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Abstract

Identification of arrhythmia is crucial to recognize cardiovascular dis-

eases early. There has been much research over the past to automate the

detection process of arrhythmia. Though most of the recent approaches

have given good accuracies, such approaches use high resources which

limits the real-time classification in low-end devices. Most of the meth-

ods proposed in the literature are not explicitly evaluated to support

real-time classification. In this work, we propose a novel hybrid clas-

sification framework for real-time arrhythmia classification by using a

deep convolutional neural network and dynamic time warping (DTW)

distance-based alignment measure. A new data structure based on cir-

cular arrays has also been proposed to calculate the alignment scores

efficiently. The hybrid classifier is inspired by the similarity of the heart

rhythm between adjacent consecutive beats. Incorporating such context

of the unknown beat to the classification leads to a significant perfor-

mance notably in prediction time.

In order to evaluate the complete framework, forty-six ECG sequences in

the MIT-BIH database streamed as a continuous time series data. Per-

formance of the framework is tested on accuracy and speed over different

hardware configurations. Our classification model achieved state-of-art

performance with an average accuracy of over 97.05% for five super-

types of arrhythmia defined by AAMI standard. We have compared the

performance of our CNN with VGG19 and AlexNet architecture based

deep convolutional neural network models. The hybrid classifier predic-

tion time outperformed the prediction time of deep learning methods

proposed in literature achieving the same accuracy. As a future work,

generalizing the proposed hybrid approach to other domains which uses

sequence prediction can be investigated.
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Preface

A novel framework for real-time arrhythmia classification by using a

deep convolutional neural network and dynamic time warping (DTW)

distance based alignment measure is introduced in this dissertation. The

concept proposed for the hybrid classifier behind this approach which

involved a thorough analysis of the data and is solely my own work. A

similar approach has not been proposed in any other study related to

the domain of arrhythmia classification. Also, signal to 2D image trans-

lation proposed in the beat transformation phase was adapted to this

domain from histogram based image processing techniques. A new data

structure based on circular arrays has been proposed to calculate the

alignment scores efficiently. However convolutional neural networks are

recommended in the literature as good performing classifier and used in

similar research recently. Preprocessing techniques such as noise reduc-

tion and baseline wanderings removal are adapted from the literature.

Other research works related to this domain are not specifically evalu-

ated for real-time classification. Therefore, the evaluation method intro-

duced in this dissertation for the classifier performance in terms of speeds

for different hardware configurations is a novel evaluation method.
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Chapter 1

Introduction

According to the World Health Organization, 17.7 million people died from cardio-

vascular diseases in 2015, representing 31% of all global deaths [1]. Cardiovascular

diseases are the diseases which involve heart or blood vessels. Heart attack, stroke,

heart arrhythmia are common cardiovascular diseases. Over 90% of cardiovascular

diseases can be prevented [2]. Most cardiovascular diseases can be prevented by

addressing behavioral risk factors such as tobacco use, unhealthy diet and obesity,

physical inactivity and harmful use of alcohol using population-wide strategies. As

[1] stated, it needs to detect and have medication on cardiovascular diseases early.

Identifying arrhythmia is very important to recognize such cardiovascular diseases

early. Many cardiac-related disorders can be found by analyzing the rhythm changes

in the heartbeat. Cardiologists find it challenging to make a correct diagnosis for

arrhythmia by following conventional techniques like visual analysis as it takes ex-

perience and time. Methods proposed in the literature to classify arrhythmia are

mostly based on electrocardiographic (ECG) waveform features, but contextual in-

formation such as age, gender, medical history, behavioral aspects and continuous

rhythm without abnormalities, etc. are also being considered by medical practi-

tioners when classifying arrhythmia.

Patients with heart problems need to undergo a cardiac test at the hospital by using

the ECG devices or instruments. Any disorder of heart rate or rhythm, or change

in the morphological pattern, is an indication of cardiac arrhythmia, which could

be detected by analysis of the recorded ECG waveform. After testing, a cardiolo-

gist makes a diagnosis that combines the ECG with the clinical symptoms to take

into consideration whether the patient’s heart condition has been abnormal. When

measuring the ECG patient might not be in an arrhythmia condition which makes

it harder for doctors to diagnose. Therefore, evaluation of rhythm disorders usually
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requires a detailed discussion of symptoms and a physical exam with a health-care

professional.

Following the traditional approach, if the rhythm irregularity exists while the ECG

is being recorded, it can be identified immediately by consulting with a health-care

professional. Otherwise, more specialized testing may be required. A 24-hour (or

longer) recording of the heartbeat is often necessary to detect any rhythm problem

that occurs daily but not regularly.

Research work which has been reported in the literature on beat detection and

classification of ECG signal, described under chapter two. Most of them use ei-

ther time or frequency domain representation of the ECG waveforms, from which

many specific features are defined, allowing the recognition of the beats belonging

to different classes. The most challenging problem faced by today’s automatic ECG

analysis is the considerable variation in the morphologies of ECG waveforms. More-

over, we have to consider the time constraints such as computational time as well [3].

Apart from ECG analysis, recently researchers from Google has developed an algo-

rithm [4] to predict cardiovascular risk factor using images of the retina.

1.1 Domain background

The objective of this work is to provide a computer algorithm which can recognize

and classify abnormalities of heartbeats. This section provides a brief introduction

to the domain of arrhythmia.

Heartbeat is fabricated by contraction and relaxation of muscles in the heart. Mus-

cle contractions cause an electrical change which is known as depolarization. Such

electrical changes can be identified by using electrodes attached to the surface of

the body. In an electrical point of view, four chambers of the heart can be observed

as two regions where atrium (two upper chambers) contract together and ventri-

cles (two lower chambers) contract together. The electrical activation of the heart

normally starts from a special area of the right atrium called the sinoatrial (SA)

node shown in figure 1.1. Then takes a small delay to grow into the lower node of

the atrium, atrioventricular (AV) node. Thereafter the electrical impulse rapidly

propagates down.
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Figure 1.1: Schematic diagram of the heart [5]

The electrical activation may not always start from the SA node. The normal

heart rhythm, where the electrical activation begins from the SA node, is called

‘sinus rhythm’. Sinus rhythm is necessary, but not sufficient, for normal electrical

activity within the heart [6]. An electrocardiogram (ECG, also known as EKG) is

an important tool to identify the origin and the spread of a heartbeat.

Figure 1.2: A good record of a normal ECG [5]

Electrical activity of the heart can be viewed from ECG (Figure 1.2) which is mea-

sured by using leads connected to the surface of different parts of the body. Medical

professionals use ECG to diagnose and early recognize cardiovascular diseases and

other heart conditions by analyzing the report. i.e. ECG is a matter of pattern

recognition. Deflections of the signal are known as waves and arbitrarily chosen set

of letters, P, Q, R, S, and T are being used to refer the waves as shown in the figure

1.3.
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Figure 1.3: Normal ECG, including a U wave [5]

1.2 Research focus and research questions

Real-time analysis has become one of the main component of modern health de-

vices. In modern days, there are different portable devices which have been favored

to measure several heart conditions. Heartbeat measuring devices and portable

ECG recorders make it easier for an ordinary person to get useful information and

get immediate medical consultancy from doctors before following the traditional

approach. Existing devices and models take several duration of ECG recorded and

then analyze the recording. Indeed there are limitations when processing ECG in

such devices. This research would also find the ability to extend the detection model

to support streaming recordings with handheld and other devices to fit into a live

arrhythmia detection model.

At the time of measuring the ECG, medical professionals may not find exact ir-

regular heartbeats to give a proper diagnosis. However, the ECG signal sequence

produces some insight about arrhythmia. Otherwise, ECG has to be measured for

a long period of time to get the exact points of irregularities. This work is carried

out in order to investigate how to incorporate such inter-related beat information

into an automatic arrhythmia classification model.

Medical practitioners use ECG reports and clinical symptoms to analyze whether

a patient has arrhythmia (also known as heart rhythm irregularities). Morpho-

logical features, interval related features, etc. can be used for automatic analysis

heart rhythm [6]. However, hand-crafted features need to identified correctly and

most of the times these identified features are not enough to predict all kinds of

arrhythmia [7]. Recent works on arrhythmia domain have suggested data-driven

approaches provide higher performance than rule-based methods which strongly re-

lies on hand-crafted features. Out of the data-driven methods [8] states that deep
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learning approaches like convolutional neural networks and recurrent neural net-

works produce the best results as they are not relying on finding features manually.

According to [8] deep-learning methods also removes the burden of preprocessing

to a certain extent. But these deep-learning methods are not explicitly evaluated

in real-time environments. There are complications in prediction time and space

requirements which hinders the usage of deep-learning methods in live systems.

Therefore, this work is mainly focusing on three questions identified from the gaps

in the literature.

1. What are the restrictions and obstructions for real-time classification with

deep learning classifiers?

2. How to extend arrhythmia classification into a real-time approach by preserv-

ing the accuracy?

