
1



Improving Sinhala OCR using
Deep Learning

K.L.N.D.Liyanage



Improving Sinhala OCR using
Deep Learning

K.L.N.D.Liyanage
Index No : 14000776

Supervisor: Dr. A.R. Weerasinghe

December 2018

Submitted in partial fulfillment of the requirements of the

B.Sc. (Hons) in Computer Science Final Year Project (SCS 4124)



Declaration

I certify that this dissertation does not incorporate, without acknowl-
edgement, any material previously submitted for a degree or diploma in
any university and to the best of my knowledge and belief, it does not
contain any material previously published or written by another person
or myself except where due reference is made in the text. I also hereby
give consent for my dissertation, if accepted, be made available for pho-
tocopying and for interlibrary loans, and for the title and abstract to
be made available to outside organizations.

Candidate Name: K.L.N.D. Liyanage

.....................................
Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Ms.
K.L.N.D. Liyanage under my supervision. The thesis has been pre-
pared according to the format stipulated and is of acceptable standard.

Principle Supervisor’s Name: Dr. A.R. Weerasinghe

.....................................
Signature of Supervisor Date:

Co- Supervisor’s Name: Mr. K.V.D.J.P. Kumarasinghe

.....................................
Signature of Co-Supervisor Date:

i



Abstract

Converting a printed document into a stream of characters using opti-
cal character recognition techniques is a widely researched area. How-
ever, the unique cursive property of Sinhala characters makes character
recognition a challenge. An improvement in Sinhala OCR is a much-
needed requirement since this could benefit applications such as digitiz-
ing printed documents and books, data entry for business documents
and, assistive technology for blind and visually impaired users among
others. Even though accuracies of over 80% has been reported in previ-
ous studies, these have considered only a subset of Sinhala characters.
In, this study we consider all the Sinhala characters including complex
characters.

Since languages such as English and other, Latin-based languages have
achieved state-of-the-art accuracies in character recognition using deep
learning, their application to improve the Sinhala optical character
recognition of printed characters has not been explored. A contour-
based segmentation method is used in this research to segment Sin-
hala characters and its output recognized using a Convolutional Neural
Network. An overall accuracy of 85.37% was achieved for segmenting
and recognizing Sinhala characters. In summary, convolutional neural
network-based model is capable of improving the Sinhala printed char-
acter recognition.

ii



Preface

This dissertation proposes a deep learning approach to recognize Sin-
hala printed characters. According to the publicly available studies, a
deep learning approach to recognize printed Sinhala characters has not
proposed by any authors previously except for the recognition of ancient
Sinhala inscription letters.

Out of the character segmentation techniques that was experimented
in this study, horizontal and vertical projection profile-based character
segmentation technique has been used in previous studies for recog-
nize Sinhala characters. The concept behind the other two-character
segmentation techniques has used in other studies for character recog-
nition purposes as well as for segmentation purpose. The deep learning
model was trained using the data set created by myself. Previous stud-
ies have considered only the recognition of subset of Sinhala characters.
However, this study introduced a deep learning approach to recognize
all Sinhala characters including complex Sinhala characters.

In order to propose a suitable deep learning approach, convolutional
neural network architectures that is used in this study for experiments
are extract from well-known image recognition and object detection
CNN architectures suggested by previous studies. However, final propos-
ing convolutional neural network architecture proposed in this study was
solely my own work.

iii



Acknowledgement

I would like to express my sincere gratitude to my supervisor, Dr.
A.R.Weerasinghe, senior lecturer of University of Colombo School of
Computing and co-supervisor Mr. K.V.D.J.P.Kumarasinghe for pro-
viding me constant guidance and supervision throughout this research.

I also appreciate the feedback and motivation given by my friends to
achieve my research goals. I would also like to thank Mr. Chamila
Liyanage, research assistant at Language Technology Research Labora-
tory in University of Colombo School of Computing for giving a hand
on the research. Finally, my special gratitude goes to my loving family
who has been an immense support to me throughout this journey of
life.

iv



Table of contents

Declaration i

Abstract ii

Preface iii

Acknowledgement iv

Table of contents v

List of figures viii

List of tables ix

Listings x

List of Acronyms xi

1 Introduction 1
1.1 Background to the research . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research problem and research questions . . . . . . . . . . . . . . . 3
1.3 Justification for the research . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Delimitations of scope . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Recognition process . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



2.3.1 Statistical method . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 HMM model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Fuzzy logic based method . . . . . . . . . . . . . . . . . . . 10
2.3.4 Neural network based method . . . . . . . . . . . . . . . . 10
2.3.5 Deep learning based methods . . . . . . . . . . . . . . . . . 11
2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Design 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Character segmentation . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Character recognition . . . . . . . . . . . . . . . . . . . . . 22

4 Implementation 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Tools and technologies . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Character segmentation implementation . . . . . . . . . . . . . . . 25

4.3.1 Character segmentation by identifying contours . . . . . . . 25
4.3.2 Character segmentation using convex hull . . . . . . . . . . 27
4.3.3 Horizontal and vertical projection profile-based segmentation 28
4.3.4 Character recognition models implementation . . . . . . . . 29

5 Results and evaluation 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Character segmentation . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Character segmentation by using contours . . . . . . . . . . 35
5.2.2 Horizontal and vertical projection-based character segmenta-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Character recognition . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Character recognition performance . . . . . . . . . . . . . . 39
5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



6 Conclusions 45
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Conclusions about research questions . . . . . . . . . . . . . . . . . 45
6.3 Conclusions about research problem . . . . . . . . . . . . . . . . . . 46
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5 Implications for Further Research . . . . . . . . . . . . . . . . . . . 47

References 48

A Results 51

vii



List of figures

1.1 Proposed research methodology . . . . . . . . . . . . . . . . . . . . 5

3.1 Highlevel architecture of the system . . . . . . . . . . . . . . . . . . 16
3.2 Vertical segmentation of characters . . . . . . . . . . . . . . . . . . 17
3.3 Image preprocessing overview . . . . . . . . . . . . . . . . . . . . . 18
3.4 Horizontal projection of the script . . . . . . . . . . . . . . . . . . . 20
3.5 Segmented lines and its vertical projection . . . . . . . . . . . . . . 20
3.6 Output of contour-based character segmentation . . . . . . . . . . . 21
3.7 Output of convex hull-based character segmentation . . . . . . . . . 22

5.1 Sensitivity value of character recognition according to the font size 43
5.2 Output after mapping predicted classes for the image 4 . . . . . . . 44

A.1 Test Image 1 (script with font size 12 “Iskoola Pota” font) . . . . . 51
A.2 Test Image 2 (script with font size 12 “Iskoola Pota” font) . . . . . 52
A.3 Test Image 3 (script with “Nirmala” font) . . . . . . . . . . . . . . 53
A.4 Test Image 4 (Scanned image) (a) Original Image (b) Output after

mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.5 Test Image 5 (Scanned image) (a) Original Image (b) Output after

mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.6 Confusion matrix of the proposed classifier . . . . . . . . . . . . . . 56
A.7 Precision, recall, f1-score for approach 1 . . . . . . . . . . . . . . . 57
A.8 Precision, recall, f1-score for approach 1 . . . . . . . . . . . . . . . 58
A.9 Precision, recall, f1-score for approach 1 . . . . . . . . . . . . . . . 59
A.10 Precision, recall, f1-score for approach 1 . . . . . . . . . . . . . . . 60

viii



List of tables

5.1 Accuracies for character segmentation using contour based segmen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Accuracies for horizontal and vertical projection-based character seg-
mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Results of font size combinations for each architecture . . . . . . . . 38
5.4 Cross validation accuracy for each CNN architecture . . . . . . . . 39
5.5 Accuracy of the automatically and manually segmented characters . 40
5.6 Overall accuracy of the classifier including segmentation accuracy . 42

ix



Listings

4.1 Preprocessing steps used in contour-based segmentation . . . . . . . 26
4.2 Finding contours in script . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Sort the contours to get the order of characters . . . . . . . . . . . 27
4.4 Finding convex hull of characters . . . . . . . . . . . . . . . . . . . 28
4.5 Obtaining the lines in the script . . . . . . . . . . . . . . . . . . . . 28
4.6 Character segmentation from words . . . . . . . . . . . . . . . . . . 29
4.7 AlexNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 LeNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 ResNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

x



List of Acronyms

CNN Convolutional Neural Network.

DBN Deep Belief Network.

DPI Dots per Inch.

LSTM Long Short Term Memory.

OCR Optical Character Recognition.

xi



Chapter 1

Introduction

Printed media plays a major role when it comes to sharing of documents all over
the world. Digitizing these printed documents eliminates the need for retyping al-
ready printed documents for editing. Optical Character recognition (OCR) is the
technology that is used to convert information available in the printed form into
machine editable electronic text through a process of image capture, processing and
recognition [1].

Sinhala Scripts has been descended from the ancient Brahmi script and evolved
independently over many centuries. The Sinhala language is unique to Sri Lanka
and the characters are differ from all the other descended scripts in South Asia due
to the unique cursive property in characters. Sinhala alphabet consist with vowels
and modifiers. A vowel may appear only as the first character of a word and a
consonant is modified using one or more of the modifier symbols to produce the
required vocal sound. The total number of different modifications from the entire
alphabet including the basic characters is nearly 400 [2].

Cursive property of Sinhala characters makes character recognition process chal-
lenging task. However, most of the existing OCR systems for languages such as
English, Latin-based languages have achieved state-of-the-art character recognition
accuracies using Deep Learning [3]. This technology is being used in various fields
including Natural Language Processing and has been showed significant improve-
ment in solving problems. A prime example for this is, deep learning models used
to recognize characters.

In this study we exploit the use of deep learning for recognizing Sinhala printed
characters.

1



1.1 Background to the research
Optical character recognition for Sinhala printed characters as well as for hand-
written characters is still an evolving research field. As mentioned in previous
section, due to the unique cursive property of Sinhala characters, character recogni-
tion process is a challenging task. In spite of the title being the Optical Character
Recognition, the work of digital image processing also has to be done in this study.

According to the previous studies, OCR process consists of three main stages: Pre-
processing, Recognition process and Postprocessing [1]. Preprocessing stage has
been used to improve the quality of the scanned image through various image pro-
cessing techniques such as image binarization, noise removing, skew detection and
correction, normalization and segmentation [3],[4], [5]. Image processing techniques
that are applied in this stage directly influence the character segmentation step [3].
Therefore, one of the significant step in this study is image preprocessing. Charac-
ter segmentation has played another important role in character recognition since
features of segmented character is the input to the recognition model.

