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Abstract

Anomaly detection also known as Outlier detection is identification of

data points, items or events that does not fit the expected behavior.

In time series anomaly detection the objective is to detect anomalies in

temporal data, a series of data points indexed in time order. This data

can be network data, spatio temporal data and stream data, etc.

In this dissertation, an approache is proposed to detect anomalies in

time series data based on deep neural networks and dynamic time warp-

ing algorithm. Initially we use a long short-term memory network to

predict time series data. Then combined the LSTM network predictions

with a convolutional neural network to get more accurate predictions.

The predictions are compared with original time series data in a time

window approach using DTW algorithm to identify the anomalies within

the time series.

Evaluation process of the model is done using several steps. In the ini-

tial steps when developing the model three datasets are used to evaluate

and test the models. For the final evaluation numenta anomaly bench-

mark dataset a novel benchmark for evaluating algorithms for anomaly

detection, is used.

Keywords - Anomaly detection, Long short-term memory networks,

Convolutional neural networks, Dynamic time warping, hybrid neural

networks
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Preface

A framework for anomaly detection in time series data based on LSTM

networks is proposed in this research. The proposed framework consist

of two modules, A prediction module and a detection module. In the

prediction module we combined the LSTM prediction model with a CNN

to get more accurate results. The LSTM network and the CNN was

developed from the scratch without any neural network frameworks. In

the detection module we use dynamic time warping algorithm to identify

anomalies in a time series. The techniques used in the hybrid prediction

model including the methods in feature combining layer are my own

work.
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Chapter 1

Introduction

Time series anomaly detection is a field of study that attempts to find abnormal pat-

terns in time-based sequences and series. Anomaly detection of time-based signals

has a large applicability among various disciplines such as system health monitoring,

fault detection, and monitoring, surveillance, and vibration analysis of machines.

There are three main types of anomalies studied in the literature [1] named Point

anomalies, Collective anomalies and Contextual anomalies. A point anomaly or an

outlier is when an individual point is anomalous when compared to the rest of the

data points in the temporal sequence. When a collection of several data points are

anomalous when compared to the rest data it is identified as a collective anomaly.

All the individual points in this collective anomaly need not be an anomaly but

when they are occurring together it is a collective outlier. A contextual anomaly

is when the data point is anomalous in a specific context but not otherwise. The

below Figure 1.1, Figure 1.2 and Figure 1.3 shows the three maintypes of anomalies.

Figure 1.1: Point Anomaly

Figure 1.2: Collective Anomaly

1



Figure 1.3: Contextual Anomaly

1.1 Background

Time series anomaly detection is spread across large number of application areas.

Due to the abundant growth of data streams at present in all application domains

have paved the way for increased demand for anomaly detection models. In order

to address this need, a number of supervised, semi-supervised, and unsupervised

techniques based on anomaly detection models for time series data is available in the

literature [1]. The learning models developed using these techniques have adopted

various approaches such as neural network based approaches, statistical analysis

based approaches, visual representation based approaches and signal processing

based approaches. These approaches have different strengths and weaknesses and

their performance vary with the type of temporal sequence being modeled.

1.2 Research Problem and Research Questions

Time sequences contain large volume of data with wide range of patterns. Process-

ing these time series data to identify anomalies in them can be quite difficult due

to the volume of data present in such series. This can lead to challenges in resource

and data processing requirements. The presence of a large number of anomalies

with widely spread patterns also make the anomaly detection more complicated

as it is impossible to know all the anomalous patterns. In order to overcome the

aforementioned challenges in anomaly detection, a LSTM based prediction model

and how this prediction model can be used to identify anomalies by analyzing the

predictions are explored.

The main goal of this research project is to develop a framework for anomaly detec-

tion in temporal sequences. The anomaly detection should based on the previous

patterns of the temporal sequence and the system should learn new temporal pat-

terns while predicting the future data points. The main aspects addressed are:

• Getting a better understanding about the current approaches to the anomaly

detection in temporal sequences.
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• Understanding the advantages and disadvantages of the different approaches

and various types of time series data that can be used with.

• Studying anomaly detection approaches that are based on LSTM networks

and problems addressed using this approach.

• Studying about Anomaly Detection approaches that use convolutional neural

networks.

• Exploring different preprocessing methods of prediction model inputs to ex-

tract features from the temporal sequence.

• Exploring various methods of temporal data comparing approaches to detect

anomalies more accurately according to the domain of the time series.

1.2.1 Research Questions

• What are the salient properties required to predict anomalies in time series

data?

• How does these identified properties enable anomaly detection in time series

data?

• What are the best approaches to develop prediction models for anomaly de-

tection in time series data?

• How long short-term memory networks affect the predictions of the temporal

sequences?

• How to analyze the similarity between temporal sequences?

1.2.2 Research Objectives

• Developing A LSTM neural network model for time series predictions.

• Improving the predictions of the model by using hybridization approach.

• Developing time series analyzing method based on dynamic time warping.

3



• Identifying different anomalies according to the temporal sequence properties.

1.3 Justification for the research

The variability of performance in some time-series anomaly detection techniques and

the applicability of the model in some instances mainly stems from three aspects

inherent to time-series data. The three factors are a higher prevalence of anomalies

in a given time series, a large number of data points with sporadic positive samples

and the tendency of the time signal varying over time in some application domains.

The first aspect of a higher number of anomalies in a given series of data gener-

ally results in an unstable model due to the difficulty in training a model to all

predefined anomalies in a given series. Furthermore, both the first and the second

aspects mentioned above also leads to processing and resources challenges. In the

third aspect of dynamically varying time-series, the variability in the series renders

the previously developed anomaly detection models invalid in the varying context.

1.4 Methodology

Initially we study the currently using anomaly detection methods, how these meth-

ods are used to detect anomalies, their strengths and weaknesses. In this research

we are using a neural network based approach for anomaly detection. The main

reason for this is neural network approaches has shown great improvement in pat-

tern recognition field.

There are many neural network approaches for anomaly detection based on mul-

tilayer perceptron networks, convolutional neural networks, recurrent Neural net-

works and also the Long Short Term Memory networks an extension of RNNs.

The neural network approach use prediction models for time series forecasting.

The accuracy of the anomaly detection is depending on the accuracy of the predic-

tion model. The prediction model is trained by feeding the information about the

patterns in the temporal sequence. If the model can remember long term depen-

dencies the predictions also will be more accurate. Therefore using a LSTM based

prediction model will be more suited.
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As suggested in previous works [2] and [3] to improve the prediction accuracy of the

LSTM models, the hybrid approach can be used by combining with various other

deep neural network architectures. The hybrid models can be developed in different

combinations of neural networks.

In order to address the previously mentioned aspects related to time-series anomaly

detection, we propose a framework for anomaly detection based on Long Short-Term

Memory networks and the Convolutional Neural Networks. The proposed frame-

work consists of two modules named as Prediction module and Detection module.

In the prediction module, the CNN and the LSTM are combined in a hybrid config-

uration. The hybrid network model in the module is then used to obtain prediction

on time-series data which are passed to the detection module which identifies the

anomaly in the time series by measuring the similarity between the prediction and

the real temporal sequence using Dynamic Time Warping (DTW).

1.5 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter two explores the

currently used approaches in anomaly detection, what are the strengths and the

weaknesses of these approaches. Chapter three describes proposed research design

and methodology and how the research questions are addressed from the proposed

method. In chapter four it describes the implementation details of the proposed

methodology. Chapter five dedicated for the results evaluation of the proposed ap-

proach. Final chapter, the chapter six presents the conclusion and the future work.

1.6 Delimitations of Scope

Our framework for anomaly detection is developed using a prediction model based

on LSTM neural networks. The three main types of anomalies, point anomaly,

collective anomaly and contextual anomaly detection will be covered for time series

data.

The LSTM prediction model will use the basic LSTM memory cell structure with

input gate, forget gate and the output gate. The structure of the LSTM network

can be changed by altering the number of memory cells to get better results.

5



Furthermore we will attempt to combine the LSTM model with other deep neural

network models to increase the prediction accuracy. The developed hybrid predic-

tion model will allow to adjust the parameters and the network structures.