3. How to identify and incorporate inter-related beats to improve the classifier?

1.3 Aims and objectives

This research aims to support the detection process of heart rhythm irregularities

through live monitoring of arrhythmia by incorporating a deep learning classifier

and augmenting inter-related features of beats. Objectives of the research can be

listed as follows,

• Analyze the drawbacks and limitations of the existing approaches.

• Identify the technical restrictions and obstructions which prevent the devel-

opment of a real-time ECG arrhythmia detection.

• Incorporate deep-learning classifier for the arrhythmia classification process.

• Evaluate the complexity of deep-learning model for live classification.

• Develop a real-time monitoring and arrhythmia classification framework.

• Evaluate the complete framework on benchmark data.
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1.4 Delimitations of scope

This research explores the possibilities to incorporate selected contextual informa-

tion of inter-related beats along with streaming ECG data into a real-time frame-

work of heart arrhythmia classification. There are different classes of arrhythmia

defined in the medical literature and standards like AAMI groups the types of ar-

rhythmia classes into superclasses. The framework will not consider all the types of

arrhythmia for the classification. Instead, a selected set of arrhythmia types will be

considered. Several additional processing of the ECG signals can be observed when

practically testing the framework in a real environment. However, the strength of

processing has to be determined with respect to the devices used. In this research,

only the core model is concerned without any hardware level implementations.

1.5 Outline of the dissertation

The dissertation is structured as follows. Chapter two explores the existing ap-

proaches related to the domain of automatic heart arrhythmia detection. Chapter

three describes the proposed research design and methodology. Potential ways of

addressing the research problem are justified in this chapter. Chapter four illus-

trates the implementation details of selected algorithms and data structures in the

proposed design. Utilization of software, hardware related configurations and proto-

type application details are also discussed under chapter four. Chapter five presents

the evaluation model and the evaluation results of the proposed approaches. The

last chapter, chapter six demonstrates the conclusion of the thesis and outlines the

future work.
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Chapter 2

Literature review

2.1 Arrhythmia detection

Conventional method to detect and diagnose arrhythmia is by analysing the pres-

ence of a particular set of signal features by a healthcare professional. Patients with

heart problems need to undergo a cardiac test at the hospital by using the electro-

cardiographic (ECG) devices or instruments. After testing, a cardiologist makes a

diagnosis that combines the ECG with the clinical symptoms to take into consid-

eration whether there has been an abnormality in the patient’s heart rhythm. Any

disorder of heart rate or rhythm, or change in the morphological pattern, is an in-

dication of cardiac arrhythmia, which could be detected by analysis of the recorded

ECG waveform. An ECG signal provides the following information of a human

heart which are useful to detect arrhythmia [9], Heart position, relative chamber

size, impulse origin and propagation, heart rhythm, conduction disturbances and

changes in electrolyte concentrations etc.

RR interval based techniques were used for arrhythmia detection by Donald E.G,

Alan S.W, Jyh-Yun W, Malcolm C.L, and John H.T in 1978 [10] where the statis-

tical nature of RR intervals were used for the analysis of abrupt changes. Adaptive

recurrent filtering technique has been proposed for arrhythmia detection by Thakor,

Nitish V and Y-S. Zhu [11] in 1991 which finds the stability departures in beat to

beat morphology through recurrent features of each heartbeat signal complexes and

P-QRS-T complex synchronization characteristics. This work is limited to a several

set of arrhythmia detection problems, which they mention additional pattern recog-

nition algorithms can be used along with the proposed adaptive recurrent filters to

detect vast range of arrhythmia. Due to the complexity of arrhythmia detection

which often involving diverse morphologies and rhythms that vary among different

subjects as well as over time for the same subject, this work has suggested that
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data adaptive algorithm are desirable.

PhysioNet/CinC Challenge 2017 (PhysioNet/CinC Challenge is a popular research

challenge conducted every year) was based on the theme arrhythmia detection. The

challenge encourages the development of algorithms to classify, from a single short

ECG lead recording (between 30 s and 60 s in length), whether the recording shows

normal sinus rhythm, atrial fibrillation (AF), an alternative rhythm, or is too noisy

to be classified. As an entry to the PhysioNet/CinC challenge 2017, a research

has been done by Schwab et al [12] to implement a classifier for arrhythmia using

recurrent neural networks (RNN). The approach is based on a set of interrelated re-

current neural networks which can jointly identify patterns of ECG segments. This

work describes that the significant and most important part is the segmentation

of heartbeats in ECG recordings and the identification of independent feature set

to train the model. Arrhythmia are classified by segmented heartbeats rather than

classifying the raw ECG signals. From the evaluation, class-wise F1 scores of 0.90,

0.79 and 0.68 obtained respectively for normal rhythms, AF and other arrhythmias

giving the average score 0.79. For future work they suggests that the contextual

information can improve accuracy of the model. Potential contextual information

would include additional information about the patient’s diagnostic and / or health

state, i.e. prior diagnoses, electronic health records, lab results, genomics, etc..

A model which can diagnose irregular heart rhythms from single lead ECG signals

using deep convolutional network which can map a sequence of ECG samples to

a sequence of arrhythmia annotations has been proposed by Rajpurkar, Pranav,

et al. [13]. Network learns to classify and segment 12 arrhythmia types. Neural

network is a 34-layer convolutional neural network (CNN) which takes a time-series

of arbitrary length raw ECG signal as the input and outputs a sequence of labeled

prediction in each second. Each label is one of 14 rhythm classes (12 arrhythmias

+ sinus + noise). For training and evaluation, this work has used their own dataset

having 64,121 ECG records and known to be 500 times larger than the existing

datasets like MIT-BIH arrhythmia dataset. These records were captured using sin-

gle lead continuous monitoring tool called Zio Patch. This model has out performed

the average cardiologist score on F1 metrics. This has been done for 12 selected

types of arrhythmia and there are some other arrhythmia which were not included

in this work. For example this do not detect Ventricular Flutter or Fibrillation.

According to the research, extending of the work to the other types of arrhythmia

and automatic detection of other forms of heart disease with high-accuracy from
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single or multiple lead ECG records can be examined further. Similar research has

been done to compare CNN and feature-based approaches by Andreotti, Fernando,

et al. [14]. A drawback of CNNs is the fact they operate on grid-like structures

(e.g. images or fixed segment windows). They have used ResNet with CNN for

improved accuracy.

Apart from ECG analysis, recently a research team from google [4] has published an

approach based eye’s retinal images to find cardiovascular risk factors. Analyzing

scans of the back of a patient’s eye, the approach is able to accurately deduce data,

including an individual’s age, blood pressure, and whether or not they smoke. The

rear interior wall of the eye (the fundus) is chock-full of blood vessels that reflect the

body’s overall health. Prediction of arrhythmias are not mentioned in the research

but the approach can predict useful contextual information which can be used for

arrhythmia detection.

Identification of beats in an ECG signal is a common sub-problem of heart arrhyth-

mia classification. Most visible feature to identify a beat is the QRS complex shown

in Figure 3. A real-time algorithm for QRS detection has been proposed by Pan

J and Tompkins W.J in 1985 [15] which is based on the digital analysis of slope,

amplitude, and width. Algorithm search back for missed beats and periodically

adapts each threshold and RR interval limit automatically.

Figure 2.1: Schematic diagram of normal sinus rhythm [16]

This adaptive approach provides for accurate use on ECG signals having many di-

verse signal characteristics, QRS morphologies, and heart rate changes. Adaptive
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techniques are advantages because they do not require a prior knowledge of the

signal or noise characteristics as do fixed filters. It provide estimated synthesis of

desired signal and error feedback to modify the filter parameters. In evaluations

using the MIT/BIH arrhythmia database, 99.325% QRS complexes were accurately

detected. Algorithm is popular with the name Pan Tompkins algorithm and is

widely used in arrhythmia detection and ECG signal processing even for modern

research as well. Hidden Markov models with Gaussian observation probability

distributions have been applied to the task of beat detection [17]. Artificial neural

networks have also been used for the task of beat detection [18]. These models

have achieved high-accuracy for some beat types, but they are not yet sufficient for

high-accuracy heart arrhythmia classification.

Pan Tompkins algorithm has been used by several works in detecting beats. Patrick

S. Hamilton [19] uses Pan Tompkins algorithm and [20] for QRS detection and pro-

vides a software tool for ECG analysis. Table 2.1 depicts several algorithmic imple-

mentations of beat detection benchmarked on sensitivity and precision against the

MIT-BIH arrhythmia database.

