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Abstract 

Brain−Computer Interfaces (BCI) is a field which has shown rapid 

advancement over the past few decades. With the availability of low−cost 

electroencephalography (EEG) signal acquisition devices, it is becoming 

more feasible to develop hands−free environmental control systems with 

significant accuracies, which can be used for everyday use. These systems 

may be used as assistive technologies for disabled individuals or as 

alternative forms of control for healthy individuals. Hands−free 

environmental control systems often lack user−friendliness and 

intuitiveness due to the difficulty of mapping the users’ intentions to 

control commands that can be used to control the appliances in a three 

dimensional environment. Therefore, this research has focused on 

developing a hands−free environmental control system based on P300 

responses of EEG signals of a user. The developed solution is 

comparatively less disturbing for the user and does not use a screen for 

visual feedback; therefore, it improves the intuitiveness and user 

friendliness than existing solutions. Additionally, the system has achieved 

better than state−of−the−art selection times, high accuracies with 100% 

accuracy for multiple subjects and highly stable results for multiple 

subjects. 
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Chapter 1 -  Introduction 

A Brain−Computer Interface (BCI) is a direct communication pathway 

between an enhanced or wired brain and an external device. A BCI can 

record electrical activity signals from the brain and classify them into 

different states which can then be interpreted for communication. BCI 

research includes 3 main categories: 

 Invasive BCI – Requires the devices to be implanted into the brain. 

These produce the highest quality signals of BCI devices. 

 Partially Invasive BCI – the devices are implanted inside the skull, 

but outside the brain. 

 Non−invasive BCI – the devices are connected outside of the skull 

and onto the scalp. These devices produce lower quality signals 

than Invasive BCI, but are less complex to apply. Majority of the 

BCI research and this work focus on this category. 

Since BCI does not require muscle movements for communication, it can 

ideally provide an effective means of communication even for entirely 

paralyzed people [10]. BCI research began in the 70s and has shown rapid 

advancement over the last few decades.  

1.1 Background to the Research 

BCI research often aims for augmenting, or repairing human cognitive or 

sensory−motor functions. Currently, Non−invasive BCI devices can be 

used for applications such as moving a cursor on a computer screen [11], 

controlling home appliances [2], wheelchair control [9], recreational use 

[17, 18], and for spelling purposes [3]. When considering the existing 

applications of BCIs for environmental control, there is a noticeable lack of 

applications where the user’s orientation in the 3D environment is taken 
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into consideration. Several similar works [2, 8] have developed 

environmental control systems that use a display screen for visual 

feedback. In this work, the need of a screen was eliminated and the user’s 

orientation in the 3D environment was used to create a more engaging 

and intuitive experience for the user. 

1.2 Research Problem and Research Questions 

The main research question that is being answered by this research is: 

 How to control appliances in an enclosed physical environment 

using brain potentials with low cost, significant accuracy and stable 

results in a less disturbing way for the user? 

Using brain potentials for control purposes is somewhat challenging, since 

EEG signals can only be interpreted into a limited number of discrete 

patterns. In order to overcome this challenge, the P300 method is being 

used. For the appliance selection task, a system that takes advantage of 

the positioning of various appliances in a 3D space has to be developed. 

This will be further explained in following sections. There already exist 

many BCIs developed with research and medical−grade EEG devices. 

While these BCIs can achieve better accuracies, they are not very effective 

to be used in an environmental control system that is intended for 

everyday use due to the high costs of the device, cost of using due to 

consumable electrodes and electrolytes and the difficulty of use and 

discomfort due to complexity of the gear that is worn on the head. Using 

low−cost devices make it easier for the users to adopt a BCI system for 

everyday use. 

1.3 Research Aim and Objectives 

The definitive aim of this project is to find a low−cost solution for 

communication that does not significantly depend on the users’ muscle 
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movements, and enable hands−free control of the appliances in user’s 

environment. The following objectives will be achieved by this project. 

1.  Evaluate existing low−cost biophysical signal acquisition devices for 

their potential for capturing p300 brain responses. 

The reason for selecting low−cost devices for this research was because 

using low−cost devices for environmental control is more feasible since 

majority of the targeted users will not be able to afford a research 

grade or medical grade BCI device for the purpose of hands−free 

environmental control if this solution were to be released to the 

consumer market. 

The low−cost devices that have been tested are 

o BITalino Biomedical Sensor Kit − $200 

o Emotiv EPOC+ 14 Channel EEG Headset − $800 

These devices are significantly cheaper than the research or medical 

grade signal acquisition devices such as 

o g.USBamp Research Grade USB Bio−signal Amplifier – 

$13,200 [36] 

o g.USBamp Medical Grade USB Bio−signal Amplifier – 

$23,200  

The P300 response was chosen to benchmark these devices since P300 

can only be observed if the device is capable enough to pick up true 

EEG signals and the procedures of conducting experiments (including 

synchronizing up to millisecond accuracy) and analyzing data are all 

accurate. 

 

2.       Develop a hardware interface to integrate biophysical data 

acquisition and appliance control. 

A hardware interface is required to control the various appliances 

using the biophysical signals that are acquired. The Arduino 

platform was chosen to accomplish the tasks of appliance control 

and providing visual stimuli and feedback for the user. The data 
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acquisition and hardware control are integrated and synchronized 

to millisecond accuracies using a program developed in C++. 

 

3.       Classify biophysical signals captured from the brain to identify 

different control events. 

In order to interpret the acquired biophysical signals as control 

commands, the acquired signals need to be classified into classes of 

various commands. This involves signal processing, artefact 

removal and signal averaging. 

 

4.       Automate the processes to enable real−time control of appliances. 

The artefact removal and classification can be easily done manually 

by observing the graphical representations of the signal. But in 

order to run the system in real−time without human intervention, 

the entire process needs to be automated. 

 

5.       Evaluate the accuracy of solution under different conditions of users 

and the environment and other parameters. 

The accuracy of the system varies with the different conditions of 

the environment, such as external noises, distractions, lighting, and 

states of the user such as sleep deprivation and fatigue. The 

accuracy can also depend on parameters related to the experiments 

such as number of trials per selection, inter−stimulus interval, 

indicator flash duration, flash color and the classifier used. 

Therefore the system has to be tested by changing these parameters 

to improve the accuracy of control. 

1.4 Justification for the research 

Current environmental control systems that are already in existence use a 

control mask: a grid of flashing symbols in order to control the appliances. 

The approach followed in this research eliminates the need for such 
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control masks and makes it possible for the user to control the appliances 

in the environment directly by looking at them. Experiments on the effect 

the color of the flashing stimulators have on the users’ brain responses, 

the effect of various distances between stimulators, and also the distance 

between user and the stimulators have also been conducted. The usage of 

LED stimulators instead of the control mask is not a trivial change of the 

experiment setup, since the LED flashing involves hardware development, 

embedded programming and finally synchronizing the flashing controller 

with a computer program with milliseconds of precision. 

 

1.5 Methodology 

It has already been observed by research that the P300 response; the main 

BCI paradigm that has been used to build this system, is observable with 

low cost BCI devices [19]. And the P300 response is elicited when user 

encounters an unexpected stimulus in the middle of frequent stimuli. 

When compared with other types of P300 responses such as auditory 

P300, the visual P300 is rather strong and more prominent. The P300 

response can also be observed for single stimulus experiments (presenting 

only the target stimulus in the absence of other stimuli) [33] which imply 

that the non−target indicators do not always require being in the user’s 

field of view in our proposed method. Therefore it was assumed that a 

P300 response that would be observable with low−cost devices could be 

generated with the indicator panel technique that was followed in this 

research. By evaluation with multiple test subjects, we have proven that 

this assumption is correct (see Results chapter). 

This research is mainly an experimental research. We have conducted 

experiments throughout the course of this research and collected 

quantitative data in order to evaluate the accuracy, classification speed, 

and information transfer rate of the system. 
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Once the system was finalized, the system was tested on 11 subjects in 

total. The test consisted of control tasks that the user should perform 

where the user was required to change the speed of a four speed fan. 

Additional data such as movement of the device, eye movements and eye 

blinks, were collected during the experiments, which helped in artefact 

removal in EEG signals. These additional data were used to give 

important insights to our experiments. 

Subjects’ feedbacks were recorded by survey forms which collected 

qualitative data, where the subjects were asked about the ease of use, any 

discomfort experienced and overall satisfaction of the system. 

There are many reasons to take special care when conducting BCI 

experiments. Since EEG signals consist of very low voltages (in microvolts 

range), the signals recorded in the experiments are easily prone to noise. 

Therefore the experiments should be performed in an environment with 

low electrical noise, and the subject and the signal acquisition device 

should be properly grounded. As a safety measure, the devices that were 

used were battery powered signal acquisition devices which were powered 

by small 3.7V Lithium−Ion batteries. This prevents electric shocks since 

it’s critical to eliminate the risk of an electric shock, since the electrodes 

are directly attached to the users’ head through low impedance contact 

regions. 

The subject’s attention plays an important role in the P300 experiments 

since the P300 response is entirely based on the user paying attention to 

observing the target stimuli. Therefore, all unwanted distractions were 

avoided during the experiments. A silent studio environment was chosen 

to achieve this. The subjects were given breaks to avoid fatigue since it 

also could affect the results. 
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1.6 Outline of the Dissertation 

Chapter 1 contains the introduction and the background for the research. 

A literature review and information about theories related to BCIs are 

included in Chapter 2. Chapter 3 contains the design of the research while 

the Chapter 4 contains its implementation. The results of the experiments 

and evaluation are provided in Chapter 5. Chapter 6 contains the 

conclusion for the dissertation. 

1.7 Definitions 

Disabled User 

A person that is suffering from a neurological disease or condition such as 

(Amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal 

cord injury, cerebral palsy, muscular dystrophies, multiple sclerosis etc.), 

who is using an environmental control system to control the appliances in 

their environment. These individuals can be completely “locked−in” to 

their bodies which can be a distressing experience for them.  

 

Healthy User 

A person who uses an environmental control system that does not suffer 

from neurological diseases or conditions that might hinder their normal 

movement of hands and feet. These individuals may use assistive 

technologies to avoid the fatigue that is caused by other manual control 

systems or because they are engaged in activities that hinder the normal 

movement of the hands. 

 

Thought Commands 

Any type of communication made from the brain to an external device that 

is based on a psychological state of the user’s mind, which can be classified 

into or interpreted as control commands. These commands may be used to 

control things in the environment as well as to communicate other 
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thoughts or intentions to the external world if the user’s normal modes of 

communication are not functioning properly. 

 

Home Appliances 

Appliances that are used in home environments such as televisions, air 

conditioners, fans, lights, sound systems, phones and intercoms which 

normally require conventional means of control such as button based 

interfaces or remote controllers. 

1.8 Delimitations of Scope 

The performance of the system might depend on several variables since it 

strongly depends on users’ attention. For this to be possible, the appliance 

requires being in line of sight of the user, and should be close enough for 

the user to concentrate on the indicator light. Outdoor environments 

might be unsuitable for this since flashing indicators might not be clearly 

noticeable in daylight. It might also be difficult for the user to concentrate 

on the indicator if the user is in motion. Therefore a relaxed home or office 

environment might be best suited for this system. 

 The system has not been tested with actual disabled or locked−in 

individuals due to ethical reasons. But according to expert opinions, 

the system should be useable by disabled individuals suffering from 

several known neurological diseases (see Results and Evaluation 

chapter). 

 The system has not been developed to be used with multiple rooms 

or while the user is moving. 

 The system should only be used indoors. 

 The appliance that needs to be controlled should be in line of sight 

of the user. 

This project focuses more on efficiently communicating user’s intention to 

the system than controlling the actual appliances. Controlling of the 

appliance is a lot less complicated task, which can be achieved by simply 
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connecting the system with an IR remote, or relays when compared to 

signal acquisition, processing and classification of signals into control 

commands. 

1.9 Conclusion 

This chapter laid the foundations for the dissertation. It introduced the 

research problem and research questions and hypotheses. Then the 

research was justified, definitions were presented, the methodology was 

briefly described and justified, the dissertation was outlined, and the 

limitations were given. On these foundations, the dissertation can proceed 

with a detailed description of the research. 



 

10 

 

Chapter 2 -  Literature Review 

2.1. Assistive Technologies and Environmental Control 

Systems 

The following section is a literature review of environmental control 

systems that attempt to solve the problems mentioned above. Here I have 

categorized the related works according to type of control. Each type has 

its advantages and drawbacks with respect to healthy and disabled 

individuals.  

2.1.1. Manual Remote Controls 

Remote controls are an effective means of environmental control for 

healthy users which eliminate the need to physically walk to or reach the 

appliance. Majority of the users are already familiar with remote controls 

and they are highly accurate. 

However this solution may not be effective for disabled individuals, since 

the controller often needs to be pointed at the appliance and some users 

have difficulty when operating the buttons on the controller. [13] 

2.1.2. Mechanical Switches 

This type of solution is a switch that opens or closes which is controlled by 

explicit physical movement. The switch may respond to a specific 

mechanical stimulus, including changes in displacement, tilt, air pressure 

(e.g., sip and puff), or force [10]. This type of interface can be operated by 

people with control of only one part of body. The switch should be used in 

a way that utilizes the existing neural pathways for disabled individuals. 

A similar interface was used by the famous cosmologist Stephen Hawking 

to control his computer which used only the movement of his cheek [12]. 