After the time series forecasting an algorithm is used to analyze the differences

between the predicted points and the original time series data. According to the

given parameters and threshold values anomalies are identified.
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Chapter 2

Literature review

2.1 Anomaly Detection

Anomaly detection in time series is a very broad field and studied across large

number of application domains. It can be also called as Outlier detection. Because

of the large number of domains there have been a vast amount of approaches and

methods used for anomaly detection in time series data [1]. Due to this variety

of application domains the anomalies can be identified differently in each domain.

There are mainly three types of anomalies studied in the literature point outliers,

collective outliers and contextual outliers.

2.1.1 Statistical Approach

There are various approaches to detect anomalies in temporal sequences. Statistical

methods are one of the mostly used technique to find the anomalies. In statistical

techniques they use mathematical models to predict the future points in the time

series. These prediction models are made up of a number of predictors, which are

variables that are likely to influence future results.

In statistical approaches they use several kinds of prediction models [4] such as Au-

toregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA)

and Autoregressive Integrated Moving Average (ARIMA). These models can be

used to predict the time series depending on the temporal sequence.

In AutoRegressive models the forecasting is done based on the past values. these

models are represented as AR(p) where the p indicates the number of terms which

the predicted output is depending on. In moving average model the forecasted out-

put is depending only on the random error terms which follow white noise process.
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This model can be represented as MA(q) where the q indicates the number of error

terms used.

AutoRegressive Moving Average model is a combination of both AR and MA mod-

els. That means the forecasting is depending on both past values and the error

terms. This model can be represented as ARMA(p,q) where p indicate number of

past values and q for error terms. In the ARIMA model ‘I’ means integration. The

time series is differentiated to forecast the values. The differentiation can be done

number of times to make the time series stationary.

Prediction models AR, MA and ARMA can only be used to predict the time series

data if the time series is stationary and if the temporal data sequence is non sta-

tionary the time series should be differentiated to make it stationary.

2.1.2 Clustering Approach

Other than the statistical approach another largely used anomaly detection ap-

proach is the clustering approach. Clustering is an unsupervised techniques based

approach. In this approach several techniques can be used to detect anomalies in

the time series data.

In clustering approaches a similarity function is developed and the temporal se-

quence patterns are clustered using these functions. Applying these functions the

distance between the similar temporal patterns are minimized and the distance be-

tween the sequences which not that similar is maximized. By this method patterns

within the temporal sequence can be identified that if they belonging to a already

existing cluster or not.

Anomalies can be identified from these clustering based methods by calculating

the distance from the center of the closest cluster to the point where the similarity

function identify the given temporal sequence pattern. One of the main important

aspect of this clustering technique is the similarity measure.

A method that can be used for clustering temporal sequence patterns is Self Orga-

nizing Maps. In [5] they use several prototype SOM algorithms to detect anomalies

in time series data. Their goal was to evaluate SOM models for anomaly detec-

tion using SOM based algorithms such as Standard SOM, Kangas’ Model, TKM-

8



Temporal Kohonen Map, Recurrent SOM. The comparison is done by evaluating

false positive rates and decision thresholds.

SOM clustering is very efficient when dealing with high dimensional data. In

[6] they use Particle Swarm Optimization (PSO) with SOM to detect anomalies

in high dimensional data. SOM can also be used for dimensionality reduction in

high dimensional data. In [7] a graphical representation of the clusters and genetic

algorithm-based travelling salesman approach is used to increase the quality of the

SOM to do more accurate clustering.

Another classification approach that used anomaly detection is Support Vector Re-

gression method. SVR can be used as a classification algorithm to classify normal

patterns in a time series. Time series patterns can be matched with the models and

then can generate a value that denote how much the time series pattern is similar

to the already existing patterns. Then we can use predefined time intervals and

threshold values to detect if the pattern is an anomaly or not.

One of the main challenge in this approach is when the time series is very large

it can contain large number of patterns. New patterns can also be added to the

classification with the time. Then the number of support vectors increase and with

that it can lead to processing problems. One way to avoid this is by keeping only

constant number of support vectors. Then it will keep constant number of previous

temporal patterns and forget the older temporal sequences [8].

2.1.3 Genetic Algorithms

In addition to these methods Immunological principles can also be used to detect

anomalous patterns in temporal data. The natural immune system uses a decen-

tralized system for classifying normal and anomalous cells. The immune system is

able to extract features to identity patterns, learn to recognize new patterns and

also has a content addressable memory. By observing these mechanisms an anomaly

detection algorithm is implemented in [9].

In that approach wavelet analysis is used for feature reduction in the time se-

ries data and the data patterns were converted in to binary representations before

giving as the input. The anomaly detectors were generated using negative selection

algorithm. They compared the results by using positive detection with ART1 neural
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network and concluded that the both methods gives similar results when detect-

ing anomalies and also, the repeated feature reduction using the wavelet analysis

gradually loses the semantic information in data patterns that causes failures in

anomaly detection.

2.1.4 Neural Network Approach

When considering contemporary literature there are various approaches to detect

anomalies in temporal sequences. Among these approaches, the neural network

based approaches are sought by many researchers due to the greater degree of scal-

ability and the flexibility offered by such neural models [2], [4], [10]. The neural

network based approaches can be broadly categorized into two as Convolutional

Neural Network (CNN) based models and Recurrent Neural Network (RNN) based

models. RNN is considered as an ideal network model for time series prediction

tasks due to the networks ability to remember historical patterns. However the

RNNs are susceptible to the gradient problems (vanishing gradient and exploding

gradient) when presented with long and continuous training process.

When training a RNN it use a technique called Backpropagation Through Time

(BPTT). While training using this gradient descent method for many iterations the

gradient is tend to explode or vanish. Therefore it prevents the neural network

from further learning. Another problem in RNNs are it is hard to keep long term

dependencies in the memory of RNN.

In order to address the gradient problems in the RNN, the Long Short Term Mem-

ory (LSTM) networks were introduced in [11] by Hochreiter and Schmidhuber. The

LSTM is a RNN variant with an inclusion of a memory cell [12] which consists of

a number of gates that enables the cell to retain information for a relatively long

period. The structure of the memory cell and its overall effects to the LSTM were

studied in detail by Klaus et al [13]. Among the findings it was observed that the

overall performance of LSTM was not tightly coupled with the cell structures and

the forget gate, and the output activations are the most critical components in a

cell. Furthermore, it was observed that coupling the input and the forget gates to

introduce an update gate simplified LSTM further without a significant decrease in

performance.

Therefore using the basic LSTM cell structure [14] for the LSTM network in the
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prediction model can give better results and to optimize the performance the pro-

posed update gate can be used.

Furthermore, LSTMs also have the ability to remember long term dependencies

and due to that are more suitable for time series forecasting. However, when the

LSTM network was developed as an autoregressive model to forecast a time series

and was compared with a multilayer perceptron (MLP) [2] it was observed that

the LSTM was unable to accurately follow the input signal. The research further

suggested that LSTM’s core strength is to learn and remember single events for

long time and alluded to the viability of hybrid prediction models to increase the

accuracy of prediction models.

Such hybrid prediction models for various vocabulary tasks were explored in [3].

In this study, various neural network architectures were combined to see the overall

prediction accuracy of the vocabulary tasks. The evaluation compared the hybrid

models (CNN+LSTM, LSTM+DNN and CLDNN) results with the vanilla imple-

mentations of CNN, LSTM and DNN. LSTM depicted the highest accuracy when

taken alone and the CLDNN had the overall highest accuracy. Another similar hy-

brid model for prediction slopes and trend in temporal patterns were developed by

Tao, Tien and Karl in [15]. The prediction model named TreNet is a combination

of the LSTM and the CNN. In this model the LSTM was provided with the trend

sequence and the CNN was provided with the raw input sequence. The effectiveness

of the hybrid model was evaluated against several baselines models as well and non-

neural network based models. Similarly, stacking of hidden layers when building

a LSTM network can increase the prediction accuracy of the network as it is able

to learn higher level temporal features. In [4] a predictor was developed to model

normal behavior of a time series using stacked LSTM network. The conclusions

state that stacked LSTM network was able to learn higher level temporal patterns

without prior knowledge and gave better or similar results when compared with

stacked RNN.

When considering anomaly detection models there are many neural network ap-

proaches for anomaly detection in time series data. In [16], Shipmon et al. describes

a comparison between DNN, RNN, LSTM and a Fourier model. The conclusions

stated that Fourier and RNN were more effective prediction models and DNN and

LSTM gave more false positives at peaks. In another research which compared

LSTM and RNN [10], it was found that the LSTM performed better at the anomaly
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detection task. It is clear that the two studies provide contradiction conclusions.

