

Cuckoo Filter Approach for an

Efficient Tainted Bitcoin

Identification

E.W.M.U.I Pitawela

Cuckoo Filter Approach for

an Efficient Tainted Bitcoin

Identification

E.W.M.U.I Pitawela

Index No: 14001187

Supervisor: Dr. C.I. Keppetiyagama

December 2018

Submitted in partial fulfillment of the requirements of the

B.Sc in Computer Science Final Year Project

(SCS4124)

i

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text. I

also hereby give consent for my dissertation, if accepted, be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made available

to outside organization

Candidate Name: E.W.M.U.I Pitawela

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Ms. E.W.M.U.I Pitawela

under my supervision. The thesis has been prepared according to the format stipulated

and is of acceptable standard.

Principle/Co- Supervisor’s Name: Dr. C.I. Keppetiyagama

………………………………………………

Signature of Supervisor Date:

ii

Abstract

Bitcoin has become one of the most popular cryptocurrency and it is the first and

foremost cryptocurrency that comes to play as an alternative to the traditional currency.

Even though bitcoins have lots of advantages a certain group of people tend to use these

bitcoins for illegal purposes. So there comes the need of identifying these bitcoins before

their usage.

Probabilistic approach has been taken through this research in order to make this tainted

bitcoin identification efficient. Cuckoo filter has a better performance when compared

to other probabilistic data structures. This is the very first occasion that Cuckoo filters

have been taken for bitcoin and blockchain analysis purposes. The evaluation of the

Cuckoo filter is conducted with respect to time and space consumption by utilizing some

accepted space and time consumption measuring tools.

Through this research it is successfully showed that tainted bitcoin identification process

can be made efficient mainly with respect to time, where the authenticity of a given

transaction can be checked in constant time by preserving its accuracy rate with the aid

of Cuckoo filters. Additionally, deletion of tainted transactions from the data structure

also can be done with Cuckoo filters. Therefore, the proposed tainted bitcoin

identification with Cuckoo filter approach, can be considered as a significant

contribution to the body of knowledge.

iii

Preface

Probabilistic data structures have been taken for blockchain and bitcoin analysis

purposes. Tainted bitcoin identification is the purpose of analyzing blockchain

transactions and transaction details. Probabilistic data structures do not provide answers

for membership with a 100% accuracy but with a certain accepted accuracy with an

acceptable false positive rate.

Utilizing Cuckoo filters as one of the probabilistic data structures for blockchain analysis

is a novel approach and it is evaluated with respect to time and space consumption.

An existing Cuckoo filter has been taken for the analysis purposes but the analysis of

tainted bitcoin identification through this Cuckoo filter is solely my contribution in

conjunction of my supervisor.

iv

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Dr. C. I.

Keppetiyagama, senior lecturer of University of Colombo School of Computing and my

research co-supervisor, Dr. A.M.Premachandra, senior lecturer of University of

Colombo School of Computing for providing me continuous guidance and supervision

throughout the research.

I also take the opportunity to acknowledge the assistance provided by Dr. H. E. M. H. B.

Ekanayake as the final year computer science project coordinator.

I appreciate the feedback and motivation provided by my friends to achieve my research

goals. This thesis is also dedicated to my loving family who has been an immense support

to me throughout this journey of life. It is a great pleasure for me to acknowledge the

assistance and contribution of all the people who helped me to successfully complete my

research.

v

Table of Contents

Declaration ... i

Abstract ... ii

Preface .. iii

Acknowledgement ... iv

List of Figures .. viii

List of Tables ... ix

List of Acronyms .. x

Chapter 1 ... 1

Introduction ... 1

1.1 Background and Introduction ... 1

1.2 Research Problem and Research Questions .. 2

1.2.1 Research Problem .. 2

1.2.2 Research Questions .. 5

1.3 Research Aim and Objectives ... 6

1.3.1 Research Aim ... 6

1.3.2 Research Objectives ... 6

1.4 Justification of the Research ... 6

1.5 Methodology ... 7

1.6 Outline of the Dissertation .. 8

1.7 Scope and Delimitations ... 9

1.7.1 Scope .. 9

1.7.2 Delimitations .. 9

1.8 Summary ... 9

Chapter 2 ... 10

vi

Literature Review .. 10

2.1 Introduction ... 10

2.2 Tainted Bitcoin Identification ... 10

2.3 Probabilistic Data Structures ... 12

2.3.1 Bloom Filters .. 12

2.3.2 Cuckoo filters ... 15

2.3.3 Count min sketch ... 17

2.4 Other Related Work .. 18

2.4 Summary ... 20

Chapter 3 ... 21

Design ... 21

3.1 Introduction ... 21

3.2 Research Design .. 21

3.2.1 Backend Application .. 24

3.2.2 Frontend Application ... 25

3.2 Cuckoo Filter Design .. 26

3.3 Summary ... 27

Chapter 4 ... 28

Implementation ... 28

4.1 Introduction ... 28

4.2 Software Tools .. 28

4.2.1 Docker .. 28

4.2.2 Jupyter .. 29

4.2.3 BlockSci Codebase .. 30

4.2.4 Shell Scripting .. 30

4.2 Implementation Assumptions ... 31

4.3 Implementation Details: Cuckoo Filter ... 31

vii

4.4 Implementation Details: Tainted Bitcoin Identification Tool 32

4.4 Summary ... 34

Chapter 5 ... 35

Results and Evaluation .. 35

5.1 Introduction ... 35

5.2 Evaluation Model .. 35

5.3 Evaluation Tools and Techniques ... 36

5.4 Results ... 37

5.4.1 Time Complexity of the Solution ... 38

5.4.2 Time Consumption of the Solution .. 44

5.4.3 Space complexity of the Solution .. 48

5.4.4 Space Consumption of the Solution ... 52

5.4.5 Cuckoo Filter Evaluation ... 53

5.5 Summary ... 57

Chapter 6 ... 58

Conclusion .. 58

6.1 Introduction ... 58

6.2 Conclusions about Research Questions (Aims/ Objectives) 58

6.3 Conclusions about Research Problem ... 59

6.4 Limitations .. 60

6.5 Implications for Further Research... 60

References ... 61

viii

List of Figures

Figure 1.1: Time consumption to obtain transactions in Poison method 3

Figure 1.2: Time consumption to obtain unspent transactions in Haircut method 4

Figure 1.3: Research Methodology .. 8

Figure 2.1: Poison tainted calculation, Haircut tainted calculation 11

Figure 2.2: Comparison between arrays and hash tables ... 12

Figure 2.3: Bloom filter representation .. 13

Figure 2.4: Count Min sketch representation ... 18

Figure 3.1: Comparison of cuckoo filters and bloom filters .. 22

Figure 3.2: Cuckoo filter and counting bloom filter capacity comparison 22

Figure 3.3: Cuckoo filter and counting bloom filter occupancy comparison 23

Figure 3.4: Architecture of tainted bitcoin identification ... 24

Figure 3.5: Two cuckoo filter usage for tainted bitcoin identification 25

Figure 3.6: Frontend view of the tainted bitcoin identification 26

Figure 3.7: Design of the cuckoo filter .. 27

Figure 4.1: Jupyter Notebook ... 29

Figure 5.1: Evaluation model ... 35

Figure 5.2: Evaluation model of the cuckoo filter ... 36

Figure 5.3: Output format of the Htop tool .. 37

Figure 5.4 - Data insertion process of tainted bitcoin identification 39

Figure 5.5: Applying heuristic method for the outputs of a tainted transaction ………39

Figure 5.6: Querying unspent transactions with the assumptions that each transaction has

n number of outputs (worse case)… ... 41

Figure 5.7: Time consumption for data addition in bloom filter and cuckoo filter ……45

Figure 5.8: Tree chart visualization .. 46

Figure 5.9: Time consumption for data deletion in cuckoo filters 47

Figure 5.10: Representation of a tainted transaction having n number of output

transactions (worst case) .. 49

Figure 5.11: Time consumption of 5 cases and standard cuckoo filter 55

ix

List of Tables

Table 1.1: Heuristics .. 2

Table 1.2: Space consumption to obtain unspent transactions in Poison method 4

Table 1.3: Space consumption to obtain unspent transactions in Haircut method …….5

Table 5.1: Time consumption for membership queries in bloom filters and cuckoo

filter ... 47

Table 5.2: Memory consumption for data addition in bloom filter and cuckoo filter ...52

Table 5.3: Memory consumption for membership queries in bloom filter and cuckoo

filter ... 53

Table 5.4: Memory consumption for data deletion in cuckoo filter 53

Table 5.5: Load factor with respect to bucket size in cuckoo filter 54

Table 5.6: Five implementations of cuckoo filter (5 cases) ... 54

Table 5.7: Total memory consumption of 5 cases and standard cuckoo filter 55

Table 5.8: False positive rate of 5 cases and 5 cases and standard cuckoo filter 56

x

List of Acronyms

SML Stone Man Loss

AIV All In Vain

MMT Mass Mybitcoin Theft

AQP Approximate Query Processing

1

Chapter 1

Introduction

1.1 Background and Introduction

Bitcoin has become one of the most popular cryptocurrency and it is the first and

foremost cryptocurrency, which comes to play as an alternative to the traditional

currency. Bitcoin maintains a high profile through numerous means of social media

which eventually make it more popular in the field of cryptocurrency. High price and the

availability of various investment options also have become reasons for Bitcoin’s

popularity.

