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Abstract

Unlike  servers  that  were used in  the early  days  of  computing,  modern  application

servers  utilize  multi-core  processors  with  multi-threading  to  make  it  possible  to

perform computations in an efficient manner. Modern servers are required to handle a

large number of requests concurrently and therefore, the applications that are running

on  them  need  to  be  written  in  a  manner  to  best  utilize  the  computing  resources

available. Performance of such servers depends on a number of tunable configuration

parameters such as session timeouts, keep alive timeouts and thread pool sizes. The

values  of  these  parameters  are  set  off-line  and  do  not  change  during  run  time.

However,  the  best  parameter  values  will  depend  on  the  workload  conditions  and

therefore,  setting  these  parameter  values  to  fixed  values  can  cause  significant

performance degradation. 

In  this  dissertation,  we  specifically  focus  on  tuning  the  size  of  a  thread  pool  on

application servers. Experimentally we show that the size of the thread pool which is

used to process the requests  has a significant  impact  on the performance.  We then

propose  three  adaptive  algorithms  that  can  auto-adjust  the  the  thread  pool  size  to

optimize  performance.  The  proposed  algorithms  are  capable  of  optimizing  given

performance metric (throughput, average latency or 99% latency) online. It does so by

periodically  measuring  the  performance  and then  adjusting  the  thread  pool  size  in

order to optimize performance.

This proposed methodology helps to increase the performance of software systems by

better utilizing the available computing resources.
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The implementation presented here in this  dissertation  utilized several  open source

libraries developed by parties external to this research. 
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Chapter 1 - Introduction

1.1 Background to the Research

When Computers were invented, they were used for simple tasks. But with the rapid

development  of  hardware  and  software  running  on Computers,  the  possibilities  of

computers  increased.  At  present,  computers  are  used  to  perform various  complex

tasks.

With the increase in the use of web application servers to serve clients  using web

technologies,  servers  must  be  capable  of  handling  large  number  of  requests

concurrently. A commonly used technique to handle such concurrent requests is multi-

threading. Pools of threads are created within the server and requests are passed to

threads  in  these  pools  to  be  processed.  This  pool  of  threads  within  the  server  is

considered as the request processing thread pool and this thread pool shall be referred

as the worker thread pool in the rest of this dissertation. 

Different requests require the servers to perform different types of operations. Some of

the operations that the server may perform include CPU dominant tasks where the use

of  the  CPU to  perform computations  is  dominant  or  Input/Output  dominant  tasks

where I/O operations are dominant when processing the request. Multi-threading is one

of the techniques used to handle large number of requests. The number of threads to

use  in  order  to  get  the  best  performance  depend  on  both  characteristics  of  the

application (i.e. I/O dominant, CPU dominant) and the incoming workload (arrival rate

into server, number of concurrent users). 

In this thesis, an effort was made to dynamically adjust the thread pool size depending

on the application characteristics and incoming workload properties.

Two commonly  used performance  metrics  were  used  to  evaluate  the  performance:

throughput and latency. Throughput is defined as the rate of processing requests and is

usually expressed as the number of requests processed per second. Latency is the time
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taken for the reply to be received from the server since the request is sent from the

client.  Therefore,  it  includes  the  processing  time  and  queuing  time  as  well.

Throughput is said to improve when the value of throughput increases while latency is

said to improve when the value of latency decreases.

When multiple threads of execution try to access the same resource simultaneously

(which can only be accessed by a single thread at a time), thread contentions are said to

occur. For example, thread contention may occur when multiple threads of execution

try to write to a database simultaneously.

1.2 Research Problem and Research Questions

As  already  pointed  out,  the  primary  objective  of  this  research  is  to  bring  self-

configuration into servers. In particular, the focus of this project was on dynamically

changing  the  thread  pool  size  based  on  changing  workload  and  application

characteristics. 

The size of the worker thread pool of a web server can be configured in the following

manner.

1. Hard-coding the size by the web server programmer

2. Manually by system administrators

Although it is possible for the server programmer to hard-code the size of the worker

thread pool into the server during development, this is not usually done. This is due to
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the fact that the developed server would run in different hardware environments and

the size of the thread pool to be used would depend on it.
Another  approach  to  setting  the  value  of  the  thread  pool  size  is  to  allow system

administrators to configure it by keeping this value as a configuration parameter in the

developed web server.  Figure  1.1 below shows a screenshot  from the performance

tuning guide of WSO2 Stream Processor  [1, p. 2] explaining how to configure the

worker thread pool size.

System administrators  can then find a thread  pool size to  be used based on given

recommendations  and  through  trial-and-error.  However  this  value  may  need  to  be

changed  over  time.  Reasons  for  this  include  server  hardware  changes,  changes  of

traffic patterns, changes made to processing of requests etc. In addition to that, modern

trends in the use of cloud computing technologies such as Infrastructure as a Service

(IaaS)  has  seen  system  administrators  moving  systems  to  remote  servers.  Unlike

physical hardware on premise owned by an organization, cloud computing makes it

much easier to upgrade or downgrade instances based on the needs of an organization.

Therefore  the  type  of  computing  resources  on which systems are  run may change

much frequently. Considering these issues, the experiments need to be re-run to find a

new thread pool size. Although possible, this is a cumbersome process.
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This research project was aimed at finding a solution to the problem of finding the

worker thread pool size to be used in a system to optimize throughput or latency. To

answer this problem, the following research questions were identified. 

1. How does the thread pool size impact the performance of different applications

that receive requests under different arrival patterns?

The initial step of this study was to understand the effect of thread pool size on

throughput  and  latency.  This  was  done  by  conducting  experiments  with

different  applications  running on the  server  for  varying worker  thread  pool

sizes and incoming workloads. 

2. How can an algorithm/s be developed that can dynamically change the thread

pool  size  depending on the  changing behavior  of  application  and incoming

workload?

A significant step of this research project was to find an answer to this question

by developing algorithms to dynamically change the thread pool size based on

the changing behavior of applications and incoming workloads. 

3. How can the parameters of the adaptive thread pool adjustment algorithms be

tuned in order to improve results?

The final step of this study was to search for an answer to this research question

by experimentally tuning the parameters of the developed algorithms in order

to improve their performance.

1.3 Justification for the research

This  research  study  has  both  practical  and  theoretical  benefits  to  the  field  of

computing. 

By  varying  the  applications  running  on  the  server,  worker  thread  pool  sizes  and

number of concurrent requests, the effect of the size of thread pools on throughput and

latency  was  studied.  As  thread  pools  are  used  in  many  software  systems,  this
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information  would  help  to  get  a  better  understanding  on  how  to  use  them  in  an

efficient manner.

Furthermore,  the  adaptive  concurrency  control  mechanism  developed  through  this

research study has important practical benefits. As explained earlier, finding the thread

pool size to optimize performance is a cumbersome task if done manually. However,

by using the proposed method, systems can be made to change them automatically

based on the traffic patterns and application characteristics. This means, if the system

administrators use the proposed model, they do not need to experiment and reconfigure

the systems when the server hardware in use changes, when traffic patterns change etc.

1.4 Methodology

In this section, the methodology followed during the course of this study is explained.

Initially,  an HTTP server was implemented in Java using the Netty framework  [2].

This HTTP server was implemented to simulate four I/O dominant and CPU dominant

applications.

An environment consisting of two networked nodes dedicated to this study was set up

where  one  node was  designed as  the  server  node on which  the  HTTP server  was

executed. The other node was designated as the client node and concurrent requests

were generated and sent to the server using Apache JMeter  [3] running on the client

node.

An initial set of experiments were conducted by varying the worker thread pool size

and  the  number  of  concurrent  users  for  different  applications,  and  the  effects  on

throughput, mean latency and 99th percentile of latency were recorded and studied. 

This knowledge was used to develop three algorithms to adaptively adjust the thread

pool size. The three algorithms were created to optimize performance of three different

metrics namely, throughput, mean latency and 99th percentile of latency.

After  the  development  of  these  three  algorithms,  they  were  tested  against  fixed

workloads.  That  is,  in these experiments,  a fixed number of concurrent  users were

simulated  by Apache JMeter  [3] running on the  client  node.  The  algorithms were
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evaluated on how well they were able to adjust the worker thread pool size in order to

improve performance. 

