
Adaptive Concurrency Control
Based On Workload

Characteristics

D. J. N. Costa
Index No : 14000131

Supervisor: Dr. D. A. S. Atukorale
Co-Supervisor: Dr. M. Jayasinghe

January 2019

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4124)

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text. I

also hereby give consent for my dissertation, if accepted, be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name: D. J. N. Costa

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Mr. Dehiwalage Jude

Nilushan Costaunder my supervision. The thesis has been prepared according to the

format stipulated and is of acceptable standard.

Supervisor’s Name: Dr. Ajantha Atukorale

………………………………………………

Signature of Supervisor Date:

This is to certify that this dissertation is based on the work of Mr. Dehiwalage Jude

Nilushan Costaunder my supervision. The thesis has been prepared according to the

format stipulated and is of acceptable standard.

Supervisor’s Name: Dr. Malith Jayasinghe

………………………………………………

Signature of Supervisor Date:

i

Abstract

Unlike servers that were used in the early days of computing, modern application

servers utilize multi-core processors with multi-threading to make it possible to

perform computations in an efficient manner. Modern servers are required to handle a

large number of requests concurrently and therefore, the applications that are running

on them need to be written in a manner to best utilize the computing resources

available. Performance of such servers depends on a number of tunable configuration

parameters such as session timeouts, keep alive timeouts and thread pool sizes. The

values of these parameters are set off-line and do not change during run time.

However, the best parameter values will depend on the workload conditions and

therefore, setting these parameter values to fixed values can cause significant

performance degradation.

In this dissertation, we specifically focus on tuning the size of a thread pool on

application servers. Experimentally we show that the size of the thread pool which is

used to process the requests has a significant impact on the performance. We then

propose three adaptive algorithms that can auto-adjust the the thread pool size to

optimize performance. The proposed algorithms are capable of optimizing given

performance metric (throughput, average latency or 99% latency) online. It does so by

periodically measuring the performance and then adjusting the thread pool size in

order to optimize performance.

This proposed methodology helps to increase the performance of software systems by

better utilizing the available computing resources.

ii

Preface

The implementation presented here in this dissertation utilized several open source

libraries developed by parties external to this research.

An HTTP server simulating several different types of applications were implemented

by the author for testing purposes of this research.

The algorithms presented in this dissertation are the work the author.

The evaluations conducted throughout the study were performed on a test environment

set up at the University of Colombo School of Computing using commercially

available hardware. All evaluations were conducted by the author.

iii

Acknowledgement

I wish to thank my Supervisor Dr. D. A. S. Atukorale and my Co-Supervisor Dr. M.

Jayasinghe for guiding and motivating me throughout this research project. This

project would not have been possible if not for all the guidance and generous help

extended to me by them.

I would also like to thank Mr. Isuru Perera for the invaluable assistance given to me

during the project.

I would like to thank Dr. H. E. M. H. B. Ekanayake, the coordinator of the

undergraduate Computer Science research course of the University of Colombo School

of Computing for the guidance given to us during this project.

The test environment used for this research was set up at the Network Operations

Center of the University of Colombo School of Computing. Therefore I wish to thank

its staff for providing me with the necessary hardware and for setting it up.

Last but not least, I would like to thank my friends and family for their support and

motivation given to me to conduct this research.

iv

Table of Contents

Declaration .. i

Abstract .. ii

Preface ... iii

Acknowledgement ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. x

List of Acronyms ... xi

Chapter 1 - Introduction .. 1

1.1 Background to the Research .. 1

1.2 Research Problem and Research Questions ... 2

 1.3 Justification for the research ... 4

1.4 Methodology .. 5

1.5 Outline of the Dissertation ... 6

1.6 Delimitations of Scope .. 7

1.7 Conclusion ... 7

Chapter 2 - Literature Review ... 8

2.1 Background .. 8

2.1.1 Threads and thread Pools .. 8

2.2 Related work .. 9

2.3 Conclusion ... 14

Chapter 3 - Design .. 15

3.1 System Architecture ... 15

3.2 Performance metrics .. 16

v

3.3 Applications ... 16

3.4 Software Tools ... 18

3.4.1 Apache JMeter .. 18

3.4.2 Netty ... 19

3.4.3 Dropwizard Metrics .. 20

3.4.4 Implementation language .. 20

3.5 Experiments ... 20

3.5.1 Static worker thread pool size with fixed workload simulation 21

3.5.2 Dynamic worker thread pool size with fixed workload simulation 23

3.5.3 Dynamic worker thread count with varying workload simulation 23

Chapter 4 - Implementation .. 25

4.1 Thread Pool Size adjustment algorithms ... 25

4.1.1 Throughput optimization algorithm .. 25

4.1.2 Mean Latency optimization algorithm .. 28

4.1.3 99 th Percentile of latency optimization algorithm ... 29

4.2 Performance Metric collection .. 31

4.3 Netty thread pools .. 33

Chapter 5 - Results and Evaluation .. 34

5.1 Experimental results .. 34

5.1.1 Fixed worker thread pool size with fixed workload simulations 34

5.1.2 Dynamic thread pool size with fixed workload simulations 38

5.1.3 Dynamic thread pool size with varying load simulations 51

5.2 Analysis of the effects of parameters of the algorithms 59

5.2.1 Period between iterations of algorithms ... 60

5.2.2 Thread pool size increment/decrement step size .. 63

5.2.3 Minimum acceptable change in performance metrics 63

Chapter 6 - Conclusions ... 65

vi

6.1 Introduction .. 65

6.2 Conclusions about research questions ... 65

6.2.1 Question 1 ... 65

6.2.2 Question 2 ... 66

6.2.3 Question 3 ... 67

6.3 Conclusions about research problem ... 68

6.4 Limitations ... 69

6.5 Implications for further research ... 69

References ... 70

Appendix A: Code Listings ... 73

A.1 AdaptiveConcurrencyControl.java ... 73

A.2 CustomThreadPool.java .. 74

A.3 NettyServer.java ... 75

A.4 NettyServerHandler.java ... 76

A.5 ThreadPoolSizeModifier.java ... 77

A.6 Memory.java ... 80

A.7 Prime1m.java .. 81

A.8 Prime10m.java .. 82

A.9 DbWrite.java ... 83

A.10 DbRead.java .. 84

vii

List of Figures

 Figure 1.1: Screenshot of WSO2 SP performance tuning guide 3

 Figure 3.1: Architecture of the test setup .. 15

 Figure 3.2: Apache JMeter GUI-mode ... 19

 Figure 3.3: Apache JMeter non-GUI mode .. 19

 Figure 3.4: Varying workload simulated .. 24

 Figure 5.1: T hroughput comparison of Dbwrite and Prime10m 35

 Figure 5.2: 99th percentile of latency comparison for DbWrite and Prime10m 36

 Figure 5.3: CPU utilization of DbRead and Prime10m .. 37

 Figure 5.4: Disk w rite rate of DbWrite and Prime10m .. 37

 Figure 5.5: Mean latency comparison in Prime10m ... 39

 Figure 5.6: Thread pool size variation in Prime1m .. 40

 Figure 5.7: Performance of the mean latency optimization algorithm in DbWrite 42

 Figure 5.8: Comparison of mean latency in DbWrite over selected latency range 43

 Figure 5.9: Thread pool size variation in DbWrite using mean latency optimization .. 44

 Figure 5.10: Comparison of mean latency in Prime1m .. 45

 Figure 5.11: Comparison of mean latency in Prime1m over a selected range 45

 Figure 5.12: T hread pool variation in Prime1m for mean latency optimization 46

 Figure 5.13: Performance of the throughput optimization algorithm in Prime1m 47

 Figure 5.14: T hroughput comparison in Prime10m over selected throughput range ... 47

 Figure 5.15: T hread pool size variation in Prime1m using throughput optimization ... 48

 Figure 5.16: Performance of the throughput optimization algorithm in DbRead 49

 Figure 5.17: Variation of thread pool size in DbRead using throughput optimization 50

 Figure 5.18: P erformance of the throughput optimization algorithm for Prime10m . . . 51

 Figure 5.19: Thread pool size variation in Prime10m using throughput optimization . 51

 Figure 5.20: Variation of throughput in Prime1m with varying workload 53

 Figure 5.21: Variation of thread pool size in Prime1m with a varying workload using

the throughput optimization algorithm .. 53

 Figure 5.22: T hroughput variation in DbWrite with a varying workload using

throughput optimization ... 54

 Figure 5.23: Variation of thread pool size in DbWrite using a varying workload 55

viii

 Figure 5.24: Variation of mean latency in Prime10m using a varying workload 56

 Figure 5.25: Thread pool size variation in Prime10m .. 56

 Figure 5.26: 99th percentile of latency variation in Prime1m 57

 Figure 5.27: Prime1m thread pool size variation .. 58

 Figure 5.28: 99th percentile of latency variation in DbWrite 58

 Figure 5.29: DbWrite thread pool size variation for 99th percentile optimization 59

 Figure 5.30: Effect of long periods on throughput measurement 61

 Figure 5.31: Effect on long periods on thread pool size adjustment 62

 Figure 5.32: Effect of short period on throughout measurement 62

 Figure 5.33: Effect of short period on thread pool size adjustment 63

ix

List of Tables

Table 3.1: Information about the nodes ... 16

Table 3.2: Fixed worker thread pool size with fixed load simulations conducted 21

Table 4.1: Abstract view of throughputTable .. 27

Table 5.1: Increments and decrements of thread pool size .. 41

x

List of Acronyms

CPU - Central Processing Unit

DBMS - Database Management Systems

HTTP - Hypertext Transfer Protocol

IaaS - Infrastructure as a Service

I/O - Input/Output

JDK - Java Development Kit

JVM - Java Virtual Machine

KB/s - Kilo Bytes per second

STM - Software Transactional Memory

xi

Chapter 1 - Introduction

1.1 Background to the Research

When Computers were invented, they were used for simple tasks. But with the rapid

development of hardware and software running on Computers, the possibilities of

computers increased. At present, computers are used to perform various complex

tasks.

With the increase in the use of web application servers to serve clients using web

technologies, servers must be capable of handling large number of requests

concurrently. A commonly used technique to handle such concurrent requests is multi-

threading. Pools of threads are created within the server and requests are passed to

threads in these pools to be processed. This pool of threads within the server is

considered as the request processing thread pool and this thread pool shall be referred

as the worker thread pool in the rest of this dissertation.

Different requests require the servers to perform different types of operations. Some of

the operations that the server may perform include CPU dominant tasks where the use

of the CPU to perform computations is dominant or Input/Output dominant tasks

where I/O operations are dominant when processing the request. Multi-threading is one

of the techniques used to handle large number of requests. The number of threads to

use in order to get the best performance depend on both characteristics of the

application (i.e. I/O dominant, CPU dominant) and the incoming workload (arrival rate

into server, number of concurrent users).

In this thesis, an effort was made to dynamically adjust the thread pool size depending

on the application characteristics and incoming workload properties.

Two commonly used performance metrics were used to evaluate the performance:

throughput and latency. Throughput is defined as the rate of processing requests and is

usually expressed as the number of requests processed per second. Latency is the time

1

taken for the reply to be received from the server since the request is sent from the

client. Therefore, it includes the processing time and queuing time as well.

Throughput is said to improve when the value of throughput increases while latency is

said to improve when the value of latency decreases.

When multiple threads of execution try to access the same resource simultaneously

(which can only be accessed by a single thread at a time), thread contentions are said to

occur. For example, thread contention may occur when multiple threads of execution

try to write to a database simultaneously.

1.2 Research Problem and Research Questions

As already pointed out, the primary objective of this research is to bring self-

configuration into servers. In particular, the focus of this project was on dynamically

changing the thread pool size based on changing workload and application

characteristics.

The size of the worker thread pool of a web server can be configured in the following

manner.

1. Hard-coding the size by the web server programmer

2. Manually by system administrators

Although it is possible for the server programmer to hard-code the size of the worker

thread pool into the server during development, this is not usually done. This is due to

2

the fact that the developed server would run in different hardware environments and

the size of the thread pool to be used would depend on it.
Another approach to setting the value of the thread pool size is to allow system

administrators to configure it by keeping this value as a configuration parameter in the

developed web server. Figure 1.1 below shows a screenshot from the performance

tuning guide of WSO2 Stream Processor [1, p. 2] explaining how to configure the

worker thread pool size.

System administrators can then find a thread pool size to be used based on given

recommendations and through trial-and-error. However this value may need to be

changed over time. Reasons for this include server hardware changes, changes of

traffic patterns, changes made to processing of requests etc. In addition to that, modern

trends in the use of cloud computing technologies such as Infrastructure as a Service

(IaaS) has seen system administrators moving systems to remote servers. Unlike

physical hardware on premise owned by an organization, cloud computing makes it

much easier to upgrade or downgrade instances based on the needs of an organization.

Therefore the type of computing resources on which systems are run may change

much frequently. Considering these issues, the experiments need to be re-run to find a

new thread pool size. Although possible, this is a cumbersome process.

3

Figure 1.1: Screenshot of WSO2 SP performance tuning guide

This research project was aimed at finding a solution to the problem of finding the

worker thread pool size to be used in a system to optimize throughput or latency. To

answer this problem, the following research questions were identified.

1. How does the thread pool size impact the performance of different applications

that receive requests under different arrival patterns?

The initial step of this study was to understand the effect of thread pool size on

throughput and latency. This was done by conducting experiments with

different applications running on the server for varying worker thread pool

sizes and incoming workloads.

2. How can an algorithm/s be developed that can dynamically change the thread

pool size depending on the changing behavior of application and incoming

workload?

A significant step of this research project was to find an answer to this question

by developing algorithms to dynamically change the thread pool size based on

the changing behavior of applications and incoming workloads.

3. How can the parameters of the adaptive thread pool adjustment algorithms be

tuned in order to improve results?

The final step of this study was to search for an answer to this research question

by experimentally tuning the parameters of the developed algorithms in order

to improve their performance.

1.3 Justification for the research

This research study has both practical and theoretical benefits to the field of

computing.

By varying the applications running on the server, worker thread pool sizes and

number of concurrent requests, the effect of the size of thread pools on throughput and

latency was studied. As thread pools are used in many software systems, this

4

information would help to get a better understanding on how to use them in an

efficient manner.

Furthermore, the adaptive concurrency control mechanism developed through this

research study has important practical benefits. As explained earlier, finding the thread

pool size to optimize performance is a cumbersome task if done manually. However,

by using the proposed method, systems can be made to change them automatically

based on the traffic patterns and application characteristics. This means, if the system

administrators use the proposed model, they do not need to experiment and reconfigure

the systems when the server hardware in use changes, when traffic patterns change etc.