Each and every Bitcoin transaction should be recorded in the public ledger called

Blockchain. Even though the transactions are recorded, the users behind the transactions

are not revealed. Hence Bitcoin is pseudo-anonymous[1]. Thus, some people temp to

use it for nefarious purposes such as money laundering, stolen funds, contraband deals

etc [2], [3] . Other than the pseudo-anonymous feature,the following reasons also have

caused for Bitcoin’s illegal activities.

● No proper way to retrieve the stolen funds

● No proper mechanism to revert the transaction

In order to discourage these illegal activities precautions should be made before these

activities take place. Hence, there is a mechanism to blacklist the bitcoins used for illegal

activities by giving a special name called tainted bitcoins. The usage of tainted bitcoins

are discouraged as they are less liquid, less valuable and hard to spend. Three heuristics

have been defined with the aim of identifying tainted bitcoins namely Poison, Haircut

and FIFO[2]–[4].

2

Table 1.1: Heuristics

Name Description

Poison This makes any transaction invalidated if it has at least

one dirty predecessor

Haircut Transactions are devalued proportionally according to

the amount of blacklisted bitcoins.

First In First Out

(FIFO)

The order of input determines which outputs are

affected by blacklisting

BlockSci is an open-source software platform which is implemented for blockchain

analysis purposes[5]. BlockSci is versatile and it supports for different blockchains and

analysis tasks. It incorporates an in-memory, analytical (rather than transactional)

database, making it several hundred times faster than existing tools. BlockSci has its own

tools and implementations for clustering, data parsing and for different heuristics. This

has implemented the three heuristics and it outputs the details of unspent transactions

which have previously combined with tainted bitcoins[6]. BlockSci’s core infrastructure

is written in C++ and is optimized for speed. To make analysis more convenient,

BlockSci has provided Python bindings and Jupyter notebook interface.

1.2 Research Problem and Research Questions

1.2.1 Research Problem

The three heuristics output the details of unspent transactions and this can be considered

as the one of the main tools where bitcoin users are given the facility to obtain unspent

transactions when the tainted hashes are given as the input. One of the main drawback

in the current implementation is that it consumes high time and space in order to produce

3

results. There is a norm in Bitcoin that 7-30 transactions happen per second. This means

that every second matters in Bitcoin.

Few transactions were taken as tainted transactions which ranges from 2018 to 2009 with

numerous number of unspent transactions. Time consumption for all the unspent

transactions in Poison and Haircut methods are represented in below graphs.

Figure 1.1: Time Consumption to obtain unspent transactions in Poison method

As it is depicted in the graph above, with the number of unspent transactions time

consumption has been increased and after some point time consumption started to

reduce. This is because when same unspent transactions are queried it consumes a lesser

time as it already in the cache.

4

Figure 1.2: Time consumption to obtain unspent transactions in Haircut method

The above represents time consumption in the Haircut method. Same tainted transactions

used for the Poison method has been used. According to above diagrams, some tainted

transactions in Poison method has been taken almost 5 hours to produce results.

Whenever a user needs to check the authenticity of a transaction, he or she has to use

these heuristic methods which consumes high time, in order to produce results.

The memory consumption is captured for one of the tainted transactions taken for time

consumption graphs, which had the maximum number of unspent transactions. Poison

method is used when retrieving the unspent transactions.

Table 1.2: Space consumption to obtain unspent transactions in Poison method.

Virtual Memory Resident Memory Shared Memory

89.8Gb 14.2Gb 12.7Gb

According to memory consumption, total virtual memory requested by this tainted

function is 89.8GB. Even though this is requested the total amount is not consumed

during the running time of the function. The shared memory and physical memory

consumed by each process is stated under SHR and RES.

5

Memory consumption is captured for the same tainted transaction using Haircut method.

Table 1.3: Space consumption to obtain unspent transactions in Haircut method.

Virtual Memory Resident Memory Shared Memory

88.5Gb 14.9Gb 14.3Gb

In Haircut method the total virtual memory requested by the tool is 88.5GB. This amount

is slightly lower than the Poison method. This may be because Haircut method is less

complex than Poison method.

Both methods consume high virtual memory consumption which is a problem for many

users to run these tainted functionalities again and again when they need to check the

authenticity of a given transaction.

Even if the results obtained with high time and memory consumption, it is a difficult

task for users to check whether a particular transaction is tainted or not because through

the current implementation it outputs millions of unspent transactions. There is no proper

easy mechanism for a bitcoin user to check whether a particular transaction is tainted or

not. This can be considered as a major shortcoming in tainted bitcoin identification.

1.2.2 Research Questions

Solutions to the above identified problems can be taken in several aspects. Restructuring

the data representation and data accessing method is one of the algorithmic efforts that

can be taken to make the tainted bitcoin identification process efficient. Probabilistic

data structures will be utilized as the data structure and through this research their

suitability to tainted bitcoin identification, how these data structures increase its

performance by retaining the accepted time and space consumption also will be

analyzed. The analysis will be conducted through below research questions.

6

1.2.2.1 Question 01

Is it possible to utilize a probabilistic/synopsis data structure which can eventually make

the tainted bitcoin identification process efficient by reducing the time consumption?

1.2.2.2 Question 02

Is it possible to utilize a probabilistic/synopsis data structure which can eventually make

the tainted bitcoin identification process efficient by reducing the space consumption?

1.3 Research Aim and Objectives

1.3.1 Research Aim

The main aim of this research was to identify the possibility of using probabilistic data

structures for an efficient tainted bitcoin identification.

1.3.2 Research Objectives

The objectives of the research are as follows:

● Identify a suitable probabilistic data structure

● Identify the necessary parameters when initializing the data structure

● Implement tainted bitcoin identification tool

● Evaluate the performance of the data structure and compare results

1.4 Justification of the Research

Nowadays, bitcoin enthusiasts have a great desire to check the authenticity of bitcoins to

know whether they are an outcome of a blacklisting practice or not. So, the current

7

tainted bitcoin identification implementations need to be optimized in an efficient

manner. This is the intended scientific contribution through this research.

Probabilistic data structures have a higher performance, mostly when it comes to

membership queries. Utilizing them for blockchain analysis can be considered as a

significant computational contribution. Identifying possible probabilistic data structures,

their suitability to tainted bitcoin identification process will be analyzed which is the

computational contribution of this research.

1.5 Methodology

Constructive research methodology will be followed throughout the research. As the

initial step, research problems were identified, as high space/time consumption incurred

for the tainted bitcoin identification process and having no proper mechanism to find the

authenticity of a given transaction. So, the attempt through this research is to find the

suitability of probabilistic data structures for tainted bitcoin identification.

As the second step, detailed literature review is conducted regarding three heuristics and

its operation. At the same time possibility of using different probabilistic data structures

is assessed, their current applications, benefits they have, applicability to the blockchain

is also assessed by considering the unique features of blockchain.

Research design and the evaluation will be descriptively explained in the coming

sections. Final step would be to present the research findings in a form of a research

paper and the thesis.

8

Figure 1.3: Research Methodology

1.6 Outline of the Dissertation

The first chapter of thesis includes the introduction of this research. Introduction includes

research problem, research methodology, scope and delimitations, key assumptions and

other introduction details for the research. The next chapter of the thesis will be literature

review. This chapter includes the prior researches done towards tainted bitcoin

identification, different probabilistic data structures, how they produce results,

comparison of different probabilistic data structures etc. The third chapter includes the

design of the research solution and fourth chapter includes the research implementation

with the necessary tools utilized when providing the solution. The next chapter includes

the evaluation of the research where the accuracy, time and space consumption of the

9

new solution will be analyzed. Final chapter is the conclusion where overall conclusion

is made based on the results of the research solution.

1.7 Scope and Delimitations

1.7.1 Scope

The research tries to restructure the data representation with the aim of making the

tainted bitcoin identification efficient. The suitability of various probabilistic data

structures will be analyzed and finally the accuracy of the results, the space and time

consumption will be analyzed.

1.7.2 Delimitations

The research does not try to make any changes to current heuristics. The new

probabilistic data structure caters only to make the tainted bitcoin identification process

efficient and it might not applicable for other analysis purposes.