Finally,  the  algorithms  were  tested  under  a  varying  workload.  That  is,  in  these

experiments,  the  number  of  concurrent  requests  generated  by  Apache  JMeter  [3]

running on the client node was made to vary with time. The algorithms were evaluated

on how well they were able to respond to varying workloads and adjust the worker

thread pool size in order to improve the relevant performance metric.

Experiments  were  also  conducted  to  understand  and  tune  the  parameters  of  the

algorithms.

1.5 Outline of the Dissertation

Chapter 1 – Introduction

This chapter presents information regarding the background to the problem and the

research questions which this study aims to find answers to

Chapter 2 – Literature review

This chapter presents background information related to this study and a review of the

existing literature

Chapter 3 – Design

This chapter presents the design of the research study and includes information about

the applications tested, workloads simulated and the tools and technologies used.

Chapter 4 – Implementation

Details about the implementation of the proposed solution is presented in this chapter.

This chapter presents the three algorithms that are proposed through this study.
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Chapter 5 – Results and evaluation

This chapter presents the results that were obtained through the experiments conducted

and explanations of those results.

Chapter 6 – Conclusion

This dissertation concludes with this chapter by presenting the final outcomes of the

research and a summary of contributions made through this research.

1.6 Delimitations of Scope

There  are  various  concurrency  control  mechanisms  in  existence  in  the  field  of

Computer  Science.  This  research  was  not  intended  at  creating  a  new concurrency

control mechanism. Instead it used thread pools as the concurrency control mechanism

and implemented three algorithms that can adaptively adjust the thread pool size.

1.7 Conclusion

This chapter presented the background of the research problem area and explained the

questions that this research study aims to find solutions to. These were then justified.

The research methodology and the outline of the dissertation were also presented. With

this foundation,  the dissertation  can continue with explaining the research study in

greater detail in the subsequent chapters.
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Chapter 2 - Literature Review

2.1 Background

2.1.1 Threads and thread Pools

A sequence of instructions executed within the context of a process is defined as a

thread  [4].  Using  multiple  threads  of  control  for  processing  is  defined  as

multithreading.  Therefore  multithreading  separates  a  process  into  many  threads  of

execution where each thread runs independently. Some of the benefits of multithreaded

programming as explained in [4], [5] are as follows

• Multithreading increases responsiveness of a system. 

For example, a single threaded server processing a request would not listen for

subsequent requests until one request has been processed and the reply is sent.

In contrast, a multithreaded server could use a single thread to listen to requests

and hand over processing to separate threads.

• Costs less compared to multiple processes

A thread created within a process uses the same address space of the process.

Therefore it is less expensive to create a new thread than creating a process.

Furthermore,  a  switch  of  processes  requires  a  switch  of  address  space.

Therefore, the time taken to switch between threads is less than the time taken

to switch between processes.

A thread pool is a group of threads that are created before any work is assigned to

them. All threads in a freshly created thread pool are idle. When tasks are ready to be

executed on a thread, an idle thread is selected from this pool of threads and assigned

to process the given task. Once the thread has completed processing the assigned task,

the thread becomes idle and ready to accept and process more tasks. Tasks may be
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assigned to idle threads in the pool until idle threads in the thread pool are exhausted.

When this occurs, processing of new tasks must wait until a thread becomes idle.

2.2 Related work

In [6] Praphamontripong et al. show that it is necessary to analyze the performance of

web servers prior to deployment. In their paper, a performance analysis methodology

is presented to analyze the performance of an asynchronous web server. They show

through experimental results that after a certain threshold, increase of the size of the

event  handler  pools  and  queues  does  not  provide  significant  performance

improvements.

Behren et al. in  [7] show that although people claim that thread based programming

does not perform well, the reason for such low performance is not due to the threading

paradigm,  but  due  to  shortcomings  in  specific  threading  implementations.  In  their

paper they first explain the claims that people use to state that threads are not suitable

to handle high concurrency servers and argue why those claims do not hold. They then

use  a  threading  library  to  show that  threads  actually  perform well  in  servers  that

require high concurrency.

Each core in a processor may execute multiple threads. Although it is assumed that the

number of threads should equal the number of cores in the processor to obtain better

performance, Pusukuri et al. in  [8] show that this does not hold true for processors

having a high number of cores. Using the PARSEC benchmark on a 24 core computer,

they experimentally show that this is not the case. The number of threads that were

required to obtain the maximum speedup varied from 16 to 63 across different tests in

the benchmark. As a solution to this, they propose the Thread Reinforcer framework, a

framework for automatically selecting the near optimal or optimal number of threads.

However, in a client server application, the amount of contentions that may occur for

resources, the amount of concurrent users are factors that need to be considered to

decide the number of threads. The Thread Reinforcer framework described here, runs

the application multiple times by varying the number of threads, analyses performance

9



and  then  identifies  the  optimal  number  of  threads.  But  this  approach  may  not  be

practical for use in a client server application where the

performance is affected by the server load caused by the amount of concurrent users,

the types of requests they are making etc.

The reactor pattern presented in [9] presents a design pattern that can be used to handle

service requests that clients send concurrently to an application. Coplien and Schmidt

in  [9] argue that although it is possible to use multi-threading to implement such a

scenario,  thread  synchronization  problems,  context  switches,  and  difficulty  of

programming as threads require complex concurrency controls are some reasons why a

multi threaded approach may not be preferred. (Fear of programmers regarding thread

synchronization  complexities  prevent  making  use  of  the  hardware  capabilities  of

systems by using multi-threading). They present a methodology for handling multiple

concurrent  requests  by  multiplexing  between  different  tasks  by  using  a  minimal

number  of  threads.  However  a  problem may  occur  with  this  approach  if  the  few

threads that are used, get blocked. In such a case it is necessary to ensure that the code

that performs the tasks associated with providing services for the requests never get

blocked or use a pool of threads to handle blocking operations.

Harrison et al. Identifies several issues in conventional concurrency models in  [10].

They argue that  in  situations  where hardware parallelism exist,  the Reactor  design

pattern is not the most efficient. They show that due to the use of minimal number of

threads  in  the  Reactor  pattern,  it  increases  the  complexity  of  programming  as

programmers are burdened with ensuring that the code does not get  blocked when

handling the request of a particular client. Programmers using the Reactor pattern must

also  ensure  that  all  the  clients  sending  requests  to  the  server  share  the  thread  by

performing non-blocking operations which use a short duration of time. As a solution

to these problems, they present the Proactor pattern to design asynchronous servers

which could handle high concurrency. Proactor pattern utilizes the I/O capabilities of

the OS and therefore  does  not  require  a  very  high number  of  threads.  However  a

disadvantage of the Proactor pattern is that programs written using it can be hard to

debug. 

The Java programming language is currently a popular programming language that is

used to develop many client server applications. It is a commonly used language to
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develop multithreaded applications. Chen et al. in [11] presents an evaluation of Java

multithreading  performance  by  using  different  number  of  processor  cores  and

application  threads  with  the  HotSpot  Java  Virtual  Machine  with  OpenJDK  1.7.

Experiments  conducted using multithreaded benchmarks  show that  different  results

were obtained based on different  benchmarks  used.  For JGF benchmarks  MolDyn,

MonteCarlo and RayTracer, the peak in throughput was observed when the number of

cores used was equal to the number of threads used. Also for JGF benchmarks and

SPECjbb2005 [12] benchmarks, higher throughput was observed with more cores and

threads.  Experiments  conducted  to  study  lock  contentions  which  are  caused  by

multiple threads trying to access the same shared object showed that they could reduce

the performance of the system. However, it should be noted that tuning of the JVM has

shown to provide some performance improvements in their experiments.

While threads can be used to provide concurrency to applications, the performance of

threads differ depending on the kernel in use. This was shown by Gu et al. In  [13].

They  show  that  although  the  Java  Virtual  Machine  (JVM)  makes  Java  programs

portable across environments, the performance of threads differ because Java threads

have  to  be  mapped  to  native  system threads.  Using  the  EP  benchmark  [14],  they

experimented  with  thread  behavior  with  respect  to  their  creation  and  computation

performance  under  different  workloads.  Through  these  experimental  results,  it  is

shown that the use of a large number of threads should be avoided. The reason for this

is the thread management overhead incurred when there is a large number of threads.