Second important stage in OCR is, character recognition process. Features of the
characters are extracted from the preprocessed image and input into the character
recognition system. In the field of OCR for Sinhala language, various approaches
are being used for recognition process. Rule based methods, Stochastic methods [4],
Machine learning and neural network methods [3] and Hybrid methods [6] are some
of the approaches taken by researchers. However, most of the studies that have
achieved higher accuracy rates have considered only a subset of Sinhala characters
[4], [5]. Even though a number of studies have been done to recognize both printed
and handwritten Sinhala characters, no record has been identified for recognizing
Sinhala printed and handwritten characters using deep learning approaches. The
only record of using a deep learning approach was, recognizing ancient Sinhala in-
scription letters [7].

Post processing stage has been used to improve the results and accuracy of OCR
by using various methods like using a look up table to map characters, maintain a
dictionary including all the words in particular language, keep a text file to map
the output with the corresponding character [3] etc.

2



1.2 Research problem and research questions
Most of the existing OCR systems for English language and Latin-based languages
have achieved state-of-the-art character recognition accuracy rates. However, among
other languages, characters of Sinhala language are unique mainly because they are
round in shape. This unique feature makes it a challenge to extend some existing
techniques to improve recognition of Sinhala characters [3].

Approaches that have been proposed by previous studies, have failed at recognizing
similar characters [4], English characters in documents [8] and some font sizes. As
Sinhala OCR performance is not good on unrestricted text such as similar charac-
ters, different font types and font size, English characters, this research will focus
on improving the performance of Sinhala OCR while improving the recognition of
unrestricted text.

Since OCR on other languages have been benefited from deep learning, this research
is an attempt to design a deep learning network to recognize Sinhala text more ac-
curately [9], [10].

Considering this problem, the generated research questions are as follows.

• Can deep learning be used to improve the current performance of Sinhala
OCR?

o What is the effect of character segmentation technique for recognizing
characters?

o What is the effect of the font size of the training character data set for
recognizing characters?

1.3 Justification for the research
Optical character recognition systems have failed in recognizing unrestricted text
such as similar characters like 'ත', 'න', 'ක' [4], some font types etc. Therefore,
OCR accuracy is not in a higher accuracy range with compare to the OCR systems
for languages like English, Latin-based languages. Even though some of the exist-
ing studies for Sinhala printed character recognition have achieved accuracy rates
within 90% - 100% range [5], [11], these studies have been only limit for a subset of
Sinhala character recognition, mainly for the Sinhala core characters. Hence, there

3



is a necessity of improving the Sinhala optical character recognition as having more
accurate OCR system benefit application domain such as digitizing printed docu-
ments and books [3], data entry for business documents, as an assistive technology
for blind and visually impaired users [1] etc.

Many Sinhala character recognition approaches have been used rule-based approaches,
stochastic approaches [4], machine learning and neural network methods [3], hybrid
methods [6]. They haven’t been used a deep learning approach for printed Sin-
hala character recognition. Recently, one of the studies have used a deep learning
approach to recognize ancient Sinhala inscription characters [7]. However, in this
study they have only considered basic Sinhala characters and the data set mostly
include synthetic data created using a photo editing tool. Thus, this study focused
on applying a deep learning approach to recognize printed Sinhala characters.

As mentioned earlier, most of the researchers focused on subset of Sinhala char-
acters. Thus, this research focuses on achieving a performance improvement of
Sinhala printed character recognition while including all the complex Sinhala char-
acters with character modifiers.

1.4 Methodology
The first step of this study is to analyze the existing approach to recognize Sinhala
characters and identified the key finding of this approaches that can be taken.
Creating training data set of character images is considered as the next step of this
proposed approach. Then appropriate image processing techniques are identified
to enhance the image quality. The next step is to review character segmentation
techniques that can be applied. After exploring character segmentation techniques,
deep learning approaches used in other proposed character recognition solutions are
studied and devise a deep learning approach to recognize Sinhala printed characters.
The final step is focused on evaluating the performance of the proposed approach
in this study.

4



Create data set

Review image processing techniques

Review character segmentation techniques

Explore deep learning approaches

Evaluate fine-tune

Figure 1.1: Proposed research methodology

1.5 Outline of the dissertation
The dissertation is structured as follows. Chapter two presents the existing ap-
proaches related to the domain of Sinhala printed and handwritten character recog-
nition. Further, this chapter describes the deep learning approaches used in char-
acter recognition. Chapter three describes the proposed research design. Imple-
mentation details of the proposed methodology is discussed in the chapter four.
Chapter five presents the evaluation results of the proposed approach. The last
chapter, chapter six demonstrates the conclusion of the thesis and outline of the
future work.

1.6 Definitions
In this study, accuracy given by the proposed deep learning approach is measured
by character recognition accuracy. Character recognition accuracy can be defined

5



as percentage of characters that are correctly recognized in a given script. Further-
more, segmentation accuracy is measured using ten scripts with different font types.
Percentage of characters correctly segmented from the total number of characters
in the script, is given as the segmentation accuracy of each script.

1.7 Delimitations of scope
A deep learning approach to recognize Sinhala printed characters will be introduced
in this study. This research is focused on recognizing commonly used Sinhala fonts.
Sinhala ancient non-digital fonts are not considered in this study. Recognizing the
fonts with font size 12 and above will be considered since some fonts and Sinhala
characters like ෂ below 12px is hard to recognize even for the human. Scanned
images of printed documents with 300 dots per inch value or above will be considered
when proposing the approach.

1.8 Conclusion
This chapter introduced the research problem and research questions and hypothe-
ses. Then the research was justified, definitions were presented. The methodology
was briefly described and justified in the subsequent sections. The dissertation
was outlined, and the limitations were given in the section 1.5 and 1.7. On these
foundations, the dissertation can proceed with a detailed description of the research.

6



Chapter 2

Literature Review

2.1 Introduction
In this chapter, review of related work on optical character recognition of Sinhala
printed characters as well as the handwritten characters is provided. Recent at-
tempts to recognize Sinhala characters in printed scripts as well as the handwritten
characters have been depicted that character recognition depend on factors such as
approach used to identify characters, quality of the scanned image that has been
used as the input to the model. Thus, Section 2.2 focuses on image preprocessing
techniques that have been carried out to enhance the image quality and Section 2.3
presents a review of the existing approaches for character recognition process.

2.2 Image preprocessing
The image should be undergone a preprocessing stage in order to reduce unwanted
pixels and to differentiate foreground and background in a way to support character
segmentation process. Many techniques have been used to enhance the quality of
the image in order to improve the recognition of characters. Image binarization,
noise removing, skew detection and correction, normalization and segmentation are
the common preprocessing techniques followed by previous studies [3], [4], [6]. Noise
removing can be done using smoothing techniques and as well as thresholding tech-
niques. There are two main types of noise presets are in images; Gaussian noise
and salt/pepper noise. Gaussian noise can be reduced using Gaussian filtering al-
gorithm, while median or mean filtering algorithm could be used to filter salt and
pepper noise. In [12] researchers have been used median filtering algorithm with
a 5X5 kernel to remove the noise. Image binarization using global thresholding
technique have been used in [4] to eliminate noise. In thresholding, low intensity
pixels will be removed, while only retaining the pixels which belong to the actual

7



characters. In this step, all the pixels below a specific threshold value will be set to
white color. In [3] and [6] also, other image preprocessing techniques has followed
image binarization using thresholding techniques.

Other than image binarization and smoothing, image preprocessing techniques like
dilation, opening and closing have been followed in some studies. In research [3],
connected components detection and image dilation has been used to the enhance
the quality of the images after binarization. In this research, they have cropped
the glyphs into individual components before applying dilation in order to prevent
character merging in dilation step. In dilation, pixels are added to the boundaries of
objects in an image depends on the shape and size of the structuring element used
to process the image. Though the researchers have followed this step, due to the
rounded shape in characters still there were few merging characters that has caused
difficulties in character recognition. In [6], image binarization step has followed by
other image preprocessing techniques like opening to remove noise, closing to fill
the holes in the letters, skeletonized to obtain the real shape of the letter, spur
reducing, resizing letter into 7:5 ratio and image dilation. Opening is dilation of
erosion. In simple terms, image first gets eroded and then gets dilated depending
on the structuring element used in the process. In dilation, pixels are removed from
boundaries of the objects in an image. In closing, dilation is followed by erosion [13].

Character segmentation is the next process that take place prior to character recog-
nition. Accuracy of this step, directly affects the accuracy of character classifica-
tion step. To segment characters various techniques have been followed by previous
studies. One of the approaches commonly used is character segmentation using hor-
izontal and vertical projection profiles. In this approach vertical profile is calculated
by summing the black pixels perpendicular to the y axis and horizontal profiles is
calculated by summing the black pixels perpendicular to the x axis. In [4], they
have been used horizontal projection to segment words and characters. Lines of the
scripts have been segmented using vertical projection, before applying horizontal
projection. Same approach has been taken by Ajward et al. [3] to segment script
into lines, words and characters. In [6], researchers haven’t mentioned segmentation
techniques used to segment scripts into lines, words and characters. In the paper
[14], C. Silva et al. has been proposed a novel approach to segment characters using
Self Organizing Feature Maps as a solution to the problem touching character pairs.
Premaratne et al. have proposed a novel approach to segment characters by us-
ing the orientation features of characters directly using a standard alphabet as the

8



basis without the need for segmentation into basic components [15]. Though this
approach does not have segmentation complexity, many iterative filtering should
be performed.

2.3 Recognition process
Many approaches have been taken by researchers to recognize characters and its
features. Stochastic approach [4], [11], fuzzy logic approach [6], machine learning
and neural network approach [3], hybrid approach and deep learning approach [7]
have been taken by various studies.

2.3.1 Statistical method

[4] has proposed a statistical method to recognize Sinhala handwritten charac-
ters. Statistical classifier based on interval estimation has been used in [4] to
distinctly identified Sinhala handwritten characters. Hewavitharana et al. have
mentioned that in handwriting recognition point of view, characters can be visual-
ized in terms of three vertical zones. Depending on the position of the character
with respect to the three-zone frame, each character has been pre-classified into
six groups prior classifying by statistical classifier. Each character has been resized
into 32 x 32 pixels common height and width using bilinear interpolation technique
and 71-dimensional feature vector was being extracted from these resized images.
Hewavitharana et al. have further stated that pre-classification method used in
this study would have much higher recognition accuracy if applied to recognition of
printed scripts. However, this proposed method has been failed when recognizing
similar characters like 'ට', 'ව', 'ම' and 'ත', 'න', 'ක'. .