1.8 Summary

This chapter laid the foundations for the research. The problems caused for this research

were the high time and space consumption for tainted bitcoin identification and no proper

way to check the authenticity of a given transaction. Thus, the aim of this research is to

make the tainted bitcoin identification process efficient in a probabilistic manner. All the

unspent transactions are queried through a heuristic method and no change will be done

to those heuristics and it is out of the scope of this research. On these foundations, the

dissertation would proceed with a detailed description of the research.

10

Chapter 2

Literature Review

2.1 Introduction

In this chapter, a review on related work regarding the approaches taken for tainted

bitcoin identification with three heuristics are included in the section 2.2. Section 2.3

includes details about different probabilistic data structures and their unique features.

Section 2.4 represents other related work which were not discussed in the previous

sections.

2.2 Tainted Bitcoin Identification

Bitcoin has got a vast amount of popularity because of its unique features when

compared to traditional currency. Absence of a central authority, pseudo-anonymity are

some of the prominent features of Bitcoin[1]. Some of its features like pseudo-anonymity

[7] badly influenced some bitcoin users for which they use it for nefarious purposes like

contraband deals, money laundering etc [2], [3]. The tainted bitcoins used for these kind

of transactions are blacklisted so that these bitcoins are less valuable, less liquid and hard

to spend. Hence bitcoin users has a great tendency in finding a mechanism to identify

blacklisted bitcoins before dealing with transactions. With that intention three heuristics

have been defined namely Poison, Haircut and FIFO by M. Möser, R. Böhme, and D.

Breuker [3] and Anderson et al[2].

Out of the three heuristics Poison is the drastic policy in which transactions with at least

a single tainted bitcoin is enough for the whole transaction considered to be invalidated.

When compared to Poison, Haircut has a less drastic policy where the devaluation is

11

done proportionally according to the amount of bitcoins associated with a given

address[3].

Figure 2.1: Poison tainted calculation, Haircut tainted calculation [3]

A clear characteristic of a blacklisted bitcoin is that it tempts to transfer through the

network rapidly compared to other bitcoins. Hence order of transactions is a good feature

to identify blacklisted bitcoins which has become the ground principle of FIFO method.

FIFO devalues blacklisted bitcoins by considering the order of inputs[2], [3].

Harry, et al [5] proposed the tool BlockSci which is an open source software platform

used for blockchain analysis. According to Anderson, Ross, et al [4] BlockSci has the

tainted bitcoin identification implementation [6]. In BlockSci implementation when a

hash value of a tainted address given as a parameter it outputs the details of a list of

unspent transactions. This mechanism is failed to provide a solution as to check the

authenticity of a given transaction. Even though BlockSci has done the implementation

on these heuristics, getting hash values of blacklisted transactions is much of a difficult

task. Currently, tainted addresses are maintained by the users of the “Bitcoin Forum”[8].

As there is a delay already in getting blacklisted transactions, the tainted bitcoin

identification process becomes useless if it is not efficient. Hence the tainted bitcoin

identification process must be efficient as much as possible despite the delay of getting

tainted transactions.

12

2.3 Probabilistic Data Structures

Large data analysis has become one of the prominent research avenue. Number of unique

items, most frequent item, existence of an item in the data set are some of the queries

that needs to be answered when analyzing data. The common approach is to use a

deterministic data structure like a hashSet or a hashmap and obtain results with error free

accuracy. But when the data set becomes very large in quantity wise, it is difficult to deal

with the mentioned data structures as they are not fit into memory. At the same time,

those data structures are not fit enough for streaming application which typically require

data to be processed in one pass and perform incremental updates.

Probabilistic data structures can be considered as an alternative to the above mentioned

deterministic data structures which are extremely useful for big data and streaming

applications. These data structures use hash functions to include data in the data structure

and they are included in a compact form. Collisions are ignored in these data structures

but errors can be well-controlled under certain thresholds.

There are different probabilistic data structures such as Bloom filters, Cuckoo filters,

Count Min sketches which are descriptively mentioned in the below sub sections.

2.3.1 Bloom Filters

Bloom Filters are one of the most popular probabilistic data structures which can be used

for high-speed set membership queries. Bloom filters use a hashing mechanism to store

details in its data structure. As a result this performs a constant searching time in Big-O

notation when answering the membership queries. The below diagram shows how the

13

querying process has become efficient due to hashing technique instead of a typical array

like data structure.

Figure 2.2: Comparison between arrays and hash tables [9]

Bloom filters give binary answers to membership’s queries which means it replies yes

or no for questions such as “Is this included in the dataset?” Before answering it should

go through a hash function and fill the filter with data. These hash functions depend on

the number of items expected to have in the Bloom filter and the acceptable false positive

rate[10]. Bloom filters provide two answers. They are yes: which the particular item is

included in the given set and no: which the item is not in the set. The special feature in

this data structure is when the answer is ‘No’ then the item is definitely not in the dataset

while answer “Yes” having two cases. When it is “Yes”, case1 is having the item in the

set while the case2 is item not actually in the set but is given as “yes” because of another

item which also put onto the same location [10].

Figure 2.3: Bloom filter representation [10]

14

Even though Bloom filters help to reduce the overhead of evaluating membership

queries, it has its own drawbacks. One of the main drawbacks is that it does not support

item deletion where in a case of deletion it requires entire filter to rebuild again[10], [11].

According to Harry et al[5], BlockSci uses a LRU cache and a Bloom filter to passe data

from the blockchain for analysis purposes. Cache contains 6.8% amount of addresses out

of total addresses and it is updated using Least Recently Used policy. Bloom filter

contains list of seen addresses. When an address is not in the cache, bloom filter is

queried before the database. Bloom filters are the one of the most popular probabilistic

data structures where they present results probabilistically. Hence the overhead of

querying data from the disk is reduced due to the usage of a Bloom filter. This is one of

the main bitcoin related use case where probabilistic data structures have been utilized

for blockchain analysis purposes.

There are different kinds of Bloom filters implemented by embedding different unique

features. According to Fan, Bin, et al[11],some of them can be listed as Standard bloom

filters, Counting bloom filters, Blocked bloom filters, d-left counting bloom filters,

Quotient filters etc[12].

2.3.1.1 Counting Bloom Filters

Unlike standard bloom filters, counting bloom filters support deletion operation.

Counting bloom filters use an array of counters instead of an array of bits[13]. In a case

of an insertion it increments the value of k counters, in lieu of setting k bits. When in a

lookup operation, it check if each of the required counters is non-zero. The delete

operation decrements the value of each respective counters. Counting bloom filters

consumes four times more space than a standard bloom filter.

Even though counting bloom filters performs the delete operation, it performs at the cost

of additional space[12].

15

2.3.1.2 Blocked bloom filters

Blocked bloom filters do not support deletion, but provide better spatial locality on

lookups[12]. Blocked bloom filters consist of an array of small bloom filters, each fitting

in one CPU cache line. Each item is stored in one of these small filters and the hash

partitioning technique is used as the mechanism. Due to the imbalanced load across the

array of small bloom filters, the false positive rate becomes much higher than the other

bloom filters.

2.3.1.3 d-left Counting bloom filters

These bloom filters use d-left hashing and use fingerprints when keeping items. These

filters remove items by removing their fingerprint. These bloom filters have reduced the

space cost by 50% compared to counting bloom filters[12].

2.3.1.4 Quotient filters

These bloom filters also support deletion operation though the use of fingerprints. These

filters use a technique similar to linear probing to locate a fingerprint. But Quotient filters

require additional meta-data to encode each entry, which requires 10-25% more space

than a standard bloom filter. The performance of this data structure deteriorates when

the occupancy of the hash table exceeds 75%.

2.3.2 Cuckoo filters

Cuckoo filter is also a probabilistic data structure and it is one of best alternative to

Bloom filters. Cuckoo filters consist of Cuckoo hash tables which has array of buckets

where each item has two buckets. Cuckoo filters consists of two hash functions

corresponding to the mentioned two buckets. The lookup operations checks in both

buckets where a particular item is included in a set or not[12], [14].

16

According to Fan, Bin, et al [12] Cuckoo filters use lots of alternative solutions to make

it look up operations efficient and also to achieve high-space efficiency. Using partial

cuckoo hashing instead of traditional cuckoo hashing is one of such alternative solutions.

The main target of using partial cuckoo hashing technique is to achieve space

efficiency[15]. Partial cuckoo hashing deals only with fingerprints which reasons for its

better performance compared to Bloom filters. When fingerprints are stored there is no

other way to restore or rehash original keys to find their alternate solutions. Hence partial

cuckoo hashing technique uses fingerprint to calculate the alternate location[12], [16].

Before the insertion of a single item hashing scheme calculates indexes of the two

candidate buckets.

