
Permissioned Distributed
Ledgers for Land Transactions

D. T. Fernando

Permissioned Distributed
Ledgers for Land Transactions

D. T. Fernando
Index No : 14000342

Supervisor: Dr. D. N. Ranasinghe

December 2018

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4124)

i

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, be made

available for photocopying and for interlibrary loans, and for the title and abstract to

be made available to outside organizations.

Candidate Name: D. T. Fernando

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of

Ms. D. T. Fernando

under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Principle/Co- Supervisor’s Name: Dr. D. N. Ranasinghe

………………………………………………

Signature of Supervisor Date:

ii

Abstract

Considering the inefficiency and ineffectiveness of the current manual land

registration systems being practiced in Sri Lanka and the emergence of the concept of

blockchain based land registries as a successful replacement for badly kept,

mismanaged and/or corrupt land registries from around the world, this research

proposes a permissioned distributed land ledger solution for Sri Lanka.

The proposed solution is an island wide unified land ledger which addresses unequal

regional land transaction density conditions across the island, as opposed to the

present regional ledger system. The final solution presents optimal content for the

ledger (extracted from the current folio), has reassigned duties to state validators and

has got away with the folio system while ensuring derivation of the pedigree/ folio

tree for a land at a given time.

The proposed solution was implemented using Hyperledger Fabric v1.2. It was

evaluated for performance on an AWS t2.large instance with 2 vCPUs, 8GiB memory,

against the implementation of a regional distributed land ledger, under different land

transaction density conditions and failure conditions. The proposed solution records

higher throughput, lower latency and tolerance for fail-stop conditions than the

regional distributed land ledger. Further, the proposed solution does not show a

significant drop of throughput up to two crash failures in production scale

deployment.

iii

Preface

Through this research, an island wide, unified permissioned distributed land ledger

has been proposed for Sri Lanka. The optimal content included in the final solution

was derived based on the content of the current folio. Design of transactions

executed against the land ledger was a result of closely studying the Sri Lankan land

transaction scenario. Thus, the design of optimal content and transactions is solely

based on my own work. The regional distributed land ledger (identified as Abstract

Model 1 in the dissertation) was designed to closely map the current manual land

transaction scenario in Sri Lanka. Subsequent to identification of possible drawbacks

of the regional distributed land ledger, island wide unified land ledger (identified as

Abstract Model 2 in the dissertation) was designed by myself, under supervision. The

design of regional distributed land ledger or island wide unified land ledger has not

been proposed in any other related work. Implementation of the two Abstract

Models was performed by myself. Evaluation model for the performance evaluation

was devised by referring related performance evaluation studies by myself under

supervision.

iv

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Dr. D. N.

Ranasinghe, Senior Lecturer at the University of Colombo School of Computing for the

continuous guidance and supervision provided to me throughout the research.

I would also like to extend my sincere gratitude to Dr. M. D. J. S. Goonetillake, Senior

Lecturer at the University of Colombo School of Computing and Dr. C. I.

Keppitiyagama, Senior Lecturer at the University of Colombo School of Computing for

providing feedback on my research proposal and interim evaluation to improve my

study. I would also take the opportunity to acknowledge the assistance provided by

Dr. H. E. M. H. B. Ekanayake as the final year computer science project coordinator.

This thesis is dedicated to my loving parents who have been an immense support to

me throughout this journey of life. It is a great pleasure for me to acknowledge the

assistance and contribution of all the people who helped me to successfully complete

my research.

v

Table of Contents

Declaration ... i

Abstract ... ii

Preface .. iii

Acknowledgement .. iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. x

List of Acronyms .. xi

Chapter 1 - Introduction... 1

1.1 Background to the Research ... 1

1.2 Justification for the Research ... 2

1.3 Research Problem and Research Questions ... 4

1.4 Methodology ... 5

1.5 Outline of the Dissertation ... 6

1.6 Delimitations of Scope .. 6

1.7 High level architecture of a permissioned DLT solution for land transactions 7

Chapter 2 - Literature Review .. 9

2.1 Introduction .. 9

2.2 Blockchain based land registries of other countries ... 9

2.3 Permissioned Distributed Ledger solution for the Sri Lankan land transaction

scenario ... 12

2.4 Permissioned DLT platforms ... 15

2.4.1 Hyperledger Fabric ... 16

vi

2.5 Summary ... 18

Chapter 3 - Design ... 19

3.1 Introduction .. 19

3.2 Design of optimal land ledger content ... 19

3.2.1 Design of transactions against distributed land ledger 22

3.3 Design of two Abstract Models for the SL distributed land ledger 23

3.4 Design of a fault tolerant distributed land ledger solution 31

3.5 Summary ... 32

Chapter 4 - Implementation ... 33

4.1 Introduction .. 33

4.2 Implementation of optimal land ledger content and transactions 33

4.2.1 Statement on Research Question 1 ... 38

4.3 Implementation of the two Abstract Models ... 39

4.4 Implementation of production scale DLT networks and facilitation of fault

tolerance ... 45

4.4.1 Implementation of distributed land ledger with Kafka-based ordering

service ... 47

4.4.2 Implementation of distributed land ledger with BFT-SMaRT ordering

service ... 48

4.5 Summary ... 49

Chapter 5 - Results and Evaluation ... 50

5.1 Introduction .. 50

5.2 Evaluation of the two Abstract Models .. 52

5.2.1 Evaluation of the two Abstract Models in Solo ordering service 52

5.2.2 Evaluation of the two Abstract Models in Kafka-based ordering service ... 54

vii

5.2.3 Evaluation of the two Abstract Models for changeLandOwner transactions

 ... 56

5.2.4 Evaluation of the bottleneck at the ordering service (during ordering phase)

 ... 57

5.3 Evaluation for Crash Fault Tolerance (CFT) ... 58

5.4 Summary ... 61

Chapter 6 - Conclusions .. 63

6.1 Introduction .. 63

6.2 Conclusions about research questions ... 64

6.4 Limitations and Implications for further research .. 65

References ... 67

Appendix A: Diagrams .. 69

Appendix B: Code Listings ... 70

viii

List of Figures

Figure 1.1: High level architecture of a permissioned DLT solution for land

transactions. .. 7

Figure 3.1: Relationship between ledger, world state and blockchain 21

Figure 3.2: Validators involved in endorsing a transaction of a land in Galle. 25

Figure 3.3: Three district model for validation of a land transaction 26

Figure 3.4: Each RLR maintains a ledger containing only details of lands belonging to

itself ... 27

Figure 3.5: Four validators are validating a transaction of a land belonging to Galle

RLR... 27

Figure 3.6: All RLR access a single ledger containing details of all lands situated island

wide ... 29

Figure 3.7: Validators are validating a transaction of a land belonging to Galle RLR

(AM2) .. 29

Figure 4.1: Consistency of the land ledger, before and after executing a set of

transactions. .. 37

Figure 4.2: Derivation of pedigree/folio tree pertaining to a land 38

Figure 4.3: Architecture of the Three District Model ... 40

Figure 4.4: Channel architecture of the Three District Model in Abstract Model 1 42

Figure 4.5: Channel architecture of the Three District Model in Abstract Model 2 42

Figure 4.6: Hyperledger Fabric’s transaction processing protocol [7].......................... 44

Figure 4.7: An ordering service, consisting of 5 Ordering Service Nodes (OSNs), and a

Kafka cluster [15]. The ordering service client can connect to multiple OSNs. 47

Figure 4.8: BFT-SMaRT ordering service, consisting of 5 frontends, and 3f+1 ordering

nodes ... 49

Figure 5.1: Test flow for Hyperledger Fabric v1.2 followed during evaluation 50

Figure 5.2: Throughput of AM1 vs AM2 in Solo ordering service 52

Figure 5.3: Latency of AM1 vs AM2 in Solo ordering service 53

ix

Figure 5.4: Throughput of AM1 vs AM2 in Kafka-based ordering service 54

Figure 5.5: Latency of AM1 vs AM2 in Kafka-based ordering service 55

Figure 5.6: Comparison of Throughput for 'Both types of transactions' vs

'changeLandOwner' transactions only, in Solo ordering service for AM2 56

Figure 5.7: Comparison of Throughput for 1-orderer & 2-orderers in Kafka-based

ordering service and Solo ordering service. ... 57

Figure 5.8: Comparison of Throughput for no crashes vs 1-crash in Kafka-based

ordering service for AM2 (K=4, M=2, N=3) ... 59

Figure 5.9: Comparison of Throughput for 1-crash vs 2-crashes in Kafka-based

ordering service for AM2 (K=7, M=3, N=4) ... 60

Figure 5.10: Comparison of Latency for no crashes vs 1-crash in Kafka based ordering

service for AM2 (K=4, M=2, N=3) .. 60

Figure 5.11: Comparison of Latency for 1-crash vs 2-crashes in Kafka-based ordering

service for AM2 (K=7, M=3, N=4) .. 61

x

List of Tables

Table 2.1: Stakeholders of blockchain based land registries in other countries 10

Table 2.2: Type of blockchain technology used by other countries 11

Table 2.3: Comparison of features of several permissioned DLT platforms [based on

references 9, 10 and official websites of permissioned DLT platforms] 14

Table 2.4: Brief description of the five Hyperledger frameworks [11] 16

Table 3.1: Summary of the two Abstract Models ... 30

Table 4.1: Summary of the two Abstract Models ... 39

Table 4.2: Docker containers created by the two Abstract Models 45

Table 4.3: Comparison of pluggable ordering services for Hyperledger Fabric

[15,16,17] .. 46

Table 4.4: Configuration of Kafka-based ordering service tolerating up to two crashes

 ... 48

xi

List of Acronyms

AM1 Abstract Model 1

AM2 Abstract Model 2

BFT Byzantine Fault Tolerance

CFT Crash Fault Tolerance

DLT Distributed Ledger Technology

FLP Fischer, Lynch and Patterson result

IaaS Infrastructure as a Service

MSP Membership Service Provider

OSN Ordering Service Node

PoW Proof of Work

RLR Regional Land Registry

1

Chapter 1 - Introduction

1.1 Background to the Research

Currently, two types of land registration systems are being practiced in Sri Lanka.

They are 1) the Deed Registration System and 2) the Title Registration System. Deed

Registration System which was introduced during the colonial era has several

disadvantages. During deed registration, legal documents are registered rather than

title to the property, it does not consider physical existence of the boundaries to the

land and it is unable to determine the real economic value to a particular piece of

land.

As a remedy to the above mentioned drawbacks of Deed Registration System, Title

Registration System was introduced by the Sri Lankan government through the

Registration of Title Act no. 21 of 1998 (RTA). Title Registration System is a

complicated, expensive and time consuming task which involves a large number of

institutional players. However, according to the Implementation Completion and

Result (ICPR) report 2007 published by the world bank, the land titling project which

was implemented with 5 million US Dollars under the World Bank funds had been

unsatisfactory. Subsequent to the failure of Land Titling system and termination of

World Bank funding, the titling project continues as “Bimsaviya” national land titling

project [1].

However, it is evident that regardless of all the efforts, Sri Lanka does not have a

sufficiently effective and efficient administrative framework for land registration.

There are many negative implications of the present land registration systems in Sri

Lanka, such as existence of a large number of unsolved land disputes, litigation and

unclear tenure leading to land encroachment, misuse and disuse of land.

2

As stated in [1], it is important that current land registration systems as well as newly

proposed systems/ strategies should enforce pragmatic decisions rather than relying

on too standardized, bureaucratic and costly approaches. While exploring for

pragmatic approaches taken by other countries in the world in order to improve the

efficiency and effectiveness of their land registration systems, it could be observed

that some countries in the world have turned their attention towards implementing

blockchain based land registries. As stated in [2], a badly kept, mismanaged and/or

corrupt land registry could be successfully replaced by a blockchain based land

registry, because of the added value of cryptographic auditability. However, it could

be observed that, not only countries with badly kept land registries (e.g.: Honduras,

Ghana) but also countries with already well-functioning land registries (e.g.: Sweden,

Georgia, Estonia) are in the process of implementing and deploying blockchain based

land registries. Thus, it is worthwhile to explore the suitability of a blockchain based

land registry or an equivalent approach to make Sri Lankan land registration system

more efficient and effective.

