier.sol” is used to verify the zero knowledge proof. This
contract is generated by the Zokrates ethereum tool kit. If the arithmetic circuit is
changed, the verifier contract also should be changed. Since, at a new election
registered voters changes, the arithmetic circuit should also be changed. Hence verifier
contract should be changed. The figure 3.4 displays the high level architecture of

contracts and user interface components.

District office Voter.Sol Grama Niladari user interface
If to_be_added: Use_identity Verify accounts
Verified=1 User_type Set status:
i |
If to_be_deleted: - verified To_be_added
Deleted=1 Register() To_be_deleted
: : Verifier.Sol Voter user interface
Candidate user interface off cham Databh
temporary account: Name temporary account:
Register WIEEL Register
Verified: Election a=new Valid Account:
View results Election() Vote and verify
60
Candidate.Sol sha256hash.Sol Election.Sol Commissioner of election
Name
identity year Year Setup election
register() Election a=new Vote() * Add valid candidate
Election() Tally()
| Valid candidate list 1

Figure 3.4: High-level architecture of contracts and user interface components
21

The proposed system consists with following entities. Voters (Vi), candidates (Ci),
Registration Authority (RA), Election Authority (EA).

Voters (Vi): List of eligible users that is selected via Registration Authority

Candidates (Ci): List of candidates that is selected for election.

Registration Authority (Grama niladhari and district offices): verify user details of

users who were registered metamask [22] ethereum address.

Election Authority (commissioner of election): setup a new election

The e voting system can be divided into 6 phases

o a k~ wnE

Registration phase
Registration verification phase
Election Preparation phase
Voting phase

Tallying phase

Verification phase

3.4. Registration phase

Users who hope to participate the election need to download the metamask
browser extension. By downloading and creating account there, citizens will

get an ethereum address (id).

. To register their id in e-voting voter.sol contract, the citizens sign-in to the e

voting portal by creating temporary account with their ethereum address.

The e voting web portal is requesting to register for the election with their
ethereum address. The address which is used to sign the election registration
transaction and address which is used to logged-in to portal should be same.
After clicking registration button users will get a secret phrase. VVoters need to

get the hash value of the ‘big integer representation of the secret phrase’. The

22

secret phrase and the big interger representation of secret phrase should be
stored in a secure environment for future use.

5. At the next interface users need to submit the personal details and hash values
of the secret phrase.

6. Since the citizen’s personal information is submitted from their still unverified
ethereum address, this submission requires in-person registration verification.
Users have to produce valid documents to the grama niladhari within limited

time period.

Note:the registration of candidate process is similar to this. But verification process
and document collecting process is not done by the grama niladhari and district

offices. It is done by the commissioner of election

3.5. Registration verification phase

1. After registration, citizens will be given limited time period to verify their
details by registration authority. It is able to train grama niladhari to do this
registration review task and collect required document from the voters. To do
the verification task, citizen should provide one of the official government
document (ex: NIC). Then grama niladhari verify the documents and send it to
the district office via the system using scanned copies. Then grama niladhari
login in to their portal and update the registered voter ethereum address to
“recommended for acceptance” state or “recommended for rejection” state.

2. District office registration authority sign in to the web portal admin panel using
their ethereum address which exist in the metamask. This enables the officers
to review the citizen submission with the information they provided against
their documents in-person. At this step voter acceptance or rejection will be
done and the smart contract will be updated with new states of the voters

3. After registration closes, registered voters need to wait till the election to start.

23

3.6. Election preparation phase

1. Election authority need to collect the hash values of the verified voters and
need to create the arithmetic circuit using them with the Zokrates ethereum tool
kit.

2. Then need to compile the arithmetic circuit which is written in Zokrates high
level language to machine readable code

3. Then need to generate the verification and proving key which is used to prove
and verify zero knowledge proof.

4. At next step verifier.sol smart contract will be generated with verification key
exist inside of the smart contract.

5. Then the proving key and machine readable arithmetic circuit will be uploaded
to the web portal to download it by voters.

6. At finally election authority should update the election contract by giving it a
meaningful election name, year and candidate list to the contract and should

start the election.

3.7. Voting phase

After login to the web portal via valid ethereum address exist in the metamask,
registered voters can cast their vote. The design of voting phase facilitates to protect
the privacy of voters by hiding the voter details and identity. The zero knowledge
proof helps to do that.

A zk-SNARK is a variant of zero knowledge proof that enables a prover to succinctly
convince the any verifier of the validity of a given statement and achieves
computational zero knowledge without requiring interaction between the prover and
the verifier. So in this paper the aim is to notify the validity of user details in an e-

voting transaction to the smart contract without revealing user identity.

There are three parts in zk-SNARK. G, P and V. G is called as generator, P is called as

prover and V is called as verifier. Thirds party should run the generator G by giving
24

Program C and random number lambda as input parameters. It will output the proving
key pk and verification key vk.

(px,Vk)= G(c,lambda)

Then the generator will share pxand vkwith sender and receiver. That means the prover
and verifier. Then the prover will generate the proof by giving x, w and pk as the input.
“X” is the publicly available input . “w” is the witness.

prf= P(pk,X,w)

Then that proof will be sent to the receiver that means to the verifier. At the verifier, it

gives input as vk, X and prf. It will return output as true if the proof is true.

V(Vk,X,prf)--> return true/false

So in this case prover will be the client side code and verifier will be the smart contract
[7]. Witness value created by giving correct secret phrase to the arithmetic circuit. The
public variables are output from the arithmetic circuit which is 0 or 1. Those details
will be used to generate the proof. So the proof doesn’t contain any information about
the secret phrase. But It proves that, this proof contains the knowledge for pre-image

which exist in the arithmetic circuit.

The client side need to convince the verifier by generating a proof like “the prover
know the secret phrase of one of the vote without revealing any information of the
voter to the verifier except that statement is true. Following are the steps that need to

adhere in this phase.

1. Download the machine readable arithmetic circuit and the proving key.

2. Generate a valid witness by giving correct secret phrase that matches the
sha256 hash values which exist inside the arithmetic circuit.
Create a proof by giving witness and the public inputs.

4. Submit the proof via the web portal.

25

5. If and only if the proof is correct voters will be redirected to voting
interface.

6. In this step voters need to change their metamask account to another
account which is not similar to registered ethereum address. Because to do
a transaction an ethereum address is a must thing to sign the transactions.
Hence in here need to use address which is unknown to the smart contract.
In this step the system know this is valid user because of the submitted

valid proof. So to cast their vote, the voters can use any account they have.

3.8. Tallying Phase

The tallying process is not manual thing. It is self-executing in the Election smart
contract. Hence it is trustworthy process. When voters cast their votes, results will not
be displayed to them until the election ends. After the election ended up, the calculated

votes for each candidate will be displayed.

3.9. Verification phase

After casting their votes, public people also can check whether the casted votes are
casted as intended by verifying. To verify their votes they need to have transaction
hash which they got at the voting phase. Here the verification process checks whether

their transaction is included in a block or not.

3.10. Summary

This chapter provided detailed description on the research design, high level
architecture of the on chain and off chain components of the system as well as design
of the smart contracts. And the 6 phases of the voting system was explained step by

step in this chapter.

26

Chapter 4 - Implementation

4.1. Introduction

This chapter elaborates the implementation details of the proposed solutions. Section
4.2 describes the software tools which were used in this research. Section 4.3 describes
the secret phrase generation process and section 4.4 describes sha256hashcalculation
process and the section 4.5 describes the proof generation process and the section 4.6

describes the smart contracts that is used for the registration, voting, verification etc.

4.2. Software tools

At the very beginning of this research, a software called Ganache was used as
alternative to ethereum homestead blockchain. The ganache is a blockchain simulator
and it comes with ten test accounts integrated which has ten private and public key
pairs. Each account consist with hundred fake ethers for testing purposes. Then the
ethereum testnet called Rinkeby is used. Since ganache is running in our local machine
and it is not running on distributed environment, Ganache is replaced by Rinkeby
testnet. Rinkeby testnet is more similar to ethereum homestead blockchain and can
easily view the blockchain transaction details and smart contract details via [28]. To
download the Rinkeby testnet another software called “Geth” is used. Geth is
implemented in Go language and it enables to run the ethereum testnet in local

machine after downloading.

At the early stages of the development, web3.js is used to communicate with the
blockchain and deploy smart contracts. To compile the smart contracts a compiler
called “solc” is used. Then the framework named as truffle was used. Because it is
very easy to handle smart contracts using truffle. To deploy smart contract with
downloaded version of Rinkeby testnet, it has to be deployed smart contract locally

and then need to replicate. That process takes some time and our machine also will be

27

part of mining. Hence an IDE called “remix” is used. With that solution no need of
downloading the whole blockchain to deploy smart contracts. Remix is a web based
IDE which is used to deploy smart contracts to the blockchain via online web interface
and for testing purposes of function written in smart contract. Smart contracts were
written in programming language called “solidity”. Rinkeby testnet doesn’t come with
pre-defined accounts like it was in Ganache blockchain simulator. So the person who
use the blockchain have to add accounts himself. So in this research, at very early
stage, a browser extension called metamask is used to communicate with the

blockchain.

