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Abstract 

 
Bitcoin has become one of the most popular cryptocurrency and it is the first and 

foremost cryptocurrency that comes to play as an alternative to the traditional currency. 

Even though bitcoins have lots of advantages a certain group of people tend to use these 

bitcoins for illegal purposes. So there comes the need of identifying these bitcoins before 

their usage. 

 

 
Probabilistic approach has been taken through this research in order to make this tainted 

bitcoin identification efficient. Cuckoo filter has a better performance when compared 

to other probabilistic data structures. This is the very first occasion that Cuckoo filters 

have been taken for bitcoin and blockchain analysis purposes. The evaluation of the 

Cuckoo filter is conducted with respect to time and space consumption by utilizing some 

accepted space and time consumption measuring tools. 

 

 
Through this research it is successfully showed that tainted bitcoin identification process 

can be made efficient mainly with respect to time, where the authenticity of a given 

transaction can be checked in constant time by preserving its accuracy rate with the aid 

of Cuckoo filters. Additionally, deletion of tainted transactions from the data structure 

also can be done with Cuckoo filters. Therefore, the proposed tainted bitcoin 

identification with Cuckoo filter approach, can be considered as a significant 

contribution to the body of knowledge. 



iii  

Preface 

 
Probabilistic data structures have been taken for blockchain and bitcoin analysis 

purposes. Tainted bitcoin identification is the purpose of analyzing blockchain 

transactions and transaction details. Probabilistic data structures do not provide answers 

for membership with a 100% accuracy but with a certain accepted accuracy with an 

acceptable false positive rate. 

 

 
Utilizing Cuckoo filters as one of the probabilistic data structures for blockchain analysis 

is a novel approach and it is evaluated with respect to time and space consumption. 

 

 

An existing Cuckoo filter has been taken for the analysis purposes but the analysis of 

tainted bitcoin identification through this Cuckoo filter is solely my contribution in 

conjunction of my supervisor. 
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Chapter 1 

Introduction 

1.1 Background and Introduction 

 
Bitcoin has become one of the most popular cryptocurrency and it is the first and 

foremost cryptocurrency, which comes to play as an alternative to the traditional 

currency. Bitcoin maintains a high profile through numerous means of social media 

which eventually make it more popular in the field of cryptocurrency. High price and the 

availability of various investment options also have become reasons for Bitcoin’s 

popularity. 

 

 
Each and every Bitcoin transaction should be recorded in the public ledger called 

Blockchain. Even though the transactions are recorded, the users behind the transactions 

are not revealed. Hence Bitcoin is pseudo-anonymous[1]. Thus, some people temp to 

use it for nefarious purposes such as money laundering, stolen funds, contraband deals 

etc [2], [3] . Other than the pseudo-anonymous feature,the following reasons also have 

caused for Bitcoin’s illegal activities. 

 
 

● No proper way to retrieve the stolen funds 

● No proper mechanism to revert the transaction 

 

 
In order to discourage these illegal activities precautions should be made before these 

activities take place. Hence, there is a mechanism to blacklist the bitcoins used for illegal 

activities by giving a special name called tainted bitcoins. The usage of tainted bitcoins 

are discouraged as they are less liquid, less valuable and hard to spend. Three heuristics 

have been defined with the aim of identifying tainted bitcoins namely Poison, Haircut 

and FIFO[2]–[4]. 
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Table 1.1: Heuristics 
 

Name Description 

Poison This makes any transaction invalidated if it has at least 

one dirty predecessor 

Haircut Transactions are devalued proportionally according to 

the amount of blacklisted bitcoins. 

First In First Out 

(FIFO) 

The order of input determines which outputs are 

affected by blacklisting 

 

 
BlockSci is an open-source software platform which is implemented for blockchain 

analysis purposes[5]. BlockSci is versatile and it supports for different blockchains and 

analysis tasks. It incorporates an in-memory, analytical (rather than transactional) 

database, making it several hundred times faster than existing tools. BlockSci has its own 

tools and implementations for clustering, data parsing and for different heuristics. This 

has implemented the three heuristics and it outputs the details of unspent transactions 

which have previously combined with tainted bitcoins[6]. BlockSci’s core infrastructure 

is written in C++ and is optimized for speed. To make analysis more convenient, 

BlockSci has provided Python bindings and Jupyter notebook interface. 

 

 

1.2 Research Problem and Research Questions 

 
1.2.1 Research Problem 

 

The three heuristics output the details of unspent transactions and this can be considered 

as the one of the main tools where bitcoin users are given the facility to obtain unspent 

transactions when the tainted hashes are given as the input. One of the main drawback 

in the current implementation is that it consumes high time and space in order to produce 
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results. There is a norm in Bitcoin that 7-30 transactions happen per second. This means 

that every second matters in Bitcoin. 

 

 
Few transactions were taken as tainted transactions which ranges from 2018 to 2009 with 

numerous number of unspent transactions. Time consumption for all the unspent 

transactions in Poison and Haircut methods are represented in below graphs. 

 

 
Figure 1.1: Time Consumption to obtain unspent transactions in Poison method 

 
As it is depicted in the graph above, with the number of unspent transactions time 

consumption has been increased and after some point time consumption started to 

reduce. This is because when same unspent transactions are queried it consumes a lesser 

time as it already in the cache. 
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Figure 1.2: Time consumption to obtain unspent transactions in Haircut method 

 

 
The above represents time consumption in the Haircut method. Same tainted transactions 

used for the Poison method has been used. According to above diagrams, some tainted 

transactions in Poison method has been taken almost 5 hours to produce results. 

Whenever a user needs to check the authenticity of a transaction, he or she has to use 

these heuristic methods which consumes high time, in order to produce results. 

 

 
The memory consumption is captured for one of the tainted transactions taken for time 

consumption graphs, which had the maximum number of unspent transactions. Poison 

method is used when retrieving the unspent transactions. 

 

 
Table 1.2: Space consumption to obtain unspent transactions in Poison method. 

 

Virtual Memory Resident Memory Shared Memory 

89.8Gb 14.2Gb 12.7Gb 

 

 
 

According to memory consumption, total virtual memory requested by this tainted 

function is 89.8GB. Even though this is requested the total amount is not consumed 

during the running time of the function. The shared memory and physical memory 

consumed by each process is stated under SHR and RES. 
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Memory consumption is captured for the same tainted transaction using Haircut method. 

 

 

Table 1.3: Space consumption to obtain unspent transactions in Haircut method. 
 

Virtual Memory Resident Memory Shared Memory 

88.5Gb 14.9Gb 14.3Gb 

 
In Haircut method the total virtual memory requested by the tool is 88.5GB. This amount 

is slightly lower than the Poison method. This may be because Haircut method is less 

complex than Poison method. 

 

 
Both methods consume high virtual memory consumption which is a problem for many 

users to run these tainted functionalities again and again when they need to check the 

authenticity of a given transaction. 

 

Even if the results obtained with high time and memory consumption, it is a difficult 

task for users to check whether a particular transaction is tainted or not because through 

the current implementation it outputs millions of unspent transactions. There is no proper 

easy mechanism for a bitcoin user to check whether a particular transaction is tainted or 

not. This can be considered as a major shortcoming in tainted bitcoin identification. 

 

 

1.2.2 Research Questions 

 
 

Solutions to the above identified problems can be taken in several aspects. Restructuring 

the data representation and data accessing method is one of the algorithmic efforts that 

can be taken to make the tainted bitcoin identification process efficient. Probabilistic 

data structures will be utilized as the data structure and through this research their 

suitability to tainted bitcoin identification, how these data structures increase its 

performance by retaining the accepted time and space consumption also will be 

analyzed. The analysis will be conducted through below research questions. 
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1.2.2.1 Question 01 

 

Is it possible to utilize a probabilistic/synopsis data structure which can eventually make 

the tainted bitcoin identification process efficient by reducing the time consumption? 

 

1.2.2.2 Question 02 

 

Is it possible to utilize a probabilistic/synopsis data structure which can eventually make 

the tainted bitcoin identification process efficient by reducing the space consumption? 

 

 
1.3 Research Aim and Objectives 

 

 
1.3.1 Research Aim 

The main aim of this research was to identify the possibility of using probabilistic data 

structures for an efficient tainted bitcoin identification. 