The concept of blockchain emerged with bitcoins. Later, the Distributed Systems

community generalized the concept of blockchain to distributed ledgers. As claimed

by concepts of Distributed Systems, blockchain is one type of distributed ledger.

Thus, through this research, it is intended to provide a distributed ledger solution to

the Sri Lankan land transaction scenario.

1.2 Justification for the Research

A Distributed Ledger Technology (DLT) network is a collection of interconnected

nodes where, each node maintains a copy of the same database, called the ledger. In

DLT, there is no centralized database which is controlled or administered by a central

party that is trusted by every participant. The process of updating the distributed

ledger requires exchanging transaction information between nodes, achieving

distributed consensus among nodes, followed by adding the validated transaction as

a new ledger entry.

3

If blockchain is the underlying database structure of the ledger, the ledger could be

identified as a hash chain over blocks. Thus, during the last step of updating the

distributed ledger (‘adding the validated transactions as a new ledger entry’),

validated transactions are grouped into blocks and appended to the ledger (i.e. the

blockchain).

Distributed Ledgers have several advantages over traditional (centralized) databases.

DLT provides a full audit trail of information history, provides accessibility to a

common view of information to all nodes at the same time and it is impossible to

make unauthorized changes to the distributed ledger. In addition to the general

advantages of distributed ledgers, DLT is inherently suitable for implementing a land

ledger because it facilitates storing digital records of assets in blocks. When, new

information regarding a land asset is created (e.g.: when a new land is registered) as

well as when existing information about a land asset changes (e.g.: when the owner

of a land changes), new blocks are formed and securely chained to the previous one.

There are two main types of distributed ledgers, namely, unpermissioned

(permissionless) distributed ledgers and permissioned distributed ledgers [9]. An

unpermissioned DLT network is accessible to anyone, i.e. all participants are public

nodes, while a permissioned DLT network contains an authorized consortium of

participants. Procedure of obtaining distributed consensus in an unpermissioned DLT

network is through “Proof of Work” (PoW) mining, while, in a permissioned DLT

network distributed consensus is obtained through validation by a selected subset of

‘trusted validating nodes’. In the Sri Lankan land transaction scenario, Regional Land

Registries (RLRs), notaries and surveyors could be identified as trusted validators of

land transactions recognized by the government. Thus, it is evident that

implementing the distributed ledger solution as a permissioned DLT network is more

suitable when similarity with the real scenario is considered.

4

In addition, validation performed in permissioned DLT networks is more energy-

efficient than the resource intensive PoW mining performed in unpermissioned DLT

networks. Speed of validation process when updating the ledger and security is

higher in permissioned DLT networks than in unpermissioned DLT networks. Apart

from that, operational costs of permissioned DLT networks is lower than that of

unpermissioned DLT networks. Thus, it could be inferred that a permissioned DLT

solution is more suitable for implementing a distributed land ledger for Sri Lanka.

1.3 Research Problem and Research Questions

The aim of this research is to provide a permissioned distributed ledger solution for

the Sri Lankan land transaction scenario, subsequent to a systematic performance

evaluation of the proposed solution.

Thus, through this research, it is intended to find answers to the following research

questions.

A) What are the capabilities and limitations of adapting an open source solution

for implementing a distributed land ledger for Sri Lanka?

B) What is the performance difference between two proposed abstract models

of the land ledger under different land transaction density conditions and

failure conditions?

C) What are the future prospects and possibilities for implementing a large scale

distributed land ledger model for Sri Lanka?

5

1.4 Methodology

The research methodology followed with the intention of achieving the research aim

could be explained in a high-level as follows.

As the first step of the research approach, the permissioned distributed land ledger is

designed to suit the Sri Lankan land transaction scenario. The design of the

distributed land ledger is provided based on features of a generic permissioned DLT

platform. During the design phase, optimal land ledger content for the proposed

solution is derived from the existing folio and transactions to be performed against

the land ledger are devised. During this phase, the ledger solution is designed with

the intention of getting away with the folio system and facilitate derivation of the

pedigree/ folio tree from the distributed ledger.

As stated in the first research question, during the implementation phase of the

research approach, the proposed design of the distributed land ledger would be

implemented using an open source permissioned DLT platform.

During the last stage; evaluation, the implemented distributed land ledger solution

would be evaluated for performance under different land transaction density

conditions and failure conditions (fault tolerance).

The term ‘Land transaction density’ with respect to a Regional Land Registry (RLR)

could be defined as the frequency of land transactions submitted to the particular

RLR. RLRs such as Colombo, Galle generally have a higher land transaction density

than RLRs such as Hambantota, Tangalle. Considering the validation policies of Sri

Lankan land transaction scenario and the heterogeneity of land transaction density

across RLRs in Sri Lanka, two Abstract Models are designed, implemented and

Design of the
permissioned

distributed land
ledger

Implementation of
the permissioned
distributed land

ledger

Evaluation of the
permissioned

distributed land
ledger

6

evaluated, with the intention of proposing the most suitable land ledger solution for

Sri Lanka. Further, the two proposed Abstract Models are evaluated under different

failure conditions of the DLT network, as stated in the second research question.

1.5 Outline of the Dissertation

The dissertation is structured as follows. Chapter two presents a review of the

literature on blockchain based land registries in other countries and features of

permissioned DLT platforms suitable for implementing the proposed solution.

Chapter three presents the design of the distributed land ledger based on features of

a generic permissioned DLT platform. Chapter four explains the implementation

details of the distributed land ledger solution using Hyperledger Fabric. Chapter five

provides details of evaluation performed on the implemented DLT solutions and

interpretation of the results obtained. Chapter six provides a conclusion for the thesis

with prospects for future work.

1.6 Delimitations of Scope

In this research, “Land transactions”, refer only to change of ownership right of a

particular piece of land between two parties, i.e. mortgages etc. would not be

considered as “Land transactions”. Proposed Abstract Models of land transactions are

designed by only taking Sri Lankan land transaction scenario into consideration.

Conversion of public lands to private lands through government land grants would

not be handled through the provided solution. Fail-restart model of process failures is

not considered during evaluation of the solutions.

7

1.7 High level architecture of a permissioned DLT solution for

land transactions

This section provides an overview of the high level architecture of a general

permissioned DLT solution for land transactions, followed by a brief introduction to

the internal workings of a distributed land ledger solution.

Figure 1.1: High level architecture of a permissioned DLT solution for land transactions.

8

Based on Figure 1.1, it could be seen that the seller will sign and submit a transaction

proposal to the permissioned DLT network, indicating the sale of her land to buyer.

Next, the submitted transaction will be sent to all validating nodes. Subsequent to

consensus messaging among validating nodes, if the transaction is identified as valid,

it will be added to the ledger of each validating node. Finally, buyer could receive the

status of transaction from any of the validators. Notaries, Surveyors and Regional

Land Registries (RLRs) who are involved in the validation of land transactions in the

current manual system, could be identified as validators in the permissioned DLT

network as well.

9

Chapter 2 - Literature Review

2.1 Introduction

In this chapter, a review of the features of blockchain based land registries of other

countries is provided. Subsequent to justifying the importance of exploring the

suitability of a distributed ledger solution for the Sri Lankan land transaction scenario,

the choice of permissioned distributed ledgers is justified. Choice of Hyperledger as

the permissioned DLT platform for implementation of the solution is presented next.

However, it is important to note that the design of solution has been provided to suit

a generic permissioned DLT platform. Finally, the choice of Hyperledger Fabric for

implementation is justified.

2.2 Blockchain based land registries of other countries

As mentioned in Chapter 1, [2] states that, a badly kept, mismanaged and/or corrupt

land registry could be successfully replaced by a blockchain based land registry.

Nevertheless, it could be observed that, not only countries with unreliable land

registries such as Honduras, Ghana, but countries with well-functioning land registries

such as Georgia, Sweden, Estonia are also in the process of implementing and

deploying blockchain based land registries [3, 4, 5, 6, 7, 8].

10

Table 2.1: Stakeholders of blockchain based land registries in other countries

Country Government

stakeholder

Blockchain solution

provider

Other stakeholders

Georgia National Agency of

Public Registry (NAPR)

“BitFury” (a Bitcoin

company)

Renowned Peruvian

economist Hernando de

Soto

Sweden “Lantmäteriet”

“ChromaWay” (a

blockchain technology

company)

“KairosFuture” (an

international research

firm), “Telia” company

Estonia Center of Registers and

Information Systems

(RIK)

Guardtime -

Chicago’s

Cook

county

- Velox.RE (a startup)

Volunteer collaboration of

public and private

stakeholders

Honduras Honduran government

Factom -

Ghana - “Bitland” (a nonprofit

organization)

-

According to Table 2.1, it could be observed that companies specialized in blockchain

technology have undertaken implementation of blockchain based land registries in

those countries. In countries where government assistance is extended to the

blockchain based land registry project, the blockchain solution is integrated to the

digital land records system.

In all the countries listed in Table 2.1, custom designed blockchain solutions have

been developed. In Georgia, Sweden and Estonia, blockchain solution providers have

implemented the custom designed blockchain to suit the title registration process

exercised in those countries. In contrast, developers of Cook county’s blockchain

based land registry have implemented and deployed a “Blockchain deed protocol”.

11

However, blockchain based land registries of Sweden, Chicago’s Cook county,

Honduras and Ghana are open-source solutions.

Table 2.2: Type of blockchain technology used by other countries

Country Type of blockchain technology

Georgia Permissioned blockchain anchored to the Bitcoin blockchain.

Sweden Permissioned DLT network where trusted parties validate

transactions while public could view details in the blockchain

using an SSN based ID solution.

Estonia Public ledger

Chicago’s Cook county A colored coin (a bitcoin token) represents the land asset.

Ownership change is recorded on a public ledger (the Bitcoin

blockchain).

Honduras Factom anchored to the Bitcoin blockchain.

Ghana Blockchain solution based on Bitcoin blockchain technology.

Although there are two main types of distributed ledgers; unpermissioned and

permissioned, countries listed in Table 2.2 have implemented their blockchain based

land registry solutions not only based on those two types. When implementing their

blockchain solutions, some of those countries have taken approaches such as

coloured coins (an overlay network on Bitcoin blockchain) as well as cross-chain

exchange layer approaches across public and private blockchains.

In blockchain based land registries of all countries listed above, only the hash value of

data is embedded in the blockchain, while actual data which is generally large in size

and confidential, is kept off-chain (in a traditional server). Through this move, content

of a land transaction remains irrefutable. Nevertheless, the risk of losing the content

remains the same as in a traditional land registry system.

Countries with already well-functioning land registries have moved from reliable

manual systems to digitized systems and now towards blockchain based systems,

12

with the intention of increasing efficiency and effectiveness of their land registration

process. As a result of their effort, Georgia has been ranked among the top three

countries in the world for ease of property registration [3]. As stated in [5], currently

over 1 million immovables are recorded in the Estonian e-land register. In Ghana, the

“bitland” land registry procedure is executed in addition to the Ghanian Land

Commission procedure, with the aim of providing a service to its citizens, companies

and farm unions [8]. Thus, through review of literature based on [3-8], it could be

concluded that countries with already well-functioning land registries as well as

countries with badly-kept, mismanaged and/or corrupt land registries have reaped

benefits by implementing and deploying blockchain based land registries. Thus, the

importance of exploring the suitability of a distributed ledger solution for the Sri

Lankan land transaction scenario is justified.