1.4 Methodology

In this section, the methodology followed during the course of this study is explained.

Initially, an HTTP server was implemented in Java using the Netty framework [2].

This HTTP server was implemented to simulate four I/O dominant and CPU dominant

applications.

An environment consisting of two networked nodes dedicated to this study was set up

where one node was designed as the server node on which the HTTP server was

executed. The other node was designated as the client node and concurrent requests

were generated and sent to the server using Apache JMeter [3] running on the client

node.

An initial set of experiments were conducted by varying the worker thread pool size

and the number of concurrent users for different applications, and the effects on

throughput, mean latency and 99th percentile of latency were recorded and studied.

This knowledge was used to develop three algorithms to adaptively adjust the thread

pool size. The three algorithms were created to optimize performance of three different

metrics namely, throughput, mean latency and 99th percentile of latency.

After the development of these three algorithms, they were tested against fixed

workloads. That is, in these experiments, a fixed number of concurrent users were

simulated by Apache JMeter [3] running on the client node. The algorithms were

5

evaluated on how well they were able to adjust the worker thread pool size in order to

improve performance.

Finally, the algorithms were tested under a varying workload. That is, in these

experiments, the number of concurrent requests generated by Apache JMeter [3]

running on the client node was made to vary with time. The algorithms were evaluated

on how well they were able to respond to varying workloads and adjust the worker

thread pool size in order to improve the relevant performance metric.

Experiments were also conducted to understand and tune the parameters of the

algorithms.

1.5 Outline of the Dissertation

Chapter 1 – Introduction

This chapter presents information regarding the background to the problem and the

research questions which this study aims to find answers to

Chapter 2 – Literature review

This chapter presents background information related to this study and a review of the

existing literature

Chapter 3 – Design

This chapter presents the design of the research study and includes information about

the applications tested, workloads simulated and the tools and technologies used.

Chapter 4 – Implementation

Details about the implementation of the proposed solution is presented in this chapter.

This chapter presents the three algorithms that are proposed through this study.

6

Chapter 5 – Results and evaluation

This chapter presents the results that were obtained through the experiments conducted

and explanations of those results.

Chapter 6 – Conclusion

This dissertation concludes with this chapter by presenting the final outcomes of the

research and a summary of contributions made through this research.

1.6 Delimitations of Scope

There are various concurrency control mechanisms in existence in the field of

Computer Science. This research was not intended at creating a new concurrency

control mechanism. Instead it used thread pools as the concurrency control mechanism

and implemented three algorithms that can adaptively adjust the thread pool size.

1.7 Conclusion

This chapter presented the background of the research problem area and explained the

questions that this research study aims to find solutions to. These were then justified.

The research methodology and the outline of the dissertation were also presented. With

this foundation, the dissertation can continue with explaining the research study in

greater detail in the subsequent chapters.

7

Chapter 2 - Literature Review

2.1 Background

2.1.1 Threads and thread Pools

A sequence of instructions executed within the context of a process is defined as a

thread [4]. Using multiple threads of control for processing is defined as

multithreading. Therefore multithreading separates a process into many threads of

execution where each thread runs independently. Some of the benefits of multithreaded

programming as explained in [4], [5] are as follows

• Multithreading increases responsiveness of a system.

For example, a single threaded server processing a request would not listen for

subsequent requests until one request has been processed and the reply is sent.

In contrast, a multithreaded server could use a single thread to listen to requests

and hand over processing to separate threads.

• Costs less compared to multiple processes

A thread created within a process uses the same address space of the process.

Therefore it is less expensive to create a new thread than creating a process.

Furthermore, a switch of processes requires a switch of address space.

Therefore, the time taken to switch between threads is less than the time taken

to switch between processes.

A thread pool is a group of threads that are created before any work is assigned to

them. All threads in a freshly created thread pool are idle. When tasks are ready to be

executed on a thread, an idle thread is selected from this pool of threads and assigned

to process the given task. Once the thread has completed processing the assigned task,

the thread becomes idle and ready to accept and process more tasks. Tasks may be

8

assigned to idle threads in the pool until idle threads in the thread pool are exhausted.

When this occurs, processing of new tasks must wait until a thread becomes idle.

2.2 Related work

In [6] Praphamontripong et al. show that it is necessary to analyze the performance of

web servers prior to deployment. In their paper, a performance analysis methodology

is presented to analyze the performance of an asynchronous web server. They show

through experimental results that after a certain threshold, increase of the size of the

event handler pools and queues does not provide significant performance

improvements.

Behren et al. in [7] show that although people claim that thread based programming

does not perform well, the reason for such low performance is not due to the threading

paradigm, but due to shortcomings in specific threading implementations. In their

paper they first explain the claims that people use to state that threads are not suitable

to handle high concurrency servers and argue why those claims do not hold. They then

use a threading library to show that threads actually perform well in servers that

require high concurrency.

Each core in a processor may execute multiple threads. Although it is assumed that the

number of threads should equal the number of cores in the processor to obtain better

performance, Pusukuri et al. in [8] show that this does not hold true for processors

having a high number of cores. Using the PARSEC benchmark on a 24 core computer,

they experimentally show that this is not the case. The number of threads that were

required to obtain the maximum speedup varied from 16 to 63 across different tests in

the benchmark. As a solution to this, they propose the Thread Reinforcer framework, a

framework for automatically selecting the near optimal or optimal number of threads.

However, in a client server application, the amount of contentions that may occur for

resources, the amount of concurrent users are factors that need to be considered to

decide the number of threads. The Thread Reinforcer framework described here, runs

the application multiple times by varying the number of threads, analyses performance

9

and then identifies the optimal number of threads. But this approach may not be

practical for use in a client server application where the

performance is affected by the server load caused by the amount of concurrent users,

the types of requests they are making etc.

The reactor pattern presented in [9] presents a design pattern that can be used to handle

service requests that clients send concurrently to an application. Coplien and Schmidt

in [9] argue that although it is possible to use multi-threading to implement such a

scenario, thread synchronization problems, context switches, and difficulty of

programming as threads require complex concurrency controls are some reasons why a

multi threaded approach may not be preferred. (Fear of programmers regarding thread

synchronization complexities prevent making use of the hardware capabilities of

systems by using multi-threading). They present a methodology for handling multiple

concurrent requests by multiplexing between different tasks by using a minimal

number of threads. However a problem may occur with this approach if the few

threads that are used, get blocked. In such a case it is necessary to ensure that the code

that performs the tasks associated with providing services for the requests never get

blocked or use a pool of threads to handle blocking operations.

Harrison et al. Identifies several issues in conventional concurrency models in [10].

They argue that in situations where hardware parallelism exist, the Reactor design

pattern is not the most efficient. They show that due to the use of minimal number of

threads in the Reactor pattern, it increases the complexity of programming as

programmers are burdened with ensuring that the code does not get blocked when

handling the request of a particular client. Programmers using the Reactor pattern must

also ensure that all the clients sending requests to the server share the thread by

performing non-blocking operations which use a short duration of time. As a solution

to these problems, they present the Proactor pattern to design asynchronous servers

which could handle high concurrency. Proactor pattern utilizes the I/O capabilities of

the OS and therefore does not require a very high number of threads. However a

disadvantage of the Proactor pattern is that programs written using it can be hard to

debug.

The Java programming language is currently a popular programming language that is

used to develop many client server applications. It is a commonly used language to

10

develop multithreaded applications. Chen et al. in [11] presents an evaluation of Java

multithreading performance by using different number of processor cores and

application threads with the HotSpot Java Virtual Machine with OpenJDK 1.7.

Experiments conducted using multithreaded benchmarks show that different results

were obtained based on different benchmarks used. For JGF benchmarks MolDyn,

MonteCarlo and RayTracer, the peak in throughput was observed when the number of

cores used was equal to the number of threads used. Also for JGF benchmarks and

SPECjbb2005 [12] benchmarks, higher throughput was observed with more cores and

threads. Experiments conducted to study lock contentions which are caused by

multiple threads trying to access the same shared object showed that they could reduce

the performance of the system. However, it should be noted that tuning of the JVM has

shown to provide some performance improvements in their experiments.

While threads can be used to provide concurrency to applications, the performance of

threads differ depending on the kernel in use. This was shown by Gu et al. In [13].

They show that although the Java Virtual Machine (JVM) makes Java programs

portable across environments, the performance of threads differ because Java threads

have to be mapped to native system threads. Using the EP benchmark [14], they

experimented with thread behavior with respect to their creation and computation

performance under different workloads. Through these experimental results, it is

shown that the use of a large number of threads should be avoided. The reason for this

is the thread management overhead incurred when there is a large number of threads.

In [15] Hu et al. show that to achieve maximal performance on different operating

system platforms, it is necessary to utilize different I/O mechanisms provided by them

instead of using common I/O mechanisms. This is due to the fact that the

implementations of I/O mechanisms specific to a particular platform may have been

optimized for that platform itself. They also show that the choice of concurrency

strategy has a major impact on web server performance. Experimental results obtained

using JAWS show that the throughput of each connection decreases when the number

of connections made per second increases and that the latency increases as the

connections made per second increases. Their results show that concurrency

mechanisms have a great impact on latency and throughput. Such I/O operations and

some other operations happening within a server may require access to shared

11

resources. Most notably these include things such as access to Databases and files. If

multiple instances of an application tries to access these shared resources, resource

contentions may occur which would degrade server performance. Zheng et al. In [16]

address these issues by proposing a method to detect such contentions. Their technique

was tested experimentally by using several large web applications. Results presented

show that the technique is effective. However, a problem with this presented technique

is that it sometimes provides false positives and false negatives in the results.

Database Management Systems (DBMS) employ concurrency control mechanisms. As

computers are moving towards architectures making use of a large number of cores on

a single chip, applications running on them should be able to make use of the available

hardware resources in order to do computations efficiently. DBMSs being a commonly

used type of application must also be able to scale well to such many core

environments. Yu et. al. in [17] argue that Database Management Systems currently in

use are not scalable to many core computers. By implementing several concurrency

control algorithms to handle concurrency in a DBMS running in main memory, they

have analyzed how these algorithms scale. Results show that all algorithms used did

not scale well and therefore did not provide good performance.

Using multiple threads of execution in an application incurs certain costs. According to

Goetz in order to obtain an improvement in performance when using multiple threads,

the performance benefits of using multiple threads must outweigh that of the overheads

introduced by concurrency. When a thread gets blocked, the Java Virtual Machine

suspends the thread and allows that thread to be switched out during a context switch.

Therefore if a program causes a thread to block frequently, more context switches will

occur and this thread will not be able to make full use of the scheduling quantum used.

Therefore when threads have to execute many I/O bound operations, scheduling

overhead increases and throughput decreases rather than when executing CPU bound

operations.

When using multiple threads of execution, there may be sections of code that should

not be accessed by multiple threads of execution simultaneously. Access to these

critical sections must be controlled so that only one thread of execution has access to

them at any given time.

12

Traditionally this was achieved using locks. When a thread of execution needs access

to such a critical section a lock is acquired and released after processing that section is

complete. Only the thread holding the lock is allowed to access a given critical section.

Acquiring and releasing locks in a program incurs additional overhead. An alternative

to locks to handle concurrency is Software Transactional Memory (STM) [18]–[20].

With STM, instead of acquiring and releasing locks, sections of code are designated as

transactions. Such sections of code that are designated as transactions will have

atomicity, isolation and consistency. Therefore STM is somewhat similar to database

transactions. STM is a software based implementation and it provides a non-blocking

mechanism to handle concurrency. Saha et al. in [21] presents a performance

evaluation of various STM implementations and locking mechanisms and presents a

STM system that is a part of multi-core runtime called McRT. The paper presents

performance evaluations made between locks and their STM implementation for a

hashtable benchmark, binary search tree benchmark (both balanced and unbalanced)

and that of a linked list benchmark (both sorted and unsorted). Results show that STM

performs better than locking mechanisms for higher number of processors. Saha et al.

also shows the performance of STM on non-synthetic workloads as well. For this

purpose, the sendmail application had been used with McRT-STM and tested with

upto 8 threads. Results obtained show that the performance of STM and locking are

comparable. Zhang et al. in [22] presents a STM implementation named LarkTM

which provides low overhead. The adaptive version of LarkTM, named LarkTM-S has

been shown to outperform other high-performance Software Transactional Memory

implementations. Zhou et. al. in [23] show the importance of thread mapping through

feedback loops and regulating parallelism online to improve performance of

Transactional Memory applications. Their approach adds a time stall when the commit

of the transaction occurs and as a result this may show slight performance difference

with ones that do not use it. This stall time is added to make the management of

contentions work similar to a back off policy.

13

2.3 Conclusion

From the current literature in these areas of concurrency control, it can be seen that a

study about workload characteristics of different application types will be useful and

that a methodology to automatically identify and adaptively adjust the number worker

threads based on performance metrics will provide numerous benefits.

14

Chapter 3 - Design

3.1 System Architecture

Experiments were conducted to study the behavior of a system under different

applications and incoming workloads during the course of this study. Following test

setup was utilized for this purpose.

The client node and server node were two physical nodes that were dedicated for this

research project. Apache JMeter [3] running on the client node sent requests to a Netty

[2] HTTP Server running on the server node. The HTTP Server processed requests and

sent the replies back to the client node. Some applications has database operations and

in such situations, the server node utilize the database server running on it.

Details about the client node and the server node are as presented in table 3.1.

15

Figure 3.1: Architecture of the test setup

Table 3.1: Information about the nodes

Client node Server node

CPU Intel Xeon E5506 @ 2.13GHz Intel Xeon 5160 @ 3.00GHz

RAM 8GB 16GB

Network interface Intel Corporation 82576 Gigabit

Ethernet Controller

Capacity - 1Gbit/s

Broadcom Corporation

NetXtreme II BCM5708 Gigabit

Ethernet Controller

Capacity - 1Gbit/s

Operating System Ubuntu 16.04.1 LTS Ubuntu 16.04.1 LTS

OS Kernel version 4.4.0-128-generic 4.4.0-128-generic

3.2 Performance metrics

Throughput and latency were used to evaluate performance of the server. Throughput

is defined as the number of requests processed per second and latency is defined as the

total time taken to receive a reply since a request leaves the client.

Therefore in order to study performance characteristics of different applications and

incoming workloads, throughput, mean latency and 99th percentile of latency was

measured during the execution of tests.

Furthermore, these three performance metrics are also used to drive the the thread pool

size adjustment decisions.

3.3 Applications

Several applications were created and tested during the course of this study. The

purpose of creating such applications and testing them was to study how thread pool

sizes and concurrent users behave under different applications. These can be divided

into two categories as CPU dominant workloads where a significant amount of

16

computations are utilizing the CPU and I/O dominant workloads where a significant

amount of operations are input/output operations. iostat [24] and pidstat [25] utilities

on were used to analyze and verify the CPU utilization and I/O utilization of these

applications.