 

 
1.3.2 Research Objectives 

 

 
The objectives of the research are as follows: 

 
● Identify a suitable probabilistic data structure 

● Identify the necessary parameters when initializing the data structure 

● Implement tainted bitcoin identification tool 

● Evaluate the performance of the data structure and compare results 

 

 
1.4 Justification of the Research 

 
Nowadays, bitcoin enthusiasts have a great desire to check the authenticity of bitcoins to 

know whether they are an outcome of a blacklisting practice or not. So, the current 
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tainted bitcoin identification implementations need to be optimized in an efficient 

manner. This is the intended scientific contribution through this research. 

 
 

Probabilistic data structures have a higher performance, mostly when it comes to 

membership queries. Utilizing them for blockchain analysis can be considered as a 

significant computational contribution. Identifying possible probabilistic data structures, 

their suitability to tainted bitcoin identification process will be analyzed which is the 

computational contribution of this research. 

 

1.5 Methodology 

 
Constructive research methodology will be followed throughout the research. As the 

initial step, research problems were identified, as high space/time consumption incurred 

for the tainted bitcoin identification process and having no proper mechanism to find the 

authenticity of a given transaction. So, the attempt through this research is to find the 

suitability of probabilistic data structures for tainted bitcoin identification. 

 

 
As the second step, detailed literature review is conducted regarding three heuristics and 

its operation. At the same time possibility of using different probabilistic data structures 

is assessed, their current applications, benefits they have, applicability to the blockchain 

is also assessed by considering the unique features of blockchain. 

 

 
Research design and the evaluation will be descriptively explained in the coming 

sections. Final step would be to present the research findings in a form of a research 

paper and the thesis. 
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Figure 1.3: Research Methodology 

 

 

 
1.6 Outline of the Dissertation 

 
The first chapter of thesis includes the introduction of this research. Introduction includes 

research problem, research methodology, scope and delimitations, key assumptions and 

other introduction details for the research. The next chapter of the thesis will be literature 

review. This chapter includes the prior researches done towards tainted bitcoin 

identification, different probabilistic data structures, how they produce results, 

comparison of different probabilistic data structures etc. The third chapter includes the 

design of the research solution and fourth chapter includes the research implementation 

with the necessary tools utilized when providing the solution. The next chapter includes 

the evaluation of the research where the accuracy, time and space consumption of the 
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new solution will be analyzed. Final chapter is the conclusion where overall conclusion 

is made based on the results of the research solution. 

 

1.7 Scope and Delimitations 

 
1.7.1 Scope 

 

 
The research tries to restructure the data representation with the aim of making the 

tainted bitcoin identification efficient. The suitability of various probabilistic data 

structures will be analyzed and finally the accuracy of the results, the space and time 

consumption will be analyzed. 

 

1.7.2 Delimitations 

 

 
The research does not try to make any changes to current heuristics. The new 

probabilistic data structure caters only to make the tainted bitcoin identification process 

efficient and it might not applicable for other analysis purposes. 

 

1.8 Summary 

 
This chapter laid the foundations for the research. The problems caused for this research 

were the high time and space consumption for tainted bitcoin identification and no proper 

way to check the authenticity of a given transaction. Thus, the aim of this research is to 

make the tainted bitcoin identification process efficient in a probabilistic manner. All the 

unspent transactions are queried through a heuristic method and no change will be done 

to those heuristics and it is out of the scope of this research. On these foundations, the 

dissertation would proceed with a detailed description of the research. 
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Chapter 2 

Literature Review 

2.1 Introduction 

 
In this chapter, a review on related work regarding the approaches taken for tainted 

bitcoin identification with three heuristics are included in the section 2.2. Section 2.3 

includes details about different probabilistic data structures and their unique features. 

Section 2.4 represents other related work which were not discussed in the previous 

sections. 

 

 

2.2 Tainted Bitcoin Identification 

 
Bitcoin has got a vast amount of popularity because of its unique features when 

compared to traditional currency. Absence of a central authority, pseudo-anonymity are 

some of the prominent features of Bitcoin[1]. Some of its features like pseudo-anonymity 

[7] badly influenced some bitcoin users for which they use it for nefarious purposes like 

contraband deals, money laundering etc [2], [3]. The tainted bitcoins used for these kind 

of transactions are blacklisted so that these bitcoins are less valuable, less liquid and hard 

to spend. Hence bitcoin users has a great tendency in finding a mechanism to identify 

blacklisted bitcoins before dealing with transactions. With that intention three heuristics 

have been defined namely Poison, Haircut and FIFO by M. Möser, R. Böhme, and D. 

Breuker [3] and Anderson et al[2]. 

 

 
Out of the three heuristics Poison is the drastic policy in which transactions with at least 

a single tainted bitcoin is enough for the whole transaction considered to be invalidated. 

When compared to Poison, Haircut has a less drastic policy where the devaluation is 
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done proportionally according to the amount of bitcoins associated with a given 

address[3]. 

 
 

Figure 2.1: Poison tainted calculation, Haircut tainted calculation [3] 

 
A clear characteristic of a blacklisted bitcoin is that it tempts to transfer through the 

network rapidly compared to other bitcoins. Hence order of transactions is a good feature 

to identify blacklisted bitcoins which has become the ground principle of FIFO method. 

FIFO devalues blacklisted bitcoins by considering the order of inputs[2], [3]. 

 

 
Harry, et al [5] proposed the tool BlockSci which is an open source software platform 

used for blockchain analysis. According to Anderson, Ross, et al [4] BlockSci has the 

tainted bitcoin identification implementation [6]. In BlockSci implementation when a 

hash value of a tainted address given as a parameter it outputs the details of a list of 

unspent transactions. This mechanism is failed to provide a solution as to check the 

authenticity of a given transaction. Even though BlockSci has done the implementation 

on these heuristics, getting hash values of blacklisted transactions is much of a difficult 

task. Currently, tainted addresses are maintained by the users of the “Bitcoin Forum”[8]. 

As there is a delay already in getting blacklisted transactions, the tainted bitcoin 

identification process becomes useless if it is not efficient. Hence the tainted bitcoin 

identification process must be efficient as much as possible despite the delay of getting 

tainted transactions. 
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2.3 Probabilistic Data Structures 

 

 
Large data analysis has become one of the prominent research avenue. Number of unique 

items, most frequent item, existence of an item in the data set are some of the queries 

that needs to be answered when analyzing data. The common approach is to use a 

deterministic data structure like a hashSet or a hashmap and obtain results with error free 

accuracy. But when the data set becomes very large in quantity wise, it is difficult to deal 

with the mentioned data structures as they are not fit into memory. At the same time, 

those data structures are not fit enough for streaming application which typically require 

data to be processed in one pass and perform incremental updates. 

 
 

Probabilistic data structures can be considered as an alternative to the above mentioned 

deterministic data structures which are extremely useful for big data and streaming 

applications. These data structures use hash functions to include data in the data structure 

and they are included in a compact form. Collisions are ignored in these data structures 

but errors can be well-controlled under certain thresholds. 

 

 
There are different probabilistic data structures such as Bloom filters, Cuckoo filters, 

Count Min sketches which are descriptively mentioned in the below sub sections. 

 

 

2.3.1 Bloom Filters 

 
 

Bloom Filters are one of the most popular probabilistic data structures which can be used 

for high-speed set membership queries. Bloom filters use a hashing mechanism to store 

details in its data structure. As a result this performs a constant searching time in Big-O 

notation when answering the membership queries. The below diagram shows how the 
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querying process has become efficient due to hashing technique instead of a typical array 

like data structure. 

 

 

Figure 2.2: Comparison between arrays and hash tables [9] 

 

 
Bloom filters give binary answers to membership’s queries which means it replies yes 

or no for questions such as “Is this included in the dataset?” Before answering it should 

go through a hash function and fill the filter with data. These hash functions depend on 

the number of items expected to have in the Bloom filter and the acceptable false positive 

rate[10]. Bloom filters provide two answers. They are yes: which the particular item is 

included in the given set and no: which the item is not in the set. The special feature in 

this data structure is when the answer is ‘No’ then the item is definitely not in the dataset 

while answer “Yes” having two cases. When it is “Yes”, case1 is having the item in the 

set while the case2 is item not actually in the set but is given as “yes” because of another 

item which also put onto the same location [10]. 