2.3 Permissioned Distributed Ledger solution for the Sri Lankan

land transaction scenario

Through this research, a permissioned distributed ledger solution for the Sri Lankan

land transaction scenario has been provided. Choice of permissioned DLT was due to

the advantages of permissioned DLT networks over unpermissioned DLT networks as

stated in Chapter 1, as well as due to certain other important factors. According to

[2], when selecting the type of DLT in order to implement a distributed land ledger

solution, it is important for it to be in accordance with the current situation in the

country with regards to the content of the land registers. Accordingly, by introducing

a distributed land ledger solution, the land registry system of a country cannot be

changed from a deed system to a title system or vice versa. Since, majority of

divisional secretariat divisions in Sri Lanka follow the deed registration system [1], the

solution provided through this research would preserve properties of the deed

system. Through analyzing content of current folio system, three main types of

validators per a land transaction could be recognized. They are the 1) Regional Land

Registrar on behalf of Regional Land Registry, 2) Notary and 3) Surveyor. In the

traditional manual system, all three parties need to endorse a transaction, in order

13

for it to be successfully registered. Thus, duty of Regional Land Registrars, notaries

and surveyors is analogous to the responsibility of validators in a permissioned DLT

network, rather than to the responsibility of miners in an unpermissioned DLT

network.

All three types of validators that have been identified are recognized by the Sri

Lankan government (i.e. Registrar General’s Department). Thus, only authorized

validators are permitted to endorse a land transaction in the current manual system.

This is analogous to the requirement of permissioned distributed ledgers, where

participants of the system require legal identities in real world in order to validate

transactions.

Distributed ledger technology is aimed at reducing costs and making the use of

trusted 3rd parties such as notaries, surveyors etc. superfluous [2]. However, in the

practical Sri Lankan context, it is not pragmatic to eliminate the involvement of

trusted third parties. The solution that has been provided, requires each trusted

validator to maintain a validating node in the permissioned DLT network. In this

distributed land ledger system, scrutinizing of the transaction content will not take

place by the validator, manually. Instead, it will be performed by the validating node

based on the smart contracts infrastructure of the permissioned distributed land

ledger solution. Since each validating node has an updated copy of the land ledger, a

validator could always obtain the most up-to-date land registry details through

querying.

Further, in an unpermissioned DLT network (such as in Estonia’s e-land register), the

miners who hold the ledger in their computers for the purpose of performing

consensus, have to be provided with incentives [5]. But, since the distributed land

ledger solution provided through this research, is a permissioned DLT solution, there

is no requirement of providing incentives for the validators. Thus, the choice of

permissioned DLT in implementing the distributed ledger solution for the Sri Lankan

land transaction scenario, is justifiable.

14

Table 2.3: Comparison of features of several permissioned DLT platforms [based on references 9, 10 and official websites of permissioned DLT platforms]

Permissioned
DLT platform

Primary
application

Underlying
database
structure

Cryptocurrency Script language and Turing
completeness

Open-source
/Proprietary

Special remarks

Hyperledger Generic
applications

Blockchain No native
cryptocurrency

Golang: Turing complete Open-source

Corda Financial
applications

Non-
blockchain

No native
cryptocurrency

Java: Turing complete Open-source

Ripple Financial
applications

Non-
blockchain

Ripple (XRP) LLVM supported language:
Turing complete

Open-source

Symbiont Financial
applications

Blockchain Symbiont Coin Domain specific language
for Symbiont

Proprietary

Tendermint Generic
applications

Blockchain No native
cryptocurrency

Any generic programming
language

Open-source Suffers from a livelock bug.
Correctness of protocol is
problematic

Kadena Business
applications

Blockchain No native
cryptocurrency

Pact Proprietary Protocol is not available for
public review

MultiChain Financial
application and
multi-currency
exchanges

Blockchain MultiChain Smart Filters Open-source

HydraChain Extension of
Ethereum for
creating
permissioned
DLT networks

Blockchain ETH, ETC Python Proprietary Correctness of platform is
doubtful

Quorum Financial
applications

Blockchain Quorum Solidity Proprietary Consensus cannot be ensured
realistically

15

2.4 Permissioned DLT platforms

According to research question 1, it is required to implement the distributed land

ledger solution for Sri Lanka by adapting an open-source DLT platform. Thus,

properties of several permissioned DLT platforms were considered based on [9] and

[10], in order to decide on the most suitable DLT platform for implementation.

According to Table 2.3, it is evident that most of the available permissioned DLT

platforms have been specifically developed to support financial applications. Some of

the DLT platforms listed in the table lack clear explanation of protocol and formal

review of properties, thus leaving a question about their correctness. DLT platforms

such as Symbiont, Kadena, Quorum and HydraChain had to be eliminated from

consideration since it is hard to perform research on proprietary DLT platforms.

Subsequent to comparing features of all available DLT platforms, Hyperledger was

chosen for the implementation of the distributed land ledger for the Sri Lankan land

transaction scenario [11, 12, 13]. Hyperledger is an open-source, permissioned DLT

platform which facilitates implementation of generic applications and therefore, will

never issue a cryptocurrency. Hyperledger project provides high degrees of

confidentiality, scalability and security. It facilitates execution of non-deterministic

smart contracts and modularity. Although Hyperledger has powered successful

prototypes, Proof of Concepts and several production systems, across different

industries and use cases (food-safety network [11], etc.), there is no published work

on a distributed land registry solution implemented with Hyperledger for Sri Lanka or

any other country in the world. Thus, this research would assess the capabilities and

limitations of adapting a Hyperledger based solution for implementing a distributed

land ledger for Sri Lanka. It is important to note that although Hyperledger was

chosen as the permissioned DLT platform used to implement the distributed land

ledger solution, the design of the DLT solution has been presented for a generic

permissioned DLT platform.

16

2.4.1 Hyperledger Fabric

Another reason which influenced the choice of Hyperledger is the number of

frameworks that Hyperledger provides. Hyperledger provides 5 variants namely,

Fabric, Burrow, Indy, Iroha and Sawtooth.

Table 2.4: Brief description of the five Hyperledger frameworks [11]

Hyperledger

Framework

Brief description of the framework

Fabric Facilitates development of DLT solutions using special features such as

modular architecture, smart contracts called “chaincodes” and channels.

Burrow Permissionable smart contract machine developed partly to the

specifications of Ethereum Virtual Machine.

Indy Facilitates development of DLT solutions where only the true owner can

store, change and revoke identity artifacts on a distributed ledger (self-

sovereignty).

Iroha Facilitates development of DLT solutions having an emphasis on mobile

application development.

Sawtooth Facilitates development of highly scalable DLT solutions with PoET (a

consensus protocol similar to PoW), but without high power consumption.

From Table 2.4, based on [11], it could be observed that each Hyperledger framework

provides unique features which should be taken into consideration when selecting

the most appropriate framework for implementation.

Out of those five variants, Hyperledger Fabric is the most established framework of

the Hyperledger project. Fabric is widely used across different industries and use

17

cases. As stated in [14], Hyperledger Fabric could be identified as a distributed

Operating System for permissioned blockchains. The extensibility feature of Fabric

allows to run distributed applications consistently across all nodes in the

permissioned DLT network. In the context of distributed ledgers, smart contracts

function as a type of trusted distributed application. Although early DLT platforms

required smart contracts to be written in domain-specific languages (which are prone

to programming errors) or rely on cryptocurrencies, Fabric pioneered in producing

chaincode (Fabric’s smart contracts) using standard, general purpose programming

languages.

Early DLT platforms followed Order-Execute architecture. During Ordering phase, the

underlying consensus protocol orders all the transactions and propagates those to

peers. Next, in the Execute phase, all peers execute every transaction sequentially

(Sequential execution of transactions limit performance). DLT platforms which follow

Order-Execute architecture require all transactions to be deterministic. Further,

Order-Execute architecture violates confidentiality since every smart contract

executes on every peer. In contrast, Hyperledger Fabric follows Execute-Order-

Validate architecture. Since, transactions are executed by a subset of endorsing peers

during Execute phase before the Ordering phase, non-deterministic smart contracts

are also allowed to be executed. Hyperledger Fabric facilitates execution of

transactions on a subset of peers thereby preserving confidentiality as opposed to

DLT platforms following order-execute architecture.

Early DLT platforms provided hard-coded consensus. There, the trust model is

determined by the underlying consensus protocol of the platform. Through the

modularity feature of Hyperledger project, Fabric introduced pluggable consensus

protocols. Thus, DLT solutions provided by Fabric could be tailored for different trust

models.

Considering the improved features of Hyperledger Fabric over other permissioned

DLT platforms it could be realized that Fabric is a suitable candidate for implementing

18

a permissioned DLT network for the Sri Lankan land transaction scenario. According

to [9], features of DLT platforms have to be considered when designing and deploying

DLT applications. When considering the requirements of Sri Lankan land transaction

scenario, and the features provided by Fabric such as peers, organizations, channel

architecture, chaincodes, endorsement policy etc., it could be concluded that

Hyperledger Fabric is suitable for implementing the permissioned distributed land

ledger for Sri Lanka.

2.5 Summary

In this chapter, a review of the features of blockchain based land registries of other

countries was provided. Subsequent to justifying the importance of exploring the

suitability of a distributed land ledger solution for Sri Lanka, the choice of

permissioned distributed ledgers was justified. Choice of Hyperledger as the

permissioned DLT platform for implementation of the solution was presented next.

However, it is important to note that the design of solution presented in next

chapter, has been provided to suit a generic permissioned DLT platform. Finally, the

choice of Hyperledger Fabric for implementation was justified.

19

Chapter 3 - Design

3.1 Introduction

In this chapter, the design of the DLT solution has been presented for a generic

permissioned DLT platform. This chapter presents the design of optimal land ledger

content followed by the design of transactions against the ledger. The design of two

Abstract Models based on validation policies with the intention of addressing the land

transaction density variation across RLRs in Sri Lanka has been presented. Finally, the

importance of designing a fault tolerant distributed ledger solution has been stated.

3.2 Design of optimal land ledger content

As stated in Chapter 2, according to [2], when selecting the type of DLT technology in

implementing a distributed land ledger solution, it is important for it to be in

accordance with the current situation in the country with regards to the content of

the land registers. The permissioned DLT solution provided through this research

project, preserves properties of the deed system which is exercised in majority of

divisional secretariat divisions of Sri Lanka.

Current folio system is a centralized system. Details included in a folio could be

divided into 2 main sections. They are 1) Fixed details regarding a land and 2)

Transaction details. The 2nd section which holds transaction details store one record

per each land transaction. Appendix A includes a diagram of the structure of folio.

20

Section 1 which holds fixed details regarding a land include following details.

 Folio Number

 Location of land

 Boundaries

 Extent

 Name of land

 Plan Number and Date of Plan

 Name of surveyor

 Lot Number

Section 2 which holds transaction details, record following details per each land

transaction.

 Deed Number and Date of Deed

 Name of Notary

 Registration stamp duty

 Grantors

 Grantees

 Remarks regarding transaction

 Signature of registrar and the date of signature

It is important to consider the features of a generic permissioned DLT platform when

designing and deploying DLT applications. Accordingly, the ledger subsystem which is

an integral part of a permissioned DLT platform (with blockchain as the underlying

database structure) comprises of,

1. World state (W): Stores the state of the ledger at a given point in time.

2. Transaction log: Stores all transactions which have contributed towards current

world state in blockchain B.

21

As depicted in figure 3.1, the ledger L comprises of blockchain B and world state W.

World state W could be derived from blockchain B.

Figure 3.1: Relationship between ledger, world state and blockchain

Thus, it could be observed that world state W is similar to the conjunction of section

1 of folio (which holds fixed details regarding a land) and details of the latest

transaction regarding the land in section 2. Further, blockchain B is analogous to past

transaction records included in section 2 of the folio. Through this research we have

got away with the folio system, by designing a committed ledger which has all the

information, embedding folio details.

Although, this research has got away with the folio system, since all transaction

details which have contributed towards current world state are available in the

blockchain B, it is possible to obtain the pedigree/ folio tree which corresponds to a

particular land at any given time.