Table 2.1: Peak detection algorithms benchmarked on sensitivity and precision

Hamilton Christov Engelse and Zeelenberg
Average Sensitivity 96.2% 92.68% 93.62%
Average Precision 99.79% 99.42% 98.45%
Gross Sensitivity 96.10% 92.23% 93.54%
Gross Precision 99.80% 99.44% 98.56%

Most of the research done in the area have used several datasets. MIT-BIH ar-

rhythmia database [21], [22] is a benchmark dataset with of 15 rhythms avail-

able. This database consists of 48 annotated ECG recordings each with 30 minutes

long which were recorded using Holter device. There are several derivations of

this dataset. MIT-BIH Atrial Fibrillation Database and MIT-BIH Normal Sinus

Rhythm Database etc. are also being used by similar work. Apart from the above

mentioned work, there has been other related work done in ECG analysis and ar-

rhythmia detection. Table 2.2 compare several data driven approaches carried out

for heart rhythm classification.
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Table 2.2: Analysis of data driven approaches

Main focus Study parameters Description of work Remarks
Waveform characteristics
and phase/rhythm
characteristics [23]

1. QRS complex width

2. RR interval

3. Difference in absolute area
(ArDiff, using normalized waveform
area)

4. Maximal cross-correlation
coefficient

1. Decision tree based approach

2. Real-time detection of QRS
complexes (using Pan-Tompkins
algorithm)

3. Intervention free normal/
abnormal heart beat classification

4. Android-based ECG monitoring
application

Used MIT-BIH Arrhythmia and
MIT-BIH Supraventricular Arrhythmia
databases.

Sensitivity for abnormal beat detection
was 89.5% with a specificity of 80.6%

Limitations
Binary classification of beats either
Normal or Abnormal

Support vector machines
and genetic algorithm [24]

1. Amplitudes of P-peak, Q-valley,
R-peak, S-valley and T-peak

2. Positions of P-peak, Q-valley,
R-peak, S-valley, T-peak

3. Time ratio between last
beat and next beat
(RR interval ratio)

Genetic algorithm has been
used to obtain optimum SVM
parameter values.

Used MIT –BIH arrhythmia database.

Overall accuracy of 99.8112%
and a good sensitivity of 99.9747%
for PVC arrhythmia

Limitations
No real time analysis.

Only for PVC arrhythmia.
(Normal, PVC , Other)

Continued on next page...
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Table 2.2 – continued from previous page.
Main focus Study parameters Description of work Remarks

Recurrent neural networks
with deep long short-term
memory (LSTM) [25]

Raw ECG signals Using LSTM networks, ECG
signal can be directly fed
into the network without
preprocessing as required by
other techniques

Does not require hand
coded features but works
directly on raw signals

Used MIT-BIH Arrhythmia Database.
96.45% F-score accuracy for
the test set.

Limitations
No real time analysis,
1 minute recordings of ECG signals.

5 classification classes
Normal, PVC, APC, PB , VC

Least square support
vector machine with
principal component
analysis [26]

15 Features extracted from PCA
out of 279 attributes in
the dataset

Arrhythmia classification using
LS-SVM. PCA has been used for
feature extraction.

Missing values were dealt with
probabilistic values considering
distribution.

UCI arrhythmia dataset has been used.

Obtained accuracies,
96.86% (50-50 train-test)
100% (70-30 train-test)
100% (80-20 train-test)

Limitations
Dataset is not challenging as all the
features are annotated

Not considering raw ECG signals

Continued on next page...

12



Table 2.2 – continued from previous page.
Main focus Study parameters Description of work Remarks

Backpropagation Artificial
Neural Network [8]

Initially 4096 features extracted
using transferred deep learning.
Features were subjected PCA to
reduce number of features.

ECG feature extraction using
transferred deep learning
(AlexNet)

1 min intervals of 3 MLII
channel records are used.
100, 118 and 217 (training)
101, 231 and 107 (testing)

Used MIT BIH database.
92% testing accuracy

Limitations
Image processing techniques reduces
the performance

Limited number of data has been used
from the dataset (6/48 records)

Only classifying 2 heart conditions
Optimum-path forest
(OPF) classifier [27]

1. DWT

2. RR range

3. Signal energy

4. Morphological

6 different feature extraction
mechanisms used.

OPF shown to be more efficient
than SVM in terms of the
computational time for both
training and test phases.

Used MIT-BIH arrhythmia database.

90.75% accuracy obtained for 5 classes

Continued on next page...
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Table 2.2 – continued from previous page.
Main focus Study parameters Description of work Remarks

Convolutional Neural
Networks [13]

Raw ECG signals Large annotated dataset and a
very deep convolutional network
has been used.

Introduced a new dataset with 29,163
unique patients and 14 classes.

Obtained 80% precision and 78.4%
sensitivity.

Doesn’t detect two main arrhythmias,
Ventricular Flutter or Fibrillation.
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2.2 Conclusion

There have been many research over the past to automate the detection process

of arrhythmia. Almost all the traditional and modern approaches use ECG signals

as a key input to determine heart rhythm irregularities and most of the tradi-

tional arrhythmia detection approaches were based on the use of R-R interval in

ECG waveform, evaluating heart rate variability and determining the presence of

morphological characteristics like the absence of P-wave etc. Unlike traditional

hand-engineered approaches recently there have been many research on cardiac ar-

rhythmia detection based on artificial neural networks. In the literature, highest

accuracies were obtained by using feature annotated datasets. Arrhythmia classi-

fication for MIT-BIH arrhythmia dataset still remains challenging as features are

not annotated and dataset maps to the real world scenario of data acquisition.

Recurrent neural network with LSTM and Convolutional neural network have been

identified from the literature which has given good performance. Real-time appli-

cation which uses such deep learning techniques on arrhythmia detection are often

hindered by high computational complexity and frequent memory accesses.

From above analysis, most of the work only use raw ECG data. Applicability

of information such as past medical history, health state, and other contextual

information has been poorly considered. Also, past works have not specifically

evaluated real-time arrhythmia detection on mobile devices for streaming ECG

data. Lack of evaluation of the classifiers, specially deep learning classifiers [28] for

the real-timeness along with the accuracy is a major point that has to be addressed.
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Chapter 3

Design

3.1 Research methodology

The main aim of this research is to investigate and extend arrhythmia classification

into a real-time approach by preserving state-of-art accuracy. To achieve this goal,

Design Science [29] with Constructive research approach (a mixed methodology)

was carried out which involved in the development of a real-time monitoring and

arrhythmia classification proof of concept prototype as well.

Problem awareness

Investigation/Analysis

PoC prototype (partial solution)

New model (construct)

Evaluation

Figure 3.1: Phases aligned with mixed methodology (Design Science and Construc-
tive)
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Figure 3.1 shows aligned the phases of Design Science methodology and Construc-

tive methodology according to the purpose of this research. In Design Science

research, new scientific knowledge can be generated by means of constructing an

artifact, and the core of this approach is a problem-solving process used to develop

the artifact. Artifacts can be in the form of constructs, models, methods, instantia-

tions, or better theories and are developed to enable a better understanding of the

development, implementation, and use of information systems [30]. The following

is a brief overview of the steps in Design Science methodology aligned with the

proposed arrhythmia classification framework.

Objective of the solution

The objective is to investigate incorporating electrocardiographic signals with deep

learning model in order to classify different arrhythmia types in a real-time ap-

proach.

Problem awareness

As described in the 1st chapter, early identification of cardiovascular diseases and

risk factors is a problem under investigation. Arrhythmia which is a type of cardio-

vascular disease also supports in early recognize other cardiovascular diseases. In

order to investigate the problem and possible solutions, a comprehensive literature

review on the present status of arrhythmia detection and real-time arrhythmia de-

tection frameworks will be performed.

Solution design and implementation

The design is based on a hybrid model combining a deep learning classifier with a

rule-based engine to speed up the real-time detection. A proof of concept proto-

type will be developed as the artifact. Detailed description on design approach is

presented in section 3.4.

Demonstration

To demonstrate the feasibility of the proposed work MIT-BIH arrhythmia database

will be used. Arrhythmia and cardiology related domain knowledge needs medical

professional support. Domain knowledge for the research is facilitated by the Sri

Lanka Heart Association (SLHA).

Evaluation

Twofold evaluation will be carried out in order to evaluate the performance of the
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model and performance of the complete framework. A detailed description of the

evaluation plan and evaluation criteria are mentioned in Chapter 5.

3.2 Design considerations

One of the central question in the research design is to identify which machine

learning model to be used to develop the classifier. Based on the literature, there

are multiple possible models which can be used. Support Vector Machines, Recur-

rent Neural Networks with Long Short-Term Memory (LSTM) and Convolutional

Neural Networks have been identified from the literature which has given an excel-

lent performance (see table 2.2). Though deep learning approaches have given best

results, incorporating a deep learning model to a real-time classifier is a challenging

task.

SVMs are inherently for two-class classification, where the best accuracies have been

given for a maximum of 3 classes. The issue with SVM is that it is hard to engineer

kernel when the number of classes is high. Problem with Recurrent Neural Network

with LSTM is that the network builds up memory. Therefore, a high memory re-

quirement exists. When compared with CNN, RNN with LSTM also perform more

computations.

Another major concern is the incorporation contextual information into the classifier

model. Though there are enough heartbeats to train a classifier (MIT-BIH dataset

contains over 105, 000 heartbeats), there are only a limited number of subjects

(MIT-BIH dataset contains 48 subjects) which would be not enough to incorporate

contextual information with a machine learning classifier. Therefore, the classifier

would use a rule-based approach and a machine learning approach which combines

to form a hybrid model.