 

 
Figure 2.3: Bloom filter representation [10] 
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Even though Bloom filters help to reduce the overhead of evaluating membership 

queries, it has its own drawbacks. One of the main drawbacks is that it does not support 

item deletion where in a case of deletion it requires entire filter to rebuild again[10], [11]. 

 
 

According to Harry et al[5], BlockSci uses a LRU cache and a Bloom filter to passe data 

from the blockchain for analysis purposes. Cache contains 6.8% amount of addresses out 

of total addresses and it is updated using Least Recently Used policy. Bloom filter 

contains list of seen addresses. When an address is not in the cache, bloom filter is 

queried before the database. Bloom filters are the one of the most popular probabilistic 

data structures where they present results probabilistically. Hence the overhead of 

querying data from the disk is reduced due to the usage of a Bloom filter. This is one of 

the main bitcoin related use case where probabilistic data structures have been utilized 

for blockchain analysis purposes. 

 

 
There are different kinds of Bloom filters implemented by embedding different unique 

features. According to Fan, Bin, et al[11],some of them can be listed as Standard bloom 

filters, Counting bloom filters, Blocked bloom filters, d-left counting bloom filters, 

Quotient filters etc[12]. 

 

 
2.3.1.1 Counting Bloom Filters 

 

 

Unlike standard bloom filters, counting bloom filters support deletion operation. 

Counting bloom filters use an array of counters instead of an array of bits[13]. In a case 

of an insertion it increments the value of k counters, in lieu of setting k bits. When in a 

lookup operation, it check if each of the required counters is non-zero. The delete 

operation decrements the value of each respective counters. Counting bloom filters 

consumes four times more space than a standard bloom filter. 

Even though counting bloom filters performs the delete operation, it performs at the cost 

of additional space[12]. 
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2.3.1.2 Blocked bloom filters 

 

 

Blocked bloom filters do not support deletion, but provide better spatial locality on 

lookups[12]. Blocked bloom filters consist of an array of small bloom filters, each fitting 

in one CPU cache line. Each item is stored in one of these small filters and the hash 

partitioning technique is used as the mechanism. Due to the imbalanced load across the 

array of small bloom filters, the false positive rate becomes much higher than the other 

bloom filters. 

 

 
2.3.1.3 d-left Counting bloom filters 

 

 
These bloom filters use d-left hashing and use fingerprints when keeping items. These 

filters remove items by removing their fingerprint. These bloom filters have reduced the 

space cost by 50% compared to counting bloom filters[12]. 

 

 
2.3.1.4 Quotient filters 

 

 
These bloom filters also support deletion operation though the use of fingerprints. These 

filters use a technique similar to linear probing to locate a fingerprint. But Quotient filters 

require additional meta-data to encode each entry, which requires 10-25% more space 

than a standard bloom filter. The performance of this data structure deteriorates when 

the occupancy of the hash table exceeds 75%. 

 

 
2.3.2 Cuckoo filters 

 

Cuckoo filter is also a probabilistic data structure and it is one of best alternative to 

Bloom filters. Cuckoo filters consist of Cuckoo hash tables which has array of buckets 

where each item has two buckets. Cuckoo filters consists of two hash functions 

corresponding to the mentioned two buckets. The lookup operations checks in both 

buckets where a particular item is included in a set or not[12], [14]. 
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According to Fan, Bin, et al [12] Cuckoo filters use lots of alternative solutions to make 

it look up operations efficient and also to achieve high-space efficiency. Using partial 

cuckoo hashing instead of traditional cuckoo hashing is one of such alternative solutions. 

The main target of using partial cuckoo hashing technique is to achieve space 

efficiency[15]. Partial cuckoo hashing deals only with fingerprints which reasons for its 

better performance compared to Bloom filters. When fingerprints are stored there is no 

other way to restore or rehash original keys to find their alternate solutions. Hence partial 

cuckoo hashing technique uses fingerprint to calculate the alternate location[12], [16]. 

Before the insertion of a single item hashing scheme calculates indexes of the two 

candidate buckets. 

 

 

 
This simply means when it is needed to identify the alternate location of an item, get the 

index of the current location, apply the hash function to the fingerprint value of that 

location and then apply ‘xor’ operation to both values to get the alternate location. Hence, 

this makes the need to retrieve the original value of a fingerprint useless because the 

alternate location can be simply obtained from the information in the bucket. 

 
 

When it comes to lookup performance Cuckoo filters return false if the item is definitely 

not in any of the two buckets, but if it’s true there are two possible cases as in Bloom 

filters. But the false positive rate in Cuckoo filters are really low compared to Bloom 

filters. In Cuckoo filters there do not exist false negatives as long as bucket overflow 

never occurs[12]. 

 

 
One of the main advantage of Cuckoo filters is that they support delete operations 

without harming the filter performance and its accuracy. It checks both candidate buckets 

for a given item and if any fingerprint matches in any bucket, one copy of that matched 

fingerprint is eliminated from the bucket. 
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Another Cuckoo filter implementation is adding a stash for each sub-table of the filter 

with the aim of improving its success probability which is proposed by Eppstein, 

David[16]. A stash is a collection of key-value pairs where each stash stores a collection 

of <location, fingerprint> pairs, for fingerprints that were not be able to store within its 

sub-table. To perform a query, first checks in both locations and if it was not included, 

the stash is also searched. This causes an additional sequence of memory access but not 

harm its performance by slowing down the searches nor degrades its reliability. 

 
 

According to Eppstein, David [16] Blocked Cuckoo hashing is also another 

implementation of Cuckoo filters where each cell of the hash table stores a block of 

different key-value pairs. When a key is inserted and one of its two cells in not full it 

may be placed directly. However when both cells are full one of the keys already placed 

should be kicked out, and moved to another location. Replacing keys are formulated in 

a sequence by which a chain of dislocations are created. These sequence of moves can 

be viewed as an augmenting path in a graph where vertices can be defined as table cells 

and edges are pairs of cells that each key maps to. It performs constant expected time in 

breadth-first algorithm for finding these augmenting paths. 

 

 

2.3.3 Count min sketch 

 
According to Cormode, Graham[17], [18], Count min sketch is a probabilistic sub-linear 

space data structure which is capable of representing a high-dimensional vector and 

answering queries on this vector, mostly point queries and product queries with strong 

accuracy guarantees. To a certain extent count min sketch is similar to bloom filters but 

compared to bloom filters count min sketch represents a multi-set while bloom filters 

represent a bitmap[10]. 

 
 

The count min sketch data structure consists of two dimensional dxw array of counters 

with d number of independent pairwise hash functions h1…….hd of range w. Here w 

can be defined as w = [e/ε], and d as [ln1/δ]. ε is the required accuracy level and δ is the 

certainty to reach the accuracy. To increment the accounts in the two dimensional array 
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, hash positions should be calculated with d hash functions and update the counts at 

respective positions. 

 

 

 
 

Figure 2.4: Count min sketch representation [17] 

 
The count estimate for an item is the minimum value of the counts at the array positions 

determined by the d hash functions. Error can be minimized and the accuracy can be 

increased by choosing appropriate values for d and w. This performs better accuracy for 

high frequent items. 

 

 

2.4 Other Related Work 

 

 
The following papers include findings on practical applications of probabilistic data 

structures, different probabilistic/synopsis data structures which have not been 

mentioned in the prior sections. 

 

Analysis of Bitcoin Network Dataset for fraud, Zambre, Deepak, and Ajey Shah 

2013 [19] 

 

 
The aim of this paper is to identify peculiar properties of bitcoin users carrying out heists 

or robbery. Three types of robberies are discussed in this paper namely Stone Man Loss 

(SML), All In Vain (AIV) and Mass Mybitcoin Theft (MMT). A classification technique 

is used to accomplish the aim of this research. K-means algorithm is used for the model 
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with six different features. When the features are fed into the model it classifies users 

into two clusters which separate good users from rogue users. One of the shortcomings 

in this model is that it cannot detect any robberies that happen over an extended period 

of time in small increments. For synthetically generated rogue users, this model performs 

76.5% accuracy, but there exists an ambiguity whether this model performs the same but 

there exists an ambiguity whether this model performs the same accuracy in a real 

situation. 