When designing the committed ledger, optimal ledger content was extracted from

the current folio. Optimal ledger content was finalized by removing redundant details

from the current folio and adjusting attributes to suit a permissioned distributed land

ledger solution.

22

Thus, the optimal ledger content included in the provided permissioned distributed

land ledger is as follows.

 Land ID

 Location of land

 Boundaries of land (N, E, W, S)

 Extent

 Hash of plan

 Hash of deed

 Registration stamp duty

 Owner

 Remarks regarding transaction

 Parent Land ID

3.2.1 Design of transactions against distributed land ledger

At a given time, when the world state W of a land in the land ledger is queried, latest

values corresponding to the above attributes would be returned as follows, i.e. one

record per one land.

Land

ID

Location Boundaries Extent Hash

of

plan

Hash

of

deed

Registration

stamp duty

Owner Remarks

regarding

transaction

Parent

Land

ID

If a person who is going to buy the same land, inquires for the pedigree/ folio tree of

that land via his notary, the transaction log would return all past transaction records.

Each transaction record holds values for these attributes pertaining to the

corresponding land transaction, i.e., there would be multiple records per one land, as

follows.

Land

ID

Location Boundaries Extent Hash

of

plan

Hash

of

deed

Registration

stamp duty

Owner Remarks

regarding

transaction

Parent

Land

ID

23

A permissioned distributed land ledger solution for Sri Lanka would facilitate clients

to request details regarding a piece of land when the LandID is provided. A query

which facilitates retrieving details of all lands of the ledger would be useful for the

land registrars at RLRs. In addition to querying, clients would be able to submit two

types of transaction proposals to the land ledger. Clients would be able to request for

a change of ownership of an existing piece of land, which could be termed as

changeLandOwner transaction. Furthermore, a client would be able to request to

split an existing land and register newly created lands with new owners, updated

extents and boundaries. The latter transaction could be termed as forkLand.

Blockchain based land registries of all the countries reviewed in Chapter 2, embed

only the hash value of data which is generally large in size and confidential, in the

blockchain. Actual data is stored off-chain (in a traditional server). The permissioned

DLT solution implemented through this research has also included only the hash

values of plan and deed in the optimal content of the land ledger.

3.3 Design of two Abstract Models for the SL distributed land

ledger

From the above details included in the folio, 3 types of validators could be identified.

They are the 1) Regional Land Registrar on behalf of Regional Land Registry, 2) Notary

and 3) Surveyor. All 3 types of validators are recognized by the Sri Lankan

government (i.e. Registrar General’s Department). A Regional Land Registry is

identified by the district that it belongs to (One district may have one or more

Regional Land Registries). A notary is identified by the Regional Land Registry that

he/she is registered with. A surveyor is identified by the district. Official website of

the Registrar General’s Department (http://www.rgd.gov.lk) includes a list of RLRs

identified by district and notaries registered with each RLR. Official website of the

Land Survey Council of Sri Lanka (http://www.landsurveycouncil.org) provides a list of

licensed surveyors identified by district. In the traditional manual system, all 3 parties

http://www.rgd.gov.lk/
http://www.landsurveycouncil.org/

24

need to endorse a transaction pertaining to a particular land, in order for it to be

successfully registered.

Consider the land transaction scenario of a land in Sri Lanka explained shortly, in

order to figure out the involvement of 3 types of validators when registering a

transaction. Suppose a person from Colombo wants to buy a land in Galle which is

located in the terrain of Galle Regional Land Registry (RLR). Assume the buyer hires a

notary from Colombo to perform all the legal undertakings related to the purchase of

land. Notary’s responsibilities include certifying the purchase consideration with a

written deed until forwarding the deed to the land registrar of Galle RLR for

registration. Since the land is located in Galle RLR’s territory, the record pertaining to

the land is included in the Galle RLR’s land ledger. Suppose the buyer hired a surveyor

who is registered in the Hambantota district. The surveyor prepares a plan which is

annexed to the deed (prepared by the notary) with an affidavit by the surveyor

certifying that he has prepared the plan correctly and truthfully. The land registrar in

Galle RLR would consider all details and endorsements provided by the notary and

the surveyor and provide his endorsement, thus successfully completing registration

of the land transaction. Since the notary has been registered with the Colombo RLR in

this scenario, a copy of the deed has to be sent to the Colombo RLR for future

reference. Thus, it could be observed how the endorsement of all 3 types of

validators are required for the successful registration of a land transaction.

When the above scenario is considered, it could be observed that the extent of

details accessible by each type of validator varies. Accordingly, each RLR stores details

of lands in its territory, including deeds and plans of those lands. Notaries could

access details pertaining to lands belonging to a particular RLR through formal inquiry

from the relevant RLR. Further, a notary possesses deeds of lands certified by him.

Surveyors too could access details of lands belonging to a particular RLR through

formal inquiry from the relevant RLR. In addition, a surveyor possesses plans of lands

prepared by him. RLRs have copies of deeds pertaining to lands (these lands could

belong to other RLRs) certified by notaries registered with the particular RLR.

25

In the implemented solution, all three types of validators would have access to the

optimal ledger content. In addition, RLRs would have access to deeds and annexed

plans of lands in their terrain as well as those of lands certified by notaries registered

with them. Notaries would have access to deeds certified by them and surveyors

would have access to plans prepared by them. This approach has preserved the

extent of details accessible by validators in the present traditional land transaction

scenario.

Figure 3.2: Validators involved in endorsing a transaction of a land in Galle.

As required by the second research question of this research project, two abstract

models have been provided as permissioned DLT solutions for the Sri Lankan land

transaction scenario. The first abstract model; Abstract Model 1 (AM1) was designed

such that it closely maps the current manual system. When the previously explained

traditional scenario is implemented using a permissioned DLT platform, the same 3

types of validators could be adapted for the validation of a land transaction. In

addition to 3 validators; 1) Regional Land Registry where the land belongs to, 2)

Notary and 3) Surveyor, the Regional Land Registry where the notary has been

Land

Surveyor

Notary

Regional Land Registry
(where Notary has been

registered)

Regional Land Registry (where
the land belongs to)

26

registered could also act as a validator in Abstract Model 1. This is because, the RLR

where the Notary has been registered with, also possesses transaction details of the

land. Thus, four validators per a given land transaction could be identified. Since,

validators from at most 3 districts are involved in the validation process, a three

district model (indicated by the triangle in Figure 3.2 for validation could be

identified. Thus, it could be concluded that implementation of a three district model

is acceptable for the purpose of evaluation.

Figure 3.3: Three district model for validation of a land transaction

In the present traditional system, each Regional Land Registry (RLR) maintains a

ledger containing only details of lands belonging to that RLR. When this situation is

adapted in Abstract Model 1, each RLR holds an independent land ledger of its own

lands. Therefore, each RLR would maintain its own land ledger (indicated by Li; i=1..9)

as shown in figure 3.4.

27

Figure 3.4: Each RLR maintains a ledger containing only details of lands belonging to itself

Figure 3.5: Four validators are validating a transaction of a land belonging to Galle RLR

28

In the real Sri Lankan scenario, each RLR has to endorse all transactions regarding

lands in its terrain, submitted for registration. Figure 3.5 depicts how four validators

are involved in validating a transaction pertaining to a land belonging to Galle RLR.

This requirement, emerges an issue with regards to workload distribution among

RLRs. Consider RLRs such as Colombo, Galle which have a high land transaction

density (i.e. those RLRs may have a high frequency of land transactions submitted for

registration). Validating nodes representing those RLRs may have a high overhead on

performing validation of submitted transactions. At the same time, RLRs such as

Hambantota, Tangalle would have a low land transaction density (i.e. those RLRs may

have a low frequency of land transactions submitted for registration). Thus, when a

set of transactions pertaining to lands situated island wide, are submitted to the

permissioned DLT network concurrently, RLRs with low land transaction density

would complete validation earlier than RLRs with high land transaction density. This

would reduce the overall transactional throughput of the provided solution.

Transactional throughput is the rate at which transactions are committed to the

distributed land ledger.

Abstract Model 2 (AM2) which is more suitable for a distributed system is proposed

as a remedy to the above mentioned drawback of Abstract Model 1. Abstract Model

2 proposes a single land ledger for the entire country. That single land ledger would

hold details of all lands island wide. Now, since all RLRs have access to the same land

ledger, RLRs having low land transaction densities would be able to validate

transactions submitted to RLRs with high land transaction densities, thus sharing the

workload. Figure 3.6 demonstrates how all RLRs access a single land ledger

containing details of all lands across the island. Figure 3.7 depicts how validators are

involved in validating a transaction pertaining to a land belonging to Galle RLR. There,

since other RLRs could also access the land ledger, it is possible for any other RLR to

perform validation on behalf of Galle RLR. It was hypothesized that through this

design approach of Abstract Model 2, the overall transactional throughput would

increase.

29

Figure 3.6: All RLR access a single ledger containing details of all lands situated island wide

Figure 3.7: Validators are validating a transaction of a land belonging to Galle RLR (AM2)

30

Therefore, as expected by the second research question, the performance difference

between two Abstract models under different land transaction density conditions

across RLRs, was evaluated. Thus, this section of the chapter presented the design of

2 abstract models implemented and evaluated through this research project. Table

3.1 provides a summary of the 2 Abstract Models.

Table 3.1: Summary of the two Abstract Models

Abstract Model 1 Abstract Model 2

Each RLR maintains a land ledger containing

details of lands belonging only to itself.

All RLRs have access to a single land ledger

containing details of all lands situated in the

island.

Validation is performed by only those who

have originally involved in transactions

regarding the land.

Validation is performed by replicated copy

holders.

Overall transactional throughput is low due

to high overhead at RLRs having higher land

transaction density.

Overall transactional throughput is higher

than that of Abstract Model 1, by sharing the

workload among validating nodes.

As mentioned in Table 3.1, with the introduction of Abstract Model 2, all RLRs in the

country gain access to a single land ledger containing details of all lands situated

island wide. This is in contrast to Abstract Model 1 (which closely resembles the real

Sri Lankan land transaction scenario) where each RLR maintains a land ledger

containing details of lands belonging only to itself. In order to prevent possible

problems arising due to the deviation from the real Sri Lankan scenario, the

implemented solution requires clients to submit copies of deed and plan when a

transaction is submitted to the DLT network. The hash values of deed and plan are

generated by the system before sending the transaction to the validating nodes. The

validators would perform validation based on the hash values of deed and plan. As a

result of this approach, validators are prohibited from submitting forged

transactions.

31

3.4 Design of a fault tolerant distributed land ledger solution

A consensus protocol is responsible of determining the order in which entries are

appended to the distributed ledger. As stated in Chapter 1, security is higher in

permissioned DLT networks over unpermissioned DLT networks. However, individual

nodes in a DLT network could crash or behave maliciously (if computers of validators

are taken over by a hacking entity). In environments where network connectivity is

uncertain, validating nodes could crash. This could lead to the validating nodes acting

against the common goal of reaching consensus. A fault tolerant consensus protocol

must be established in the DLT network in order to detect and withstand such

process failures.

Distributed Systems theory refers to three types of process failures, namely, 1) crash

(fail-stop), 2) crash & reboot and 3) Byzantine crashes. In the fail-stop model,

processes can fail by stopping, i.e. a faulty process eventually stops executing the

algorithm permanently, whereas in the fail-restart model, a process can resume

execution after crashing. Byzantine nodes could be identified as malicious validating

nodes. For example, a virus infected validating node may inject blocks containing

false or unauthorized transactions into the DLT network.

As stated in [9], the consensus approach which should be chosen when designing a

DLT network, should depend on the nature of environment where the DLT solution

would be deployed. Accordingly, if the DLT solution is deployed in a trustworthy

environment, Crash Fault Tolerance consensus approach is sufficient. But, if the

same solution is to be deployed in a multi-party use case, Byzantine Fault Tolerance

consensus approach should be chosen. This, justifies the choice of Hyperledger which

provides pluggable consensus, unlike other permissioned DLT platforms which

provide hard-coded consensus. Thus, through plugging the correct fault-tolerant

consensus protocol, higher transactional throughput is attainable.