2.3.2 HMM model

Similar approach to [4] has been taken in [11]. In this study they have been used a
discrete hidden Markov model (HMM) based classifier to recognize characters. Like
[4], they have used a pre-classifier to classify characters prior applying statistical
classifier. Unlike [4], which has used six group classification, this method has been
used the pre-classifier to classify characters into three groups; Core characters,
Ascending characters and Descending characters. Bilinear interpolation has been
used to resized characters into common height and width like in [4]. Then the image
has been divided into horizontal and vertical strip and each strip is subdivided into
sections of size 4x4 pixels. Pixel density of each section has been used to create a

9



feature vector in two directions: horizontally and vertically. Character recognition
has been done by adding log probabilities for each character calculated in horizontal
and vertical direction using HMM. According to the researchers, feature set selected
by their method has been under represented the character classes and hence it has
been led to low character recognition. This study, has been depicted that chosen
feature set has direct influence to the recognition of characters.

2.3.3 Fuzzy logic based method

Fuzzy logic-based approach has been taken in [6] to recognize characters which
make use of unique cursive property of characters. First feature extracted from the
character was the distance from the center to the edges of the letter along eight
directions. Using these distance measurements, rules and input/output member-
ship functions has been defined and using them Fuzzy Inference System mapped
the fuzzy inputs with the fuzzy outputs. The second feature extracted from the
characters were the number of intersections from the center of the letter to the
eight directions. These features have been used as the input to a second Fuzzy
inference system and the system has mapped the fuzzy inputs with the fuzzy out-
puts using the rules and membership functions defined according to the intersection
measurements. Characters were recognized upon the optimal crisp value returned
from either Fuzzy inference system 1 and 2. This system has been tested using
three datasets to measure the accuracy of basic character recognition, similar char-
acters recognition and elapsed time. Unlike Statistical based method [4] and HMM
model-based method [11], this method has been achieved reasonable accuracy in
recognizing similar characters.

2.3.4 Neural network based method

[3] has proposed a character recognition method using feed forward back propaga-
tion neural network with two hidden layers. From this study they have developed
a method of preserving a number of selected formatting features of a printed doc-
ument. To recognize font attributes, projection profile of text lines has been used.
Font size has been discriminated by measuring the height of the vertical profile.
Normal, Bold, Italic, and Bold Italic fonts has been identified using the variance of
the derivative of the horizontal profile. Continuity of vertical profile has been used
to discriminate underline text. In other studies, formatting features of printed doc-
ument has not been considered when developing a method to recognize characters.

10



2.3.5 Deep learning based methods

Even though a number of studies have been done to recognize both printed and
handwritten Sinhala characters, no record has been identified for recognizing Sin-
hala characters using deep learning approaches. However, a deep learning approach
has been taken in [7] to recognize ancient Sinhala inscription characters. In this
section, studies that have been conducted character recognition using deep learn-
ing models has explained for ancient Sinhala inscription letters as well as for other
Languages.

2.3.5.1 Convolutional neural network based methods

In this study [7], they have been used neural network approach and the convolu-
tional neural network approach to recognize characters and evaluate the recogni-
tion accuracy for each approach. According to their results, CNN based OCR has
shown better accuracy than neural network approach. They have been conducted
an experiment to measure the accuracy of noisy images recognition and, from their
experiment they have stated that when the noise rate of the input images was get-
ting higher, recognition rate was decreased. Further they have stated results of the
characters recognition has been depend on the quality of the input image. From the
results of this study, it can be seen that deep learning approach for OCR is a path
that worth being pursued. Even though a deep learning approach has not been
taken to recognize Sinhala printed scripts and handwritten characters, there have
been several attempts taken in descendant languages of Brahmi language. Details
of these attempts have been explained in subsequent paragraphs.

In research [16], character recognition using LeNet-5, a convolutional Neural Net-
work trained with gradient based training and backpropagation algorithm was used
for classification of Malayalam character images. Results obtained from their study
have been showed that, CNN performance had dropped down when the number
of classes exceeds range of 40. Therefore, they have followed a multi stage clas-
sification. CNN has been used to primarily for the recognition and misclassified
characters has been further classified using multiclass SVM.

Research [17] has been taken approach to recognize handwritten words using two ap-
proaches; classifying words directly and character segmentation. In this approach
they have used CNN for character recognition purpose and LSTM (Long Short-
Term Memory) network to character segmentation. Character segmentation has

11



been done by using Tesseract 4.0 version which is neural network-based CNN/L-
STM network. First, they have experimented word level classification and it has
been given low accuracy rates. Hence, this study has classified each character in-
dependently to reconstruct whole word. From those two experiments they have
been concluded that character level training improves performance than word level
training. Further, researchers have suggested to use large mini batch size since it
would capture too much information at once and fasting the model. This research
has been depicted the effect of character segmentation to the performance of the
recognizer.

2.3.5.2 Deep belief network based models

[9] has used unsupervised stacked Restricted Boltzmann Machines (RBM) to learn
features and a Deep Belief Network to recognize handwritten Devanagari charac-
ters. In this study Prabhanjan et al. has done several experiments to decide on
the number hidden layers to be included in the network. From the result they have
concluded that having a few hidden layers have been led to short training time
period but resulted in poor performance as the system cannot be fully store all the
features of the training data sets. Further they have stated that too many layers
may result in over-fitting and slow down the learning time. Therefore, they have
done experiments for three different settings for number of hidden layers by keeping
other parameters as constants. Performance of proposed method for unsupervised
learning, has been evaluated for numerals, vowels, consonants, compound charac-
ters and vowel modifiers individually and combining both characters and numerals.
From the results, researchers have concluded that since the experiments were done
using unsupervised learning, accuracy was lesser. Therefore, they have fine-tuned
the model using supervised learning.

In [10], Bangla handwritten character recognition has been presented by excluding
the burden of feature extraction. This study has used a deep belief network (DBN)
to recognize characters with unsupervised learning followed by supervised fine tun-
ing of the network. Raw image data is the input to the DBN. Unsupervised learning
was performed by using contrastive divergence algorithm which is an approximation
of maximum likelihood estimation, while in the later stage network parameters are
fine-tuned with the gradient based backpropagation algorithm. Contrastive diver-
gence algorithm was used since maximizing the likelihood requires a Markov chain
Monte Carlo simulation which takes a long time. One of the objectives of Biswas et
al. was the evaluation of the effectiveness of unsupervised feature learning approach

12



using DBN. Hence, in order to see the effect, they have been trained another DBN
without unsupervised feature learning but only conjugate gradient back propaga-
tion has been used. Results of the experiment has been showed that unsupervised
learning had led to significant improvement recognition. One of the prime features
of the DBN approach is the ability of image reconstruction as it can work as a
generative model. Researchers have compared their results with hierarchical learn-
ing architecture, who reported their performance on the same data set that used
in their experiment. Experiment has been showed that DBN can achieve higher
recognition rates even though no handcrafted features was used. This study has
stated that if they could use larger data set than used data set, results would be
better than this.

2.3.5.3 Recurrent neural network with LSTM based models

Shkarupa et al. [18] have been used a Recurrent Neural Network with Long Short-
Term Memory for the recognition of historic handwritten Latin texts. This study
has used two RNN architectures; Connectionist Temporal Classification and Se-
quence to Sequence Learning approach. Unlike [17], this study has been focused
on the simplicity of the architecture in order to complete the classification within
reasonable time using an average PC. In this study optimal configurations for each
performance has been chosen by conducting several experiments. Mini batch ap-
proach was used as training approach and this study has stated that use of weight
cross-entropy loss function reduced the convergence time of the model. They have
been experimented the use of a CNN for feature extracting and the results have been
showed no improvement in recognition accuracy. In this study, performance has
been evaluated using two metrices: Word accuracy rates and Character accuracy
rates.

2.3.6 Summary

This section has been explained various attempts taken by researchers to recog-
nize both Sinhala printed scripts and handwritten characters. Statistical approach,
neural network approach, HMM model-based approach and Fuzzy logic-based ap-
proach have been discussed in terms of image preprocessing techniques followed and
the recognition process used. When analyzing those studies, several drawbacks and
research gaps can be recognized such as difficulties in identifying similar characters,
not able to recognize unrestricted text as mentioned in the section 1.3 and only a
subset of Sinhala characters has considered in the studies. Even though a number
of approaches have been taken, no record for recognizing Sinhala printed scripts and

13



handwritten characters. Hence, literature review has done to analyze the studies
that used deep learning approach in OCR of several other languages. However, re-
cently a research [7] has been conducted using deep learning approach to recognize
ancient Sinhala inscription characters. This study has been shown the performance
improvement in character recognition using deep learning approach over artificial
neural network. Studies such as [19] has been shown the performance improvement
in OCR when feature learning is done using deep learning approach rather than
using handcrafted features for recognition. Thus, all the deep learning studies for
OCR discussed in this section has been depicted that deep learning approach for
OCR is a path that worth being pursued.

14



Chapter 3

Design

3.1 Introduction
This chapter explains the proposed solution for the research problem. Section 3.2
explains the research design while the subsequent sections explain the main step
performed in the research design.

3.2 Research design
The system consists of separate individual components based on the different func-
tions needed to be performed in the process of an OCR. These include preprocessing,
character segmentation, character classification and post processing. The high-level
view of the architecture of the whole system and the connectivity of the separate
components has been shown in following figure 3.1 Main source of input to the sys-
tem would be an image of a printed script and the output from the system would
be recognized character.

15



Scanned Image

Image Preprocessing

Character Segmentation

Character Recognition(Deep Learning Model)

Output

Figure 3.1: Highlevel architecture of the system

Above figure represents the steps involved in the construction of the system and the
flow of data. Initially, scanned image with 300 dots per inch value (DPI) or above,
will be preprocessed to enhance the quality of the image using image preprocessing
techniques. The characters in the preprocessed image will be segmented as the next
step and the raw image pixel value of segmented characters are used as the input to
the deep learning model. Feature extraction and selection processes are performed
by the deep learning model. Recognized character will be given as the output
from the model. The system is trained using Sinhala printed characters before it
is used to recognize characters. Subsequent sections will be explained the data set
creation process, image preprocessing process, character segmentation process and
the character recognition process.

3.2.1 Dataset

Training data set creation was the first step that was carried out in this study,
before considering about the preprocessing stage. The model that is proposed by
this study, was trained using printed Sinhala characters. Character level training

16



is performed since training with each and every Sinhala word couldn’t be practi-
cally done as Sinhala language has a rich vocabulary and the results of the study
[17] shows that character level training increased the character recognition accuracy
than the word level training. Creating a character image set cannot be practically
done in this study since using scanned images since the parameters such as font size
and font type which is needed to address the second research question in this study
cannot be measured. Hence, this study has focused on creating training character
images by converting screen text into jpeg format images. The characters are typed
in a word processing software by using three font sizes; 12, 14, and 16px and eight
font types. Eight commonly using font types were used for the training in order to
increase the size of the training data set since in the deep learning models, larger the
data set accuracy get better. Then the screenshots were converted into jpeg format
images. Further, distorted images of characters were also added to the dataset as in
practical scenario different variance can be happened due to the brightness, lighting
condition, orientation etc.