Synopsis data structures for massive data sets, Gibbons, Phillip B., and Yossi 

Matias, 1999 [20] 

 

 
This paper mainly focused on the uses of synopsis data structures. Synopsis data 

structures use very little and provide fast approximate answers to queries. A number of 

concrete examples of synopsis data structures and the way of keeping them up-to-date 

in the presence of online updates to the data sets are also analyzed. 

 
 

The two main challenges when defining a synopsis data structure 

 
 What synopsis of the full data set to keep in the limited space in order to 

maximize the accuracy and confidence of its approximate responses 

 How to efficiently compute the synopsis and maintain it in the presence of 

updates to the data set 

 

Synopsis data structures are used in a heuristic way, which do not have proven any 

formal properties regarding performance or accuracy under the presence of updates in 

the dataset. 

 

Network Applications of Bloom Filters: A survey, Broder, Andrei, and Michael 

Mitzenmacher, 2002 [21] 

 

 
The aim of this paper is to survey the ways in which Bloom Filters have been used and 

modified in a variety of network problems. Bloom filters can be used to summarize data 

in peer to peer networks. Some applications have utilized bloom filters such as 
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approximate set reconciliation for content delivery, set intersection for keyword searches 

etc. 

A drawback of bloom filter is that it allows false positives, but it is acceptable to a certain 

extent for large data analysis. 

 
 

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches, Cormode, 

Graham, et al, 2011 [22] 

 

 
This paper explicates on Basic principles and recent developments related to 

Approximate Query Processing (AQP). It is mainly focused on key synopses: random 

samples, histograms, wavelets and sketches and issues such as accuracy, space, time 

efficiency, optimality, practicality, error bounds on query answers and incremental 

maintenance. 

 

 
Sampling well suited for broad patterns and has a poor performance on applications such 

as fraud or anomaly detection. Sampling gives lower accuracy when the data is highly 

variable. Histograms can be used for estimation purposes but do not suitable for higher 

dimensional data. They also do not perform well when the data is dynamic and shifting. 

Wavelets are well suitable for capturing nonlocal structures and under dynamic 

situations but perform less when extending to higher dimensions. Sketches are very 

efficient to process updates to data. Sketching algorithms rely on hash functions. 

 

 

2.4 Summary 

 
This chapter mainly focused on providing an extensive review regarding tainted bitcoin 

identification and probabilistic data structures. Initially, it discussed the need and steps 

taken for tainted bitcoin identification, main heuristics defined to obtain unspent 

transactions related to a tainted transaction. Next a detailed review was done regarding 

different probabilistic data structures, their basic structure along with their unique 

features and drawbacks. 
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Chapter 3 

Design 

3.1 Introduction 

 
This chapter explicates the proposed solutions to the research problem. Section 3.2 

includes overall research design and Cuckoo filter design is included in the section 3.3. 

 

 
3.2 Research Design 

 
The proposed solution is designed in such way where users can easily identify the 

authenticity of a transaction. This design is provided based on a probabilistic approach 

which means that the tainted bitcoin identification tool is designed by utilizing a 

probabilistic data structure which is a Cuckoo filter. 

 

 
As mentioned in the literature review, there exists some popular probabilistic data 

structures such as Bloom filter, Count min sketch, Cuckoo filter. Out of all the 

probabilistic data structures Cuckoo filters have chosen for the proposed solution as they 

have a better performance compared to other probabilistic data structures. A simple 

comparison is depicted in the following table which includes a comparison among the 

some probabilistic data structures. 
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Figure 3.1: Comparison of Cuckoo filters and bloom filters [23] 

 

 
As per the above table, it is apparent that Cuckoo filters have a better lookup performance 

when it comes to membership queries. Its running time has a constant time complexity 

which makes it totally qualified for the proposed solution. Additionally, Cuckoo filter 

have another unique feature where it supports for item deletion which the other data 

structures do not have. 

 

 
The below graphs further strengthen the fact that Cuckoo filters have a better 

performance compared to Bloom filters. They were drawn not considering the bitcoin 

context, but considering a general instance. 

 

Figure 3.2: Cuckoo filter and counting bloom filter capacity comparison [24] 
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Figure 3.3: Cuckoo filter and counting bloom filter occupancy comparison [24] 

 

 

The more capacity or filter occupancy means it has the capability of keeping items as 

many as possible in the data structure. That means the accuracy rate of the data structure 

automatically increases as it has many items stored in the data structure. 

 

 

In accordance with the above features, Cuckoo filter has been chosen as the probabilistic 

data structure to keep all the unspent transactions for a given tainted transaction. 

 
The tainted bitcoin identification application has the following sub components. 

 

 

 

 Backend application 

o Tainted tool implemented with BlockSci 

 Frontend application 

o User Interface 
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Figure 3.4: Architecture of tainted bitcoin identification application 

 

 
Analysis library is the parsed data set which is taken from pure Blockchain after parsing 

through the BlockSci parser. 

 

 

3.2.1 Backend Application 

 
Backend application is designed to develop with the BlockSci implementation. Two 

Cuckoo filters are used for the backend application for the following purposes. 

● To maintain the tainted transaction details 

● To maintain the details of unspent transactions which are connected with tainted 

transactions 

The two Cuckoo filters are used in the following manner. 
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Figure 3.5: Two cuckoo filter usage for tainted bitcoin identification 

 

 
When a tainted address is given to the backend application, first it checks if the given 

tainted transaction is already included in the data structure. For that it uses a separate 

Cuckoo filter. If its included then user does not need to include all the unspent 

transactions related to the tainted address as they have already been added to the data 

structure. Hence, user only needs to give the transaction to check its authenticity. If the 

tainted address does not contain in the data structure, then it needs to be added to the 

Cuckoo filter which contains tainted transactions, and then include all the unspent 

transactions to the other Cuckoo filter which is then can be used to check the authenticity 

of a given transaction. The second Cuckoo filter keeps the details of unspent transactions 

in a probabilistic manner. 

 

 

3.2.2 Frontend Application 

 
 

Users need to give the address of the tainted transaction. It can be given through a CSV 

file. If the user’s tainted address is already in the Cuckoo filter then user can directly 

give the second input, which is the transaction that needs to check the authenticity. If it 
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is a new tainted address then the backend application will take some time to prepare the 

data structure with all the unspent transactions related to the new tainted address. 

 

 
The frontend application also has the option to delete a tainted address and the related 

unspent transactions from the data structure. 

 

Figure 3.6: Front end view of the tainted bitcoin identification. 

 
3.2 Cuckoo Filter Design 

 

Cuckoo filters can be designed by considering various parameters. 

 
● Number of bits per item 

● Number of nests per bucket 

These two factors directly affects load factor and the false positive rate of the Cuckoo 

filter. The 2-4 Cuckoo filter is used for the tainted bitcoin identification tool. It has two 

hash tables with four nests per bucket and sixteen bits have been used to represent a 

single item. 
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Figure 3.7: Design of the cuckoo filter 

 
The Cuckoo is designed with the following operations. 

 
● Add 

○ This is used to include all the unspent transactions related to a 

tainted address in the data structure. 

 

 
● Lookup 

○ This is used to check a given transaction is already included in the 

data structure. (To check the authenticity of a transaction) 

 

 
● Delete 

○ This is used to remove transactions from the data structure which 

were already included in the data set. 

 
 

3.3 Summary 

 

 
This chapter provided a detailed description regarding tainted bitcoin identification tool 

and its components. The main focus is put on the Cuckoo filter design where the number 

of bits per item and number of nests per bucket is decided. Two Cuckoo filters will be 

utilized for the tainted bitcoin identification tool. 
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&& \ make install 

tar xzf 

make cmake-3.10.0.tar.gz && \ cd cmake-3.10.0/ && \ cmake . && \ 

RUN cd /root && \ 

 
wget https://cmake.org/files/v3.10/cmake-3.10.0.tar.gz && \ 

Chapter 4 

Implementation 

4.1 Introduction 

 

This chapter elaborates the implementation details of the proposed solutions. Section 4.1 

describes the software tools and techniques utilized for the implementation, section 4.2 

represents the implementation assumptions, section 4.3 represents the implementation 

details of the Cuckoo filter, section 4.4 represents the implementation details of the 

tainted bitcoin identification tool. 