This solution is cheap and has a high accuracy since it uses explicit 

physical movement. 
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A drawback of this solution is fatigue caused by repeated movement of the 

same part of the body [10]. These switches have limited control channels 

which make it ineffective for the use of healthy users since far better 

alternatives exist. 

 

2.1.3. Hand Gesture based Control 

Hand gestures provide an intuitive way of interfacing with the world. And 

can form complex methods of communication such as sign language used 

by people with hearing and speech disabilities. This technique can be used 

to control home appliances such as TV by using several commands 

represented by signs and movements of hands. These movements can be 

picked up by an Infrared camera and processed and interpreted as control 

commands [14]. 

This method requires the users to be able to move their hands, which 

makes this an ineffective solution for disabled individuals who cannot 

move their hands. When this method was used by disabled individuals 

who still possessed limited movement capabilities, they could only use it 

for short durations since they experienced fatigue [15]. 

2.1.4. Voice Control 

Voice controls are a popular method of environmental control that is 

already being used for many applications. There are several commercial 

home automation systems offered by major tech companies like Amazon 

Echo, Apple HomePod and Google Home. Voice controls require no 

physical movement and it eliminates the need to reach or walk to the 

appliances to control them. 

Even though voice controls have these benefits it they are not widely used 

for assistive devices for several reasons. The user requirements for people 

with disabilities often have high levels of variation which creates a high 

cost for individual adaptation and development. Users who might benefit 

form voice commands often also have speech difficulties such that speech 

recognizers are unusable for them [16]. And some research results show 
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that the accuracies can be significantly affected by noise in the 

environment [20]. 

2.1.5. Gaze Based and Eye−Tracking Control 

Gaze−based communication can map eye movement to a cursor position on 

the screen. The dominant technologies in commercially available eye 

trackers are video−oculography (VOG) and electro−oculography (EOG). 

VOG−based approaches typically use an IR light source and a camera 

mounted on a computer display. Gaze direction is calculated by the offset 

between the corneal reflection and pupil centre [10].  EOG−based systems 

place electrodes around eyes to measure shifts in potential difference 

between cornea and retina that occur when user changes gaze direction 

[8]. 

Although eye tracking controls have speeds comparable to a hand−mouse, 

productivity in computer tasks is lower in practice. Since this input 

method uses the same channel for control and observation, there is no 

intuitive means of differentiating between an input command and a user 

activity.  Gaze controlled devices can also have drawbacks like calibration 

drift, user fatigue and insufficient range of motion of the eye [10]. 

2.1.6. Electroencephalography (EEG) and BCI Solutions 

EEG based devices can provide a non−muscular form of control from the 

electrical activity measured on scalp. Since this does not require 

significant muscle movement, it is usable by tetraplegic disabled 

individuals as well [9]. Present day BCIs can be divided into two main 

categories based on the type of signals extracted: consciously modulated 

spontaneous rhythms or evoked potentials. 

The first category of BCI uses potentials that can be intentionally 

modulated by the user with some training. A research by Wolpaw et al 

[11] that used sensorimotor rhythms (SMRs) has shown that individuals 

with severe motor disabilities are able to control a cursor on a screen with 

two dimensional control signal using noninvasive BCI with accuracies up 

to 92% and relatively short response times [11]. In their research, vertical 
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movement was controlled by a 24−Hz beta rhythm and horizontal 

movement by a 12−Hz mu rhythm. But however this type of BCI requires 

some training to improve the reliability. 

The second category relies on responses to external stimuli such as visual 

stimulus like flashing of an indicator. Steady−state visual evoked 

potential (SSVEP) is an example of this.  

An SSVEP based BCI research conducted by Chen et al [18] have 

developed a recreational device that controls a toy fish using brain signals. 

The signals with high energy levels at different frequencies are produced 

when the user looks at control commands displayed on a screen that are 

flashing at the corresponding frequency. An average classification 

accuracy of 89.51% was obtained for their research. 

 

 

2.1.7. P300 Based BCI 

Another type of signal that belongs to the evoked potential category is the 

P300 response. P300 potentials are positive deflections in EEG signal 

which were elicited approximately 300ms after encountering an intended 

stimulus among a group of irrelevant stimuli. This response can be used to 

create a BCI since it can identify which stimulus the user was 

concentrating on by analysing the EEG signals. 

Since the P300 potentials have very low voltages (2−5μV) and are hidden 

within the EEG noise, they are not directly visible in an EEG recording 

[19]. In order to view these responses, the raw EEG signal should be 

band−passed (at around 1−20Hz), intervals of signal in multiple trials 

(called epochs, around −1000 to 2000ms relative to the stimulus) that are 

time−locked to the stimulus should be extracted, and then the epochs 

should be averaged (Fig. 1 and 2). This process averages out the noise 

voltages while accumulating the psychological properties of the stimulus, 

improving the Signal to Noise Ratio (SNR) of the response [25]. 
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Time (ms)0

Time (ms)0

Averaging

 
Figure 2.1 The EEG signal intervals from multiple trials (left) time−locked to the 

event (red line) and after averaging them (right) which shows a deflection 

common to all the trials while cancelling out the noise. 

 

Averaged Response
for Targets

Averaged response
for Non Targets

Time
350msStimulus 

Onset  
Figure 2.2 Averaged EEG signal of multiple trials for non−target responses and 

target responses 

 

P300 response can be obtained by flashing columns and rows for spelling 

purposes [3]. A P300 based solution for smart home control developed by 

Holzner et al [2] has shown the suitability of the P300 response for 

selection of control commands. Their research used control masks for the 

selection of areas inside the home and to control various appliances such 

as a phone and a TV. Accuracies up to 100% have been achieved in their 

research for some control masks. 



 

15 

 

Another research by Cristian et al [8] which used a hybrid BCI approach 

that combined EEG and EOG signals has studied how the reliability of an 

EEG system can be improved by combining it with another control 

channel. In their research the user had the ability to cancel the selection 

made by the EEG BCI by changing the direction of his gaze. 

 

2.1.8. The Types of Devices Used For EEG Signal 

Acquisition 

The main focus of this research is finding a low cost solution for the 

problem of controlling home appliances through brain computer 

interfacing. Therefore the cost of the devices becomes an important 

concern when developing the ideal solution.  

The devices can be separated into two main categories; consumer grade 

devices and research grade devices. Two signal acquisition devices have 

been evaluated in this research with respect to the quality of the signals 

obtained. Namely, BITalino biomedical signal acquisition device and 

Emotiv EPOC. 

 

2.1.9. Types of Stimulus Generators Used 

There are different types of stimulus generators used in BCIs. In works 

like [1] the visual stimuli are generated by a set of flashing symbols on a 

screen. This method of stimulus generation is different from the LED 

indicator stimulator introduced in this work since the flashing symbols on 

screen also incorporate the characteristic shape, which aids the visual 

separation of the symbols from each other. In order to enhance the visual 

separation of the LED indicators, some techniques like using different 

colored LEDs or increased distance between indicators have to be used. 
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2.1.10. Classifiers for P300 Detection 

P300 response can be classified mainly by neural networks or by 

model−based classifiers. Due to the large number of training data points 

required to train a neural network based classifier, the users might 

experience fatigue when completing the training process of the system, 

since the parameters of the classifier has to be customized for each user. 

Another drawback of applying a neural network for this system is the 

opaque or “black−box” nature of neural networks. The classifier might 

train on some unexpected features of the input signals and may not train 

for the most prominent feature, which is the characteristic P300 peak of 

the averaged signal. Due to these reasons, it was decided to use a model 

based classifier for P300 classification of the system. 

 

In the initial work of P300 speller by Farwell and Donchin [39] they have 

used four model−based techniques for classifcation purposes. 

 Area – Calculates the area under the curve within the predefinced 

P300 window. 

 Peak picking – The difference between the highest positive peak 

within and the lowest negative point prior to the P300 window. 

 Stepwise Discriminant Analysis (SWDA) – Computes the distance 

of an epoch to the mean of a group containing P300 epochs as 

calculated from the training set. This score is obtained by applying 

a discriminant function to the data from each epoch. 

 Covariance – Assesses the covariance of an epoch with a template. 

The template is calculated as the average of epochs belonging to 

attended symbols in the training set. 
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Selection times to reach certain accuracies by those classifiers in Farwell 

and Donchin work [39] are as follows. 

 

Method Subject 

80% Accuracy 95% Accuracy 

125ms ISI 500ms ISI 125ms ISI 500ms ISI 

Area 

1 

2 

3 

4 

29.1 

49.0 

29.3 

45.5 

39.9 

56.6 

12.6 

44.9 

76.7 

− 

55.8 

82.2 

59.3 

− 

17.9 

52.9 

Peak 

Picking 

1 

2 

3 

4 

− 

− 

39.8 

38.8 

28.2 

23.3 

17.3 

17.7 

− 

− 

− 

70.4 

42.5 

35.5 

26.0 

29.3 

SWDA 

1 

2 

3 

4 

15.7 

33.4 

22.3 

54.4 

114.8 

56.9 

11.1 

26.7 

21.6 

57.5 

46.4 

− 

202.8 

− 

17.6 

49.5 

Covariance 

1 

2 

3 

4 

− 

− 

41.8 

36.7 

42.9 

− 

15.5 

28.6 

− 

− 

82.2 

64.0 

62.4 

− 

22.6 

52.0 

 

Table 2.1 Required time in seconds to reach either 80% accuracy or 95% accuracy 

for different ISIs, classification techniques and subjects in Farwell and Donchin’s 

work 
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Several recently conducted researches have explored the suitability of 

Asynchronous BCI (A−BCI) for environmental control [21, 22]. 

Synchronous BCIs assume that the user is continuously controlling the 

system. They cannot detect whether the user is paying attention to the 

system or not and therefore they make incorrect selections when the user 

stops paying attention to the system. A synchronous P300 BCI makes a 

selection after a fixed number of trials regardless of whether the user was 

paying  attention to the system or not.  

In contrast to this, asynchronous BCIs make selections only when the 

response in the signals passes a threshold level [21]. Therefore they can 

determine whether the user is focusing on the system or not and switch 

between control and no−control states accordingly. This type of a system 

can be more practical than synchronous systems since the user can focus 

on other tasks without the need of notifying the system. However, A−BCIs 

require a specialized algorithm or a support vector machine (SVM) to 

analyze and discriminate between the target P300 epochs and non−target 

epochs with respect to the threshold level [22]. 

 

2.1.11. Hardware Interfaces and Protocols for Home 

Appliance Control 

Infrared remotes can be simulated with IR blasters. IR blasters are 

infrared emitters that emit infrared in multiple directions. These can be 

used to control appliances that have IR remote control interfaces. Another 

such protocol for appliance control is the X10 power line communication 

(PLC) standard [38]. This is a protocol which transmits radio frequency 

waves through power lines which was developed in 1975 for 

communication among devices for home automation. 
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2.2. Theories Related to BCI 

2.2.1. Capabilities of Invasive vs Non−invasive BCIs 
BCIs can be divided into three main categories: 

 Invasive BCI 

 Partially invasive BCI 

 Non−invasive BCI 

Invasive BCIs are a type of BCI where the electrodes are placed directly 

into grey matter in the brain by neurosurgery. This type of BCI gives the 

best quality signals since they make direct contact with the brain. But 

they are also affected by scar tissue build−up, as the brain considers the 

electrodes as a foreign object and tries to reject it. This can cause the 

signals obtained by invasive BCIs to degrade over time [28]. When 

compared with other types of BCI, invasive BCIs are not used frequently, 

since they involve complicated procedures such as neurosurgery. Invasive 

BCIs have higher capabilities than other types of BCIs as shown in a 

famous research by William Dobelle [29] where an implant was used to 

give visual signals to the brain from a camera in order to restore vision of 

a blind person. However this system later caused infections and seizures 

for the user, which clearly shows the high risk associated with invasive 

BCIs despite.  

Non−invasive BCIs only require the access to the scalp of the user, and 

does not require any type of surgery. In order for the electrodes to make a 

proper contact with the scalp, an electrode gel should be applied. The 

electrode gel typically consists of an electrolyte. This ensures the electrical 

connection between the skin and electrode, especially when the user has 

hair. Signals captured by non−invasive BCIs are noisier than the signals 

acquired by invasive BCI and hence cannot be used for complex tasks such 

as restoring vision or communicating precise movement controls. In 

non−invasive BCIs, the electrical potentials generated by firing of neurons 

have to travel through white matter, skull tissue and skin before reaching 

the electrode. This greatly reduces the quality of signal lowering the 

capabilities of non−invasive BCIs. 
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2.2.2. Different Types of EEG Signals and Their 

Characteristics 
Brain waves are categorized into different types according to their 

frequency ranges. 

 Delta wave – (0.1 – 3 Hz) 

 Theta wave – (4 – 7 Hz) 

 Alpha wave – (7.5 – 12.5 Hz)  

 Mu wave (7.5 – 12.5 Hz) 

 SMR wave – (12.5 – 15.5 Hz) 

 Beta wave – (16 – 31 Hz) 

 Gamma wave – (32 – 100 Hz) 

Following is a description of several important types of brain waves 

observed in EEG. 

Alpha Waves 

Alpha waves are brain waves in the frequency range of 7.5 – 12.5 Hz and 

they were one of the first EEG waves observed by the German Psychiatrist 

Hans Berger along with Beta waves. Alpha waves become more prominent 

when a subject is resting with eyes closed, and when the subject opens his 

eyes, alpha waves decrease and Beta waves increase. Alpha waves are 

commonly used in sleep studies and researchers have used Alpha waves to 

predict mistakes done by humans [34]. In this research the presence of 

Alpha waves in EEG signal is used as a verification that the electrodes are 

connected correctly and the signal acquisition is functioning correctly, 

prior to conducting experiments. 