3.3 ECG data preprocessing

MIT-BIH Arrhythmia Database contains 48 two-channel recordings that were ob-

tained by the Beth Israel Hospital Arrhythmia Laboratory between 1975 and 1979.

Each recording is 30 minutes (or slightly higher), recorded with a Holter monitor

device. The subjects were 25 men aged 32 to 89 years, and 22 women aged 23 to

89 years where 60% out of all the subjects were inpatients.
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Out of the 48 recordings in the MIT-BIH dataset, we have used 46 records. Reason

for the elimination of two records is that this work only uses a single channel (single

lead). Except for two recordings (record 102 and record 104) all the other 46

recordings has MLII channel. Record 102, 104, 107 and 114 contains a high amount

of unknown beats. Therefore, for the final result, the two eliminated records have

less significance.

3.3.1 Noise removal

Preprocessing of the ECG beats needs to be performed to address the most com-

mon issues with the ECG signals. Prominent issues identified from the literature

are noise and baseline wanderings. According to the literature most of the noise is

located outside of the interval of 1.5 Hz to 50 Hz [31]. A low pass filter with a cut

off frequency of 50 Hz and a high pass filter with a cut off frequency of 1.5 Hz has

been used to remove the noise artifacts.

Some records in the dataset are unstable and contain power line interference, base-

line wanderings which caused by muscular movements [32] etc. as shown in the

figure 3.2.

Figure 3.2: MIT-BIH record 121 containing baseline wanderings

The baseline can be identified by applying a median filter over the signal. By

subtracting the signal amplitude values from the baseline gives a baseline wandering

free signal output (equation 3.1).

Signalnew = Signalold −Baseline (equation 3.1)

3.3.2 R-peak correction

Apart from noise, baseline wanderings and amplitude inconsistencies of ECG sig-

nals, beat annotations are also not aligned with the R-peaks as shown in figure 3.3.

Simple linear search around ten samples of the annotated beat can be used to cor-

rect the R-peak location. Therefore before the segmentation of the beats, R-peaks
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has to be adjusted accordingly.

Figure 3.3: On top, MIT-BIH record 103 with annotated beat positions. On bottom,
corrected R-Peak positions

Approach for the adjustment of R-peak positions of MIT-BIH dataset is follows.

Let Xi be annotated beat position and Yi be value at that position

1. Take the interval [Xi− Thresh,Xi + Thresh] (Thresh is set to 10)

2. Find the maximum value Ymax and Minimum value Ymin in that interval

(where Xmax and Xmin are corresponding sample positions).

3. Xmin is the beat position (Xbeat) if Ymin is existing near Yi and values

increasing after Ymin. Otherwise Xmax is the beat position

i.e.

if |Y max− Y i| < |Y min− Y i| and gradien(Xmin + 1) > 0;

then Xbeat = Xin ;

else Xbeat = Xmax ;
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3.3.3 Beat selection

There are 17 beat types defined in the entire MIT-BIH database. Table 3.1 shows

the list of all beat types and number of beats found for each beat type per record.

Below table depicts the total number of beats per each type found in the entire

database. (Refer Appendix A : table A.1 for the meaning of each shortcode)

Table 3.1: Beat types with respective beat count

Beat type (short) Number of beats

N 74722
V 7122
A 2544
a 150
F 802
R 7231
S 2
j 226
J 83
E 105
L 8067
e 16
/ 3616
f 260

Above table clearly shows the imbalanced nature of beat types in the dataset. Fur-

ther, the class imbalance has a significant effect on heartbeat classification because

some beat classes do not have a significant amount of beats to facilitate the classi-

fication process. Clear solution would be to group beat classes. Association for the

Advancement of Medical Instrumentation (AAMI) has introduced five heartbeat

super classes [33] which group 15 existing classes of 5 datasets including MIT-BIH

arrhythmia database. Below shows the AAMI standard for heartbeat classification.

N = Normal Beat; (N L R)

SVE = Supraventricular ectopic beats; (A a J S e j)

PVC = Premature ventricular contraction beats; (V E)

FV = Fusion of ventricular; (F)

Q = Unknown beats; (P / f u)

When considering the AAMI classification, dataset still has 90,020 Normal-type

beats while other four types have less than 10,000 beats. Therefore, for the training
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phase of the model, we have randomly selected 27,804 beats which cover all five

types of beats.

3.4 Approach

The core of the arrhythmia detection classifier is based on Convolutional Neural

Network, which often used as a deep learning network. In order to achieve real-

time classification, We propose a novel method which wraps a Convolution Neural

Network with a sequence alignment engine.

Before the classification of ECG signals, beat segmentation and image creation has

to be performed. Figure 3.4 shows the high-level flow of the proposed approach.

Raw ECG Data

Beat Trans-
formation

Hybrid Classifer
Real-time Beat
Classification

Prototype

Evaluate
Accuracy
and Speed

Alignment Score CNN

Figure 3.4: High level work flow diagram

3.4.1 Data acquisition

The approach does not depend on any device or sensor. Therefore ECG data can be

acquired from any standard ECG measuring instrument. Raw data input methods

are mainly considered in two different ways: Streaming ECG data and static ECG

data. Streaming data are only considered for the real-time classification model.
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CNN classifier is trained over a set of static ECG data. In the proposed approach,

it considers only a single channel ECG stream.

3.4.2 Beat transformation

This work does not consider R-peak detection since there is highly accurate algo-

rithms literature. Instead annotated R-peaks from the dataset are being considered.

Here, in the proposed approach a beat is defined as 180 sample width window cen-

tered to R-peak. See figure 3.5. Therefore, the R-peak gets centered at 90th sample.

Reason for selecting such a fixed window is to achieve time normalization by re-

moving the effect of the beat miss alignment.

Figure 3.5: Illustration of beat definition

ECG data are inherently 1-dimensional (1D). Signal to 2-dimensional (2D) repre-

sentation is necessary to classify the beats using a 2D CNN. Therefore, it needs to

grip two representations of a beat. 1D representation passes through the sequence

alignment engine whereas the 2D translation used to derive the actual classification.

In order to translate a beat signal into a 2D representation, this approach proposes a

direct sample matching through a range stretching technique. Range stretching is a

widely used method in the image processing field where it has been successfully used

to enhance distorted images. Contrast stretching is one such application based on

range stretching technique. To translate amplitude to 2D representation, initially,

it considers a matrix with the dimensions 190x100. The width of 190 represents the

180 samples and 5 sample padding from both the ends. Amplitude values are range

stretched from 3 to 93., i.e. height component (100 pixels) has a padding of 3 pixels

from the bottom and 7 pixels from the top. In another aspect, the above approach

also leads to amplitude normalization. For each 180 samples (as Yin), calculation of
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the pixel position (Yout) is done using the equation 3.2. CONSTMIN , CONSTMAX

are referred to the minimum and the maximum amplitude values in a beat.

Yout = 90− Yin − CONSTMIN

CONSTMAX − CONSTMIN

∗ 90 + 3 (equation 3.2)

All the Yout pixels are colored black and eroded with a filter of size 3x3. Figure 3.6

shows the resulting translation.

Figure 3.6: 2D translated beat

3.4.3 Hybrid classifier model

In this work, we propose a novel hybrid classifier model to classify arrhythmia. The

model contains three components namely, sequence alignment engine, decision layer

and convolutional neural network (CNN) based deep learning classifier. The goal of

the proposed hybrid model is to gain a good prediction time without a significant

loss in the accuracy of the deep learning classifier. The sequence alignment engine

and the decision layer is used in order to minimize the number of CNN classifications

and make use of the previously classified beats to predict new beats.
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Figure 3.7: Highlevel design of the proposed hybrid classifier

The similarity between adjacent consecutive beats has inspired the proposed archi-

tecture. By analyzing the heart rhythm of a person, it is evident that there is a

similarity between adjacent beats. Usually, normal heartbeats of a person are likely

to have a similar morphology. Therefore, there is no point of classifying every beat

in a sequence of streaming beats. Instead, the possibility of classifying a single beat

and measuring the similarity of that beat with the next beat can be considered.

Such a concept is useful for a real-time classification system as we need to consider

both accuracy and the speed of classification.

After the beat transformation stage, two representations of a beat are stored. i.e.

1-dimensional array and 2-dimensional array (matrix). When a beat is given to

classifying, if there are no prior CNN classifications for previously encountered set

of beats then that beat is classified using CNN. When there’s a CNN classified

beat within the last set of classifications, we measure the similarity between the

CNN classified beats and the beat to be classified. If the similarity value is above

a threshold value, CNN based classification is performed on that beat.

Dynamic time warping (DTW) algorithm is used to wrap the decision layer with

the sequence alignment engine. DTW algorithm measures the similarity between

two beats using a distance measure called DTW distance. Complete architecture

of the classifier model is shown in the figure 3.7.
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3.4.3.1 Sequence alignment engine

In the literature there have been several works carried out entirely using sequence

alignment and similarity measures [34, 35, 36] to classify different arrhythmia. How-

ever, the performance is not up to the level of the performance recorded by the deep

learning classifiers. In our work arrhythmia type is decided by the CNN deep learn-

ing classifier and the similarity is determined with previous CNN classified beats.