The details of the application are as follows.

I/O dominant

1. Database write operation

Database write operations are common in real world applications. This is an

I/O dominant operation as the database needs to be accessed. Multiple writes

cannot occur concurrently. The database server used for theses tests is MySQL.

For each request received, this test writes the current timestamp to the database.

This application shall be referred as ‘DbWrite’ in the rest of this dissertation.

2. Database read operation

Another frequently performed database operation is to read values from a

database. This is also an I/O dominant operation. Similar to the previous test,

the database server used for theses tests is MySQL. For each request received,

a random row of a database table containing timestamps is selected and sent as

the reply. This application shall be referred as ‘DbRead’ in the rest of this

dissertation.

MySQL 5.7.24-0ubuntu0.16.04.1 was used as the underlying database on the Server

node for the above I/O bound experiments.

CPU Dominant

3. Prime 1 million

Prime 10k test is a primality test. For each request received, a pseudo-random

number between 1,000,000 and 1,000,020 was generated and whether or not

this number was a prime number was checked. This application shall be

referred as ‘Prime1m’ in the rest of this dissertation.

17

4. Prime 10 million

Prime 100k test is also a primality test but which requires more computations.

For each request received, a pseudo-random number between 10,000,000 and

10,000,020 was generated and whether or not this number was a prime number

was checked. This application shall be referred as ‘Prime10m’ in the rest of this

dissertation.

The purpose of the above CPU dominant tests was not be perform primality checks

using the most efficient algorithm available at the time, but to run tests which would be

having various CPU intensity levels in order to simulate CPU bound workloads of

varying CPU intensities. Therefore the following naive algorithm was used to check

for primality.

The input values low and high for Prime1m were 1,000,000 and 1,000,020 respectively

while the input values low and high for Prime10m were 10,000,000 and 10,000,020

respectively.

3.4 Software Tools

3.4.1 Apache JMeter

Apache JMeter [3] is an open source load testing tool written in Java. Apache JMeter

version 4.0 was used in this project to simulate concurrent users and generate requests

by running on the client node. In order to test the server, HTTP requests were

generated by Apache JMeter. As recommended by the user manual, the GUI mode of

18

ALGORITHM - CheckPrime()
INPUT: low, high
OUTPUT: true/false

1: number = generate pseudo-random number between low and high
2: FOR each integer i from 2 to number
3: IF number mod i is 0 THEN
4: RETURN false
5: END IF
6: END FOR
7: RETURN true

JMeter was used only to create the tests. This is due to the fact that non-GUI mode

consumes less resources than GUI mode. Therefore, all tests required for this project

were executed in Command-line mode (non-GUI mode). These two modes of JMeter

are depicted below in figure 3.2 and 3.3 respectively.

3.4.2 Netty

Netty [2] is an open source client-server framework that can be used to create protocol

servers and clients in Java. This framework has been used in this research project to

implement an HTTP server which runs on the server node.

19

Figure 3.2: Apache JMeter GUI-mode

Figure 3.3: Apache JMeter non-GUI mode

Netty has two types of thread pools namely the boss thread pool and worker thread

pool. The boss thread pool’s job is to accept incoming connections. Once a connection

is accepted by the boss thread pool, it is passed on to a thread in the worker thread pool

to be processed.

Netty version 4.1.22 was used to implement the test server.

3.4.3 Dropwizard Metrics

Dropwizard metrics [26] is an open source framework that can be used to measure the

behavior of applications. It has been used to measure the performance metrics on the

server which are used to drive thread pool size adjustment decisions.

Dropwizard metrics version 3.1.0 was used during implementation of the test server.

3.4.4 Implementation language

The Java programming language [27] is a popular programming language used at

present and it was selected as the language of choice for this research study. It was

used in the implementation of the HTTP server created for conducting experiments,

implementation of the test applications and for the implementation of the proposed

algorithms. Oracle Java [28] version 1.8.0_172 was used during this research.

3.5 Experiments

The experiments performed during this study were divided into 3 stages. All

experiments were conducted for 25 minutes.

20

3.5.1 Static worker thread pool size with fixed workload simulation

The initial set of experiments of this study were performed to gain insight about the

effects of the size of the thread pool on the two performance metrics observed,

throughput and latency. All four applications created were tested during these

experiments. In these experiments, the number of worker threads of the server were

kept at a constant value. The number of concurrent users simulated was also kept at a

constant value in order to simulate a fixed workload.

Ex. DbWrite application with a worker thread pool size of 10 and 100 concurrent users

Table 3.2 lists the combinations of applications, worker thread pool sizes and the

number of concurrent users that tested during this stage of experiments.

Table 3.2: Fixed worker thread pool size with fixed load simulations conducted

Application Worker thread

pool size

Number of

concurrent users

DbRead 2 1

DbRead 2 10

DbRead 2 100

DbRead 4 1

DbRead 4 10

DbRead 4 100

DbRead 10 1

DbRead 10 10

DbRead 10 100

DbRead 50 1

DbRead 50 10

DbRead 50 100

DbRead 100 1

DbRead 100 10

DbRead 100 100

DbWrite 2 1

DbWrite 2 10

DbWrite 2 100

DbWrite 4 1

21

DbWrite 4 10

DbWrite 4 100

DbWrite 10 1

DbWrite 10 10

DbWrite 10 100

DbWrite 50 1

DbWrite 50 10

DbWrite 50 100

DbWrite 100 1

DbWrite 100 10

DbWrite 100 100

Prime1m 2 1

Prime1m 2 10

Prime1m 2 100

Prime1m 4 1

Prime1m 4 10

Prime1m 4 100

Prime1m 10 1

Prime1m 10 10

Prime1m 10 100

Prime1m 50 1

Prime1m 50 10

Prime1m 50 100

Prime1m 100 1

Prime1m 100 10

Prime1m 100 100

Prime10m 2 1

Prime10m 2 10

Prime10m 2 100

Prime10m 4 1

Prime10m 4 10

Prime10m 4 100

Prime10m 10 1

Prime10m 10 10

Prime10m 10 100

Prime10m 50 1

Prime10m 50 10

22

Prime10m 50 100

Prime10m 100 1

Prime10m 100 10

3.5.2 Dynamic worker thread pool size with fixed workload

simulation

Based on the knowledge gained about the effects of thread pool size on throughput and

latency, three optimization algorithms were developed. The purpose of this set of

experiments was to test the developed algorithms’ ability to dynamically adjust the

thread pool size and improve performance. The incoming workload to the server was

kept at a fixed value (Eg. 100 concurrent users) during these experiments.

3.5.3 Dynamic worker thread count with varying workload simulation

Servers used in the real world do not receive requests with the same number of

concurrent users all the time. The number of concurrent users requesting services from

a server varies with time making the workload on the server a varying one. In order to

test the performance of the algorithms against such varying workloads, a dynamic load

was simulated in Apache JMeter [3]. Figure 3.4 below shows how the number of

concurrent users varied over time in this varying workload simulation.

23

24

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

Variation of concurrent users over time

Elapsed time (hh:mm:ss)

N
um

be
r

of
 a

ct
iv

e
th

re
ad

s

Figure 3.4: Varying workload simulated

Chapter 4 - Implementation

4.1 Thread Pool Size adjustment algorithms

The goal of this project was to develop a methodology to adjust the thread pool sizes

on the server automatically. To do so three algorithms were developed which are

1. Throughput optimization algorithm

2. Mean Latency optimization algorithm

3. 99th Percentile of Latency optimization algorithm

4.1.1 Throughput optimization algorithm

The throughput optimization algorithm developed during the course of this study is

aimed at optimizing the throughput by adjusting the worker thread pool size. This

algorithm measures the throughput every 10 seconds and makes decisions based on it.

The throughput optimization algorithm is presented below.

25

During the initial set of experiments with a fixed thread pool size and fixed load, it was

observed that throughput increases with the thread pool size. The throughout

optimization algorithm developed through this study utilize a table (named

throughputTable in the above Pseudocode) to record the mean throughput obtained at

each thread pool size during the server’s execution. For each thread pool size the

server uses, the throughput table records the mean throughput and the number of 10

second intervals during which the server remained at the given thread pool size (named

count). The throughput table is sorted by the recorded thread pool sizes. The abstract

view of the throughput table is presented below. Thereafter when the algorithm detects

a decrease in throughput, it refers to throughputTable to find the value of the thread

26

ALGORITHM - optimizeThroughput()
INPUT: previousThroughput, currentThroughput
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR to false
2. Initialize HAS_STARTED to false
3. Initialize throughputTable
4. REPEAT every 10 seconds
5. IF (HAS_STARTED == false and NumberOfRequests > 0) THEN
6. HAS_STARTED = true
7. INC_ITR = true
8. END IF
9. IF (DEC_ITR == false or (DEC_ITR == true and DEC_IMPROVED == false)

and throughputDecrement > 10%) THEN
10. sizeFound = findThreadPoolSize(currentThroughput)
11. Set thread pool size to sizeFound
12. IF (INC_ITR == true and INC_IMPROVED == true) THEN
13. increase thread pool size by 10
14. END IF
15. IF (INC_CHECK_ITR == true and INC_IMPROVED == true) THEN
16. IF Throughput increment < 10% THEN
17. INC_IMPROVED = false
18. decrease thread pool size by 10
19. incrementLock = 6
20. END IF
21. END IF
22. updateThroughputTable(currentThroughput, currentThreadPoolSize)
23. IF incrementLock > 0 THEN
24. incrementLock = incrementLock -1
25. ELSE IF incrementLock == 0 THEN
26. INC_IMPROVED = true
27. END IF
28. IF decrementLock > 0 THEN
29. decrementLock = decrementLock -1
30. ELSE IF decrementLock == 0 THEN
31. DEC_IMPROVED = true
32. END IF
33. IF current iteration is INC_ITR THEN
34. set INC_CHECK_ITR as next iteration
35. ELSE IF current iteration is INC_CHECK_ITR THEN
36. set INC_ITR as next iteration
37. END IF
38. END

pool size to use to provide this detected level of throughput. This value is found by

using the findThreadPoolSize() function.

Table 4.1: Abstract view of throughputTable

Thread pool size Mean throughput Count

27

ALGORITHM - findThreadPoolSize()
INPUT: currentThroughput
OUTPUT: threadPoolSize

1: FOR i < number of rows in throughputTable DO
2: mean = (row(i).getThroughput + row(i+1).getThroughput)/2
3: IF (currentThroughput <= mean) THEN
4: RETURN row(i).getThreadPoolSize
5: END IF
6: END FOR

ALGORITHM - updateThroughputTable()
INPUT: currentThroughput, currentThreadPoolSize

1. threadPoolSizeExists = false
2. FOR i < number of rows in throughputTable DO
3. IF row(i).getThreadPoolSize == currentThreadPoolSize THEN
4. threadPoolSizeExists = true
5. value = row(i).getThroughput
6. count = row(i).getCount
7. newValue=((value*count)+ currentThroughput)/count+1
8. row(i).setThroughput(newValue)
9. END IF
10. END FOR
11. IF threadPoolSizeExists is false THEN
12. create new table entry x
13. x.setCount(1)
14. x.setThreadPoolSize(currentThreadPoolSize)
15. x.setThroughput(currentThroughput)
16. add entry x to throughputTable
17. sort throughputTable by threadPoolSize
18. END IF

4.1.2 Mean Latency optimization algorithm

This algorithm measures the mean latency of the requests every 10 seconds in the

server and adjusts the worker thread pool size accordingly to minimize the mean

latency. The algorithm used is as follows

28

ALGORITHM - meanLatencyOptimization()
INPUT: oldMeanLatency, currentMeanLatency
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR to false
2. Initialize HAS_STARTED to false
3. REPEAT every 10 seconds
4. IF (HAS_STARTED == false and NumberOfRequests > 0) THEN
5. HAS_STARTED = true
6. INC_ITR = true
7. END IF
8. IF (INC_ITR == true and INC_IMPROVED == true) THEN
9. increase thread pool size by 10
10. END IF
11. IF (INC_CHECK_ITR == true and INC_IMPROVED == true) THEN
12. IF mean latency decrement < 5% THEN
13. INC_IMPROVED = false
14. decrease thread pool size by 10
15. incrementLock = 6
16. END IF
17. END IF
18. IF (DEC_ITR == true and DEC_IMPROVED == true) THEN
19. decrease thread pool size by 10
20. END IF
21. IF (DEC_CHECK_ITR == true and DEC_IMPROVED == true) THEN
22. IF (mean latency decrement < 5%) THEN
23. DEC_IMPROVED = false
24. increase thread pool size by 10
25. decrementLock = 6
26. END IF
27. END IF
28.
29. IF incrementLock > 0 THEN
30. incrementLock = incrementLock -1
31. ELSE IF incrementLock == 0 THEN
32. INC_IMPROVED = true
33. END IF
34. IF decrementLock > 0 THEN
35. decrementLock = decrementLock -1
36. ELSE IF decrementLock == 0 THEN
37. DEC_IMPROVED = true
38. END IF
39. IF current iteration is INC_ITR THEN
40. set INC_CHECK_ITR as next iteration
41. ELSE IF current iteration is INC_CHECK_ITR THEN
42. set DEC_ITR as next iteration
43. ELSE IF current iteration is DEC_ITR THEN
44. set DEC_CHECK_ITR as next iteration
45. ELSE IF current iteration is DEC_CHECK_ITR THEN
46. set INC_ITR as next iteration
47. END IF
48. END

4.1.3 99th Percentile of latency optimization algorithm

This algorithm measures the 99th percentile of latency of the requests every 10 seconds

in the server and adjusts the worker thread pool size accordingly to minimize the 99 th

percentile of latency. The algorithm used is as follows.