Beta Waves 

Beta waves fall into the frequency range of 16 – 31 Hz. Unlike Alpha 

waves which are more prominent during relaxation, Beta waves are often 

associated with active, busy or anxious thinking and active concentration 

[35]. Beta activity is also associated with motor functions and Beta 

activity is increased when movement has to be resisted or voluntarily 

suppressed. 

Sensorimotor Rhythm 

Sensorimotor rhythms or SMR have a frequency of 12.5 – 15.5 Hz. Users 

can gain control over SMR activity through Neurofeedback training. 
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Deliberate modification of SMR amplitude can be used to control a BCI by 

motor imagery as in [11]. 

Mu Waves 

Mu waves fall into the same frequency range as Alpha waves. But unlike 

the Alpha signals, the Mu waves are observed over the motor cortex of the 

brain, roughly in a band over the head from ear to ear. This type of wave 

can also be used in motor imagery BCIs [11]. 

 

2.3. Summary 

Assistive technologies can be implemented in many forms. Manual remote 

controls are commonly used in our everyday life.  They make it easier for 

healthy users to control appliances in the environment since they 

eliminate the need to reach an appliance to control it, although disabled 

users might experience difficulties when using them. Mechanical switches 

are effective for disabled individuals who still have control of movement in 

one part of the body, but can only provide controls that are too limited to 

be effectively used by a healthy user. Hand gesture based controls have 

the advantage of not requiring touching anything to control, but have the 

same drawbacks of the manual remotes for disabled individuals. When 

compared to the solutions above, BCIs offer a truly hands−free control 

experience for the users. 

Invasive BCIs give higher quality signals when compared to non−invasive 

BCIs but are more complex to use since they require the electrodes to be 

surgically implanted into the brain. Non−invasive BCIs do not require any 

type of surgery, which is one reason they are used more frequently than 

invasive BCIs. 

EEG signals are categorized into different types according to their 

frequencies and observed characteristics. Some of them can be voluntarily 

controlled by the users which make them useful for creating BCIs. 
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3. Design 

When developing an environmental control solution using BCI, selecting 

the correct appliance by sensing user’s intention is somewhat challenging. 

The type of EEG signal to be analysed should be chosen such that the 

system is able to select the correct appliance from a number of options 

with sufficient accuracy.   

An evoked potential based signal such as P300 is better suited for this 

task than spontaneous rhythms such as sensorimotor rhythms (SMR) 

since spontaneous rhythm signals provide no way to stop and remain on a 

discrete option for accurate selection [11]. The SMR selection can continue 

to change even after passing over the required option. Choosing evoked 

potential based signals also have the added advantage of not requiring 

extensive user training.  

The existing P300 based environment control systems use control masks 

(Fig. 3) to choose the appliance and to issue control commands [2, 8]. The 

user has to focus on the symbol he wishes to select from the control matrix 

and the system will detect which symbol he concentrated on by the 

presence of P300 response in the EEG signals. 

 

TV

Keyboard

 
Figure 3.1  Typical example of a control mask used in a P300 BCI showing 

various control commands 
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This approach seems less intuitive especially for the healthy users, since it 

depends on selecting all the possible commands using a control mask, 

similar to using an entirely menu−based UI. This approach might also 

cause fatigue for the users since they need to constantly look at a display 

to control the system.  

Therefore, this research intends to propose a different approach than the 

existing ones; that is, instead of using a control mask to select the users’ 

choice, the appliance itself is highlighted by flashing the symbols in an 

indicator panel near each appliance (Fig. 4). This provides the user with a 

visual stimulus which will give the P300 response in EEG signals. 

Computer

Indicator
Controller

User
Indicator Lights

EEG Headset
(wirelessly 

connects to 
computer)

 

Figure 3.2 System overview: The user concentrates on the indicator of a certain 

appliance. 

 

In order to record these responses effectively, signals will be captured 

from multiple positions in the scalp (Fig. 5). Since the visual P300 

response is present more prominently around the visual cortex, multiple 

electrode positions (O1, O2, P7) around occipital and parietal regions will 

be used for capturing the response. One position in the frontal region 

(AF4) also used to detect the electrooculography (EOG) artefacts of eye 

movement and eye blinks. These signal channels will be monitored and 
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will help in automated artefact removal where the EEG signals will 

automatically be discarded and will not be used for processing if artefacts 

are present in the EOG data at the same time period. 

In the next step these signals are conditioned. The EEG signals are 

band−passed at 1−20Hz filtering the unwanted frequencies. Then the 

artefacts in the EEG signals are removed, which can be automated as 

described before. Finally the signals are processed and interpreted as 

control commands. 

Acquisition of Raw EEG 
Signal + EOG + 
Accelerometer

Signal Conditioning and 
Automated Artefact 

Removal

Processing and 
Interpreting into 

Control Commands

ON OFF

 
Figure 3.3 Process flow: EEG signal acquisition from multiple electrodes placed 

in the scalp, signal conditioning, processing and interpreting signals into control 

commands. 

 

 

Selection of the command will be done by flashing an indicator panel that 

is placed next to the relevant appliance. These commands can be used 

either to select an appliance or to control an already selected appliance. 

The EEG signals will be then acquired and processed. The system decides 

that the user concentrated on a specific command by the presence of P300 

response in the detected EEG signals acquired in a time−locked interval 

after the flash relevant to the command. Next the indicator panel will 

flash a set of different symbols associated with the set of control 

commands for the selected appliance. Here the user concentrates on the 

control command he wants to issue to the appliance. The correct command 

will be detected by the system in the same manner the appliance was 

selected. 
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3.1. Prototype Control Commands 

A prototype system will be developed which simulates the controlling of 

four appliances. First the user has to select one of these four appliances. 

Once the selection has been made and confirmed the user can issue 

commands to control the selected appliance.  

FAN

START

LIGHT TV

ON OFF OFF 1 2 3

END

Selection

Control

C 1 C 2 C 3

C 1a C 1b C 2a C 2b C 2c C 2d

 
Figure 3.4 Typical flow of control of the system showing selection and control 

phases 

The flash controller flashes the symbols associated with the commands in 

a random manner. The flash controller also sends a real−time stream of 

markers to the signal processing application (eg: C3, C1b, C2d, C3a…) 

which corresponds to the command that is being flashed at the moment. 

The signal processing application receives four types of data streams: EOG 

stream from AF4 position, EEG signal channels (from positions O1, O2, 

P7), signal from a head−mounted accelerometer and marker stream. The 

EOG signal and accelerometer input are used for automatic artefact 

detection and removal. EOG signal will be used to detect eye movement 

and eye blinks while the accelerometer will detect the movements of neck 

and other head muscles. Both these movements introduce unwanted noise 

to the EEG signal, and removing these can improve the accuracy of the 

system [25]. 

After artefact removal the EEG signal is band−passed (typically at 

1−20Hz) to remove the unwanted frequency components and retain only 
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the components required for classification. Then the multiple channels of 

EEG signals are averaged, and time−locked intervals (epochs) that 

correspond to the command markers in the marker stream are extracted 

from this averaged EEG signal stream (Fig. 8). Note that some of these 

extracted epoch intervals might be overlapping, since the inter−flash 

interval is not necessarily greater than the extracted epoch interval. 

C 1a C 2c C 3C 1a

EOG Channels

EEG Channels

Marker Stream

Rejected for
Artefacts

Epoch 
Interval

Epoch 
Interval

Accelerometer

 
Figure 3.5 Four types of data streams received by the application 

After extracting epochs for a repeated number of trials, the epochs are 

averaged for each command marker that was flashed. This highlights the 

P300 response from the otherwise−noisy EEG signals. After averaging 

epochs, the characteristic P300 response will become prominent only for 

the target command channel while the non−target command channels will 

have an irregular and low response (Fig. 9). 
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Figure 3.6 Time−locked intervals for flash markers in multiple control channels. 

C 1 
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C 2
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Figure 3.7  The target P300 response is only observed for the time−locked 

intervals to the marker of target command. 

 

The averaged response can be classified into targets and non−targets by 

several methods such as Support Vector Machines (SVMs) or statistical 

analysis [25]. The classification method used as of now is comparing the 

areas under the curves of the different control commands at the time 

interval where P300 response can be observed for each user. After 

classification, the target command is selected as the command that the 

user intended to communicate to the system.  
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3.2. Possible Risks Involved and Health and Safety 

Precautions Taken when Conducting EEG 

experiments. 

EEG recording procedures have been in use for over 30 years and are used 

routinely in hospitals to test brain function and diagnose neurological 

illnesses. There are no known major risks associated with EEG devices 

other than a mild discomfort for some people who have sensitive skin, 

when wearing the sensors. This is not permanent and does not cause 

serious consequences [37]. 

However, special care should be taken to prevent any harm from the 

electrodes that are attached to the scalp, since the scalp is a sensitive 

region and any electric shock to that region can be very harmful.  

When using the gel electrodes of the EEG sensors for the experiments, low 

impedance contact areas are made with the scalp. If the devices were 

powered with a power source directly connected to the mains current (eg: 

5V USB power), in an unlikely event of a power surge; for example caused 

by a thunderstorm, there is a possibility that hazardous currents may 

reach the scalp. 

Therefore the signal acquisition devices being used connect to the 

computer wirelessly and are strictly battery powered. Before each 

experiment it is made sure that the devices are disconnected from external 

power and properly isolated from EMI sources which can interfere with 

the sensor readings. 

The electrode pads used in the headband are single use pads and they are 

replaced for each new user. The inner surface of the band is covered with a 

lining of masking tape which is also replaced for each user. These 

procedures minimize the risk of disease transmission by contact between 

multiple users. 
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3.2.1. Factors Affecting Users’ Comfort 
The custom−made elastic headband that is used for the experiments is 

comfortable to wear and the feeling of the electrodes on the scalp becomes 

quite unnoticeable after some time when the tension of the band is 

correctly adjusted. The experiments require the users to minimize their 

blinking, jaw movements and muscle movements during the trials to 

minimize artefacts in the EEG signals. This can cause fatigue for the 

users when using the system for prolonged periods of time. In order to 

minimize fatigue we have designed the system to give periodic breaks to 

the user after a certain time of conducting the trials (once every 30 

seconds) where the user is free to blink and move. Even if the user blinks 

or moves during the trials, the artefacts caused by those actions are 

removed during automatic artefact removal. The users should be 

acknowledged of this fact so that they can blink or move if they feel an 

urge to do so, avoiding discomfort. No other adverse effects have been 

observed so far with the current configuration of the system. 
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4. Implementation 

As a preliminary experiment and a proof of concept, it was decided to 

conduct the typical P300 experiment first. Another goal of conducting a 

preliminary experiment like this is to test the capability of various data 

acquisition devices that are intended for use. The first device that was 

tested for this experiment was the BITalino biomedical sensor toolkit [23].  

4.1. BITalino Biomedical Sensor Kit (cost ~ $200) 

 

Figure 4.1 Componenets in the BITalino sensor kit 

BITalino is a low cost biomedical sensor toolkit that includes multiple 

sensors such as    Electromyography (EMG), Electrocardiography (ECG), 

Electrodermal Activity (EDA), Electroencephalography (EEG), 

Accelerometer and Light sensor. Although this is a low cost device, some 

researches show that BITalino is comparable to the research grade device 

[24] offered by the same manufacturer [24]. 

The microcontroller unit of this device consists of an Atmel ATMega328p 

[26] chipset which is commonly found in Arduino UNO, Arduino NANO 

and Arduino MINI. BITalino is capable of simultaneously capturing data 
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from 6 analog and two digital channels with up to 1000Hz frequency. The 

device converts analog sensor data to digital values using the Analog to 

Digital Converter(ADC) in the ATMega328p chip with a resolution of 

10bits or 1024 levels (in 4 of the 6 input channels). The EEG sensor of the 

device we used had a gain of 40000 with a range of ±41.25μV. 

 

Figure 4.2 BITalino EEG module 

 

Conducting the P300 Experiment with BITalino 

In the first phase of the experiment an EEG cap made by Electro−Cap 

International (ECI) [27] was used as the electrode array. Usage of this cap 

gave the advantage of easily finding the required electrode positions since 

we were mainly interested in the readings from P3 and P4 electrode 

positions. However using this EEG cap required a significant preparation 

time (of about 15 min) and was uncomfortable to wear. We were not able 

to acquire a proper EEG signal during this experiment due to issues of 

connecting the ECI EEG cap to BITalino which were incompatible with 

each other by default. 

In the second phase of the experiment we directly connected the sensor 

cable provided with the BITalino to the scalp with help of electrode pads 

and conductive electrode gel. We secured the electrodes on the head by 

using an elastic headband. 
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Figure 4.3 Connecting BITalino 3 electrode cable for EEG signal acquisition 

The EEG data that was captured with this setup was observed for the 

presence of Alpha waves present in the EEG signals during relaxation 

with closed eyes and for the typical artifacts that are present in EEG 

signals. A section of EEG data that was observed is provided in the 

Results Chapter. 

 

In order to conduct the P300 experiment, it was modeled in OpenViBE 

BCI software. The experiment modelled in OpenViBE displays the P300 

speller visualization and generates a stream of markers for target flashes 

and non−target flashes. This stream of markers should be synchronized 

and combined with the signal stream obtained from the BITalino. In order 

to achieve this, a tool was developed in C++ using the BITalino C++ API 

and VRPN button server. The two streams were synchronized with a 

tolerance of 10−40ms with the help of a light sensor. 