Adjacent heartbeats have a higher tendency to be aligned than other beats. Since

the focus of this work is to classify real-time arrhythmia on streaming ECG data,

such adjacent beats can be incorporated for the classification.

In the sequence alignment engine, there is a set of fixed-size storage buckets, which

we name as similarity buckets. Each of these similarity buckets is assigned to only

one beat type. i.e., a single similarity bucket holds only one type of beats. Therefore,

for the classification of 5 beat types, there should be five similarity buckets. When

a beat is classified through the CNN classifier, then the classified beat is added to

the corresponding similarity bucket. The task of a similarity bucket is to store the

most recent beats of a particular beat type. Each of these similarity buckets is a

first-in-first-out (FIFO) circular queue. Therefore, the least recent beat is replaced

by the new beat. Though the bucket has a set of beats, the output of a single

bucket is the median beat.

col1 col2 col3 ... coln
beat1 a11 a12 a13 ... a1n
beat2 a21 a22 a23 ... a2n
beat3 a31 a32 a33 ... a3n
beat4 a41 a42 a43 ... a4n
beat5 a51 a52 a53 ... a5n

Figure 3.8: A similarity bucket
Here the beat i is a record in the bucket which defined as ai1, ai2, .., ain

The median beat of a bucket is determined by the set of medians for each column

as expressed in the equation 3.3. n refers to the number of samples (columns) of a

beat, and median function calculates the median value of a set.

Beatmedian =
n⋃

j=1

median({a1j, a2j, a3j, a4j, a5j}) (equation 3.3)

Once the median beat of a bucket is calculated, a similarity value is calculated by

using an alignment measure.
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Figure 3.9: Unknown beat with median beats

As figure 3.9 depicts, an unknown beat is subjected to alignment with each median

beat obtained from the similarity buckets. Fast dynamic time warping algorithm

(DTW) is used to calculate the similarity. Dynamic time warping algorithm tries

to align two sequences using dynamic programming. Figure 3.10 shows how two

sequences (beat samples), X and Y are aligned using DTW method. The similarity

value is calculated by using a matrix, and the resulting similarity is given by the

alignment value of the last sample of X with the last sample of Y.

Figure 3.10: Visual representation of DTW algorithm

Alignment between any given sample of the sequence X and any given sample of

the sequence Y is given by equation 3.4. Samples of X are represented by i and
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samples of Y are represented by j.

fi,j = ‖xi − yj‖+ minimum{fi,j−1, fi−1,j−1, fi−1,j} (equation 3.4)

base values

f0,0 = 0

f0,j = fi,0 =∞ ∀i, j

As an example, for the two sequences given in the figure 3.10, alignment for 3rd

sample position of X with 2nd sample position of Y is, f3,2 = 8. Similarity value

for the two sequences is f6,6 = 20. DTW algorithm has a quadratic time and space

complexity of O(n2). In this work, we have used FastDTW [37] algorithm which is

an approximation of DTW algorithm. The FastDTW algorithm provides a linear

time and space complexity through a multilevel approach. Another approach which

we have used to reduce the time and space is subsampling. In work [35], a prominent

finding is that sub-sampling has improved the accuracy of the model. Our proposed

sequence alignment engine also uses a similar mechanism of subsampling.

Figure 3.11: Sub-sampled outputs of a beat

Subsampling reduces the number of samples in a sequence by skipping samples.

When a beat which has 180 number of samples is subsampled by 2, a single sample

is skipped every time resulting in a sequence with only 90 samples. By following

a trial and error basis for 2, 3, 4 and 5 skipping, the optimal number is chosen to

be four. After four skippings accuracy tends to decrease. [35] also states that the
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optimal number of skippings is four. Although the number of samples reduced by

subsampling is significant, there’s a less visual difference in the plots as seen in the

figure 3.11. Morphology and most of the features of a beat are preserved without

losing information.

Subsampled beats are stored in similarity buckets, and unknown beat which is

to be classified is also subjected to subsampling before measuring the similarity.

3.4.3.2 Decision layer

Decision layer decides whether a beat should be sent to the CNN classifier or not.

In a straightforward approach, it is possible to label the unknown beat to the beat

type of the similarity bucket which gives the maximum similarity value. However,

there can be complications regarding performance as it omits different parameters

like variance between the similarity values. One preferred approach would be to

identify ’normal’ and ’other’ beats (which may or may not be abnormal) and then

if the beat is labeled to be the type ’other’, then we can classify that beat using

a CNN classifier. Therefore, for the decision layer, it is possible to plug-in and

plug-out different algorithms.

In this work, a rule-based algorithm and a support vector machine (SVM) based

classification have been tested on taking decisions. An SVM model has been trained

for binary classification using the same dataset for normal and abnormal beats. Beat

samples are subjected to discrete Daubechies wavelet decomposition and the result-

ing approximated wavelet has been used as the input feature set for SVM.

Apart from the SVM classifier, a rule-based model has been also tested as the core

decision-making algorithm. Sequence alignment engine provides a set of alignment

scores for each beat type for the unknown beat. Decision rules are set according to

several threshold values incurred upon the similarities. Figure 3.12 shows the flow

of identifying whether the beat is a normal beat or not using the alignment scores.

Parameters have been chosen by trial and error basis. Although in this work we

focus mainly on finding normal beats in the decision layer, it possible to extend the

decision layer to check for other beat types as well.
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Scores

Max score
< thresh

is max for
normal?
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yes
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no
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no
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Figure 3.12: Decision rules for the rule based model
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3.4.3.3 Convolutional neural network classifer

Deep learning classifier which is used in this work is a convolutional neural network.

Usually, a deep learning neural network refers to an artificial neural network with

multiple layers between the input and output layer. Convolutional neural networks

can be taken inherently as a deep learning network as it contains at least one con-

volution layer between the input and output layer. A convolution layer is similar

to an ordinary layer which is made up of neurons. What changes is that the CNNs

make the assumption that the inputs are images which allows embedding several

image processing operations on each neuron.

As described in chapter two, there have been several research recently on apply-

ing deep learning models to arrhythmia classification. A significant performance

has been achieved by these methods when compared to traditional methods. How-

ever, high resource consumption and prediction time is a major downside which

obstructs the use of such networks in real-time frameworks. As shown in the figure

3.13, computational cost of standard convolution is HWNMK2 (refer the figure for

notations). Apart from fine-tuning CNNs for high performance, we use a specific

feature of the problem to gain good prediction time performance. i.e., the similarity

between adjacent heartbeats.

Figure 3.13: Visualization of the complexity of convolution according to [38]
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Reason to select a convolutional neural network is that out of most deep learning

methods CNNs has given good accuracy as well as it does not build up memory

compared to Recurrent LSTM networks.

Network Configurations

64x64 input image
Conv2D (3x3, ReLu)

MaxPooling
Conv2D (3x3, ReLu)
Conv2D (2x2, ReLu)

MaxPooling
Dropout
Flatten

Dense (ReLu)
Dropout

Dense (ReLu)
Dropout

Dense (Softmax, Output layer)

Figure 3.14: Modified LeNet model

Convolution Layer - A weight layer in which the weights are adjusted by convo-

luting with a filter (kernel).

Dense Layer - A fully connected weight layer in which every node in the layer is

connected to every node in the preceding layer.

Pooling - A technique which reduces the number of parameters by reducing the

spatial size of the image representation.

Dropout - A technique which defines ignore neurons in a neural network by adding

a penalty to the loss function.

As the core classifier, a modified version of LeNet architecture is used. LeNet is

importantly a lightweight architecture having a lesser number of layers. Therefore,

the calculations are done with fewer computations. Figure 3.14 shows the struc-

turing of layers in the architecture. Chapter 4 further describes the convolutional

neural network and parameters in detail.
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Chapter 4

Implementation

This chapter elaborates the implementation details of the proposed solution. In the

below sections, code segments of non-generic data structures proposed by this work,

critical algorithms, and parameters used in the model are explained along with the

details about the prototype, software tools, and services used.

4.1 Software tools

The proposed solution was implemented using python version 3.6. WFDB Software

Package is used for dataset related operations, signal processing, automated analy-

sis, annotation, and interactive analysis of waveform data (LightWave). MIT-BIH

dataset parsing has been done using the WFDB package. Google Colab, which

runs entirely in the cloud facilitated GPU computations for the Convolutional Neu-

ral Network. Colaboratory tool has been used to train the neural network model in

less time. Hardware configurations are simulated by using Google Cloud Platform

(GCP) virtual machines.

Figure 4.1: Interface of LightWave application

33



4.2 Dataset improvements

The MIT-BIH dataset has 48 subject records each recorded from Holter monitor.

Some records in the dataset are unstable and contain power line interference, base-

line wanderings, and noise. In order to overcome such issues, a median filter is

used to calculate the drift in the baseline and subtracted from the original signal

to eliminate baseline wanderings as implemented in the below function.