In  [15] Hu et al.  show that to achieve maximal performance on different operating

system platforms, it is necessary to utilize different I/O mechanisms provided by them

instead  of  using  common  I/O  mechanisms.  This  is  due  to  the  fact  that  the

implementations of I/O mechanisms specific to a particular platform may have been

optimized  for  that  platform itself.  They  also  show that  the  choice  of  concurrency

strategy has a major impact on web server performance. Experimental results obtained

using JAWS show that the throughput of each connection decreases when the number

of  connections  made  per  second  increases  and  that  the  latency  increases  as  the

connections  made  per  second  increases.  Their  results  show  that  concurrency

mechanisms have a great impact on latency and throughput. Such I/O operations and

some  other  operations  happening  within  a  server  may  require  access  to  shared
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resources. Most notably these include things such as access to Databases and files. If

multiple  instances of an application tries to access these shared resources, resource

contentions may occur which would degrade server performance. Zheng et al. In [16]

address these issues by proposing a method to detect such contentions. Their technique

was tested experimentally by using several large web applications. Results presented

show that the technique is effective. However, a problem with this presented technique

is that it sometimes provides false positives and false negatives in the results.

Database Management Systems (DBMS) employ concurrency control mechanisms. As

computers are moving towards architectures making use of a large number of cores on

a single chip, applications running on them should be able to make use of the available

hardware resources in order to do computations efficiently. DBMSs being a commonly

used  type  of  application  must  also  be  able  to  scale  well  to  such  many  core

environments. Yu et. al. in [17] argue that Database Management Systems currently in

use are not scalable to many core computers. By implementing several concurrency

control algorithms to handle concurrency in a DBMS running in main memory, they

have analyzed how these algorithms scale. Results show that all algorithms used did

not scale well and therefore did not provide good performance.

Using multiple threads of execution in an application incurs certain costs. According to

Goetz in order to obtain an improvement in performance when using multiple threads,

the performance benefits of using multiple threads must outweigh that of the overheads

introduced by concurrency.  When a thread gets blocked,  the Java Virtual  Machine

suspends the thread and allows that thread to be switched out during a context switch.

Therefore if a program causes a thread to block frequently, more context switches will

occur and this thread will not be able to make full use of the scheduling quantum used.

Therefore  when  threads  have  to  execute  many  I/O  bound  operations,  scheduling

overhead increases and throughput decreases rather than when executing CPU bound

operations.

When using multiple threads of execution, there may be sections of code that should

not  be  accessed  by  multiple  threads  of  execution  simultaneously.  Access  to  these

critical sections must be controlled so that only one thread of execution has access to

them at any given time. 
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Traditionally this was achieved using locks. When a thread of execution needs access

to such a critical section a lock is acquired and released after processing that section is

complete. Only the thread holding the lock is allowed to access a given critical section.

Acquiring and releasing locks in a program incurs additional overhead. An alternative

to locks to handle concurrency is Software Transactional Memory (STM)  [18]–[20].

With STM, instead of acquiring and releasing locks, sections of code are designated as

transactions.  Such  sections  of  code  that  are  designated  as  transactions  will  have

atomicity, isolation and consistency. Therefore STM is somewhat similar to database

transactions. STM is a software based implementation and it provides a non-blocking

mechanism  to  handle  concurrency.  Saha  et  al.  in  [21] presents  a  performance

evaluation of various STM implementations and locking mechanisms and presents a

STM system that is a part  of multi-core runtime called McRT. The paper presents

performance evaluations  made between locks  and their  STM implementation  for  a

hashtable benchmark, binary search tree benchmark (both balanced and unbalanced)

and that of a linked list benchmark (both sorted and unsorted). Results show that STM

performs better than locking mechanisms for higher number of processors. Saha et al.

also shows the  performance of  STM on non-synthetic  workloads  as  well.  For  this

purpose,  the sendmail  application  had been used with McRT-STM and tested with

upto 8 threads. Results obtained show that the performance of STM and locking are

comparable.  Zhang  et  al.  in  [22] presents  a  STM implementation  named  LarkTM

which provides low overhead. The adaptive version of LarkTM, named LarkTM-S has

been shown to outperform other high-performance Software Transactional  Memory

implementations. Zhou et. al. in [23] show the importance of thread mapping through

feedback  loops  and  regulating  parallelism  online  to  improve  performance  of

Transactional Memory applications. Their approach adds a time stall when the commit

of the transaction occurs and as a result this may show slight performance difference

with ones that  do not use it.  This  stall  time is  added to make the management  of

contentions work similar to a back off policy. 
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2.3 Conclusion

From the current literature in these areas of concurrency control, it can be seen that a

study about workload characteristics of different application types will be useful and

that a methodology to automatically identify and adaptively adjust the number worker

threads based on performance metrics will provide numerous benefits.
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Chapter 3 - Design

3.1 System Architecture

Experiments  were  conducted  to  study  the  behavior  of  a  system  under  different

applications and incoming workloads during the course of this study. Following test

setup was utilized for this purpose.

The client node and server node were two physical nodes that were dedicated for this

research project. Apache JMeter [3] running on the client node sent requests to a Netty

[2] HTTP Server running on the server node. The HTTP Server processed requests and

sent the replies back to the client node. Some applications has database operations and

in such situations, the server node utilize the database server running on it.

Details about the client node and the server node are as presented in table 3.1.
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Figure 3.1: Architecture of the test setup



Table 3.1: Information about the nodes

Client node Server node

CPU Intel Xeon E5506 @ 2.13GHz Intel Xeon 5160 @ 3.00GHz

RAM 8GB 16GB

Network interface Intel Corporation 82576 Gigabit 

Ethernet Controller

Capacity - 1Gbit/s

Broadcom Corporation 

NetXtreme II BCM5708 Gigabit

Ethernet Controller

Capacity - 1Gbit/s

Operating System Ubuntu 16.04.1 LTS Ubuntu 16.04.1 LTS

OS Kernel version 4.4.0-128-generic 4.4.0-128-generic

3.2 Performance metrics

Throughput and latency were used to evaluate performance of the server. Throughput

is defined as the number of requests processed per second and latency is defined as the

total time taken to receive a reply since a request leaves the client. 

Therefore in order to study performance characteristics of different applications and

incoming  workloads,  throughput,  mean  latency  and  99th percentile  of  latency  was

measured during the execution of tests. 

Furthermore, these three performance metrics are also used to drive the the thread pool

size adjustment decisions.

3.3 Applications

Several  applications  were  created  and  tested  during  the  course  of  this  study.  The

purpose of creating such applications and testing them was to study how thread pool

sizes and concurrent users behave under different applications. These can be divided

into  two  categories  as  CPU  dominant  workloads  where  a  significant  amount  of
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computations are utilizing the CPU and I/O dominant workloads where a significant

amount of operations are input/output operations. iostat  [24] and pidstat  [25] utilities

on were used to analyze and verify the CPU utilization and I/O utilization of these

applications.

The details of the application are as follows.

I/O dominant

1. Database write operation

Database write operations are common in real world applications. This is an

I/O dominant operation as the database needs to be accessed. Multiple writes

cannot occur concurrently. The database server used for theses tests is MySQL.

For each request received, this test writes the current timestamp to the database.

This application shall be referred as ‘DbWrite’ in the rest of this dissertation. 

2. Database read operation

Another  frequently  performed  database  operation  is  to  read  values  from a

database. This is also an I/O dominant operation. Similar to the previous test,

the database server used for theses tests is MySQL. For each request received,

a random row of a database table containing timestamps is selected and sent as

the reply.  This application  shall  be referred as ‘DbRead’ in the rest  of this

dissertation. 

MySQL 5.7.24-0ubuntu0.16.04.1 was used as the underlying database on the Server

node for the above I/O bound experiments.

 

CPU Dominant

3. Prime 1 million

Prime 10k test is a primality test. For each request received, a pseudo-random

number between 1,000,000 and 1,000,020 was generated and whether or not

this  number  was  a  prime  number  was  checked.  This  application  shall  be

referred as ‘Prime1m’ in the rest of this dissertation. 
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4. Prime 10 million

Prime 100k test is also a primality test but which requires more computations.

For each request received, a pseudo-random number between 10,000,000 and

10,000,020 was generated and whether or not this number was a prime number

was checked. This application shall be referred as ‘Prime10m’ in the rest of this

dissertation. 

The purpose of the above CPU dominant tests was not be perform primality checks

using the most efficient algorithm available at the time, but to run tests which would be

having various CPU intensity levels in order to simulate  CPU bound workloads of

varying CPU intensities. Therefore the following naive algorithm was used to check

for primality.