This may be mainly associated with the inherent properties of the datasets used by

each individual study and the anomaly type being modeled. Furthermore, LSTMs

have been used to detect collective anomalies in time series data is described in [17].

In this research, the LSTM is used to predict the future points and calculate the

relative error value comparing the real data points with the predictions from the

network. Apart from LSTMs, CNNs also have a significant applicability to predict

the time series data and anomalies. In [18] they have observed a multi-channel deep

convolutional network (MC-DCNN) for multivariate time series data. In the predic-

tion model it take a single dimension of the multivariate time series and learn the

features individually. They compared the results and performance with a nearest

neighbor (NN) prediction model. NN model increases linearly as the size of training

data set grows and the prediction time of MC-DCNN model is almost constant does

not depend on the size of the training data set. As conclusions they presented that

the deeper architectures can learn more robust high level features.

Another attempt to observe multivariate time series data prediction is conducted

in [19] .In this they have observed how LSTM network predict a multivariate time

series using a large data set of multivariate clinical time series. The observations

from this concluded that the LSTM can be successfully used to predict large mul-

tivariate temporal data. As the future work they suggested techniques to directly

handle missing data values and methods to handle irregular sampling of the data.

Other than the prediction models, the most important part in an anomaly de-

tection mechanism is to identify anomalies in time-series data by comparing the

predicted time series with the original time series. The methods like probabilis-

tic methods are used to detect anomalies by using an error value which can be

generated by prediction values and original values. Another time series compar-

ing technique is Dynamic Time Warping (DTW). In this algorithm a similarity

value is calculated by finding the optimal global alignment between the two time

series, by exploiting temporal distortions. The time complexity of the algorithm is

O(n2) therefore when the size of the time series is increases the time consumption of

this algorithm increase rapidly. As a solution to this FastDTW [20] was introduced.
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2.1.5 Summary

As presented above, there are many approaches for time series anomaly detection.

These different approaches has advantages unique to them and the best approach

can be chosen according to the anomaly detection task. The main challenges which

is faced by the detection models are processing and resource challenges and up-

dating the model according to time series pattern drifts. The remainder of this

paper proposes a framework to handle the issues pertaining to anomaly detection

mentioned above.
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Chapter 3

Design

3.1 Research methodology

Time series anomaly detection has various challenges. Since new data arrives at

every time instant in a time series, the scale of the data is very large. This gener-

ally leads to processing challenges. Other main challenge is the data model that is

used have to be updated when there is serious model drift. This is related to the

transitions in the local patterns in the time series.

In this research we propose an anomaly detection framework to overcome these

challenges. Our framework consist of two modules named Prediction module and

Detection module. Prediction module is a neural network based time series predic-

tion model. Detection module is based on dynamic time warping algorithm.

A time series can have massive amount of data points. Therefore these can contain

a large number of anomalous patterns. To overcome this resource and processing

problem in our approach we use a prediction model to predict the normal pattern

in the time series and then compare the predictions with the real world data to

identify anomalies.

Furthermore to overcome the model drift problem that occurs when the normal

pattern in the time series shift from one another pattern with the time we are using

a LSTM based neural network model for our prediction model. The memory cell

in the LSTM neural network gives the prediction model the ability to handle long

term dependencies.
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3.2 Prediction Module

Prediction module contain the prediction model developed using a hybrid configu-

ration of LSTM network and a CNN.

3.2.1 LSTM Network

As the result of the memory cells, LSTM networks are one of the best way to handle

long term dependencies. As the initial step we develop a prediction model based on

LSTM network. The vanilla memory cell structure with three gates was used for

the development of the network.

The network contains a single LSTM layer with memory blocks. Each memory

block contains one memory cell. Figure 3.1 shows the structure of a basic memory

cell used for the network. The gates in a cell are input gate (i), forget gate (f) and

output gate (o). Input for the memory cell is a vector which contains the input at

time (t) and the output from the cell at time (t-1).

cell stateInput (t) + Out (t-1) Out (t)

state (t-1)

state (t)

o

i

f

Figure 3.1: Memory cell structure

The cell state at time (t) is decided by the earlier cell state and the preceding in-

put values. Current cell state is passed to the next instance of the cell. Several

activation functions are used for the memory cell. For input and output activation
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sigmoid function is used and other than that tanh activation is used.

The structure of the network in the prediction model is adjustable according to

the input time series. This prediction model is individually trained and tested for

several time series data sets including univariate and multivariate time series data

to observe how the LSTM prediction model works.

In Figure 3.2 it shows the structure of the LSTM network that we used for our

prediction model. Input layer is fully connected to the LSTM layer. The number

of LSTM memory blocks can be adjusted. Learning rate of the network, number of

time steps unfolded can be adjusted as parameters.

LSTM

LSTM

LSTM

Input OutputLSTM Layer

Figure 3.2: LSTM network structure

Time Series Processing

Training dataset is normalized before training the network. network is trained for
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the normalized values. for the predictions in each instance the input time window

is normalized before feeding to the network. the predicted value is then processed.

Post processing

A normalized time series is fed into the network. Therefore the prediction has to

be processed to get the real world value. In the preprocessing step, the input time

series is normalized by dividing all the values by the magnitude of the input vector,

Then when post processing the prediction is multiplied by this vector magnitude.

vector = (a, b, c, d)

magnitude(m) =
√

(a2 + b2 + c2 + d2)

input(normalized) = (
a

m
,
b

m
,
c

m
,
c

m
)

prediction = p

processed = p×m

3.2.2 CNN Network

The structure of the CNN that used for the prediction model is explained in the

Figure 3.3. The network includes Convolutional layers, Pooling layers and fully

connected layers. In this deep neural network the number of layers can be changed

to adjust the prediction model parameters.
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Input Convolutional
Layer 

Pooling
Layer Fully Connected

Layer
Output

Figure 3.3: CNN structure

Convolutional layer and pooling layer in the CNN extract features from the time se-

ries and feed the data into the fully connected layers. The fully connected layers by

using the learned information map the input vector to a corresponding output value.

Time Series Processing

Training set is normalized and input time windows are normalized as in the LSTM

model. In the post processing a different method is applied to map the prediction

points to original time series data point ranges. The equation 3.1 explain the tech-

nique used for mapping the prediction.

Vnew = (Vin − Pmin)×
[
Omax −Omin

Pmax − Pmin

]
+ Omin (equation 3.1)

Vin = predicted value
Vnew = processed value
Omax = maximum value in training set
Omin = minimum value in training set
Pmax = maximum prediction value for the training set
Pmin = minimum prediction value for the training set
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3.2.3 Hybrid configurations

Neural networks can be combined in several methods. In our approach we explore

two linear combination structures and one ensemble combination structure of a

LSTM network and a CNN. The structures in Figure 3.4, Figure 3.5 and Figure 3.6

shows the models which is explored.

LSTMCNN model

This is the first linear model we explore. The LSTM network and CNN is combined

in the order which, the time series data is fed into the LSTM and then the output

of this network becomes the input to the CNN.

The two networks, LSTM and CNN are trained individually by using the same

set of training data. The output from the CNN become the final prediction of the

model for a given input.

LSTM Prediction
Model

CNN Prediction
ModelInput Prediction

Figure 3.4: LSTMCNN structure

CNNLSTM model

In this model networks are combined linearly as same as the LSTMCNN model.

The original time series data is fed to the CNN and the input for the LSTM is

generated from the CNN predictions. Final prediction of the time series is obtained

by the LSTM network. Training process of the networks are same as the previous

model.

CNN Prediction
Model

LSTM Prediction
ModelInput Prediction

Figure 3.5: CNNLSTM structure
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LSTMCNNFC model

This prediction model is developed using an ensemble combination of a CNN and

a LSTM network. The main reason for this model is get more accurate prediction

by combining the power of capturing long term dependencies using LSTMs and the

power of CNNs concurrently.

In this model same as the previous linear models the LSTM and CNN networks

are trained using the same data set. For the training the time series is partitioned

into overlapping time windows. The same time widow technique is used when doing

the predictions. Input time window for the both networks are similar.