Listing 4.1: Baseline alignment

def remove baseline wandering(channel):
res = []
# med i an f i l t e r 1D
baseline = medfilt(channel, 71)
baseline = medfilt(baseline , 215)
# Remove Base l i n e
for i in range(0, len(channel)):

res.append(channel[i] − baseline[i])
return res

As described in section 3.3.2, R-peaks are not accurately annotated in the dataset.

Searching for a maximum or minimum turning has been done for a specific threshold

range around the annotated R-peak as shown in the code segment below. For a

given sample sequence and annotated beat position, below function outputs the

corrected R-peak position

Listing 4.2: R-peak correction

def rpeaks annotation correction(beat, cpos):
max pos = cpos
min pos = cpos

for j in range(cpos−10, cpos+10):
# Thresho ld from peak i s taken as 10
if beat[j] > beat[max pos]:

max pos = j

if beat[j] < beat[min pos]:
min pos = j

if beat[max pos]−beat[cpos] > beat[cpos]−beat[min pos] \
and beat[min pos]−beat[min pos+1] < 0 :
return min pos

else:
return max pos
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4.3 Input translation

One of the innovative approaches in this work is input translation. In order to trans-

late a beat signal into a 2D representation, the proposed direct sample matching

through range stretching technique has been implemented as below. For a given

1-D array, this function will find an appropriate 2-D representation where a 3x3

erosion filter follows each mapped coordinate.

Listing 4.3: Input translation with erosion

def image translation(samples):
max val = max(samples)
min val = min(samples)

img = Image.new(’1’, (190, 100))
pixels = img.load()
for i in range(img.size[0]):

for j in range(img.size[1]):
pixels[i, j] = 255

y positions = [map y pixel(x, min val , max val , 90) \
for x in samples]

for i in range(180):
xpos = i+5
ypos = (90−y positions[i])+3

# eros i on f i l t e r
pixels[xpos−1, ypos−1] = 0
pixels[xpos−1, ypos] = 0
pixels[xpos−1, ypos+1] = 0

pixels[xpos, ypos−1] = 0
pixels[xpos, ypos] = 0
pixels[xpos, ypos+1] = 0

pixels[xpos+1, ypos−1] = 0
pixels[xpos+1, ypos] = 0
pixels[xpos+1, ypos+1] = 0

return img

def map y pixel(val, min val , max val , height):
return int((val−min val)∗height/(max val−min val))
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4.4 Alignment scoring

A primary component of the design proposed by this work is sequence alignment

engine. A new data structure based on circular arrays has been implemented as

shown in listing 4.4. A bucket structure is a fixed size matrix which holds a set of

sequences. The least recent sequence in the bucket structure gets invalidated and

substituted by the new sequence which is pushing into the bucket. The function

’getMedian’ outputs a sequence with the median value of each column in the bucket

matrix.

Listing 4.4: Bucket data structure

class AlignmentBucket:
... # more code here
def push(self, data):

self.data[self.nextpos] = data
self.nextpos = (self.nextpos+1)%self.max size
self.median arr = []

def getMedian(self):
if len(self.median arr) > 0:

return self.median arr

result = []
bucket matrix = np.array(self.data[0:self.length()])
if len(bucket matrix) > 0:

for i in range(len(bucket matrix[0])):
result.append(median(bucket matrix[:,i]))

self.median arr = result
return result

Listing 4.4 shows how bucket structure is used to find the alignment scores with

unknown sequences with FastDTW algorithm.

Listing 4.5: Measurng alignment scores

similarities = []
for bucket in self.buckets:

if bucket != None:
bucket beat = bucket.getMedian()
distance = dtw.distance fast(bucket beat , input beat)
similarities.append(distance)

else:
similarities.append(math.inf)
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4.5 CNN model

A model similar to LeNet Convolutional neural network architecture has been

trained. The model consists of three convolution layers and three fully connected

dense layers. Convolution layers are followed by a max pooling layer which reduces

the number of dimensions. Initially, we start with 64x64 beat image. First convolu-

tion layer convolves the image with a 3x3 filter. For convolutional layers, we use a

ReLu activation function. Convolution is followed by a pooling operation with a 2x2

filter. Pooling operation with 2x2 filter reduces the number of dimensions by half.

After two convolutions and two max pooling operations, a fully connected hidden

layer has been added with ReLu activation. Finally, a fully connected output layer

with 5 output neurons (number of beat rhythm types) has been added. In order to

get probabilities for each output neurons (between 0 and 1), a softmax activation

function is used in the output layer. Implementation of the proposed CNN model

used Keras machine learning libraries and GPU-based Tensorflow backend as shown

in the listing 4.5

Listing 4.6: Convolutional neural network structure

model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3),

activation=’relu’,
input shape=input shape))

model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation=’relu’))
model.add(Conv2D(128, (2, 2), activation=’relu’))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(128, activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(units=100, activation=’relu’ ))
model.add(Dropout(0.3))
model.add(Dense(num classes , activation=’softmax’))

model.compile(loss=keras.losses.categorical crossentropy ,
optimizer=keras.optimizers.Adadelta(),
metrics=[’accuracy’])
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4.6 Prototype application

After the evaluation, the proposed hybrid model is tested on a real-time ECG

streaming prototype application. This application is also implemented using python

3.6. The prototype is a three threaded application to perform the tasks of ECG

reading, classification, and visualization.

Figure 4.2: Graphical-user interface of the prototype application

A user can input any ECG recording, and the recording will be passed to the

system as a stream. If there is an annotated value, both prediction and annotation

are shown.

4.7 Virtual machine configurations

Google Cloud Platform offers (GCP) virtual machines that can customize the hard-

ware as required. Ubuntu 16.04.5 LTS (GNU/Linux 4.15.0-1026-gcp x86 64) with

10 GB Standard persistent disk virtual machine has been used with different con-

figurations of hardware. Virtual machines were configured to use 10 GB, 2 GB,

1 GB and 1 GB main memory with 4 vCPUs, 2 vCPUs, 1 vCPU, and 1 vCPU

respectively.
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Chapter 5

Results and evaluation

This chapter presents how the results evaluate the levels of the proposed solution.

Evaluation is based on Massachusetts Institute of Technology Beth Israel Hospital

(MIT-BIH) arrhythmia database [21], a benchmark dataset for arrhythmia. Forty-

six recordings of the MIT-BIH arrhythmia database are considered for the classifica-

tion of five heartbeat types as per recommendation by the ANSI/AAMI standards

[33]. Although AAMI standard groups the sixteen beat types to five major groups,

it is harder to generalize the features for a dominant group. Classification model

which consider sixteen classes instead of the five super-classes may increase the ac-

curacy. However, due to the lack of an adequate number of beats for several classes,

it is not valid to use sixteen classes with a deep learning classifier.

5.1 Dataset

The subjects were 25 men aged 32 to 89 years, and 22 women aged 22 to 89 years.

About 60% of the records were obtained from inpatients.

Two possible methods of splitting the dataset are as follows.

1. Split by record (subject)

Example: Out of 48 records 34 records for training and 14 records for testing

2. Split by interval

Example: Extract different time intervals from each record and split into the

training and testing sets.

Split by record method tend to make the classifier more personalized. However,

such an approach needs more subjects. Since the dataset contains only 46 sub-

jects, training and evaluating based on subjects is not a good choice. Therefore,

the splitting of the dataset by considering the time interval is the most appropriate
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option. From each 30 minute recording in MIT-BIH dataset, a set of intervals has

been selected for the evaluation. Selected intervals are categorized based on the

beat rhythms consist of each interval. From each category, random intervals have

been selected to train the classification model and to test the classification model.

As the deep learning arrhythmia classification model can be independently fused

into any other frameworks, streaming of data is not considered when evaluating the

performance of the model. Figure 5.1 depicts the flow of evaluating the classifica-

tion model.

Split dataset into
training and testing

Segment beats
(based on R-peaks)

Classification model

Evaluate

Figure 5.1: Classifier highlevel flow
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5.2 Evaluation protocol

Two-fold evaluation where the performance of the arrhythmia classifier and per-

formance of the real-time arrhythmia detection framework with respect to time is

evaluated separately.

5.2.1 Performance of the classifier according to AAMI stan-
dard

According to the measures recommended by AAMI [33], Accuracy, Sensitivity and

Positive Predictive Value (PPV) are measured in order to access the performance

of the classifier. True positive (TP), true negative (TN), false positive (FP) and

false negative (FN) values are used to calculate the three performance measures as

mentioned in equation 5.1, equation 5.2 and equation 5.3.

Accuracy =
TP + TN

TP + TN + FP + FN
(equation 5.1)

Sensitivity =
TP

TP + FN
(equation 5.2)

PPV =
TP

TP + FP
(equation 5.3)

As the dataset is an imbalance, the accuracy of separate classes is evaluated in

terms of balanced accuracy. Balanced accuracy can be denoted as in the equation

5.4.

Accuracybalanced =
Sensitivity + Specificity

2
(equation 5.4)

where specificity is defined as,

Specificity =
TN

FP + TN
(equation 5.5)

For the CNN model, training and testing datasets are created in the proportion

of 7:3. i.e., 70% of the data for training and rest 30% for testing. Performance is

compared with standard CNN models.