 

After conducting the P300 experiment a several times we analysed the 

collected data using EEGlab EEG signal processing toolkit for MATLAB. 

The data was bandpass filtered at 1−20Hz, visible artefacts were removed, 

events and epochs were extracted and response for each event type was 

averaged separately. The results obtained for these P300 experiments are 

shown in the results chapter. 
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The ADC in BITalino is only capable of converting the analog signal with 

a resolution of 10 bits, while other low−cost devices like EMOTIV EPOC 

and OpenBCI Ganglion are capable of conversion with up to 16 bits and 

24bits of resolution respectively. The BITalino EEG module is capable of 

acquiring only one channel of EEG data, which limits its possibility to be 

used as an effective BCI device. And the P300 experiments conducted with 

EMOTIV EPOC appears to give a better response than BITalino [19]. Due 

to these reasons it was decided to repeat the experiment using the 

EMOTIV EPOC signal acquisition device. 

4.2. EMOTIV EPOC+ 14 Channel Mobile EEG (cost ~ 

$800) 

 

 

Figure 4.4 Emotiv EPOC+ EEG Headset 

The Emotiv EPOC+ is a relatively low cost BCI device which is capable of 

acquiring EEG signals from 14 channels and has an ADC with a 

resolution of 14bits. It is capable of capturing data with a rate of 128 

samples per second. Although it is less than the sampling rate of BITalino 

(1000 samples per second), it is sufficient for the detection of P300 

potential. Since this device has multiple EEG channels, it can acquire 

EOG data as well, which can detect eye movements and can help in 

artefact removal. 
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4.2.1. Conducting the P300 Experiment with Emotiv 

EPOC and LED Indicator 
The Emotiv EPOC device that is used for this work is a customized 

version of Emotiv EPOC where only the internal circuitry from the 

original device is used and the electrode contacts are broken out. Using 

headers and 3.5mm connector sockets it is possible to attach up to 3 

electrode sensor cables which are typically used for acquiring ECG signals. 

This configuration has considerably decreased the electrical impedance of 

the contacts made with the scalp, which has also increased the 

prominence of the EEG responses captured with this customized device 

than the original configuration. This modification also gives the freedom 

to use a desired number of electrodes and place them anywhere on the 

scalp as needed. 

 

 

Figure 4.5 The customized Emotiv EPOC device 

A custom made headband was attached with 5 electrodes for positions T7, 

T8, P7, O1, and O2 which can be worn around the head. The electrode 

used to detect eye blinks is directly pasted onto the skin above the right 

eye. 
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Figure 4.6 Electrode positions that are being used 

 

 

 

Figure 4.7 The custom−made EEG band (Version 1.0) connected to the device and 

the electrode gel and solution (left) 

 

The headband requires less preparation time as compared to the ECI EEG 

cap we used previously. A small amount of conductive electrode gel should 
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be applied to each of the single−use electrode pads before the band is worn 

in order to ensure a good electrical contact between the scalp and the 

electrode. The quality of electrical contact can be checked by using the 

Emotiv TestBench application. In order to verify that the EEG signals are 

being correctly captured, we check for the presence of Alpha waves in the 

signal feed using Emotiv TestBench before starting the experiments. 

Since the P300 response was clearly observed in the first few datasets we 

acquired with the Emotiv, we proceeded to conduct the experiments by 

flashing LEDs instead of the OpenViBE P300 Speller visualization 

stimulator we used in the previous experiments.  

 

A simple LED flashing circuit was created using an Arduino Pro Micro 

and an RGB (Red−Green−Blue) LED which can be flashed in any desired 

color using Pulse Width Modulation (PWM) 

 

Figure 4.8 LED indicator which is connected to the computer via USB 

 

During the experiments, the LED is flashed in two different colors: Green 

for targets Red for non−targets. 

An application was developed in C++ to handle data collection and 

stimulus generation. This application consists of two threads which are 

run in parallel in real−time. One thread generates a stream of random 

markers and sends them to the Arduino through USB serial which in turn 

flashes the LED in different colors depending on the marker value. The 
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Arduino sends the received marker back to the program, which helps in 

synchronizing the communication. 

The other thread collects the EEG data stream at 128 samples per second 

and combines this with the marker stream generated by the previously 

mentioned thread and writes them into a file. This program needs to run 

virtually in real−time with synchronization between two threads as well 

as the Arduino communication within millisecond tolerances since even a 

small out of sync of the EEG stream and marker stream might result in 

the P300 response not being visible in the averaged EEG signal. The 

source code for this application is provided in Appendix C. 
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Figure 4.9 Overview of the C++ application – version 1 

 

After confirming that the results were stable, the artefact removal and 

classification process was automated. The automatic artefact removal was 

achieved with a threshold function where any trials containing EEG and 

EOG signals out of the −40 to +40 microvolt range was rejected (Figure 

20). The automatic classification was performed by comparing the sum of 

EEG potential in a time window where the P300 potential is expected to 
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be present. The averaged epochs where the most negative sum was chosen 

as the target input. 
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Figure 4.10 Four types of data streams received by the application 

 

Figure 4.11 The interval classifier 
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4.2.2. Hardware Development of the Final Version of 

Complete System 
 

After testing performance of the system which uses a single LED indicator 

with the automated classifier, a new indicator device which uses an 

Arduino MEGA was developed with 4 indicator LEDs, which were 

attached to flexible wire ribbons. This indicator utilizes 12 Pulse Width 

Modulation (PWM) pins of the Arduino MEGA which makes it possible to 

flash the four indicator LEDs in multiple colors. 

 

Figure 4.12 Indicator with 4 LEDs 

In order to improve the visual appeal and user friendliness of the system, 

a new headband and a new enclosure was made for the system. The 

headband was designed in a way that minimizes disturbances to user’s 

appearance. The new headband is black colored, in order to match the hair 

color of majority of intended users. Electrode adapters are fixed onto 

adjustable buckles fixed along the headband, which makes the electrodes 

adjustable to the correct locations on different users with various head 

sizes. The band is elastic and the size can be adjusted between 44cm and 

59cm. The enclosure of the modified Emotiv EPOC was also upgraded to 

make it more appealing and user friendly. 
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Figure 4.13 Version 2.0 of the device with fully adjustable headband and 

upgraded device enclosure 

A model environment was built with 2 appliances, a lamp with two control 

states (on, off) and a fan with 4 control states (off, speeds − 1, 2, 3). The 

fan works by a motor driver which is controlled by a PWM output of an 

Arduino UNO. The lamp is directly powered by a digital IO pin of the 

Arduino UNO. Each model appliance can be controlled with a single 

character sent to the RX pin of the Arduino UNO through USB serial. 

 

 

Figure 4.14 Model environment with fan (left) and lamp (right) 
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4.2.3. Development of a Model−based, Adaptive Classifier 

with Gaussian Temporal Filtering and Weighted Channel 

Averaging 
 

The accuracy of the prototype automated classifier was found to be 

inadequate to correctly classify the control commands at selection times 

lower than 60 seconds. Therefore the need of a better classifier became 

prominent. A thorough analysis of the most prominent features were 

performed in order to extract the features that can help the most in 

discriminating the target P300 response from the unattended non−targets. 

 

In the target P300 response EEG patterns, it was observed that the 

electrode locations at the front of the head detected a negative potential 

while the locations near the visual cortex of the brain detected positive 

potentials. Therefore taking the potential difference between positions at 

the front of the head enhanced the target P300 response by a significant 

amount. The signal response was further enhanced by a Gaussian filter 

positioned around a time delay where the P300 response was expected. 

This time delay differs from person to person and has to be calibrated for 

each user. 

 

Figure 4.15 The potential difference between channel locations at the front of the 

head and behind head (top) 
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Figure 4.16 Enhancement of the target signal by the Gaussian filter and 

potential difference. Signal pattern of ordinary responses (top) and after applying 

new technique (bottom) − #2 is the target response 

 

The implementation of the classifier in C++ is shown below 

 

double gaussian(double x, double b){ 
 double a = 1.0, c = 10.0; 
 
 return pow((a * 2.71828),  

(−(pow((x − b), 2)) / (2 * pow(c, 2)))); 
} 
 
double weighting(double AF4, double P7, double O1, double O2){ 
 double w1 = 0.2, w2 = 1.0, w3 = 0.6, w4 = 0.6; 
 
 AF4 = (AF4 > 0) ? AF4 : 0; 
 P7 = (P7 < 0) ? P7 : 0; 
 O1 = (O1 < 0) ? O1 : 0; 
 O2 = (O2 < 0) ? O2 : 0; 
 
 return (AF4*w1 − P7*w2 − O1*w3 − O2*w4); 
} 

 

Integration of the Entire System in  main C++ Program 

The system consists of the Emotiv data collection API, stimulus generator, 

Arduino code for the two Arduinos used. All these components were 

combined through the central C++ program. 
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5. Results and Evaluation 

5.1. Evaluation Plan 

This project was quantitatively evaluated under three different aspects: 

Classification accuracy, Selection speed and Information transfer rate. 

Users’ feedback was gathered using feedback forms. These data were 

considered as qualitative data. 

5.1.1. Classification Accuracy 
Classification accuracy is the accuracy of correctly classifying a command 

the user intends to input to the system during a set of trials (an 

experiment). Achieving a high accuracy can be challenging, considering 

the limitations of low−cost equipment. The accuracy is calculated as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠
 × 100% 

The accuracy depends on several factors such as number of repeated trials 

in an experiment, number of commands or options we select from, 

inter−stimulus interval for the P300 experiment and the classification 

method. Accuracy will also be affected by factors such as user’s level of 

concentration, user’s physiological factors and external electrical noise. 

5.1.2. Selection Speed 
Selection speed is inversely proportional to selection time: which is the 

time taken to select one command from a set of trials. It is important to 

achieve a selection time as low as possible while maintaining a high 

accuracy to make the system more usable. This depends on several 

variables such as the number of control commands (command channels), 

number of repetitions per command channel, total number of trials and 

the inter−stimulus interval of the P300 experiment. 
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Since the P300 response cannot be identified with a single trial, the 

experiment should be repeated for a number of trials for a command 

channel. The total number of trials depends on number of command 

channels and the number of repetitions per channel.  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠 = 𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠 × 𝐼𝑛𝑡𝑒𝑟-𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

Selection time is the product of total number of trials and the 

inter−stimulus interval (ISI). ISI is the interval between two stimuli 

(flashes of the indicator). Lowering ISI reduces the selection time, but it 

also reduces the accuracy since it reduces the prominence of P300 

response. This has been observed with ISIs below 600ms [28]. Therefore, 

in order to achieve a maximum speed for this system, an optimal trade−off 

between classification accuracy and selection speed has to be found. 

5.1.3. Information Transfer Rate (ITR) 
ITR is the amount of information transferred through the BCI in a unit 

time, which is usually measured in bits per minute. When classifying to N 

commands or discrete values, and classification time t the information 

transfer rate B can be obtained as follows. 

𝐵 =   
1

𝑡
 log2 𝑁 

But this is only valid when considering a perfect classification 

(classification with 100% accuracy). When considering an imperfect 

classification accuracy of p and classification time t the ITR can be written 

as follows [30]. 

𝐵 =  
1

𝑡
[log2 𝑁 + 𝑝 log2 𝑝 + (1 − 𝑝) log2 (

1 − 𝑝

𝑁 − 1
)] 

While speed and accuracy gives an idea about the usability of the system, 

ITR can represent the capability of the system to communicate thoughts. 
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5.1.4. User Feedback 
The feedbacks of users were collected through feedback forms after each 

user completed the experiment session. Parameters that can affect the 

experiment outcomes such as fatigue, stress and the users’ overall opinion 

about the system were evaluated through this. The questionnaire form is 

included in the Appendix. 

 

5.2. Results of preliminary experiments conducted with 

BITalino 

5.2.1. First successful acquisition of EEG signals 
With the initial setup using the electrodes provided with the BITalino 

sensor kit, it was possible to successfully capture EEG data which could be 

noted by the presence of artefacts such as eye blinks, eye movement and 

jaw clenching which were expected to be present in EEG data. 

 

Figure 5.1 EEG data aquired with BITalino showing typical artefacts 

 

5.2.2. P300 experiment with BITalino 
After conducting the P300 experiment a several times we analysed the 

collected data using EEGlab EEG signal processing toolkit for MATLAB. 

The data was bandpass filtered at 1−20Hz, visible artefacts were removed 

and events and epochs were extracted. After averaging the epochs, a faint 

deflection of the EEG signal could be seen at ~450ms in the target data set 

of one of the experiments. And the deflection seemed to be consistent 

throughout the target epochs in that dataset. With this observation we can 

have a certain confidence that BITalino is capable of capturing the P300 
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response. However the results were unstable and the response was not 

very prominent. 

 

Figure 5.2 Averaged response for target epochs 

 

Figure 5.3 Averaged response for non−target epochs 
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5.3. P300 experiments conducted with Emotiv EPOC  

The results obtained with Emotiv and LED stimulator were stable where 

the response could be easily observed in all of the conducted experiments. 

The P300 response can be observed in the averaged signals at around 

250ms latency. 

 

Figure 5.4 Averaged EEG signal of target epochs. Notice the vertical blue region 

and the negative peak at ~250ms. 

 

Figure 5.5 Averaged EEG signal of non−target epochs 
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It was also notable that the C++ application synchronized with the 

Arduino board with a precision of 230 microseconds. 