After creating images of scripts, each character has been segmented from the script
by preserving the aspect ratio. Character images were padded by white pixels in
order to make all the character images into common size. Therefore, to segment
characters from the script without manual intervention, characters segmentation
techniques were implemented and used in this stage. The images of scripts were
vertically segmented into individual characters as shown in Figure 3.2. Only the
vertical segmentation of characters was performed since horizontal segmentation of
characters is a difficult task as horizontal modifiers of Sinhala characters are con-
nected with the base characters. Character classes labeling was carried out in this
step, since supervised learning approach will be taken in this study. Since verti-
cal character segmentation was carried out, there were altogether 297 - character
classes including the main punctuation marks; full stop, comma, and brackets in
the created training data set.

Figure 3.2: Vertical segmentation of characters

17



3.2.2 Image preprocessing

This stage is one of the important stages in every OCR process, since preprocessing
should be done in a way to enhance the performance of character segmentation.
Several image preprocessing techniques has been applied in order to enhance the
quality of the image such as smoothing, thresholding, correcting image orientation
and scaling. Figure 3.3 shows the image preprocessing techniques used in this study
to enhance the image quality.

Raw Image

Smoothing

Image Binarization

Skew Detection and Correction

Processed Image

Figure 3.3: Image preprocessing overview

Image smoothing is applied for the raw images input into the system to remove
noise in the image. In this stage, gaussian filter is used to remove the gaussian
noise in an image. Noise removed image is binarized using image binarization
technique, adaptive thresholding to reduce the complexity and make easy to do the
segmentation. When the scanning process is doing, images could be scanned with
varying illumination. Thus, the reason to use adaptive thresholding technique is,
this method gives better results for images with varying illumination. Finally, since
the scanned images could be skewed while in the scanning process, skewed images
are detected and modification are made to those skewed images.

18



3.2.3 Character segmentation

Character segmentation is a main factor that affects the character recognition in an
optical character recognition system. Therefore, in order to improve the character
recognition process three different character segmentation techniques are experi-
mented in this study.

Character segmentation techniques are used to segment script into lines, words and
characters after preprocessing images as well as to create the training dataset. Char-
acter segmentation techniques are experimented by using the techniques followed
by related works in literature review as well as using the functions provided by the
image preprocessing libraries. Techniques such as horizontal and vertical projection
profile-based segmentation, contour-based segmentation and convex hull-based seg-
mentation techniques are experimented and based on the effect for the performance
improvement in overall system, better approach is selected to the final proposing
solution.

Horizontal and vertical projection profile based segmentation
This technique is the mostly used character segmentation technique in previous at-
tempts to recognize Sinhala characters. In this technique, horizontal projection of
the scripts is used to segment script into lines. After identifying lines in the script,
words and characters are identified respectively using vertical projection profile of
the script. Projection of a binary image onto a line is obtained by partitioning the
line into bins and finding the number of 1 pixels that are on lines perpendicular to
each bin in horizontal and vertical direction. The horizontal projection H[i] along
the rows and the vertical projection V[j] along the columns of a binary image are
calculated by following equation 3.1 and equation 3.2 equations.

H[i] =
m−1∑
j=0

B[i, j] (equation 3.1)

V [J ] =
n−1∑
i=0

B[i, j] (equation 3.2)

Figure 3.4 and Figure A.7 shows horizontal projection profile of the Sinhala script,
vertical projection profile of the script and the segmented lines of the script respec-
tively.

19



Figure 3.4: Horizontal projection of the script

As illustrated in above figure, five peaks in the Figure 3.4 corresponding to the five
lines in the script.

Figure 3.5: Segmented lines and its vertical projection

20



Character segmentation by identifying contours
This character segmentation technique has used contours along the boundary of
characters to identify characters. Contour is a curve joining all the continuous
points along the boundary having same color or intensity. After finding the con-
tours in script, bounding box is drawn around the character. Character are then
segmented by using x and y coordinates and the width and height of the bounding
box. OpenCV 3.4.0 library is used in this segmentation technique. Implementation
details have explained in the section 4.3. Following figure 3.6 shows output of a
script that has used contour-based character segmentation.

Figure 3.6: Output of contour-based character segmentation

Character segmentation using convex hull
This segmentation technique is used to draw a convex hull around the character by
using OpenCV 3.4.0 library. Given a set of points in a plane, the convex hull of
the set is the smallest convex polygon that contains all the points of it. Binarized
image from the image preprocessing stage is taken as the input and first contours
are find in the script. After finding the contours, then the convex hull is drawn
around the character using the convexHull class in the OpenCV library. Finally,
the character is segmented using the boundary given by convex hull.

21



Figure 3.7: Output of convex hull-based character segmentation

3.2.4 Character recognition

Character recognition is the next step after segmenting characters. Convolutional
Neural Network (ConvNet or CNN) is a special type of neural network used ef-
fectively for image recognition and classification. Hence, characters are recognised
by using a convolutional neural network (CNN) since CNN shows impressive re-
sults in recognizing images with varying illumination and noise. Character recog-
nition experiments are carried out by using the CNN architectures that won the
image classification competition ImageNet Large Scale Visual Recognition Chal-
lenge. Therefore, several experiments are carried out using four architectures such
as AlexNet [20], LeNet [21], GoogleNet [22] and ResNet [23] and the results of three
of them were presented in this study.

Before input into the CNN model, input images were padded in order to create
fixed size input images. Each character image is converted into fixed 28x28 pixel
matrix and these raw pixel values are input into the model. In this study, raw
image pixel values are used as the input since CNN tends to work better on raw
input pixels rather than features or parts of an image [17]. Pixel values of each
segmented character image is normalized since fixed size of input images will be
used as the input. After normalization, pixel values of the image are used as the
input to the model. In this study, since the feature engineering will be carried out
by deep learning model, deciding on the feature set to be extracted is not a burden.

22



A suitable CNN architecture was proposed by obtaining the prediction accuracy
using cross validation for each CNN architectures. Each CNN has been trained
using the created dataset as explained in the section 3.2.1 and tested with images
created like the training dataset.

Deep learning model will be given set of probabilities as output. Class of the higher
probability value of given output will be considered as the class that character is
belonged to. In order to map the predicted class label to the corresponding char-
acter, mapping has been made as the post processing step.

23



Chapter 4

Implementation

4.1 Introduction
This chapter elaborates the implementation details of the proposed solution. Section
4.2 describes the software tools utilized for the implementation and the section 4.3
contains the details about character segmentation implementations. Finally, section
4.4 contains the implementation details of character recognition models that are
tested currently.

4.2 Tools and technologies
Scanned images from books and papers couldn’t be used in creating character im-
ages as parameters such as font size and font type are impractical to measure in
scanned images. Hence, screen text is converted into images, and Photoshop CS6
is used to set the DPI (dots per inch) value of images.

Python language is used to implement the contour based and convex hull-based
character segmentation techniques and for other implementation tasks such as ar-
ranging the character images into fixed common height, generating raw pixel values
of images. Main reason to use python is, image processing library like OpenCV
which can be easily used to image binarization, skew detection and correction, mor-
phological transformations are available in python.

Horizontal and vertical projection profile-based character segmentation technique
was tested by using MATLAB. MATLAB is used in experiment since the Image
Processing Toolbox in MATLAB provides a comprehensive set of reference-standard
algorithms and work flow apps for image processing.

24



In deep learning, results get better with more data and larger models that in turn
require more computation power. Therefore, GPU usage for these tasks is very
useful as GPUs are efficient in processing large number of data in parallel. NVDIA
provides a deep learning SDK for this purpose, which supports deep learning frame-
works such as TensorFlow, Caffe, Theano etc. In this study, we used TensorFlow to
build the model since it allows computations to be spread out across many compu-
tational devices across many machines and allows users to specify machine learning
models using relatively high-level descriptions [24]. In order to build the deep
learning model easily using TensorFlow, a high-level neural networks API Keras
[25], written in Python was used.

Deep learning models are taking quite long time to train when use CPU power.
Hence, in order to run deep learning model on GPU, Google Colab [26] is used as
it supports free GPU.

4.3 Character segmentation implementation
This section contains the implementation details about three-character segmenta-
tion techniques.

4.3.1 Character segmentation by identifying contours

In this approach, as mentioned in the section 3.2.3, each character is identified by
using contour tool in OpenCV library. The image is first binarized using threshold-
ing technique, adaptive thresholding. As shown in listing 4.1 then the morphological
operation dilation was applied for the binarized image in order to increase the thick-
ness of the character. Then findContours() function in OpenCV library is used to
identify contours in the script. In this function three parameters: source image,
contour retrieval mode, contour approximation method is passed in order to get the
contour array. The important parameter in this function is contour approximation
method. Contour stores the (x,y) coordinates of the boundary of a shape. Contour
approximation method limits the coordinates stored in contour array of each char-
acter. In this study, characters are vertically segmented as mentioned in the section
3.2.1. Therefore, in this scenario only the end points of characters are needed and
by using CHAIN-APPROX-SIMPLE approximation method of OpenCV 3.4.0 and
several other techniques, only the needed end points are taken. CHAIN-APPROX-
SIMPLE method removes all redundant points and compresses the contour, thereby
saving memory. After finding the contours, x, y, width and the height coordinates

25



are obtained by using boundingRect() function. Since contour based method doesn’t
crop the characters in the order of the characters in the script, middle coordinate
of the bounding box was used to identify the order of characters using moments()
function as shown in listing 4.2.

Listing 4.1: Preprocessing steps used in contour-based segmentation
1 #g r a y s c a l e
2 gray=cv2 . cvtColor ( Image , cv2 .COLOR_BGR2GRAY)
3
4 #b i n a r i z a t i o n
5 ret , thresh = cv2 . th r e sho ld ( gray ,135 ,255 , cv2 .THRESH_BINARY_INV)
6
7 #d i l a t i o n
8 ke rne l = np . ones ( (2 , 100 ) , np . u int8 )
9 img_di lat ion=cv2 . d i l a t e ( thresh , kerne l , i t e r a t i o n s =1)

10
11 #f i n d contours
12 im2 , c t r s , h i e r = cv2 . f indContours ( img_di lat ion . copy ( ) , cv2 .