The input values low and high for Prime1m were 1,000,000 and 1,000,020 respectively

while the input values low and high for Prime10m were 10,000,000 and 10,000,020

respectively.

3.4 Software Tools

3.4.1 Apache JMeter

Apache JMeter [3] is an open source load testing tool written in Java. Apache JMeter

version 4.0 was used in this project to simulate concurrent users and generate requests

by  running  on  the  client  node.  In  order  to  test  the  server,  HTTP  requests  were

generated by Apache JMeter. As recommended by the user manual, the GUI mode of
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ALGORITHM - CheckPrime()
INPUT: low, high
OUTPUT: true/false

1: number = generate pseudo-random number between low and high
2: FOR each integer i from 2 to number
3: IF number mod i is 0 THEN
4: RETURN false
5: END IF
6: END FOR
7: RETURN true



JMeter was used only to create the tests. This is due to the fact that non-GUI mode

consumes less resources than GUI mode. Therefore, all tests required for this project

were executed in Command-line mode (non-GUI mode). These two modes of JMeter

are depicted below in figure 3.2 and 3.3 respectively.

3.4.2 Netty

Netty [2] is an open source client-server framework that can be used to create protocol

servers and clients in Java. This framework has been used in this research project to

implement an HTTP server which runs on the server node.
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Figure 3.2: Apache JMeter GUI-mode

Figure 3.3: Apache JMeter non-GUI mode



Netty has two types of thread pools namely the boss thread pool and worker thread

pool. The boss thread pool’s job is to accept incoming connections. Once a connection

is accepted by the boss thread pool, it is passed on to a thread in the worker thread pool

to be processed. 

Netty version 4.1.22 was used to implement the test server.

3.4.3 Dropwizard Metrics

Dropwizard metrics [26] is an open source framework that can be used to measure the

behavior of applications. It has been used to measure the performance metrics on the

server which are used to drive thread pool size adjustment decisions. 

Dropwizard metrics version 3.1.0 was used during implementation of the test server.

3.4.4 Implementation language

The Java  programming  language  [27] is  a  popular  programming  language  used  at

present and it was selected as the language of choice for this research study. It was

used in the implementation of the HTTP server created for conducting experiments,

implementation of the test  applications and for the implementation of the proposed

algorithms. Oracle Java [28] version 1.8.0_172 was used during this research. 

3.5 Experiments

The  experiments  performed  during  this  study  were  divided  into  3  stages.  All

experiments were conducted for 25 minutes.
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3.5.1 Static worker thread pool size with fixed workload simulation

The initial set of experiments of this study were performed to gain insight about the

effects  of  the  size  of  the  thread  pool  on  the  two  performance  metrics  observed,

throughput  and  latency.  All  four  applications  created  were  tested  during  these

experiments. In these experiments, the number of worker threads of the server were

kept at a constant value. The number of concurrent users simulated was also kept at a

constant value in order to simulate a fixed workload.

Ex. DbWrite application with a worker thread pool size of 10 and 100 concurrent users

Table  3.2 lists  the  combinations  of  applications,  worker  thread  pool  sizes  and the

number of concurrent users that tested during this stage of experiments. 

Table 3.2: Fixed worker thread pool size with fixed load simulations conducted

Application Worker thread

pool size

Number of

concurrent users

DbRead 2 1

DbRead 2 10

DbRead 2 100

DbRead 4 1

DbRead 4 10

DbRead 4 100

DbRead 10 1

DbRead 10 10

DbRead 10 100

DbRead 50 1

DbRead 50 10

DbRead 50 100

DbRead 100 1

DbRead 100 10

DbRead 100 100

DbWrite 2 1

DbWrite 2 10

DbWrite 2 100

DbWrite 4 1
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DbWrite 4 10

DbWrite 4 100

DbWrite 10 1

DbWrite 10 10

DbWrite 10 100

DbWrite 50 1

DbWrite 50 10

DbWrite 50 100

DbWrite 100 1

DbWrite 100 10

DbWrite 100 100

Prime1m 2 1

Prime1m 2 10

Prime1m 2 100

Prime1m 4 1

Prime1m 4 10

Prime1m 4 100

Prime1m 10 1

Prime1m 10 10

Prime1m 10 100

Prime1m 50 1

Prime1m 50 10

Prime1m 50 100

Prime1m 100 1

Prime1m 100 10

Prime1m 100 100

Prime10m 2 1

Prime10m 2 10

Prime10m 2 100

Prime10m 4 1

Prime10m 4 10

Prime10m 4 100

Prime10m 10 1

Prime10m 10 10

Prime10m 10 100

Prime10m 50 1

Prime10m 50 10
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Prime10m 50 100

Prime10m 100 1

Prime10m 100 10

3.5.2  Dynamic  worker  thread  pool  size  with  fixed  workload

simulation

Based on the knowledge gained about the effects of thread pool size on throughput and

latency,  three  optimization  algorithms  were  developed.  The  purpose  of  this  set  of

experiments was to test the developed algorithms’ ability to dynamically adjust the

thread pool size and improve performance. The incoming workload to the server was

kept at a fixed value (Eg. 100 concurrent users) during these experiments.

3.5.3 Dynamic worker thread count with varying workload simulation

Servers  used  in  the  real  world  do  not  receive  requests  with  the  same  number  of

concurrent users all the time. The number of concurrent users requesting services from

a server varies with time making the workload on the server a varying one. In order to

test the performance of the algorithms against such varying workloads, a dynamic load

was simulated  in  Apache JMeter  [3].  Figure  3.4 below shows how the  number of

concurrent users varied over time in this varying workload simulation.

23



24

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

50

100

150

200

250

Variation of concurrent users over time

Elapsed time (hh:mm:ss)

N
um

be
r 

of
 a

ct
iv

e 
th

re
ad

s

Figure 3.4: Varying workload simulated



Chapter 4 - Implementation

4.1 Thread Pool Size adjustment algorithms

The goal of this project was to develop a methodology to adjust the thread pool sizes

on the server automatically. To do so three algorithms were developed which are

1. Throughput optimization algorithm

2. Mean Latency optimization algorithm

3. 99th Percentile of Latency optimization algorithm

4.1.1 Throughput optimization algorithm

The throughput optimization algorithm developed during the course of this study is

aimed at  optimizing the throughput  by adjusting the worker thread pool size.  This

algorithm measures the throughput every 10 seconds and makes decisions based on it.

The throughput optimization algorithm is presented below.
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During the initial set of experiments with a fixed thread pool size and fixed load, it was

observed  that  throughput  increases  with  the  thread  pool  size.  The  throughout

optimization  algorithm  developed  through  this  study  utilize  a  table  (named

throughputTable in the above Pseudocode) to record the mean throughput obtained at

each thread pool  size during  the server’s  execution.  For  each thread  pool  size  the

server uses, the throughput table records the mean throughput and the number of 10

second intervals during which the server remained at the given thread pool size (named

count). The throughput table is sorted by the recorded thread pool sizes. The abstract

view of the throughput table is presented below. Thereafter when the algorithm detects

a decrease in throughput, it refers to throughputTable to find the value of the thread
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ALGORITHM - optimizeThroughput()
INPUT: previousThroughput, currentThroughput
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR to false
2. Initialize HAS_STARTED to false
3. Initialize throughputTable
4. REPEAT every 10 seconds
5. IF ( HAS_STARTED == false and NumberOfRequests > 0 ) THEN
6. HAS_STARTED = true
7. INC_ITR = true
8. END IF
9. IF ( DEC_ITR == false or ( DEC_ITR == true and DEC_IMPROVED == false ) 

and throughputDecrement > 10% ) THEN
10. sizeFound = findThreadPoolSize(currentThroughput)
11. Set thread pool size to sizeFound
12. IF ( INC_ITR == true and INC_IMPROVED == true ) THEN
13. increase thread pool size by 10
14. END IF
15. IF (INC_CHECK_ITR == true and INC_IMPROVED == true ) THEN
16. IF Throughput increment < 10% THEN
17. INC_IMPROVED = false
18. decrease thread pool size by 10
19. incrementLock = 6
20. END IF
21. END IF
22. updateThroughputTable(currentThroughput, currentThreadPoolSize)
23. IF incrementLock > 0 THEN
24. incrementLock = incrementLock -1
25. ELSE IF incrementLock == 0 THEN
26. INC_IMPROVED = true
27. END IF
28. IF decrementLock > 0 THEN
29. decrementLock = decrementLock -1
30. ELSE IF decrementLock == 0 THEN
31. DEC_IMPROVED = true
32. END IF
33. IF current iteration is INC_ITR THEN
34. set INC_CHECK_ITR as next iteration
35. ELSE IF current iteration is INC_CHECK_ITR THEN
36. set INC_ITR as next iteration
37. END IF
38. END



pool size to use to provide this detected level of throughput. This value is found by

using the findThreadPoolSize() function. 