5.3.1. Performance of prototype classifier 
This method of classification is fairly accurate as of now (100% accuracy). 

However, better classifiers will be required in order to reduce the number 

of trials required to make a selection. Currently a single command 

experiment requires about 400 trials, which takes around 2 minutes to 

perform a single selection. The next step of the research will be reducing 

the number of trials while maintaining a high accuracy. 

 

 

 

Figure 5.6 Responses for targets #1−NT (top left), #2−T (top right), #3−NT 

(bottom left), #4−NT (bottom right) and the output of the classifier (bottom) 
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5.4. System Testing with Test Users 

After the system development was completed, it was tested with 10 users. 

A soundproofed TV studio was chosen as the environment for the 

experiments since the environmental conditions such as the lighting, 

background noise can be controlled precisely. The control tasks consisted 

of controlling the four speed fan mentioned in the Implementation 

chapter. 

 

Note: All participants have provided written consent to participate in the 

study and the photographs appearing in this document are published with 

explicit approval of the individual participants. 

 

 

Figure 5.7 The complete experiment setup with a female user wearing the device. 

Distance from user’s eyes to indicators here is 50cm. 
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The experiments were conducted under different conditions such as 

varying distance from the indicators to the users’ eyes and different 

lighting conditions.  

 

Figure 5.8 A male user testing the system at a distance of 2.5m from the 

indicators 

For the female users, the band has the advantage of being able to put 

under a layer of hair, which is impossible to do with EEG caps that cover 

the entire head of the user. Otherwise the results of EEG recordings could 

be affected by the thickness of hair of female users. 

 

Figure 5.9 Detail of the way the band is put on for female users 
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5.4.1. Procedure for the User Testing Sessions 

 Volunteered test user is given the consent form and given a 

thorough explanation of the nature of the experiments and any 

health and safety information regarding EEG procedures. He/she 

may or may not confirm the consent form at their will. 

 The headband is fitted with fresh electrode pads, gel is applied and 

put on the users head. 

 User is asked to concentrate on a predefined indicator in order to 

calibrate the parameters of the classifier. 

 Once calibration is complete, user is given a sequence of targets to 

concentrate on, for the control tasks ( off, 2, 3 ,2, 1, off, 3, off, …). 

 The band is removed, head is cleaned up and user is given the 

feedback form to fill and return. 

5.5. Experiment Results 

The results of the experiments could be observable from the output of 

experiment history of the main C++ application.  Output of results for one 

such user who tested the system at a distance of 2.5m from the indicators 

is shown below. 