RETR_EXTERNAL, cv2 .CHAIN_APPROX_SIMPLE)
13
14 f o r i , c t r in r eve r s ed ( l i s t ( enumerate ( c t r s ) ) ) :
15
16 #ge t bounding box
17 x , y , w, h= cv2 . boundingRect ( c t r )
18
19 #Get t ing ro i
20 r o i=image [ y : y+h , x : x+w]
21 f ind_contour ( ro i , i )

Listing 4.2: Finding contours in script
1 de f f ind_contour ( ro i , i ) :
2 I=r o i . copy ( )
3 G_Image=cv2 . cvtColor ( ro i , cv2 .COLOR_BGR2GRAY)
4
5 th=cv2 . adapt iveThreshold (G_Image , 255 , cv2 .ADAPTIVE_THRESH_MEAN_C,

cv2 .THRESH_BINARY_INV, 2 1 , 2 )
6
7 image , contours , h i e ra r chy =cv2 . f indContours ( th , cv2 .RETR_EXTERNAL,

cv2 .CHAIN_APPROX_SIMPLE)
8 count=0
9 e=h ie ra r chy . shape [ 1 ]

10
11 l =[ ]
12 f o r contour in contours :
13 i f ( cv2 . contourArea ( contour ) >3) :
14
15 [ x , y ,w, h]=cv2 . boundingRect ( contour )
16
17 M=cv2 . moments ( contour )
18 i f (M[ ”m00” ] !=0) :

26



19 cX=i n t (M[ ”m10” ] / M[ ”m00” ] )
20 cY=i n t (M[ ”m01” ] / M[ ”m00” ] )
21 e l s e :
22 cX , cY=0, 0
23 l . append ( [ x , y ,w, h , cX ] )

After finding the middle coordinate of each bounding box, boxes were sorted to get
the order of characters in the script like in following figure 4.3.

Listing 4.3: Sort the contours to get the order of characters
1 de f s o r t i n g ( l , I ) :
2 d=0
3 e=0
4
5 q=sor t ed ( l , key=i t emge t t e r (4 ) )
6
7 f o r i in range ( l en ( q ) ) :
8 x=q [ i ] [ 0 ]
9 y=q [ i ] [ 1 ]

10 w=q [ i ] [ 2 ]
11 h=q [ i ] [ 3 ]
12
13 #crop image
14 crop_img = I [ y : y+h , x : x+w]
15 cv2 . imwrite ( ”/ r e s ea r ch −OCR/ segmentat ion / r e a l data / data /”+s t r (

e )+” image”+s t r (d)+” . jpg ” , crop_img )
16 e=e+1
17 d=d+1

4.3.2 Character segmentation using convex hull

As mentioned in the section 3.2.2, first image is binarized using adaptive threshold
binarization technique. Then by using findContour() function in OpenCV, con-
tours are obtained for each character. After finding contours, Convex Hull class
in OpenCV library is used to find convex hull for each of the contours. In order
to obtain the character images in left to right in the order, contours are sorted
before applying the convexHull function. Implementation of this method is shown
in listing 4.4.

In Sinhala scripts, when some characters such as ‘ර’segment, character following
this character also tend to segment because ‘ර’characters’ bounding box coordi-
nates overlap with following characters’ coordinates. Unlike above approach, this
technique segments the characters around it boundary. Therefore, this approach
solves practical issues like above. However, sometimes contour function incorrectly
identify the intensity variation in some characters and give only a part of character .

27



Listing 4.4: Finding convex hull of characters
1 #image b i n a r i z a t i o n
2 threshed_img =cv2 . adapt iveThreshold ( blur , 255 , cv2 .

ADAPTIVE_THRESH_MEAN_C, cv2 .THRESH_BINARY_INV,139 , 2 )
3 #f i n d i n g contours
4 image , contours , h i e r = cv2 . f indContours ( threshed_img , cv2 .

RETR_EXTERNAL, cv2 .CHAIN_APPROX_NONE)
5
6 #Black image to be used to draw i n d i v i d u a l convex h u l l
7 black1 = np . z e ro s ( img . shape , dtype=np . u int8 )
8
9 #s o r t s contours l e f t to r i g h t so the image comes in order

10 contours = sor t ed ( contours , key=lambda c t r : cv2 . boundingRect ( c t r ) [ 0 ] )
11
12 d=0
13 f o r cnt in contours :
14 h u l l = cv2 . convexHull ( cnt )
15
16 img3 = img . copy ( )
17 black2 = black1 . copy ( )
18
19 im=cv2 . drawContours ( black2 , [ h u l l ] , −1 ,255 , −1)
20 g2 = cv2 . cvtColor ( im , cv2 .COLOR_BGR2GRAY)
21 r , t2 = cv2 . th r e sho ld ( g2 , 127 , 255 , cv2 .THRESH_OTSU)
22
23 masked = cv2 . bitwise_and ( img2 , img2 , mask=t2 )

4.3.3 Horizontal and vertical projection profile-based seg-
mentation

In this technique, vertical projection of Sinhala script is used to identify lines and
horizontal profile projection is used to segment characters and words. As mentioned
in the section 3.2.3, sum of the black pixels perpendicular to the x and y axis is
obtained.

After getting sum of black pixels, lines are separated using number of separation
between vertical projections of lines while words are segmented using that of hori-
zontal projections.

Listing 4.5: Obtaining the lines in the script
1 %round o f f the va lue s >0 to 1 and othe r s to 0
2 l i n e s = pH > 0 ;
3
4 %Detect r i s i n g edge and f a l l i n g edge
5 %g i v e s the d i f f e r e n c e
6 d = d i f f ( l i n e s ) ;
7
8 %f i n d the indexes o f va lue h igher than 0 that means 1

28



9 start ingColumns = f i n d (d>0) ;
10
11 %f i n d the indexes o f va lue l e s s than o
12 endingColumns = f i n d (d<0) ;
13
14 f o r k = 1 : n
15
16 subImage{k} = BW( start ingColumns ( k ) : endingColumns ( k ) , : ) ;
17
18 %sum of the columns in the l i n e
19 pHline {k} = mean( subImage{k } ,1) ;

Listing 4.6: Character segmentation from words
1 f o r i =1: l ength ( start ingRow )
2
3 word{ i } = subImage{k } ( : , start ingRow ( i ) : endingRow ( i ) ) ;
4 wordarr { count } = word{ i } ;
5
6 %sum of the columns in the l i n e
7 pHword{ i } = sum( word{ i } ,1) ;
8
9 wordN = pHword{ i } > 0 ;

10 q = d i f f (wordN) ;
11 s t a r t i n g = f i n d (q>0) ;
12 ending= f i nd (q<0) ;
13 r=length ( s t a r t i n g ) −1;
14
15 f o r s = 1 : r
16 % Get sub image o f j u s t one charac t e r . . .
17 subim = word{ i } ( : , s t a r t i n g ( s ) : ending ( s ) ) ;
18
19 % Now proce s s t h i s subimage o f a s i n g l e cha rac t e r . . . .
20 baseFileName = s p r i n t f ( ’ l i n e%d_%d . jpg ’ , x , e ) ;
21
22 fu l lF i l eName = f u l l f i l e ( someFolder , baseFileName ) ;
23 subim=~subim
24 imwrite ( subim , fu l lF i l eName ) ;
25 e=e+1;
26 end ;
27 end ;

4.3.4 Character recognition models implementation

As mentioned in section 3.4.2, convolutional neural network has been used in this
study to recognize printed Sinhala characters. Experiments are carried out using
the winning CNN architectures of ImageNet Large Scale Visual Recognition Chal-
lenge.

1. AlexNet CNN Architecture [20]

29



AlexNet CNN architecture is implemented using Keras library and Tensorflow
framework. In the AlexNet architecture they have used 224x224 size input images.
However, in this case image size was reduced to 28x28 image size since experiments
are done to character images. Kernel size and the stride size was reduced in a way
that is suitable for the input image size. Furthermore, number of kernels in each
layer was not changed and only the number of nodes in last layer was changed to
297, as there are 297 classes in the training data set.

Listing 4.7: AlexNet architecture
1 # 1 s t Convo lu t iona l Layer
2 model . add (Conv2D( f i l t e r s =96, input_shape =(28 ,28 ,1) , k e rne l_s i z e =(7 ,7) ,\
3 s t r i d e s =(2 ,2) , padding=’ v a l i d ’ ) )
4 model . add ( Act ivat ion ( ’ r e l u ’ ) )
5
6 # Pool ing
7 model . add ( MaxPooling2D ( poo l_s i ze =(2 ,2) , s t r i d e s =(2 ,2) , padding=’ v a l i d ’

) )
8
9 # Batch Normal isat ion be f o r e pass ing i t to the next l a y e r

10 model . add ( BatchNormal izat ion ( ) )
11
12 # 2nd Convo lu t iona l Layer
13 model . add (Conv2D( f i l t e r s =256 , k e rne l_s i z e =(5 ,5) , s t r i d e s =(1 ,1) ,

padding=’ v a l i d ’ ) )
14 model . add ( Act ivat ion ( ’ r e l u ’ ) )
15
16 # Pool ing
17 model . add ( MaxPooling2D ( poo l_s i ze =(1 ,1) , s t r i d e s =(2 ,2) , padding=’ v a l i d ’

) )
18
19 # Batch Normal isat ion
20 model . add ( BatchNormal izat ion ( ) )
21
22 # 3rd Convo lu t iona l Layer
23 model . add (Conv2D( f i l t e r s =384 , k e rne l_s i z e =(1 ,1) , s t r i d e s =(1 ,1) ,

padding=’ v a l i d ’ ) )
24 model . add ( Act ivat ion ( ’ r e l u ’ ) )
25
26 # Batch Normal isat ion
27 model . add ( BatchNormal izat ion ( ) )
28
29 # 4 th Convo lu t iona l Layer
30 model . add (Conv2D( f i l t e r s =384 , k e rne l_s i z e =(1 ,1) , s t r i d e s =(1 ,1) ,

padding=’ v a l i d ’ ) )
31 model . add ( Act ivat ion ( ’ r e l u ’ ) )
32
33 # Batch Normal isat ion
34 model . add ( BatchNormal izat ion ( ) )
35
36 # 5 th Convo lu t iona l Layer

30



37 model . add (Conv2D( f i l t e r s =256 , k e rne l_s i z e =(1 ,1) , s t r i d e s =(1 ,1) ,
padding=’ v a l i d ’ ) )

38 model . add ( Act ivat ion ( ’ r e l u ’ ) )
39
40 # Pool ing
41 model . add ( MaxPooling2D ( poo l_s i ze =(1 ,1) , s t r i d e s =(2 ,2) , padding=’ v a l i d ’

) )
42
43 # Batch Normal isat ion
44 model . add ( BatchNormal izat ion ( ) )
45
46 # Passing i t to a dense l a y e r
47 model . add ( Flat ten ( ) )
48
49 # 1 s t Dense Layer
50 model . add ( Dense (4096 , input_shape =(28 ,28 ,1) ) )
51 model . add ( Act ivat ion ( ’ r e l u ’ ) )
52
53 # Add Dropout to prevent o v e r f i t t i n g
54 model . add ( Dropout ( 0 . 4 ) )
55
56 # Batch Normal isat ion
57 model . add ( BatchNormal izat ion ( ) )
58
59 # 2nd Dense Layer
60 model . add ( Dense (4096) )
61 model . add ( Act ivat ion ( ’ r e l u ’ ) )
62
63 # Add Dropout
64 model . add ( Dropout ( 0 . 4 ) )
65
66 # Batch Normal isat ion
67 model . add ( BatchNormal izat ion ( ) )
68
69 # 3rd Dense Layer
70 model . add ( Dense (1000) )
71 model . add ( Act ivat ion ( ’ r e l u ’ ) )
72
73 # Add Dropout
74 model . add ( Dropout ( 0 . 4 ) )
75
76 # Batch Normal isat ion
77 model . add ( BatchNormal izat ion ( ) )
78
79 # Output Layer
80 model . add ( Dense (284) )
81 model . add ( Act ivat ion ( ’ softmax ’ ) )

2. LeNet Architecture [21]

In the LeNet architecture proposed in the study [21], has used 32x32 pixel grayscale
input images. However, in this scenario image size was reduced to 28x28 image size
since experiments are done to character images. Kernel size and the stride size was

31



reduced in a way that is suitable for the input image size. Furthermore, number of
kernels in each layer was not changed and only the number of nodes in last layer
was changed to 297, as there are 297 classes in the training data set.