Table 4.1: Abstract view of throughputTable

Thread pool size Mean throughput Count
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ALGORITHM - findThreadPoolSize()
INPUT: currentThroughput
OUTPUT: threadPoolSize

1: FOR  i < number of rows in throughputTable DO
2: mean = ( row(i).getThroughput + row(i+1).getThroughput )/2
3: IF (currentThroughput <= mean ) THEN
4: RETURN row(i).getThreadPoolSize
5: END IF
6: END FOR

ALGORITHM - updateThroughputTable()
INPUT: currentThroughput, currentThreadPoolSize

1. threadPoolSizeExists = false
2. FOR i < number of rows in throughputTable DO
3. IF row(i).getThreadPoolSize == currentThreadPoolSize THEN
4. threadPoolSizeExists = true
5. value = row(i).getThroughput
6. count = row(i).getCount
7. newValue=((value*count)+ currentThroughput)/count+1
8. row(i).setThroughput(newValue)
9. END IF
10. END FOR
11. IF threadPoolSizeExists is false THEN
12. create new table entry x
13. x.setCount(1)
14. x.setThreadPoolSize(currentThreadPoolSize)
15. x.setThroughput(currentThroughput)
16. add entry x to throughputTable
17. sort throughputTable by threadPoolSize
18. END IF



4.1.2 Mean Latency optimization algorithm

This algorithm measures the mean latency of the requests every 10 seconds in the

server  and  adjusts  the  worker  thread  pool  size  accordingly  to  minimize  the  mean

latency. The algorithm used is as follows
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ALGORITHM - meanLatencyOptimization()
INPUT: oldMeanLatency, currentMeanLatency
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR to false 
2. Initialize HAS_STARTED to false
3. REPEAT every 10 seconds
4. IF ( HAS_STARTED == false and NumberOfRequests > 0 ) THEN
5. HAS_STARTED = true
6. INC_ITR = true
7. END IF
8. IF ( INC_ITR == true and INC_IMPROVED == true ) THEN
9. increase thread pool size by 10
10. END IF
11. IF (INC_CHECK_ITR == true and INC_IMPROVED == true ) THEN
12. IF mean latency decrement < 5% THEN
13. INC_IMPROVED = false
14. decrease thread pool size by 10
15. incrementLock = 6
16. END IF
17. END IF
18. IF ( DEC_ITR == true and DEC_IMPROVED == true ) THEN
19. decrease thread pool size by 10
20. END IF
21. IF (DEC_CHECK_ITR == true and DEC_IMPROVED == true ) THEN
22. IF (mean latency decrement < 5%) THEN
23. DEC_IMPROVED = false
24. increase thread pool size by 10
25. decrementLock = 6
26. END IF
27. END IF
28.
29. IF incrementLock > 0 THEN
30. incrementLock = incrementLock -1
31. ELSE IF incrementLock == 0 THEN
32. INC_IMPROVED = true
33. END IF
34. IF decrementLock > 0 THEN
35. decrementLock = decrementLock -1
36. ELSE IF decrementLock == 0 THEN
37. DEC_IMPROVED = true
38. END IF
39. IF current iteration is INC_ITR THEN
40. set INC_CHECK_ITR as next iteration
41. ELSE IF current iteration is INC_CHECK_ITR THEN
42. set DEC_ITR as next iteration
43. ELSE IF current iteration is DEC_ITR THEN
44. set DEC_CHECK_ITR as next iteration
45. ELSE IF current iteration is DEC_CHECK_ITR THEN
46. set INC_ITR as next iteration
47. END IF
48. END



4.1.3 99th Percentile of latency optimization algorithm

This algorithm measures the 99th percentile of latency of the requests every 10 seconds

in the server and adjusts the worker thread pool size accordingly to minimize the 99 th

percentile of latency. The algorithm used is as follows.
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ALGORITHM - 99PercentileLatencyOptimization()
INPUT: old99PcerntileLatency, current99PercentileLatency
OUTPUT: N/A

1. Initialize INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR to false 
2. Initialize HAS_STARTED to false
3. REPEAT every 10 seconds
4. IF ( HAS_STARTED == false and NumberOfRequests > 0 ) THEN
5. HAS_STARTED = true
6. INC_ITR = true
7. END IF
8. IF ( INC_ITR == true and INC_IMPROVED == true) THEN
9. increase thread pool size by 10
10. END IF
11. IF (INC_CHECK_ITR == true and INC_IMPROVED == true ) THEN
12. IF 99th percentile latency decrement < 5% THEN
13. INC_IMPROVED = false
14. decrease thread pool size by 10
15. incrementLock = 6
16. END IF
17. END IF
18. IF ( DEC_ITR == true and DEC_IMPROVED == true ) THEN
19. decrease thread pool size by 10
20. END IF
21. IF (DEC_CHECK_ITR == true and DEC_IMPROVED == true) THEN
22. IF (99th percentile latency decrement < 5%) THEN
23. DEC_IMPROVED = false
24. increase thread pool size by 10
25. decrementLock = 6
26. END IF
27. END IF
28.
29. IF incrementLock > 0 THEN
30. incrementLock = incrementLock -1
31. ELSE IF incrementLock == 0 THEN
32. INC_IMPROVED = true
33. END IF
34. IF decrementLock > 0 THEN
35. decrementLock = decrementLock -1
36. ELSE IF decrementLock == 0 THEN
37. DEC_IMPROVED = true
38. END IF
39. IF current iteration is INC_ITR THEN
40. set INC_CHECK_ITR as next iteration
41. ELSE IF current iteration is INC_CHECK_ITR THEN
42. set DEC_ITR as next iteration
43. ELSE IF current iteration is DEC_ITR THEN
44. set DEC_CHECK_ITR as next iteration
45. ELSE IF current iteration is DEC_CHECK_ITR THEN
46. set INC_ITR as next iteration
47. END IF
48. END



The algorithms have the following common characteristics

Repetition period

The outermost repeat loop of the algorithms repeat every 10 seconds. All proposed

algorithms use this period between iterations. 

Improvement measurement

The algorithms  measure  improvements  of  the  relevant  performance  metrics  during

execution in order to decide if thread pool size changes were worthwhile. 

An improvement  of  5% of  mean latency  was selected  as  the  minimum acceptable

improvement for mean latency. Similarly an improvement of 5% of the 99th percentile

of latency was selected as the minimum acceptable improvement for the 99 th percentile

of  latency  optimization  algorithm.  For  the  throughput  optimization  algorithm,  an

improvement of 10% of throughput is minimum acceptable improvement to increase

the thread pool size. 

Periodic iterations

The proposed algorithm repeats  every 10 seconds.  The algorithms have designated

iterations as follows.

• INC_ITR – Iteration during which the thread pool size is increased

• INC_CHECK_ITR – This iteration checks if the thread pool size increment in

the previous iteration has made an improvement to the performance metric in

consideration.

• DEC_ITR - Iteration during which the thread pool size is decreased

• DEC_CHECK_ITR - This iteration checks if the thread pool size decrement in

the previous iteration has made an improvement to the performance metric in

consideration.

The  throughput  optimization  algorithm  iterates  between  INC_ITR  and

INC_CHECK_ITR while the mean latency optimization algorithm iterations between
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INC_ITR, INC_CHECK_ITR,  DEC_ITR and DEC_CHECK_ITR. These iterations

limit  the  increment/decrement  of  thread  pool  size  and  evaluating  whether  the

increments/decrements  provided  an  improvement  to  specific  periods.  Limiting  the

steps of the algorithm to such designated iterations helps to minimize the effects of

outliers  from affecting  thread  pool  size  adjustment  decisions.  This  is  because  the

probability that outliers always occur at a given stage is lower than the probability of

an outlier occurring every 10 seconds.