The hybrid classifier is then evaluated with compared to the proposed CNN classi-

fier. As the hybrid classifier closely related with adjacent beats, the comparison is

made by passing the complete dataset as a sequence to both of the classifiers. The

primary objective of this comparison is to check whether if there is a performance

increase in the hybrid classifier than using only CNN classifier.
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5.2.2 Prediction time of the classifier

In order to evaluate the complete framework, ECG data in the MIT-BIH dataset or

similar is streamed as continuous time series data. Performance profiling is a crucial

standard in evaluating prediction time, CPU consumption and memory consump-

tion of the proposed framework. The significance of the framework is based on the

accuracy of the framework with respect to the prediction time.

5.3 Results

In this section, results are expressed independently for the convolutional neural

network classifier and the hybrid framework. However, the CNN model is used to

compare the speed of the hybrid classifier.

5.3.1 Cross-validation and hyper-parameters

Before the evaluation of the hybrid classifier, a set of parameters needed to be

tuned. These parameters are called hyper-parameters. It includes filter sizes for

convolution, filter sizes for pooling, number of neurons in a layer, batch size, num-

ber of epochs in CNN classifier and threshold values for the rule-based decision

module. Tuning hyper-parameters is an iterative process that generally takes a sig-

nificant amount of time to obtain a top performance. Both automated and manual

approaches were followed in order to set the values for hyper-parameters.

Figure 5.2: CNN loss for 5-fold cross-validation
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Figure 5.3: CNN accuracy for 5-fold cross-validation

Convolutional neural network model is subjected to cross-validation in order to

assess how the results of analysis generalize to an independent dataset. Cross-

validation results are also used to set different parameters of CNN model. 70% of

the beats were taken for the training and the rest 30% as testing dataset. 70% of

the training data were again split into 5 chunks and a single chunk is chosen to be

the validation dataset at each iteration. 5 iterations were done and results were

plotted into two graphs, loss and accuracy.

Loss graph for the modified LeNet CNN model is shown in the figure 5.2. Here the

graph is drawn for training loss and validation loss (in red). Although the training

loss decreases with the number of epochs, validation loss is being constant and tends

to increase slightly after 20 epochs. Towards 40 to 50 epochs, there is around 0.2

loss gap and between training and validation which indicates a possible overfitting.

Therefore, 22 number of epochs would be a good valid estimate for this model.

Figure 5.2 and 5.3 shows that the loss and accuracy always follow a similar path

without major outliers. Therefore the cross-validation results suggest that the pro-

posed model gives consistent results. Using manual trial and error methods batch

size is chosen to be 1000.

5.3.2 Convolutional neural network performance

As described in the section 5.2, CNN model is based on AAMI/ANSI standards.

Figure 5.5 and figure 5.4 shows loss and accuracy respectively for the instance of

the CNN classifier which is using in the hybrid classifier. Model accuracy and loss

are similar in the curve as the cross-validation results.
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Figure 5.4: CNN model accuracy against number of epochs

Figure 5.5: CNN model loss against number of epochs

Training of the model was carried out for 22 epochs and results of training and

validation has a very slight loss difference of 0.04. Therefore, the predictions from

the model can be taken as well generalized.
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Figure 5.6: Confusion matrix for the testing dataset

The confusion matrix for the test data is shown in the figure 5.6. 19,460 samples

were trained and tested on 8,344 samples. Performance metrics are listed in the

table 5.1.

Table 5.1: Performance of the CNN model for the evaluation metrics
Accuracy (%) Sensitivity (%) Precision (%) Specificity (%)

N 96.8% 98.4% 96% 95.2%
SVE 92.4% 85.5% 93.2% 99.2%
PVC 97.3% 95.4% 96.4% 99.2%

FV 90.7% 81.7% 91.6% 99.8%
Unknown 99.8% 99.8% 99.3% 99.9%

In the table 5.1, accuracy is denoted in terms of balanced accuracy. Sensitivity

for Supraventricular Ectopic (SVE) beats and Fusion of Ventricular (FV) beats

have the lowest scores. All the ECG records in MIT-BIH dataset were individually

evaluated, and almost all the records hit an accuracy above 95% except the record

222. Record 222 gained an accuracy of 74% which is highly deviated from the

performance of other records. A large number of SVE beats are present in the

record 222 (420 SVE beats). When considering the noise, record 222 is the noisiest
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record out of the 46 subjects. Filtering noise approach through a band-pass filter

which is used in this work has reduced general noise in most of the beats, but

since the record 222 contains abnormal noise condition, it has failed to achieve an

approving result for the record 222. Fusion of Ventricular beats are less in number.

There are only 802 beats in the whole dataset, which is the minimum count for a

beat type. Not having adequate number of data for FV could have been a reason

for such a low performance.

Figure 5.7: ROC curves for the five classes
Classes 0, 1, 2, 3 and 4 represents N, SVE, PVC, FV and Unknown respectively.

Figure 5.8: ROC curves for the five classes - zoomed to the top left
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An overall measure of test performance can be visualized using Receiver Operating

Characteristic (ROC) curves. According to the ROC curves which are shown in

the figure 5.7, area under the curve (AUC) is almost 1 for all the classes. (Top

left corner focused ROC curve on figure 5.8) Standards of AUC defines that area

of 1 represents a perfect test while the area of 0.5 and below represents a worth-

less test/test by chance. Here the proposed classifier has obtained an excellent test

performance.

With the proposed CNN classifier model, following two CNN models were chosen

to evaluate. VGG19 and AlexNet. One of the focus of this work is to reduce the

number of computations to speed-up the prediction time. Proposed CNN model

only uses only three convolutional layers but still have able to achieve the state-of-

art performance.

Table 5.2: CNN model accuracy comparison
Prediction times are evaluated on a virtual machine with 4 vCPUs, 10 GB memory.

Model Convolutional layers Accuracy Avg. Prediction
time (1000 beats)

VGG19 15 97.59% 40.15 sec.

AlexNet 5 97.04% 14.13 sec.

Proposed CNN model 3 96.45% 8.12 sec.

Proposed CNN model
(without erosion)

3 94.9% 8.12 sec.

When comparing erosion of sample inputs proposed in this work with non-eroded

inputs, the proposed erosion method has given a prominent accuracy gain. Notably,

the prediction time remains the same in both instances. It concludes that the erosion

has enhanced the features for convolution. Prediction time of the CNN classifier

model is not fine-tuned and deeply evaluated as this research introduces a hybrid

classifier which is an envelope on the CNN classifier.

5.3.3 Hybrid classifier performance

In order to evaluate the hybrid classifier, each record is streamed to the classifier as

a sequence. Therefore, while making the predictions classifier consider the context

of recent beats. For the comparison, all 105,063 beats from 46 ECG recordings

are used. Table 5.3 depicts the sensitivity and specificity scores for the two classi-

fiers. Note that, 105,063 beats were considered in evaluating the metrics (complete

dataset).
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Table 5.3: Sensitivity and specificity comparison for CNN and hybrid classifiers

Sensitivity (%) Specificity (%)

CNN Hybrid CNN Hybrid
N 96.2% 97.0% 97.1% 95.9%

SVE 89.0% 87.4% 98.2% 98.5%
PVC 98.2% 97.8% 98.9% 99.1%

FV 83.9% 80.6% 99.3% 99.6%
Unknown 99.8% 99.2% 99.9% 99.9%

The hybrid classifier correctly classified 101,964 out of 105,063 beats while CNN

classifier predicted 101,079 beats accurately. i.e., 97.05% accuracy for the hybrid

classifier and 96.20% accuracy for the CNN classifier. Around 1% gain in accuracy

is observed here. Although the specificity of the hybrid classifier is higher than the

specificity of the CNN classifier (except for normal beats), sensitivity loss is present

for SVE, PVC, FV and Unknown beats. 0.8% sensitivity gain is present for normal

beats. The main reason for the gain is that in the hybrid classifier, what it considers

is finding the normal beats. From the alignment scores, decision rules of the classi-

fier are all based on the score for the normal beats. If the decision layer considers

finding all the beat types (using the alignment bucket scores), sensitivity could be

further improved. However, the hybrid classifier is introduced mainly to improve

the prediction time. Therefore, such alternative approaches are not evaluated in

this work.

Table 5.4: Prediction time comparison for CNN and Hybrid classifiers

Hardware configuration CNN Hybrid
4 vCPUs, 10 GB memory 854.27 sec. 414.01 sec.
2 vCPUs, 2 GB memory 876.95 sec. 457.25 sec.
1 vCPUs, 2 GB memory 886.95 sec. 464.87 sec.

It can be observed in table 5.4 that prediction time of the proposed hybrid classifier

is approximately two times faster than a classification with CNN only classification.

CNN classifier takes around 14-15 minutes for the classification while Hybrid clas-

sifier classifies within 6-7 minutes.