Listing 4.8: LeNet architecture
1 # (3) Create a s e q u e n t i a l model
2 model = Sequent i a l ( )
3 model . add (Conv2D( f i l t e r s = 6 ,
4 ke rne l_s i z e = 5 ,
5 s t r i d e s = 1 ,
6 a c t i v a t i o n = ’ r e l u ’ ,
7 input_shape = (28 ,28 ,1 ) ) )
8 #Pool ing l a y e r 1
9 model . add ( MaxPooling2D ( poo l_s i ze = 2 , s t r i d e s = 2) )

10 #Layer 2
11 #Conv Layer 2
12 model . add (Conv2D( f i l t e r s = 16 ,
13 ke rne l_s i z e = 5 ,
14 s t r i d e s = 1 ,
15 a c t i v a t i o n = ’ r e l u ’ ,
16 input_shape = (14 ,14 ,6 ) ) )
17
18 #Pool ing Layer 2
19 model . add ( MaxPooling2D ( poo l_s i ze = 2 , s t r i d e s = 2) )
20 #Fla t t en
21 model . add ( Flat ten ( ) )
22
23 #Layer 4
24 #Fu l l y connected l a y e r 2
25 model . add ( Dense ( un i t s = 120 , a c t i v a t i o n = ’ r e l u ’ ) )
26 #Layer 5
27 model . add ( Dense ( un i t s = 84 , a c t i v a t i o n = ’ r e l u ’ ) )
28 #Output Layer
29 model . add ( Dense ( un i t s =293 , a c t i v a t i o n = ’ softmax ’ ) )

3. ResNet Architecture

ResNet architecture is an architecture with deeper layers upto 152. When trained
this model default input size of images were changed to 28 x 28 and the number of
nodes in outer dense layers was changed to the number of classes in the data set.
However, when compare to the other two models mentioned above, ResNet model
took more time to train.

Listing 4.9: ResNet architecture
1 x = ZeroPadding2D ( ( 3 , 3) ) ( img_input )
2 x = Conv2D(64 , (7 , 7) , s t r i d e s =(2 , 2) , name=’ conv1 ’ ) ( x )
3 x = BatchNormal izat ion ( ax i s=bn_axis , name=’ bn_conv1 ’ ) ( x )
4 x = Act ivat ion ( ’ r e l u ’ ) ( x )
5 x = MaxPooling2D ( ( 3 , 3) , s t r i d e s =(2 , 2) ) ( x )
6

32



7 x = conv_block (x , 3 , [ 6 4 , 64 , 256 ] , s tage =2, b lock=’ a ’ , s t r i d e s =(1 , 1)
)

8 x = ident i ty_block (x , 3 , [ 6 4 , 64 , 256 ] , s tage =2, b lock=’b ’ )
9 x = ident i ty_block (x , 3 , [ 6 4 , 64 , 256 ] , s tage =2, b lock=’ c ’ )

10
11 x = conv_block (x , 3 , [ 128 , 128 , 512 ] , s tage =3, b lock=’ a ’ )
12 x = ident i ty_block (x , 3 , [ 128 , 128 , 512 ] , s tage =3, b lock=’b ’ )
13 x = ident i ty_block (x , 3 , [ 128 , 128 , 512 ] , s tage =3, b lock=’ c ’ )
14 x = ident i ty_block (x , 3 , [ 128 , 128 , 512 ] , s tage =3, b lock=’d ’ )
15
16 x = conv_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’ a ’ )
17 x = ident i ty_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’b ’ )
18 x = ident i ty_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’ c ’ )
19 x = ident i ty_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’d ’ )
20 x = ident i ty_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’ e ’ )
21 x = ident i ty_block (x , 3 , [ 256 , 256 , 1024 ] , s tage =4, b lock=’ f ’ )
22
23 x = conv_block (x , 3 , [ 512 , 512 , 2048 ] , s tage =5, b lock=’ a ’ )
24 x = ident i ty_block (x , 3 , [ 512 , 512 , 2048 ] , s tage =5, b lock=’b ’ )
25 x = ident i ty_block (x , 3 , [ 512 , 512 , 2048 ] , s tage =5, b lock=’ c ’ )
26
27 x = AveragePooling2D ( ( 1 , 1 ) , name=’ avg_pool ’ ) ( x )

4.3.4.1 Implementation of the Final Model

As described in the section 5.3, AlexNet architecture provided the higher cross vali-
dation accuracy for the created data set. Hence, similar architecture to the AlexNet
was used as the final model to recognize Sinhala printed characters. Models were
trained using Google Colab [?] in order to run deep learning model on GPU, since
it supports free GPU. Final model used to recognize Sinhala characters consisted
with five convolutional layers and three dense layers where outer layer consisted of
297 nodes for the 297 classes. First, second and the fifth convolutional layer was
followed by a MaxPooling layer and each of the convolutional layer followed by a
batch normalization. Each dense layer is followed by a dropout of 0.4 probability.
All the character images were resized into fixed size 28 x 28 before input into the
CNN. Pixel values of the images were input into the CNN model. Batch size of
20 was used in training the final model since when the batch size was increased it
caused a memory error in Google Colab. Adam optimizer is used in training the
final model since it learns faster and stable than other optimizers as suggested in
[27]. Default learning rate 0.001 for “adam” optimizer in Keras was used as the
initial learning rate.

The predicted classes by the trained model was saved as a text file and predicted
classes were mapped to the corresponding character classes. As the final step,

33



Characters given by the mapper was normalized using a normalizer to get the final
output.

34



Chapter 5

Results and evaluation

5.1 Introduction
This chapter discusses the results and evaluation of the proposed design under three
sections. Section 5.2 explains the performance evaluation of character segmentation
technique. In the section 5.3, character recognition performance of convolutional
neural network is evaluated. Section 5.4 explains the overall performance of pro-
posed model.

5.2 Character segmentation
5.2.1 Character segmentation by using contours

Character segmentation using contours technique has been experimented using font
size 12 Sinhala scripts images with 300 DPI value and these images were created us-
ing different fonts. Font size 12 is chosen since it is the minimum font size consider
in this study. Following table give information of the total number of characters in
the script, number of correctly segmented characters and the sensitivity values for
this segmentation technique in each image and for all images together.

35



Table 5.1: Accuracies for character segmentation using contour based segmentation

Image No. of characters No. of correctly
segmented characters Sensitivity

1 714 689 96.50%
2 1082 921 85.12%
3 732 683 93.31%
4 720 557 77.36%
5 1062 800 75.33%
6 720 715 99.31%
7 1002 887 88.52%
8 720 696 96.67%
9 1062 913 85.97%
10 714 557 78.01%

Total 8528 7418 86.98%

Overall accuracy of this character segmentation technique is 86.98%. Characters
with ‘◌ැ’, ‘◌ෑ’, ‘ෙ◌’ modifiers and some font types has been affected the overall
accuracy of this character segmentation technique. Even though a character in one
font type correctly segmented, when the font type changes ability to segment the
character has changed with font type.

5.2.2 Horizontal and vertical projection-based character seg-
mentation

Scripts which has been used in character segmentation using contours, were used
to evaluate the horizontal and vertical projection-based character segmentation.
Following table shows the information of the total number of characters in the
script, number of correctly segmented characters and the sensitivity values for this
segmentation technique in each image and for all images together.

36



Table 5.2: Accuracies for horizontal and vertical projection-based character seg-
mentation

Image No. of characters No. of correctly
segmented characters Sensitivity

1 714 677 94.82%
2 1082 948 87.62%
3 732 683 93.31%
4 720 553 76.81%
5 1062 728 68.55%
6 720 640 88.88%
7 1002 762 76.05%
8 720 433 60.14%
9 1062 488 45.95%
10 714 647 90.62%

Total 8528 6559 76.91%

As shown in the results of the two methods, contour-based character segmentation
has achieved a higher accuracy of 86.98% in character segmentation in contrast to
the accuracy of 76.91% obtained by the character segmentation using horizontal
and vertical projection.

Character segmentation by using contours, has identified less number of unim-
portant regions and incorrectly segment characters with compare to the horizon-
tal and vertical projection-based method for fonts such as “Iskolapota”, “Malithi
Web”, “Nirmala” and “Sarasavi Unicode”. However, the font “BhashitaScreen” has
been correctly segmented with less unimportant regions by horizontal and vertical
projection-based method. The reason for segmenting unimportant regions other
than characters is that these images were contained some noise and contours have
drawn around these regions. Some characters were not properly segmented due
to the fact that intensity variations around the characters were unable to identify
by these methods. Even though some characters were properly segmented for one
font type, when the font type changes ability to segment characters get changed.
However, since the overall performance for contour-based character segmentation
method is higher than other method, character segmentation using contour-based
method was used as the character segmentation technique for the character recog-
nition process.

37



5.3 Character recognition
5.3.1 Experimental setup

As mentioned in section 3.2.4, character recognition is experimented by using sev-
eral CNN architectures in ImageNet Large Scale Visual Recognition Challenge such
as AlexNet [20], LeNet [21], ResNet [23] and GoogleNet [22] . CNN models were
trained using character images of font size 12, 14 and 16. Experiments were carried
out using several font size combinations in order to address the second research
question mentioned in section 1.2. Following table summarize the testing accuracy
obtain for each CNN architecture using combination of font sizes 12, 14 and 16.