Increment/Decrement lock

During  INC_CHECK_ITR  iteration  and  DEC_CHECK_ITR  iteration,  the  system

checks  if  the  increments  and decrements  that  were  made  in  the  previous  iteration

provided the minimum required improvement of the performance metric. If such an

improvement  is  not  detected  during the  INC_CHECK_ITR iteration,  the  algorithm

temporarily locks thread pool size increments for a duration of 1 minute. Similarly if

improvement  is not detected during the DEC_CHECK_ITR iteration,  the algorithm

temporarily locks thread pool size decrements for a duration of 1 minute.

The rationale behind using such locks on thread pool size increments and decrements

is  to  prevent  the  algorithm  from  increasing  and  decreasing  thread  pool  sizes

unnecessarily if they do not provide an improvement in performance. However, these

locks are only temporary and expire one minute after setting them. This is because,

incoming workloads may change from time to time and when they do, thread pool size

need to be changed accordingly. 

4.2 Performance Metric collection

In  order  to  dynamically  adjust  the  thread  pool  size,  it  was  necessary  to  obtain

performance metrics from the server itself instead of measuring them from the client

side. Therefore Dropwizard metrics  [26] was used to gather performance metrics on

the  server  when  tests  were  executed.  The  Dropwizard  metrics  library  use  several

components to obtain performance metrics. A meter is a component which measures

the rate at which a set of events occur. A histogram measures the distribution of values
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in a stream of data. A timer is another component which is a histogram of the duration

of event and a meter of the rate of it’s occurrence. 

The traditional method of calculation of quantiles is to obtain the entire data set, sort it

and take the values (ie – 1% from the end is taken for the 99th percentile). Although

this  works  for  small  data  sets,  it  is  not  suitable  for  high-throughput,  low-latency

services. The solution to this problem is to use a technique called reservoir sampling.

Here, the data is sampled as it passes through. A reservoir is statistically representative

of the data stream as a whole and Dropwizard metric’s Histograms use reservoirs. The

default type of reservoir used by Timers is called an Exponentially Decaying Reservoir

and it produces quantiles which are representative of (roughly) the last 5 minutes of

data.  However Exponentially Decaying Reservoirs have shortcomings. They are lossy

as they do not store every sample.  They are only statistically representative.  These

shortcomings  of   Exponentially  Decaying  Reservoirs  could  lead  to  inaccurate

measurements due to the inclusion of much older samples. 

High  Dynamic  Range  Histogram  (HdrHistogram)[29] is  a  lossless  histogram

implementation which addresses shortcomings in Exponentially Decaying Reservoirs.

Therefore  HdrHistogram  was  found  to  be  more  suitable  to  be  used  to  collect

performance metrics in the server that was created. However, HdrHistogram was not

available to be used in Dropwizard metrics at the time of this research project. This

problem  was  solved  by  using  the  rolling-metrics  library  [30] which  combines

HdrHistogram with Dropwizard metrics. Version 2.0.4 of the rolling-metrics library

was used during implementation.

Dropwizard metrics was also used to measure throughput on the server. Dropwizard

metrics by default only provided methods to obtain 1, 5 and 15 minute throughput.

However the thread thread pool size adjustment algorithm that was used was designed

to run periodically every 10 seconds and make decisions about the thread pool size.

The  minimum  default  throughput  of  1  minute  would  not  have  provided  updated

throughput  values  .  Therefore,  the  Dropwizard  metrics  the  source  code  of  the

Dropwizard metrics framework was modified to obtain 10 second throughput values.
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4.3 Netty thread pools

As explained in Chapter 3, Netty has a boss thread pool and a worker thread pool.

During implementation it was identified that the thread pool size of the worker thread

pool of Netty cannot be changed dynamically as required when the HTTP server is

running. Since the objective of this study is to dynamically adjust the thread pool size

used for processing requests, this default architecture of Netty was found to not be

adequate. Therefore the HTTP server was implemented in such a way that the requests

that are received by the worker thread pool of Netty are passed onto a separate thread

pool without processing in the Netty worker pool. The size of this separate thread pool

can be adjusted while the server is running.
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Chapter 5 - Results and Evaluation

5.1 Experimental results

The following section presents and explain the results that were obtained through the

experiments that were conducted during this research study. As explained previously

in Chapter 1 and Chapter 3, three sets of experiments were conducted and they were

1. Fixed worker thread pool size with fixed workload simulations

2. Dynamic worker thread pool size with fixed workload simulations

3. Dynamic worker thread pool size with varying workload simulations

5.1.1 Fixed worker thread pool size with fixed workload simulations

An initial set of experiments were conducted to gain insight into the effect of worker

thread pool size on the performance metrics that were measured. These experiments

made use of a fixed worker thread pool size and a fixed incoming workload.  The

proposed algorithms were not used in this set of experiments. This set of experiments

were  conducted  with  the  sole  purpose  of  gaining  more  insight  into  the  effects  of

worker thread pool size on performance.

The results obtained through these tests showed that the performance that can be

obtained by a given number of threads is not the same across different applications and

workloads. 

CPU dominant Prime10m application and I/O dominant DbWrite application were two

applications tested. Figure 5.1 shows the variation of throughput over different worker

thread pool sizes for these two applications. It can be observed that when the worker

thread pool size was varied between 2, 4, 10, 50 & 100, the Prime1m application did

not show a drastic change in throughput. However for the DbWrite application, using
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thread pool sizes of 10, 50 and 100  provided much better throughput than when using

a worker thread pool size of 2 or 4.

However, analysis of the 99th percentile of latency showed that an increase of worker

thread pool size provided opposite results for the two tests as depicted in figure 5.2. It

was observed that as the worker thread pool size increased, latency increased for the

Prime10m application. However, the increase in worker thread pool size decreased the

latency experienced by the DbWrite application. This observation can be explained as

follows. Database servers  utilize  a  pool  of threads  to  perform database  operations.

From  the  point  of  the  HTTP  server,  I/O  operations  such  as  database  writes  are

blocking operations. Therefore when a small number of worker threads were used by

the HTTP server in the DbWrite application, they were unable to issue requests for

database writes to the database server’s thread pool until previous requests completed.

This caused the an increase in latency for small worker thread pool sizes.
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Therefore,  as the throughput did not show a significant  increase for the Prime10m

application when the worker thread pool size was increased, a small worker thread

pool size provided better performance due to low latency. 

Analysis of CPU utilization and disk I/O utilization showed that the Prime10m test

was  indeed  CPU  dominant.  It  showed  high  CPU  utilization  and  low  disk  I/O

utilization. In contrast, the DbWrite application showed that it was I/O dominant due

to high disk I/O utilization and low CPU utilization. A graph depicting the CPU and I/

O utilization for a period of 10 minutes for 2 worker threads and 10 concurrent users

for these two tests are shown in figure 5.3 and figure 5.4 respectively. The Prime10m

I/O graph shows a write rate of several Kilobytes per second, due to logging of data

during experiments. However this was negligible compared to the disk I/O utilization

by the DbWrite application.
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Similar results were observed in the other applications as well and these observations

showed that a small worker thread pool size provided better latency for CPU dominant

applications tested while a larger thread pool size provided better latency for the I/O

dominant applications that were tested.
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The important fact that was observed during this stage of experiments was that the

performance provided in terms of throughput and latency by a given thread pool size

depended  on  the  application  and  incoming  workload.  This  verified  the  initial

hypothesis that finding a fixed value for the worker thread pool size is a cumbersome

task. It also proved that even if a value for the worker thread pool size was specified, it

would  need  to  be  changed  based  on  incoming  workloads  in  order  to  improve

performance.

5.1.2 Dynamic thread pool size with fixed workload simulations

As explained  in  Chapter  1,  the  main  objective  of  this  dissertation  is  to  propose  a

solution  to  the  cumbersome  task  of  manually  finding  and  configuring  the  worker

thread pool size. The proposed solution consists of three algorithms which are able to

find and configure the worker thread pool size by optimizing throughput, mean latency

or 99th percentile of latency.

This section of the dissertation presents evaluations of the three proposed algorithms

for different application. The word dynamic of the title of this sections reflects the fact

that the worker thread pool size was allowed to be changed by the proposed algorithms

dynamically during these experiments. The incoming workload to the server remained

fixed during these experiments.

In  order  to  evaluate  the  performance  of  the  proposed  algorithms  in  dynamically

adjusting the worker thread pool size, the results obtained by using fixed worker thread

pool sizes are also presented along them. 

Mean latency optimization

This  section  presents  comparisons  of  performance  of  the  proposed  mean  latency

optimization algorithm.