32

Therefore, as expected by the second research question, the performance difference

between two Abstract Models under different failure conditions, was evaluated.

3.5 Summary

In this chapter, the design of the DLT solution for a generic permissioned DLT

platform was presented. This chapter presented the design of optimal land ledger

content followed by the design of transactions against the ledger. Next, the design of

two Abstract Models based on validation policies with the intention of addressing the

land transaction density variation across RLRs in Sri Lanka was presented. Finally, the

importance of designing a fault tolerant distributed ledger solution was presented.

33

Chapter 4 - Implementation

4.1 Introduction

This chapter provides the most important and relevant, high level implementation

details of the distributed land ledger solution, provided using Hyperledger Fabric

version 1.2. Readers are requested to refer Appendix B for further code listings.

Section 4.2 presents implementation details of land ledger and transactions in

accordance to the design presented in Chapter 3. Subsequent to a statement on the

first research question, implementation details of the two abstract models has been

presented. Advanced implementation of production scale DLT networks and

facilitation of fault tolerance has been explained finally.

4.2 Implementation of optimal land ledger content and

transactions

As justified in Chapter 2, Hyperledger Fabric was used for the implementation of the

distributed land ledger solution, whose design was presented in Chapter 3. The ledger

subsystem of Hyperledger Fabric is similar to the ledger subsystem of a generic

permissioned DLT platform (with blockchain as the underlying database structure) as

explained in Chapter 3. Thus, the ledger sub system of Hyperledger Fabric comprises

of World state (W) and Transaction log stored in a blockchain (B).

34

In Chapter 3, optimal ledger content to be included in the distributed land ledger

solution was extracted from the current folio. Thus, the optimal content included in

the implemented distributed land ledger for Sri Lanka is as follows.

 Land ID

 Location of land

 Boundaries of land

 Extent

 Hash of plan

 Hash of deed

 Registration stamp duty

 Owner

 Remarks regarding transaction

 Parent Land ID

In Hyperledger Fabric, assets are represented as a collection of key-value pairs.

During implementation, land assets were modeled as JSON in chaincode. Chaincode

in Hyperledger is analogous to smart contracts in generic distributed ledger

applications. Hyperledger’s chaincode typically written in go or NodeJS, is used to

define assets and contain the rules for modifying the assets. In this research,

chaincode was written in go language. Thus a land asset (declared as a JSON

structure) is identified by the LandID which is the key and the remaining attributes

listed in optimal ledger content comprise the values.

Details of all lands which everyone can agree on, is included in the initLedger()

function of the chaincode. In Hyperledger each DLT node is represented by a Docker

container. Subsequent to installing chaincode on validating nodes (identified as

endorsing peers), the chaincode has to be instantiated. During instantiation, a

separate Docker container for each peer’s chaincode is started and the initLedger()

function of the chaincode is invoked. Invocation of the initLedger() function leads to

initializing the key value pairs associated with the chaincode. This could be identified

as the genesis block which marks the beginning of the ‘history of transactions’.

35

During instantiation, in addition to invoking the initLedger() function, the

endorsement policy is also passed as an argument. Endorsement policy specifies

which validators or how many of them need to endorse a transaction proposal, based

on rules for modifying assets in chaincode.

Hyperledger Fabric provides two types of state databases; LevelDB and CouchDB, out

of which CouchDB was used during implementation. Since data pertaining to land

assets were modeled as JSON in chaincode and CouchDB was used as the state

database, complex rich queries could be implemented to query against the data

values in chaincode containers, using the CouchDB JSON query language.

Implemented chaincode, includes 2 queries namely; queryLand and queryAllLands.

queryLand checks whether the land by the requested LandID exists and if so, returns

the latest values for the attributes corresponding to the LandID. queryAllLands would

return details of all lands in the land registry. Application clients can perform read-

only queries. However, responses of those queries are not submitted as transactions

to the ordering service. Therefore, history of queries is not recorded in the

transaction log.

In addition to reading key-value pairs in the chaincode container, it is possible to alter

values corresponding to keys through invoke functions. Implemented chaincode,

includes 4 invocation functions. They are changeLandOwner, forkLand, createLand

and deleteLand. Out of those four invocation functions, changeLandOwner and

forkLand could be invoked directly by the application client, while createLand and

deleteLand cannot be directly invoked.

36

In a changeLandOwner transaction, the client requests to change the owner of the

land corresponding to the LandID mentioned in the transaction proposal. The client is

requested to submit copies of deed and plan along with the transaction proposal. If

the land identified by the LandID exists, and the hash values of deed and plan confirm

with the existing values in the ledger, the value of the owner attribute would be

changed from seller’s name to buyer’s name. changeLandOwner is a transaction

which is smaller than forkLand transaction explained next.

In a forkLand transaction, the client requests to split a land into two or more lands

and register those lands as new lands with new owners. Thus, the implemented

forkLand transaction invokes deleteLand and createLand transactions. deleteLand

transaction deletes the original land from ledger, if the land identified by the landID

exists. createLand transaction will be invoked n times to create n number of new

lands as requested by a valid transaction proposal. During createLand transaction, the

LandID of the original land (which was deleted) is assigned to the ParentLandID of

newly created lands and the values of Owner & Extent attributes of each new land

are updated. Before invoking deleteLand and createLand transactions, forkLand

transaction checks whether the sum of the Extents of the new lands is consistent with

Chaincode
functions

Queries

Query the
world state

queryLand

queryAllLands

Query the
transaction log

getHistoryForLand

Invocations

Directly
invocable

changeLandOwner

forkLand

Not directly
invocable

createLand

deleteLand

37

the Extent of original land and it also checks whether boundaries of newly created

lands overlap with each other. It is important to note that deleteLand and createLand

transactions are not directly invocable by client applications. Thus, it could be

observed that forkLand is a transaction which is larger in size than changeLandOwner

transaction.

Figure 4.1 demonstrates how, the implemented solution ensures the consistency of

the land ledger, before and after executing a set of transactions. Readers who are

interested on validation aspects of implemented transactions are advised to refer

Appendix A.

Figure 4.1: Consistency of the land ledger, before and after executing a set of transactions.

Although this implementation based on Hyperledger has got away with the folio

system, since all transaction details which have contributed towards current world

state are available in the transaction log (blockchain B), it is possible to obtain the

pedigree/folio tree which corresponds to a land identified by the LandID, at any given

38

time. The chaincode function getHistoryForLand could be invoked by the application

client to obtain the pedigree/folio tree corresponding to the requested land.

Hyperledger Fabric facilitates querying historical data (concept of data provenance),

through the chaincode API function GetHistoryForKey which will return the history of

values for a key. GetHistoryForLand chaincode function was implemented based on

GetHistoryForKey chaincode API function.

Figure 4.2: Derivation of pedigree/folio tree pertaining to a land

4.2.1 Statement on Research Question 1

Through the implementation of the distributed land ledger for Sri Lanka, using

Hyperledger Fabric, this research has been able to provide implementations for the

queries (queryLand and queryAllLands) and transaction invocations

(changeLandOwner and forkLand) as required by the design in Chapter 3. Most

importantly, we have been able to get away with the folio system while facilitating

the ability to obtain the pedigree/folio tree for a land through the getHistoryForLand

chaincode function. Since, it is obligatory for the client to submit copies of deed and

plan along with the transaction invocations, submission of forged transactions have

been prevented. Thus, at this point it could be concluded that the capabilities of

adapting Hyperledger Fabric as an open source solution for implementing a

distributed land ledger for Sri Lanka is at a high level.

However, a single limitation when implementing the distributed land ledger solution

was identified. The absence of an existing algorithm for checking overlapping

boundaries for non-rectangular shaped lands was identified as a limitation.

39

Therefore, the implemented solution performs boundary checking for rectangular

shaped lands only (The algorithm implemented for boundary checking is included in

Appendix A). Above identified limitation is excluded as a limitation of adapting

Hyperledger for implementing a distributed land ledger for Sri Lanka, for the reason

that, it is possible to improve Hyperledger’s chaincode, once an algorithm for

boundary checking of non-rectangular shaped lands is available.

4.3 Implementation of the two Abstract Models

As mentioned in Chapter 3, through this research project the design of two Abstract

Models for the distributed land ledger have been proposed. They are Abstract Model

1 (AM1) and Abstract Model2 (AM2). Table 1 provides a summary of the 2 Abstract

Models.

Table 4.1: Summary of the two Abstract Models

Abstract Model 1 Abstract Model 2

Closely maps the current manual Sri Lankan

land transaction scenario.

More suitable for a distributed setting of the Sri

Lankan scenario, with regards to land transaction

density variation across RLRs.

Each RLR maintains a land ledger containing

details of lands belonging only to itself.

All RLRs have access to a single land ledger

containing details of all lands situated in the island.

Validation is performed by only those who have

originally involved in transactions regarding the

land.

Validation is performed by replicated copy holders.

Overall transactional throughput is low due to

high overhead at RLRs having higher land

transaction density.

Overall transactional throughput is higher than that

of Abstract Model 1, by sharing the workload

among validating nodes.

Individual validators of the permissioned DLT networks corresponding to both

Abstract Models were implemented as peers in Hyperledger Fabric. Hyperledger

Fabric creates a Docker container for each peer in the DLT network. Peers belonging

40

to one trust domain is identified as members of a single organization. Peers within

the same organization trust each other, but do not trust peers belonging to other

trust organizations. As required by the design of two Abstract Models, three types of

organizations (RLR organization, Notary organization, Surveyor organization) were

implemented. As it could be seen in Figure 4.3, the three district model that was

implemented has all three organizations per each district.

Figure 4.3: Architecture of the Three District Model

The number of peers and organizations for both Abstract Models is the same. Thus

the crypto-config.yaml file which contains the configuration of the network,

indicating the organizations and which peers belong to which organization is the

same for both Abstract Models. Configtxgen tool consumes crypto-config.yaml file in

order to provide the required configuration artifacts. As depicted in Figure 4.3, the

41

orderer organization (org 10 in green colour) is an important organization which

performs the ordering phase in the underlying Execute-Order-Validate architecture of

Hyperledger Fabric.

Cryptogen tool consumes configtx.yaml and issues node credentials (X509

certificates) for the nine organizations, orderer organization and application clients. A

generic permissioned DLT platform comprises of a membership manager which

manages access of members to the DLT network. In Hyperledger Fabric, an MSP

(Membership Service Provider) maintains identities of all nodes including clients,

peers and Ordering Service Nodes (OSNs) issued by cryptogen tool, for the purpose of

authentication. In addition, configtx.yaml includes the anchor peers (which facilitate

cross organization communication) for each organization. First peer of each

organization has been identified as its anchor peer during implementation. Thus, it

could be observed that the role of the MSP is analogous to the role of Registrar

General’s Department which recognizes validators.

The distinction between AM1 and AM2 is, in AM1, each RLR maintains a land ledger

containing details of lands belonging only to itself while in AM2, all RLRs have access

to a single land ledger containing details of all lands situated in the island.

Hyperledger Fabric’s channel architecture was exploited in implementing the above

mentioned distinction between two Abstract Models. A channel partitions the state

of the Fabric DLT network. A single channel can maintain a separate ledger which is

embedded in a distinct chaincode which is shared by all peers connected to the

channel. In AM1, each RLR owns one channel, one chaincode for that channel and

thus one land ledger (lands belonging to that RLR only). In contrast, AM2 contains a

single channel to which all RLRs are connected, one chaincode for that channel and

thus one land ledger representing all lands across the island.

42

Figure 4.4: Channel architecture of the Three District Model in Abstract Model 1

Figure 4.5: Channel architecture of the Three District Model in Abstract Model 2

43

Through figures 4.4 and 4.5, it could be observed that AM1 contains nine channels

while AM2 contains only one channel, in the implemented Three District Model. The

organizations which could access each channel is declared in configtx.yaml, since a

channel requires its peers to be authenticated in order to provide access to the

ledger.