This simply means when it is needed to identify the alternate location of an item, get the

index of the current location, apply the hash function to the fingerprint value of that

location and then apply ‘xor’ operation to both values to get the alternate location. Hence,

this makes the need to retrieve the original value of a fingerprint useless because the

alternate location can be simply obtained from the information in the bucket.

When it comes to lookup performance Cuckoo filters return false if the item is definitely

not in any of the two buckets, but if it’s true there are two possible cases as in Bloom

filters. But the false positive rate in Cuckoo filters are really low compared to Bloom

filters. In Cuckoo filters there do not exist false negatives as long as bucket overflow

never occurs[12].

One of the main advantage of Cuckoo filters is that they support delete operations

without harming the filter performance and its accuracy. It checks both candidate buckets

for a given item and if any fingerprint matches in any bucket, one copy of that matched

fingerprint is eliminated from the bucket.

17

Another Cuckoo filter implementation is adding a stash for each sub-table of the filter

with the aim of improving its success probability which is proposed by Eppstein,

David[16]. A stash is a collection of key-value pairs where each stash stores a collection

of <location, fingerprint> pairs, for fingerprints that were not be able to store within its

sub-table. To perform a query, first checks in both locations and if it was not included,

the stash is also searched. This causes an additional sequence of memory access but not

harm its performance by slowing down the searches nor degrades its reliability.

According to Eppstein, David [16] Blocked Cuckoo hashing is also another

implementation of Cuckoo filters where each cell of the hash table stores a block of

different key-value pairs. When a key is inserted and one of its two cells in not full it

may be placed directly. However when both cells are full one of the keys already placed

should be kicked out, and moved to another location. Replacing keys are formulated in

a sequence by which a chain of dislocations are created. These sequence of moves can

be viewed as an augmenting path in a graph where vertices can be defined as table cells

and edges are pairs of cells that each key maps to. It performs constant expected time in

breadth-first algorithm for finding these augmenting paths.

2.3.3 Count min sketch

According to Cormode, Graham[17], [18], Count min sketch is a probabilistic sub-linear

space data structure which is capable of representing a high-dimensional vector and

answering queries on this vector, mostly point queries and product queries with strong

accuracy guarantees. To a certain extent count min sketch is similar to bloom filters but

compared to bloom filters count min sketch represents a multi-set while bloom filters

represent a bitmap[10].

The count min sketch data structure consists of two dimensional dxw array of counters

with d number of independent pairwise hash functions h1…….hd of range w. Here w

can be defined as w = [e/ε], and d as [ln1/δ]. ε is the required accuracy level and δ is the

certainty to reach the accuracy. To increment the accounts in the two dimensional array

18

, hash positions should be calculated with d hash functions and update the counts at

respective positions.

Figure 2.4: Count min sketch representation [17]

The count estimate for an item is the minimum value of the counts at the array positions

determined by the d hash functions. Error can be minimized and the accuracy can be

increased by choosing appropriate values for d and w. This performs better accuracy for

high frequent items.

2.4 Other Related Work

The following papers include findings on practical applications of probabilistic data

structures, different probabilistic/synopsis data structures which have not been

mentioned in the prior sections.

Analysis of Bitcoin Network Dataset for fraud, Zambre, Deepak, and Ajey Shah

2013 [19]

The aim of this paper is to identify peculiar properties of bitcoin users carrying out heists

or robbery. Three types of robberies are discussed in this paper namely Stone Man Loss

(SML), All In Vain (AIV) and Mass Mybitcoin Theft (MMT). A classification technique

is used to accomplish the aim of this research. K-means algorithm is used for the model

19

with six different features. When the features are fed into the model it classifies users

into two clusters which separate good users from rogue users. One of the shortcomings

in this model is that it cannot detect any robberies that happen over an extended period

of time in small increments. For synthetically generated rogue users, this model performs

76.5% accuracy, but there exists an ambiguity whether this model performs the same but

there exists an ambiguity whether this model performs the same accuracy in a real

situation.

Synopsis data structures for massive data sets, Gibbons, Phillip B., and Yossi

Matias, 1999 [20]

This paper mainly focused on the uses of synopsis data structures. Synopsis data

structures use very little and provide fast approximate answers to queries. A number of

concrete examples of synopsis data structures and the way of keeping them up-to-date

in the presence of online updates to the data sets are also analyzed.

The two main challenges when defining a synopsis data structure

 What synopsis of the full data set to keep in the limited space in order to

maximize the accuracy and confidence of its approximate responses

 How to efficiently compute the synopsis and maintain it in the presence of

updates to the data set

Synopsis data structures are used in a heuristic way, which do not have proven any

formal properties regarding performance or accuracy under the presence of updates in

the dataset.

Network Applications of Bloom Filters: A survey, Broder, Andrei, and Michael

Mitzenmacher, 2002 [21]

The aim of this paper is to survey the ways in which Bloom Filters have been used and

modified in a variety of network problems. Bloom filters can be used to summarize data

in peer to peer networks. Some applications have utilized bloom filters such as

20

approximate set reconciliation for content delivery, set intersection for keyword searches

etc.

A drawback of bloom filter is that it allows false positives, but it is acceptable to a certain

extent for large data analysis.

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches, Cormode,

Graham, et al, 2011 [22]

This paper explicates on Basic principles and recent developments related to

Approximate Query Processing (AQP). It is mainly focused on key synopses: random

samples, histograms, wavelets and sketches and issues such as accuracy, space, time

efficiency, optimality, practicality, error bounds on query answers and incremental

maintenance.

Sampling well suited for broad patterns and has a poor performance on applications such

as fraud or anomaly detection. Sampling gives lower accuracy when the data is highly

variable. Histograms can be used for estimation purposes but do not suitable for higher

dimensional data. They also do not perform well when the data is dynamic and shifting.

Wavelets are well suitable for capturing nonlocal structures and under dynamic

situations but perform less when extending to higher dimensions. Sketches are very

efficient to process updates to data. Sketching algorithms rely on hash functions.

2.4 Summary

This chapter mainly focused on providing an extensive review regarding tainted bitcoin

identification and probabilistic data structures. Initially, it discussed the need and steps

taken for tainted bitcoin identification, main heuristics defined to obtain unspent

transactions related to a tainted transaction. Next a detailed review was done regarding

different probabilistic data structures, their basic structure along with their unique

features and drawbacks.

21

Chapter 3

Design

3.1 Introduction

This chapter explicates the proposed solutions to the research problem. Section 3.2

includes overall research design and Cuckoo filter design is included in the section 3.3.

3.2 Research Design

The proposed solution is designed in such way where users can easily identify the

authenticity of a transaction. This design is provided based on a probabilistic approach

which means that the tainted bitcoin identification tool is designed by utilizing a

probabilistic data structure which is a Cuckoo filter.

As mentioned in the literature review, there exists some popular probabilistic data

structures such as Bloom filter, Count min sketch, Cuckoo filter. Out of all the

probabilistic data structures Cuckoo filters have chosen for the proposed solution as they

have a better performance compared to other probabilistic data structures. A simple

comparison is depicted in the following table which includes a comparison among the

some probabilistic data structures.

22

Figure 3.1: Comparison of Cuckoo filters and bloom filters [23]

As per the above table, it is apparent that Cuckoo filters have a better lookup performance

when it comes to membership queries. Its running time has a constant time complexity

which makes it totally qualified for the proposed solution. Additionally, Cuckoo filter

have another unique feature where it supports for item deletion which the other data

structures do not have.

The below graphs further strengthen the fact that Cuckoo filters have a better

performance compared to Bloom filters. They were drawn not considering the bitcoin

context, but considering a general instance.

Figure 3.2: Cuckoo filter and counting bloom filter capacity comparison [24]

23

Figure 3.3: Cuckoo filter and counting bloom filter occupancy comparison [24]

The more capacity or filter occupancy means it has the capability of keeping items as

many as possible in the data structure. That means the accuracy rate of the data structure

automatically increases as it has many items stored in the data structure.

In accordance with the above features, Cuckoo filter has been chosen as the probabilistic

data structure to keep all the unspent transactions for a given tainted transaction.

The tainted bitcoin identification application has the following sub components.

 Backend application

o Tainted tool implemented with BlockSci

 Frontend application

o User Interface

24

Figure 3.4: Architecture of tainted bitcoin identification application

Analysis library is the parsed data set which is taken from pure Blockchain after parsing

through the BlockSci parser.

3.2.1 Backend Application

Backend application is designed to develop with the BlockSci implementation. Two

Cuckoo filters are used for the backend application for the following purposes.

● To maintain the tainted transaction details

● To maintain the details of unspent transactions which are connected with tainted

transactions

The two Cuckoo filters are used in the following manner.