 

 

4.2 Software Tools 

 

There are many other tools and techniques used for this research for BlockSci setup and 

taint analysis. 

 

 

4.2.1 Docker 

 

 
Setting up BlockSci in the local machine is much of a complex task as it has many 

dependencies. Hence, BlockSci is setup using a Docker file as all the dependencies such 

as cmake are written in it. 
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sudo docker run -it --privileged -d --name $NAME -v 

/home/uthpala/Uthpala/Uthpala/DockerVolume/blocksci- 

data:/root/bitcoin-dat a -v 

/home/uthpala/Uthpala/Uthpala/DockerVolume/BlockSci/tools:/root/BlockS 

ci/tools -v 

/home/uthpala/Uthpala/Uthpala/DockerVolume/BlockSci/src:/root/BlockSci 

/src -p 

$PORT:8888 $IMAGE_NAME 

Docker volume mapping is used to map the local files and data folder into the docker 

machine and the implementation is done in the host machine. This is done when running 

the docker file. 

 

 

 

 

4.2.2 Jupyter 

 
 

The Jupyter Notebook App is a server-client application that allows editing and running 

notebook documents via a web browser. BlockSci can be accessed from Jupyter and it 

is used to get the outputs of the unspent transactions. The same result can be accessed 

through a terminal, but the view given by Jupyter is much user friendly than the terminal 

window. 

 

 
 

Figure 4.1:  Jupyter notebook 
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#!/bin/bash 

 

docker exec fypBlockScitemp sh -c "cd /root/BlockSci/release && 

CC=gcc-7 CXX=g++-7 cmake -DCMAKE_BUILD_TYPE=Release .. && make && 

make install" 

#!/bin/bash 

 
docker exec fypBlockScitemp sh -c "cd 

/root/BlockSci/release/tools/taint && ./blocksci_taint" 

4.2.3 BlockSci Codebase 

 

 
The tainted bitcoin identification is implemented on top on the BlockSci codebase. 

BlockSci has some tools implemented for different purposes such as for clustering, data 

parsing. Tainted bitcoin identification tool is also implemented under BlockSci tools. 

Heuristic methods such as Poison, Haircut are also implemented in BlockSci and these 

implementations are used in the tainted bitcoin identification tool. 

 

 
4.2.4 Shell Scripting 

 

 
After the implementation or even after any modification the code segment needs to be 

build and compiled in the Docker machine. Logging to Docker and do the compilation 

takes some effort and time. So the all the compilation steps in the Docker machine is 

written in a shell script. So that it is easy to do any changes or add new implementation 

without taking much effort. 

 

 

Due to the above shell scripting compilation has become a one step process. 

 
Additionally, shell scripting used for the running process of the taint tool. It includes 

several steps to follow inside the Docker machine. Due to the below shell script it could 

have been done as a single step process inside the host machine. 
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#define CUCKOO_NESTS_PER_BUCKET 4 

typedef struct { 

 
uint16_t fingerprint; 

 
} attribute ((packed)) cuckoo_nest_t ; 

4.2 Implementation Assumptions 

 

 
BlockSci is one of the main tool that currently exists for BlockSci analysis purposes. 

Even though it is comparatively good compared to other tools it has its own failures in 

the version used (v 0.5) for this research. 

 

 

One of the main failure is that some hashes cannot be accurately parsed through the 

blockchain by the BlockSci parser. For an instance transactions which have script hashes 

cannot be parsed properly and public key hashes are parsed accurately. Hence, only the 

public key hashes are used for tainted bitcoin identification with the assumption that it 

will work accurately for other hashes as well. 

 

 
Another failure is in the FIFO heuristic implementation. An infinite loop runs when 

tainted bitcoin identification tool tries to get all the unspent transactions using FIFO 

method. Hence, only Poison and Haircut heuristic methods are used to obtain the unspent 

transactions for a given tainted transaction. 

 

 
4.3 Implementation Details: Cuckoo Filter 

 

 
Cuckoo filter is based on a standard Cuckoo filter which is also called as 2-4 Cuckoo 

filter. In this Cuckoo filter there are four nests defined per bucket. 

 

 

Here 16 bits are used to represent a single item in the Cuckoo filter. 
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cuckoo_filter_new(&filter, size , max_items, (uint32_t) (time(NULL) & 

0xffffffff)); 

getline(myFile,input,'\n'); 

if(myFile.good()!=0){ 

------------- 

 
} 

Here the size of the uint16_t is 16 bits. 

 

 
The Cuckoo filter can be initialized as follows. 

 

 
 

 

The parameters are the filter, size of the filter, maximum number of items intended to 

include, and a special variable called seed which is used when calculating hash values. 

 

 

 
4.4 Implementation Details: Tainted Bitcoin Identification Tool 

 

This tool gets the outputs of a given tainted transaction and queries all the unspent 

transactions of a given address using a heuristic method and include them in the data 

structure which can be later used to identify the authenticity of a transaction. 

The tainted transactions are taken from a file upload. 
 

 

 

 
 

The tainted hash value is taken as the input and the transaction details related to the 

transaction is retrieved and assigned to the variable, root. 

auto root = blocksci::Transaction(input,chain.getAccess());  

 

 

Details of a particular transaction assigned to the variable root are listed below. 
 

Tx( len(txins)=0, len(txouts)=1, size_bytes=135, block_height=2000, tx_index=2030) 
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if (root.outputCount() > 0) { 

auto count = root.outputCount(); 

for (auto i = 0; i < count; i++) { 

if ((root.outputs()[i].getType() == 

blocksci::AddressType::PUBKEYHASH) ){ 

--------- 

--------- 

} 

} 

} 

auto tainted = 

blocksci::heuristics::getPoisonTainted(root.outputs()[i], 

root.outputs()[i].getValue()); 

According to the above details, transactions with outputs and transactions which do not 

have outputs can be clearly identified. 

 
 

The next step of tainted bitcoin identification is to check whether a particular tainted 

transaction includes any outputs. If it does not have any outputs then no need of using 

the tainted function because there is no unspent transactions exist. Another important 

fact is only the public key hashes are used as discussed in the implementation 

assumption. 

 

 

After that a heuristic method is used to obtain all the unspent transactions. Poison 

heuristic method is used as follows in the implementation. Two parameters are the hash 

of the output and the value of the output. 

 

 

 

 
 

While taint function gives the outputs of unspent transactions, the details of the outputs 

are stored in the Cuckoo filter. The unique hash value of each transaction is chosen to 

keep inside the Cuckoo filter. There are three parameters to be given. 

● The filter (Place where data is stored) 

● Data item 

● Size of the data item 
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cuckoo_filter_contains 

(filter,const_cast<char*>("1LRkrnymve4Gm7eLeK3dMBzrwcDwJ9sY9L"), 34); 

cuckoo_filter_remove(filter,const_cast<char*>(pubkeyHash.c_str()), 

34); 

 

 
 
 

After building the data structure, authenticity of a given transaction is checked against 

the transactions in the Cuckoo filter. Three parameters should be given. 

● The filter 

● Data item which is used to check the authenticity 

● Size of the data item 

 
 

If it’s included output is given as tainted. 
 

 

In an instance where a particular item needs to be deleted, it can be done as follows. For 

the deletion the following details should be given. 

● The filter 

● Transaction to be deleted 

● Size of the transaction 
 

 

 

4.4 Summary 

 

 
In this chapter, the software tools utilized to implement the proposed solution was 

elaborated followed by the important functionalities of the proposed solution. The main 

implementation details of the Cuckoo filter such as filter implementation with necessary 

parameters are given and the most important functionalities of the Cuckoo filter are also 

stated. Finally the implementations of the tainted bitcoin identification are also stated 

how it is combined with the heuristic implementation of BlockSci. The implementation 

details of the evaluation model will be described in Chapter 5. 