To generate the zero knowledge proof [12] an ethereum tool kit called as Zokrates [29]
was used. It run on docker container and helps to calculate the sha256hash generation
process as well as the zero knowledge proof generation process. There were many off
chain components in this system. Those were developed using react js javascript

framework and jsx was used with react to render the html components.

4.3. Secret phrase generation

At the registration phase of the voter, voter will be given automatically generated
secret phrase. It’s a combination of the upper and lower case letters which has 64

characters. Figure 4.1 displays the secret phrase generation code block.

randomString() {
var charSet = '"ABCDEFGHIJELMNCPORSTUVWEYZabodefoghijklmnopgrastuvwxyz':
var randomString = '!';
for (var i = 0; 1 < 647 i+4) {
var randomPoz = Math.floor (Math.random({) * charSet.length);
randomString += charSet.substring(randomPoz, randomPoz+1);

return randomString;

Figure 4.1: Secret phrase generation

28

As an example, the following phrase is a generated random secret phrase.

dPwixicthNYVNgThmWZgNSyWtKelmZjGIpRgERrAryiMIxLuLmbjxgbwudnbXYU
S

This phrase has 64 characters and need to encode it to 512 bit binary representation
since the voter need to calculate the sha256 hash value of the secret phrase. The input
to the sha256 hash is 512 bit and output from the sha256 hash is 256 bits. This is the
encoded 512bit version interpretation of the above secret phrase.

011001000101000001110111010010010111100001101001011000110111010001101
00001001110010110010111011001001110011001110101010001101000

011011010101011101011010011100010100111001010011011110010101011101110
10001001011011001010100100101101101010110100110101001000111

010010010111000001010010011001110100010101010010011100100100000101110
01001111001011010010100110101101100011110000100110001110101

010011000110110101100010011010100111100001100111011000100111011101110
10101100100011011100110001001011000010110010101010101010011

It is represented as 4 parts with each part is interpreted with 128 bit numbers. To
calculate the sha256 hash via Zokrates [29] ethereum tool kit, input parameters should
be 254 bit maximum length. That’s the reason for dividing 512 bits version of the
secret phrase to four parts. To calculate the sha256 hash, those four parameters should
be given as big integers. The following is the big integer representation of the secret

phrase.

133340602754838679641981343934269838440
145339415761135797541089420193811819079
97616852279997134974522228037740153973

101589284148823472461439080844888724819

29

The following function in figure 4.2 is used to convert the 512bit interpretation of base
2 binary number to base 10 big integer number

convertBase (bigint, inputBase, outputBase) {
var inputValue= = this.parseBiglnt (bigint, inputBase),

outputValues = [], //output array, little-endian/lsd order
remainder,

len = inputValues.length,

pos = 0,

i;

while (poz < len) { //while digits left in input array
remainder = 0; //set remainder to O
for (i = pos; i « len; i++) |
//long integer division of input values divided by output base
Jfremainder iz added to output array
remainder = inputValues[i] + remainder * inputBase;
inputValuez[i] = Math.floor (remainder / outputBase):

remainder -= inputValues[i] * outputBase;
if (inputValues[i] == 0 && i == pos) {
DosS++;

outputValues.push (remainder) ;

outputValues.reverse(); //transform to big-endian/msd order
return thiz.formatBiglnt (outputValues, outputBase);

Figure 4.2: Base 2 to Base 10 conversion

4.4. Sha256 hash calculation

To calculate the sha256 hash of the secret phrase, voters will be given an arithmetic
circuit called as sha256generate.code. Figure 4.3 displays the source code of arithmetic

circuit which was written to calculate the sha256 hash values of the secret phrases.

30

import "LIBSHARE/sha2Sepacked"

def main(private field a, private field b, private field ¢, private field d) -» (field, field):
h0, hl = shalSépacked(a, b, c, d)
return h0, hl

Figure 4.3 : Sha256generate arithmetic circuit

Using the arithmetic circuit voters will compute the 256 bit hash. Since return
parameter maximum length is 254 bits, the output will be divided in to two parts and
will be retuned as big integers.

The following phrase is the output from the above circuit

~out_1 327485948427890063163657922405583843277
~out_0 73098509705847516637526624146845665259

4.5. Generate the proof

Voters need to generate a proof to convince the verifier that they know the secret
phrase for above hash values which is existing in the second arithmetic circuit called as
sha256hash.code

This is the arithmetic circuit which is created using submitted hash values of the
voters. Here it contains only one hash. But if there are three voters then need to write
the arithmetic circuit with three hashes by implementing logic with ‘OR’ gates. Since
there are no OR gates in the zokrates high level language, it will be needed to write
another logic to do that. Figure 4.4 displays the arithmetic circuit which was used to

generate the witness.

31

import "LIBSHARK/shalZSépacked"

def main(private field a, private field b, private field ¢, private field d) -> (field):
h0, hl = shaZiepackediz, b, c, d)
h0 == T3098509705847516637526624146845665259

h

== 327485948427890063163657922405583843277

return 1

Figure 4.4: Arithmetic circuit of proving pre-image for sha256hash

If the preimage for the above function is correct, it will generate the witness file. Then

using the witness file and the public outputs, the generation of the proof will be done.

The following is the proof generated for the above circuit. Figure 4.5 displays the

generated proof.

"proof™:

i

"AM: ["Ox2f6a568985b4becETT780b454ablabbd5c2baffEfre0dbcac28el8b333d2dbeS",

"O0x152edcabB82582683410a8e06cal8bca32adbbch210f2fecdacicaccib3bedTEa6"],

"L p":["0x24ba60e4dad90fa5316c26431379L391544deefITd69T78a518e02aldbd3E8a0d",

"0x1c41f06294dce2cd445a7a7a0cle8b79b9214ef069061b42cc594bddd178cde45"],

R .
[["0x9f5a2850efffa29f83352Th4cc28cf385bel8b3ed3cliesalaacsii3eslTebls,
"0xd0f7c0al117a%cE6eTa7063d5172cTe8cl98cad7dd5292b56d06E16596c0606T"],
["0x216b16£387e3093£35ale3e366a62T8b02518%eThdbb1a801282c825b5bbaZea™,
"0x25ea4d278118362dd16583£21b21299b42ac5%albedT6476ETbd6d%a145e80856"]],

"B p":["0x2492b12772263abdd3bl46e6bat05363b 3 Tdbbacdelfeclaldle842bh4688866",
"0x18f959452069d75bf61c304954£8d434063bd80d613cclbZecabebboib4282233"],

mCM: ["0x230a0bl7b211c4£3388956402647T8dcechBdfeccaasBba849fe 56 TERT23TEEY,
"O0x2cbaS9f8fb3Tfcchbl7e7441cdba787b841a65acl7edecblfc]l89cabiealeabb3807],

"C p":["0x210b4b47cTb3cife40d64b2becT59218008d102a5L361fe38Th5eTec281d294097",
"0x3053732fc5b3028e2295a232920536c4665254b0755b9c82d44b1ac0b5392108k"],

"H": ["0x22b8cb4l66a4b37638e93bebTelece3clliz04£0298c97ebcE3efneffibd2074",
"0x29c062865e212ed6ddbT1cE2650f47848491cdefebed569297fab3d5b3bd635"],

"EM: ["OxleZabefacfee992d0cTaTeda3l5662cTh947hbalbd867208acf26d276002c296e™,
"0x23af%abecd494c8b35847912aflbTelali2c6Tacco968cefb4f1eade3d70974"]

Tinput™: [1]

Figure 4.5: The proof

32

If there are more than one voter in the system, the following circuit was used by using
array of hash values of the voters. In this example code, there are two voters. If there
are more than two voters, can write the arithmetic circuit by adding voter’s hash values

to the array.

import "LIBSNARE/=shaZ5epacked”

def main(private field a, private field b, private field c, private field d) -> (field):
field[2] hashl = [73098509705847516637526624146845665259,113738447700479173714816867410493084445)
field[2] hash2 = [327485948427890063163657922405583843277,38770939250833947590945745017321709757)

field resultl = 0
field result2 =0
fieldz =10
fieldt =10

h0, hl = sha2bépacked(a, b, c, d)

for field 1 in 0..2 do
resultl = if hashl[i] == hO0 then 1 else 0 fi
result2 = if hash2[i] == hl then 1 else 0 fi
Z = 1f resultl == 1 then result? else 0 fi
t=1if z =1 then 1 else 0 fi

endfor
return t

Figure 4.6 : Arithmetic circuit for proving pre-image for list of hashes

4.6. Smart Contracts

Voter.sol is the contract which is used to register voters. Initially the verified status of
voters are false. That mean when they register, they will get temporary account. After
providing the required document, the grama nildhari updates the to_be_added status to
true. Then district office review it and set to_be added status to false as well as
verifies status to true. Then the voter will get verified account for particular election.
After the election, again their verified status is set to false. This is the structure which
is used to store voter details. Figure 4.7 displays the voter details structure in voter

solidity contract.