As stated in Chapter 3, four validators were identified per a given land transaction for

AM1. In AM1, it is compulsory for the RLR that the land belongs to, to endorse the

transaction. A notary and a surveyor along with the RLR where the notary has been

registered with are the remaining validators. In AM2, if the RLR that the land belongs

to is overloaded with requests for validation, a RLR with low land transaction density

could perform validation on behalf of the RLR with high land transaction density. As

mentioned in the beginning of this chapter, endorsement policy specifies which

validators or how many of them need to endorse a transaction proposal. Thus the

two endorsement policies for the two Abstract Models are depicted as follows.

 AM1: AND (org1, OR(org1, org4, org7), OR(org2, org5, org8), OR(org3, org6, org9))

 AM2: AND (OR(org1, org4, org7), OR(org2, org5, org8), OR(org3, org6, org9))

As stated in Chapter 2, Hyperledger Fabric follows execute-order-validate

architecture unlike other permissioned DLT platforms which follow order-execute

architecture. During Execute phase, the transaction proposal submitted by the client

is sent to endorsing peers as required by the invocation. The set of endorsing peers in

the implemented solution is only a subset of four peers. Each endorsing peer

executes the transaction against the ledger in peer-chaincode-container, based on

chaincode logic and provides endorsements only after ensuring correctness of the

transaction. Next, the endorsed transactions are sent to the Ordering phase. During

Ordering phase, the underlying consensus protocol of the ordering service, produces

an ordered sequence of endorsed transactions as blocks. In the next phase;

Validation phase, the blocks are broadcast to all peers. There, each peer validates

44

the change of ledger state due to endorsed transactions and update their ledgers in a

deterministic order. Hyperledger Fabric’s transaction processing protocol [7] is

depicted in figure.

Figure 4.6: Hyperledger Fabric’s transaction processing protocol [7]

Thus, it is clear that, the introduction of AM2 as a remedy to the drawback caused by

AM1 when there is a variation of land transaction density, across RLRs improves only

upon the Execute phase of the Execute-Order-Validate architecture. When a set of

land transactions depicting the real Sri Lankan scenario is submitted to AM1 and AM2

simultaneously, AM2 completes Execute phase earlier than AM1, due to workload

distribution among RLRs in AM2.

Apart from the low overall transactional throughput of AM1 over AM2,

implementation of AM1 is limited by the memory constraints of the implementation

environment. As stated previously, a peer-chaincode container is created per each

channel that the peer is connected to. Values for Total in Table 4.2 depicts that AM1

has created five times more Docker containers than AM2 due to its nine channels.

45

Table 4.2: Docker containers created by the two Abstract Models

Type of Docker container Abstract Model 1 Abstract Model 2

Peer containers 21 21

Peer-chaincode containers 189 21

Total 210 42

During large scale implementation of the two Abstract Models by porting the two DLT

networks to a cloud instance, implementation of AM1 is limited by the memory

capacity of the instance. However, in production scale deployment, this issue could

be resolved, since the peer container and peer-chaincode containers belonging to

each peer are created at the peer nodes. Therefore, it is important to precisely state

the storage specifications recommended for each peer node in AM1. In conclusion,

AM1 requires the creation of more Docker containers than AM2.

4.4 Implementation of production scale DLT networks and

facilitation of fault tolerance

Implementation details stated up to the previous section were based on Solo

ordering service which is a single-node implementation. Although Solo ordering

service is recommended for development and testing of DLT networks, it does not

suffice in real production. This is because of, the inability of one ordering node to

withstand crash faults.

Hyperledger Fabric facilitates plugging of three types of consensus protocols as its

ordering service. They are 1) Solo ordering service, 2) Kafka-based ordering service

and 3) BFT-SMaRT odering service. Table 4.3 provides a comparison of each ordering

service with respect to multiple aspects, based on [15, 16, 17].

46

Table 4.3: Comparison of pluggable ordering services for Hyperledger Fabric [15,16,17]

 Solo ordering

service

Kafka-based ordering

service

BFT-SMaRT ordering

service

Components Centralised

non-replicated

ordering

service

 Decentralised,

replicated ordering

service.

 Contains Apache

Kafka cluster &

Zookeeper

ensemble

 Decentralised,

replicated ordering

service.

 Ordering cluster

contains 3f+1 nodes;

f=no.of Byzantine

crashes,

and a set of frontends

Usage For testing systems At production level

environments which are

trustworthy,

nevertheless nodes are

prone to crashing

At production level

environments which are

untrustworthy as well as

prone to crashing

Advantages Requires few

hardware

resources

Robust Withstand both crash

faults and Byzantine

faults in an

untrustworthy

environment.

 Could be configured

to tolerate only crash

faults in a trustworthy

environment.

Disadvantages Single point of

failure

Withstand crash faults

only

Not officially declared as

the BFT ordering service

of Hyperledger Fabric.

Fault

tolerance

capability

None Crash Fault Tolerance

(CFT)

Both Crash Fault

Tolerance (CFT) and

Byzantine Fault Tolerance

(BFT)

47

4.4.1 Implementation of distributed land ledger with Kafka-based

ordering service

Kafka-based ordering service consists of Hyperledger Fabric Ordering Service Nodes

(OSNs), an Apache Kafka cluster and a Zookeeper ensemble. In Kafka-based ordering

service, OSNs depend on Kafka brokers while Kafka cluster depends on Zookeeper

ensemble. Apache Kafka which is a distributed commit log uses Zookeeper’s

metadata consistency protocol, in order to ensure tolerance of crash faults [16].

Kafka-based ordering service uses Zookeeper ensemble for storing metadata. Kafka

cluster handles replicated data which is named as in-sync replicas (ISR). While

Zookeeper ensemble executes a quorum system to ensure consistency of metadata,

Kafka cluster requires all members of ISR to respond.

Figure 4.7: An ordering service, consisting of 5 Ordering Service Nodes (OSNs), and a Kafka

cluster [15]. The ordering service client can connect to multiple OSNs.

In order to tolerate f crashes, the minimum number of in-sync replicas (M) should be

f+1; M>1. N is the default replication factor, which is defined as the minimum number

of Kafka brokers that should be alive. It is important that M<N and N<K; where K is

the total number of Kafka brokers. Table 4.4 contains configuration of Kafka-based

48

ordering service to evaluate performance up to two crashes for the distributed land

ledger solution.

Table 4.4: Configuration of Kafka-based ordering service tolerating up to two crashes

No. of

crashes

M N K Z (No.of Zookeeper

nodes)

No.of OSNs

1 2 3 4 3 2

2 3 4 7 3 2

Based on [16], it could be deduced that through the use of ISRs and quorum system,

Fabric has tried to overcome FLP result, while liveness is not 100% guaranteed.

During implementation, Kafka-based ordering service’s nodes were granted identities

and thus access to channels through crypto-config.yaml (where K, Z and OSNs were

declared), configtx.yaml and kafka-base.yaml (where M,N were defined).

4.4.2 Implementation of distributed land ledger with BFT-SMaRT

ordering service

BFT-SMaRT ordering service consists of an ordering cluster having 3f+1 nodes; f is the

number of Byzantine crashes and a set of frontends [17]. Client applications cannot

directly access the ordering service. Therefore, frontends relay envelopes on behalf of

the client to the orderers. Subsequent to receiving ordered blocks generated by the

ordering service, frontends relay those to peers for validation. Figure 4.8 depicts the

architecture of BFT-SMaRT ordering service. Malicious clients are identified by invalid

transactions added to the ledger (However, these transactions are prevented from

being execute on the ledger).

49

Figure 4.8: BFT-SMaRT ordering service, consisting of 5 frontends, and 3f+1 ordering nodes

Since, BFT-SMaRT ordering service has not been officially announced as the BFT

ordering service of Hyperledger Fabric, implementation and testing had to be

performed under limitations. Authors of the research work referred to by [17] state

that Fabric’s codebase is less suitable for BFT-SMaRT like ordering services, since

Fabric produces a stream of envelopes unlike a stream of blocks required for BFT.

Evaluation result obtained for BFT-SMaRT ordering service (performed under

limitations) is included in Appendix A.

4.5 Summary

This chapter provided the most important and relevant, high level implementation

details of the distributed land ledger solution, provided using Hyperledger Fabric

version 1.2. Section 4.2 presented implementation details of land ledger and

transactions. Subsequent to a statement on the first research question,

implementation details of the two abstract models were presented. Advanced

implementation of production scale DLT networks and facilitation of fault tolerance

were explained finally.

50

Chapter 5 - Results and Evaluation

5.1 Introduction

The main purpose of performing evaluation was to provide answers to the second

research question. A statement on the first research question was provided in section

4.2.1, focusing on the implemented optimal land ledger content and the

implemented transactions. This chapter present a performance evaluation of the two

abstract models based on heterogeneous land transaction density conditions across

RLRs and failure conditions. Evaluation model followed in this chapter was devised

based on [18, 19], while sub evaluations have been performed to verify speculations

made during main evaluation process.

Implementation in Chapter 4 as well as evaluation was performed based on

Hyperledger Fabric version 1.2. Implementation and evaluation of the two Abstract

Models were performed on an AWS t2.large instance (64bit X86, 2 vCPUs, 8GiB

memory) with Ubuntu 18.04.1, with Docker version 18.06.0 and Docker Compose

version 1.21.2. Figure 5.1 shows the test flow for Hyperledger Fabric v1.2 followed

during evaluation.

Figure 5.1: Test flow for Hyperledger Fabric v1.2 followed during evaluation

51

The Three District Model implemented in Chapter 4 was used for evaluation and thus

community size is a constant across both AM1 and AM2. Both Abstract Models

consist of nine organizations providing a community of twenty-one peers.

Evaluation has been performed for a scenario where one RLR has a higher land

transaction density than others. Sets of simultaneous transactions of varying size

were submitted to the DLT network throughout the evaluation process. Within a set

of transactions, the ratio between changeLandOwner transaction invocations and

forkLand transaction invocations is 3:2, unless stated otherwise. It was ensured that

the execution of submitted transactions was not interrupted by queries.

Primary performance metrics of Hyperledger Fabric as stated in [18] are,

Throughput:- Rate at which transactions are committed to the ledger. i.e. the rate at

which transactions complete the Execute-Order-Validate phase.

Latency:- Time taken from application sending the transaction proposal to the

transaction commit.

Throughput and Latency were evaluated against the number of transactions which

are submitted to the DLT network simultaneously. Results obtained for throughput

and latency (in the form of timestamps) were averaged over three rounds and thus

the presented results of throughput and latency are average throughput and average

latency respectively.

 Throughput= (number of simultaneously submitted transactions)/ (execution

end time- execution start time)

52

5.2 Evaluation of the two Abstract Models

As stated in [14], Fabric being a complex distributed system, its performance depends

on the choice of distributed application and transaction size, ordering service,

consensus protocol, network parameters, topology of the nodes in the network,

number of nodes and channels, further configuration parameters and network

dynamics. During evaluation of the two Abstract Models, the dependence on

performance on topology of nodes has been evaluated.

5.2.1 Evaluation of the two Abstract Models in Solo ordering service

AM1 and AM2 were evaluated for throughput and latency in Solo ordering service.

Figure 5.2: Throughput of AM1 vs AM2 in Solo ordering service

It could be observed that the throughput of AM2 is higher than the throughput of

AM1 for all evaluated workloads. The throughput of both models decrease when load

increases, because of the bottleneck at ordering and validation phases. Since Fabric

deploys a queuing system, with a high load, the waiting time increases exponentially

and hence throughput decreases [19]. The gain of AM2 is clearly visible when the

load is greater than 60 where the throughput increase and tries to stabilize. The

20 40 60 80 100

AM1 14.071 14.260 13.709 12.892 11.925

AM2 18.266 15.599 14.881 15.525 15.640

7.000

9.000

11.000

13.000

15.000

17.000

19.000

A
v

er
ag

e
 T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Throughput of AM1 vs AM2 in Solo ordering
service

53

validation overhead on RLR with high land transaction density in AM1 causes its

throughput to decrease linearly after a workload of 60.