 

cuckoo_filter_add(filter,const_cast<char*>(pubkeyHash.c_str()),34); 
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Chapter 5 

Results and Evaluation 

5.1 Introduction 

 

This chapter elaborates how results are evaluated and the success level of the proposed 

solution. In Section 5.1 evaluation model is stated with respect to evaluation parameters 

used for tainted bitcoin identification. The next chapter includes tools and techniques 

utilized for the evaluation. The final section includes a detailed description of results and 

an explanation concerning the evaluation metrics. 

 

 
5.2 Evaluation Model 

 
 

 
Figure 5.1: Evaluation model 

 

 

 

 
The evaluation of the proposed solution is conducted with respect to time and space 

metrics. Worst case is theoretically evaluated by considering time and space 
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auto start = high_resolution_clock::now(); 

auto stop = high_resolution_clock::now(); 

auto duration = duration_cast<microseconds>(stop - start); 

complexities while factual case is practically evaluated by considering time and space 

consumptions. For the evaluation Bloom filter is also considered other than Cuckoo filter 

for results comparison. 

 
 

The performance of the Cuckoo filter is also evaluated as follows. 

 

Figure 5.2: Evaluation model of the cuckoo filter 

 

 

 

The accuracy of the Cuckoo filter depends on nests per bucket and bits per item. The 

evaluation will be conducted with respect to time and space consumption in terms of the 

mentioned six cases. 

5.3 Evaluation Tools and Techniques 

 

The below code segment is used when capturing time consumption for the various 

operations in tainted bitcoin identification. 
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For space consumption, Htop tool is used where it represents the total memory requested 

by each process through the VIRT (Virtual Memory) tab. 

 

Figure 5.3: Output format of the Htop tool 

 

 

 

5.4 Results 

 

 
Initially time complexity of the solution is evaluated which captures the worst case 

instances with respect to time. The next section includes time consumption of the tainted 

bitcoin identification tool. Subsequently space metric is considered with respect to space 

complexity and space consumption. Final evaluation is on the performance of the 

Cuckoo filter with reference to its implementation parameters. 

 

 
When obtaining unspent transactions in both data insertion and deletion operations, 

Poison method is used as the heuristic method. Poison is the most complex method 

whereas Haircut and FIFO are less complex and definitely consume lesser time and space 

compared to Poison method. Hence the suitability of the solution is evaluated against the 

most complex method whereby the other methods will definitely fit for the solution if 

Poison method does. 
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Tainted Bitcoin Identification(tainted transaction){ 

get outputs of the tainted transaction 

for i=0 to number of outputs{ 

 

5.4.1 Time Complexity of the Solution 

 

 
The tainted bitcoin identification tool is the main tool used to identify the authenticity of 

a given transaction. The time complexity of the solution is analyzed with respect to data 

addition into the data structure, deletion and the availability check of a particular 

transaction (membership queries) by utilizing both Cuckoo filter and Bloom filter data 

structures. 

 

 
5.4.1.1 Time Complexity of Data Addition 

 

 
Time complexity is obtained by subdividing the implementation of the taint tool. 

 

 

 

Figure 5.4: Data insertion process of tainted bitcoin identification 

 

 
The pseudo code of the above diagram is as follows. 
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Get Outputs of the Tainted Transaction 

 

 
The number of output transactions for a particular tainted transaction is obtained. The 

unspent tainted transactions are queried by going through the obtained outputs. 

 

 
 

Figure 5.5: Applying heuristic method for the outputs of a tainted transaction 

 

The time complexity of the above implementation depends on the number of output 

transactions. The time complexity of first sub part is O (n) when the number of outputs 

is equal to n. Hence this function consumes a linear time. 

if i is unspent -> add to the data structure 

while output count not equals to zero{ 

apply a heuristic method to obtain unspent transactions 

(hash value of i , value of i){ 

if transaction is unspent -> add to the data 

structure } 

} 

} 

} 
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getOutputs (param1, param2){ 

while(output count NOT equal to zero){ 

-------------------------------------- 

for 1 to output count{ 

getOutputs (param1, param2) 

} 

} 

} 

Obtain unspent transactions using a heuristic method 

 

 
The tainted bitcoin identification function runs through all the outputs given and query 

again through all these outputs if those outputs are unspent. This querying process will 

cease until a particular transaction does not contain any outputs. 

 

 
The pseudo code of the above recursive function is stated below: 

 

Here param1 and param2 are hash of the output and the value of the output. 
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Figure 5.6: Querying unspent transactions with the assumption that each transaction has n 

number of outputs (worst case) 

 

For an instance one of the output out of 9 outputs of a tainted transaction is taken as per 

in the above diagram. It is assumed that the branching factor of each transaction is n 

which the worst case scenario is. Thus, output 1 has n number of outputs and each of 

these outputs have n number of outputs. This querying process ends up when a particular 

transaction does not contain any outputs. 

Hence, the time complexity can be calculated as O (n *n *n*...........*n) 

 
Therefore, for the heuristic method, it consumes O (nn), an exponential time complexity. 
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Time Complexity of Data Insertion: Bloom Filter 

 

 
The insertion time depends on the number of hash functions defined for a single input as 

the number of insertions equal to the number of hash functions. So the time complexity 

of this insertion part is O (k) where k is the number of hash functions defined. 

 

 
Time Complexity of Data Insertion: Cuckoo Filter 

 
Insertion of an item into Cuckoo Filter is a bit complex compared to Bloom Filter. Here 

there are two main functionalities related to item addition. Before adding any item into 

the data structure, first it checks whether this item already contains in the respective 

locations. In order to find out the location two hash functions are used which it gives 

bucket locations of the data structure. Then by looping through the number of nests per 

bucket it checks whether the particular item is already included or not. 

 
If the item is not already included in both locations (two possible locations from two 

hash functions) then location of the bucket with respect to the item is gained using hash 

functions. The item is added to one of the vacant nests in the bucket where the bucket 

location is given by the hash functions. The addition also done to the correct nest by 

looping through the number of nests per bucket. 

Hence the complexity is equal to number of nests per bucket O (4), which is a constant 

time complexity. 

The overall complexity of item insertion in Bloom Filter and Cuckoo Filter are as 

follows. 

Bloom Filter: O (n* nn * k) 

O (nn )    

Cuckoo Filter: O (n * nn * 4) 

O (nn) 

As per the above calculation, it is apparent that Cuckoo filters have a lesser time 

complexity compared to Bloom filters with respect to item addition. 
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5.4.1.2 Time Complexity for Membership Queries 

 

 
The most favorable feature in probabilistic data structures is that they performs a less 

time complexity when it is comes to membership queries. In Bloom filters the queried 

item is checked by going through the defined number of hash functions. So its running 

time depends on the number of hash functions. 

 

 
In Cuckoo filters the bucket location is given by two hash functions and it checks for a 

particular data item in the defined bucket by looping through the number of nests defined 

per bucket. So it has a constant time complexity. 

 

 
Bloom filter: O (n) Cuckoo filter: O (4) 

 

 
According to above information it is clear that Cuckoo filters have a better performance 

compared to Bloom filters. This special characteristic of Cuckoo filter is the main reason 

for its choice for tainted bitcoin identification. 

 

 
5.4.1.3 Time Complexity of Data Deletion 

 

 
Additionally, Cuckoo filters have another unique feature where it stand out from Bloom 

filter data structure. Cuckoo filters support for data deletion without causing any 

performance or accuracy issues. But Bloom filters have serious issues when it comes to 

deletions so it is a popular myth that Bloom filters do not support for data deletion. 

 

 
Assume a use case where a particular transaction which was previously considered as 

tainted was later identified as a pure/legal transaction, then all the unspent transactions 

associated with the tainted transaction which were previously added to the Cuckoo filter 

need to be removed. So this can be easily done without compromising its accuracy nor 

its performance with Cuckoo filters. 
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Data deletion has a similar process as data insertion. 

 
● Get outputs of the transaction which was previously considered as tainted 

● Apply a heuristic method to obtain unspent transactions 

● Delete unspent transactions from the data structure 

Time complexity for the first two processes are similar as data insertion whereby it can 

depicted as follows. 

O (n * nn) ~  O (nn) 

When deleting an item from the Cuckoo filter, after getting the bucket location from two 

hash functions it check for the correct nest by looping through the number of nests per 

bucket. Hence the complexity is O (4). 