29

ALGORITHM - 99PercentileLatencyOptimization()
INPUT: old99PcerntileLatency, current99PercentileLatency
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR to false
2. Initialize HAS_STARTED to false
3. REPEAT every 10 seconds
4. IF (HAS_STARTED == false and NumberOfRequests > 0) THEN
5. HAS_STARTED = true
6. INC_ITR = true
7. END IF
8. IF (INC_ITR == true and INC_IMPROVED == true) THEN
9. increase thread pool size by 10
10. END IF
11. IF (INC_CHECK_ITR == true and INC_IMPROVED == true) THEN
12. IF 99th percentile latency decrement < 5% THEN
13. INC_IMPROVED = false
14. decrease thread pool size by 10
15. incrementLock = 6
16. END IF
17. END IF
18. IF (DEC_ITR == true and DEC_IMPROVED == true) THEN
19. decrease thread pool size by 10
20. END IF
21. IF (DEC_CHECK_ITR == true and DEC_IMPROVED == true) THEN
22. IF (99th percentile latency decrement < 5%) THEN
23. DEC_IMPROVED = false
24. increase thread pool size by 10
25. decrementLock = 6
26. END IF
27. END IF
28.
29. IF incrementLock > 0 THEN
30. incrementLock = incrementLock -1
31. ELSE IF incrementLock == 0 THEN
32. INC_IMPROVED = true
33. END IF
34. IF decrementLock > 0 THEN
35. decrementLock = decrementLock -1
36. ELSE IF decrementLock == 0 THEN
37. DEC_IMPROVED = true
38. END IF
39. IF current iteration is INC_ITR THEN
40. set INC_CHECK_ITR as next iteration
41. ELSE IF current iteration is INC_CHECK_ITR THEN
42. set DEC_ITR as next iteration
43. ELSE IF current iteration is DEC_ITR THEN
44. set DEC_CHECK_ITR as next iteration
45. ELSE IF current iteration is DEC_CHECK_ITR THEN
46. set INC_ITR as next iteration
47. END IF
48. END

The algorithms have the following common characteristics

Repetition period

The outermost repeat loop of the algorithms repeat every 10 seconds. All proposed

algorithms use this period between iterations.

Improvement measurement

The algorithms measure improvements of the relevant performance metrics during

execution in order to decide if thread pool size changes were worthwhile.

An improvement of 5% of mean latency was selected as the minimum acceptable

improvement for mean latency. Similarly an improvement of 5% of the 99th percentile

of latency was selected as the minimum acceptable improvement for the 99 th percentile

of latency optimization algorithm. For the throughput optimization algorithm, an

improvement of 10% of throughput is minimum acceptable improvement to increase

the thread pool size.

Periodic iterations

The proposed algorithm repeats every 10 seconds. The algorithms have designated

iterations as follows.

• INC_ITR – Iteration during which the thread pool size is increased

• INC_CHECK_ITR – This iteration checks if the thread pool size increment in

the previous iteration has made an improvement to the performance metric in

consideration.

• DEC_ITR - Iteration during which the thread pool size is decreased

• DEC_CHECK_ITR - This iteration checks if the thread pool size decrement in

the previous iteration has made an improvement to the performance metric in

consideration.

The throughput optimization algorithm iterates between INC_ITR and

INC_CHECK_ITR while the mean latency optimization algorithm iterations between

30

INC_ITR, INC_CHECK_ITR, DEC_ITR and DEC_CHECK_ITR. These iterations

limit the increment/decrement of thread pool size and evaluating whether the

increments/decrements provided an improvement to specific periods. Limiting the

steps of the algorithm to such designated iterations helps to minimize the effects of

outliers from affecting thread pool size adjustment decisions. This is because the

probability that outliers always occur at a given stage is lower than the probability of

an outlier occurring every 10 seconds.

Increment/Decrement lock

During INC_CHECK_ITR iteration and DEC_CHECK_ITR iteration, the system

checks if the increments and decrements that were made in the previous iteration

provided the minimum required improvement of the performance metric. If such an

improvement is not detected during the INC_CHECK_ITR iteration, the algorithm

temporarily locks thread pool size increments for a duration of 1 minute. Similarly if

improvement is not detected during the DEC_CHECK_ITR iteration, the algorithm

temporarily locks thread pool size decrements for a duration of 1 minute.

The rationale behind using such locks on thread pool size increments and decrements

is to prevent the algorithm from increasing and decreasing thread pool sizes

unnecessarily if they do not provide an improvement in performance. However, these

locks are only temporary and expire one minute after setting them. This is because,

incoming workloads may change from time to time and when they do, thread pool size

need to be changed accordingly.

4.2 Performance Metric collection

In order to dynamically adjust the thread pool size, it was necessary to obtain

performance metrics from the server itself instead of measuring them from the client

side. Therefore Dropwizard metrics [26] was used to gather performance metrics on

the server when tests were executed. The Dropwizard metrics library use several

components to obtain performance metrics. A meter is a component which measures

the rate at which a set of events occur. A histogram measures the distribution of values

31

in a stream of data. A timer is another component which is a histogram of the duration

of event and a meter of the rate of it’s occurrence.

The traditional method of calculation of quantiles is to obtain the entire data set, sort it

and take the values (ie – 1% from the end is taken for the 99th percentile). Although

this works for small data sets, it is not suitable for high-throughput, low-latency

services. The solution to this problem is to use a technique called reservoir sampling.

Here, the data is sampled as it passes through. A reservoir is statistically representative

of the data stream as a whole and Dropwizard metric’s Histograms use reservoirs. The

default type of reservoir used by Timers is called an Exponentially Decaying Reservoir

and it produces quantiles which are representative of (roughly) the last 5 minutes of

data. However Exponentially Decaying Reservoirs have shortcomings. They are lossy

as they do not store every sample. They are only statistically representative. These

shortcomings of Exponentially Decaying Reservoirs could lead to inaccurate

measurements due to the inclusion of much older samples.

High Dynamic Range Histogram (HdrHistogram)[29] is a lossless histogram

implementation which addresses shortcomings in Exponentially Decaying Reservoirs.

Therefore HdrHistogram was found to be more suitable to be used to collect

performance metrics in the server that was created. However, HdrHistogram was not

available to be used in Dropwizard metrics at the time of this research project. This

problem was solved by using the rolling-metrics library [30] which combines

HdrHistogram with Dropwizard metrics. Version 2.0.4 of the rolling-metrics library

was used during implementation.

Dropwizard metrics was also used to measure throughput on the server. Dropwizard

metrics by default only provided methods to obtain 1, 5 and 15 minute throughput.

However the thread thread pool size adjustment algorithm that was used was designed

to run periodically every 10 seconds and make decisions about the thread pool size.

The minimum default throughput of 1 minute would not have provided updated

throughput values . Therefore, the Dropwizard metrics the source code of the

Dropwizard metrics framework was modified to obtain 10 second throughput values.

32

4.3 Netty thread pools

As explained in Chapter 3, Netty has a boss thread pool and a worker thread pool.

During implementation it was identified that the thread pool size of the worker thread

pool of Netty cannot be changed dynamically as required when the HTTP server is

running. Since the objective of this study is to dynamically adjust the thread pool size

used for processing requests, this default architecture of Netty was found to not be

adequate. Therefore the HTTP server was implemented in such a way that the requests

that are received by the worker thread pool of Netty are passed onto a separate thread

pool without processing in the Netty worker pool. The size of this separate thread pool

can be adjusted while the server is running.

33

Chapter 5 - Results and Evaluation

5.1 Experimental results

The following section presents and explain the results that were obtained through the

experiments that were conducted during this research study. As explained previously

in Chapter 1 and Chapter 3, three sets of experiments were conducted and they were

1. Fixed worker thread pool size with fixed workload simulations

2. Dynamic worker thread pool size with fixed workload simulations

3. Dynamic worker thread pool size with varying workload simulations

5.1.1 Fixed worker thread pool size with fixed workload simulations

An initial set of experiments were conducted to gain insight into the effect of worker

thread pool size on the performance metrics that were measured. These experiments

made use of a fixed worker thread pool size and a fixed incoming workload. The

proposed algorithms were not used in this set of experiments. This set of experiments

were conducted with the sole purpose of gaining more insight into the effects of

worker thread pool size on performance.

The results obtained through these tests showed that the performance that can be

obtained by a given number of threads is not the same across different applications and

workloads.

CPU dominant Prime10m application and I/O dominant DbWrite application were two

applications tested. Figure 5.1 shows the variation of throughput over different worker

thread pool sizes for these two applications. It can be observed that when the worker

thread pool size was varied between 2, 4, 10, 50 & 100, the Prime1m application did

not show a drastic change in throughput. However for the DbWrite application, using

34

thread pool sizes of 10, 50 and 100 provided much better throughput than when using

a worker thread pool size of 2 or 4.

However, analysis of the 99th percentile of latency showed that an increase of worker

thread pool size provided opposite results for the two tests as depicted in figure 5.2. It

was observed that as the worker thread pool size increased, latency increased for the

Prime10m application. However, the increase in worker thread pool size decreased the

latency experienced by the DbWrite application. This observation can be explained as

follows. Database servers utilize a pool of threads to perform database operations.

From the point of the HTTP server, I/O operations such as database writes are

blocking operations. Therefore when a small number of worker threads were used by

the HTTP server in the DbWrite application, they were unable to issue requests for

database writes to the database server’s thread pool until previous requests completed.

This caused the an increase in latency for small worker thread pool sizes.

35

0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

800

900

1000

Comparison of throughput over worker thread pool sizes

DbWrite Prime10m

Worker thread pool size

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.1: Throughput comparison of Dbwrite and Prime10m

Therefore, as the throughput did not show a significant increase for the Prime10m

application when the worker thread pool size was increased, a small worker thread

pool size provided better performance due to low latency.

Analysis of CPU utilization and disk I/O utilization showed that the Prime10m test

was indeed CPU dominant. It showed high CPU utilization and low disk I/O

utilization. In contrast, the DbWrite application showed that it was I/O dominant due

to high disk I/O utilization and low CPU utilization. A graph depicting the CPU and I/

O utilization for a period of 10 minutes for 2 worker threads and 10 concurrent users

for these two tests are shown in figure 5.3 and figure 5.4 respectively. The Prime10m

I/O graph shows a write rate of several Kilobytes per second, due to logging of data

during experiments. However this was negligible compared to the disk I/O utilization

by the DbWrite application.

36

0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

Comparison of 99th percentile of latency over worker thread pool sizes

DbWrite Prime10m

Worker thread pool size

99
th

 p
er

ce
nt

ile
 o

f l
at

en
cy

 (
m

s)

Figure 5.2: 99th percentile of latency comparison for DbWrite and Prime10m

Similar results were observed in the other applications as well and these observations

showed that a small worker thread pool size provided better latency for CPU dominant

applications tested while a larger thread pool size provided better latency for the I/O

dominant applications that were tested.
37

00:00:00 00:02:00 00:04:00 00:06:00 00:08:00 00:10:00

0

20

40

60

80

100

CPU utilization by applications

DbWrite Prime10m

Elapsed time(hh:mm:ss)

U
til

iz
at

io
n

(%
)

Figure 5.3: CPU utilization of DbRead and Prime10m

00:00:00 00:02:00 00:04:00 00:06:00 00:08:00 00:10:00

0

200

400

600

800

1000

1200

1400

1600

Disk I/O utilization by applications

DbWrite Prime10m

Elapsed time (hh:mm:ss)

D
is

k
w

rit
e

ra
te

 (
K

B
/s

)

Figure 5.4: Disk write rate of DbWrite and Prime10m

The important fact that was observed during this stage of experiments was that the

performance provided in terms of throughput and latency by a given thread pool size

depended on the application and incoming workload. This verified the initial

hypothesis that finding a fixed value for the worker thread pool size is a cumbersome

task. It also proved that even if a value for the worker thread pool size was specified, it

would need to be changed based on incoming workloads in order to improve

performance.

5.1.2 Dynamic thread pool size with fixed workload simulations

As explained in Chapter 1, the main objective of this dissertation is to propose a

solution to the cumbersome task of manually finding and configuring the worker

thread pool size. The proposed solution consists of three algorithms which are able to

find and configure the worker thread pool size by optimizing throughput, mean latency

or 99th percentile of latency.

This section of the dissertation presents evaluations of the three proposed algorithms

for different application. The word dynamic of the title of this sections reflects the fact

that the worker thread pool size was allowed to be changed by the proposed algorithms

dynamically during these experiments. The incoming workload to the server remained

fixed during these experiments.

In order to evaluate the performance of the proposed algorithms in dynamically

adjusting the worker thread pool size, the results obtained by using fixed worker thread

pool sizes are also presented along them.

Mean latency optimization

This section presents comparisons of performance of the proposed mean latency

optimization algorithm.

Figure 5.5 shows the mean latency values recorded for the Prime10m test for the fixed

workload scenario. The fixed workload used was 100 concurrent users.

Fixed1, Fixed10 and Fixed100 in the figure 5.5 depicts the mean latency values over

time for experiments with fixed number of worker threads. The numerical value given

38

as the suffix in them refer to the worker thread pool size used. Empirical data shows

that the mean latency has improved when the number of worker threads was increased.

‘Adaptive’ in this graph depicts the mean latency values over time obtained for the

experiment conducted by using the mean latency optimization algorithm starting with

a worker thread pool size of one. As the test progressed, the algorithm adjusted the

number of worker threads and have successfully minimized the mean latency value.

The variation of thread pool size by the mean latency optimization algorithm over time

for this experiment is shown in 5.6. This graph shows how the system has increased

the thread pool size from 1 in order to minimize the mean latency.

39

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

Variation of mean latency over time
Prime10m, 100 concurrent users

Fixed1 Fixed10 Fixed100 Adaptive

Elapsed time (hh:mm:ss)

M
ea

n
la

te
nc

y

Figure 5.5: Mean latency comparison in Prime10m

The period from 00:06:20 to 00:14:50 shows that the system has converged at 81

threads with periodic increments and decrements. These periodic increments and

decrements are expected as they are deliberate increments and decrements caused by

the algorithm. This can be explained further by considering a part of the above

mentioned time period. Table 5.1 shows how the thread pool size has varied from

00:06:40 to 00:09:00. The thread pool size is at 81 from 00:06:40. At 00:07:00, the

thread pool size is increased to 91 by the INC_ITR iteration of the algorithm which

increases the thread pool size by 10. Next, at 00:07:10, the INC_CHECK_ITR

iteration of the algorithm checks whether the thread pool size increment has made an

improvement. Since improvement obtained by this thread pool size increment was a

decrement of 2.02% of mean latency, which is less than the minimum required 5%

decrement of mean latency. As this has not resulted in an improvement, the thread pool

size increment is undone by decreasing the thread pool size by 10 to back to 81. At

00:07:20 the thread pool size is decremented by 10 threads to 71 by the DEC_ITR

iteration of the algorithm. Then at 00:07:30 the DEC_CHECK_ITR iteration checks

the improvement of mean latency. Since the change in mean latency obtained by this

thread pool size decrement was actually an increase of 19.45% of mean latency, the

thread pool size decrement was undone by increasing the thread pool size back to 81.