Significance in the prediction time is due to the consideration of the similarity and

the alignment score of adjacent beats. It is proven when evaluating each record
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against the hybrid classifier. Table 5.5 shows how the similarity and alignment

scores affected the prediction time. From the table, records having a higher number

of beat classifications by similarity has less prediction time. Records 208, 222, 228,

217, 232, 200 and 107 are having a higher number of beats classified with CNN

than the alignment scores thus considerable time is taken.

Table 5.5: Number of beats classified by similarity for each record

Record
(time)

Total beats Classifications
by similarity

Record
(time)

Total beats Classifications
by similarity

202 (15 s) 2136 797 116 (10 s) 2412 1557
215 (9 s) 3363 2831 113 (4 s) 1795 1543
230 (8 s) 2256 1629 217 (16 s) 2208 159
231 (3 s) 1571 1382 112 (8 s) 2539 1956
119 (11 s) 1987 855 111 (9 s) 2124 1359
208 (24 s) 2953 466 100 (8 s) 2273 1449
108 (10 s) 1763 820 201 (15 s) 1963 579
115 (4 s) 1953 1729 209 (19 s) 3005 1019
117 (6 s) 1535 991 109 (7 s) 2532 2227
105 (12 s) 2567 1637 221 (17 s) 2427 793
124 (9 s) 1619 921 101 (16 s) 1863 253
210 (14 s) 2650 1566 233 (19 s) 3079 1320
121 (12 s) 1863 836 114 (8 s) 1879 1246
222 (19 s) 2483 492 118 (10 s) 2278 1470
207 (10 s) 1860 937 212 (6 s) 2748 2362
213 (23 s) 3251 1176 232 (14 s) 1780 94
220 (5 s) 2048 1682 214 (8 s) 2260 1683
223 (21 s) 2605 600 123 (9 s) 1518 699
205 (7 s) 2656 2285 103 (3 s) 2084 1862
228 (16 s) 2053 418 219 (14 s) 2154 1019
122 (4 s) 2476 2228 106 (12 s) 2027 806
234 (8 s) 2753 2214 200 (22 s) 2601 229
203 (27 s) 2976 534 107 (17 s) 2137 0

Above results are based on the hybrid classifier with CNN and rule-based model

in the decision layer. When replacing the rule-based model with SVM classifier to

identify normal beats in the decision layer, accuracy tends to decrease. Achieved

accuracy by using the SVM model is 95.76%. Employing many hand-engineered

features in the decision layer is a cost because the decision layer is a wrapper around

the CNN model. Therefore, only two feature extraction methods were employed for

the SVM model which are namely decomposed wavelets and re-sampling. Trained
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linear SVM model to identify ’normal’ and ’other’ beats have given an accuracy

of 84.4% in identifying the two classes. Incorporating more features would have

increased the accuracy, but higher cost is undoubtedly a limitation. To achieve

95.76% accuracy hybrid classifier with SVM model took 702 seconds. Therefore,

the most suitable method for the decision layer from the two approaches is the

rule-based classifier.

5.4 Summary

This chapter presented the proposed evaluation model for the CNN classifier and

the Hybrid classifier. CNN classifier performance was slightly lesser with a gap of

1.14% with the best performing model, but five times computationally efficient due

to the lesser convolution layers. The proposed hybrid classifier which is a wrapper

on the CNN model has decreased the computational time significantly and slightly

increased the classification accuracy as well. Decision layer of the hybrid classifier

is the crucial intersection which balances the performance and prediction time. For

the decision layer, a rule-based method and SVM method has been tested and

evaluated. The rule-based method gave the top performance with lesser cost than

the SVM model.
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Chapter 6

Conclusions and future work

This chapter includes a review of the research aims and objectives, research problem,

limitations of the current work and implications for further research.

6.1 Conclusion

In this research, we have analyzed the applicability of deep convolutional neural

network based classifiers for the real-time classification of arrhythmia. When the

number of convolutions increases, the prediction time has much effect due to the

increase in parameters. However, there is a significant improvement in accuracy.

Classifiers with less number of convolutions have given a good prediction time but

with a slight loss in accuracy.

The proposed solution employs a hybrid classifier for the question of extending

arrhythmia classification into a real-time approach by preserving accuracy. In prac-

tice, without a proper understanding of the problem, it is difficult to propose a

solution. With domain advisory from medical professionals and in-depth analysis

of the patterns, we proposed a solution to real-time arrhythmia classification frame-

work using the similarity between adjacent beats. This kind of classifiers not only

achieve the state-of-the-art in accuracy but also outperforms the state-of-art perfor-

mance concerning time. 96.45% accuracy for the proposed CNN model and 97.05%

overall accuracy for the hybrid classifier was achieved. The accuracy obtained sur-

passes most of the machine learning and rule-based techniques in the literature

(refer the table 2.1) for five class classification. The hybrid classifier was able to

speed up the prediction time by twice in times than using only a CNN classifier.

Thus, it can be concluded that the proposed approach can be a viable solution in

incorporating deep learning classifiers for real-time classification in this domain.
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Detection of arrhythmia from streaming electrocardiographic signals can be effi-

ciently refined by considering the nature of adjacent beats and calculating the

alignment scores for each rhythm class. However, the accuracy of the base classifier

model should be highly accurate. The hybrid classifier uses a convolutional neural

network as the base classifier and focuses on determining the similarity through

approximating a beat for each rhythm class. This method of approximating a beat

using the median values of most fresh beats limit propagating CNN erroneous classi-

fications. Therefore, we have introduced a concept of alignment buckets to measure

the alignment scores of ECG beats using the DTW algorithm. This approach is a

significant contribution to real-time sequence classification as it does not compare

with each sequence, but approximate for a median sequence in a FIFO method.

This study also contributed to the domain of arrhythmia analysis by introducing

two non-mutually exclusive approaches, a CNN and an alignment scoring wrapper

on CNN. The two proposed approaches are capable of yielding predictions in lesser

time while preserving the accuracy. We have also shown that the erosion of input

can improve the accuracy of the prediction. Also, comparison with the existing

hybrid approaches, the combined approach do not require hand-crafted feature ex-

traction. Proposed classifier is extensible and can be further extended to improve

the results by adjusting the defined parameters according to the requirement of the

classification. The primary requirement of this work is to balance the performance

with prediction time, and the proposed approach has given high-grade results.

6.2 Limitations

The evaluation results showcased that there are certain special scenarios where

noise affected a strong accuracy degrade. Since this work does not consider any

specific hardware devices to capture ECG recordings, the level of required noise

filtering cannot be determined. Although a band-pass filtering method is employed

to reduce the most common noise, a sound noise reduction needs to be incorporated.

Proposed hybrid classifier model does not provide a mechanism to detect R-peaks

from a sequence of ECG data. Model is relying on the annotated peak positions.
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6.3 Future work

Although accuracy, specificity and prediction time of the proposed hybrid classifier

has achieved the state-of-art, sensitivity has slightly degraded when compared to

the proposed CNN classifier. Sensitivity would have further increased if additional

rules appended to the decision layer. Current decision rules focus mainly on iden-

tifying normal beats. Therefore, the sensitivity for the normal beats is higher. As

future works, decision rules can consider incorporating other beat types as well us-

ing the alignment scores. Apart from a rule-based model, data-driven approaches

can be considered for the decision layer if the requirement is to improve the accu-

racy further, instead of the prediction time.

This method is not applicable to all the other domains which use convolutional

neural networks with real-time needs. Our approach is based on a specific problem,

i.e., identifying arrhythmia in which we have used a concept of similarity. However,

in-depth analysis of the problem domain may derive a mapping to the design of the

proposed hybrid classifier.

In this work, the MIT-BIH benchmark dataset has been used to evaluate the model.

Evaluation model can also be extended to evaluate for the generalizability of the

proposed approach by incorporating the classifier with a live system.
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Appendix A

MIT-BIH database annotations

Table A.1: Beat annotations

Symbol Meaning
N or . Normal beat

L Left bundle branch block beat
R Right bundle branch block beat
B Bundle branch block beat (unspecified)
A Atrial premature beat
a Aberrated atrial premature beat
J Nodal (junctional) premature beat
S Supraventricular premature or ectopic beat (atrial or nodal)
V Premature ventricular contraction
r R-on-T premature ventricular contraction
F Fusion of ventricular and normal beat
e Atrial escape beat
j Nodal (junctional) escape beat
n Supraventricular escape beat (atrial or nodal)
E Ventricular escape beat
/ Paced beat
f Fusion of paced and normal beat
Q Unclassifiable beat
? Beat not classified during learning

58



Table A.2: Non-beat annotations

Code Description
[ Start of ventricular flutter/fibrillation
! Ventricular flutter wave
] End of ventricular flutter/fibrillation
x Non-conducted P-wave (blocked APC)
( Waveform onset
) Waveform end
p Peak of P-wave
t Peak of T-wave
u Peak of U-wave
‘ PQ junction
’ J-point
∧ (Non-captured) pacemaker artifact
— Isolated QRS-like artifact

Change in signal quality
+ Rhythm change
s ST segment change
T T-wave change
* Systole
D Diastole
= Measurement annotation
” Comment annotation
@ Link to external data
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