25

Figure 3.5: Two cuckoo filter usage for tainted bitcoin identification

When a tainted address is given to the backend application, first it checks if the given

tainted transaction is already included in the data structure. For that it uses a separate

Cuckoo filter. If its included then user does not need to include all the unspent

transactions related to the tainted address as they have already been added to the data

structure. Hence, user only needs to give the transaction to check its authenticity. If the

tainted address does not contain in the data structure, then it needs to be added to the

Cuckoo filter which contains tainted transactions, and then include all the unspent

transactions to the other Cuckoo filter which is then can be used to check the authenticity

of a given transaction. The second Cuckoo filter keeps the details of unspent transactions

in a probabilistic manner.

3.2.2 Frontend Application

Users need to give the address of the tainted transaction. It can be given through a CSV

file. If the user’s tainted address is already in the Cuckoo filter then user can directly

give the second input, which is the transaction that needs to check the authenticity. If it

26

is a new tainted address then the backend application will take some time to prepare the

data structure with all the unspent transactions related to the new tainted address.

The frontend application also has the option to delete a tainted address and the related

unspent transactions from the data structure.

Figure 3.6: Front end view of the tainted bitcoin identification.

3.2 Cuckoo Filter Design

Cuckoo filters can be designed by considering various parameters.

● Number of bits per item

● Number of nests per bucket

These two factors directly affects load factor and the false positive rate of the Cuckoo

filter. The 2-4 Cuckoo filter is used for the tainted bitcoin identification tool. It has two

hash tables with four nests per bucket and sixteen bits have been used to represent a

single item.

27

Figure 3.7: Design of the cuckoo filter

The Cuckoo is designed with the following operations.

● Add

○ This is used to include all the unspent transactions related to a

tainted address in the data structure.

● Lookup

○ This is used to check a given transaction is already included in the

data structure. (To check the authenticity of a transaction)

● Delete

○ This is used to remove transactions from the data structure which

were already included in the data set.

3.3 Summary

This chapter provided a detailed description regarding tainted bitcoin identification tool

and its components. The main focus is put on the Cuckoo filter design where the number

of bits per item and number of nests per bucket is decided. Two Cuckoo filters will be

utilized for the tainted bitcoin identification tool.

28

&& \ make install

tar xzf

make cmake-3.10.0.tar.gz && \ cd cmake-3.10.0/ && \ cmake . && \

RUN cd /root && \

wget https://cmake.org/files/v3.10/cmake-3.10.0.tar.gz && \

Chapter 4

Implementation

4.1 Introduction

This chapter elaborates the implementation details of the proposed solutions. Section 4.1

describes the software tools and techniques utilized for the implementation, section 4.2

represents the implementation assumptions, section 4.3 represents the implementation

details of the Cuckoo filter, section 4.4 represents the implementation details of the

tainted bitcoin identification tool.

4.2 Software Tools

There are many other tools and techniques used for this research for BlockSci setup and

taint analysis.

4.2.1 Docker

Setting up BlockSci in the local machine is much of a complex task as it has many

dependencies. Hence, BlockSci is setup using a Docker file as all the dependencies such

as cmake are written in it.

29

sudo docker run -it --privileged -d --name $NAME -v

/home/uthpala/Uthpala/Uthpala/DockerVolume/blocksci-

data:/root/bitcoin-dat a -v

/home/uthpala/Uthpala/Uthpala/DockerVolume/BlockSci/tools:/root/BlockS

ci/tools -v

/home/uthpala/Uthpala/Uthpala/DockerVolume/BlockSci/src:/root/BlockSci

/src -p

$PORT:8888 $IMAGE_NAME

Docker volume mapping is used to map the local files and data folder into the docker

machine and the implementation is done in the host machine. This is done when running

the docker file.

4.2.2 Jupyter

The Jupyter Notebook App is a server-client application that allows editing and running

notebook documents via a web browser. BlockSci can be accessed from Jupyter and it

is used to get the outputs of the unspent transactions. The same result can be accessed

through a terminal, but the view given by Jupyter is much user friendly than the terminal

window.

Figure 4.1: Jupyter notebook

30

#!/bin/bash

docker exec fypBlockScitemp sh -c "cd /root/BlockSci/release &&

CC=gcc-7 CXX=g++-7 cmake -DCMAKE_BUILD_TYPE=Release .. && make &&

make install"

#!/bin/bash

docker exec fypBlockScitemp sh -c "cd

/root/BlockSci/release/tools/taint && ./blocksci_taint"

4.2.3 BlockSci Codebase

The tainted bitcoin identification is implemented on top on the BlockSci codebase.

BlockSci has some tools implemented for different purposes such as for clustering, data

parsing. Tainted bitcoin identification tool is also implemented under BlockSci tools.

Heuristic methods such as Poison, Haircut are also implemented in BlockSci and these

implementations are used in the tainted bitcoin identification tool.

4.2.4 Shell Scripting

After the implementation or even after any modification the code segment needs to be

build and compiled in the Docker machine. Logging to Docker and do the compilation

takes some effort and time. So the all the compilation steps in the Docker machine is

written in a shell script. So that it is easy to do any changes or add new implementation

without taking much effort.

Due to the above shell scripting compilation has become a one step process.

Additionally, shell scripting used for the running process of the taint tool. It includes

several steps to follow inside the Docker machine. Due to the below shell script it could

have been done as a single step process inside the host machine.

31

#define CUCKOO_NESTS_PER_BUCKET 4

typedef struct {

uint16_t fingerprint;

} attribute ((packed)) cuckoo_nest_t ;

4.2 Implementation Assumptions

BlockSci is one of the main tool that currently exists for BlockSci analysis purposes.

Even though it is comparatively good compared to other tools it has its own failures in

the version used (v 0.5) for this research.

One of the main failure is that some hashes cannot be accurately parsed through the

blockchain by the BlockSci parser. For an instance transactions which have script hashes

cannot be parsed properly and public key hashes are parsed accurately. Hence, only the

public key hashes are used for tainted bitcoin identification with the assumption that it

will work accurately for other hashes as well.

Another failure is in the FIFO heuristic implementation. An infinite loop runs when

tainted bitcoin identification tool tries to get all the unspent transactions using FIFO

method. Hence, only Poison and Haircut heuristic methods are used to obtain the unspent

transactions for a given tainted transaction.

4.3 Implementation Details: Cuckoo Filter

Cuckoo filter is based on a standard Cuckoo filter which is also called as 2-4 Cuckoo

filter. In this Cuckoo filter there are four nests defined per bucket.

Here 16 bits are used to represent a single item in the Cuckoo filter.

32

cuckoo_filter_new(&filter, size , max_items, (uint32_t) (time(NULL) &

0xffffffff));

getline(myFile,input,'\n');

if(myFile.good()!=0){

}

Here the size of the uint16_t is 16 bits.

The Cuckoo filter can be initialized as follows.

The parameters are the filter, size of the filter, maximum number of items intended to

include, and a special variable called seed which is used when calculating hash values.

4.4 Implementation Details: Tainted Bitcoin Identification Tool

This tool gets the outputs of a given tainted transaction and queries all the unspent

transactions of a given address using a heuristic method and include them in the data

structure which can be later used to identify the authenticity of a transaction.

The tainted transactions are taken from a file upload.

The tainted hash value is taken as the input and the transaction details related to the

transaction is retrieved and assigned to the variable, root.

auto root = blocksci::Transaction(input,chain.getAccess());

Details of a particular transaction assigned to the variable root are listed below.

Tx(len(txins)=0, len(txouts)=1, size_bytes=135, block_height=2000, tx_index=2030)

33

if (root.outputCount() > 0) {

auto count = root.outputCount();

for (auto i = 0; i < count; i++) {

if ((root.outputs()[i].getType() ==

blocksci::AddressType::PUBKEYHASH)){

}

}

}

auto tainted =

blocksci::heuristics::getPoisonTainted(root.outputs()[i],

root.outputs()[i].getValue());

According to the above details, transactions with outputs and transactions which do not

have outputs can be clearly identified.

The next step of tainted bitcoin identification is to check whether a particular tainted

transaction includes any outputs. If it does not have any outputs then no need of using

the tainted function because there is no unspent transactions exist. Another important

fact is only the public key hashes are used as discussed in the implementation

assumption.

After that a heuristic method is used to obtain all the unspent transactions. Poison

heuristic method is used as follows in the implementation. Two parameters are the hash

of the output and the value of the output.

While taint function gives the outputs of unspent transactions, the details of the outputs

are stored in the Cuckoo filter. The unique hash value of each transaction is chosen to

keep inside the Cuckoo filter. There are three parameters to be given.

● The filter (Place where data is stored)

● Data item

● Size of the data item

34

cuckoo_filter_contains

(filter,const_cast<char*>("1LRkrnymve4Gm7eLeK3dMBzrwcDwJ9sY9L"), 34);

cuckoo_filter_remove(filter,const_cast<char*>(pubkeyHash.c_str()),

34);

After building the data structure, authenticity of a given transaction is checked against

the transactions in the Cuckoo filter. Three parameters should be given.