33

struct VoterDetails {
bytes32 name;
bytes32 nic;
bytes32 hashOfSecret;
bool submitted to review;
bool to be deleted:
bool to be added;
bool deleted:
bool wverified:
bool temp registered;
bool wvoted:

Figure 4.7 : Voter details structure

This is how the reset is done for a voter. In here all the parameters will be set to default

values. Figure 4.8 displays the function for resetting a user account to default state.

function reset (address wvoterfddress) public{
voters [voterhAddress] . submitted to review=false;
voters [voterhAddress] .to_be added=false;
voters[voterhddrezz].to be deleted=falsze;
voters[voteriddress] .deleted=falze;
voters|[voterfddress] .verified=falze;
voters[voterhddress].tenp registered=true;
voters [voterfddress] .voted=falze;

Figure 4.8 : Reset user account

Candidate.sol is the contract which is used to register candidates. At initially, the
accepted status of the candidate will be false. The commissioner of election review
these list and update their status. When creating election contract, only accepted
candidates are passed as constructor parameters. This is the structure which is used to
store candidate details. Figure 4.9 displays the structure which was used to store

candidate details in the candidate smart contract.

34

struct CandidateDetails {
byte=32 name;
addresz addr:
byte=32 nic;
byte=s32 party:
bool doesExist;
bool accepted;

Figure 4.9 : Candidate details structure

Election contract consist of the voting functions and total votes calculate functions.
When particular voter casted his vote, the vote count of the candidate will be increased
by one. The voters are given only one chance. Hence they can’t vote more than one in
a single election. Figure 4.10 displays the some functions which are exist in the

election smart contract.

function totalVotesFor (uint candidate) wview public returns (uintg){
require (validCandidate (candidate)):
return votesRecelived[candidate]:

function woteForCandidate (uint candidate) public {
reguire (validCandidate (candidate));
votesReceived|[candidate] += 1;

function wvalidCandidate (uint candidate) wiew pubklic returnz (bool){
for{uint 1 = 0; i<candidatelist.length; i++){
if (candidatelist[i] == candidate){
return true;

return false;

Figure 4.10 : Functions of Election contract

35

The sha256hash contract is used to pass the parameters for the verification of zero
knowledge proof. From this function, verifyTx function of the verifier contract will be
called and return whether the proof is true or not. Figure 4.11 displays the smart

contract which was used to pass the proof parameters for verify.

pragma solidity ~0.4.23;
import './wverifier.=sol':
contract shaZSéhash is Verifier {
bool public success = false;
function shaZiehashTest |
uint[2] a,
uint[2] a_p,
uint[2][2] b,
uint[2] b _p,
uint[2] c,
uint[2] o B,
uint[2] h,
uint[2] k,
uint[3] input) public {
S Verifiy the proof
success = verifyTx(a, a_ p, b, b p, ¢, c p, h, k, input):

function get() public wview returns [(bool) {
return success;

Figure 4.11: Sha256hashTest smart contract

4.7. Summary

In this chapter software tools utilized to implement the proposed solution was
discussed followed by the important functionalities of the proposed solution. The main
functionalities which are secret phrase generation, sha256hash calculation, proof
generation and smart contracts used in the solution were discussed in the above

chapter.

36

Chapter 5 - Results and Evaluation

5.1. Introduction

This chapter elaborates how results are evaluated and the success level of the proposed
solution. New evaluation method was used to compare with other solutions as well has
the practically an election with 10 voters was held to measure how succeed the project.
Section 5.2 describes the cost needed for transactions. Section 5.3 describes the
experiment done with 10 voters. Section 5.4 describes set of evaluation properties.

Section 5.5. elaborates on this proposed evaluation model.

5.2. Cost analysis
The table 5.1 contains the transaction cost for a voter in an election

Table 5.1: Transaction cost for voter

X
Tx Hash TX name Gas

Cost(Ether)

Web portal sign

0xa273ba8c4f680302f97e87a0e48f5573 23208 0.000023208
4f3b905d468509de1d16183382b56309 up
0xfd1e590a5ecf41dc9a0790e2831f08b Voter
e743118fe53ff6915d0964d501f0f5e35 185547 0.000185547

Registration

0x4586952337f9053f6924fb654¢143667 Proof
b22d6d8a63f69d1f4e2e92eeb591bdcs verification

1625259 | 0.001625259

0x8244e7cda8a5831982c05a09a8ad62a
600db8d154327881c2c2c8db3b51114398

Mark as voted 28422 0.000028422

0xb8650057caf7efffaf17ecaa9be29783f8

Voting 28108 0.000028108
a11dd126043ce3f511b14f2720cf49

Total 0.001890544

37

According to the table 5.1 approximated Minimum cost a voter has to spend in an
election is 0.001890544 Ethers.

The table 5.2 contains the cost for the election authority in an election.

Table 5.2: Transaction cost for election authority in an election

Tx hash

Tx Name Gas Tx
Cost(Ether)

0xccf45e0f201516e63855e8c50e75¢7a48b Add to

39110 0.00003911

ac09a5f41c6747aaf8c616ead25619 Acceptance list
0x2447dd0bafbf09386d6792244830fd9687ee | Verify by

49914 0.000049914
2269afch349a13461bb7276ce521 district office

0x854591ffc2fd9f0cc918e3bb4bh35769f
eed93aac19cf7abffbd77f53a6df495

Reset Account 60828 0.000060828

0x7a7¢1e6393281c012a3573e0fc113410a71 | Sha256 contract
a7d7fdb7dc4530605eadf8a95a8ec deploy

1903793 | 0.001903793

According to the above table approximated cost for an election =

N*(0.00003911+0.000049914+0.000060828)+ 0.001903793

Note: here N= number of voters

5.3. Experiment

The table 5.3 contains the voter details of the voters who participate the experiment

voting process.

Table 5.3: Voter details in the experiment

Voter

Voter details

Voter 1

Secret Phrase
dPwIxicthNYVNgThmWZgNSyWtKelmZjGIlpRgERrAryiMIxLuLmbjxgbw
udnbXYUS

Hash value of secret phrase

38

~out_1 327485948427890063163657922405583843277
~out_0 73098509705847516637526624146845665259

Voter 2

Secret Phrase
kvQemEgJIliCEugOVIVCPKDRJccoJgKVENSrLbCzcQCeUNbUdAVKMmhJsq
JzIvVWUy

Hash values of secret phrase

~out_1 38770939290833947590945745017321709757

~out_0 113738447700479173714816867410493084445

Voter 3

Secret Phrase
PfxaODuOeVSMqUMPHELhYHznwZAIYWzKkUAHANOUhXRQijpOmMXGhEp
CAuDObKLPcN

Hash values of Secret Phrase

~out_1 304128538971998420361452597614819735649

~out_0 242473399342478884090178563963057785197

Voter 4

Secret Phrase
XOKIAZVsCOziikRmpESDMJcghkundrFIHjudAWLMKCKTRLHrmkRLbrcymY
JueXFp

Hash Values of Secret Phrase

~out_1 93416859694490417389814587885682230767

~out_0 205464505716366980569582860983562116290

Voter 5

Secret Phrase
1ZVpxWTOkzUFsCBZBzntTheluLokEmMmvsqUjQkMuchTSKRIBmnNgPOJj
mjzufIP

Hash values of secret phrase

~out_1 75542475852409913654231317221826347569

~out_0 329095829093775114943339581131415684233

Voter 6

Secret Phrase

DSfGGGFCXpWyXDPUkaitbHWxOOGecl YWQRTXGVaxHrUwfcCKviQrucG
TTiiZdIMJ

Hash values of secret phrase

~out_1 15340325397175966268399056258233591362

~out_0 137533077572602957241513332529167108327

Voter 7

Secret Phrase
UVKAYRIgjpAscNKEbKSYyAMTvImUmxSscLmNGQDOmMrOmiKwqdjRMp
FwGdIzoUAMI

Hash values of secret Phrase

39

~out_1 223446833854513802361614611908663895249
~out_0 244518891250802074099079021886282118318

Voter 8 | Secret Phrase
EeRKmNrgzimCMbjLHxUhUVgAwoTolJiFPRyegZvVDGGOsTgvViHhVPDIKH
LBKImgO

Hash values for secret phrase

~out_1 266539457247887759025322348548525715464

~out_0 309317082009254409317484108622675315600

Voter 9 | Secret Phrase
ANDHLSUEBLHXePLneXWhSseJvjwzVbOnKtvGBRkYcXBdoVJIKIxghBuEvvg
ryQkgR

Hash values for secret phrase

~out_1 169714464883728830521182276408705619794

~out_0 298125511474834766228494084275969289962

Voter 10 | Secret Phrase
VKCzmhBtKApCmOczQBGKMQomnLyqLMzKTHckkroEXhHjxBuKrhvhdCV
dbziiCYQj

Hash values for secret phrase

~out_1 323084469091209566631827681793714177130

~out_0 255441356545460746997402010315979326891

At this experiment ten accounts created and registered for voting. The hash values of
the secret phrase that they submitted can be seen at above table. An arithmetic circuit

was developed using above hash values.

import "LIBSNARK/sha256packed"

def main(private field a, private field b, private field c, private field d) -> (field):

field[10] hashl =
[73098509705847516637526624146845665259,1137384477004791737148168674104930844
45,242473399342478884090178563963057785197,2054645057163669805695828609835621
16290,329095829093775114943339581131415684233,1375330775726029572415133325291
67108327,244518891250802074099079021886282118318,3093170820092544093174841086
22675315600,298125511474834766228494084275969289962,2554413565454607469974020

10315979326891]
40

field[10] hash2 =
[327485948427890063163657922405583843277,387709392908339475909457450173217097
57,304128538971998420361452597614819735649,9341685969449041738981458788568223
0767,75542475852409913654231317221826347569,153403253971759662683990562582335
91362,223446833854513802361614611908663895249,2665394572478877590253223485485
25715464,169714464883728830521182276408705619794,3230844690912095666318276817
93714177130]
field resultl =0
field result2 =0
fieldz=0
fieldt=0
h0, hl = sha256packed(a, b, c, d)
for field i in 0..10 do
resultl = if hashl[i] == h0 then 1 else O fi
result2 = if hash2[i] == h1 then 1 else O fi
z = if resultl == 1 then result2 else O fi
t=ifz==1then lelse Ofi
endfor

return t

Then the proving key and verification key was generated by the election authority. The
proving key and compiled arithmetic circuit was distributed among the verified voters.