For each time window the both models LSTM and CNN generate separate pre-

dictions and then these two predictions are combined to obtain the final prediction

from the model.

Prediction Combining Layer

The process of combining the prediction results is conducted to extract details from

from both predictions and make the final prediction more accurate. To get the most

accurate prediction The information that obtained from each individual prediction

model can be vary depending on the time time sequence.

The above mentioned issue is handled using a layer called prediction combining

layer where we use a weighted multiplication technique (equation 3.2) to obtain

more optimum predictions of the time sequence.

Fp = (Pl ×Wl) + (Pc ×Wc) (equation 3.2)

Fp = Final Prediction
Pl = Prediction from the LSTM model
Pc = Prediction from the CNN model
Wl = Weight for the LSTM prediction
Wc = Weight for the CNN prediction

The weights for the LSTM and CNN predictions can be adjusted depending on the

time series. To get more accurate long term patterns the weight for the LSTM net-

work prediction can increased. If more accurate predictions for the local patterns

are required we can increase the weight for the CNN prediction value.
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CNN Prediction
Model

LSTM Prediction
Model

Input PredictionFeature Combining
Layer 

Figure 3.6: LSTMCNNFC structure

3.2.4 Predictions

Time Window approach

Input for the prediction model is given as a time window. A time series of length

n is converted in to length m time windows. The value m depend upon the time

sequence.

series = (t1, t2, t3, ..., tn)

inputs = ((t1, t2, .., tm), ..., (tq+1, tq+2, ..., tn))

T1 T8 T9 T10T2 T3 T4 T5 T6 T7

Window 1

Window 2

Window 3

Time Series

Figure 3.7: Input Time Window
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Predicting Multiple Points

The prediction model take in a time window predicts the next point in the time

sequence. To predict more than one consecutive point for a single input window a

specialized technique is used.

In this technique initially one point is predicted for the given input time window.

Then the input time window is updated by adding the predicted point to the in-

put. Using this updated input window we can predict the next consecutive point.

By using this technique several consecutive points ahead in time for a single time

window. Figure 3.8 shows the visual representation of the technique used.

T1 T2 T3 T4 T5

T2 T3 T4 T5

T3 T4 T5

Input Window Framework Output

Figure 3.8: Multiple time steps prediction

When using this method, for a single time instance the prediction model generate

multiple values. Therefore to make the prediction a single value of these multiple

predictions for the same time instance the mean value is calculated.
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3.3 Detection Module

To detect the anomalies the predicted time series data and the original time series

data will be compared. To do the comparison an algorithm called dynamic time

warping algorithm is used. The input for the algorithm is two time sequences. This

algorithm gives a similarity value between the two sequences using the optimum

global alignment (Figure 3.9). The similarity value is also called as the warp distance

and less warp distance means more similarity between the two sequences.Predefined

threshold value can be used to identify the anomalies in the sequence using this warp

distance

Series 1

Series 2

Figure 3.9: Alignment between two time sequences

3.4 Anomaly Detection Framework

Anomaly detection framework is developed by combining the prediction module

and the detection module.

Input Similarity
ValuePrediction Detection

Module
Prediction
Module

Detection
Module

Figure 3.10: High level architecture of the framework

In the above Figure 3.10 it explains the high level architecture of the proposed
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framework. The time series is partitioned into time windows and fed into the pre-

diction model and predicted time series is compared with the original time series

to get a similarity value.

For each time window the prediction model predicts the next time series point.

Input for the detection model is also a time window. This time window is gen-

erated by the predictions. The obtained warp distance from applying the DTW

algorithm can be used to identify the anomalies within the given time window.

3.5 Design Concerns

3.5.1 Normalization Problem

The time series is partitioned into overlapping time windows and normalized in the

preprocessing step of the dataset. When the normalization is applied into the time

windows in some specific cases two normalized time windows can be similar even

the original time windows are not the same.

vector = (a, b, c, d)

magnitude(m) =
√

(a2 + b2 + c2 + d2)

input(normalized) = (
a

m
,
b

m
,
c

m
,
c

m
)

Using the technique

v1 = [10, 10, 10, 10]

v1(normalized) = [0.5, 0.5, 0.5, 0.5]

v2 = [20, 20, 20, 20]

v2(normalized) = [0.5, 0.5, 0.5, 0.5]

The input vectors v1 and v2 are not the same, but normalized v1 and normalized v2

are similar. Therefore it affects the prediction of the model and predictions become

less accurate.
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Cannot use the model without normalizing the input vector because there are sig-

moid functions used as activation function inside the LSTM memory cells and also

in the CNN. when the input vector contain large values all the values are mapped

into value ’1’ by the sigmoid functions

To overcome this issue the normalization technique is altered. In the initial tech-

nique we use the input time windows own magnitude to normalize. The new tech-

nique use the magnitude of the training data set in the normalization process.

3.5.2 Anomalous Input Data

As mentioned in earlier sections for the prediction model time series data is fed

as time windows. When this sequences contain anomalies they are also fed to the

prediction model within these time windows. When an input data window contain

an anomaly the prediction become erroneous.

Therefore to overcome this issue we keep the information of our training dataset of

the prediction model as the normal behavior of the time sequence within the pre-

diction model. After each prediction the prediction is compared with the normal

pattern and identify whether there is a significant difference between the prediction

and the initial normal behavior.Therefore when such a difference is identified instead

of adding the anomalous data point to the input window for the next prediction,

the corresponding data point is matched using the information stored about normal

behavior of the training dataset.
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Chapter 4

Implementation

This chapter elaborates the implementation details of the proposed framework.

4.1 Long Short-Term Memory network

The LSTM network is implemented in C++ from the scratch. The network has

memory blocks containing one memory cell in each block. Input layer is fully con-

nected to the hidden layer. The weights for the network are randomly initialized.

All the gates in a memory cell have bias values and they are also initialized ran-

domly. Input for the network is given as vector. This vector contains data points of

a time window of the time series. The training data size, learning rate and number

of training iterations is depending upon to the dataset.

Listing 4.1: LSTM network

1 #inc lude ”LSTMnet/LSTMNet . h”
2
3 // Generating the LSTM
4 LSTMNet ∗ l stm ;
5 th i s−>l stm = new LSTMNet( memCells , inputVecSize ) ;
6 // Train ing the LSTM net
7 lstm−>t r a i n ( input , targetVector , t ra inDataS ize , t imeSteps ,

l earn ingRate , i t e r a t i o n s ) ;
8 // P r e d i c t i o n s
9 std : : vector<double> ∗ input ;

10 input = new std : : vector<double > [ 1 ] ;
11 double p r e d i c t i o n ;
12 p r e d i c t i o n = lstm−>p r e d i c t ( input ) ;
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4.2 Convolutional Neural Network

CNN is implemented in C++. Eigen library is used for matrix manipulations.

Convolution layers, Activation layers, Pooling layers and Fully connected layers are

implemented within the network. The number of Convolution layers, and Pooling

layers and number of layers in the fully connected layers can be adjusted accord-

ingly. sigmoid function is used as the activation function and non overlapping max

pooling is used in the pooling layers. Network is trained using gradient descent

method. weights for the filter matrices and the fully connected layers are initialized

randomly. learning rate can be adjusted accordingly.

Listing 4.2: CNN network

1 #inc lude ”CNNet/CNN. hpp”
2
3 // Generating the CNN
4 CNN ∗ cnn ;
5 th i s−>cnn = new CNN( dimensions , modelStruct−>netSt ruc t ) ;
6 // Train ing the network
7 cnn−>t r a i n ( inMatArr , inLblArr , t ra inDataS ize , i t e r a t i o n s ,

l ea rn ingRate ) ;
8 // P r e d i c t i o n s
9 Eigen : : MatrixXd tstMatArr [ 1 ] ;

10 tstMatArr [ 0 ] = Eigen : : MatrixXd : : Zero ( height , width ) ;
11 double p r e d i c t i o n ;
12 p r e d i c t i o n = cnn−>p r e d i c t ( tstMatArr ) ;

4.3 Feature Combining Layer

This layer is implemented to combine the prediction from LSTM and CNN. This

is implemented within the prediction model. The final predictions of the model is

generated by this layer.