● The filter

● Data item which is used to check the authenticity

● Size of the data item

If it’s included output is given as tainted.

In an instance where a particular item needs to be deleted, it can be done as follows. For

the deletion the following details should be given.

● The filter

● Transaction to be deleted

● Size of the transaction

4.4 Summary

In this chapter, the software tools utilized to implement the proposed solution was

elaborated followed by the important functionalities of the proposed solution. The main

implementation details of the Cuckoo filter such as filter implementation with necessary

parameters are given and the most important functionalities of the Cuckoo filter are also

stated. Finally the implementations of the tainted bitcoin identification are also stated

how it is combined with the heuristic implementation of BlockSci. The implementation

details of the evaluation model will be described in Chapter 5.

cuckoo_filter_add(filter,const_cast<char*>(pubkeyHash.c_str()),34);

35

Chapter 5

Results and Evaluation

5.1 Introduction

This chapter elaborates how results are evaluated and the success level of the proposed

solution. In Section 5.1 evaluation model is stated with respect to evaluation parameters

used for tainted bitcoin identification. The next chapter includes tools and techniques

utilized for the evaluation. The final section includes a detailed description of results and

an explanation concerning the evaluation metrics.

5.2 Evaluation Model

Figure 5.1: Evaluation model

The evaluation of the proposed solution is conducted with respect to time and space

metrics. Worst case is theoretically evaluated by considering time and space

36

auto start = high_resolution_clock::now();

auto stop = high_resolution_clock::now();

auto duration = duration_cast<microseconds>(stop - start);

complexities while factual case is practically evaluated by considering time and space

consumptions. For the evaluation Bloom filter is also considered other than Cuckoo filter

for results comparison.

The performance of the Cuckoo filter is also evaluated as follows.

Figure 5.2: Evaluation model of the cuckoo filter

The accuracy of the Cuckoo filter depends on nests per bucket and bits per item. The

evaluation will be conducted with respect to time and space consumption in terms of the

mentioned six cases.

5.3 Evaluation Tools and Techniques

The below code segment is used when capturing time consumption for the various

operations in tainted bitcoin identification.

37

For space consumption, Htop tool is used where it represents the total memory requested

by each process through the VIRT (Virtual Memory) tab.

Figure 5.3: Output format of the Htop tool

5.4 Results

Initially time complexity of the solution is evaluated which captures the worst case

instances with respect to time. The next section includes time consumption of the tainted

bitcoin identification tool. Subsequently space metric is considered with respect to space

complexity and space consumption. Final evaluation is on the performance of the

Cuckoo filter with reference to its implementation parameters.

When obtaining unspent transactions in both data insertion and deletion operations,

Poison method is used as the heuristic method. Poison is the most complex method

whereas Haircut and FIFO are less complex and definitely consume lesser time and space

compared to Poison method. Hence the suitability of the solution is evaluated against the

most complex method whereby the other methods will definitely fit for the solution if

Poison method does.

38

Tainted Bitcoin Identification(tainted transaction){

get outputs of the tainted transaction

for i=0 to number of outputs{

5.4.1 Time Complexity of the Solution

The tainted bitcoin identification tool is the main tool used to identify the authenticity of

a given transaction. The time complexity of the solution is analyzed with respect to data

addition into the data structure, deletion and the availability check of a particular

transaction (membership queries) by utilizing both Cuckoo filter and Bloom filter data

structures.

5.4.1.1 Time Complexity of Data Addition

Time complexity is obtained by subdividing the implementation of the taint tool.

Figure 5.4: Data insertion process of tainted bitcoin identification

The pseudo code of the above diagram is as follows.

39

Get Outputs of the Tainted Transaction

The number of output transactions for a particular tainted transaction is obtained. The

unspent tainted transactions are queried by going through the obtained outputs.

Figure 5.5: Applying heuristic method for the outputs of a tainted transaction

The time complexity of the above implementation depends on the number of output

transactions. The time complexity of first sub part is O (n) when the number of outputs

is equal to n. Hence this function consumes a linear time.

if i is unspent -> add to the data structure

while output count not equals to zero{

apply a heuristic method to obtain unspent transactions

(hash value of i , value of i){

if transaction is unspent -> add to the data

structure }

}

}

}

40

getOutputs (param1, param2){

while(output count NOT equal to zero){

for 1 to output count{

getOutputs (param1, param2)

}

}

}

Obtain unspent transactions using a heuristic method

The tainted bitcoin identification function runs through all the outputs given and query

again through all these outputs if those outputs are unspent. This querying process will

cease until a particular transaction does not contain any outputs.

The pseudo code of the above recursive function is stated below:

Here param1 and param2 are hash of the output and the value of the output.

41

Figure 5.6: Querying unspent transactions with the assumption that each transaction has n

number of outputs (worst case)

For an instance one of the output out of 9 outputs of a tainted transaction is taken as per

in the above diagram. It is assumed that the branching factor of each transaction is n

which the worst case scenario is. Thus, output 1 has n number of outputs and each of

these outputs have n number of outputs. This querying process ends up when a particular

transaction does not contain any outputs.

Hence, the time complexity can be calculated as O (n *n *n*...........*n)

Therefore, for the heuristic method, it consumes O (nn), an exponential time complexity.

42

Time Complexity of Data Insertion: Bloom Filter

The insertion time depends on the number of hash functions defined for a single input as

the number of insertions equal to the number of hash functions. So the time complexity

of this insertion part is O (k) where k is the number of hash functions defined.

Time Complexity of Data Insertion: Cuckoo Filter

Insertion of an item into Cuckoo Filter is a bit complex compared to Bloom Filter. Here

there are two main functionalities related to item addition. Before adding any item into

the data structure, first it checks whether this item already contains in the respective

locations. In order to find out the location two hash functions are used which it gives

bucket locations of the data structure. Then by looping through the number of nests per

bucket it checks whether the particular item is already included or not.

If the item is not already included in both locations (two possible locations from two

hash functions) then location of the bucket with respect to the item is gained using hash

functions. The item is added to one of the vacant nests in the bucket where the bucket

location is given by the hash functions. The addition also done to the correct nest by

looping through the number of nests per bucket.

Hence the complexity is equal to number of nests per bucket O (4), which is a constant

time complexity.

The overall complexity of item insertion in Bloom Filter and Cuckoo Filter are as

follows.

Bloom Filter: O (n* nn * k)

O (nn)

Cuckoo Filter: O (n * nn * 4)

O (nn)

As per the above calculation, it is apparent that Cuckoo filters have a lesser time

complexity compared to Bloom filters with respect to item addition.

43

5.4.1.2 Time Complexity for Membership Queries

The most favorable feature in probabilistic data structures is that they performs a less

time complexity when it is comes to membership queries. In Bloom filters the queried

item is checked by going through the defined number of hash functions. So its running

time depends on the number of hash functions.

In Cuckoo filters the bucket location is given by two hash functions and it checks for a

particular data item in the defined bucket by looping through the number of nests defined

per bucket. So it has a constant time complexity.

Bloom filter: O (n) Cuckoo filter: O (4)

According to above information it is clear that Cuckoo filters have a better performance

compared to Bloom filters. This special characteristic of Cuckoo filter is the main reason

for its choice for tainted bitcoin identification.

5.4.1.3 Time Complexity of Data Deletion

Additionally, Cuckoo filters have another unique feature where it stand out from Bloom

filter data structure. Cuckoo filters support for data deletion without causing any

performance or accuracy issues. But Bloom filters have serious issues when it comes to

deletions so it is a popular myth that Bloom filters do not support for data deletion.

Assume a use case where a particular transaction which was previously considered as

tainted was later identified as a pure/legal transaction, then all the unspent transactions

associated with the tainted transaction which were previously added to the Cuckoo filter

need to be removed. So this can be easily done without compromising its accuracy nor

its performance with Cuckoo filters.

44

Data deletion has a similar process as data insertion.

● Get outputs of the transaction which was previously considered as tainted

● Apply a heuristic method to obtain unspent transactions

● Delete unspent transactions from the data structure

Time complexity for the first two processes are similar as data insertion whereby it can

depicted as follows.

O (n * nn) ~ O (nn)

When deleting an item from the Cuckoo filter, after getting the bucket location from two

hash functions it check for the correct nest by looping through the number of nests per

bucket. Hence the complexity is O (4).

The overall time complexity of data deletion in Cuckoo filter can be represented as

follows.

Cuckoo Filter: O (n * nn * 4)

O (nn)

With the above mentioned facts, it is apparent that Cuckoo filters have a better

performance compared to Bloom filters in tainted bitcoin identification.