Then the verifier smart contract was generated and deployed it and started the election.

In this experiment the account of the voter 10 was used for testing. After downloading
the arithmetic circuit, the 10" voter created a valid witness by giving big integer
interpretation of the correct secret phrase as arguments. Then a proof was generated
using public inputs and the generated witness. Then voted for a candidate, by
submitting valid proof via the web portal.

41

Apply
Apply for the election

Congratulations dulaj sanjaya!

Your account has been reset.Please fill the registration form again

Once You click Register You must never goback o Apply For the General Election

Regster

Figure 5.1 : Apply for Election user interface

Apply
Apply for the election

Congratulations dulaj sanjaya!

Your account has been reset.Please fill the registration form again

Since only you control your identity, You will need to save your security phrase. this security phrase will never saved in cloud storage. Screenshots are not secure you can make a safe backt
pen.

Secret Phrase

RBICIfssNXrYrwPkVhPFMXGLLGMphFMmuZwlerlMkJWVrhOzsyHDRUrndfUVsUApD

Figure 5.2 : user interface of generated secret phrase

Encoded 512bit version Interpretation

01010010010000100100100101000011010010010110011001110011011100110100111001011000011100100101100101110010011101110101000001101011
01010110011010000101000001000110010011010101100001000111010011000100110001000111010011010111000001101000010001100100110101101101
01110101010110100111011101001001011001010111001001101100010011010110101101001010010101110101011001110010011010000100111101111010
011100110111100101001000010001000101001001010101011100100110111001100100011001100101010101010110011100110101010101000001011 10000

nteger Interpretation

109340873193930616578972127157439385707
114855234673467123199071064151856401773
155989401645898304685492715777612599162
153490953181635623303408480595251380592

Download the arithmatic circuit and calculate the sha256 hash of the big Integer Representation

Download Arithmatic circuit Next

Figure 5.3 : user interface of big integer representation of secret phrase

42

Profile

Edit your account details here.

Name User Identity
dulaj sanjaya
Thisis arequired field 0x4432ec4e9378f08ebfbaceB1b168c461ctfd6d47

Cancel m

dulaj sanjaya

Matthew is a musician livingin
Nashville.

Figure 5.4 : user interface of voter profile

Voter Details Actions
Identity
Ox4432Ec4E9378F08E6fbacEB81B168c461cffdoD47
Account status
Voted
. To be Added List To be Deleted List

NIC
931510406V
dulaj sanjaya Hash of Secret

345

Figure 5.5 : User interface of acceptance/ reject a voter

Voting
Vote for Candidate

Congratulations dulaj sanjaya'
Your Voting Account has been verified. wait for the election to start

Candidates

ﬂ kasun lakmal x1
ﬂ ishikagodage x2

Submit

Figure 5.6 : User interface of voting

43

Results
View final Result

Congratulations dulaj sanjaya!

Your voting has been casted correctly. Wait for the results

Candidates Votes

g kasunlakmal ~ ABC 8

g ishikagodage DEF 11

Figure 5.7: User interface of election results

Candidates Candidate Search

ﬂ kasunlakmal ~ ABC Candidate Details

ﬂ ishikagodage DEF 1 Q

Search

OR
Name

kasun lakmal

NIC
895645345V

Party
ABC

Figure 5.8 : User interface of Candidate management

[This is a Rinkeby Testnet Transaction Only |

TxHash 0x458695233719053f6924fb654¢143667b22d6d8a63169d1f4e2292eeb591bdcd
TxReceipt Status: Success

Block Height 3651802 (304 Block Confirmations)

TimeStamp 1 hr 15 mins ago (Jan-08-2019 12:05:33 AM +UTC)
From: 0x4432ecd

To Contract 0x.

Value: 0 Ether (30.00)

Gas Limit 2437888

Gas Used By Transaction 1625259 (66.67%)

Gas Price: 0.000000001 Ether (1 Gwei)

Actual Tx Cost/Fee 0.001625259 Ether ($0.000000)

Nonce & {Position}: 2641 {10

Input Data:

@x3a2eedel22ce3d4345482142d3e42addB81c8d@3e76d296462d77453777866d17b17+819888b1d2dd12bbad5bd1652ba5@abaffe9326739d5c3bcd
72dd29ba929425640881812fc2763e95fc67aab@20d7 cdfef3994bAFd982438a8129896bC 74cc13%9a%eB8fel7c8ebaef307bb4fO22F712dCB22c04d
bfeadl814a43567437180958bc@5221739345ce2abcd3f8c@8ccbedl78ed42f3b46dc39da938d9654474e6b461082a2907b4570668d762969634Fa7
51242ad13f11f6c6celfe3lle20belf4330ef23de]192ef44d4d@7971585aC7472e9d578F40648e35ee51f8ed76e85ac@B826Fd28 laeléb6c846d

A e R A A AT A L AL e mm A A AT £ L T A £ A AT Tl L A7 A P A T A A AR AT T A T £ A P A% a e A

Figure 5.9 : Success of Proof verification

44

5.4. Evaluation properties

Privacy: anyone doesn’t know whom the voter voted for. Normally in
cryptocurrency, the blockchain account address for each user is a public thing. That
means anyone can publish their address saying that deposit money to their
accounts. In the previous solutions for e voting system, they have suggested that it is
capable of handle this problem using random public key generation and distribute
them among voters randomly and voter should keep it as a secret thing. But if someone
get in to know that specific person’'s account address is this, then he will be able to
view the voting details including whom the voter voted for etc. using etherscan like
web api. But in our solution, it is capable of handle this problem using zero knowledge

proof.

E2E verifiability: The voter should be able to verify that him/her vote has been
casted as intended. It will be able to handle this problem using a blockchain. When we
do transaction in a blockchain we get a transaction id. Actually it is the hash value of
that transaction. Voters can easily view their transaction details via Etherscan like web

API by inserting their transaction id.

Transparent: Every vote details should be available to the public except, by whom
the voter voted. Final tally for each candidate should be available to the public. Finally
the sum of rejected votes and valid votes should be equal to the sum of votes for every

candidates.

Eligibility: Only eligible user are able to cast their vote. VVoters need to prove their
eligibility by submitting valid proof via the web portal. If he/she is unable to submit

valid proof, then they are considered as un eligible users.

Decentralized: Especially in e voting scenarios it is hard to trust a third party. The
server is a third party as well as it is a single point of failure. Hence it is not secure to
store voting details in mysql like database. Since blockchain is a distributed that means
decentralized, the blockchain will be the most suitable data structure to store voting

details.

45

Scheduling: After the registration date, citizens should not be able to register as a
voter. And also after the voting period or before the voting period voters should not be

allowed to vote for anyone.

Vote limit: Every registered voter can only vote once for a particular election when
they submit a correct proof the voted status of the voter will be updated. So in the
voting process no backward paths. If the voter start the voting process then they have

to definitely vote. If not their voting chance will be destroyed.

5.5. Evaluation criteria

In the evaluation phase, evaluation properties are compared between our solutions and

existing solutions. Suggested criterion method is a score criterion.

Ex:
Score 1 - Yes
Score 0 - No

Then total marks were calculated for each solution. Then total marks of our solution
was compared with others and ranked solutions according to the total marks. The
solution which takes the highest score will be the best one. Our intention was to take

our solution towards the best solution.

Table 5.4: Evaluation Model

- o°

> 2 o 2 > S 3 |

S S & = 3 < E ©

> 8 2 = S 5 S £

= = c K= =) S < ©

o 5 g m & g 3 |8

> (o Q ~
[9] No Yes No Yes Yes No No 2
[18] No No No Yes Yes No No 2
[15] Yes No No Yes Yes No No 3
[10] No Yes Yes Yes Yes No No 4

46

[16] No No Yes Yes No Yes No
[5] Yes No Yes Yes No Yes No
Our yes yes yes yes No yes yes
solution

According to the evaluation model, our solution was able to get 6 points out of 7.