Listing 4.3: Combinig the prediction results of LSTM and CNN

1 // LSTM p r e d i c t i o n s
2 input [ 0 ] = inVec ;
3 f o r ( i n t j = 0 ; j < numPredPoints ; j++) {
4 r e s u l t = lstm−>p r e d i c t ( input ) ;
5 input [ 0 ] = std : : vector<double>(inVec . begin ( ) +1, inVec .

begin ( )+inputVecSize ) ;
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6 input [ 0 ] . push back ( r e s u l t ) ;
7 lstmPredPoints [ ( ( i+inputVecSize+j )%numPredPoints ) ] +=

r e s u l t ;
8 }
9 r e s u l t = lstmPredPoints [ ( ( i+inputVecSize )%numPredPoints ) ] / (

double ) numPredPoints ;
10 lstmPredPoints [ ( ( i+inputVecSize )%numPredPoints ) ] = 0 ;
11
12 // CNN p r e d i c t i o n s
13 f o r ( i n t j = 0 ; j < numPredPoints ; j++) {
14 p r e d i c t i o n = cnn−>p r e d i c t ( tstMatArr ) ;
15 inVec = std : : vector<double>(inVec . begin ( ) +1, inVec . begin

( )+inputVecSize ) ;
16 inVec . push back ( p r e d i c t i o n (0 , 0 ) ) ;
17 f o r ( i n t a = 0 ; a < he ight ; a++) {
18 f o r ( i n t b = 0 ; b < width ; b++) {
19 tstMatArr [ 0 ] ( a , b ) = inVec . at ( ( a ∗ width ) + b) ;
20 }
21 }
22 predPoints [ ( ( i+inputVecSize+j )%numPredPoints ) ] +=

p r e d i c t i o n (0 , 0 ) ;
23 }
24 p r e d i c t i o n (0 , 0 ) = predPoints [ ( ( i+inputVecSize )%numPredPoints

) ] / ( double ) numPredPoints ;
25 predPoints [ ( ( i+inputVecSize )%numPredPoints ) ] = 0 ;
26
27 // post p roce s s CNN p r e d i c t i o n
28 va l = p r e d i c t i o n (0 , 0 ) ;
29 va l = ( va l − predictMin ) ∗ ( ( trainMax − trainMin ) /( predictMax

− predictMin ) ) + trainMin ;
30
31 // combining the r e s u l t s LSTM and CNN
32 va l = ( r e s u l t ∗lstmW + val ∗cnnW) ;

4.4 Dynamic Time Warping

DTW algorithm is implemented the using dynamic programming approach. The

basic DTW algorithm with the time complexity of O(n2) is used.
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4.5 Anomaly Detection Framework

The prediction module is developed by combining the LSTM network, CNN net-

work and the feature combining layer. For the detection module DTW algorithm

is implemented. Both These modules are combined to build the anomaly detection

framework. The framework is able to generate five prediction model types, LSTM

model, CNN model, LSTMCNN model, CNNLSTM model, LSTMCNNFC model.

This is implemented as a dynamic library in C++.

Listing 4.4: Header File for the framework

1 #i f n d e f LSTMCNNET HPP
2 #d e f i n e LSTMCNNET HPP
3
4 #inc lude ”LSTMPredictionModel . hpp”
5 #inc lude ”CNNPredictionModel . hpp”
6 #inc lude ”LSTMCNNFCPredictionModel . hpp”
7 #inc lude ”LSTMCNNPredictionModel . hpp”
8 #inc lude ”CNNLSTMPredictionModel . hpp”
9 #inc lude ”DTW. hpp”

10
11 #e n d i f /∗ LSTMCNNET HPP ∗/

4.6 Network Parameters

The parameters for a model generated by the framework changes according to the

prediction model type. The parameters for each model is stored in a C++ struct.

Then this structure is passed as an argument when initializing the model.

Listing 4.5: Data structure for model parameters

1
2 s t r u c t NetLayers{
3 i n t numCL = 0 ; // convo lu t i ona l l a y e r s
4 i n t numPL = 0 ; // poo l ing l a y e r s
5 i n t numFCL = 0 ; // f u l l y connected l a y e r s
6 ConvolutionLayer ∗ CL; // convo lu t i ona l l a y e r array
7 PoolLayer ∗ PL; // poo l ing l a y e r array
8 FCLayer ∗ FCL; // f u l y connected l a y e r array
9 } ;

10
11 c l a s s ModelStruct {
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12 pub l i c :
13 v i r t u a l ˜ ModelStruct ( ) ;
14 pub l i c :
15 i n t t r a i n i n g I t e r a t i o n s ; // t r a i n i n g i t e r a t i o n s
16 i n t t ra inDataS i ze ; // t r a i n data s i z e
17 double l earn ingRate ; // l e a r n i n g ra t e
18 // LSTM
19 i n t memCells ; // number o f memory c e l l s
20 i n t inputVecSize ; // input vec to r s i z e
21 i n t p r e d i c t i o n s ; // p r e d i c t i o n po in t s
22 i n t numPredPoints ; // fu tu r e po in t s
23 std : : s t r i n g dataF i l e ; // path to the data f i l e
24 // CNN
25 i n t matWidth ;
26 i n t matHeight ;
27 i n t targetC ;
28 s t r u c t : : NetStruct ne tSt ruc t ;
29 } ;
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Chapter 5

Results and Evaluation

Evaluation process is conducted in several steps. The framework is evaluated for

all the five possible types of models LSTM model, CNN model, LSTMCNN model,

CNNLSTM model and LSTMCNNFC model. The models are also tested for pre-

dictions with several time steps to future for a single time window input. Three

datasets, sea level pressure1, daily minimum temperature2 and internet traffic3 are

used for the evaluation process. data without anomalies, data with artificial anoma-

lies and data with known anomalies are used.

The framework consist of two modules prediction module and detection module.

There are five possible prediction models that can e generated by the framework.

Each prediction model is individually evaluated. Datasets for this evaluation is

obtained by the UCI machine learning repository this evaluation

5.1 Prediction Module

The accuracy of the prediction model is calculated using the mean squared error of

the predictions.

1The sea level pressure dataset for Darwin from the Climate Prediction Center
2Daily minimum temperatures in Melbourne, Australia, 1981-1990
3Internet traffic data (in bits) from an ISP. Aggregated traffic in the United Kingdom academic

network backbone. It was collected between 19 November 2004, at 09:30 hours and 27 January
2005, at 11:11 hours. Hourly data

31



5.1.1 LSTM Model
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Figure 5.1: The sea level pressure dataset for Darwin from the Climate Prediction
Center (LSTM Predictions)
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Figure 5.2: Daily minimum temperatures in Melbourne, Australia, 1981-1990
(LSTM Predictions)

5.1.2 CNN Model
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Figure 5.3: The sea level pressure dataset for Darwin from the Climate Prediction
Center (CNN Predictions)
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Figure 5.4: Daily minimum temperatures in Melbourne, Australia, 1981-1990 (CNN
Predictions)

5.1.3 Hybrid Model
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Figure 5.5: The sea level pressure dataset for Darwin from the Climate Prediction
Center (LSTMCNNFC Predictions)
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Figure 5.6: Daily minimum temperatures in Melbourne, Australia, 1981-1990
(LSTMCNNFC Predictions)

5.1.4 Mean Squared Errors

The Table 5.1 shows the mean squared errors of the prediction done by all the five

the prediction models. Three datasets are used for the initial evaluation of theses

models.

The most accurate predictions are identified by the mean squared error (MSE) of
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LSTM CNN CNNLSTM LSTMCNN LSTMCNNFC
Sea Level Pressure 2.00E-05 2.56E-05 1.53E-04 7.52E-05 2.00E-05
Internet Traffic 1.38E-04 2.30E-04 2.42E-04 2.03E-04 1.34E-04
Daily Temperature 2.87E-05 1.56E-04 9.05E-05 8.48E-05 2.83E-05

Table 5.1: Mean squared errors of prediction models

the predictions. The model with lowest MSE has the most accurate predictions. For

all the datasets the lowest MSE is achieved by the hybrid model with the ensemble

approach (LSTMCNNFC).

5.2 Feature Combining Layer

In this layer the predictions are combined using weighted multiplication. By altering

the weight for each model we can alter the details of the predicting time series.