Table 5.3: Results of font size combinations for each architecture

Character Combination AlexNet
Architecture

LeNet
Architecture

ResNet
Architecture

Training
font size

Testing
font size

12 12 98.06% 96.97% 91.31%
14 14 98.56% 98.46% 93.45%
16 16 98.86% 98.40% 96.34%

12, 14, 16 12,14,16 85.45% 79.04% 75.64%
12 12,14,16 58.57% 51.02% 46.55%
14 12,14,16 69.40% 63.23% 62.63%
16 12,14,16 58.84% 53.75% 52.23%

12,14,16 12 86.21% 76.89% 71.58%
12,14,16 14 87.71% 81.26% 78.34%
12,14,16 16 87.86% 78.41% 75.82%

12,14 12,14,16 65.43% 64.50% 63.56%
14,16 12,14,16 70.47% 68.45% 65.43%
12,16 12,14,16 71.32% 71.20% 69.63%
12,14,16 12,14 79.84% 78.67% 70.60%
12,14,16 14,16 80.82% 79.34% 78.66%
12,14,16 12,16 75.68% 73.63% 71.48%

As shown in the test accuracy rates for each CNN architecture, higher test accuracy
rates were given when the CNN models were trained using character combination
of font size 12, 14, and 16 and the test set consist with any of the font size out of
font sizes 12,14, and 16. Data to train, test and validate each model were chosen
randomly and due to this fact testing accuracy get varied. Therefore, average ac-
curacy was obtained by training and testing the model several times for each font

38



size combination. Thus, the final model presented in this study was trained using
the character combination of font size 12, 14, and 16.

The prediction accuracy for each architecture was evaluated using 5-fold cross val-
idation. For each architecture, cross validation accuracy are shown in Table 5.4.

Table 5.4: Cross validation accuracy for each CNN architecture
Architecture Cross Validation Accuracy

AlexNet 95.92% (+/- 0.87%)
LeNet 93.72% (+/- 0.77%)
ResNet 92.32% (+/- 0.74%)

Since AlexNet architecture has higher cross validation accuracy with contrast to
other architectures, a CNN architecture similar to the AlexNet was used as the
final model.

5.3.2 Character recognition performance

Character recognition performance was evaluated underneath two conditions; char-
acter recognition of characters segmented automatically and manually, character
recognition of accurately segmented characters and the unimportant segments.

1.Recognition of characters segmented using contour-based method and
manually segmented characters.

As mentioned in the section 5.2, characters segmented from the contour-based char-
acter segmentation method includes inaccurately segmented characters as well as
the correctly segmented characters. Hence, in order to measure the Sinhala char-
acter recognition performance when apply deep learning approach, unsegmented
characters were segment manually. For the all automatically segmented and man-
ually segmented characters in each script, character recognition performance were
evaluated.

Character recognition accuracy for each script is presented in following table 5.5.
This recognition accuracy has obtained by manually segmenting the characters
which were not properly segmented. Following table shows the number of char-
acters in each script, number of correctly classified characters in each script and the

39



classifier sensitivity.

Table 5.5: Accuracy of the automatically and manually segmented characters

Image No. of characters No. of correctly
classified characters Classifier Accuracy

1 - Script with ‘Iskoola Pota’ font 714 546 76.47%
2 - Script with ‘Iskoola Pota’ font 977 918 93.96%
3 - Script with ‘Nirmala‘ font 716 668 93.30%
4 - Scanned image 603 560 92.87%
5 - Scanned image 714 651 91.18%
Total 3724 3343 89.76%

In this study main focus is to present a deep learning approach to improve the
character recognition of Sinhala characters. Therefore, the results obtained in this
study has shown that using a deep learning approach accuracy of 89.76% could be
obtained.

Important to mention the fact that this study has used all the Sinhala characters
including the complex characters as the data set. Hence, when compared to the
studies [6], [11] that have achieved accuracies between 80% - 90% range only by
using a subset of Sinhala characters as the data set, the accuracy obtained using
all the Sinhala characters including the complex characters, is notable.

Performance of the final model was evaluated using five scripts. Overall precision,
recall and F1 measure values obtained for all the images of script is explained in
following paragraphs.

Results evaluation

Matrices which was used in the evaluation are; precision, recall, F1-score. Precision
represent the correct percentage of all the instances that classified as positive.

Precision =
TruePositive

TruePositive+ FalsePositive
(equation 5.1)

40



Macro average is the average value of the precision or recall or f1-score of all the
classes. Micro average is same as micro average however, it aggregates the con-
tribution of all classes to compute the average value. Since this is a multi-class
classification, micro average is preferable to present the precision and recall value
of the classifier in evaluating the characters in test images as the images may have
class imbalance. Micro average is more dominant towards the most populated class
and the macro average is more dominant toward the least populated classes.

Recall is the ability of a classifier to find all positive instances.

Recall =
TruePositive

TruePositive+ FalseNegative
(equation 5.2)

F1-score is a weighted harmonic mean of precision and recall such that the best
score is 1.0.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(equation 5.3)

Support column in the following tables shows the number of characters contain in
each image from each class mention in the left most column.

Precision, recall, f1-score value of the classifier is shown in Figure A.7 to Figure A.10.

Overall precision, recall, and F1-score value

The classifier has given a 0.89 micro average of precision which means the classifier
has performed well for the most populated classes in the test images. Since the
macro average value also near to 1.0, can conclude that the classifier has performed
better in classifying least populated classes. Eleven-character classes has given pre-
cision value equal or less than 0.5. Characters ‘කූ’, ‘ඛ’, ‘ඟ’,‘තී’,‘දූ’,‘දූ’, ‘ඳි’ , ‘භ’ ,‘ ’,

‘ ’,‘හ්’,‘◌ෑ’ has given precision value less than or equal to 0.5. However, for some
characters even though the precision value is 1.0, recall value is less than or equal
to 0.5, which means classifiers ability to identify all the relevant characters for each
of these classes is low. Characters that has shown a low recall value are; ‘නි’, ‘ ’,

‘ ’,‘ ' , ‘ ’ Overall, classes have given 0.89 micro average of recall value which

41



is good since it is near to 1.0. F1-score measure which shows tradeoff between the
precision and recall values has given a 0.89 micro average of f1-score which shows
the realistic performance of this classifier is good since the value is near to 1.0.

2.Character recognition of accurately segmented characters and the unim-
portant segments

Character recognition performance of all the accurately segmented, unsegmented
and unimportant segments were evaluated for the above-mentioned images. The
table 5.6 shows the results of the recognition.

Table 5.6: Overall accuracy of the classifier including segmentation accuracy

Image No.of segments
No.of

accurate
segments

No.of
classified

characters

Classifier
Sensitivity

Overall
Sensitivity

1 717 685 645 89.95% 85.94%
2 958 916 873 91.12% 87.22%
3 718 712 695 95.98% 93.34%
4 636 600 571 89.77% 83.78%
5 791 714 651 82.30% 76.89%

Total 3820 3627 3435 89.92% 85.37%

As mentioned in previous section 5.2, when images are gone through character seg-
mentation process based on contours, it has segmented the characters accurately as
well as there were unimportant segments due to the noise and intensity variations.
According to the overall accuracy obtained when consider the segmentation accu-
racy and the recognition accuracy there were small reduction in the overall accuracy
with compare to the accuracy obtained for the auto and manually segmented char-
acters.

Character recognition performance according to the font size

Character recognition performance of proposed deep learning approach was evalu-
ated according to the font size. Following figure shows the accuracy improvement
obtained when the model was trained using the font size 12,14, and 16 and test
with only the 12px, 14px and 16px. The results of the experiment show that when
the font size increased, character recognition performance has increased. Another

42



experiment was carried out to test the impact of size of the training data set in
character recognition performance. The test dataset used in both these experiments
were same. The size of the two-training dataset was 15,884 and 48,472 characters
respectively. The results have been presented that when the training data set has
increased, character recognition performance has been increased. Therefore, this
result has proved that more the data accuracy gets better. In Figure 5.1, dataset
1 and dataset 2 corresponding to the dataset consisted with 15,884 characters and
48, 472 respectively.

Figure 5.1: Sensitivity value of character recognition according to the font size

Error analysis of test images

According to the confusion matrix (Figure A.6: Confusion Matrix obtained for
the all test images), two characters were completely misclassified by the classifier.
Character ‘ෙබ්’ has completely misclassified as character ‘◌ා’ and character ‘ළ්’ has
completely misclassified as character ‘ෙ◌’ . In test images characters such as ‘◌ෑ’,
‘හ’, ‘ ’,‘ස’, ‘මි’, ‘ඔ’,‘ඝු’,‘ඛු’ were misclassified as ‘◌ැ’, ‘ ’, ‘චි’,‘ඝ’ , ‘මී’, ‘ම’,‘ ’,‘බු’

respectively. However, in overall prediction results these characters have high prob-
ability to classify as true character, except the characters ‘◌ෑ’ and ‘◌ැ’ since
each of these two characters have 0.5 predictive result.

43



Following Figure 5.2 shows the final outcome of the image 4 after mapping the pre-
dicted classes to the corresponding Sinhala character. (Output of other four images
of scripts are listed in Appendix A)

Figure 5.2: Output after mapping predicted classes for the image 4

5.3.3 Summary

Section 5.2 have explained the evaluation of character segmentation techniques and
the pros and cons in each approach. The better approach has obtained by evaluat-
ing and it has used in final proposed solution.

In the section 5.3, results of character recognition models were discussed and final
model has been suggested using the cross-validation accuracy of each model. Char-
acter recognition performance was evaluated underneath two criteria; Assuming
100% segmentation accuracy in segmentation step, Considering the real segmen-
tation accuracy. Character recognition process assuming 100% segmentation has
been given 89.76% accuracy for the character recognition using a CNN and overall
85.37% has achieved including the segmentation accuracy.

44



Chapter 6

Conclusions

6.1 Introduction
This chapter includes a review on research aims and objectives, research problem,
limitations of the current work and implications for further research.

6.2 Conclusions about research questions
The main aim of this project is to explore the applicability of deep learning ap-
proach to improve Sinhala optical character recognition. A convolutional neural
network was investigated for Sinhala OCR.

Creation of character data set by using Sinhala printed characters is an objective in
this study. Hence, as the first step, training character set was created by converting
screen text into jpeg images.