40

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

20

40

60

80

100

120

Variation of thread pool size over time
Prime10m, Mean latency optimization, 100 concurrent users

Elapsed Time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.6: Thread pool size variation in Prime1m

Table 5.1: Increments and decrements of thread pool size

Elapsed time

(hh:mm:ss)

Worker thread pool size Mean latency

(ms)

00:06:40 81 48.62

00:06:50 81 45.10

00:07:00 91 46.01

00:07:10 81 37.54

00:07:20 71 44.84

00:07:30 81 43.27

00:07:40 81 55.97

00:07:50 81 45.98

00:08:00 81 52.48

00:08:10 81 58.81

00:08:20 91 57.81

00:08:30 81 45.02

00:08:40 71 45.26

00:08:50 81 45.79

00:09:00 81 45.88

Since the increment of the thread pool size did not provide an improvement, the

algorithm locks improvements for the next minute. This is the reason why a thread

pool size increment was not observed at 00:07:40 although it was the INC_ITR

iteration of the algorithm. Similarly, the thread pool size decrement was not observed

at 00:08:00 in the DEC_ITR of the algorithm because the thread pool size decrement

in the previous DEC_ITR iteration did not provide the required improvement of mean

latency. However, increments and decrements have resumed at 00:08:20 and 00:08:40

respectively due to the expiration of the locks on increments and decrements.

Similar improvements of mean latency was also observed in other applications as well.

Figure 5.7 depicts the comparison of mean latency values that was observed in the

DbWrite application.

41

The DbWrite application showed poor performance in terms of latency when a fixed

worker thread pool size of 1 was used. When the mean latency optimization algorithm

was used starting with a worker thread pool size of 1, the system detected the high

mean latency at the beginning and reduced it by increasing the thread pool size.

By considering the mean latency range between 0ms and 300ms of the above graph, it

can be observed that the mean latency values obtained by using a fixed worker thread

pool size of 100 and by using the adaptive concurrency control mechanism showed

similar results. Figure 5.8 shows the section of the y axis between 0ms and 300ms of

figure 5.7 in order to observe this clearly.

42

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

500

1000

1500

2000

2500

3000

Variation of mean latency over time

DbWrite, 100 concurrent users

Fixed1 Fixed10 Fixed100 Adaptive

Elapsed Time (hh:mm:ss)

M
ea

n
la

te
nc

y
(m

s)

Figure 5.7: Performance of the mean latency optimization algorithm in DbWrite

Figure 5.9 shows the variation of thread pool size against time of the adaptive

concurrency control mechanism for the above test. This shows a very important

observation that was made during this experiment. The proposed adaptive concurrency

control mechanism was able to obtain mean latency values similar to the experiment

with a fixed worker thread pool size of 100 by utilizing less than or equal to 100

threads. Practically, it is possible for a system administrator to configure a thread pool

size such as 100 instead of 10 and be satisfied with it because it provided improved

performance. However the proposed algorithm has detected online that mean latency

cannot be improved by increasing the thread pool size and has therefore not increased

it up to 100 as depicted in this graph.

43

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

300

Variation of mean latency over time

DbWrite, 100 concurrent users

Fixed10 Fixed100 Adaptive

Elapsed Time (hh:mm:ss)

M
ea

n
la

te
nc

y
(m

s)

Figure 5.8: Comparison of mean latency in DbWrite over selected latency range

Furthermore, another fact that can be observed by examining the figure 5.8 and figure

5.9 is that the increase in thread pool size after the test started has indeed shown a

decrement in the mean latency of the workload. This shows that the proposed

algorithm has been able to successfully decrease the mean latency by increasing the

worker thread pool size as required.

Figure 5.10 shows the results obtained for the Prime1m application with 100

concurrent users. It can be observed that the proposed adaptive concurrency control

mechanism using the mean latency optimization algorithm has successfully minimized

the mean latency during this experiment. Figure 5.11 provides a closer look at the

curved obtained for the fixed thread pool size of 50 and for the adaptive algorithm. By

examining the information about the thread pool size along with the obtained mean

latency values, it can be observed that the proposed adaptive concurrency control

mechanism has obtained better mean latency values than when using a with a fixed

worker thread pool size of 50. Practically, a system administrator may experiment with

worker thread pool sizes of 1, 2, 4 and 50 and decide to use 50 as it provides the best

performance out of the ones tested. He/She may or may not experiment with thread

pool sizes between 4 and 50 because there is no common guideline to say which thread

pool sizes to check.

44

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

10

20

30

40

50

60

70

80

Variation of thread pool size over time

DbWrite, 100 concurrent users

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.9: Thread pool size variation in DbWrite using mean latency optimization

It should also be noted that the mean latency optimization algorithm has obtained

better performance while using a worker thread pool size less than 50 thereby proving

that using a higher thread pool size does not always result in better mean latency. In

that case, the proposed method has shown to have an advantage over using fixed

45

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

10

20

30

40

50

60

70

Variation of mean latency over time

Prime1m, 100 concurrent users

Fixed1 Fixed2 Fixed4 Fixed50 Adaptive

Elapsed time (hh:mm:ss)

M
ea

n
la

te
nc

y
(m

s)

Figure 5.10: Comparison of mean latency in Prime1m

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

2

3

4

5

6

7

8

9

10

Variation of mean latency over time

Prime1m, 100 concurrent users

Fixed50 Adaptive

Elapsed time (hh:mm:ss)

M
ea

n
la

te
nc

y
(m

s)

Figure 5.11: Comparison of mean latency in Prime1m over a selected range

thread pools. Figure 5.12 shows the corresponding thread pool size over time graph for

the adaptive algorithm.

Throughput Optimization

This section presents the results obtained for the throughput optimization algorithm for

different applications when tested with a fixed incoming workload.

Figure 5.13 depicts a comparison of the variation of throughput over time for several

fixed worker thread pool sizes and the proposed adaptive concurrency control

mechanism using the throughput optimization algorithm for the Prime1m workload.

Figure 5.14 presents a closer look at the variation of throughput for fixed thread pools

of size 10, 50, 100 and for the adaptive mechanism in order to understand the results in

a much clearer manner. It shows that a worker thread pools of size 10 has provided

slightly better throughput over using a worker thread pool of size 50 or 100.

Furthermore it can be seen that the adaptive mechanism has obtained a similar

throughput to that of the fixed thread pool of size 10.

46

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

Variation of thread pool size over time

Prime1m, 100 concurrent users

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.12: Thread pool variation in Prime1m for mean latency optimization

Examining the variation of worker thread pool size provided by the adaptive

concurrency control mechanism depicted in figure 5.15 shows that the worker thread

pool size has converged at a thread pool size of 11 to obtain this throughput.

47

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

1000

2000

3000

4000

5000

6000

7000

Variation of throughput over time

Prime1m, 100 concurrent users

Fixed1 Fixed10 Fixed50 Fixed100 Adaptive

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.13: Performance of the throughput optimization algorithm in Prime1m

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

Variation of throughput over time

Prime1m, 100 concurrent users

Fixed10 Fixed50 Fixed100 Adaptive

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.14: Throughput comparison in Prime10m over selected throughput range

This shows that the proposed adaptive concurrency control mechanism with

throughput optimization has converged at a thread pool size of 11 and has not

increased further because further increments did not provide better throughput. The

momentary increase in thread pool size shown above has occurred periodically every

minute. This was because when the throughput optimization algorithm increased the

thread pool size from 11 to 21, an increment of throughput of at least 10% was not

observed and this resulted in it waiting for one minute before checking again if an

increment of worker thread pool size improved throughput. By examining the

performance of fixed thread pool sizes, it can be observed that the fixed thread pool of

size 10 provided very similar throughput. The adaptive algorithm converging at a

thread pool size of 11 shows that it has properly identified the thread pool size to

improve throughput and has not increased unnecessarily.

Figure 5.16 depicts a comparison of the variation of throughput over time obtained for

fixed worker thread pool sizes and the proposed adaptive concurrency control

mechanism with throughput optimization algorithm. This presents results for the

DbRead application. Fluctuations can be observed in throughput in the DbRead

workload. However, they were not observed only when using the proposed

concurrency control mechanism, but for fixed thread pool sizes as well. (Java’s

48

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

Variation of thread pool size over time

Prime1m, 100 concurrent users

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.15: Thread pool size variation in Prime1m using throughput optimization

Garbage Collection would be one of the reasons for these fluctuations in throughput).

It is evident from this comparison that the proposed method has obtained similar

throughput as that of the fixed thread pool size of 10.

Figure 5.17 depicts the corresponding graph depicting the variation of thread pool size

over time. It can be observed that the algorithm has kept the thread pool size at 11

most of the time during the experiment. However, fluctuations in measured throughput

had caused few changes in the thread pool size. But it can also be observed that the

algorithm managed to successfully recover from the thread pool size changes due to

fluctuations.

49

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

200

400

600

800

1000

1200

1400

Variation of throughput over time

DbRead, 100 concurrent users

Fixed1 Fixed10 Adaptive

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.16: Performance of the throughput optimization algorithm in DbRead

99th percentile of latency optimization

Results obtained by testing the proposed 99th percentile of latency optimization

algorithm is presented in this section.

Figure 5.18 shows a comparison of the 99th percentile of latency values recorded when

using fixed worker thread pool sizes and the proposed adaptive concurrency control

mechanism using the 99th percentile of latency optimization algorithm for the

Prime10m workload. 99th percentile of latency values recorded for fixed thread pool

sizes of 1 and 10 were much less than those obtained for fixed thread pool sizes of 50

and 100 showing that less number of threads provided better latency for this

application. It can also be observed that the 99th percentile of latency values recorded

for fixed thread pool sizes of 1 and 10 show overlaps at times. This explains why the

proposed adaptive concurrency control mechanism has not obtained clear convergence

of thread pool size as depicted in figure 5.19. Furthermore, the momentary increments

of latency observed in the adaptive mechanism was due to the algorithm checking if a

higher thread pool size provided better latency as explained in the algorithm presented

in Chapter 4 of this dissertation.

50

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

Variation of thread pool size over time

DbRead, 100 concurrent users

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.17: Variation of thread pool size in DbRead using throughput optimization

5.1.3 Dynamic thread pool size with varying load simulations

As explained in Chapter 3, this set of experiments were conducted to evaluate the

behavior of the proposed adaptive concurrency control mechanism against dynamic

51

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

200

400

600

800

1000

1200

1400

1600

Variation of 99th percentile of latency over time

Prime10m, 100 concurrent users

Fixed1 Fixed10 Fixed50 Fixed100 Adaptive

Elapsed time (hh:mm:ss)

99
th

 p
er

ce
nt

ile
 o

f l
at

en
cy

 (
m

s)

Figure 5.18: Performance of the throughput optimization algorithm for Prime10m

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

40

Variation of thread pool size over time
Prime10m, 100 concurrent users

Elapsed time (hh:mm:ss)

99
th

 p
er

ce
nt

ile
 o

f l
at

en
cy

 (
m

s)

Figure 5.19: Thread pool size variation in Prime10m using throughput optimization

incoming workloads. The variation of the number of concurrent users which was used

to simulate the varying load on the server has been explained in Chapter 3 of this

dissertation.

All three algorithms were again tested with different applications during this stage of

experiments.

Throughput optimization

The following section presents the results obtained for the throughput optimization

algorithm.

Figure 5.20 shows the variation of throughput against time for the Prime1m

application. As shown by the graph, the throughput optimization algorithm shows

positive results in adjusting the thread pool size to maximize throughput even when the

load is dynamic. It can be observed from the graph that the throughput from 00:00:00

to 00:05:00, 00:10:00 to 00:15:00 and 00:20:00 to 00:25:00 remained the same. This is

not because the algorithm has failed to increase the thread pool size to obtain better

throughput but due to the processing limits of the server hardware in processing the

requests associated with the Prime1m application. This fact becomes clearer by

examining figure 5.21 which shows the corresponding variation of thread pool size

against time for this experiment. As can be seen in this graph, there are spikes that are

caused by the adaptive concurrency control algorithm increasing the thread pool size

and checking if the increment caused an improvement. However, because it did not do

so, the system reverts back to the previous thread pool size. Therefore the throughput

has remained the same in this experiment due to the physical limits of the processing

hardware.

52

53

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

1000

2000

3000

4000

5000

6000

7000

Variation of throughput over time

Prime1m, varying workload

Elapsed time(hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.20: Variation of throughput in Prime1m with varying workload

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

Variation of thread pool size over time
Prime1m, varying workload

Elapsed Time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.21: Variation of thread pool size in Prime1m with a varying workload using the

throughput optimization algorithm

Another observation that can be made by looking at the above graph is that during the

period from 00:05:00 to 00:10:00, the size of the thread pool has remained at 11

similar to 00:00:00 to 00:05:00, 00:10:00 to 00:15:00 and 00:20:00 to 00:25:00. When

the number of concurrent users decrease to one at 00:05:00, the algorithm detects it

and checks which thread pool size to use. As the throughput optimization algorithm

uses a step size of 10 when adjusting the thread pool size, the thread pool sizes it can

use are 1, 11, 21 etc. Since the test was initialized, the algorithm recorded the

throughput that a thread pool size of 1 and 11 provides. Since the throughput provided

by a thread pool size of 1 significantly low, the algorithm has decided the keep the

thread pool size at 11. The method of deciding the thread pool size to decrease to in

such a situation has been explained in Chapter 4 of this dissertation.

A similar situation was observed with the DbRead application as well and is depicted

in figure 5.22. The corresponding thread pool size over time graph for this

experimented is presented in figure 5.23.

54

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

200

400

600

800

1000

1200

1400

Variation of throughput over time

DbWrite, varying workload

Elapsed Time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.22: Throughput variation in DbWrite with a varying workload using throughput

optimization

Mean Latency optimization

Results of the experiments conducted to evaluate the performance of the mean latency

optimization algorithm for varying workloads is presented in this section.

Figure 5.24 shows the variation of mean latency over time for the Prime10m

application when tested with the varying workload. It can be observed that the mean

latency when the test started was more than 200ms and that towards the beginning of

the test it has a high value.

However, it can be observed that the mean latency decreased as the test progressed.

This was caused by the optimization algorithm adjusting the thread pool size to

minimize the mean latency. Figure 5.25 presents the corresponding graph depicting the

variation of thread pool size over time containing this information. The periodic spikes

visible in this graph were deliberately caused by the algorithm making periodic

changes and checking if an improvement was obtained from the change. However,

when it detected that no improvement were made, the increments and decrements were

locked for a period of 1 minute which is reflected by the momentary pause in these

spikes.

55

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

Variation of thread pool size over time
DbWrite, varying workload

Elapsed Time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.23: Variation of thread pool size in DbWrite using a varying workload

56

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

Variation of mean latency over time

Prime10m, 100 concurrent users

Elapsed Time (hh:mm:ss)

M
ea

n
la

te
nc

y
(m

s)

Figure 5.24: Variation of mean latency in Prime10m using a varying workload

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

10

20

30

40

50

60

70

80

Variation of thread pool size over time

Prime10, varying workload

Elaped time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.25: Thread pool size variation in Prime10m

99th Percentile of latency optimization

Following section presents the results obtained when experiments were conducted

using the adaptive concurrency control mechanism with the 99th percentile of latency

optimization algorithm. These experiments also used the varying workload presented

in Chapter 3.