Figure 5.7, Figure 5.8 and Figure 5.9 shows the results obtained for three different

configurations of the prediction weights.
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Figure 5.7: Minimum temperature dataset prediction from LSTMCNNFC model.
More weight is applied to the LSTM’s prediction. LSTM: 0.7 and CNN: 0.3
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Figure 5.8: Minimum temperature dataset prediction from LSTMCNNFC model.
Same weight is applied to the both predictions. LSTM: 0.5 and CNN: 0.5
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Figure 5.9: Minimum temperature dataset prediction from LSTMCNNFC model.
More weight is applied to the CNN’s prediction. LSTM: 0.3 and CNN: 0.7

CNN prediction and LSTM prediction effect for the final prediction in separate

ways. When more weight is applied to CNN predictions it capture more details of

the local patterns within the time series (Figure 5.9). When more weight is for the

LSTM prediction (Figure 5.7) it captures more accurate global features.

5.3 Predicting Multiple Points

Multiple prediction points to the to the future for the same input time window was

obtained to observe the accuracy. For this previously used datasets are used and

tested for the LSTM and CNN models. Table 5.2 shows the MSE values for the

LSTM model and CNN error values are showed in Table 5.3.

For the CNN prediction model all three datasets got the lowest error rate for one

prediction in single input window. In the LSTM model also tests for two datasets

showed the lowest error for single prediction. Therefore single prediction point ap-

proach used for the tests in the later part.

1 Prediction 2 Predictions 3 Predictions
Sea Level Pressure 2.00E-05 2.20E-05 2.70E-05
Internet Traffic 1.38E-04 1.17E-04 1.11E-04
Daily Temperature 2.87E-05 4.01E-05 4.53E-05

Table 5.2: Mean Squared Error for multiple predictions of LSTM model
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1 Prediction 2 Predictions 3 Predictions
Sea Level Pressure 2.56E-05 3.10E-05 4.89E-05
Internet Traffic 2.30E-04 2.45E-04 2.61E-04
Daily Temperature 1.56E-04 1.83E-04 1.95E-04

Table 5.3: Mean Squared Error for multiple predictions of CNN model

5.4 Identifying Model Drifts

When the normal behavior of the temporal sequence shifts with the time if the

changes are minimal and closer to the initial time series behavior the prediction

model was able to adapt for the changing pattern and forecast the new pattern

accurately. Figure 5.10 shows the prediction results for an artificially created dataset

which has a model drift within the time sequence.
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Figure 5.10: Artificial dataset. predictions from LSTMCNNFC model

But in the prediction module we keep track on the initial normal pattern to make

the predictions accurate in time periods which contain anomalies. Therefore when

the normal pattern shift we have to identify the new normal pattern. to identify

this we use the changes in the DTW similarity value. The values obtained for each

time window using the DTW algorithm is showed in Figure 5.11.
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Figure 5.11: Histogram of Minimum Warp Distance

When the warp distance obtained by the DTW algorithm exceeds a given threshold

the anomalies in the time series can be identified. After an anomalous point is
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identified if there weren’t any anomalies for a predefined period of time the predic-

tion model update its normal behavior as the pattern starting after the previously

identified anomalous points. ex: after detecting an anomaly, if an anomaly didn’t

occur for the next 1000 data points then the pattern starting after this anomaly

become the normal pattern. length of this pattern is the length of the trained data

set.
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Figure 5.12: Identified normal behavior

5.5 Multivariate Predictions

The LSTM prediction model is also tested with a multivariate dataset4. The dataset

describes measurements of a room and the objective is to predict whether or not

the room is occupied. There are one-minute observations taken over the period of

a few weeks. This is a classification prediction problem. There are 7 attributes in

the dataset. date[time], Temperature, Humidity, Light, CO2, Humidity-ratio, Oc-

cupancy. For the training of the network only six attributes and 5000 data records

are used. When training the prediction model the target values were +1 and -1 to

state whether the room is occupied or not.

Two datasets are used for testing with 2000 records and 9750 records. Table 5.4

shows the data used for training and testing the model. Table 5.5 and Table 5.6

shows the results for two tests conducted.

After training the prediction model we use 0 as the prediction margin and test

the model for two datasets containing 2000 and 9750 data records. For the both

datasets we could achieve higher prediction accuracies (Tables 5.5 and 5.6). Then

4 Accurate occupancy detection of an office room from light, temperature, humidity and CO2
measurements using statistical learning models. Luis M. Candanedo, Véronique Feldheim. Energy
and Buildings. Volume 112, 15 January 2016, Pages 28-39.
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Data Occupied Not Occupied
Training 5000 1141 3859
Test 1 2000 802 1198
Test 2 9750 2046 7704

Table 5.4: Data used for training and testing

margin TP TN FP FN Accuracy
0 802 1137 61 0 96.95%
mid 802 1153 45 0 97.75%

Table 5.5: Results for the test 1 for the prediction model. 2000 data records are
used for testing the model

we attempt to increase these prediction accuracies using several techniques.

When using the prediction margin as 0 for the test dataset with 2000 data points

the prediction model misclassify 61 instances as the person is occupied but it is not.

The reason for this is when the person leave the room for a small time period or it

take some time for the room to adjust the environmental conditions back to normal

after the person leaves.

Therefore we change the prediction margin and moved to it from 0 to +1 direction.

Then we could see an increase in the prediction accuracy as show in the Figure 5.13

margin TP TN FP FN Accuracy
0 2044 6979 725 2 92.54%
mid 2043 7124 580 3 94.02%

Table 5.6: Results for the test 2 for the prediction model. 9750 data records are
used for testing the model
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Accuracy: 97.75

Accuracy: 96.95 y = 0

y = 0.467

Occupied: 802
Not Occupied: 45 

Occupied: 0
Not Occupied: 1137 

Occupied: 802
Not Occupied: 45 

Figure 5.13: Classification margin

During the predictions sometimes the predictions were greater than or less than the

+1 and -1 values. Therefore instead of increasing the prediction margin manually

we get mid value of the maximum prediction and the minimum prediction and use

this value as the margin. By using this technique to adjust the margin we were able

to increase the accuracy of the predictions in the multivariate temporal sequence.

5.6 Predictions of time series data with anoma-

lies

After evaluating the prediction module for datasets without any known anomalies

we created some artificial anomalies in the same datasets and tested with prediction

models.

When the time series has patterns with less local details Figure 5.14 prediction

model predict the normal behavior, but when the pattern became complex Figure

5.15 the predictions from the model became less accurate. The main reason for this

is the input time window for the prediction model contains anomalous data points.
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Figure 5.14: Sea level pressure dataset with artificial anomalies. predictions from
LSTMCNNFC model
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Figure 5.15: Minimum temperature dataset with artificial anomalies. predictions
from LSTMCNNFC model

To overcome this problem we keep track on the pattern in the training data set as

the normal behavior of the time series. When a prediction is done by the model the

predicted data point is compared with the expected value. The predicted value and

the expected value is compared and a predefined threshold is used decide whether

the expected value is fed for the input time window for future predictions or the

value should be obtained from the normal behavior of the time series. Figure 5.16

shows the results from using this technique.
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Figure 5.16: Minimum temperature dataset with artificial anomalies. predictions
from LSTMCNNFC model
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5.7 Anomaly Detection

Predictions from the prediction module and the original time series data points are

compared using the DTW algorithm to identify the anomalies. The comparison is

done in time windows. A warp distance is obtained for each time window and if

this value is higher than a threshold value the time window contains an anomaly.

Figure 5.17 and Figure 5.18 show the detected anomalies.
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Figure 5.17: Sea level pressure dataset with artificial anomalies. predictions from
LSTMCNNFC model. Anomalies detected using the DTW algorithm
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Figure 5.18: Minimum temperature dataset with artificial anomalies. predictions
from LSTMCNNFC model. Anomalies detected using the DTW algorithm

The initial three datasets used for the evaluation of prediction models didn’t con-

tain any known anomalies. Therefore we evaluated our framework with Numenta

Anomaly Benchmark which contain 58 datasets with known anomalies. Figure 5.19

and Figure 5.20 shows results form two datasets in NAB.
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Figure 5.19: Average vehicle speed in a traffic jam dataset. predictions from LSTM-
CNNFC model. Anomalies detected using the DTW algorithm
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Figure 5.20: Number of NYC taxi passengers dataset. predictions from LSTMCN-
NFC model. Anomalies detected using the DTW algorithm

5.8 Framework Evaluation

The proposed framework is evaluated using a Numenta Anomaly Benchmark (NAB)

dataset. It is a novel dataset for evaluating algorithms for anomaly detection. The

dataset consist of 58 different datsets with both artificial and real world with known

anomalies.