        Correct:−−−−−−−10 

        Wrong:−−−−−−−−−0 

        Accuracy:−−−−−−100% 

~~~~~~−−−−−−−−−−−−−−−−−−−−−−~~HISTORY~~−−−−−−−−−−−−−−−−−−−−−−−~~~~~~ 

#       C/W/A   Target  Result  Conf    Peak    Flash   ISI     Time 

#1      1       4       4       72.14%  242.19  100     400     40 

#2      1       1       1       69.07%  242.19  100     300     30 

#3      1       4       4       31.97%  242.19  100     300     30 

#4      1       1       1       50.24%  242.19  100     300     30 

#5      1       3       3       48.07%  242.19  100     300     30 

#6      1       4       4       54.24%  250     100     300     30 

#7      1       1       1       64.52%  242.19  100     300     30 

#8      1       4       4       67.62%  250     80      250     20 

#9      1       1       1       83.16%  242.19  80      250     20 

#10     1        2       2        59.75%  242.19  80       250     20 
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In each of the test sessions, the selection time was initially set to a higher 

value and then was decreased gradually until the accuracy was dropped. 

 

Overall accuracies for the 10 subjects tested are as follows 

Subject # Correct Wrong Total Accuracy Gender Remarks 

0 14 2 16 87.5% M  

1 5 0 5 100% M  

2 5 0 5 100% M  

3 − − − − M Experiment was stopped early 

4 14 2 16 87.5% F  

5 20 6 26 76.9% F  

6 7 6 13 53.8% F User was sleep deprived 

7 21 4 25 84% M Minimum time of 8s reached 

8 10 0 10 100% M Tested at a distance of 2.5m 

9 4 6 10 36.4% F Synchronization error in system 

Table 5.1 Accuracies for test users 

5.6. User Feedback Results (Averaged) 

Refer to Appendix D for the questions 
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5.7. Evaluation of Results 

The overall cumulative accuracy for each user falls when the selection 

time becomes lower than a certain threshold. It can be considered that 12 

seconds is a stable minimum of selection time for the system. The ITR at 

that selection time is 10 bits per minute considering the system selects out 

of 4 possible values 

Overall accuracy of the correctly functioning system: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
96

116
 × 100% = 82.75% 

Minimum stable selection time can be considered as 12 seconds. This 

value is lower than the standard value generally accepted as the norm in 

related research publications. 
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6. Conclusions 

6.1. Introduction 

This chapter includes a review of the research aims and objectives, 

research problem, limitations of the current work and implications for 

further research. 

6.2. Conclusions about research questions 

(aims/objectives) 

With this research we have discovered a new method of controlling 

appliances in a physical environment using brain potentials. Other than 

discovering a new and improved method of BCI, we have also conducted 

experiments on the effect of using different color stimulators have on the 

subjects’ brain responses. We have achieved very high accuracies for some 

test users and reached selection times lower than what is considered as 

the state−of−the−art selection times in BCI domain. The system is 

significantly cheaper than the alternatives that are capable of achieving 

similar performance and is less disturbing for the users. The device can be 

used with both male and female users alike.  

6.3. Conclusions about research problem 

The main research problem we are focused on in this research is finding a 

more intuitive means of environmental control which can be used by 

healthy and disabled people alike. The experiments conducted by us 

suggest that this system can be successfully used by healthy individuals, 
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and also this system is quite user friendly, considering the short training 

time required. 

 

According to expert opinion given to us after analyzing this solution by 

Professor Thashi Chang, senior Lecturer of Faculty of Medicine, 

University of Colombo, This system is also useable by disabled individuals 

having the following disease conditions 

 Quadriplegia due to spinal code lesions 

 Locked in syndrome 

 Myopathies and muscular dystrophies 

 Brainstem stroke 

However, according to him, the system should be tested and proven in 

order to determine whether it is useable by users with 

 Motor−Neuron Disease (ALS) 

 

This study has contributed to the domain of Brain−Computer Interfaces 

by introducing a new method of providing the visual feedback for the user 

by eliminating the requirement of display screens for visual feedback. The 

previous method of environmental control lacked intuitiveness and also 

did not take advantage of the positioning of the appliances in the 3 

dimensional space to issue control commands. 

 

6.4. Limitations 

The new method has the limitation of only being able to control the 

appliances that are in the line of sight of the user. The distance between 

the user and the appliance is also a limitation, since the visual separation 

of the indicators reduces when the user moves further away from the 

appliance. 
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6.5. Implications for further research 

Although this proposed method was intended for the use of both disabled 

and healthy individuals alike, it was not evaluated on disabled users as 

part of this work. Therefore a further extension of this research will be to 

evaluate this system with disabled users. 

This system may be extended further by creating a hardware framework 

that can interact with real home appliances. 

Another future work will be to further reduce the time taken for a 

selection and to improve the system and develop this system to a product 

level. That is, to develop this entire system as an off−the−shelf system 

that can be easily customized and configured for various user 

requirements and implemented in different households.  
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Abstract— Brain−Computer Interfaces (BCI) is a field which has shown rapid advancement over the past 

few decades. With the availability of low−cost electroencephalography (EEG) signal acquisition devices, it is 

becoming more feasible to develop hands−free environmental control systems which can be used for 

everyday use. These systems may be used as an assistive technology for disabled individuals or as an 

alternative form of control for healthy individuals. Hands−free environmental control systems often lack 

user−friendliness and intuitiveness due to the difficulty of mapping the users’ intentions, to control 

commands that can be used to control the appliances in a 3D environment. Therefore, this paper reports on 

an ongoing research to develop a hands−free environmental control system based on P300 responses of EEG 

signals of a user. The proposed solution does not use a screen for visual feedback, therefore, it improves the 

intuitiveness and user friendliness than existing solutions.  

 

Keywords− Brain−Computer Interface, Assistive Technology, Electroencephalography, Environmental 

Control System 

 

I. INTRODUCTION 

 

Brain−Computer Interfaces (BCI) can facilitate communication between the brain and an external 

device. A BCI can record electrical activity signals from the brain and classify them into different 

states which can then be interpreted for communication. Since BCI does not require muscle movements 

for communication, it can ideally provide an effective means of communication even for entirely 

paralysed people [10]. BCI research began in the 1970s and has shown a rapid advancement over the 

last few decades. 

BCI research often aims for augmenting or repairing human cognitive or sensory−motor functions. 

BCI devices have been used for applications such as moving a cursor on a computer screen [11], 
controlling home appliances [2], wheelchair control [9], recreational use [17, 18], and for spelling 

purposes [3]. When considering the existing applications of BCIs for environmental control, there is a 

noticeable lack of applications where the user’s orientation in the 3D environment is taken into 

consideration. Several similar works [2, 8] have developed environmental control systems that use a 

display screen for visual feedback. In this research we attempt to eliminate the need of a screen and 

make use of the user’s orientation in the 3D environment to create a more engaging and intuitive 

experience for the user. With this research we intend to answer two main questions: 

1. How to select an appliance that needs to be controlled in a 3D space? 

2. How to control various types of appliances with minimal physical movement? 

II. MOTIVATION 

 

People living with severe conditions of neurological disorders like Amyotrophic lateral sclerosis 
(ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, multiple 
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sclerosis, and numerous other diseases may lose all voluntary muscle control and may be completely 

‘locked−in’ to their bodies, unable to communicate in any way. These conditions may significantly 

affect the person’s quality of life due to loss of their ability to control the devices in their immediate 

environment [4, 5]. 

There are three options to restore function for these disabled individuals. First is to increase the 

capabilities of remaining functioning nerve pathways [6]. Second is to restore function by detouring 
around breaks in the neural pathways that control muscles [7]. The final option to restore function is 

provide brain with an alternate non−muscular communication channel in the form of a BCI to convey 

messages to the external world. This research attempts to help these individuals by minimizing the 

physical activity required to control the appliances in the environment. 

Another aspect of this solution is providing healthy users with an alternate channel of 

communication that requires minimal muscle movement. Even healthy individuals might face 

situations where they cannot use their hands to control appliances (eg: while cooking, working with 

contaminated materials or chemicals, surgeons performing surgery).  Currently, the majority of 

appliances we use every day are controlled manually or using a remote control. Recently, several large 

technology corporations have developed mass−produced consumer−grade home automation and 

environmental control systems that allow hands−free control of the home appliances. 

 Since recently, low−cost, yet sophisticated BCI equipment like OpenBCI [23] and Emotiv EPOC 
[24] have been developed. These devices are capable of capturing signals with sufficient quality that 

make them useful for BCI applications while also being significantly cheaper than medical or research 

grade BCI devices. These recent trends in the tech industry and capability of low cost devices have 

motivated us to develop an environmental control system which can be used for everyday use by 

healthy individuals as well.  

As mentioned before, similar systems that currently exist have the limitation of having to depend on 

a display screen for visual feedback. And none of the existing systems utilize the positioning of the 

appliance in the 3D environment to select and issue complex control commands to various types of 

appliances, which makes a clear research gap. 

 

III. BACKGROUND AND RELATED WORK 

Devices used in BCI research can be classified into three types: invasive, partially invasive, and 

non−invasive. 

 

 Invasive BCI – Requires the devices to be implanted into the brain. These produce the highest 

quality signals of BCI devices. 

 

 Partially Invasive BCI – the devices are implanted inside the skull, but outside the brain. 

 

 Non−invasive BCI – the devices are connected outside of the skull and onto the scalp. These 

devices produce lower quality signals than Invasive BCI, but are less complex to apply. 

Majority of the BCI research focus on this category. 
 

The following section is a literature review of environmental control systems that attempt to 

minimize the effort needed to control. Here the related works are categorized according to type of 

control. Each type has its advantages and drawbacks with respect to healthy and disabled individuals.  

 

A. Manual Remote Control 

Remote controls are an effective means of environmental control for healthy users which eliminate 

the need to physically walk to or reach the appliance. Majority of the users are already familiar with 

remote controls and they are highly accurate. 
However, this solution may not be effective for disabled individuals since the controller often needs 

to be pointed at the appliance and some users have difficulty when operating the buttons on the 

controller [13]. 

B. Mechanical Switches 

This type of solution is a switch that opens or closes which is controlled by explicit physical 

movement. The switch may respond to a specific mechanical stimulus, including changes in 

displacement, tilt, air pressure (e.g., sip and puff), or force [10]. This type of interface can be operated 

by people with control of only one part of body. The switch should be used in a way that utilizes the 
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existing neural pathways for disabled individuals. A similar interface was used by the famous 

cosmologist Stephen Hawking to control his computer which used only the movement of his cheek 

[12]. This solution is cheap and has a high accuracy since it uses explicit physical movement. 

A drawback of this solution is fatigue caused by repeated movement of the same part of the body 

[10]. These switches have limited control channels which make it ineffective for the use of healthy 

users since far better alternatives exist. 
 

C. Hand Gesture based Control 

Hand gestures provide an intuitive way of interfacing with the world. And can form complex 

methods of communication such as sign language used by people with hearing and speech disabilities. 

This technique can be used to control home appliances such as TV by using several commands 

represented by signs and movements of hands. These movements can be picked up by an Infrared 

camera and processed and interpreted as control commands [14]. 

Although hand−gestures can be an effective form of environmental control for healthy individuals, it 

requires the users to be able to move their hands, which makes it an ineffective solution for disabled 
individuals who cannot move their hands. When this method was used by disabled individuals who still 

possessed limited movement capabilities, they could only use it for short durations since they 

experienced fatigue [15]. 

D. Voice Control 

Voice controls are a popular method of environmental control that is already being used for many 

applications. There are several commercial home automation systems offered by major tech companies 

like Amazon Echo, Apple HomePod and Google Home. Voice controls require no physical movement 

and it eliminates the need to reach or walk to the appliances to control them. 
Even though voice controls have these benefits they are not widely used for assistive devices for 

several reasons. The user requirements for people with disabilities often have high levels of variation 

which creates a high cost for individual adaptation and development. Users who might benefit from 

voice commands often also have speech difficulties such that speech recognizers are unusable for them 

[16]. And some research results show that the accuracies can be significantly affected by noise in the 

environment [20]. 

E. Gaze Based and Eye−Tracking Control 

Gaze−based communication can map eye movement to a cursor position on the screen. The 

dominant technologies in commercially available eye trackers are video−oculography (VOG) and 
electrooculography (EOG). VOG−based approaches typically use an IR light source and a camera 

mounted on a computer display. Gaze direction is calculated by the offset between the corneal 

reflection and pupil centre [10].  EOG−based systems place electrodes around eyes to measure shifts in 

potential difference between cornea and retina that occur when user changes gaze direction [8]. 

Although eye tracking controls have speeds comparable to a hand−mouse, productivity in computer 

tasks is lower in practice. Since this input method uses the same channel for control and observation, 

there is no intuitive means of differentiating between an input command and a user activity.  Gaze 

controlled devices can also have drawbacks like calibration drift, user fatigue and insufficient range of 

motion of the eye [10]. 

F. Electroencephalography (EEG) and BCI Solutions 

EEG based devices can provide a non−muscular form of control from the electrical activity 

measured on scalp. Since this does not require significant muscle movement, it is usable by tetraplegic 

disabled individuals as well [9]. Present day BCIs can be divided into two main categories based on the 

type of signals extracted: consciously modulated spontaneous rhythms or evoked potentials. 

The first category of BCI uses potentials that can be intentionally modulated by the user with some 

training. A research by Wolpaw et al [11] that used sensorimotor rhythms (SMRs) has shown that 

individuals with severe motor disabilities are able to control a cursor on a screen with two−dimensional 

control signal using non−invasive BCI with accuracies up to 92% and relatively short response times 

[11]. However, this type of BCI requires some training to improve the reliability. 

The second category relies on responses to external stimuli such as visual stimulus like flashing of 
an indicator. Steady−state visual evoked potential (SSVEP) is an example of this.  

An SSVEP based BCI research conducted by Chen et al [18] have developed a recreational device 

that controls a toy fish using brain signals. The signals with high energy levels at different frequencies 

are produced when the user looks at control commands displayed on a screen that are flashing at the 