Figure 5.26 shows the variation of 99th percentile of latency over time for the Prime1m

application. Figure 5.27 presents the corresponding variation of the thread pool size

over time graph caused by the algorithm. It can be observed that the algorithm has

converged at thread pool sizes of 11 and 31 at different intervals. After converging, the

algorithm has periodically checked whether increments or decrements of thread pool

size provides an improvement in 99th percentile of latency. This can be seen by the

periodic increments and decrements occurring every minute in the graph.

57

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

Variaion of 99th percentile of latency over time

Prime1m, varying workload

Elapsed time (hh:mm:ss)

99
th

 p
er

ce
nt

ile
 o

f l
at

en
cy

 (
m

s)

Figure 5.26: 99th percentile of latency variation in Prime1m

Figure 5.28 shows the variation of 99th percentile of latency over time for the DbWrite

application. In this experiment with a varying load, some fluctuations of latency was

observed.

58

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

40

45

Variation of thread pool size over time

Prime1m, varying workload

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.27: Prime1m thread pool size variation

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

1000

2000

3000

4000

5000

6000

7000

Variation of 99th percentile of latency over time

DbWrite, varying workload

Elapsed time (hh:mm:ss)

99
th

 p
er

ce
nt

ile
 o

f l
at

en
cy

 (
m

s)

Figure 5.28: 99th percentile of latency variation in DbWrite

These fluctuations have made it difficult for the proposed algorithm to maintain

smooth thread pool sizes as can be seen in the figure 5.29. The proposed algorithm

only accepts improvements due thread pool size increment at the 2nd iteration and

improvements due to decrements at the 4th iteration respectively as explained in

Chapter 4. This has made it possible for the algorithm to not cause the thread pool size

to increase without control and to try and correct fluctuations.

5.2 Analysis of the effects of parameters of the algorithms

The three proposed algorithms make use of several parameters to function correctly.

During the course of this study, these parameters were fine tuned by studying their

effects on the adaptive concurrency control mechanism. This section discusses the

effects of these parameters.

59

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

10

20

30

40

50

60

Variation of thread pool size over time

DbWrite, varying workload

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.29: DbWrite thread pool size variation for 99th percentile optimization

5.2.1 Period between iterations of algorithms

As explained in Chapter 3, the proposed algorithms’ outer loop is executed every 10

seconds. This period has a direct impact on the detection of change of performance

metrics thereby affecting when thread pool size adjustments occur. A high value of this

period causes the server to detect changes in performance metrics with a delay. This in

turn causes a delay in thread pool size adjustments. Experiments showed that these

would result in the server being too slow to respond to changes in performance metrics

and workload patterns thereby reducing the ability of the server to optimize

performance properly.

Figure 5.20 presented in the previous section showed the variation of throughput over

time for the Prime1m application with a varying workload. This was the graph

obtained as a result of using a period of 10 seconds in the outer loop of the throughput

optimization algorithm.

The corresponding thread pool size over time graph of this experiment was shown in

figure 5.21. The reason for the thread pool size remaining at 11 for the period from

00:00:00 to 00:15:00 has been explained in the previous section. At 00:15:00, the

number of concurrent users decreased suddenly due to the nature of the varying

workload test as explained in Chapter 3. The important observation here is that the

system has converged at a thread pool size of one within a short period of time.

Similarly, when the number of concurrent users increased at 00:20:00, the system

increased the thread pool size to 11 and converged within such a similar short period.

This is a positive result because it shows that the proposed algorithm responds and

adapts to changes in incoming workloads within a short duration.

Figure 5.30 shows the variation of throughput over time obtained for the same

experiment using a period of 1 minute between iterations of the outer loop of the

algorithm. Empirical results show how the server has been slow compared to using a

period of 10 seconds, to respond to changes in the varying workload. For example, in

the experiment with a period of 10 seconds between iterations of the outer loop of the

algorithm, the algorithm recorded a sudden decrease in throughput shortly after

00:15:00 which was what actually happened. However, with a period of 1 minute, the

60

server shows a gradual decrease in throughput after 00:15:00 and takes until almost

00:20:00 to record the lowest value of throughput.

This had a negative impact on when increments/decrements of thread pool sizes

occurred as seen in the figure 5.31. For example, unlike the proposed algorithm using a

period of 10 seconds, the modified algorithm using a period of 1 minute between

iterations of the outer loop has not converged at a thread pool size of 1 until almost

00:20:00.

When a period of 5 seconds was used instead, the server detected changes in

throughput within a short period of time similar to what was observed when the

proposed period of 10 seconds was used. This can be observed figure 5.32.

However, upon examining the variation of thread pool size over time depicted in the

figure 5.33, it can be observed that unnecessary thread pool size adjustments have

occurred. Although similar throughput values were observed from 00:00:00 to

00:05:00 and 00:10:00 to 00:15:00, the system has unnecessarily increased the thread

pool size after 00:00:00, to 21.

61

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

1000

2000

3000

4000

5000

6000

Variation of throughput over time

Prime1m, varying workload

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.30: Effect of long periods on throughput measurement

Furthermore, figure 5.33 also shows the effect of decreasing the thread pool size

increment lock duration. This figure shows a lock duration of 30 seconds. A shorter

lock duration such as this causes the system to make increments quickly even after

they do not provide improved performance. This then causes the thread pool size to

fluctuate unnecessarily.
62

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

Variation of thread pool size over time

Prime1m, varying workload

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.31: Effect on long periods on thread pool size adjustment

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

1000

2000

3000

4000

5000

6000

7000

Variation of throughput over time

Prime1m, varying workload, 5 second period

Elapsed time (hh:mm:ss)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Figure 5.32: Effect of short period on throughout measurement

5.2.2 Thread pool size increment/decrement step size

Another parameter that the algorithms used was the step size of thread pool size

increments and decrements. Experimenting with this value showed that using a smaller

step size causes delays in convergence of the thread pool size. It was also observed that

small changes in thread pool size did not provide significant improvements in the

observed performance metrics as well. In contrast, a larger step size of thread pool size

increments and decrements caused the system to converge at thread pool sizes

unnecessarily large or small respectively.

5.2.3 Minimum acceptable change in performance metrics

The proposed algorithms use 10% as the minimum acceptable change in throughput to

cause a change of thread pool size. 5% is used as the minimum acceptable change in

latency (mean and 99th percentile) to cause a change of thread pool size.

Fine tuning this parameters showed that lower values for minimum acceptable change

in the measured performance metrics caused the system to unnecessarily respond to

63

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

5

10

15

20

25

30

35

Variation of thread pool size over time

Prime1m, varying workload, 5 second period

Elapsed time (hh:mm:ss)

T
hr

ea
d

po
ol

 s
iz

e

Figure 5.33: Effect of short period on thread pool size adjustment

minor changes in performance metrics and also to outliers. In contrast, using higher

values as the minimum acceptable change caused the system to not be responsive

enough to detect changes in the performance metrics measured.

64

Chapter 6 - Conclusions

6.1 Introduction

The final chapter of the dissertation presents the conclusions about the research. It

presents a concluding summary on each research question explaining the answers that

were obtained for them during the course of this study. Furthermore, this section also

presents implications for future research.

6.2 Conclusions about research questions

6.2.1 Question 1

How does the thread pool size impact the performance of different applications

that receive requests under different arrival patterns?

Experiments provided evidence that for a given number of threads, the performance

that can be obtained would differ across applications and workloads.

Empirical evidence gathered during testing showed that I/O dominant workloads such

as database write operations performed well with larger sized thread pools while CPU

dominant workloads performed better when smaller thread pools were used.

Therefore the initial hypothesis that fixed thread pool sizes are inefficient has been

proven through the empirical evidence that was gathered during experiments that were

conducted. It is can also be concluded that the worker thread pool size has a significant

impact on performance.

65

6.2.2 Question 2

How can an algorithm/s be developed that can dynamically change the thread

pool size depending on the changing behavior of application and incoming

workload?

Latency and throughput were identified as performance metrics. Therefore three

algorithms were developed to adjust the worker thread pool size. These three

algorithms developed are a throughput optimization algorithm, a mean latency

optimization algorithm and a 99th percentile of latency optimization algorithm. They

adjust the worker thread pool size by periodically measuring throughput, mean latency

and 99th percentile of latency respectively.

To evaluate these algorithms, two sets of experiments were conducted as follows.

1. Dynamic thread pool size with fixed workload simulations

In order to test the proposed algorithms, experiments were conducted using the

proposed algorithms by keeping the workload from the client side fixed.

During these experiments the worker thread pool size started at one and

thereafter the proposed algorithms were made to change it as necessary.

Testing of the proposed algorithms provided positive results thus proving that it

is indeed possible to let the proposed algorithms measure performance metrics

and adjust the thread pool size automatically.

2. Dynamic thread pool size with varying workload simulations

This stage of experiments tested the proposed algorithms by using a varying

workload. Similar to the previous stage of experiments, the proposed

algorithms were made to adjust the worker thread pool size as necessary.

Experiments conducted to evaluate the proposed algorithms showed that they

are able to cope up with varying workloads and adjust the thread pool size

66

accordingly. However, although the effects of fluctuations of performance

metrics were minimized, they can have an impact on the ability of the

algorithms to function accurately.

Therefore empirical results gathered over these experiments show that the proposed

algorithms are able to successfully adjust the worker thread pool size based on

performance metrics that are measured.

6.2.3 Question 3

How can the parameters of the adaptive thread pool adjustment algorithms be

tuned in order to improve results?

The proposed algorithms utilize several parameters. In order to answer this question,

these parameters were varied and their effects on the algorithms were studied.

The proposed algorithms loop continuously. Experiments conducted by varying the

period between iterations showed that using a high value for this parameter caused the

server to detect changes in performance metrics with a delay. Using a low value for

this period caused the algorithm to change the thread pool sizes unnecessarily.

Experiments conducted to study the effect of changing the thread pool

increment/decrement step size showed that large step sizes caused the system to

converge at unnecessarily large or small thread pool sizes while small step sizes caused

delays in convergence of the thread pool size. Furthermore small changes in thread

pool size did not provide significant improvements of measured performance metrics.

The proposed algorithms use 10% as the minimum acceptable change in throughput to

cause a change of thread pool size and 5% as the minimum acceptable change in

latency to cause a change of thread pool size. Lower values caused the system to

respond to minor changes in performance metrics unnecessarily and to outliers as well,

67

High values for this parameter caused the system to not be responsive enough to detect

changes in performance metrics.

6.3 Conclusions about research problem

This research study was aimed at finding a solution to the problem of configuring the

thread pool size to optimize performance. Experiments and background information

showed that manually setting a thread pool size is both difficult and inefficient. It is

difficult because it is not possible to accurately predict the thread pool size to be used.

It was also found to be inefficient because even if a thread pool size to maximize a

performance metric is found experimentally, this may need to be changed over time

due to reasons such as change of server hardware, variation of incoming workloads

etc. Therefore a much better solution to this problem was to let the server measure

performance and adjust the worker thread pool by itself using performance

optimization algorithms proposed by this study.

In this dissertation we first investigated the impact of worker thread pool size on the

performance of a set of applications and showed that the performance is highly

dependent on the worker thread pool size. Our analysis revealed several interesting

findings which have been explained in Chapter 5 of this dissertation.

However the main contribution of this dissertation is an adaptive concurrency control

mechanism with three algorithms to optimize the performance of a server. These

optimize performance in terms of throughput, mean latency or 99th percentile of

latency. These algorithms are unaware of the underlying server hardware or the type of

application running on the server. This is an advantage as it prevents the proposed

algorithms from being associated with a particular set of applications or server

hardware. We discussed the details of these three algorithms in detail in Chapter 4.

Extensive performance analysis of the proposed algorithms show that they are indeed

able to automatically adjust the thread pool size for different applications, different

levels of fixed incoming workloads and different levels of varying incoming

workloads.

68

The algorithms presented in Chapter 4 of this dissertation were obtained after tuning

the parameters of the algorithms. Experiments show that these parameters have a direct

impact on how well the server can respond to changes in performance and on its ability

to adjust the worker thread pool size.

Therefore the contributions made through this dissertation provide a practical solution

to the cumbersome task of manually adjusting the worker thread pool size of a server

to optimize performance.

6.4 Limitations

Although the effects of outliers and fluctuations of performance metrics on the

proposed algorithms have been reduced by making increments and decrements during

designated iterations of the algorithms, they may still have some impact on the thread

pool size adjustment algorithms. This may cause the the thread pool size changes to

not be very smooth.

6.5 Implications for further research

This research showed that it is beneficial to let a system adaptively adjust the thread

pool size. This work can be improved further.

This can be improved by further reducing the effects of outliers and fluctuations of

performance metrics on the thread pool size adjustment algorithms.

Furthermore, from a software engineering standpoint, this concept may be extended to

develop an adaptive thread pool size adjustment framework that may be plugged into a

web server with little effort.

69

References

[1] “Stream Processor Documentation - Stream Processor 4.3.0 - WSO2
Documentation.” [Online]. Available: https://docs.wso2.com/display/SP430.
[Accessed: 08-Jan-2019].

[2] “Netty: Home.” [Online]. Available: https://netty.io/. [Accessed: 05-Oct-2018].

[3] “Apache JMeter - Apache JMeterTM.” [Online]. Available:
https://jmeter.apache.org/. [Accessed: 06-Oct-2018].

[4] I. Sun Microsystems, Multithreaded programming guide. Place of publication
not identified: iUniverse Com, 2005.

[5] B. Goetz, Java concurrency in practice: Brian Goetz ... [et al. Upper Saddle
River, N.J: Addison-Wesley, 2013.

[6] U. Praphamontripong, S. Gokhale, A. Gokhale, and J. Gray, “Performance
Analysis of an Asynchronous Web Server,” in 30th Annual International
Computer Software and Applications Conference (COMPSAC’06), 2006, vol.
2, pp. 22–28.

[7] R. von Behren, J. Condit, and E. Brewer, “Why Events Are a Bad Idea (for
High-concurrency Servers),” in Proceedings of the 9th Conference on Hot
Topics in Operating Systems - Volume 9, Berkeley, CA, USA, 2003, pp. 4–4.

[8] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, “Thread reinforcer: Dynamically
determining number of threads via OS level monitoring,” in 2011 IEEE
International Symposium on Workload Characterization (IISWC), Austin, TX,
USA, 2011, pp. 116–125.