The 58 datasets belong to seven categories, real tweets (A collection of Twitter

mentions of large publicly-traded companies such as Google and IBM. The metric

value represents the number of mentions for a given ticker symbol every 5 minutes),

real traffic (Real time traffic data from the Twin Cities Metro area in Minnesota,

collected by the Minnesota Department of Transportation. Included metrics include

occupancy, speed, and travel time from specific sensors), real known cause (Ambient

temperature in an office setting, Number of NYC taxi passengers, where the five

anomalies occur during the NYC marathon, Thanksgiving, Christmas, New Years

day, and a snow storm. The raw data is from the NYC Taxi and Limousine Com-

mission, etc), real AWS known cloud watch (AWS server metrics as collected by

the AmazonCloudwatch service. Example metrics include CPU Utilization, Net-

work Bytes In, and Disk Read Bytes), real add exchange (Online advertisement

clicking rates, where the metrics are cost-per-click (CPC) and cost per thousand

impressions (CPM)), artificial with anomalies and artificial without anomalies. The

Table 5.7, Table 5.8, Table 5.9, Table 5.10, Table 5.11 and Table 5.12 shows the

results obtained for each category and Table 5.13 shows the summary of the results

for the NAB.
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Anomalies Detected TP FP Accuracy FDR
Twitter volume AAPL 4 5 3 2 75.00% 40.00%
Twitter volume AMZN 4 3 2 1 50.00% 33.33%
Twitter volume CRM 3 4 3 1 100.00% 25.00%
Twitter volume CVS 3 4 3 1 100.00% 25.00%
Twitter volume FB 2 2 2 0 100.00% 0.00%
Twitter volume GOOG 3 3 2 1 66.67% 33.33%
Twitter volume IBM 2 1 1 0 50.00% 0.00%
Twitter volume KO 3 5 3 2 100.00% 40.00%
Twitter volume PFE 3 2 2 0 66.67% 0.00%
Twitter volume UPS 4 7 4 3 100.00% 42.86%

Table 5.7: Detection accuracy for NAB dataset (Real Tweets)

Anomalies Detected TP FP Accuracy FDR
occupancy 6005 1 1 1 0 100.00% 0.00%
occupancy t4013 2 2 2 0 100.00% 0.00%
speed 6005 1 1 1 0 100.00% 0.00%
speed 7578 4 6 4 2 100.00% 33.33%
speed t4013 2 2 2 0 100.00% 0.00%
Travel Time 387 3 1 1 0 33.33% 0.00%
Travel Time 451 1 2 1 1 100.00% 50.00%

Table 5.8: Detection accuracy for NAB dataset (Real Traffic)

Anomalies Detected TP FP Accuracy FDR
Ambient Temperature 2 3 2 1 100.00% 33.33%
CPU Utilization 1 1 1 0 100.00% 0.00%
EC2 Request Latency 3 3 3 0 100.00% 0.00%
Machine Temperature 4 4 2 2 50.00% 50.00%
NYC Taxi 5 5 4 1 80.00% 20.00%
Rogue agent key hold 2 0 0 0 0.00% 0.00%
rogue agent key updown 2 0 0 0 0.00% 0.00%

Table 5.9: Detection accuracy for NAB dataset (Real Known Cause)
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Anomalies Detected TP FP Accuracy FDR
EC2 CPU util 5f5533 2 2 2 0 100.00% 0.00%
EC2 CPU util 24ae8d 2 1 1 0 50.00% 0.00%
EC2 CPU util 53ea38 2 2 2 0 100.00% 0.00%
EC2 CPU util 77c1ca 1 2 1 1 100.00% 50.00%
EC2 CPU util 825cc2 2 2 2 0 100.00% 0.00%
EC2 CPU util ac20cd 2 2 2 0 100.00% 0.00%
EC2 CPU util c6585a 0 0 0 0 0.00% 0.00%
EC2 CPU util fe7f93 3 2 2 0 66.67% 0.00%
EC2 disk write byt 1ef3de 1 2 1 1 100.00% 50.00%
EC2 disk write byt c0d644 2 1 1 0 50.00% 0.00%
EC2 network in 5abac7 2 4 2 2 100.00% 50.00%
EC2 network in 257a54 1 1 1 0 100.00% 0.00%
ELB request count 8c0756 2 4 2 2 100.00% 50.00%
grok ASG anomaly 3 3 3 0 100.00% 0.00%
us-east-1 NetworkIn 2 2 2 0 100.00% 0.00%
RDS CPU util cc0c53 2 2 2 0 100.00% 0.00%
RDS CPU util e47b3b 2 2 2 0 100.00% 0.00%

Table 5.10: Detection accuracy for NAB dataset (Real AWS Cloud Watch )

Anomalies Detected TP FP Accuracy FDR
Exchange-2 CPC results 1 0 0 0 0.00% 0.00%
Exchange-2 CPM results 2 1 1 0 50.00% 0.00%
Exchange-3 CPC results 3 4 3 1 100.00% 25.00%
Exchange-3 CPM results 1 1 1 0 100.00% 0.00%
Exchange-4 CPC results 3 4 2 2 66.67% 50.00%
Exchange-4 CPM results 4 4 3 1 75.00% 25.00%

Table 5.11: Detection accuracy for NAB dataset (Real Add Exchange)
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Anomalies Detected TP FP Accuracy FDR
Art daily flatmiddle 1 1 1 0 100.00% 0.00%
Art daily jumpsdown 1 0 0 0 0.00% 0.00%
Art daily jumpsup 1 1 1 0 100.00% 0.00%
Art daily nojump 1 0 0 0 0.00% 0.00%
Art increase spike density 1 1 1 0 100.00% 0.00%
Art load balancer spikes 1 1 1 0 100.00% 0.00%

Table 5.12: Detection accuracy for NAB dataset (Artificial With Anomaly)

Anomalies Detected TP FP Accuracy FDR
Real Tweets 31 36 25 11 80.65% 30.56%
Real Traffic 14 15 12 3 85.71% 20.00%
Real Known Cause 19 16 12 4 63.16% 25.00%
Real AWS Cloud Watch 31 34 28 6 90.32% 17.65%
Real Add Exchange 14 14 10 4 71.43% 28.57%
Artificial With Anomaly 6 4 4 0 66.67% 0.00%
Total 115 119 91 28 79.13% 23.53%

Table 5.13: Detection accuracy for NAB dataset (Summary)

The previous detection accuracy obtained for the NAB is 75.2%. Using our model

we were able to get an accuracy of 79.13% for the dataset. The detection rate

of these anomalies depend on the threshold values used in DTW similarity value.

By using this threshold we can further increase the accuracy but it will result in

increase of the fault detection rate.
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Chapter 6

Conclusions

6.1 Introduction

This chapter includes a review of the research objectives and results, limitations of

the current work and the directions for future researches.

6.2 Conclusions about research questions (aim-

s/objectives)

The main aim of this research is to develop a framework for anomaly detection

based on LSTM network prediction model. Initially we develop LSTM prediction

model and to increase the accuracy we combine the model with a CNN based pre-

diction model. The LSTM model was able to capture long term dependencies and

CNN model contributed to the prediction of local pattern within the time series.

For the analyzing of the predictions we use the dynamic time warping algorithm.

Anomalies are detected using the warp distance

6.3 Conclusions about research problem

LSTM prediction model was able to capture more long term details of the time

series whereas the CNN model capture details within small time intervals more ac-

curately. Therefore the hybrid model was able produce better overall accuracy. By

adjusting the contribution to the final prediction by each model we were able to

optimize the prediction accuracy.

When the time series contain anomalous data points as we using time window
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approach for the model input, when the input vector contain anomalous points the

prediction become erroneous. To overcome this issue normal behavior from the

training data is stored in the prediction model.

When predicting a time series if the time series has small deviations from the

initial trained pattern prediction model was able to adapt for this pattern shifts

and predict the data points according to the new behavior of the pattern.

6.4 Limitations

The normalization technique used for the vector normalization has limitation when

the values in one vector is a multiple of an another vector the normalized vectors

become similar. Then the predictions become less accurate.