corresponding frequency. An average classification accuracy of 89.51% was obtained in their research. 
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Another type of signal that belongs to the evoked potential category is the P300 response. P300 

potentials are positive deflections in EEG signal which were elicited approximately 300ms after 

encountering an intended stimulus among a group of irrelevant stimuli. This response can be used to 

create a BCI since it can identify which stimulus the user was concentrating on by analysing the EEG 

signals. 

Since the P300 potentials have very low voltages (2−5μV) and are hidden within the EEG noise, 
they are not directly visible in an EEG recording [19]. In order to view these responses, the raw EEG 

signal should be band−passed (at around 1−20Hz), intervals of signal in multiple trials (called epochs, 

around −1000 to 2000ms relative to the stimulus) that are time−locked to the stimulus should be 

extracted, and then the epochs should be averaged (Fig. 1 and 2). This process averages out the noise 

voltages while accumulating the psychological properties of the stimulus, improving the Signal to 

Noise Ratio (SNR) of the response [25]. 

 

Time (ms)0

Time (ms)0

Averaging

 

Fig. 1 The EEG signal intervals from multiple trials (left) time−locked to the event (red line) and after averaging them (right) 

which shows a deflection common to all the trials while cancelling out the noise. 

Averaged Response
for Targets

Averaged response
for Non Targets

Time
350msStimulus 

Onset  

Fig. 2 Averaged EEG signal of multiple trials for non−target responses and target responses 

 

P300 response can be obtained by flashing columns and rows of letters for spelling purposes [3]. A 

P300 based solution for smart home control developed by Holzner et al [2] has shown the suitability of 

the P300 response for selection of control commands. Their research uses control masks for the 

selection of areas inside the home and to control various appliances such as a phone and a TV. 

Accuracies up to 100% have been achieved in their research for some control masks. 

Another research by Cristian et al [8] which used a hybrid BCI approach that combined EEG and 

EOG signals has studied how the reliability of an EEG system can be improved by combining it with 

another control channel. In their research the user had the ability to cancel the selection made by the 

EEG BCI by changing the direction of his gaze. 

Several recently conducted researches have explored the suitability of Asynchronous BCI (A−BCI) 
for environmental control [21, 22]. Synchronous BCIs assume that the user is continuously controlling 

the system. They cannot detect whether the user is paying attention to the system or not and therefore 

they make incorrect selections when the user stops paying attention to the system. A synchronous P300 

BCI makes a selection after a fixed number of trials regardless of whether the user was paying attention 

to the system or not.  

In contrast to this, asynchronous BCIs make selections only when the response in the signals passes 

a threshold level [21]. Therefore, they can determine whether the user is focusing on the system or not 

and switch between control and no−control states accordingly. This type of a system can be more 
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practical than synchronous systems since the user can focus on other tasks without the need of 

notifying the system. However, A−BCIs require a specialized algorithm or a support vector machine 

(SVM) to analyse and discriminate between the target P300 epochs and non−target epochs with respect 

to the threshold level [22]. 

 

IV. RESEARCH METHODOLOGY AND DESIGN 

When developing an environmental control solution using BCI, selecting the correct appliance by 

sensing user’s intention is somewhat challenging. The type of EEG signal should be chosen such that 

the system is able to select the correct appliance from a number of options with sufficient accuracy.   

An evoked potential based signal such as P300 is better suited for this task than spontaneous 

rhythms such as sensorimotor rhythms (SMR) since spontaneous rhythm signals provide no way to 

stop and remain on a discrete option for accurate selection [11]. The SMR selection can continue to 

change even after passing over the required option. Choosing evoked potential based signals also have 

the added advantage of not requiring extensive user training. 

 

The existing P300 based environment control systems use control masks (Fig. 3) to choose the 

appliance and to issue control commands [2, 8]. The user has to focus on the symbol he wishes to 

select from the control matrix and the system will detect which symbol he concentrated on by the P300 
response present in the EEG signals. 

 

TV

Keyboard

 
Fig. 3 Typical example of a control mask used in a P300 BCI showing various control commands 

 

This approach seems less intuitive especially for the healthy users, since it depends on selecting all 
the possible commands using a control mask, similar to using an entirely menu−based UI. This 

approach might also cause fatigue for the users since they need to constantly look at a display to 

control the system. 

 

Therefore, this research intends to propose a different approach than the existing ones; that is, 

instead of using a control mask to select the users’ choice, the appliance itself is highlighted by flashing 

the symbols in an indicator panel near each appliance (Fig. 4). This provides the user with a visual 

stimulus which will give the P300 response in EEG signals. 
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Fig. 4 System overview: The user concentrates on the indicator of a certain appliance. 

 

In order to record these responses effectively, signals will be captured from multiple positions in the 

scalp (Fig. 5). Since the visual P300 response is present more prominently around the visual cortex, 

multiple electrode positions (Cz, P3, Pz, P4, O1, O2) around occipital and parietal regions will be used 

for capturing the response. Two positions in the frontal region (Fp1 and Fp2) are also used to detect the 

electrooculography (EOG) artefacts of eye movement and eye blinks. These signal channels will be 

monitored and will help in automated artefact removal where the EEG signals will automatically be 

discarded and will not be used for processing if artefacts are present in the EOG data at the same time 

period. 

In the next step these signals are conditioned. The EEG signals are band−passed at 1−20Hz filtering 

the unwanted frequencies. Then the artefacts in the EEG signals are removed, which can be automated 
as described before. Finally the signals are processed and interpreted as control commands. 

 

Fig. 5 Process flow: EEG signal acquisition from multiple electrodes placed in the scalp, signal conditioning, processing and 

interpreting signals into control commands. 
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Selection of the command will be done by flashing an indicator panel that is placed next to the 

relevant appliance. These commands can be used either to select an appliance or to control an already 

selected appliance. The EEG signals will be then acquired and processed. The system decides that the 

user concentrated on a specific command by the presence of P300 response in the detected EEG signals 

acquired in a time−locked interval after the flash relevant to the command. Next the indicator panel 
will flash a set of different symbols associated with the set of control commands for the selected 

appliance. Here the user concentrates on the control command he wants to issue to the appliance. The 

correct command will be detected by the system in the same manner the appliance was selected. 

 

FAN

START

LIGHT TV

ON OFF OFF 1 2 3

END

Selection

Control

C 1 C 2 C 3

C 1a C 1b C 2a C 2b C 2c C 2d

 
Fig. 6 Typical flow of control of the system showing selection and control phases 

 
The flash controller flashes the symbols associated with the commands in a random order. The flash 

controller also sends a real−time stream of markers to the signal processing application (eg: C3, C1b, 

C2d, C3a…) which corresponds to the command that is being flashed at the moment. 

The signal processing application receives four types of data streams: EOG streams (from electrodes 

Fp1 and Fp2), EEG signal channels (from positions (Cz, P3, Pz, P4, O1, O2), signal from a 

head−mounted accelerometer and marker stream. 

C 1a C 2c C 3C 1a

EOG Channels

EEG Channels

Marker Stream

Rejected for
Artefacts

Epoch 
Interval

Epoch 
Interval

Accelerometer

Threshold Limit for 

Automated Rejection

 
Fig. 7 Four types of data streams received by the application 

 

The EOG signal and accelerometer input are used for automated artefact detection and removal. 

EOG signal will be used to detect eye movement and eye blinks while the accelerometer will detect the 

movements of neck and other head muscles. Both these movements introduce unwanted noise to the 
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EEG signal, and removing these can improve the accuracy of the system [25]. Automated artefact 

removal is performed by checking the signal stream for sections that contain signal values that exceed a 

certain pre−set threshold, and rejecting sections of the signal stream that contain such values.  

After artefact removal the EEG signal is band−passed (typically at 1−20Hz) to remove the unwanted 

frequency components and retain only the components required for classification. Then the 

time−locked intervals (epochs) that correspond to the command markers in the marker stream are 
extracted from this averaged EEG signal stream (Fig. 8, top). Note that some of these extracted epoch 

intervals might be overlapping, since the inter−flash interval is not necessarily greater than the 

extracted epoch interval. 

After extracting epochs for a repeated number of trials, the epochs are averaged for each command 

marker that was flashed. This highlights the P300 response from the otherwise−noisy EEG signals. 

After averaging epochs, the characteristic P300 response will become prominent only for the target 

command channel while the non−target command channels will have an irregular and low response 

(Fig. 8, bottom) 
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Fig. 8 Time−locked intervals for flash markers in multiple control channels (top). Here the target P300 response is only observed 

for the time−locked intervals to the marker of target command (bottom). 

 

The averaged response can be classified into targets and non−targets by several methods such as 

Support Vector Machines (SVMs) or statistical analysis [25].  

A less complicated method for classification is calculating the area under the curve within a 

pre−calibrated time interval where we expect the P300 peak to be present. The marker with a curve that 

has the most negative area in the interval is chosen as the classifier’s decision.  

After classification, the target command is selected as the command that the user intended to 

communicate to the system, and the appliances are controlled accordingly.  

B. Tools and Equipment Intended to be Used 
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We intend to use an Emotiv EPOC EEG headset [24] for capturing of EEG, EOG, and accelerometer 

data. Emotiv EPOC is a relatively low−cost EEG device which is capable of signal acquisition from 14 

electrode positions in the scalp, up to a sampling rate of 256Hz. The Analog−to−Digital converter 

(ADC) of this device is capable of conversion with a resolution of 14bits which gives 214 = 16384 

signal levels per sample. Research has shown that this device is capable of capturing the P300 response 

[19]. 
For the signal processing and classification, we intend to use the EEGLAB toolkit for MATLAB 

[26]. This toolkit makes it easier to process multi−channel EEG data since it contains pre−defined 

functions for signal filtering, epoch extraction, averaging and visualization. To simulate preliminary 

P300 experiments, we have used OpenViBE BCI software [27]. 

V. CONCLUSIONS AND DISCUSSION 

Compared to other assistive technologies and alternative forms of environmental control, BCI based 

systems offer a truly hands−free experience for the users. However, the most commonly used 

techniques for these systems are not very intuitive. The technique used in P300 based environmental 

control systems could be improved as proposed by this research which will be a significant 

improvement to the similar systems that have been developed during the past few years. 

The proposed system has several differences than the ordinary control−mask based systems. When 

selecting the appliance, the system has to detect the P300 response for a lower number of commands 
than the control−mask based systems (limited to the number of appliances in the room the user is in). 

After the appliance is selected, the number of selections is reduced to the number of different control 

commands for the selected appliance. Having a lower number of selections at each stage can improve 

the speed of the system since the total number of trials needed for a selection will be reduced. 

Also, the user will have to be in the same room as the appliance he intends to control, and the 

appliance should be in the line of the user and cannot be occluded, unlike in control−mask based 

systems where the user could control any appliance that is shown in the display screen. 

VI. FUTURE WORK 

This paper only presents the concept of a system that eliminates several drawbacks of the existing 

systems. A future work of this might be to develop this system and evaluate its performance. This 

proposed system only focuses on utilizing the P300 evoked potential to make selection Therefore this 
work can be extended by combining this technique with another type of BCI such as steady−state 

visually evoked potentials or another type of biofeedback such as electrooculography or 

electromyography to form a hybrid BCI. 
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Appendix B: Diagrams 
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Figure 0.1 A visualization of the EEG signal processing pipeline 
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Appendix C: Code Listings 

Data Collection Component (C++) 

void EmotivDataCollector(void *unused) { 
 try { 
  EE_DataChannel_t targetChannelList[] = { 
   ED_COUNTER, 
   ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7, 
   ED_P7, ED_O1, ED_O2, ED_P8, ED_T8, 
   ED_FC6, ED_F4, ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP, 
   ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL 
  }; 
 
  const char header[] = "COUNTER,AF3,F7,F3,FC5,T7,P7,O1,O2,P8" 
   ",T8,FC6,F4,F8,AF4,GYROX,GYROY,TIMESTAMP," 
   "FUNC_ID,FUNC_VALUE,MARKER,SYNC_SIGNAL,STIM,"; 
 
  EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 
  EmoStateHandle eState = EE_EmoStateCreate(); 
  unsigned int userID = 0; 
  const unsigned short composerPort = 1726; 
  float secs = 1; 
  unsigned int datarate = 0; 
  bool collectEEG = false; 
  int option = 0; 
  int state = 0; 
 
  if (EE_EngineConnect() != EDK_OK) { 
   std::cout << "Emotiv Engine start up failed." << std::endl; 
   running = false; 
  } 
  else { 
   std::stringstream filename, filename2, source, destination, srcPath, 
destPath, destName; 
   //Copying paths 
   source << "C:/Users/Tharinda/Documents/Visual Studio 
2013/Projects/EmotivStim/Debug/"; 
    
   destination << 
"C:/Users/Tharinda/Documents/MATLAB/eeglab14_1_1b/eeg−common/"; 
   destName << "templog.csv";  
    
 
   filename << "eeglog−" << GetTimeStr() << ".csv"; // EEG log filename
   
   std::ofstream ofs(filename.str(), std::ios::trunc); 
   ofs << header << std::endl; 
 
   //filename2 << "preprocessed−log−" << GetTimeStr() << ".csv"; // EEG 
log filename   
   filename2 << "preprocessed−log.csv"; // COMMON EEG log filename  
   std::ofstream ofs2(filename2.str(), std::ios::trunc); 
 
   DataHandle hData = EE_DataCreate(); 
   EE_DataSetBufferSizeInSec(secs); 
 
   std::cout << "EEG buffer size in secs:" << secs << std::endl; 
 
   //std::cout.setstate(std::ios_base::failbit); 
   //std::streambuf* cout_sbuf = std::cout.rdbuf(); // save original 
sbuf 
   //std::ofstream   fout("/dev/null"); 
   //std::cout.rdbuf(fout.rdbuf()); // redirect 'cout' to a 'fout' 
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   while (running) { 
    state = EE_EngineGetNextEvent(eEvent); 
 
    if (state == EDK_OK) { 
     EE_Event_t eventType = 
EE_EmoEngineEventGetType(eEvent); 
     EE_EmoEngineEventGetUserId(eEvent, &userID); 
 
     // Log the EmoState if it has been updated 
     if (eventType == EE_UserAdded) { 
      //std::cout << "User added"; 
      EE_DataAcquisitionEnable(userID, true); 
      collectEEG = true; 
     } 
 
     // Extended... 
     // Log the EmoState if it has been updated 
     //if (eventType == EE_EmoStateUpdated) { 
     // EE_EmoEngineEventGetEmoState(eEvent, eState); 
     // //const float timestamp = 
ES_GetTimeFromStart(eState); 
     // //printf("%10.3fs : New EmoState from user %d 
...\r", timestamp, userID); 
     // //logEmoState(ofs, userID, eState, 
writeHeader); 
     // //writeHeader = false; 
     //} 
    } 
 
 
    if (collectEEG) { 
     EE_DataUpdateHandle(0, hData); 
 
     unsigned int nSamplesTaken = 0; 
     EE_DataGetNumberOfSample(hData, &nSamplesTaken); 
 
     if (nSamplesTaken != 0) { 
 
      double* data = new double[nSamplesTaken]; 
      for (int sampleIdx = 0; 
sampleIdx<(int)nSamplesTaken; ++sampleIdx) { 
       for (int i = 0; 
i<sizeof(targetChannelList) / sizeof(EE_DataChannel_t); i++) { 
        int channel = 
targetChannelList[i]; 
        EE_DataGet(hData, 
targetChannelList[i], data, nSamplesTaken); 
        ofs << data[sampleIdx] << 
","; 
        if (channel == ED_P7 || 
channel == ED_O1 || channel == ED_O2 || channel == ED_AF4){ 