Hence it is very clear that our solution is better than the existing solutions.

5.5. Summary

This chapter elaborated the cost analysis for voter and election authority separately. At
section 5.2 the cost for both parties were calculated using ether. At section 5.3 voting
experiment was done and the results of experiment were displayed. At section 5.4
evaluation properties were discussed. And at finally the evaluation criteria and
evaluation model were discussed. Then the retrieved results were explained in this

chapter

47

Chapter 6 - Conclusions

6.1 Introduction

This chapter includes a review of the research aim and objectives, research problem,

limitation of the current work and implication for further research.

6.2 Conclusions about research questions (aims/objectives)

The long term goal of the research was to develop a secure e-voting system. One of the
goal is to fill the research gap in this area. To do that needed to review the current
existing e-voting systems and needed to check whether they are providing the minimal

properties in a voting system.

The sub research question 1 was to analyze about the current industry practices, to
make the e-voting transaction decentralized by using blockchain. To answer that
question, literature review was done. And according to the literature review, found out
that still there is a research gap in this area. There were solutions based on zcash
blockchain and ethereum blockchain. The main strength of ethereum was the smart
contracts. It facilitates to write the contracts between sender and receiver. In our case
voter and candidate. But the problem in ethereum is, it doesn’t provide private
transactions. Then, moved towards zcash like coins which provide private transactions
and enables to hide transaction details from the public. But the problem in zcash is it
doesn’t provide smart contract like concepts to write custom logic. By doing those

things solution to the sub research question 1 was provided.

The sub research question 2 was to make the e-voting transaction transparent. At the
very beginning of the e-voting problem, solution to this problem was to publish voting
details in a website. But it’s not a practical thing and it’s not secure although. So our

solution to this problem was the blockchain. The ethereum blockchain was selected as

48

a solution since it provide smart contract to write logics. According to this solution all
the e-voting transactions were stored in a blockchain.

The third sub research question was about protecting the privacy of the voters. Since
ethereum doesn’t provide private transactions, the voter details will be available to the
public. Then solution to this problem was take the logic behind private transactions of
Zcash and apply it to ethereum. The logic behind Zcash is zk-SNARK to protect the
privacy of users. Then our solution was integrate zk-SNARK and smart contract

together and apply that in to e-voting problem

The last sub research question was about E2E verifiability. That means there should be
a way to verify that the voters’ vote has been casted as intended. The blockchain itself
contains the solution to this problem. When a voter vote for a candidate, the
transaction hash is given to voter. VVoter need to save it on somewhere secure place.
After their voting process they can check whether their transaction is included in a

block or not via the web portal.

Finally the main research question was to analyze, How to take a blockchain based
approach to develop a trustworthy, transparent, privacy protected, e2e verifiability,
decentralized and multiparty secure e-voting system. A proper solution was provided
to this problem with 6 phases. Those are Registration phase, Registration verification
phase, election preparation phase, voting phase, tallying phase, verification phase.

6.3 Conclusions about research problem

According to the experiment we done with 10 voter accounts, it is very clear that final
objective of this research was explored and good solution to the research problem was
provided. One of our main objective of this research was to protect the privacy of the
voters who participate for the voting process. A very strength solution was provided to
this problem and proved the practical aspect of it with the experiment.

According to the experiment, the voters who participate for the election, create account
in the web portal provided. Before doing that, they need to have metamask browser

extension installed. After clicking registration they will get secret phrase. Then, they

49

need to calculate sha256hash of the secret phrase with the help of provided arithmetic
circuit which developed to calculate sha256 hashes. Then they need to submit the hash
values via web portal. The voter verification process is done by the grama niladhari
and district office. After the verification, the election authority collects the hashes of
verified accounts and create arithmetic circuit using those hash values. According to
that arithmetic circuit, when someone insert a correct secret phrase which maps to one
of hashes in the arithmetic circuit, it return 1. If not it returns 0. By providing a correct
secret phrase voters will get a witness file. Then using that witness file and public

inputs, the voter need to create the proof.

Then at the voting web portal voters need to submit their proof. Only if they have
provided a valid proof, the user interface will change to voting interface. If not they
will not get voting interface. If someone has reached to the voting interface, we can
conclude that this is a valid voter. With submitting of the proof, the voted state of the
voter will be updated as true. So he is unable to vote again if he cancel this one way
process. At the voting step he need to have another separate ethereum address which is
not used for the election previously. It’s must to have an ethereum address to do an
ethereum state update transaction. That’s the reason for using ethereum address here.
If not, no need of any ethereum address here. Because reaching to this interface

verifies that he is a valid user.

The proof doesn’t provide any information about the voter. But it helps to verify that
this is a valid user. Hence the privacy of the voter is protected at its best. When we
tested with registered account in our experiment, we got the voting interface only if we
submit the valid proof. So the proof verification part of our research is successful. And
At voting phase, since we voted using another account, the election authority or the
developers also can’t track who the voter was. So it is very clear that according to our

experiment, main objective is covered.

6.4 Limitations

This approach can be used to any number of voters as well as any number of
candidates. But the time takes to generate the witness and proof will be increased with

50

the increasing of number of voters since it needs to check the correct secret phrase
with lot of hashes. But at the proof verification phase, the time takes to verify the proof
will not be increased with the number of voters since the proof size doesn’t change
with the number of voters. The verification process depend only on the proof and not
on the number of voters.

To sign the transactions voters need to download the metamask browser extension and
need to create account there. The voters should have computer literacy to do that
process.

The ethereum blockchain is based on proof of work. Hence it provide inception to the
block verifiers. Hence the voters need to provide some gas to do their transactions. To
provide gas the voters should have ether in their ethereum accounts. That means voters
have to pay some amount of money for maintaining the consistency and validity of the
transactions.

At every election, the election authority has to write a new arithmetic circuit and need
to publish the verifier smart contract again if the voter details has changed. And the
voters also should have knowledge to run the zokrates tool kit in docker, in order to
generate witness, proof as well as hash for their secret phrase.

In the current solution if the user insert hash values which has been inserted previously
by another voter, the voter will be informed by this is not a valid hash value. So the
voter will get to know that this is the secret phrase for existing hash value.

This is not a completely decentralized solution since the verification of the voter is
done by district office. And the arithmetic circuit generation also should be done by

election authority.

6.5 Implications for further research

Currently, the arithmetic circuit creation process is done manually by the election
authority. That means all the hash values of the voters should be included to the
arithmetic circuit manually. That process should be automated. The verifier smart
contract publish process also should be done manually. To generate the witness, proof
and sha256 hash, voters need to download and run Zokrates on docker container. This
tools should be replaced by more usable and user friendly tool. It’s better to do sha256

hash generation at client side using javascript without using zokrates. And the format

51

of the hash should be compatible with the arithmetic circuit which is developed to
generate the witness and proof. If it is done using javascript, no need to notify to the
voter if they enter existing hash value. System can automatically ignore the generated

secret phrase and can generate new secret phrase for that voter.

52

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. Gibbins, P. D. Webb and H. Eulau, "election-political-science," Encyclopaedia
Britannica, [Online]. Available: https://www.britannica.com/topic/election-
political-science. [Accessed 14 October 2018].

"Elections in Sri Lanka," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Elections_in_Sri_Lanka. [Accessed 7 January 2019].
M. Méser, "Anonymity of Bitcoin Transactions An Analysis of Mixing Services,"
2013.

S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," Cryptography
Mailing list at https://metzdowd.com., 2009.

P. Tarasov and H. Tewari, "Internet Voting Using Zcash," IACR Cryptology ePrint
Archive, vol. 2017, p. 585, 2017.

E. B. Sasson, A. Chiesa, C. Garman, M. Green, |. Miers, E. Tromer and M. Virza,
"Zerocash: Decentralized Anonymous Payments from Bitcoin," in [EEE
Symposium on Security and Privacy, San Jose, CA, USA, 2014.

L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu and W. Shi, "Decentralized Execution of
Smart Contracts: Agent Model Perspective and Its Implications," in International
Conference on Financial Cryptography and Data Security, 2017.

D. G. Wood, "Ethereum: a Secure Decentralised Generalised Transaction Ledger,"
12 april 2017. [Online]. Available:

https://ethereum.github.io/yellowpaper/paper.pdf. [Accessed 14 october 2018].

D. Chaum, "Secret-ballot receipts: True voter-verifiable elections," IEEE Security

& Privacy, vol. 2, pp. 38-47, 2004.

[10] J. D. Cohen and M. J. Fischer, "A robust and verifiable cryptographically secure

election scheme," in 26th Annual Symposium on Foundations of Computer

Science (sfcs 1985), Portland, OR, USA, USA, 1985.

[11] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev and A. B. Tran, "The

Blockchain as a Software Connector," in 2016 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), Venice, ltaly, 2016.

[12] C. Reitwiessner, "zkSNARKs in a nutshell," Ethereum, 5 December 2016. [Online].

53

Available: https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/.
[Accessed 7 Januray 2019].