Figure 5.5 shows the mean latency values recorded for the Prime10m test for the fixed

workload scenario. The fixed workload used was 100 concurrent users.

Fixed1, Fixed10 and Fixed100 in the figure 5.5  depicts the mean latency values over

time for experiments with fixed number of worker threads. The numerical value given

38



as the suffix in them refer to the worker thread pool size used. Empirical data shows

that the mean latency has improved when the number of worker threads was increased.

‘Adaptive’ in this graph depicts the mean latency values over time obtained for the

experiment conducted by using the mean latency optimization algorithm starting with

a worker thread pool size of one. As the test progressed, the algorithm adjusted the

number of worker threads and have successfully minimized the mean latency value.

The variation of thread pool size by the mean latency optimization algorithm over time

for this experiment is shown in  5.6. This graph shows how the system has increased

the thread pool size from 1 in order to minimize the mean latency.
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The period from 00:06:20 to  00:14:50 shows that  the system has converged at  81

threads  with  periodic  increments  and  decrements.  These  periodic  increments  and

decrements are expected as they are deliberate increments and decrements caused by

the  algorithm.  This  can  be  explained  further  by  considering  a  part  of  the  above

mentioned time period.  Table  5.1 shows how the thread pool size has varied from

00:06:40 to 00:09:00. The thread pool size is at 81 from 00:06:40. At  00:07:00, the

thread pool size is increased to 91 by the INC_ITR iteration of the algorithm which

increases  the  thread  pool  size  by  10.  Next,  at  00:07:10,  the  INC_CHECK_ITR

iteration of the algorithm checks whether the thread pool size increment has made an

improvement. Since improvement obtained by this thread pool size increment was a

decrement of 2.02% of mean latency, which is less than the minimum required 5%

decrement of mean latency. As this has not resulted in an improvement, the thread pool

size increment is undone by decreasing the thread pool size by 10 to back to 81. At

00:07:20 the thread pool size is decremented by 10 threads to 71 by the DEC_ITR

iteration of the algorithm. Then at 00:07:30 the DEC_CHECK_ITR iteration checks

the improvement of mean latency. Since the change in mean latency obtained by this

thread pool size decrement was actually an increase of 19.45% of mean latency, the

thread pool size decrement was undone by increasing the thread pool size back to 81.
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Table 5.1: Increments and decrements of thread pool size

Elapsed time

(hh:mm:ss)

Worker thread pool size Mean latency

(ms)

00:06:40 81 48.62

00:06:50 81 45.10

00:07:00 91 46.01

00:07:10 81 37.54

00:07:20 71 44.84

00:07:30 81 43.27

00:07:40 81 55.97

00:07:50 81 45.98

00:08:00 81 52.48

00:08:10 81 58.81

00:08:20 91 57.81

00:08:30 81 45.02

00:08:40 71 45.26

00:08:50 81 45.79

00:09:00 81 45.88

Since  the  increment  of  the  thread  pool  size  did  not  provide  an  improvement,  the

algorithm locks improvements for the next minute. This is the reason why a thread

pool  size  increment  was  not  observed  at  00:07:40  although  it  was  the  INC_ITR

iteration of the algorithm. Similarly, the thread pool size decrement was not observed

at 00:08:00 in the DEC_ITR of the algorithm because the thread pool size decrement

in the previous DEC_ITR iteration did not provide the required improvement of mean

latency. However, increments and decrements have resumed at 00:08:20 and 00:08:40

respectively due to the expiration of the locks on increments and decrements.  

Similar improvements of mean latency was also observed in other applications as well.

Figure  5.7 depicts the comparison of mean latency values that was observed in the

DbWrite application.
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The DbWrite application showed poor performance in terms of latency when a fixed

worker thread pool size of 1 was used. When the mean latency optimization algorithm

was used starting with a worker thread pool size of 1, the system detected the high

mean latency at the beginning and reduced it by increasing the thread pool size. 

By considering the mean latency range between 0ms and 300ms of the above graph, it

can be observed that the mean latency values obtained by using a fixed worker thread

pool size of 100 and by using the adaptive concurrency control mechanism showed

similar results. Figure 5.8 shows the section of the y axis between 0ms and 300ms of

figure 5.7 in order to observe this clearly.
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Figure 5.7: Performance of the mean latency optimization algorithm in DbWrite



Figure  5.9 shows  the  variation  of  thread  pool  size  against  time  of  the  adaptive

concurrency  control  mechanism  for  the  above  test.  This  shows  a  very  important

observation that was made during this experiment. The proposed adaptive concurrency

control mechanism was able to obtain mean latency values similar to the experiment

with a fixed worker thread pool size of 100 by utilizing less than or equal to 100

threads. Practically, it is possible for a system administrator to configure a thread pool

size such as 100 instead of 10 and be satisfied with it because it provided improved

performance. However the proposed algorithm has detected online that mean latency

cannot be improved by increasing the thread pool size and has therefore not increased

it up to 100 as depicted in this graph.
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Figure 5.8: Comparison of mean latency in DbWrite over selected latency range



 

Furthermore, another fact that can be observed by examining the figure 5.8 and figure

5.9 is that the increase in thread pool size after the test started has indeed shown a

decrement  in  the  mean  latency  of  the  workload.  This  shows  that  the  proposed

algorithm has been able to successfully decrease the mean latency by increasing the

worker thread pool size as required.

Figure  5.10 shows  the  results  obtained  for  the  Prime1m  application  with  100

concurrent users. It can be observed that the proposed adaptive concurrency control

mechanism using the mean latency optimization algorithm has successfully minimized

the mean latency during this  experiment.  Figure  5.11 provides a closer look at  the

curved obtained for the fixed thread pool size of 50 and for the adaptive algorithm. By

examining the information about the thread pool size along with the obtained mean

latency  values,  it  can  be  observed  that  the  proposed  adaptive  concurrency  control

mechanism has obtained better mean latency values than when using a with a fixed

worker thread pool size of 50. Practically, a system administrator may experiment with

worker thread pool sizes of 1, 2, 4 and 50 and decide to use 50 as it provides the best

performance out of the ones tested. He/She may or may not experiment with thread

pool sizes between 4 and 50 because there is no common guideline to say which thread

pool sizes to check. 
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Figure 5.9: Thread pool size variation in DbWrite using mean latency optimization



It  should also be  noted that  the  mean latency optimization  algorithm has  obtained

better performance while using a worker thread pool size less than 50 thereby proving

that using a higher thread pool size does not always result in better mean latency. In

that  case,  the  proposed method has  shown to  have  an advantage  over  using  fixed
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Figure 5.10: Comparison of mean latency in Prime1m
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Figure 5.11: Comparison of mean latency in Prime1m over a selected range



thread pools. Figure 5.12 shows the corresponding thread pool size over time graph for

the adaptive algorithm. 

Throughput Optimization

This section presents the results obtained for the throughput optimization algorithm for

different applications when tested with a fixed incoming workload.

Figure 5.13 depicts a comparison of the variation of throughput over time for several

fixed  worker  thread  pool  sizes  and  the  proposed  adaptive  concurrency  control

mechanism using the throughput optimization algorithm for the Prime1m workload.

Figure 5.14 presents a closer look at the variation of throughput for fixed thread pools

of size 10, 50, 100 and for the adaptive mechanism in order to understand the results in

a much clearer manner. It shows that a worker thread pools of size 10 has provided

slightly  better  throughput  over  using  a  worker  thread  pool  of  size  50  or  100.

Furthermore  it  can  be  seen  that  the  adaptive  mechanism  has  obtained  a  similar

throughput to that of the fixed thread pool of size 10.
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Figure 5.12: Thread pool variation in Prime1m for mean latency optimization 



Examining  the  variation  of  worker  thread  pool  size  provided  by  the  adaptive

concurrency control mechanism depicted in figure 5.15 shows that the worker thread

pool size has converged at a thread pool size of 11 to obtain this throughput. 
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Figure 5.13: Performance of the throughput optimization algorithm in Prime1m
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Figure 5.14: Throughput comparison in Prime10m over selected throughput range



 

This  shows  that  the  proposed  adaptive  concurrency  control  mechanism  with

throughput  optimization  has  converged  at  a  thread  pool  size  of  11  and  has  not

increased further because further increments did not provide better  throughput.  The

momentary increase in thread pool size shown above has occurred periodically every

minute. This was because when the throughput optimization algorithm increased the

thread pool size from 11 to 21, an increment of throughput of at least 10% was not

observed and this resulted in it waiting for one minute before checking again if an

increment  of  worker  thread  pool  size  improved  throughput.  By  examining  the

performance of fixed thread pool sizes, it can be observed that the fixed thread pool of

size  10  provided  very  similar  throughput.  The  adaptive  algorithm converging at  a

thread pool size of 11 shows that it  has properly identified the thread pool size to

improve throughput and has not increased unnecessarily.