 

 
The overall time complexity of data deletion in Cuckoo filter can be represented as 

follows. 

 
 

Cuckoo Filter: O (n * nn * 4) 

O (nn) 

 
 

With the above mentioned facts, it is apparent that Cuckoo filters have a better 

performance compared to Bloom filters in tainted bitcoin identification. 

 

 

5.4.2 Time Consumption of the Solution 

 
 

5.4.2.1 Time Consumption for Data Addition 

 

The time consumption (in microseconds) is captured with respect to data addition in both 

data structures. Here various number of unspent transactions have been used and for each 

tainted transaction and a new data structure is created for analysis purposes. 
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Figure 5.7: Time consumption for data addition in bloom filters and cuckoo filters 

 

 

Based on the above diagram, it is clear that Cuckoo filters have a drastic time reduction 

compared to Bloom filters. 

 

 
Even though theoretically time complexity of data insertion is exponential, practically 

the number of unspent transactions are limited due to the following factors 

● All transactions do not have output transactions 

● If outputs exist, some have already been spent 

The below diagram represents a tainted transaction from year 2018 and how its tree chart 

visualization. 
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Figure 5.8: Tree chart visualization 

 

 

In the above diagram, yellow circle represents spent transactions while blue represents 

unspent transactions. So only the transactions represent in blue color circles are queried 

and added to the data structure. Hence, this limits the number of transactions queried and 

added to the data structure. 

 

 
5.4.2.2 Time Consumption for Membership Queries 

 

 
Time consumption is captured using few transactions which have been included into the 

data structure prior to the existence check. Outputs obtained are represented in the below 

table. 
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Table 5.1: Time consumption for membership queries in bloom filters and cuckoo filters 
 
 

 Time Consumption (microseconds) 

Cuckoo filter 0 0 1 0 0 

Bloom filter 1 1 14 1 2 

 

 
As per the above results, Cuckoo filters consume less time for membership queries 

compared to Bloom filters. 

 

 

5.4.2.3 Time Consumption for Data Deletion 

 

 
Since only, Cuckoo filter supports for data deletion time consumption is captured with 

the number of unspent transactions against its time consumption in microseconds. 

 
Figure 5.9: Time consumption for data deletion in cuckoo filters 
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5.4.3 Space complexity of the Solution 

 
Space complexity is the amount of memory used by the tainted bitcoin identification 

function during its execution. 

 

 
5.4.3.1 Space Complexity of Data Insertion 

 

 
The space complexity of data insertion will be captured as the initial step of space 

complexity analysis. For that it will be analyzed under following parameters. 

 Space complexity of the data structure 

 Bloom Filter 

 Cuckoo Filter 

 

 Space complexity of obtaining unspent transactions using heuristic methods 

 Space complexity for data addition 

 

 

Space complexity of the data structure: Cuckoo Filter 

 

 
The space complexity of the Cuckoo filter depends on bucket count and cuckoo nests 

per bucket. 

Filter size = bucket count x nests per bucket 

 
 

In the standard implementation cuckoo nests per bucket is defined as 4 and bucket count 

is calculated by using values of maximum key count and cuckoo nests per bucket. Here 

maximum key count means the maximum number of items that is supposed to add into 

the Cuckoo filter. 

 

 
Bucket count = f (max key count (m) / cuckoo nests per bucket (4)) 
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The bucket count is calculated in a separate function which is depicted here as f. It is 

clear that the bucket count is solely depend on maximum key count which is defined 

here as m. So the time complexity of the Cuckoo filter is O (m). 

 
Space Complexity of the Data Structure: Bloom Filter 

 

 
In Bloom filter space complexity directly depends on the size of the filter which is given 

at the time of the filter initialization. So it is clear that the space complexity depends on 

the size defined (m) at the time of filter initialization. Hence space complexity can be 

defined as O (m). 

 

 
Space Complexity of Obtaining Unspent Transactions Using Heuristic Methods 

 

 
When obtaining unspent transactions, the heuristic implementation behaves as a 

recursive function as follows. Here the worst case scenario is considered where each 

transaction has n number of output transactions. (Branching factor is n) 

 

Figure 5.10: Representation of a tainted transaction having n number of output 

transaction (worst case) 
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The querying process will cease if a particular transaction does not contain any outputs. 

For n number of transactions, there exist nn +n number of recursions. So the space 

complexity of this algorithm for n number of transactions can be defined as follows. 

O (nn + n) 

O (nn) 

 
Space Complexity of data addition: Cuckoo Filter 

 

 
When adding items into the Cuckoo filter three extra variables are needed other than the 

input parameters. These parameters are needed for fingerprint, value of the hash 1, value 

of the hash 2. So the space complexity is O (3). 

 

 
Space Complexity of data addition: Bloom Filter 

 

 
Bloom filter requires an extra space up to the number of hash functions. So the space 

complexity of data insertion can be defined as O (k) where k is the number of hash 

functions. 

 

 
The overall space complexity can be counted by summing up the complexities of the 

above parameters. 

 
 

          Cuckoo Filter: O ( (nn  * 3) + m) ~ O (nn  )  Bloom Filter: O((nn * k ) + m ) ~ O (nn  ) 

 
 

According to the above calculation, it is apparent that Cuckoo filter is much efficient in 

terms of space complexity. It is assumed that the number of hash functions should be 

greater than k in order to obtain reasonable efficiency. 

 

 
5.4.3.2 Space Complexity of Membership Queries 

 

 

When evaluating the space complexity, the following parameters need to be concerned. 
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❖  Space complexity of the data structure 

➢  Bloom Filter 

➢  Cuckoo Filter 

❖  Space complexity for member query 

 

 

 
 

Cuckoo filter consumes three extra variables namely fingerprint, value for hash 1, value 

for hash2. Thus, the space complexity of the Cuckoo filter can be defined as O (3) while 

Bloom filters’ space complexity is O (k) where k is the number of hash functions. 

 

 
The overall complexity for membership queries can be depicted as follows. 

Cuckoo Filter: O (m +3), m is the maximum items in the data structure 

Bloom Filter : O (m + k), m is the size of the Bloom filter 

As per the above evaluation, it is clear that Cuckoo filters have a lesser space complexity 

for membership queries. 

5.4.3.3 Space Complexity of Data Deletion 

 

 
Since Cuckoo filters only supports for data deletion, complexity analysis is done 

only for Cuckoo filters. In order to evaluate the space complexity of delete 

operation complexity of the following parameters need to be evaluated. 

❖  Space complexity of the data structure 

➢  Bloom Filter 

➢  Cuckoo Filter 

❖  Space complexity of obtaining unspent transactions using heuristic 

methods 

❖  Space complexity for data deletion 

 

 
As per the above operations, data deletion also needs three extra variables other than 

the input values. Hence the complexity can be defined as O (3). 
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Overall space complexity of delete operation can be depicted as follows. 

 
 

Cuckoo Filter: O (( nn * 3) + m)) ~ O (nn) 

 

 

 
5.4.4 Space Consumption of the Solution 

 
 

Space consumption is captured by considering only the VIRT memory which captures 

the total amount of memory requested by processes. This amount of memory may not 

consume all the time during its execution but it represents the maximum memory 

required. 

 

 
5.4.4.1 Space Consumption for Data Addition 

 

 
The space consumption is captured using both data structures for a tainted transaction 

which has one of the most number of output transactions using the memory capturing 

tool, Htop. The space consumption is captured for five tainted transactions. 

 
 

Table 5.2: Memory consumption for data addition in bloom filter and cuckoo filter 
 

 
Total Memory Consumption (VIRT 

Memory) 

Bloom Filter 88.7Gb 89.5Gb 91.1Gb 89.8Gb 88.8Gb 

Cuckoo Filter 88.3Gb 89.4Gb 90.1Gb 89.4Gb 88.1Gb 
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5.4.4.2 Space Consumption for Membership Queries 

 

 

The existence check is done for five unspent transactions and the results obtained are 

represented below. 