Figure 5.3: Latency of AM1 vs AM2 in Solo ordering service

Latency of AM2 is lesser than that of AM1, as hypothesized. Although the latencies of

both models increase with load, latency of AM1 is always higher than that of AM2. It

could be observed that the rate of increase in latency of AM1 is higher than that of

AM2. AM1 has a higher latency due to the bottleneck of validation at the RLR with a

higher land transaction density.

However, it should be noted that the approach taken by AM2, only improves upon

execute phase of Execute-Order-Validate architecture as explained in Chapter 4.

When transaction proposals are submitted simultaneously to the two Abstract

Models, AM2 completes Execute phase earlier than AM1. This is because, workload is

shared among RLRs in AM2, unlike in AM1 where there is high endorsement

20 40 60 80 100

AM1 0.925 1.820 2.733 4.434 5.383

AM2 0.623 1.250 2.584 3.246 3.999

0.000

1.000

2.000

3.000

4.000

5.000

6.000

A
v

er
ag

e
L

at
en

cy
 (

se
co

n
d

s)

No.of simultaneously submitted transactions

Latency of AM1 vs AM2 in Solo ordering
service

54

overhead on RLRs with high land transaction density. During Order and Validation

phases, both models are subject to ordering and validation bottlenecks. In

conclusion, AM2 has a higher throughput and a lower latency than AM1 for the

evaluated workloads.

5.2.2 Evaluation of the two Abstract Models in Kafka-based ordering

service

AM1 and AM2 were evaluated for throughput and latency in Kafka-based ordering

service.

Specifications of Kafka-based ordering service: - 2 orderer nodes, 4 Kafka brokers, 3

Zookeeper nodes.

Figure 5.4: Throughput of AM1 vs AM2 in Kafka-based ordering service

20 40 60 80 100

AM1 13.593 13.930 12.645 12.530 11.553

AM2 17.509 15.458 13.525 13.598 13.572

7.000

9.000

11.000

13.000

15.000

17.000

19.000

A
v

er
ag

e
T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Throughput of AM1 vs AM2 in Kafka-based
ordering service

55

Figure 5.5: Latency of AM1 vs AM2 in Kafka-based ordering service

Interpretation of throughput and latency graphs in section 5.2.1 is valid for graphs

figures 5.4 and 5.5 as well. However, the average throughput for both AM1 and AM2

in Kafka-based ordering service is slightly less than the corresponding values

evaluated under Solo ordering service, due to the tradeoff with Crash Fault

Tolerance (CFT).

20 40 60 80 100

AM1 0.894 1.778 2.521 4.310 5.215

AM2 0.597 1.238 2.348 2.843 3.589

0.000

1.000

2.000

3.000

4.000

5.000

6.000

A
v

er
ag

e
L

at
en

cy
 (

se
co

n
d

s)

No. of simultaneously submitted transactions

Latency of AM1 vs AM2 in Kafka-based
ordering service

56

5.2.3 Evaluation of the two Abstract Models for changeLandOwner

transactions

Figure 5.6: Comparison of Throughput for 'Both types of transactions' vs 'changeLandOwner'

transactions only, in Solo ordering service for AM2

It could be observed that the average throughput of both Abstract Models is

generally at a lower value. As mentioned earlier, since the performance of Fabric

depends on many features other than topology of nodes in the DLT network, it was

decided to repeat evaluation in section 5.2.1 for a set of small sized transactions.

Through this attempt, it was required to observe whether the size of land

transactions have an effect on the low overall throughput. Thus evaluation in section

5.2.1 was repeated by submitting transactions comprising only of changeLandOwner

transactions. It could be observed through Figure 5.6, that the throughput is higher

than that of graph in Figure 5.2 especially when load increases. Thus it could be

inferred that the size of land transactions has an effect on the low overall throughput.

7

12

17

22

20 40 60 80 100

A
v

er
ag

e
T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Comparison of Throughput for 'Both types of
transactions' vs 'changeLandOwner' transactions only,

in Solo ordering service for AM2

Both types of transactions included

changeLandOwner transactions only

57

5.2.4 Evaluation of the bottleneck at the ordering service (during

ordering phase)

Since it was speculated that the ordering service bottleneck could be one reason for

the decreasing throughput in sections 5.2.1 and 5.2.2 over increasing workload, it was

decided to evaluate the bottleneck at the ordering service, for Solo ordering service,

and 1-orderer & 2-orderers in Kafka based ordering service.

Figure 5.7: Comparison of Throughput for 1-orderer & 2-orderers in Kafka-based ordering

service and Solo ordering service.

The throughput of AM2, which has a higher overall throughput than AM1, was

evaluated in this section. As it could be observed, in Figure 5.7, the throughput curve

for AM2 is the highest for Solo which has 1-orderer. From among the throughput

curves for Kafka-based ordering services, throughput for 2-orderers is higher than

that for 1-orderer for all evaluated workloads. Solo has highest throughput in all cases

because it does not facilitate any kind of fault tolerance. Therefore, it could be

20 40 60 80 100

Kafka 1-orderer 13.523 14.080 13.155 12.529 10.781

Kafka 2-orderers 17.509 15.458 13.525 13.598 13.572

Solo 1-orderer 18.266 15.599 14.881 15.525 15.124

7.000

9.000

11.000

13.000

15.000

17.000

19.000

A
v

er
ag

e
T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Comparison of Throughput for 1-orderer & 2-
orderers in Kafka-based ordering service and Solo

ordering service for AM2

58

concluded that the bottleneck at the ordering service has an effect on the decreasing

throughput with increasing workload.

5.3 Evaluation for Crash Fault Tolerance (CFT)

Fault tolerance of a Fabric network could be evaluated at two levels. They are at, 1)

the level of validating nodes and 2) the level of ordering service.

Fault tolerance capabilities of the two Abstract Models at the level of validating

nodes (endorsing peers), is governed by their respective endorsement policies. In

AM1, it is compulsory for the RLR that the land belongs to, to endorse all land

transactions in its territory. If the node representing that RLR is crashed, none of

those transactions could be endorsed and thus committed to the ledger. But, with

AM2 even if the RLR node is crashed, any other RLR could validate the transaction/s

on behalf of the original RLR. Therefore, with the correct choice of endorsement

policy CFT of validating nodes could be ensured. Thus, it is evident that AM2 is more

suitable for implementing a distributed land ledger for Sri Lanka when fault tolerance

at the level of validating nodes is considered. Thus we could provide an answer for

the second research question, by stating that, AM2 ensures robustness, among the

two Abstract Models under crash failures.

Hyperledger Fabric mainly focuses on crash fault tolerance at the level of ordering

service, i.e. crashing of Kafka brokers of the Kafka-based ordering service. Since AM2

is capable of tolerating crash faults at the level of validating nodes, crash fault

tolerance at the level of ordering service was evaluated for AM2. Based on Table 4.4

in Chapter 4, in order to compare the CFT of Kafka-based ordering service for no

crashes against one crash, the model with K=4, M=2, N=3, Z=3 and no. of OSNs=2 was

selected.

59

Figure 5.8: Comparison of Throughput for no crashes vs 1-crash in Kafka-based ordering

service for AM2 (K=4, M=2, N=3)

It could be observed that average throughput is higher when there are no crashes

than when there is one crash. However, Kafka-based ordering service has ensured

that there is no significant drop in throughput when one crash has occurred.

In order to compare the throughput when there is one crash against when there are

two crashes, the model with K=7, M=3, N=4, Z=3 and no.of OSNs=2 was selected.

20 40 60 80 100

no crashes 17.509 15.458 13.525 13.598 13.572

1 crash 15.433 14.774 12.856 11.363 12.356

7.000

9.000

11.000

13.000

15.000

17.000

19.000

A
v

er
ag

e
T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Comparison of Throughput for no crashes vs 1-
crash in Kafka-based ordering service for AM2

(K=4, M=2, N=3)

60

Figure 5.9: Comparison of Throughput for 1-crash vs 2-crashes in Kafka-based ordering

service for AM2 (K=7, M=3, N=4)

Similar to graph in Figure 5.8, it could be observed that Kafka-based ordering service

has ensured that there is no significant drop in throughput when two crashes have

occurred.

Figure 5.10: Comparison of Latency for no crashes vs 1-crash in Kafka based ordering service

for AM2 (K=4, M=2, N=3)

20 40 60 80 100

1 crash 13.727 14.337 12.995 13.245 14.493

2 crashes 14.556 14.337 11.876 12.527 12.504

7.000

9.000

11.000

13.000

15.000

17.000

19.000

A
v

er
ag

e
T

h
ro

u
gh

p
u

t
(t

p
s)

No. of simultaneously submitted transactions

Comparison of Throughput for 1-crash vs 2-crashes
in Kafka-based ordering service for AM2 (K=7, M=3,

N=4)

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

20 40 60 80 100

A
v

er
ag

e
L

at
en

cy
 (

se
co

n
d

s)

No. of simultaneously submitted transactions

Comparison of Latency for no crashes vs 1-crash in
Kafka-based ordering service for AM2 (K=4, M=2,

N=3)

no crashes 1 crash

61

Figure 5.11: Comparison of Latency for 1-crash vs 2-crashes in Kafka-based ordering service

for AM2 (K=7, M=3, N=4)

Figures 5.10 and 5.11 include latency graphs for the corresponding throughput graphs

included in figures 5.9 and 5.10. It could be observed that the latency is higher when

one crash occurs, especially when workload increases.

5.4 Summary

Through the evaluation performed in this chapter, it could be inferred that the

average throughput of AM2 is higher than AM1 for heterogeneous land transaction

density conditions, as hypothesized. Average latency of AM2 is lesser than that of

AM1. When the simultaneously offered workload increases over 60, average

throughput of AM2 increases and stabilizes, while the average throughput of AM1

linearly decreases. Similarly, the rate of increase of latency in AM1 is higher than that

of AM2. It could be verified that one reason for the low overall throughput of both

Abstract Models is, the size of land transactions. Further, it was observed that the

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

20 40 60 80 100

A
v

er
ag

e
L

at
en

cy
 (

se
co

n
d

s)

No. of simultaneously submitted transactions

Comparison of Latency for 1-crash vs 2-crashes in
Kafka-based ordering service for AM2 (K=7, M=3,

N=4)

1 crash 2 crashes

62

throughput of both Abstract Models decrease with increasing workload due to the

ordering service bottleneck.

It could be confirmed that AM2 is highly robust to crash faults at the level of

validating nodes, unlike AM1. It was identified that Kafka-based ordering service

provided by Hyperledger Fabric ensures that there is no significant drop of

throughput in AM2 for a given configuration when one crash failure occurs.

As explained in the previous chapter, implementation and evaluation of BFT-SMaRT

ordering service was performed under strict limitations and the result of evaluation is

included in Appendix A.

63

Chapter 6 - Conclusions

6.1 Introduction

The aim of this research was to provide a permissioned distributed ledger solution for

the Sri Lankan land transaction scenario, in order to overcome the inefficiency and

ineffectiveness of the current manual land registration systems in practice. Through

this research, a permissioned distributed land ledger for Sri Lanka was designed,

implemented using Hyperledger Fabric and evaluated for performance in terms of

transaction throughput and latency.

During designing of the DLT solution, optimal ledger content was extracted from the

current folio and transactions to be performed against the ledger were devised based

on the real Sri Lankan land transaction scenario. As expected initially, we could

successfully get away with the folio system while embedding folio details in the land

ledger. With the intention of proposing the most suitable DLT solution, two abstract

models were designed, such that AM1 closely resembles the current manual Sri

Lankan land transaction scenario, while AM2 is more suitable for a distributed setting

of the Sri Lankan situation, with regards to land transaction density variation across

RLRs.