Cannot use the model without normalizing the input vector because there are sig-

moid functions used as activation function inside the LSTM memory cells and also

in the CNN. when the input vector contain large values all the values are mapped

into value ’1’ by the sigmoid functions

6.5 Implications for further research

In this research we use basic LSTM cell with an input gate, a forget gate and an

output gate. We can optimize the LSTMCNNFC model by altering the memory cell

structure in the LSTM network. e.i. replacing the input and forget gate with up-

date gate. During the current approach we initialize the network hyperparameters

randomly. Therefore a technique for tuning the hyperparameters in the prediction

model can be explored.

The post processing step in the current hybrid prediction model contain a weighted

multiplication and these weights are manually adjusted. The methods to auto ad-

just these weights according to the time series data can be explored.

The feature combining layer in the currently developed hybrid prediction model

contain only one feature combining technique. New techniques that can be used to

combine the outputs from the two prediction models could be explored further.
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[13] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,

“Lstm: A search space odyssey,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 28, no. 10, pp. 2222–2232, Oct 2017.

[14] “Backpropagating an lstm, a numerical example using a memory cell.”

[Online]. Available: medium.com/@aidangomez/let-s-do-this-f9b699de31d9

[15] T. Lin, T. Guo, and K. Aberer, “Hybrid neural networks for learning the

trend in time series,” in Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 2273–2279.

[16] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards, “Time series

anomaly detection; detection of anomalous drops with limited features and

sparse examples in noisy highly periodic data,” CoRR, vol. abs/1708.03665,

2017.

[17] L. Bontemps, V. L. Cao, J. Mcdermott, and N.-A. Le-Khac, “Collective

anomaly detection based on long short term memory recurrent neural net-

work,” 03 2017.

[18] Y. Zheng, Q. F. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classification

using multi-channels deep convolutional neural networks,” in WAIM, 2014.

[19] Z. C. Lipton, D. C. Kale, and R. C. Wetzel, “Phenotyping of clinical time series

with lstm recurrent neural networks.” CoRR, vol. abs/1510.07641, 2015.

49

colah.github.io/posts/2015-08-Understanding-LSTMs
colah.github.io/posts/2015-08-Understanding-LSTMs
medium.com/@aidangomez/let-s-do-this-f9b699de31d9


[20] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear

time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Oct. 2007.

50



Appendix A

Diagrams
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Figure A.1: Occupancy 6005
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Figure A.2: Occupancy t4013
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Figure A.3: Travel Time 451
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Figure A.4: Speed 6005
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Figure A.5: Speed 7578
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Figure A.6: EC2 CPU Utilization fe7f93
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Figure A.7: Exchange-2 CPM Results
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Appendix B

Code Listings

Listing B.1: Generating the anomaly detection models

1 /∗
2 ∗ F i l e : main . cpp
3 ∗ Author : heshan
4 ∗
5 ∗ Created on June 15 , 2018 , 4 :38 PM
6 ∗/
7
8 #inc lude <iostream>
9 #inc lude <algor ithm>

10 #inc lude <vector>
11 #inc lude <LSTMCNnet . hpp>
12
13 std : : s t r i n g da ta s e t s [ ] = {
14 /∗0∗/ ” datase t1 . txt ” ,
15 /∗1∗/ ” datase t2 . txt ”
16 }
17
18 std : : s t r i n g f i leName = data s e t s [ 0 ] ;
19
20 // I n i t i a l i z i n g the s t r u c t u r e
21 ModelStruct modelStruct ;
22 modelStruct . t ra inDataS i ze = 600 ;
23 modelStruct . l ea rn ingRate = 0 . 0 0 0 1 ;
24 modelStruct . t r a i n i n g I t e r a t i o n s = 12 ;
25 modelStruct . numPredPoints = 1 ;
26 modelStruct . da taF i l e = ” data s e t s / u n i v a r i a t e /NAB/ input /”+

fi leName ;
27
28 // LSTM parameters
29 modelStruct . memCells = 10 ;
30 // CNN parameters
31 modelStruct . matWidth = 10 ;
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32 modelStruct . matHeight = 2 ;
33 modelStruct . targetC = 1 ;
34 // Convolut iona l l a y e r
35 s t r u c t : : ConvLayStruct CL1 ;
36 CL1 . f i l t e r S i z e = 2 ; // f i l t e r s i z e : N x N
37 CL1 . f i l t e r s = 1 ; // No o f f i l t e r s
38 CL1 . s t r i d e = 1 ;
39 // Pool ing l a y e r
40 s t r u c t : : PoolLayStruct PL1 ;
41 PL1 . poolH = 1 ; // pool s i z e : N x N
42 PL1 . poolW = 1 ;
43 // Ful ly connected l a y e r s
44 s t r u c t : : FCLayStruct FCL1 ;
45 FCL1 . outputs = 20 ; // neurons in f u l l y connected l a y e r
46 s t r u c t : : FCLayStruct FCL2 ;
47 FCL2 . outputs = 5 ; // neurons in f u l l y connected l a y e r
48 s t r u c t : : FCLayStruct FCL3 ;
49 FCL3 . outputs = 1 ; // neurons in f u l l y connected l a y e r
50
51 char layerOrder [ ] = { 'C ' , 'P ' , 'F ' , 'F ' , 'F ' } ;
52 s t r u c t : : ConvLayStruct CLs [ ] = {CL1} ;
53 s t r u c t : : PoolLayStruct PLs [ ] = {PL1} ;
54 s t r u c t : : FCLayStruct FCLs [ ] = {FCL1, FCL2 , FCL3} ;
55
56 modelStruct . ne tSt ruc t . l a y e r s = 5 ;
57 modelStruct . ne tSt ruc t . layerOrder = layerOrder ;
58 modelStruct . ne tSt ruc t .CL = CLs ;
59 modelStruct . ne tSt ruc t .PL = PLs ;
60 modelStruct . ne tSt ruc t .FCL = FCLs ;
61
62 // I n i t i a l i z i n g the Detect ion model
63 LSTMCNNFCPredictionModel pm(&modelStruct ) ;
64
65 // Train ing the networks in the model
66 pm. t r a i n ( ) ;
67
68 // path f o r the t a r g e t data f i l e
69 std : : s t r i n g expect = ” data s e t s / u n i v a r i a t e /NAB/ p r e d i c t i o n s /

LSTMCNNFC/ expec t ” + fi leName ;
70 // path f o r the pr ed i c t ed data f i l e
71 std : : s t r i n g p r e d i c t = ” da ta s e t s / u n i v a r i a t e /NAB/ p r e d i c t i o n s /

LSTMCNNFC/ p r e d i c t ” + fi leName ;
72
73 // parameters f o r model outputs
74 i n t p r e d i c t i o n s = 4000 ;
75 i n t simVecSize = 5 ;
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76 i n t marker = 50 ;
77 i n t s im i l a r i t yMarg in = 350 ;
78 double lstmW = 0 . 5 ;
79 double cnnW = 0 . 1 ;
80
81 // g e t t i n g pred i c t ed time s e r i e s data po in t s
82 pm. p r e d i c t ( p r e d i c t i o n s , expect , p red i c t , lstmW , cnnW) ;
83
84 // g e t t i n g anomal ies i d e n t i f i e d by the model
85 pm. p r e d i c t ( p r e d i c t i o n s , expect , p red i c t , simVecSize , marker ,

s im i l a r i tyMarg in , lstmW , cnnW) ;
86
87 // g e t t i n g DTW s i m i l a r i t y va lue s
88 pm. dtwS imi l a r i ty ( p r e d i c t i o n s , expect , p red i c t , simVecSize ,

lstmW , cnnW) ;
89
90 // g e t t i n g pred i c t ed time s e r i e s data po in t s
91 // us ing normal behavior to i d e n t i f y i n c r e a s e the accuracy

o f p r e d i c t i o n s
92 pm. predictNorm ( p r e d i c t i o n s , expect , p red i c t , lstmW , cnnW) ;
93
94 // g e t t i n g anomal ies i d e n t i f i e d by the model
95 // us ing normal behavior to i d e n t i f y i n c r e a s e the accuracy

o f p r e d i c t i o n s
96 pm. predictNorm ( p r e d i c t i o n s , expect , p red i c t , simVecSize ,

marker , s im i l a r i tyMarg in , lstmW , cnnW) ;
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