One of the research questions in this study was to identify the effect of character
segmentation technique for recognising characters. Thus, three-character segmen-
tation techniques were experimented and the better approach was chosen to seg-
ment characters. Furthermore, to explore the effect of contour-based segmentation
method in recognizing characters, recognition process was conducted in two ap-
proaches. First approach considered the well segmented characters (unsegmented
ones were manually segmented) after applying contour-based segmentation. Second
approach has considered all the segments that were obtained applying segmentation
method. According to the results obtained for two approaches, first approach has
been depicted better results than the second approach. That is to say character
segmentation method has an impact on character recognition process as the first
approach consisted with only well segmented characters. Hence, improvement in

45



character segmentation step could be given an increment in the performance of the
character recognition.

The effect of the training font size was evaluated by conducting several experiments
mentioned in the section 5.3. The results have exposed that by using the combi-
nation of font size 12, 14, and 16 better accuracy could be obtained rather than
when using single font size for training. According to the results obtained from
these experiments, when the font size of the test set was increased, the recognition
accuracy was improved. The results have depicted that by increasing the size of
the training data set, increment of the accuracy could be obtained as mentioned in
a previous study in section 1.3.

As mentioned in section 1.3, previous studies [3], [6] have mentioned
the character recognition accuracy between 85%- 90% range. However,
these studies have considered an approach to recognize only a subset
of Sinhala characters, mainly the core characters. However, approach
suggested by this study, has been considered all the Sinhala characters
that are used in Sinhala writings. Therefore, overall accuracy 85.37%,
obtained including the character segmentation step accuracy, is quite
significant with contrast to the previous studies mentioned in the chap-
ter 2. Thus, it can be concluded that the proposed approach can be utilized to
improve the character recognition of Sinhala printed characters over the existing
approaches that was considered only a subset of Sinhala characters.

6.3 Conclusions about research problem
The identification of different font sizes in Sinhala optical character recognition can
be improved by using a convolutional neural network that has been trained using
different font sizes. According to the confusion matrix in Figure A.6, obtained for
the tested images, character ‘ක’ has shown correctly predicted value of 0.91 which
means the classifier has predicted the character accurately most of the time. Like
character ‘ක’ character ‘ත’ has also shown correctly predicted value of 0.91. Char-
acter ‘ට’ and ‘ව’ has given 0.99 and 0.95 correctly predicted values respectively.
Consequently, the values of the diagonal elements represent the correctly predicted
classes. The confusion is expressed by the false classified off-diagonal elements, since
they are mistakenly confused with another class. Hence, the proposed approach has

46



achieved the ability to differentiate similar characters to some extent.

The proposed deep learning approach is capable of learning the representation fea-
tures from the input images unlike hand-crafted features. As many other machine
learning studies, images of Sinhala character data set have not publicly available
for research purposes. Therefore, in addition to above mentioned contribution, an-
other contribution in this study is creating an image data set for Sinhala character
recognition.

6.4 Limitations
The character segmentation techniques used in this study showcased that even two
or more scripts get scanned in same conditions, character segmentation gives dif-
ferent segmentation accuracy according to the font type used in the script. Hence,
the character segmentation accuracy can be varied due to its dependency to seg-
mentation accuracy. The output obtained from this study depicted that layout or
the alignments of the text is not preserved in the final output. Also, the characters
could not be output according to the character order although it identified by the
model accurately, since the characters was interchanged when printing the output
into a text file.

6.5 Implications for Further Research
Ensemble method with CNN and Long-Short Term Memory (LSTM) architecture
can be investigated to improve the accuracy of Sinhala OCR. In this scenario, CNN
could be used for feature extraction while a LSTM could be used for recognition
purposes.

47



References

[1] R. Weerasinghe, A. Wasala, D. Herath, and V. Welgama, “Nlp applications of
sinhala: Tts & ocr,” in Proceedings of the Third International Joint Conference
on Natural Language Processing: Volume-II, 2008.

[2] H. L. Premaratne, “Recognition of printed sinhala characters by direction
fields,” Ph.D. dissertation, Chalmers tekniska högskola, 2005.

[3] S. Ajward, N. Jayasundara, S. Madushika, and R. Ragel, “Converting printed
sinhala documents to formatted editable text,” in Information and Automation
for Sustainability (ICIAFs), 2010 5th International Conference on. IEEE,
2010, pp. 138–143.

[4] S. Hewavitharana and N. Kodikara, “A statistical approach to sinhala hand-
writing recognition,” in Proc. of the International Information Technology Con-
ference (IITC), Colombo, Sri Lanka, 2002.

[5] G. Gunarathna, M. Chamikara, and R. Ragel, “A fuzzy based model to identify
printed sinhala characters,” in Information and Automation for Sustainability
(ICIAfS), 2014 7th International Conference on. IEEE, 2014, pp. 1–6.

[6] M. Chamikara, S. Kodituwakku, A. Jayathilake, and K. Wijeweera, “Fuzzy
neural hybrid method for sinhala character recognition,” International Journal
of Advanced Research in Computer Science and Software Engineering, vol. 4,
no. 9, pp. 8–21, 2014.

[7] K. Karunarathne, K. Liyanage, D. Ruwanmini, G. Dias, and S. Nandasara,
“Recognizing ancient sinhala inscription characters using neural network tech-
nologies,” Internationa Journal of Scientific Emgineering and Applied Sciences,
vol. 3.

[8] “”subasa”,” http://www.subasa.lk/aocr/ocr.php, (Accessed on 01/29/2019).

48

http://www.subasa.lk/aocr/ocr.php


[9] S. Prabhanjan and R. Dinesh, “Deep learning approach for devanagari script
recognition,” International Journal of Image and Graphics, vol. 17, no. 03, p.
1750016, 2017.

[10] M. M. R. Sazal, S. K. Biswas, M. F. Amin, and K. Murase, “Bangla handwrit-
ten character recognition using deep belief network,” in Electrical Information
and Communication Technology (EICT), 2013 International Conference on.
IEEE, 2014, pp. 1–5.

[11] S. Hewavitharana, H. Fernando, and N. Kodikara, “Off-line sinhala handwrit-
ing recognition using hidden markov models.” in ICVGIP, 2002.

[12] M. Karunanayaka, C. A. Marasinghe, and N. Kodikara, “Thresholding, noise
reduction and skew correction of sinhala handwritten words.” in MVA, 2005,
pp. 355–358.

[13] “Opencv: Contours : Getting started,” https://docs.opencv.org/3.4/d4/d73/
tutorial_py_contours_begin.html, (Accessed on 01/30/2019).

[14] C. Silva and C. Kariyawasam, “Segmenting sinhala handwritten characters,”
International Journal of Conceptions on Computing and Information Technol-
ogy, vol. 2, no. 4, pp. 22–26, 2014.

[15] H. L. Premaratne and J. Bigun, “A segmentation-free approach to recognise
printed sinhala script using linear symmetry,” Pattern recognition, vol. 37,
no. 10, pp. 2081–2089, 2004.

[16] R. Anil, K. Manjusha, S. S. Kumar, and K. Soman, “Convolutional neural
networks for the recognition of malayalam characters,” in Proceedings of the
3rd International Conference on Frontiers of Intelligent Computing: Theory
and Applications (FICTA) 2014. Springer, 2015, pp. 493–500.

[17] B. Balci, D. Saadati, and D. Shiferaw, “Handwritten text recognition using
deep learning,” CS231n: Convolutional Neural Networks for Visual Recogni-
tion, Stanford University, Course Project Report, Spring, 2017.

[18] Y. Shkarupa, R. Mencis, and M. Sabatelli, “Offline handwriting recognition
using lstm recurrent neural networks,” in The 28th Benelux Conference on
Artificial Intelligence, 2016.

49

https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html


[19] T. Bluche, H. Ney, and C. Kermorvant, “Feature extraction with convolutional
neural networks for handwritten word recognition,” in Document Analysis and
Recognition (ICDAR), 2013 12th International Conference on. IEEE, 2013,
pp. 285–289.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[24] M. A. et al., “Tensorflow large-scale machine learning on heterogeneous sys-
tems,” https://www.tensorflow.org/, (Accessed on 01/29/2019).

[25] “Home - keras documentation,” https://keras.io/, (Accessed on 01/29/2019).

[26] “Google colaboratory,” https://colab.research.google.com/notebooks/
welcome.ipynb, (Accessed on 01/29/2019).

[27] “How to pick the best learning rate for your ma-
chine learning project,” https://medium.freecodecamp.org/
how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8,
(Accessed on 01/29/2019).

50

https://www.tensorflow.org/
https://keras.io/
https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb
https://medium.freecodecamp.org/how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8
https://medium.freecodecamp.org/how-to-pick-the-best-learning-rate-for-your-machine-learning-project-9c28865039a8


Appendix A

Results

Figure A.1 – A.5 shows the test images that was used in evaluating the proposed
deep learning approach and the output of each test image after mapping to the
correspondent character.

Figure A.1: Test Image 1 (script with font size 12 “Iskoola Pota” font)

51



Figure A.2: Test Image 2 (script with font size 12 “Iskoola Pota” font)

52



Figure A.3: Test Image 3 (script with “Nirmala” font)

53



Figure A.4: Test Image 4 (Scanned image) (a) Original Image (b) Output after
mapping

54



Figure A.5: Test Image 5 (Scanned image) (a) Original Image (b) Output after
mapping

55



Figure A.6: Confusion matrix of the proposed classifier
56



Figure A.7: Precision, recall, f1-score for approach 1

57



Figure A.8: Precision, recall, f1-score for approach 1

58



Figure A.9: Precision, recall, f1-score for approach 1

59



Figure A.10: Precision, recall, f1-score for approach 1

60


	Declaration
	Abstract
	Preface
	Acknowledgement
	Table of contents
	List of figures
	List of tables
	Listings
	List of Acronyms
	Introduction
	Background to the research 
	Research problem and research questions
	Justification for the research
	Methodology
	Outline of the dissertation
	Definitions
	Delimitations of scope
	Conclusion

	Literature Review
	Introduction
	Image preprocessing
	Recognition process
	Statistical method
	HMM model
	Fuzzy logic based method
	Neural network based method 
	Deep learning based methods
	Summary


	Design
	Introduction
	Research design
	Dataset
	Image preprocessing
	Character segmentation
	Character recognition


	Implementation
	Introduction
	Tools and technologies
	Character segmentation implementation 
	Character segmentation by identifying contours
	Character segmentation using convex hull
	Horizontal and vertical projection profile-based segmentation
	Character recognition models implementation


	Results and evaluation
	Introduction
	Character segmentation 
	Character segmentation by using contours 
	Horizontal and vertical projection-based character segmentation

	Character recognition 
	Experimental setup
	Character recognition performance
	Summary 


	Conclusions
	Introduction
	Conclusions about research questions 
	Conclusions about research problem
	Limitations
	Implications for Further Research

	References
	Results