Subsequently, the two Abstract Models of the land ledger were implemented using

Hyperledger Fabric and both were evaluated for performance in terms of

transactional throughput and latency under different land transaction density

conditions and failure conditions.

64

6.2 Conclusions about research questions

When the capabilities and limitations of adapting an open source solution for

implementing a distributed land ledger for Sri Lanka is considered, the conclusion

could be presented along two aspects. Since the implementation of the distributed

land ledger for Sri Lanka, using Hyperledger Fabric, has been able to provide all the

queries and transaction invocations as suggested by the design in Chapter 3, it could

be stated that the capabilities of Hyperledger Fabric is high. Most importantly, since

we could get away with the folio system, while facilitating derivation of pedigree/

folio tree from Fabric’s transaction log, the fact that Hyperledger has high capabilities

is confirmed. Turning towards the other aspect, concerning Abstract Models, Fabric’s

concept of organizations, channel architecture and endorsement policies helped

implement the real Sri Lankan validation policies. Thus it could be concluded that

features provided by Hyperledger Fabric are ideal in implementing a distributed land

ledger solution for Sri Lanka.

Before considering the performance difference between two Abstract Models under

different land transaction density conditions and failure conditions, based on

observations made during implementation, it could be stated that AM2 is better than

AM1, in terms of the number of Docker containers created. As it could be interpreted

in Chapter 4, AM2 performs better than AM1, due to its higher throughput & lower

latency under heterogeneous land transaction density conditions and tolerance of

crash faults of RLRs unlike AM1. Further, it was identified that Kafka-based ordering

service provided by Hyperledger Fabric ensures that there is no significant drop of

throughput in AM2 for a given configuration when one crash failure occurs. Thus, it

could be concluded that AM2 is ahead of performance than AM1 under different land

transaction density conditions and failure conditions.

The next section on limitations and further work would present future prospects and

possibilities for implementing a large scale distributed land ledger model for Sri

Lanka.

65

6.4 Limitations and Implications for further research

When providing a conclusion (opinion) on the third research question, the limitations

identified during this research, possible causes and remedies to overcome those

limitations could be considered as future prospects for implementing a large scale

distributed land ledger model for Sri Lanka.

In Chapter 5, it was verified that one reason for the overall low throughput of both

Abstract Models is the size of land transactions. Therefore, when implementing a

large scale distributed land ledger, it is recommended to minimize the size of land

transaction invocations as much as possible.

AM2 was evaluated for CFT under Kafka-based ordering service. During large scale

implementation, further testing for both CFT and BFT is recommended. However, the

evaluation models used for testing CFT and BFT in this research, could be improved

upon to achieve the above requirement.

Due to the Execute-Order-Validate architecture of Hyperledger Fabric, the expected

performance gain through AM2 was not attainable. However, it is recommended

that the proposed solution be implemented and evaluated on a permissioned DLT

network with similar features to Fabric but with Order-Execute architecture, which is

expected to provide a higher performance enhancement than what Hyperledger

Fabric provided for AM2.

Since the DLT network was created as a network of Docker containers on a single

instance, the CPU power is divided among all peer nodes. Since it could be speculated

as another reason for the low overall throughput, a resource allocation evaluation

could be performed as future work. During production scale deployment of the

proposed solution, it is important to provide higher CPU power (by allocating multiple

CPU cores) on peer nodes [18].

66

During evaluation, a set of transactions were submitted simultaneously to the DLT

network. However, arrival rates of transactions in real world production systems

would be following certain distributions. Thus, a workload generator which generates

concurrent transactional proposals, while maintain the land transactions density

variation of the real Sri Lankan scenario, is suggested as essential future work, when

evaluating a large scale DLT solution.

In a real world setup, nodes in the DLT network would be geographically distributed.

Although during evaluation we assumed that the network is not a bottleneck, it is

important to evaluate the effect of network latencies on throughput as future work.

In Honduras, due to the frequent facing of power outages, security problems and high

cost of electricity, the blockchain based land registry application has been deployed

on the infrastructure provided by a cloud service provider [7]. It is recommended that

a large scale implementation of the distributed land ledger solution for Sri Lanka also

be deployed on an IaaS platform. If the above recommended deployment is opted to

in the future, a performance evaluation should be performed on instances in a

datacenter.

Although Hyperledger has moved a step forward, by moving away from hardcoded

consensus like other permissioned DLT platforms [14], a presumption of the trust

model of the deploying environment is required. Nevertheless, if a cross fault tolerant

consensus protocol (e.g.: XFT) is pluggable with Hyperledger, a presumption of the

trust model would not be required. Development of a pluggable cross fault tolerant

consensus protocol for Hyperledger Fabric, would be possible future work.

67

References

[1] T. Perera, "Implementing Land Registration Systems in Sri Lanka: Being

Pragmatic," Sri Lankan Journal of Real Estate, vol. 4, pp. 74-96, 2011.

[2] J. Vos, "Blockchain-based Land Registry: Panacea, Illusion or something in

between?," in IPRA/CINDER congress, European Land Registry Association

(ELRA), Dubai, 2017.

[3] R. Pipan, "Bitfury," 7 February 2016. [Online]. Available:

https://bitfury.com/content/downloads/the_bitfury_group_republic_of_georgia

_expand_blockchain_pilot_2_7_16.pdf. [Accessed 7 January 2019].

[4] Lantmateriet (The Swedish Mapping cadastre and land registration authority),

Telia Company, Chromaway and Kairos Future, "The Land Registry in the

blockchain," Kairos Future, 2016.

[5] "Estonian blockchain technology," [Online]. Available: https://e-estonia.com/wp-

content/uploads/faq-a4-v02-blockchain.pdf. [Accessed 7 January 2019].

[6] J. Mirkovic, "Blockchain Cook County — Distributed Ledgers for Land Records,"

The Illinois Blockchain Initiative, Illinois, 2017.

[7] J. C. Collindres, M. Regan and G. P. Panting, "Using Blockchain to Secure

Honduran Land Titles," Fundacion Eleutra, Honduras, 2016.

[8] "Real Estate Land Title Registration in Ghana," 27 March 2016. [Online].

Available: http://bitlandglobal.com/. [Accessed 7 January 2019].

[9] "Whitepaper on Distributed Ledger Technology. Volume 1," Hong Kong

Monetary Authority, Hong Kong, November, 2016.

[10] C. Cachin and M. Vukolic, "Blockchain Consensus Protocols in the Wild," in 31st

International Symposium on Distributed Computing (DISC 2017), Vienna, Austria,

2017.

[11] "An Introduction to Hyperledger," The Hyperledger White Paper Working Group,

2018.

68

[12] "Hyperledger Archtecture, Volume 1 Introduction to Hypereldger Business

Blockchain Desing Philosophy and Consensus," Hypereldger Architecture

Working Group, 2017.

[13] "Hyperledger Architecture, Volume 2 Smart Contracts," Hyperledger

Architecture Working Group, 2017.

[14] E. Androulaki, C. Cachin, C. Ferris and S. Muralidharan, Hyperledger Fabric: A

Distributed Operating System for Permissioned Blockchains, arXiv:1801.10228v2

[cs.DC] 17 Apr 2018, 2018.

[15] "Bringing up a Kafka-based Ordering Service," 2017. [Online]. Available:

https://hyperledger-fabric.readthedocs.io/en/release-1.2/kafka.html. [Accessed

7 January 2019].

[16] F. Junqueira and N. Narkhede, "Distributed Consensus Reloaded: Apache

ZooKeeper and Replication in Apache Kafka," Confluent, 27 August 2015.

[Online]. Available: https://www.confluent.io/blog/distributed-consensus-

reloaded-apache-zookeeper-and-replication-in-kafka/. [Accessed 7 January

2019].

[17] J. Sousa, A. Bessani and M. Vukoli´c, "A Byzantine Fault-Tolerant Ordering

Service for the Hyperledger Fabric Blockchain Platform," in The 48th IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN 2018),

Luxembourg City, Luxembourg, 2018.

[18] P. Thakkar, S. Nathan and B. Viswanathan, "Performance Benchmarking and

Optimizing Hyperledger Fabric Blockchain Platform," in arXiv:1805.11390v1

[cs.DC] 29 May 2018, 2018.

[19] Q. Nasir, I. Qasse, M. A. Talib and A. B. Nas, "Performance Analysis of

Hyperledger Fabric Platforms," Security and Communication Networks, vol. 2018,

p. 14, 2018.

69

Appendix A: Diagrams

Diagram on the structure of the Folio

▻ Folio No.

▻ Location of land

▻ Boundaries

▻ Extent

▻ Name of land

▻ Plan No. and Date

▻ Name of surveyor

▻ Lot No.

No. and

date of

deed

Name of

Notary

Registration

stampduty

Grantors Grantees Remarks

regarding

transaction

Signature of registrar

and date of signature

Logic used to check overlapping boundaries during forkLand transaction

Boundary checking logic for forkLand transaction on splitting a land into two pieces is

explained below. Consider a vertical division of a rectangular land. Coordinates of the

center of the vertical line has to be provided as input to the system. The chaincode

checks whether that coordinate lies within the boundaries of original land (indicated

by the coordinates of the four corners). If so, two new lands are registered with

boundaries calculated by the chaincode.

Fixed details regarding a

land

One record per each land transaction

70

Horizontal division

Vertical division

Appendix B: Code Listings

Implementation of chaincode functions

Implementation of queryLand chaincode query

Implementation of queryAllLands chaincode query

71

Implementation of changeLandOwner chaincode invocation transaction

72

Part of Implementation of forkLand chaincode invocation transaction depicting the

invocation of createLand and deleteLand invocations as well as checking for

overlapping boundaries and extent consistency

Implementation of deleteLand chaincode invocation transaction

Implementation of createLand chaincode invocation transaction

73

Part of the code demonstrating the usage of GetHistoryForKey chaincode API

function in getHistoryForLand chaincode query

	Declaration
	Abstract
	Preface
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 - Introduction
	1.1 Background to the Research
	1.2 Justification for the Research
	1.3 Research Problem and Research Questions
	1.4 Methodology
	1.5 Outline of the Dissertation
	1.6 Delimitations of Scope
	1.7 High level architecture of a permissioned DLT solution for land transactions

	Chapter 2 - Literature Review
	2.1 Introduction�
	2.2 Blockchain based land registries of other countries
	2.3 Permissioned Distributed Ledger solution for the Sri Lankan land transaction scenario
	2.4 Permissioned DLT platforms
	2.4.1 Hyperledger Fabric

	2.5 Summary

	Chapter 3 - Design
	3.1 Introduction
	3.2 Design of optimal land ledger content
	3.2.1 Design of transactions against distributed land ledger

	3.3 Design of two Abstract Models for the SL distributed land ledger
	3.4 Design of a fault tolerant distributed land ledger solution
	3.5 Summary

	Chapter 4 - Implementation
	4.1 Introduction
	4.2 Implementation of optimal land ledger content and transactions
	4.2.1 Statement on Research Question 1

	4.3 Implementation of the two Abstract Models
	4.4 Implementation of production scale DLT networks and facilitation of fault tolerance
	4.4.1 Implementation of distributed land ledger with Kafka-based ordering service
	4.4.2 Implementation of distributed land ledger with BFT-SMaRT ordering service

	4.5 Summary

	Chapter 5 - Results and Evaluation
	5.1 Introduction
	5.2 Evaluation of the two Abstract Models
	5.2.1 Evaluation of the two Abstract Models in Solo ordering service
	5.2.2 Evaluation of the two Abstract Models in Kafka-based ordering service
	5.2.3 Evaluation of the two Abstract Models for changeLandOwner transactions
	5.2.4 Evaluation of the bottleneck at the ordering service (during ordering phase)

	5.3 Evaluation for Crash Fault Tolerance (CFT)
	5.4 Summary

	Chapter 6 - Conclusions
	6.1 Introduction
	6.2 Conclusions about research questions
	6.4 Limitations and Implications for further research

	References
	Appendix A: Diagrams