[9] E. J. Coplien, D. C. Schmidt, and D. C. Schmidt, Reactor - An Object
Behavioral Pattern for Demultiplexing and Dispatching Handles for
Synchronous Events. 1995.

[10] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan, Proactor - An Object
Behavioral Pattern for Demultiplexing and Dispatching Handlers for
Asynchronous Events. 1997.

[11] K.-Y. Chen, J. M. Chang, and T.-W. Hou, “Multithreading in Java:
Performance and Scalability on Multicore Systems,” IEEE Trans. Comput.,
vol. 60, no. 11, pp. 1521–1534, Nov. 2011.

[12] A. ADAMSON, “Specjbb2005-A year in the life of a benchmark,” 2007 SPEC
Benchmark Workshop, 2007.

70

[13] Y. Gu, B. S. Lee, and W. Cai, “Evaluation of Java Thread Performance on Two
Different Multithreaded Kernels,” SIGOPS Oper. Syst. Rev., vol. 33, no. 1, pp.
34–46, Jan. 1999.

[14] Wentong Cai, A. Hang, and P. Varman, “Benchmarking IBM SP1 system for
SPMD programming,” in Proceedings of 1996 International Conference on
Parallel and Distributed Systems, 1996, pp. 430–437.

[15] J. C. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the impact of event
dispatching and concurrency models on Web server performance over high-
speed networks,” in GLOBECOM 97. IEEE Global Telecommunications
Conference. Conference Record, 1997, vol. 3, pp. 1924–1931 vol.3.

[16] Y. Zheng and X. Zhang, “Static Detection of Resource Contention Problems in
Server-side Scripts,” in Proceedings of the 34th International Conference on
Software Engineering, Piscataway, NJ, USA, 2012, pp. 584–594.

[17] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring into the
Abyss: An Evaluation of Concurrency Control with One Thousand Cores,”
Proc. VLDB Endow., vol. 8, no. 3, pp. 209–220, Nov. 2014.

[18] N. Shavit and D. Touitou, “Software transactional memory,” Distrib Comput,
vol. 10, no. 2, pp. 99–116, Feb. 1997.

[19] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable Memory
Transactions,” in Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, New York, NY, USA, 2005,
pp. 48–60.

[20] S. Peyton-Jones and T. Harris, “Programming in the Age of Concurrency:
Software Transactional Memory.”

[21] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg,
“McRT-STM: A High Performance Software Transactional Memory System
for a Multi-core Runtime,” in Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, New York,
NY, USA, 2006, pp. 187–197.

[22] M. Zhang, J. Huang, M. Cao, and M. D. Bond, “Low-overhead Software
Transactional Memory with Progress Guarantees and Strong Semantics,” in
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York, NY, USA, 2015, pp. 97–108.

[23] N. Zhou, G. Delaval, B. Robu, É. Rutten, and J.-F. Méhaut, “An autonomic-
computing approach on mapping threads to multi-cores for software
transactional memory,” Concurrency and Computation: Practice and
Experience, vol. 30, no. 18, p. e4506, 2018.

[24] “iostat(1) - Linux man page.” [Online]. Available:
https://linux.die.net/man/1/iostat. [Accessed: 07-Jan-2019].

71

[25] “pidstat(1): Report statistics for tasks - Linux man page.” [Online]. Available:
https://linux.die.net/man/1/pidstat. [Accessed: 07-Jan-2019].

[26] “Home | Metrics.” [Online]. Available: https://metrics.dropwizard.io/4.0.0/.
[Accessed: 07-Oct-2018].

[27] “Java Programming Language.” [Online]. Available:
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html.
[Accessed: 07-Jan-2019].

[28] “Java Software | Oracle.” [Online]. Available: https://www.oracle.com/java/.
[Accessed: 07-Jan-2019].

[29] A High Dynamic Range (HDR) Histogram. Contribute to
HdrHistogram/HdrHistogram development by creating an account on GitHub.
HdrHistogram, 2018.

[30] V. Bukhtoyarov, Collection of advanced monitoring structures with rolling
time window semantic for Dropwizard-Metrics library, including integration
with HDR Histogram.: vladimir-bukhtoyarov/rolling-metrics. 2018.

72

Appendix A: Code Listings

A.1 AdaptiveConcurrencyControl.java

73

 public class AdaptiveConcurrencyControl {

 private static final int THREAD_POOL_MODIFICATION_INITIAL_DELAY = 10;
 private static final int THREAD_POOL_MODIFICATION_PERIOD = 10;
 private static final int PORT = 15000;
 public static Logger LOGGER =
LoggerFactory.getLogger(AdaptiveConcurrencyControl.class);

 public static void main(String[] args) throws Exception {
 if (args.length != 3) {

LOGGER.error("Arguments not found! Please specify the 3 arguments <TestName>
<initialWorkerPoolCount> <Optimization>");

System.exit(-1);
 }
 String testName = args[0];
 int initWorkerThreads = Integer.parseInt(args[1]);
 String optimization = args[2];
 ScheduledExecutorService threadPoolSizeModifier=
Executors.newScheduledThreadPool(1);
 CustomThreadPool thirdThreadPool = new CustomThreadPool(initWorkerThreads);
 threadPoolSizeModifier.scheduleAtFixedRate(new
ThreadPoolSizeModifier(thirdThreadPool, optimization),

THREAD_POOL_MODIFICATION_INITIAL_DELAY,
THREAD_POOL_MODIFICATION_PERIOD, TimeUnit.SECONDS);
 new NettyServer(PORT, testName, thirdThreadPool).start();

 }
 }

A.2 CustomThreadPool.java

74

 import java.util.concurrent.Future;
 import java.util.concurrent.LinkedBlockingQueue;
 import java.util.concurrent.ThreadPoolExecutor;
 import java.util.concurrent.TimeUnit;

 public class CustomThreadPool {

 private final int KEEP_ALIVE_TIME = 100;
 private TimeUnit timeUnit = TimeUnit.SECONDS;
 private ThreadPoolExecutor executor;

 /**
 * The constructor
 *
 * @param initialPoolSize size of thread pool
 */
 public CustomThreadPool(int initialPoolSize) {
 executor = new ThreadPoolExecutor(initialPoolSize, initialPoolSize,
 KEEP_ALIVE_TIME, timeUnit,new LinkedBlockingQueue<Runnable>(), new
 ThreadPoolExecutor.CallerRunsPolicy());
 }

 /**
 * Submits a task to the thread pool
 *
 * @param task to be executed in the thread pool
 */
 public void submitTask(Runnable worker) {
 executor.execute(worker);
 }

 /**
 * Increments the pool size by n. No upper limit on the pool size
 */
 public void incrementPoolSizeBy(int n) {
 executor.setMaximumPoolSize(executor.getMaximumPoolSize() + n);
 executor.setCorePoolSize(executor.getCorePoolSize() + n);
 }

 /**
 * Decrement the pool size by n. Minimum allowed size is 1
 *
 * @param n the number to increment by
 */
 public void decrementPoolSizeBy(int n) {
 if(executor.getCorePoolSize() - n > 0 && executor.getMaximumPoolSize() - n > 0) {
 executor.setCorePoolSize(executor.getCorePoolSize() - n);
 executor.setMaximumPoolSize(executor.getMaximumPoolSize() - n);
 }
 }

 /*
 * Returns the size of the thread pool
 *
 */
 public int getThreadPoolSize() {
 return executor.getPoolSize();
 }

 public void decrementPoolSizeTo(int n) {
 if (n > 0) {
 executor.setCorePoolSize(n);
 executor.setMaximumPoolSize(n);
 }
 }

 public void incrementPoolTo(int n) {
 executor.setMaximumPoolSize(n);
 executor.setCorePoolSize(n);
 }
 }

A.3 NettyServer.java

75

 public class NettyServer {

 int port;
 String test;
 CustomThreadPool executingPool;
 Timer.Context latencyTimerContext;

 public NettyServer(int portNum, String testName, CustomThreadPool pool) {
 this.port = portNum;
 this.test = testName;
 this.executingPool = pool;
 }

 public void start() throws Exception {
 EventLoopGroup bossGroup = new NioEventLoopGroup();
 EventLoopGroup workerGroup = new NioEventLoopGroup();

 try {
 ServerBootstrap b = new ServerBootstrap();
 b.childOption(ChannelOption.SO_RCVBUF, 2147483647); // Increase receive buffer size
 b.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class)
 .childHandler(new ChannelInitializer<SocketChannel>() {

 @Override
 public void initChannel(SocketChannel ch) throws Exception {
 latencyTimerContext = ThreadPoolSizeModifier.LATENCY_TIMER.time();
 ChannelPipeline p = ch.pipeline();
 p.addLast(new HttpServerCodec());
 p.addLast("aggregator", new HttpObjectAggregator(1048576));
 p.addLast(new NettyServerHandler(test, executingPool, latencyTimerContext));

 }
}).option(ChannelOption.SO_BACKLOG,

1000000).childOption(ChannelOption.SO_KEEPALIVE, true);

 ChannelFuture f = b.bind(port).sync();

 f.channel().closeFuture().sync();
 } finally {
 workerGroup.shutdownGracefully();
 bossGroup.shutdownGracefully();
 }
 }
 }

A.4 NettyServerHandler.java

76

 public class NettyServerHandler extends SimpleChannelInboundHandler<FullHttpRequest> {

 private String testName;
 private CustomThreadPool executingPool;
 private Timer.Context timerContext;

 public NettyServerHandler(String name,CustomThreadPool pool,Timer.Context tContext) {
 this.testName = name;
 this.executingPool = pool;
 this.timerContext = tContext;
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx, FullHttpRequest msg) {

 if (testName.equals("Prime1m")) {
 executingPool.submitTask(new Prime1m(ctx, msg, timerContext));
 } else if (testName.equals("Prime10m")) {
 executingPool.submitTask(new Prime10m(ctx, msg, timerContext));
 } else if (testName.equals("DbWrite")) {
 executingPool.submitTask(new DbWrite(ctx, msg, timerContext));
 } else if (testName.equals("DbRead")) {
 executingPool.submitTask(new DbRead(ctx, msg, timerContext));
 }
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
 cause.printStackTrace();
 ctx.close();
 }
 }

A.5 ThreadPoolSizeModifier.java

77

 public class ThreadPoolSizeModifier implements Runnable {

 public static int IN_PROGRESS_COUNT;
 public static MetricRegistry METRICS;
 public static HdrBuilder BUILDER;
 public static Timer LATENCY_TIMER;
 public static MetricRegistry METRICS2;
 public static HdrBuilder BUILDER2;
 public static Timer THROUGHPUT_TIMER;
 private static double oldTenSecondRate;
 private static double oldMeanLatency;
 private static double old99PLatency;
 public static int oldInProgressCount;
 private CustomThreadPool threadPool;
 private String optimizationAlgorithm;
 private static boolean HAS_STARTED, INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR;
 private static boolean INC_IMPROVED;
 private static boolean DEC_IMPROVED;
 int incrementLock, decrementLock;
 int resetMemory;
 private long oldCount;

 private ArrayList<Memory> metricMemory;

 /*
 * Constructor
 *
 * @param The thread pool to be modified
 */
 public ThreadPoolSizeModifier(CustomThreadPool pool, String optimization) {
 this.threadPool = pool;
 this.optimizationAlgorithm = optimization;
 metricMemory = new ArrayList<Memory>();
 METRICS = new MetricRegistry();
 BUILDER = new HdrBuilder();
 BUILDER.resetReservoirOnSnapshot();
 BUILDER.withPredefinedPercentiles(new double[] { 0.99 });
 LATENCY_TIMER = BUILDER.buildAndRegisterTimer(METRICS, "ThroughputAndLatency");
 METRICS2 = new MetricRegistry();
 BUILDER2 = new HdrBuilder();
 THROUGHPUT_TIMER = BUILDER2.buildAndRegisterTimer(METRICS2,
"ThroughputAndLatency2");
 HAS_STARTED = false;
 INC_ITR = false;
 INC_CHECK_ITR = false;
 DEC_ITR = false;
 DEC_CHECK_ITR = false;
 INC_IMPROVED = true;
 DEC_IMPROVED = true;
 AdaptiveConcurrencyControl.LOGGER.info(

"Thread pool size, Current 10 Second Throughput,
Throughput Difference, In pogress count, Average Latency, 99th percentile Latency");

 }
 @Override
 public void run() {
 try {

if (HAS_STARTED == false && (LATENCY_TIMER.getCount() > 0)) {
 INC_ITR = true;
 HAS_STARTED = true;
}
int currentThreadPoolSize = threadPool.getThreadPoolSize();
double currentTenSecondRate = THROUGHPUT_TIMER.getTenSecondRate();
double rateDifference = (currentTenSecondRate - oldTenSecondRate) * 100 /

oldTenSecondRate;
int currentInProgressCount = IN_PROGRESS_COUNT;

 Snapshot latencySnapshot = LATENCY_TIMER.getSnapshot();

78

 double currentMeanLatency = latencySnapshot.getMean() / 1000000;
double current99PLatency = latencySnapshot.get99thPercentile() / 1000000;
AdaptiveConcurrencyControl.LOGGER.info(currentThreadPoolSize + ", " +

currentTenSecondRate + ", " + rateDifference + ", " + currentInProgressCount + ", " +
currentMeanLatency + ", " + current99PLatency);

if (optimizationAlgorithm.equals("T")) { // If Throughput Optimized
if ((DEC_ITR == false || (DEC_ITR == true && DEC_IMPROVED == false)) &&

(((oldTenSecondRate - currentTenSecondRate) / oldTenSecondRate) * 100 > 10) &&
resetMemory != 300) {

 Memory current;
 for (int i = 0; i < metricMemory.size(); i++) {
 current = metricMemory.get(i);
 }
 for (int i = 0; i < metricMemory.size() - 1; i++) {
 if (metricMemory.get(i).getThreadPoolSize() == 0) {
 continue;
 }
 if (currentTenSecondRate <= (metricMemory.get(i).getValue()+

metricMemory.get(i + 1).getValue()) / 2) {
 if (currentThreadPoolSize < metricMemory.get(i).getThreadPoolSize()) {
 threadPool.incrementPoolTo(metricMemory.get(i).getThreadPoolSize());
 }else if(currentThreadPoolSize>metricMemory.get(i).getThreadPoolSize()) {
 threadPool.decrementPoolSizeTo(metricMemory.get(i).getThreadPoolSize());
 }
 break;
 }

 }
}
if (INC_ITR == true && INC_IMPROVED == true) {

 threadPool.incrementPoolSizeBy(10);
}
if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
 if (((currentTenSecondRate - oldTenSecondRate) / oldTenSecondRate) * 100 <