         ofs2 << 
data[sampleIdx] << ","; 
        } 
       } 
       ofs << marker << std::endl; 
       ofs2 << marker << std::endl; 
       marker = 0; 
      } 
      delete[] data; 
     } 
    } 
    Sleep(1); 
   } 
 
   //std::cout.rdbuf(cout_sbuf); // restore the original stream buffer 
   //std::cout.clear(); 
 
   ofs.close(); 
   ofs2.close(); 
   EE_DataFree(hData); 
   /*char* sourceDir = "C:\\Users\\Tharinda\\Documents\\Visual Studio 
2013\\Projects\\EmotivStim\\Debug\\"; 
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   strcat(sourceDir, "preprocessed−log.csv"); 
   char* destDir = 
"C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\"; 
   strcat(destDir, "preprocessed−log.csv"); 
   copyFile(sourceDir, destDir);*/ 
 
    
   /*srcPath << source.str() << filename2.str(); 
   LPCWSTR src = (LPCWSTR)srcPath.str().c_str(); 
   destPath << destination.str() << destName.str(); 
   LPCWSTR dest = (LPCWSTR)destPath.str().c_str(); 
   CopyFile(src, dest, TRUE);*/ 
 
    
  } 
  // catch (const std::exception& e) { 
  //  std::cerr << e.what() << std::endl; 
  //  std::cout << "Press any key to exit..." << std::endl; 
  //  getchar(); 
  // } 
 
  EE_EngineDisconnect(); 
  EE_EmoStateFree(eState); 
  EE_EmoEngineEventFree(eEvent); 
 } 
 catch (...) { 
  std::cout << "Exception occured in the EEG logger!" << std::endl; 
  running = false; 
 } 
 std::cout << "Exiting from Emotiv connector..." << std::endl; 
 std::cout << std::endl << std::endl << "Data collection ended" << std::endl; 
 std::cout << "Press any key to continue" << std::endl; 
 if (!aborted){ 
  // ENTER key down 
******************************************************SIMULATED KEYPRESS 
  keybd_event(VK_RETURN, 0x9C, 0, 0); 
  // ENTER key up 
  keybd_event(VK_RETURN, 0x9C, 0, 0); 
 } 
} 

Classifier (C++) 

template<size_t R, size_t C> 
int P300Classifier_AdaptWeightGauss(double center, double radius,int experiment, char mode, 
int target, double (&history)[R][C]){ 
 std::cout << "Model based − Adaptive Hybrid Classifier With Gaussian Filtering and 
Weighted Channel Ensembling" << std::endl; 
 
 int TARGETS = 4; //hardcoded 
 
 double SEARCH_START, SEARCH_END, SEARCH_RADIUS = radius, SEARCH_CENTER = center; // 
start from around 300 
 SEARCH_START = SEARCH_CENTER − SEARCH_RADIUS; 
 SEARCH_END = SEARCH_CENTER + SEARCH_RADIUS; 
 std::cout << "\t > Search Start > " << SEARCH_START << "\t < Search End > " << 
SEARCH_END << std::endl; 
 
 //Getting file streams 
 std::ifstream 
infile1("C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\mat−to−cpp\\epochs
−1−ar.avg"); 
 std::ifstream 
infile2("C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\mat−to−cpp\\epochs
−2−ar.avg"); 
 std::ifstream 
infile3("C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\mat−to−cpp\\epochs
−3−ar.avg"); 
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 std::ifstream 
infile4("C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\mat−to−cpp\\epochs
−4−ar.avg"); 
 
 int count = 0; 
 
 std::string header; 
 double a, b, c, d, e; 
 
 double buffer1[128][8], buffer2[128][8], buffer3[128][8], buffer4[128][8]; 
 
 //Scanning files and loading into buffers 
 printf("\nScanning File epochs−1 \n"); 
 std::getline(infile1, header); 
 while (infile1 >> a >> b >> c >> d >> e) { 
  if (count >= 128 && count < 256){ 
   buffer1[count − 128][0] = a; 
   buffer1[count − 128][1] = b; 
   buffer1[count − 128][2] = c; 
   buffer1[count − 128][3] = d; 
   buffer1[count − 128][4] = e; 
 
   //printf("time: %f AF4: %f P7: %f O1: %f O2: %f \n", a, b, c, d, e); 
  } 
  count++; 
 } 
 count = 0; 
 
 printf("\nScanning File epochs−2 \n"); 
 std::getline(infile2, header); 
 while (infile2 >> a >> b >> c >> d >> e) { 
  if (count >= 128 && count < 256){ 
   buffer2[count − 128][0] = a; 
   buffer2[count − 128][1] = b; 
   buffer2[count − 128][2] = c; 
   buffer2[count − 128][3] = d; 
   buffer2[count − 128][4] = e; 
 
   //printf("time: %f AF4: %f P7: %f O1: %f O2: %f \n", a, b, c, d, e); 
  } 
  count++; 
 } 
 count = 0; 
 
 printf("\nScanning File epochs−3 \n"); 
 std::getline(infile3, header); 
 while (infile3 >> a >> b >> c >> d >> e) { 
  if (count >= 128 && count < 256){ 
   buffer3[count − 128][0] = a; 
   buffer3[count − 128][1] = b; 
   buffer3[count − 128][2] = c; 
   buffer3[count − 128][3] = d; 
   buffer3[count − 128][4] = e; 
 
   //printf("time: %f AF4: %f P7: %f O1: %f O2: %f \n", a, b, c, d, e); 
  } 
  count++; 
 } 
 count = 0; 
 
 printf("\nScanning File epochs−4 \n"); 
 std::getline(infile4, header); 
 while (infile4 >> a >> b >> c >> d >> e) { 
  if (count >= 128 && count < 256){ 
   buffer4[count − 128][0] = a; 
   buffer4[count − 128][1] = b; 
   buffer4[count − 128][2] = c; 
   buffer4[count − 128][3] = d; 
   buffer4[count − 128][4] = e; 
 
   //printf("time: %f AF4: %f P7: %f O1: %f O2: %f \n", a, b, c, d, e); 
  } 
  count++; 
 } 
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 count = 0; 
 
 //Closing file streams 
 infile1.close(); 
 infile2.close(); 
 infile3.close(); 
 infile4.close(); 
 
 double total1 = 0, total2 = 0, total3 = 0, total4 = 0; 
 
 static double peaks[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 
 
 double peakPos1 = 250.0, peakPos2 = 250.0, peakPos3 = 250.0, peakPos4 = 250.0 ; 
 
 double peak1 = 0, peak2 = 0, peak3 = 0, peak4 = 0; 
 
 //Peak picking: This gives the negative peak value and its position in P7 channel 
 //only the peaks between search start and search end are considered 
 for (int i = 0; i < 128; i++){ 
  double v = buffer1[i][2]; 
  if (buffer1[i][0] >= SEARCH_START && buffer1[i][0] <= SEARCH_END && v < 
peak1){ 
   peak1 = v; 
   peakPos1 = buffer1[i][0]; 
  } 
   
 } 
 
 for (int i = 0; i < 128; i++){ 
  double v = buffer2[i][2]; 
  if (buffer1[i][0] >= SEARCH_START && buffer1[i][0] <= SEARCH_END && v < 
peak2){ 
   peak2 = v; 
   peakPos2 = buffer2[i][0]; 
  } 
 } 
 
 for (int i = 0; i < 128; i++){ 
  double v = buffer3[i][2]; 
  if (buffer1[i][0] >= SEARCH_START && buffer1[i][0] <= SEARCH_END && v < 
peak3){ 
   peak3 = v; 
   peakPos3 = buffer3[i][0]; 
  } 
 } 
 
 for (int i = 0; i < 128; i++){ 
  double v = buffer4[i][2]; 
  if (buffer1[i][0] >= SEARCH_START && buffer1[i][0] <= SEARCH_END && v < 
peak4){ 
   peak4 = v; 
   peakPos4 = buffer4[i][0]; 
  } 
 } 
 
 if (mode == 'A' && experiment < 10){ 
  switch (target){ 
  case 1 : SEARCH_CENTER = peakPos1; break; 
  case 2 : SEARCH_CENTER = peakPos2; break; 
  case 3 : SEARCH_CENTER = peakPos3; break; 
  case 4 : SEARCH_CENTER = peakPos4; break; 
  default: break; 
  } 
  SEARCH_RADIUS −= 20; 
   
 } 
 
 // Wave analysis 
 for (int i = 0; i < 128; i++){ 
  double v = gaussian(buffer1[i][0], peakPos1) * weighting(buffer1[i][1], 
buffer1[i][2], buffer1[i][3], buffer1[i][4]); 
  buffer1[i][5] = v; 
  total1 += (−v); 
 } 
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 for (int i = 0; i < 128; i++){ 
  double v = gaussian(buffer2[i][0], peakPos2) * weighting(buffer2[i][1], 
buffer2[i][2], buffer2[i][3], buffer2[i][4]); 
  buffer2[i][5] = v; 
  total2 += (−v); 
 } 
 for (int i = 0; i < 128; i++){ 
  double v = gaussian(buffer3[i][0], peakPos3) * weighting(buffer3[i][1], 
buffer3[i][2], buffer3[i][3], buffer3[i][4]); 
  buffer3[i][5] = v; 
  total3 += (−v); 
 } 
 for (int i = 0; i < 128; i++){ 
  double v = gaussian(buffer4[i][0], peakPos4) * weighting(buffer4[i][1], 
buffer4[i][2], buffer4[i][3], buffer4[i][4]); 
  buffer4[i][5] = v; 
  total4 += (−v); 
 } 
 
 
 printf("\n\nScan Ended\nTotal 1: %f\nTotal 2: %f\nTotal 3: %f\nTotal 4: %f\n", total1, 
total2, total3, total4); 
 double totals[4] = { total1, total2, total3, total4 }; 
 std::sort(totals, totals + 4); 
 
 int choice = 0; 
 double total = totals[0]; 
 std::cout << "Decision of Classifier: −−−−−−−− "; 
 if (total == total1){ 
  choice = 1; 
  history[experiment][4] = peakPos1; 
  printf("MARKER 1\n"); 
 } 
 else if (total == total2){ 
  choice = 2; 
  history[experiment][4] = peakPos2; 
  printf("MARKER 2\n"); 
 } 
 else if (total == total3){ 
  choice = 3; 
  history[experiment][4] = peakPos3; 
  printf("MARKER 3\n"); 
 } 
 else if (total == total4){ 
  choice = 4; 
  history[experiment][4] = peakPos4; 
  printf("MARKER 4\n"); 
 } 
 
 double confidence = ((total − ((totals[1] < 0) ? totals[1] : 0)) / total) * 100; 
 
 history[experiment][3] = confidence; 
 
 std::cout << "Confidence: " << confidence  << "% " << std::endl; 
 return choice; 
} 
 

 

Arduino Code  

#define BAUD_RATE 115200 

 

#define B_1 2 

#define G_1 3 

#define R_1 4 

 

#define B_2 5 

#define G_2 6 

#define R_2 7 
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#define B_3 8 

#define G_3 9 

#define R_3 10 

 

#define B_4 11 

#define G_4 12 

#define R_4 13 

 

#define R_LIMIT 250 

#define G_LIMIT 50 

#define B_LIMIT 25 

 

#define CON_0 10 

#define CON_1 16 

#define CON_2 14 

#define CON_3 15 

 

#define GREEN 256 

#define RED 0 

#define ORANGE 50 

#define WHITE 768 

 

const char APPLIANCE_ID = '3'; // The ID assigned to the appliance 

 

int brightness1 = 40; 

int brightness2 = 160; 

char incoming; 

int led = LOW;  

unsigned long currentTime = 0; 

unsigned long flashStart = 0;  

long duration = 50; //flash duration 

char controlState = 'a'; // a: not selected b: selected c: idle d: ready 

bool resting = true; 

 

void setup() { 

 

  Serial.begin(BAUD_RATE); 

   

} 

 

void loop() { 

//  while(resting){ 

//    showOff(5); 

//  } 

  char incoming2; 

  if(Serial.available()){ 

    incoming2 = Serial.read(); 

    serialFlush(); 

 

    //THE GAP 

    flashStart = millis(); 

    //THE GAP 

     

    Serial.print(incoming2); 

    Serial.flush(); 

  } 

  stimFlash(incoming2); 

   

} 

 

void stimFlash(char incoming){ 

  if(incoming == '1'){ 

    showRGB(1, 256, brightness2); 

    showRGB(2, 0, brightness1); 

    showRGB(3, 0, brightness1); 

    showRGB(4, 0, brightness1); 

  } 

  else if(incoming == '2'){ 

    showRGB(1, 0, brightness1); 

    showRGB(2, 256, brightness2); 

    showRGB(3, 0, brightness1); 

    showRGB(4, 0, brightness1); 

  } 

  else if(incoming == '3'){ 

    showRGB(1, 0, brightness1); 

    showRGB(2, 0, brightness1); 
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    showRGB(3, 256, brightness2); 

    showRGB(4, 0, brightness1); 

  } 

  else if(incoming == '4'){ 

    showRGB(1, 0, brightness1); 

    showRGB(2, 0, brightness1); 

    showRGB(3, 0, brightness1); 

    showRGB(4, 256, brightness2); 

  } 

 

  else if(incoming == 'c'){ 

    duration = 5000; 

    showRGB(1, 128, brightness1); 

    showRGB(2, 128, brightness1); 

    showRGB(3, 128, brightness1); 

    showRGB(4, 128, brightness1); 

  } 

 

  else if(incoming == 'd'){ 

    duration = 50; 

    showRGB(1, 256, 0); 

    showRGB(2, 256, 0); 

    showRGB(3, 256, 0); 

    showRGB(4, 256, 0); 

  } 

   

  currentTime = millis(); 

  if(currentTime > flashStart + duration){ 

    showRGB(1, 256, 0); 

    showRGB(2, 256, 0); 

    showRGB(3, 256, 0); 

    showRGB(4, 256, 0); 

  } 

} 

 

void showOff(int breathe){ 

  for(int i=0; i<2000; i++){ 

    showRGB(1, (i + 0)%768, brightness1); 

    showRGB(2, (i+192)%768, brightness1); 

    showRGB(3, (i+384)%768, brightness1); 

    showRGB(4, (i+576)%768, brightness1); 

    delay(breathe); 

  }  

  for(int i=0; i<40; i++){ 

    showRGB(1, (i*192 + 0)%768, brightness1); 

    showRGB(2, (i*192+192)%768, brightness1); 

    showRGB(3, (i*192+384)%768, brightness1); 

    showRGB(4, (i*192+576)%768, brightness1); 

    delay(200); 

  }  

} 

 

void showRGB(int LED, int color, int brightness1){ 

  int redIntensity; 

  int greenIntensity; 

  int blueIntensity; 

   

  if (color < 256) {          // zone 1   

    redIntensity = 255 − color;    // red goes from on to off 

    greenIntensity = color;        // green goes from off to on 

    blueIntensity = 0;             // blue is always off 

  } 

  else if (color < 512){ 

    redIntensity = 0;                     // red is always off 

    greenIntensity = 255 − (color − 256); // green on to off 

    blueIntensity = (color − 256);        // blue off to on 

  } 

  else if (color < 768){ 

    redIntensity = (color − 512);         // red off to on 

    greenIntensity = 0;                   // green is always off 

    blueIntensity = 255 − (color − 512);  // blue on to off 

  } 

  else{ // white 

    redIntensity = 255;         // red off to on 

    greenIntensity = 255;                   // green is always off 

    blueIntensity = 255;  // blue on to off 

  } 
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  startFlash(LED, redIntensity, greenIntensity, blueIntensity, brightness1); 

} 

 

void startFlash(int LED, int R, int G, int B,int brightness1){ 

  LED = LED *3; 

  analogWrite(LED+1, brightScale(R,brightness1,R_LIMIT)); 

  analogWrite(LED, brightScale(G,brightness1,G_LIMIT)); 

  analogWrite(LED−1, brightScale(B,brightness1,B_LIMIT)); 

} 

 

int brightScale(int intensity, int brightness1, int limit){ 

  float fintensity = float(intensity); 

  float fbrightness1 = float(brightness1); 

  float flimit = float(limit); 

  float result = fintensity * (fbrightness1/255.0) * (flimit/255.0); 

  return int(result); 

} 

 

void serialFlush(){ 

  while(Serial.available() > 0) { 

    char t = Serial.read(); 

  } 

} 

MATLAB Data Processing Automation Code 

M = csvread('preprocessed−log−07.10.2018−16.02.47.csv'); 

 

%csvread 

 

eegdata = M; 

eegdata = eegdata'; 

 

eeglab 

EEG = pop_importdata('data',eegdata,'srate',128); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG,0,'setname','eegdata','gui','off'); 

EEG = eeg_checkset( EEG ); 

 

EEG = pop_chanevent(EEG,5,'edge','leading','edgelen',0); 

EEG = pop_chanedit(EEG, 'load',{'emotivbox−6electrode−2.ced' 'filetype' 

'autodetect'}); 

EEG = pop_eegfilt(EEG, 1, 0, [], [0]); 

EEG = pop_eegfilt(EEG, 0, 20, [], [0]); 

eeglab redraw; 

 

%>>>>>>>>>>>>>>>>marker 1 

EEG = pop_epoch(EEG, {'1'}, [−1 2], 'newname','epochs_1'); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG,1,'gui','off'); 

EEG = pop_rmbase( EEG, [−1000 0]);  

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>auto reject 

EEG = pop_eegthresh(EEG,1,[1:4] ,−40,40,−1,1.9922,0,0); 

EEG = eeg_checkset( EEG ); 

%eeglab redraw; 

EEG = eeg_rejsuperpose( EEG, 1, 0, 1, 0, 0, 0, 0, 0); 

EEG = pop_rejepoch( EEG, EEG.reject.rejglobal ,0); 

eeglab redraw; 

 

pop_export(EEG,'C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\epo

chs−1−ar.avg','erp','on','transpose','on','precision',4); 

 

 

%>>>>>>>>>>>>>>>>marker 2 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 3,'retrieve',1,'study',0);  

[ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG, CURRENTSET); 

EEG = pop_epoch(EEG, {'2'}, [−1 2], 'newname','epochs_2'); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG,4,'gui','off'); 

EEG = pop_rmbase( EEG, [−1000 0]);  

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>auto reject 

EEG = pop_eegthresh(EEG,1,[1:4] ,−40,40,−1,1.9922,0,0); 

EEG = eeg_checkset( EEG ); 

%eeglab redraw; 

EEG = eeg_rejsuperpose( EEG, 1, 0, 1, 0, 0, 0, 0, 0); 
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EEG = pop_rejepoch( EEG, EEG.reject.rejglobal ,0); 

eeglab redraw; 

 

pop_export(EEG,'C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\epo

chs−2−ar.avg','erp','on','transpose','on','precision',4); 

 

 

 

%>>>>>>>>>>>>>>>>marker 3 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 5,'retrieve',1,'study',0);  

[ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG, CURRENTSET); 

EEG = pop_epoch(EEG, {'3'}, [−1 2], 'newname','epochs_3'); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG,5,'gui','off'); 

EEG = pop_rmbase( EEG, [−1000 0]);  

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>auto reject 

EEG = pop_eegthresh(EEG,1,[1:4] ,−40,40,−1,1.9922,0,0); 

EEG = eeg_checkset( EEG ); 

EEG = eeg_rejsuperpose( EEG, 1, 0, 1, 0, 0, 0, 0, 0); 

EEG = pop_rejepoch( EEG, EEG.reject.rejglobal ,0); 

eeglab redraw; 

 

pop_export(EEG,'C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\epo

chs−3−ar.avg','erp','on','transpose','on','precision',4); 

 

%>>>>>>>>>>>>>>>>marker 4 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 7,'retrieve',1,'study',0);  

[ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG, CURRENTSET); 

EEG = pop_epoch(EEG, {'4'}, [−1 2], 'newname','epochs_4'); 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG,7,'gui','off'); 

EEG = pop_rmbase( EEG, [−1000 0]);  

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>auto reject 

EEG = pop_eegthresh(EEG,1,[1:4] ,−40,40,−1,1.9922,0,0); 

EEG = eeg_checkset( EEG ); 

%eeglab redraw; 

EEG = eeg_rejsuperpose( EEG, 1, 0, 1, 0, 0, 0, 0, 0); 

EEG = pop_rejepoch( EEG, EEG.reject.rejglobal ,0); 

eeglab redraw; 

 

pop_export(EEG,'C:\\Users\\Tharinda\\Documents\\MATLAB\\eeglab14_1_1b\\eeg−common\\epo

chs−4−ar.avg','erp','on','transpose','on','precision',4); 
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Appendix D: User Feedback Form 

Post−experiment questionnaire (to be filled by the 

participant) 

# Question 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 

1 The headband was comfortable to wear      

2 I did not experience eye fatigue      

3 I am okay with the application of 
conductive gel that was used 

     

4 I believe that this system is safe for the 
users 

     

5 
The extra safety explanations and 
procedures helped me be more confident 
about using this 

     

6 
The extra safety explanations and 
procedures scared me more, rather than 
making me more confident 

     

7 Using this did not increase my stress 
levels 

     

8 
The investigator was polite and 
respectful towards me during the 
experiments 

     

9 This method of input is user friendly for 
me 

     

10 This method of input is effective for 
healthy users in general 

     

11 
This method of input might be more 
effective and suitable for disabled and 
paralyzed individuals 

     

12 I would recommend more people to try 
this out 

     

 

Other comments and suggestions for improvement: 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________ 

 