[13] D. K. Tosh, S. Shetty, X. Liang, C. A. Kamhoua, K. A. Kwiat and L. Njilla, "Security
Implications of Blockchain Cloud with Analysis of Block Withholding Attack," in
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), Madrid, Spain, 2017.

[14] "rinkeby test net," [Online]. Available: https://www.rinkeby.io. [Accessed 14
october 2018].

[15] T. Sharma, "E-voting using homomorphic encryption scheme," International
Journal of Computer Applications, vol. 141, 2016.

[16] E. Y. K. K. U. C. C. and G. D. , "Towards secure e-voting using ethereum
blockchain," in 6th International Symposium on Digital Forensic and Security
(ISDFS), Antalya, 2018.

[17] L. C. Schaupp and L. Carter, "E-voting: from apathy to adoption," Journal of
Enterprise Information Management, vol. 18, no. 5, pp. 586-601, 2005.

[18] H. K. Al-Anie, M. A. Alia and A. A. Hnaif , "E-Voting protocol based On public key
cryptography," International Journal of Network Security & Its Applications
(IINSA), vol. 3, 2011.

[19] F. Hao, P. Ryan and P. Zielinski, "Anonymous voting by two-round public
discussion," IET Information Security, vol. 4, no. 2, pp. 62-67, 2010.

[20] J. Groth, "Efficient maximal privacy in boardroom voting," Financial
Cryptography, pp. 90-104, 2004.

[21] A. Kiayias and M. Yung, "Self-tallying elections and perfect ballot secrecy," Public
Key Cryptography, pp. 141-158, 2002.

[22] "Metamask," Metamask, [Online]. Available: https://metamask.io/. [Accessed 7
January 2019].

[23] S. Bowe, "zkSNARKs in Ethereum," Zcash, 2016. [Online]. Available:

https://z.cash/blog/zksnarks-in-ethereum/. [Accessed 7 January 2019].

54

[24] Reitwiessner, "An Update on Integrating Zcash on Ethereum (ZoE)," Ethereum,
19 January 2017. [Online]. Available:
https://blog.ethereum.org/2017/01/19/update-integrating-zcash-ethereum/.
[Accessed 7 January 2019].

[25] G. Zyskind, O. Nathan and A. Pentland, "Decentralizing Privacy: Using Blockchain
to Protect Personal Data," in IEEE Security and Privacy Workshops, San Jose, CA,
USA, 2015.

[26] uport, "First official registration of a Zug citizen on Ethereum," 15 november
2017. [Online]. Available: https://medium.com/uport/first-official-registration-
of-a-zug-citizen-on-ethereum-3554b5c2c238. [Accessed 15 october 2018].

[27] P. Dunphy and F. A. P. Petitcolas, "A First Look at Identity Management Schemes

on the Blockchain," IEEE Security & Privacy, vol. 16, pp. 20-29, 2018.

[28] "Rinkeby Etherscan," Etherscan, [Online]. Available:

https://rinkeby.etherscan.io/. [Accessed 18 october 2018].

[29] "Zokrates," Zokrates, [Online]. Available: https://github.com/Zokrates/ZoKrates.
[Accessed 7 January 2019].

55

Appendix A: Diagrams

TxHash Block Age From To Value

0x37c2d6e86da32s 3651814 2 hrs 10 mins ago 0x4432ecde937808 m B 0x1716ce1d1a782a 0 Ether 0.000028334
0x2145acd3729a72. 3644334 1day 9 hrs ago 0x4432ecde937808. m B 0x1716ce1d1a782a... 0 Ether 0.000028108
0xbad39956cc2bed... 3641230 1 day 22 hrs ago 0x4432ec429373f08. “ E0x1716ce1d1a782a... 0 Ether 0.000028284
0xb8650057 caf7efff 3638789 2 days 8 hrs ago 0x4432ec4e937808 “ B 0x1716ce1d1a782a 0 Ether 0.000028108
0x63aflbea107daes. 3624926 4 days 18 hrs ago 0x4432ecde937808 “ B 0x1716ce1d1a782a 0 Ether 0.000028108
0x323d3283fc19c... 3619351 5 days 17 hrs ago 0x4432ecde937808. m B 0x1716ce1d1a782a... 0 Ether 0.000028108
0xbe55024aa1c403 3602703 8 days 14 hrs ago 0x4432ec4e937808 “ 2 0x1716ce1d1a782a 0 Ether 0.000028108
0x2a55bbad20c775 3595792 9 days 19 hrs ago 0x4432ec42937808 “ B 0x1716ce1d1a782a 0 Ether 0.000028854
0x22df3c71d30fce... 3595784 9 days 19 hrs ago 0x4432ecde9378f08. m B 0x1716ce1d1a782a... 0 Ether 0.000028884
0x76649733be%8ac. 3594825 9 days 23 hrs ago 0x4432ec4e9378f08. “ B 0x1716ce1d1a782a... 0 Ether 0.000028884
0x13f8974dde80e2a 3594810 9 days 23 hrs ago 0x4432ec4e937808 “ 2 0x1716ce1d1a782a 0 Ether 0.000028284
0xe7008482ccdedfa 3594788 9 days 23 hrs ago 0x4432ec42937808 “ B 0x1716ce1d1a782a 0 Ether 0.000028854
Oxdch2f@dfchagadl... 3594775 9 days 23 hrs ago 0x4432ecde9378f08. m B 0x1716ce1d1a782a... 0 Ether 0.000028884
0x9a881653f1d35d6. 3594712 10 days 6 mins ago 0x4432ec4e9378f08. “ B 0x1716ce1d1a782a... 0 Ether 0.000028108

Figure A.1: Transactions listing in the election smart contract

8 FINKESY RINKEBY (CLIQUE) TESTNET | Search by Address / Txhash / Block / Token / Ens Language

Etherscan

he Ethereum Block Exp

HOME BLOCKCHAIN ~ TOKEN ~ MISC ~

Home / Accounts / Address

I Contract 0

Contract Overview

Misc: n

Balance: 0 Ether Contract Creator: 0x4432ec4e9378f08... at txn 0x5a5f1c0b62dabal

Transactions: 21 txns

Figure A.2: Account of smart contract

B RINKEBY RINKEBY (CLIQUE) TESTNET | Search by Address / Txhash / Block / Token / Ens @ Language
) Etherscan

MR HOch e HOME BLOCKCHAN + TOKEN «+ MISC -

B Address

Home / Accounts / Address

Overview i n

Balance: 9.496733272 Ether

Transactions: 269 txns

Figure A.3: Account of Voter

56

Appendix B: Code Listings

A detailed implementation of all the smart contracts is provided below. The following
code block is the voter smart contract which is used to manage the state levels of

voters and voter registration

pragma solidity 7~0.4.23;
contract Voter{
//voter details
struct VoterDetails {
bytes32 name;
bytes32 nic;
uintl28 hashOfSecretl;
uintl28 hashOfSecret?2;
bool submitted to review;
bool to be deleted;
bool to be added;
bool deleted;
bool verified;
bool temp registered;
bool voted;

uint numVoters;
mapping (address => VoterDetails) voters;

function getNumOfVoters () public view returns (uint) {
return numVoters;

//this should be updated by the applicant
function addVoter (bytes32 name, bytes32 nic, uintl28
hashOfSecretl,uintl128 hashOfSecret?2) public
returns (bool,bool,bool,bool,bool,bool,bool) {
//1if user doesn't exist
if (voters[msg.sender] .name==0x0) {
voters|[msg.sender] =
VoterDetails (name,nic,hashOfSecretl, hashOfSecret2, false, false, f
alse, false, false, false, false);
numVoters++;
voters[msg.sender] .submitted to review = true;

57

return
(voters[msg.sender] .submitted to review,voters[msg.sender].to b
e deleted,voters[msg.sender].to be added,voters[msg.sender].del
eted,voters[msg.sender] .verified,voters[msg.sender].temp regist
ered,voters[msg.sender] .voted) ;

}

//1f user exist (that means account reseted)

voters[msg.sender] .hashOfSecretl = hashOfSecretl;
voters|[msg.sender] .hashOfSecret?2 = hashOfSecret?2;
voters[msg.sender] .submitted to review = true;
return

(voters[msg.sender] .submitted to review,voters[msg.sender].to b
e deleted,voters[msg.sender].to be added,voters[msg.sender].del
eted,voters[msg.sender] .verified,voters[msg.sender].temp regist
ered,voters[msg.sender] .voted) ;

//query specific voter details
function getVoter (address voterId) public view returns

(bytes32,bytes32,uintl128,uint128,bool,bool,bool,bool,bool,bool,
bool) {

VoterDetails memory v = voters[voterId];

return
(v.name,v.nic,v.hashOfSecretl, v.hashOfSecret2,v.submitted to re
view,v.to be deleted,v.to be added,v.deleted,v.verified,v.temp
registered, v.voted) ;

}

//this should be updated by the grama nildari

function toBeDeleted(address voterAddress) public{
voters[voterAddress].submitted to review = false;
voters[voterAddress].to be added=false;
voters[voterAddress].to be deleted = true;

//Voted
function voted(address voterAddress) public{
voters[voterAddress] .voted = true;

//this should be updated by the grama nildari

function toBeAdded (address voterAddress) public{
voters[voterAddress].submitted to review=false;
voters[voterAddress].to be deleted=false;
voters [voterAddress] .to be added=true;

58

//this should be updated by the district office

function deleted(address voterAddress) public({
voters[voterAddress].submitted to review=false;

.to be added=false;

.to be deleted=false;

.verified=false;

.deleted=true;

[
voters[voterAddress
voters[voterAddress

[
[

voters [voterAddress

]
]
]
]

voters [voterAddress

//this should be updated by the district office
function verified(address voterAddress) public{
voters[voterAddress].submitted to review=false;
voters[voterAddress] .to be added=false;
voters[voterAddress].to be deleted=false;
[] .deleted=false;
[1.

verified=true;

voters[voterAddress

voters[voterAddress

function reset (address voterAddress) public{

voters[voterAddress].submitted to review=false;
voters[voterAddress].to be added=false;
voters[voterAddress].to be deleted=false;

[1.