5.4.2 Time Consumption of the Solution

5.4.2.1 Time Consumption for Data Addition

The time consumption (in microseconds) is captured with respect to data addition in both

data structures. Here various number of unspent transactions have been used and for each

tainted transaction and a new data structure is created for analysis purposes.

45

Figure 5.7: Time consumption for data addition in bloom filters and cuckoo filters

Based on the above diagram, it is clear that Cuckoo filters have a drastic time reduction

compared to Bloom filters.

Even though theoretically time complexity of data insertion is exponential, practically

the number of unspent transactions are limited due to the following factors

● All transactions do not have output transactions

● If outputs exist, some have already been spent

The below diagram represents a tainted transaction from year 2018 and how its tree chart

visualization.

46

Figure 5.8: Tree chart visualization

In the above diagram, yellow circle represents spent transactions while blue represents

unspent transactions. So only the transactions represent in blue color circles are queried

and added to the data structure. Hence, this limits the number of transactions queried and

added to the data structure.

5.4.2.2 Time Consumption for Membership Queries

Time consumption is captured using few transactions which have been included into the

data structure prior to the existence check. Outputs obtained are represented in the below

table.

47

Table 5.1: Time consumption for membership queries in bloom filters and cuckoo filters

 Time Consumption (microseconds)

Cuckoo filter 0 0 1 0 0

Bloom filter 1 1 14 1 2

As per the above results, Cuckoo filters consume less time for membership queries

compared to Bloom filters.

5.4.2.3 Time Consumption for Data Deletion

Since only, Cuckoo filter supports for data deletion time consumption is captured with

the number of unspent transactions against its time consumption in microseconds.

Figure 5.9: Time consumption for data deletion in cuckoo filters

48

5.4.3 Space complexity of the Solution

Space complexity is the amount of memory used by the tainted bitcoin identification

function during its execution.

5.4.3.1 Space Complexity of Data Insertion

The space complexity of data insertion will be captured as the initial step of space

complexity analysis. For that it will be analyzed under following parameters.

 Space complexity of the data structure

 Bloom Filter

 Cuckoo Filter

 Space complexity of obtaining unspent transactions using heuristic methods

 Space complexity for data addition

Space complexity of the data structure: Cuckoo Filter

The space complexity of the Cuckoo filter depends on bucket count and cuckoo nests

per bucket.

Filter size = bucket count x nests per bucket

In the standard implementation cuckoo nests per bucket is defined as 4 and bucket count

is calculated by using values of maximum key count and cuckoo nests per bucket. Here

maximum key count means the maximum number of items that is supposed to add into

the Cuckoo filter.

Bucket count = f (max key count (m) / cuckoo nests per bucket (4))

49

The bucket count is calculated in a separate function which is depicted here as f. It is

clear that the bucket count is solely depend on maximum key count which is defined

here as m. So the time complexity of the Cuckoo filter is O (m).

Space Complexity of the Data Structure: Bloom Filter

In Bloom filter space complexity directly depends on the size of the filter which is given

at the time of the filter initialization. So it is clear that the space complexity depends on

the size defined (m) at the time of filter initialization. Hence space complexity can be

defined as O (m).

Space Complexity of Obtaining Unspent Transactions Using Heuristic Methods

When obtaining unspent transactions, the heuristic implementation behaves as a

recursive function as follows. Here the worst case scenario is considered where each

transaction has n number of output transactions. (Branching factor is n)

Figure 5.10: Representation of a tainted transaction having n number of output

transaction (worst case)

50

The querying process will cease if a particular transaction does not contain any outputs.

For n number of transactions, there exist nn +n number of recursions. So the space

complexity of this algorithm for n number of transactions can be defined as follows.

O (nn + n)

O (nn)

Space Complexity of data addition: Cuckoo Filter

When adding items into the Cuckoo filter three extra variables are needed other than the

input parameters. These parameters are needed for fingerprint, value of the hash 1, value

of the hash 2. So the space complexity is O (3).

Space Complexity of data addition: Bloom Filter

Bloom filter requires an extra space up to the number of hash functions. So the space

complexity of data insertion can be defined as O (k) where k is the number of hash

functions.

The overall space complexity can be counted by summing up the complexities of the

above parameters.

 Cuckoo Filter: O ((nn * 3) + m) ~ O (nn) Bloom Filter: O((nn * k) + m) ~ O (nn)

According to the above calculation, it is apparent that Cuckoo filter is much efficient in

terms of space complexity. It is assumed that the number of hash functions should be

greater than k in order to obtain reasonable efficiency.

5.4.3.2 Space Complexity of Membership Queries

When evaluating the space complexity, the following parameters need to be concerned.

51

❖ Space complexity of the data structure

➢ Bloom Filter

➢ Cuckoo Filter

❖ Space complexity for member query

Cuckoo filter consumes three extra variables namely fingerprint, value for hash 1, value

for hash2. Thus, the space complexity of the Cuckoo filter can be defined as O (3) while

Bloom filters’ space complexity is O (k) where k is the number of hash functions.

The overall complexity for membership queries can be depicted as follows.

Cuckoo Filter: O (m +3), m is the maximum items in the data structure

Bloom Filter : O (m + k), m is the size of the Bloom filter

As per the above evaluation, it is clear that Cuckoo filters have a lesser space complexity

for membership queries.

5.4.3.3 Space Complexity of Data Deletion

Since Cuckoo filters only supports for data deletion, complexity analysis is done

only for Cuckoo filters. In order to evaluate the space complexity of delete

operation complexity of the following parameters need to be evaluated.

❖ Space complexity of the data structure

➢ Bloom Filter

➢ Cuckoo Filter

❖ Space complexity of obtaining unspent transactions using heuristic

methods

❖ Space complexity for data deletion

As per the above operations, data deletion also needs three extra variables other than

the input values. Hence the complexity can be defined as O (3).

52

Overall space complexity of delete operation can be depicted as follows.

Cuckoo Filter: O ((nn * 3) + m)) ~ O (nn)

5.4.4 Space Consumption of the Solution

Space consumption is captured by considering only the VIRT memory which captures

the total amount of memory requested by processes. This amount of memory may not

consume all the time during its execution but it represents the maximum memory

required.

5.4.4.1 Space Consumption for Data Addition

The space consumption is captured using both data structures for a tainted transaction

which has one of the most number of output transactions using the memory capturing

tool, Htop. The space consumption is captured for five tainted transactions.

Table 5.2: Memory consumption for data addition in bloom filter and cuckoo filter

Total Memory Consumption (VIRT

Memory)

Bloom Filter 88.7Gb 89.5Gb 91.1Gb 89.8Gb 88.8Gb

Cuckoo Filter 88.3Gb 89.4Gb 90.1Gb 89.4Gb 88.1Gb

53

5.4.4.2 Space Consumption for Membership Queries

The existence check is done for five unspent transactions and the results obtained are

represented below.

Table 5.3: Memory consumption for membership queries in bloom filter and cuckoo filter

 Total Memory Consumption (VIRT

Memory)

Bloom Filter 88.7Gb 89.4Gb 89.2Gb 90.1Gb 90.2Gb

Cuckoo Filter 88.3Gb 89.4Gb 88.4Gb 89.8Gb 90.1Gb

5.4.4.3 Space Consumption for Data Deletion

Table 5.4: Memory consumption for data deletion in cuckoo filter

 Total Memory Consumption (VIRT

Memory)

Cuckoo Filter 88.3Gb 88.4Gb 89.3Gb 89.4Gb 90.1Gb

According to the space consumption results, it is apparent that there does not exist any

clear space efficiency in Cuckoo filters compared to Bloom filters.

5.4.5 Cuckoo Filter Evaluation

The prior observations were based on a 2-4 Cuckoo filter which means it has two hash

tables with four nests per bucket and 16 bits were used to represent a single item. The

false positive rate depends on load factor and number of bits used for an item. Load

factor varies as per the following table.

54

Table 5.5: Load factor which respect to bucket size in cuckoo filter

Bucket Size (Nests

per bucket)

Load

Factor

1 50%

2 84%

4 95%

8 98%

When considering the standard Cuckoo filter (2-4 Cuckoo filter) with a 95% load factor,

Bits per item = ((log2 (1/FPR) + 2) / Load Factor)

According to the above equation,

False positive rate is equal to 0.0001

False positive rate is equal to 0.0001.

As the next step of the evaluation, performance of the Cuckoo filter is captured under

following conditions.

Table 5.6: Five implementation of cuckoo filter (5 cases)

Cases Bits per Item Load Factor

1 16 98%

2 8 98%

3 8 95%

4 16 84%

5 8 84%

Time consumption and space consumption are captured with all the above cases and

with the 2-4 standard Cuckoo filter (A single item is represented by 16 bits).