10) {
 INC_IMPROVED = false;
 threadPool.decrementPoolSizeBy(10);
 incrementLock = 6; // Prevent increments for the next 8 sets of iterations
 }
}

 Memory current = new Memory();
boolean isInAList = false;
for (int i = 0; i < metricMemory.size(); i++) {
 current = metricMemory.get(i);
 if (current.getThreadPoolSize() == currentThreadPoolSize) {
 isInAList = true;
 current.setValue(((current.getValue() * current.getCount()) +

currentTenSecondRate) / (current.getCount() + 1));
 current.setCount(current.getCount() + 1);
 break;
 }
}
if (isInAList == false) {
 metricMemory.add(new Memory(currentThreadPoolSize, 1, currentTenSecondRate));
}

 }
 if (optimizationAlgorithm.equals("M")) { // If Mean latency Optimized
 if (INC_ITR == true && INC_IMPROVED == true) {

 threadPool.incrementPoolSizeBy(10);
 }
 if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
 if ((((oldMeanLatency - currentMeanLatency) / oldMeanLatency) * 100) < 5) {
 INC_IMPROVED = false;
 threadPool.decrementPoolSizeBy(10);
 incrementLock = 6; // Lock increments
 }
 }

 if (DEC_ITR == true && DEC_IMPROVED == true) {
 threadPool.decrementPoolSizeBy(10);

 }

79

 if (DEC_CHECK_ITR == true && DEC_IMPROVED == true) {
 if ((((oldMeanLatency - currentMeanLatency) / oldMeanLatency) * 100) < 5) {
 DEC_IMPROVED = false;

 threadPool.incrementPoolSizeBy(10);
 decrementLock = 6; // Lock decrements
 }
 }
}
if (optimizationAlgorithm.equals("99P")) {
 if (INC_ITR == true && INC_IMPROVED == true) {
 threadPool.incrementPoolSizeBy(10);
 }
 if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
 if ((((old99PLatency - current99PLatency) / old99PLatency) * 100) < 5) {

 INC_IMPROVED = false;
 threadPool.decrementPoolSizeBy(10);
 incrementLock = 6; // Lock increments

 }
 }
 if (DEC_ITR == true && DEC_IMPROVED == true) {
 threadPool.decrementPoolSizeBy(10);
 }
 if (DEC_CHECK_ITR == true && DEC_IMPROVED == true) {
 if ((((old99PLatency - current99PLatency) / old99PLatency) * 100) < 5) {
 DEC_IMPROVED = false;
 threadPool.incrementPoolSizeBy(10);

 decrementLock = 6; // Lock decrements
 }
 }
}

 oldTenSecondRate = currentTenSecondRate;
 oldMeanLatency = currentMeanLatency;
 old99PLatency = current99PLatency;
 oldInProgressCount = currentInProgressCount;

if (INC_ITR == true) { //
 INC_ITR = false;

 INC_CHECK_ITR = true;
 DEC_ITR = false;
 DEC_CHECK_ITR = false;
} else if (INC_CHECK_ITR == true) { //
 if (optimizationAlgorithm.equals("T")) {
 INC_ITR = true;
 DEC_ITR = false;
 } else {
 INC_ITR = false;
 DEC_ITR = true;
 }
 INC_CHECK_ITR = false;
 DEC_CHECK_ITR = false;
} else if (DEC_ITR == true) {
 INC_ITR = false;
 INC_CHECK_ITR = false;
 DEC_ITR = false;
 DEC_CHECK_ITR = true;
} else if (DEC_CHECK_ITR == true) {
 INC_ITR = true;
 INC_CHECK_ITR = false;
 DEC_ITR = false;
 DEC_CHECK_ITR = false;
}
if (incrementLock > 0) {
 incrementLock--;
} else if (incrementLock == 0) {
 INC_IMPROVED = true;
}
if (decrementLock > 0) {

 decrementLock--;
} else if (decrementLock == 0) {
DEC_IMPROVED = true;
}

 long currentCount = LATENCY_TIMER.getCount();

A.6 Memory.java

80

 if ((currentCount - oldCount == 0) && (threadPool.getThreadPoolSize()>1)) {
 threadPool.decrementPoolSizeTo(1);
}
oldCount = currentCount;

 } catch (Exception e) {
e.printStackTrace();

 }
 }
}

 public class Memory {
 int threadPoolSize;
 int count;
 double value;

 public Memory(int size, int c, double val) {
 this.threadPoolSize = size;
 this.count = c;
 this.value = val;
 }

 public Memory() {
 }

 public int getThreadPoolSize() {
 return threadPoolSize;
 }

 public void setThreadPoolSize(int threadPoolSize) {
 this.threadPoolSize = threadPoolSize;
 }

 public int getCount() {
 return count;
 }

 public void setCount(int count) {
 this.count = count;
 }

 public double getValue() {
 return value;
 }

 public void setValue(double value) {
 this.value = value;
 }

}

A.7 Prime1m.java

81

 public class Prime1m implements Runnable {

 private FullHttpRequest msg;
 private ChannelHandlerContext ctx;
 private Timer.Context timerContext;

 public Prime1m(ChannelHandlerContext ctx,FullHttpRequest msg,Timer.Context
timerCtx) {
 this.msg = msg;
 this.ctx = ctx;
 this.timerContext = timerCtx;
 }

 @Override
 public void run() {
 Timer.Context
throughputTimerContext=ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
 ByteBuf buf = null;
 try {
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
 Random rand = new Random();
 int number = rand.nextInt((1000021) - 1000000) + 1000000;
 String resultString = "true";
 for (int i=2; i<number; i++) {
 if (number%i == 0) {
 resultString="false";

 break;
}

 }
 buf = Unpooled.copiedBuffer(resultString.getBytes());
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Prime1m Run method", e);
 }

 boolean keepAlive = HttpUtil.isKeepAlive(msg);
 FullHttpResponse response = null;
 try {
 response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
 }
 String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
 if (contentType != null) {
 response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
 }
 response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,
response.content().readableBytes());
 if (!keepAlive) {
 ctx.write(response).addListener(ChannelFutureListener.CLOSE);
 } else {
 response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
 ctx.write(response);
 }
 ctx.flush();
 throughputTimerContext.stop();
 timerContext.stop(); // Stop Dropwizard metrics timer
 }
}

A.8 Prime10m.java

82

 public class Prime10m implements Runnable {

 private FullHttpRequest msg;
 private ChannelHandlerContext ctx;
 private Timer.Context timerContext;

 public Prime10m(ChannelHandlerContext ctx,FullHttpRequest msg,Timer.Context
timerCtx) {
 this.msg = msg;
 this.ctx = ctx;
 this.timerContext = timerCtx;
 }

 @Override
 public void run() {
 Timer.Context
throughputTimerContext=ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
 ByteBuf buf = null;
 try {
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
 Random rand = new Random();
 int number = rand.nextInt((10000021) - 10000000) + 10000000;
 String resultString = "true";
 for (int i=2; i<number; i++) {
 if (number%i == 0) {
 resultString="false";

 break;
}

 }
 buf = Unpooled.copiedBuffer(resultString.getBytes());
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Prime10m Run method", e);
 }

 boolean keepAlive = HttpUtil.isKeepAlive(msg);
 FullHttpResponse response = null;
 try {
 response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
 }
 String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
 if (contentType != null) {
 response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
 }
 response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,
response.content().readableBytes());
 if (!keepAlive) {
 ctx.write(response).addListener(ChannelFutureListener.CLOSE);
 } else {
 response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
 ctx.write(response);
 }
 ctx.flush();
 throughputTimerContext.stop();
 timerContext.stop(); // Stop Dropwizard metrics timer
 }
}

A.9 DbWrite.java

83

 public class DbWrite implements Runnable {

 private FullHttpRequest msg;
 private ChannelHandlerContext ctx;
 private Timer.Context timerContext;

 public DbWrite(ChannelHandlerContext ctx, FullHttpRequest msg, Timer.Context
timerCtx) {
 this.msg = msg;
 this.ctx = ctx;
 this.timerContext = timerCtx;
 }
 @Override
 public void run() {
 Timer.Context throughputTimerContext=
ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
 ByteBuf buf = null;
 try {
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
 Connection connection = null;
 PreparedStatement stmt = null;
 try {
 Connection =
DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/echoserver?
useSSL=false&autoReconnect=true&failOverReadOnly=false&maxReconnects=10",
"root", "root");
 Timestamp current = Timestamp.from(Instant.now());
 String sql = "INSERT INTO Timestamp (timestamp) VALUES (?)";
 stmt = connection.prepareStatement(sql);
 stmt.setTimestamp(1, current);
 stmt.executeUpdate();
 buf = Unpooled.copiedBuffer(current.toString().getBytes());
 } catch (Exception e) {

AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
 } finally {

if (stmt != null) {
 try {
 stmt.close();

} catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

 }
 }
 if (connection != null) {
 try {

connection.close();
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
 }
 }
 }
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
 } catch (Exception e) {

AdaptiveConcurrencyControl.LOGGER.error("Exception in DbWrite Run method", e);
 }

 boolean keepAlive = HttpUtil.isKeepAlive(msg);
 FullHttpResponse response = null;
 try {
 response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
 }
 String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
 if (contentType != null) {
 response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
 }
 response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,
response.content().readableBytes());

A.10 DbRead.java

84

if (!keepAlive) {
 ctx.write(response).addListener(ChannelFutureListener.CLOSE);
 } else {
 response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
 ctx.write(response);
 }
 ctx.flush();
 throughputTimerContext.stop();
 timerContext.stop(); // Stop Dropwizard metrics timer
 }
}

 public class DbRead implements Runnable {

 private FullHttpRequest msg;
 private ChannelHandlerContext ctx;
 private Timer.Context timerContext;

 public DbRead(ChannelHandlerContext ctx, FullHttpRequest msg, Timer.Context
timerCtx) {
 this.msg = msg;
 this.ctx = ctx;
 this.timerContext = timerCtx;
 }
 @Override
 public void run() {
 Timer.Context throughputTimerContext=
ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
 ByteBuf buf = null;
 try {
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
 Connection connection = null;
 PreparedStatement stmt = null;
 try {

Random randId = new Random();
int toRead = randId.nextInt(50000) + 1;
connection =

DriverManager.getConnection(”jdbc:mysql://127.0.0.1:3306/echoserver?
useSSL=false&autoReconnect=true&failOverReadOnly=false&maxReconnects=10",

"root", "root");
String sql = "SELECT timestamp FROM Timestamp WHERE id=?";
stmt = connection.prepareStatement(sql);
stmt.setInt(1, toRead);
rs = stmt.executeQuery();
while (rs.next()) {
 readTimestamp = rs.getTimestamp("timestamp");
}

 } catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

 } finally {
if (stmt != null) {

 try {
 stmt.close();

} catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

 }
 }

85

 if (connection != null) {
 try {

connection.close();
 } catch (Exception e) {

 AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
 }
 }
 }
 String readTimestampStr = readTimestamp.toString() + "\n";
 buf = Unpooled.copiedBuffer(readTimestampStr.getBytes());
 ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in DbRead Run method", e);
 }
 boolean keepAlive = HttpUtil.isKeepAlive(msg);
 FullHttpResponse response = null;
 try {
 response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
 } catch (Exception e) {
 AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
 }
 String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
 if (contentType != null) {
 response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
 }
 response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,
response.content().readableBytes());
 if (!keepAlive) {
 ctx.write(response).addListener(ChannelFutureListener.CLOSE);
 } else {
 response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
 ctx.write(response);
 }
 ctx.flush();
 throughputTimerContext.stop();
 timerContext.stop(); // Stop Dropwizard metrics timer
 }
}

	Declaration
	Abstract
	Preface
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 - Introduction
	1.1 Background to the Research
	1.2 Research Problem and Research Questions
	1.3 Justification for the research
	1.4 Methodology
	1.5 Outline of the Dissertation
	1.6 Delimitations of Scope
	1.7 Conclusion

	Chapter 2 - Literature Review
	2.1 Background
	2.1.1 Threads and thread Pools

	2.2 Related work
	2.3 Conclusion

	Chapter 3 - Design
	3.1 System Architecture
	3.2 Performance metrics
	3.3 Applications
	3.4 Software Tools
	3.4.1 Apache JMeter
	3.4.2 Netty
	3.4.3 Dropwizard Metrics
	3.4.4 Implementation language

	3.5 Experiments
	3.5.1 Static worker thread pool size with fixed workload simulation
	3.5.2 Dynamic worker thread pool size with fixed workload simulation
	3.5.3 Dynamic worker thread count with varying workload simulation

	Chapter 4 - Implementation
	4.1 Thread Pool Size adjustment algorithms
	4.1.1 Throughput optimization algorithm
	4.1.2 Mean Latency optimization algorithm
	4.1.3 99th Percentile of latency optimization algorithm

	4.2 Performance Metric collection
	4.3 Netty thread pools

	Chapter 5 - Results and Evaluation
	5.1 Experimental results
	5.1.1 Fixed worker thread pool size with fixed workload simulations
	5.1.2 Dynamic thread pool size with fixed workload simulations
	5.1.3 Dynamic thread pool size with varying load simulations

	5.2 Analysis of the effects of parameters of the algorithms
	5.2.1 Period between iterations of algorithms
	5.2.2 Thread pool size increment/decrement step size
	5.2.3 Minimum acceptable change in performance metrics

	Chapter 6 - Conclusions
	6.1 Introduction
	6.2 Conclusions about research questions
	6.2.1 Question 1 How does the thread pool size impact the performance of different applications that receive requests under different arrival patterns?
	6.2.2 Question 2 How can an algorithm/s be developed that can dynamically change the thread pool size depending on the changing behavior of application and incoming workload?
	Latency and throughput were identified as performance metrics. Therefore three algorithms were developed to adjust the worker thread pool size. These three algorithms developed are a throughput optimization algorithm, a mean latency optimization algorithm and a 99th percentile of latency optimization algorithm. They adjust the worker thread pool size by periodically measuring throughput, mean latency and 99th percentile of latency respectively.
	6.2.3 Question 3 How can the parameters of the adaptive thread pool adjustment algorithms be tuned in order to improve results?
	The proposed algorithms utilize several parameters. In order to answer this question, these parameters were varied and their effects on the algorithms were studied.

	6.3 Conclusions about research problem
	6.4 Limitations
	6.5 Implications for further research

	References
	Appendix A: Code Listings
	A.1 AdaptiveConcurrencyControl.java
	A.2 CustomThreadPool.java
	A.3 NettyServer.java
	A.4 NettyServerHandler.java
	A.5 ThreadPoolSizeModifier.java
	A.6 Memory.java
	A.7 Prime1m.java
	A.8 Prime10m.java
	A.9 DbWrite.java
	A.10 DbRead.java