[1.

[1.
voters[voterAddress] .deleted=false;

[1.

[1.

[1.

voters[voterAddress].verified=false;
voters[voterAddress].temp registered=true;
voters[voterAddress] .voted=false;

Following code block contains the source code of candidate.sol which was used to

manage the candidates

pragma solidity "~0.4.23;
contract Candidate(

struct CandidateDetails {
bytes32 name;
address addr;
bytes32 nic;
bytes32 party;
bool doesExist;
bool accepted;

59

uint numCandidates;
mapping (uint => CandidateDetails) candidates;

function addCandidate (bytes32 name, bytes32 nic, bytes32
party) public {
// Create new Candidate Struct with name and saves it
to storage.
numCandidates++;
candidates[numCandidates] =
CandidateDetails (name,msg.sender,nic,party, true, false);

function getNumOfCandidates () public view returns (uint) {
return numCandidates;

function getCandidate (uint candidateId) public view
returns (bytes32,bytes32, bytes32) {
CandidateDetails memory v = candidates[candidateId];
return (v.name,v.nic,v.party);

}
Following code block contains the Election.sol smart contract which is used to manage

the election

pragma solidity "0.4.23;
contract Election{

mapping (uint=>uint8) public votesReceived;

uint[] public candidatelList=[1,2];

function totalVotesFor (uint candidate) view public returns
(uint8) {
require (validCandidate (candidate)) ;
return votesReceived[candidate];

function voteForCandidate (uint candidate) public {
require (validCandidate (candidate)) ;
votesReceilved|[candidate] +=1;

60

function validCandidate (uint candidate) view public
returns (bool) {
for(uint i = 0; i<candidatelist.length; i++) {
if (candidatelist[i] == candidate) {
return true;

}

return false;

The following code block represents the authentication contract which is used to
logged in to the web portal

pragma solidity 70.4.2;
import './zeppelin/lifecycle/Killable.sol';
contract Authentication is Killable {
struct User {
bytes32 name;
mapping (address => User) private users;

uint private id; // Stores user id temporarily

modifier onlyExistingUser {
// Check if user exists or terminate

require (! (users|[msg.sender] .name == 0x0));

.
4

modifier onlyValidName (bytes32 name) {
// Only valid names allowed

require (! (name == 0x0));
}
function login() constant
public
onlyExistingUser

61

returns (bytes32) {
return (users[msg.sender].name);

function signup (bytes32 name)
public
payable
onlyValidName (name)
returns (bytes32) {
// Check if user exists.
// If yes, return user name.
// If no, check if name was sent.
// If yes, create and return user.

if (users[msg.sender].name == 0x0)

{

users[msg.sender].name = name;

return (users[msg.sender].name);

return (users[msg.sender].name);

function update (bytes32 name)
public
payable
onlyValidName (name)
onlyExistingUser
returns (bytes32) {

// Update user name.

if (users[msg.sender].name != 0x0)

{

users[msg.sender].name = name;

return (users[msg.sender].name);

The following code block represents the sha256hash verification contract which is

used to take the argument of the proof

pragma solidity 70.4.23;
import './verifier.sol';

62

contract sha256hash is Verifier {

bool public success = false;
function sha256hashTest (

uint([2] a,

uint[2] a p,

uint[2][2] b,

uint[2] b p,

uint([2] c,

uint([2] ¢ p,

uint[2] h,

uint[2] k,

uint[1l] input) public {
// Verifiy the proof
success = verifyTx(a, a p, b, bp, ¢, cp, h, Kk,
input) ;
}
function get () public view returns (bool) {
return success;

This is the contract which is used to verify the proof. That contract is called as
verifier.sol and it was generated using ethereum tool kit called as zokrates

// This file is MIT Licensed.

//

// Copyright 2017 Christian Reitwiessner

// Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal 1in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software 1is furnished to do so, subject to the following
conditions:

// The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

63

pragma solidity 70.4.23;
library Pairing {
struct GlPoint {
uint X;
uint Y;
}
// Encoding of field elements is: X[0] * z + X[1]
struct G2Point {
uint[2] X;
uint[2] Y;
}
/// Q@return the generator of Gl
function Pl () pure internal returns (GlPoint) {
return GlPoint (1, 2);
}
/// Q@return the generator of G2
function P2 () pure internal returns (G2Point) {
return G2Point (

[11559732032986387107991004021392285783925812861821192530917403
151452391805634,

108570469990230571359445707622328294813707563595785180869905199
932856558527817,

[40823678758634336813322034031454355683168513275934012081057410
76214120093531,

849565392312343141760497324748927243841819058726360014877028064
9306958101930]
)
}
/// Qreturn the negation of p, i.e. p.addition(p.negate())
should be zero.
function negate (GlPoint p) pure internal returns (GlPoint)

// The prime g in the base field F g for Gl

uint q =
218882428718392752222464057452572750886963111572978236626890378
94645226208583;

if (p.X == 0 && p.Y == 0)
return GlPoint (0, 0);
return GlPoint(p.X, g - (p.Y % qQ));

}
/// @return the sum of two points of Gl

function addition (GlPoint pl, GlPoint p2) internal returns
(GlPoint r) {
uint[4] memory input;

64

input[0] pl.
input[l] = pl.
input[2] = p2.
input[3] = p2.
bool success;
assembly {

success := call(sub(gas, 2000), 6, 0, input, 0xcO,

HOoX <X

~.

r, 0x60)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require (success) ;
}
/// Qreturn the product of a point on Gl and a scalar, i.e.
/17 p == p.scalar mul (1) and p.addition (p) ==
p.scalar mul (2) for all points p.
function scalar mul (GlPoint p, wuint s) internal returns
(G1lPoint r) {
uint[3] memory input;
input[0] = p.X;
input[l] = p.Y;
input[2] = s;
bool success;
assembly {
success := call (sub(gas, 2000), 7, 0, input, 0x80,
r, 0x60)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require (success);

}
/// Qreturn the result of computing the pairing check

/// e(@l[0], p2[0]) * * e(plln], p2[n]) ==
/// For example pairing([P1(), P1() .negate ()], [P2 (),
P2()]) should
/// return true.
function pairing(GlPoint][] rl, G2Point[] r2) internal
returns (bool) {
require (pl.length == p2.length);
uint elements = pl.length;
uint inputSize = elements * 6;
uint[] memory input = new uint[] (inputSize);
for (uint 1 = 0; i < elements; 1++)
{
inputf[i * 6 + 0] = pl[i].X;
input[i * 6 + 1] = pl[i].Y;
inputf[i * 6 + 2] = p2[1i].X[0];
inputf[i * 6 + 3] = p2[1i].X[1];

input[i * 6 + 4] = p2[1].Y[0];
input[i * 6 + 5] i ;

I

o)
S
<!
=

}
uint[1l] memory out;
bool success;
assembly {
success := call(sub(gas, 2000), 8, 0, add(input,
0x20), mul (inputSize, 0x20), out, 0x20)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require (success) ;
return out[0] !'= 0;
}
/// Convenience method for a pairing check for two pairs.
function pairingProd2 (GlPoint al, G2Point a2, GlPoint Dbl,
G2Point b2) internal returns (bool) {
GlPoint[] memory pl = new GlPoint[] (2);
G2Point[] memory p2 = new G2Point[] (2);

pl[0] = al;
pl[1l] = bl;
p2[0] = a2;

p2[1] = bZ;
return pairing(pl, p2);
}
/// Convenience method for a pairing check for three pairs.
function pairingProd3 (
GlpPoint al, G2Point a2,
GlPoint bl, G2Point b2,
GlPoint cl, G2Point c2
) internal returns (bool) {
GlPoint[] memory pl = new GlPoint[] (3);
G2Point[] memory p2 = new G2Point[] (3);

pl[0] = al;
pl[1l] = bl;
pl[2] = cl;
p2[0] = a2;
p2[1] = b2;
p2(2] = c2;

return pairing(pl, p2):;
}
/// Convenience method for a pairing check for four pairs.
function pairingProd4 (
GlPoint al, G2Point a2,
GlPoint bl, G2Point b2,
GlPoint cl, G2Point c2,
GlPoint dl, G2Point d2
) internal returns (bool) {

66

GlPoint[]
G2Point []
al;
= bl;
= cl;
= dl;
az;
= b2;
= c2;
p2[3] = d2;
return pairing(pl,

new GlPoint[] (4);
new G2Point[] (4);

memory pl =

memory p2

p2);

}

contract Verifier {
using Pairing for *;
struct VerifyingKey {

Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.