Table 5.3: Memory consumption for membership queries in bloom filter and cuckoo filter 
 
 

 Total Memory Consumption (VIRT 

Memory) 

Bloom Filter 88.7Gb 89.4Gb 89.2Gb 90.1Gb 90.2Gb 

Cuckoo Filter 88.3Gb 89.4Gb 88.4Gb 89.8Gb 90.1Gb 

 

 

 
5.4.4.3 Space Consumption for Data Deletion 

 

 

Table 5.4: Memory consumption for data deletion in cuckoo filter 

 
 Total Memory Consumption (VIRT 

Memory) 

Cuckoo Filter 88.3Gb 88.4Gb 89.3Gb 89.4Gb 90.1Gb 

 

According to the space consumption results, it is apparent that there does not exist any 

clear space efficiency in Cuckoo filters compared to Bloom filters. 

5.4.5 Cuckoo Filter Evaluation 

 
 

The prior observations were based on a 2-4 Cuckoo filter which means it has two hash 

tables with four nests per bucket and 16 bits were used to represent a single item. The 

false positive rate depends on load factor and number of bits used for an item. Load 

factor varies as per the following table. 
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Table 5.5: Load factor which respect to bucket size in cuckoo filter 

 

Bucket Size (Nests 

per bucket) 

Load 

Factor 

1 50% 

2 84% 

4 95% 

8 98% 

 

 
When considering the standard Cuckoo filter (2-4 Cuckoo filter) with a 95% load factor, 

Bits per item = ((log2 (1/FPR) + 2) / Load Factor) 

 

According to the above equation, 

False positive rate is equal to 0.0001 

False positive rate is equal to 0.0001. 

 
As the next step of the evaluation, performance of the Cuckoo filter is captured under 

following conditions. 

Table 5.6: Five implementation of cuckoo filter (5 cases) 

 

Cases Bits per Item Load Factor 

1 16 98% 

2 8 98% 

3 8 95% 

4 16 84% 

5 8 84% 

 
Time consumption and space consumption are captured with all the above cases and 

with the 2-4 standard Cuckoo filter (A single item is represented by 16 bits). 
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Figure 5.11: Time consumption of five cases and standard cuckoo filter 

 

 
 

As per the above graph, it is clear that Cuckoo filters which represent an item with 8 bits 

have a lesser time consumption compared to other Cuckoo filters. The Cuckoo filter with 

95% load factor which means 4 nests per bucket has the least time consumption. 

 

 
Space consumption is also captured using the tool Htop for all the above cases. A 

transaction with the largest number of unspent transactions was taken as the tainted 

address. 

Table 5.7: Total memory consumption of five cases and standard cuckoo filter 
 

Cases Total Memory Consumption 

1 89.4Gb 

2 88.9Gb 

3 88.7Gb 

4 89.4Gb 
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5 88.9Gb 

Standard Cuckoo Filter 89.2Gb 

 

In accordance with the above results, case 2, case 3 and case 5 Cuckoo filters have a 

lesser space consumption compared to other Cuckoo filters. 

 

 
The false positive rate is calculated for the above cases. 

 

 

 
Table 5.8: False positive rate of five cases and standard cuckoo filter 

 

Cases Bits Per Item Load Factor False Positive 

Rate 

1 16 98% (8 nests per bucket / 2-8 

Cuckoo 

Filter) 

0.000076 

2 8 98% (8 nests per bucket / 2-8 

Cuckoo 

Filter) 

0.017 

3 8 95% (4 nests per bucket / 2-4 

Cuckoo 

Filter) 

0.021 

4 16 84% (2 nests per bucket / 2-2 

Cuckoo 

Filter) 

0.00036 

5 8 84% (2 nests per bucket / 2-2 

Cuckoo 

Filter) 

0.038 

Standard 

Cuckoo 

Filter 

16 95% (4 nests per bucket / 2-4 

Cuckoo 

Filter) 

0.00011 

 

Cuckoo filters with lowest false positive rate has the highest time consumption when 

adding unspent transactions into it. (Case 1) According to the above results, it is clear 

that time /space consumption and false positive rate has an inverse relationship. It is 

possible to define a Cuckoo filter with the highest accuracy but compromising its 
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performance. So the 2-4 Cuckoo filter is designed with a considerable accuracy rate and 

performance. 

 
5.5 Summary 

 

 
This chapter elaborated a detailed evaluation mainly considering time and space metrics 

with respect to its performance. For the evaluation Bloom filter is also is used other than 

Cuckoo filter to compare the results. Time and space complexity is analyzed 

theoretically as the worst case scenario in tainted bitcoin identification while factual 

case results are obtained through time and space consumption. Towards the end of the 

evaluation, performance of the Cuckoo filter is analyzed and how it varies with respect 

to false positive rate by changing the number of items representing a single item and load 

factor. However, it is observed that there is an inverse relationship between false positive 

rate and the performance of the Cuckoo filter. 
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Chapter 6 

Conclusion 

6.1 Introduction 

 

 
This chapter includes a review of the research aims and objectives, research problem, 

limitations of the current work and implications for further research. 

 

 

6.2 Conclusions about Research Questions (Aims/ Objectives) 

 

 
The main aim of this research was to identify the possibility of using probabilistic data 

structures for an efficient tainted bitcoin identification. With that aim the main research 

objectives were, 

● Identify a suitable probabilistic data structure 

● Identify the necessary parameters when initializing the data structure 

● Implement a tainted bitcoin identification tool 

● Evaluate the performance of the data structure and compare the results 

 
 

According to the literature review, Cuckoo filters have a better performance compared 

to other probabilistic data structures. Hence, they are utilized to make the tainted bitcoin 

identification efficient. However, Bloom filter is also considered for the evaluation 

purposes to compare results against with the Cuckoo filter. 

 

 
According to the evaluation it is apparent that probabilistic data structures can be 

effectively used for tainted bitcoin identification. Among other probabilistic data 

structures, Cuckoo filters performed better mostly when to comes to time consumption. 

When considering space consumption, the results were almost like same for both Cuckoo 

filters and Bloom filters. 
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In theoretical analysis, Cuckoo filters performed better with regards to time and space 

complexities. The performance of the Cuckoo filter varied based on load factor and 

number of bits used to represent a single item. According to results obtained, it is 

apparent that 2-4 Cuckoo filter has a better accuracy rate(lesser false positive rate) across 

its time and space consumption. 

 

 
It can be concluded that probabilistic data structures can be utilized for an efficient 

tainted bitcoin identification specifically Cuckoo filters. 

 
 

6.3 Conclusions about Research Problem 

 

The research problem stated was the high space and time consumption in tainted bitcoin 

identification and the absence of a mechanism to identify the authenticity of a given 

transaction. Thus, the usage of a probabilistic data structure was considered for an 

efficient tainted bitcoin identification. 

 

 
Due to the usage of the probabilistic data structure, an additional time is consumed when 

adding unspent transactions into the data structure other than obtaining unspent 

transactions from a heuristic method. Hence, additional time and space are consumed 

when building the data structure. But after that, this data structure can be used as a tool 

to provide the authenticity of a given transaction within a few microseconds as it has a 

constant time complexity theoretically. 

 

 
Even though, there is a huge time consumption reduction in the solution, performance of 

the solution does not efficient via space consumption as expected. Space consumption 

after usage of the data structure is almost same when obtaining results using heuristic 

methods. 
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It can be concluded that the proposed solution was able to address the problem 

statement with a huge time consumption reduction while maintaining the space 

consumption. 

 

 
 

6.4 Limitations 

 

 
The proposed solution was based on BlockSci implementations such as BlockSci parser 

and BlockSci heuristic methods. Due to some problems in BlockSci parser and one of 

the heuristic method, the proposed solution was bounded by some limitations. 

 

 

The proposed solution was implemented for transactions with Public key hashes as it 

does not work well for transactions with Script hashes. Additionally, unspent 

transactions were obtained only using Poison and Haircut heuristic methods as FIFO 

implementation was a bit problematic. 

 

 

6.5 Implications for Further Research 

 

 
The tainted bitcoin identification is done with limitations due to problematic factors in 

BlockSci. Thus, the tool can re-evaluated with transactions having different types of 

transactions. The performance of the current tainted bitcoin identification was bounded 

by the performance of the heuristic methods. Current heuristic methods are not efficient 

enough for analysis purposes. Thus, an efficient heuristic method can be explored. 
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