55

Figure 5.11: Time consumption of five cases and standard cuckoo filter

As per the above graph, it is clear that Cuckoo filters which represent an item with 8 bits

have a lesser time consumption compared to other Cuckoo filters. The Cuckoo filter with

95% load factor which means 4 nests per bucket has the least time consumption.

Space consumption is also captured using the tool Htop for all the above cases. A

transaction with the largest number of unspent transactions was taken as the tainted

address.

Table 5.7: Total memory consumption of five cases and standard cuckoo filter

Cases Total Memory Consumption

1 89.4Gb

2 88.9Gb

3 88.7Gb

4 89.4Gb

56

5 88.9Gb

Standard Cuckoo Filter 89.2Gb

In accordance with the above results, case 2, case 3 and case 5 Cuckoo filters have a

lesser space consumption compared to other Cuckoo filters.

The false positive rate is calculated for the above cases.

Table 5.8: False positive rate of five cases and standard cuckoo filter

Cases Bits Per Item Load Factor False Positive

Rate

1 16 98% (8 nests per bucket / 2-8

Cuckoo

Filter)

0.000076

2 8 98% (8 nests per bucket / 2-8

Cuckoo

Filter)

0.017

3 8 95% (4 nests per bucket / 2-4

Cuckoo

Filter)

0.021

4 16 84% (2 nests per bucket / 2-2

Cuckoo

Filter)

0.00036

5 8 84% (2 nests per bucket / 2-2

Cuckoo

Filter)

0.038

Standard

Cuckoo

Filter

16 95% (4 nests per bucket / 2-4

Cuckoo

Filter)

0.00011

Cuckoo filters with lowest false positive rate has the highest time consumption when

adding unspent transactions into it. (Case 1) According to the above results, it is clear

that time /space consumption and false positive rate has an inverse relationship. It is

possible to define a Cuckoo filter with the highest accuracy but compromising its

57

performance. So the 2-4 Cuckoo filter is designed with a considerable accuracy rate and

performance.

5.5 Summary

This chapter elaborated a detailed evaluation mainly considering time and space metrics

with respect to its performance. For the evaluation Bloom filter is also is used other than

Cuckoo filter to compare the results. Time and space complexity is analyzed

theoretically as the worst case scenario in tainted bitcoin identification while factual

case results are obtained through time and space consumption. Towards the end of the

evaluation, performance of the Cuckoo filter is analyzed and how it varies with respect

to false positive rate by changing the number of items representing a single item and load

factor. However, it is observed that there is an inverse relationship between false positive

rate and the performance of the Cuckoo filter.

58

Chapter 6

Conclusion

6.1 Introduction

This chapter includes a review of the research aims and objectives, research problem,

limitations of the current work and implications for further research.

6.2 Conclusions about Research Questions (Aims/ Objectives)

The main aim of this research was to identify the possibility of using probabilistic data

structures for an efficient tainted bitcoin identification. With that aim the main research

objectives were,

● Identify a suitable probabilistic data structure

● Identify the necessary parameters when initializing the data structure

● Implement a tainted bitcoin identification tool

● Evaluate the performance of the data structure and compare the results

According to the literature review, Cuckoo filters have a better performance compared

to other probabilistic data structures. Hence, they are utilized to make the tainted bitcoin

identification efficient. However, Bloom filter is also considered for the evaluation

purposes to compare results against with the Cuckoo filter.

According to the evaluation it is apparent that probabilistic data structures can be

effectively used for tainted bitcoin identification. Among other probabilistic data

structures, Cuckoo filters performed better mostly when to comes to time consumption.

When considering space consumption, the results were almost like same for both Cuckoo

filters and Bloom filters.

59

In theoretical analysis, Cuckoo filters performed better with regards to time and space

complexities. The performance of the Cuckoo filter varied based on load factor and

number of bits used to represent a single item. According to results obtained, it is

apparent that 2-4 Cuckoo filter has a better accuracy rate(lesser false positive rate) across

its time and space consumption.

It can be concluded that probabilistic data structures can be utilized for an efficient

tainted bitcoin identification specifically Cuckoo filters.

6.3 Conclusions about Research Problem

The research problem stated was the high space and time consumption in tainted bitcoin

identification and the absence of a mechanism to identify the authenticity of a given

transaction. Thus, the usage of a probabilistic data structure was considered for an

efficient tainted bitcoin identification.

Due to the usage of the probabilistic data structure, an additional time is consumed when

adding unspent transactions into the data structure other than obtaining unspent

transactions from a heuristic method. Hence, additional time and space are consumed

when building the data structure. But after that, this data structure can be used as a tool

to provide the authenticity of a given transaction within a few microseconds as it has a

constant time complexity theoretically.

Even though, there is a huge time consumption reduction in the solution, performance of

the solution does not efficient via space consumption as expected. Space consumption

after usage of the data structure is almost same when obtaining results using heuristic

methods.

60

It can be concluded that the proposed solution was able to address the problem

statement with a huge time consumption reduction while maintaining the space

consumption.

6.4 Limitations

The proposed solution was based on BlockSci implementations such as BlockSci parser

and BlockSci heuristic methods. Due to some problems in BlockSci parser and one of

the heuristic method, the proposed solution was bounded by some limitations.

The proposed solution was implemented for transactions with Public key hashes as it

does not work well for transactions with Script hashes. Additionally, unspent

transactions were obtained only using Poison and Haircut heuristic methods as FIFO

implementation was a bit problematic.

6.5 Implications for Further Research

The tainted bitcoin identification is done with limitations due to problematic factors in

BlockSci. Thus, the tool can re-evaluated with transactions having different types of

transactions. The performance of the current tainted bitcoin identification was bounded

by the performance of the heuristic methods. Current heuristic methods are not efficient

enough for analysis purposes. Thus, an efficient heuristic method can be explored.

61

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] R. Anderson, I. Shumailov, and M. Ahmed, “Making Bitcoin Legal,” in Security

Protocols Workshop, 2018.

[3] M. M{\"o}ser, R. B{\"o}hme, and D. Breuker, “Towards risk scoring of Bitcoin

transactions,” in International Conference on Financial Cryptography and Data

Security, Springer, 2014, pp. 16--32.

[4] R. Anderson, I. Shumailov, M. Ahmed, and A. Rietmann, “Bitcoin redux,” 2018.

[5] H. Kalodner, S. Goldfeder, A. Chator, M. M{\"o}ser, and A. Narayanan,

“BlockSci: Design and applications of a blockchain analysis platform,” ArXiv

Prepr. ArXiv170902489, 2017.

[6] “BlockSci.” citp/BlockSci,Github,2018.

[7] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin system,” in

Security and privacy in social networks, Springer, 2013, pp. 197--223.

[8] “Tainter checker list.” Bitcointalk.org.

[9] “Probabilistic Data structures: Bloom filter.” Hacker Noon.

[10] “Introduction to Probabilistic Data Structures.” DZone Big Data, DZone.com.

[11] B. Fan, D. G. Andersen, and M. Kaminsky, “Cuckoo filter: Better than

bloom,”USENIX Login, vol. 38, no. 4, pp. 36--40}, 2013.

[12] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo filter:

Practically better than bloom,” in Proceedings of the 10th ACM International on

Conference on emerging Networking Experiments and Technologies, ACM,

2014, pp. 75--88.

[13] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An

improved construction for counting bloom filters,” in European Symposium on

Algorithms, Springer, 2006, pp. 684--695.

62

[14] V. Gupta and F. Breitinger, “How cuckoo filter can improve existing

approximate matching techniques,” in International Conference on Digital

Forensics and Cyber Crime, Springer, 2015, pp. 39--52.

[15] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive Cuckoo Filters,” in

2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and

Experiments (ALENEX), SIAM, 2018, pp. 36--47.

[16] D. Eppstein, “Cuckoo filter: Simplification and analysis,” ArXiv Prepr.

ArXiv160406067, 2016.

[17] G. Cormode, “Count-min sketch},” in Encyclopedia of Database System,

Springer, 2009, pp. 511--516.

[18] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the

count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1, pp. 58--75,

2015.

[19] D. Zambre and A. Shah, “Analysis of bitcoin network dataset for fraud,” 2013.

[20] P. B. Gibbons and Y. Matias, “Synopsis data structures for massive data sets,”

Extern. Mem. Algorithms, vol. 50, pp. 39--70, 1999.

[21] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey,” Internet Math., vol. 1, no. 4, pp. 485--509, 2004.

[22] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for massive

data: Samples, histograms, wavelets, sketches,” Found. Trendstextregistered

Databases, vol. 4, no. 1--3, pp. 1--294, 2011.

[23] “Probabilistic Filters by Example: Cuckoo Filter and Bloom Filters.”

Bdupras.github.io.

[24] “Probabilistic Data structure Showdown: Cuckoo Filters vs Bloom Filters.”

Blog.forwardlabs.com.

63