}

G2Point
GlPoint
G2Point
G2Point
GlPoint
G2Point
G2Point

GlPoint[]

struct Proof {

Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.
Pairing.

}

function verifyingKey ()

{
vk.A

GlPoint
GlPoint
G2Point
GlPoint
GlPoint
GlPoint
GlPoint
GlPoint

A;

B;

o)

gamma;
gammaBetal;
gammaBeta?;
Z;

IC;

pure internal returns (VerifyingKey

Pairing.G2Point ([0x33de61db4£5934£8646980bdbb090aloff68983c38d0
967196b01b972a50£b5,
0x167096£00a6c7a01607¢c1901351cd9%1lc50bcfaecbfed77ad98e7£fe876511
37471,
[0x2751b1£30775dd81454dee862b4d02e91adl15756d6224756aedbe58cal6e
216,
0x26a09b5bbd5cdb912b8£09d707£1741a%ac48d6e0£73e862236£051b73d53
b55]) ;

vk.B =
Pairing.GlPoint (0x18£8de9%9%ee586e67503f9fea80£25£3283d9c03al13b26

67

107a6d883aee82b5c73,
0x21£33c90cd3fb9dlbc8eal31lbfc7b7850846d5fffb70ce66a2dceb7799b8d
99a) ;

vk.C =
Pairing.G2Point ([0x2f5e4b788b4da2c2174e8c4d97bbae932484eb5535aec
9fe311bf4£9387aa1d01l,
0x2cdf2769a28bcldllfclde2372925cfefable560b08cc719¢cf£37d99%b7e87
0911,
[0x18fbcdeaaed6dl19281d396f5f641e3b67af55b3f77cd2ec671606587eela
ob4d?2,
0x239ded808e68ea3781235d66a136c938c968bca62f8aal002379db00225f1c
Scal);

vk.gamma =
Pairing.G2Point ([0x615bf5be61b937€a94d053bc8leebbal8ab2effe55783
£81¢c39d1c95ab7a957e,
0x10c8ed52c3£f5c843c968d5¢c09%9acded4840734b4c9d723d0cboeala’7e3abd85
dcal,
[0x640498f9%bc8bb0e2336c502aadl29clalee9bacle8fd44adl39p1f13£f36ce9
076,
0x2f698085427044680920d514f67e26f£984824f1464a27fee5b83e5d27513
cdo]);

vk.gammaBetal =
Pairing.GlPoint (0x2a99%bcl5bledfalc86a9fd7ed333d5¢cb0d35282b0e907
d5baa644ce6d2049851,
0x1e289523f69%9aacdb76ba57473674540b7594b133baf97d8eb6d8780d74e29b
Sec) ;

vk.gammaBeta? =
Pairing.G2Point ([0x21041£7250d4dc2b9%96e166d86130b6£3466d59075658
claabe8a208275c5fe04,
0x2el11b8c7f4a97d9c2f8fccef3760b5ccf3alled9f9¢c38159a450534aa8£35
1957,
[0x29e0bf2a6723a%babcalfe87338d7eb9450e0addbcceb91e54347296b18a
26da,
0x23fc872cff5f984f77e78£68039a263be7b40768518c92aed4dd81ffeeb06f
adol);

vk.Z =
Pairing.G2Point ([0x235d9e4193d28bebc47c55d58ce05b8d7£f2cb26£0900
6b8c85c9dd70139dbale,
0xd6395535f6adbc98bcfc87ae2d56950e266£445de3¢cl1e9287b022d63585ea
871,
[0x124d45c1d43d9406886ddfa86cbbedd0a2840ce061£fdfal910c58d715b50
fbaa,
0x40395fdc52alca64779871dbl11b78e98f97ee85df07c7ebee711le3c7cad9f’
d3l);

vk.IC = new Pairing.GlPoint[] (2);

vk.IC[O] =
Pairing.GlPoint (0x134b88b827ad466340562ce6ae375307bfecdl fbed4dd
78a3bba7742c5eb45f1,

68

0x18fad4f8997558930b456921ebecefbeadcd875b0298a27¢c9%a69d9%eadbes
eea);
vk.IC[1] =

Pairing.GlPoint (0x1d694a79a0570423a77d5415ffbf690443a9877b396a8
8286d54146550c3c178,
Oxcd4ed75824a8dcflddc0eb5b2bcacf60401123a68892ea8dae0d69956e84c2
14);

}

function verify(uint[] input, Proof proof) internal returns
(uint) |
VerifyingKey memory vk = verifyingKey ()
require (input.length + 1 == vk.IC.length);

// Compute the linear combination vk x
Pairing.GlPoint memory vk x = Pairing.GlPoint (0, O0);
for (uint 1 = 0; i < input.length; i++)
vk x = Pairing.addition(vk x,
Pairing.scalar mul (vk.IC[i + 1], input[i]));
vk x = Pairing.addition(vk x, vk.IC[O0]);

if ('Pairing.pairingProd2 (proof.A, vk.A,
Pairing.negate (proof.A p), Pairing.P2())) return 1;

if ('Pairing.pairingProd2 (vk.B, proof.B,
Pairing.negate (proof.B p), Pairing.P2())) return 2;

if (!'Pairing.pairingProd2 (proof.C, vk.C,
Pairing.negate (proof.C p), Pairing.P2())) return 3;

if (!Pairing.pairingProd3(

proof.K, vk.gamma,
Pairing.negate(Pairing.addition(vk x,
Pairing.addition (proof.A, proof.C))), vk.gammaBetaZ2,
Pairing.negate (vk.gammaBetal), proof.B
)) return 4;
if (!Pairing.pairingProd3 (
Pairing.addition(vk x, proof.A), proof.B,
Pairing.negate (proof.H), vk.Z,
Pairing.negate (proof.C), Pairing.P2()
)) return 5;
return 0;
}
event Verified(string s);
function verifyTx(
uint[2] a,

uint[2] a p,
uint[2][2] Db,
uint[2] b p,
uint[2] c,
uint([2] c_p,
uint[2] h,
uint[2] k,
uint[1l] input

69

) public returns (bool r) {
Proof memory proof;

proof.A = Pairing.GlPoint(a[0], alll):;
proof.A p = Pairing.GlPoint(a p[0], a pll]);
proof.B = Pairing.G2Point ([b [1101, b[O]1([1]], [b[11[0O],
bl1][11])=
proof.B p = Pairing.GlPoint (b p[0], b pl[l]);
proof.C = Pairing.GlPoint(c[0], c[1]);
proof.C p = Pairing.GlPoint(c_p[0], c pll]);
proof.H = Pairing.GlPoint (h[0], h[1]);
proof.K = Pairing.GlPoint (k[0], k[1]):;
uint[] memory inputValues = new uint[] (input.length);
for(uint i = 0; i < input.length; i++) {
inputValues[i] = inputl[i];
}
if (verify (inputValues, proof) == 0) {
emit Verified ("Transaction successfully
verified.");

return true;
} else {
return false;

Note: All the source codes of the project can be accessed via the following github link
https://github.com/orgs/Blockchain-E-Voting/

70

	Declaration
	Abstract
	Preface
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 - Introduction
	1.1 Background to the Research
	1.2 Research Problem and Research Questions
	1.3 Justification for the research
	1.4 Methodology
	1.5 Outline of the Dissertation
	1.6 Definitions
	1.7 Delimitations of Scope
	1.8 Conclusion

	Chapter 2 - Literature Review
	2.1 Introduction
	2.2 Voting systems
	2.3 Key concepts of Blockchain based Voting
	2.4 Voting and privacy solutions based on Blockchains
	2.5 Summary

	Chapter 3 - Design
	3.1. Introduction
	3.2. Research Design
	3.3 High-level architecture of off-chain and on-chain components
	3.4. Registration phase
	3.5. Registration verification phase
	3.6. Election preparation phase
	3.7. Voting phase
	3.8. Tallying Phase
	3.9. Verification phase
	3.10. Summary

	Chapter 4 - Implementation
	4.1. Introduction
	4.2. Software tools
	4.3. Secret phrase generation
	4.4. Sha256 hash calculation
	4.5. Generate the proof
	4.6. Smart Contracts
	4.7. Summary

	Chapter 5 - Results and Evaluation
	5.1. Introduction
	5.2. Cost analysis
	5.3. Experiment
	5.4. Evaluation properties
	5.5. Evaluation criteria
	5.5. Summary

	Chapter 6 - Conclusions
	6.1 Introduction
	6.2 Conclusions about research questions (aims/objectives)
	6.3 Conclusions about research problem
	6.4 Limitations
	6.5 Implications for further research

	Appendix A: Diagrams
	Appendix B: Code Listings