Figure 5.16 depicts a comparison of the variation of throughput over time obtained for

fixed  worker  thread  pool  sizes  and  the  proposed  adaptive  concurrency  control

mechanism  with  throughput  optimization  algorithm.  This  presents  results  for  the

DbRead  application.  Fluctuations  can  be  observed  in  throughput  in  the  DbRead

workload.  However,  they  were  not  observed  only  when  using  the  proposed

concurrency  control  mechanism,  but  for  fixed  thread  pool  sizes  as  well.  (Java’s
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Figure  5.15: Thread pool size variation in Prime1m using throughput optimization 



Garbage Collection would be one of the reasons for these fluctuations in throughput).

It  is  evident  from this  comparison  that  the  proposed  method  has  obtained  similar

throughput as that of the fixed thread pool size of 10. 

Figure 5.17 depicts the corresponding graph depicting the variation of thread pool size

over time. It can be observed that the algorithm has kept the thread pool size at 11

most of the time during the experiment. However, fluctuations in measured throughput

had caused few changes in the thread pool size. But it can also be observed that the

algorithm managed to successfully recover from the thread pool size changes due to

fluctuations.
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Figure 5.16: Performance of the throughput optimization algorithm in DbRead



99th percentile of latency optimization

Results  obtained  by  testing  the  proposed  99th percentile  of  latency  optimization

algorithm is presented in this section.

Figure 5.18 shows a comparison of the 99th percentile of latency values recorded when

using fixed worker thread pool sizes and the proposed adaptive concurrency control

mechanism  using   the  99th percentile  of  latency  optimization  algorithm  for  the

Prime10m workload. 99th percentile of latency values recorded for fixed thread pool

sizes of 1 and 10 were much less than those obtained for fixed thread pool sizes of 50

and  100  showing  that  less  number  of  threads  provided  better  latency  for  this

application. It can also be observed that the 99th percentile of latency values recorded

for fixed thread pool sizes of 1 and 10 show overlaps at times. This explains why the

proposed adaptive concurrency control mechanism has not obtained clear convergence

of thread pool size as depicted in figure 5.19. Furthermore, the momentary increments

of latency observed in the adaptive mechanism was due to the algorithm checking if a

higher thread pool size provided better latency as explained in the algorithm presented

in Chapter 4 of this dissertation.
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Figure 5.17: Variation of thread pool size in DbRead using throughput optimization 



5.1.3 Dynamic thread pool size with varying load simulations

As explained in Chapter  3, this  set  of experiments were conducted to evaluate  the

behavior of the proposed adaptive concurrency control mechanism against dynamic
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Figure 5.18: Performance of the throughput optimization algorithm for Prime10m
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Figure 5.19: Thread pool size variation in Prime10m using throughput optimization 



incoming workloads. The variation of the number of concurrent users which was used

to simulate  the varying load on the server has been explained in Chapter 3 of this

dissertation. 

All three algorithms were again tested with different applications during this stage of

experiments.

Throughput optimization

The following section presents the results  obtained for the throughput optimization

algorithm.

Figure  5.20 shows  the  variation  of  throughput  against  time  for  the  Prime1m

application.  As  shown by the  graph,  the  throughput  optimization  algorithm shows

positive results in adjusting the thread pool size to maximize throughput even when the

load is dynamic. It can be observed from the graph that the throughput from 00:00:00

to 00:05:00, 00:10:00 to 00:15:00 and 00:20:00 to 00:25:00 remained the same. This is

not because the algorithm has failed to increase the thread pool size to obtain better

throughput but due to the processing limits of the server hardware in processing the

requests  associated  with  the  Prime1m  application.  This  fact  becomes  clearer  by

examining figure  5.21 which shows the corresponding variation of thread pool size

against time for this experiment. As can be seen in this graph, there are spikes that are

caused by the adaptive concurrency control algorithm increasing the thread pool size

and checking if the increment caused an improvement. However, because it did not do

so, the system reverts back to the previous thread pool size. Therefore the throughput

has remained the same in this experiment due to the physical limits of the processing

hardware. 
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Figure 5.20: Variation of throughput in Prime1m with varying workload
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Figure 5.21: Variation of thread pool size in Prime1m with a varying workload using the

throughput optimization algorithm



Another observation that can be made by looking at the above graph is that during the

period  from 00:05:00 to  00:10:00,  the  size  of  the  thread  pool  has  remained  at  11

similar to  00:00:00 to 00:05:00, 00:10:00 to 00:15:00 and 00:20:00 to 00:25:00. When

the number of concurrent users decrease to one at 00:05:00, the algorithm detects it

and checks which thread pool size to use. As the throughput optimization algorithm

uses a step size of 10 when adjusting the thread pool size, the thread pool sizes it can

use  are  1,  11,  21  etc.  Since  the  test  was  initialized,  the  algorithm  recorded  the

throughput that a thread pool size of 1 and 11 provides. Since the throughput provided

by a thread pool size of 1 significantly low, the algorithm has decided the keep the

thread pool size at 11. The method of deciding the thread pool size to decrease to in

such a situation has been explained in Chapter 4 of this dissertation.

A similar situation was observed with the DbRead application as well and is depicted

in  figure  5.22.  The  corresponding  thread  pool  size  over  time  graph  for  this

experimented is presented in figure 5.23.
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Figure 5.22: Throughput variation in DbWrite with a varying workload using throughput

optimization 



Mean Latency optimization

Results of the experiments conducted to evaluate the performance of the mean latency

optimization algorithm for varying workloads is presented in this section.

Figure  5.24 shows  the  variation  of  mean  latency  over  time  for  the  Prime10m

application when tested with the varying workload. It can be observed that the mean

latency when the test started was more than 200ms and that towards the beginning of

the test it has a high value. 

However, it can be observed that the mean latency decreased as the test progressed.

This  was  caused  by  the  optimization  algorithm  adjusting  the  thread  pool  size  to

minimize the mean latency. Figure 5.25 presents the corresponding graph depicting the

variation of thread pool size over time containing this information. The periodic spikes

visible  in  this  graph  were  deliberately  caused  by  the  algorithm  making  periodic

changes and checking if an improvement was obtained from the change. However,

when it detected that no improvement were made, the increments and decrements were

locked for a period of 1 minute which is reflected by the momentary pause in these

spikes.
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Figure 5.23: Variation of thread pool size in DbWrite using a varying workload
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Figure 5.24: Variation of mean latency in Prime10m using a varying workload

00:00:00 00:02:30 00:05:00 00:07:30 00:10:00 00:12:30 00:15:00 00:17:30 00:20:00 00:22:30 00:25:00

0

10

20

30

40

50

60

70

80

Variation of thread pool size over time

Prime10, varying workload

Elaped time (hh:mm:ss)

T
hr

ea
d 

po
ol

 s
iz

e

Figure 5.25: Thread pool size variation in Prime10m



99th Percentile of latency optimization

Following  section  presents  the  results  obtained  when  experiments  were  conducted

using the adaptive concurrency control mechanism with the 99th percentile of latency

optimization algorithm. These experiments also used the varying workload presented

in Chapter 3.

Figure 5.26 shows the variation of 99th percentile of latency over time for the Prime1m

application. Figure  5.27 presents the corresponding variation of the thread pool size

over time graph caused by the algorithm. It can be observed that the algorithm has

converged at thread pool sizes of 11 and 31 at different intervals. After converging, the

algorithm has periodically checked whether increments or decrements of thread pool

size provides an improvement in 99th percentile of latency. This can be seen by the

periodic increments and decrements occurring every minute in the graph.
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Figure 5.26: 99th percentile of latency variation in Prime1m



 

Figure 5.28 shows the variation of 99th percentile of latency over time for the DbWrite

application. In this experiment with a varying load, some fluctuations of latency was

observed. 
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Figure 5.27: Prime1m thread pool size variation
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Figure 5.28: 99th percentile of latency variation in DbWrite



These  fluctuations  have  made  it  difficult  for  the  proposed  algorithm  to  maintain

smooth thread pool sizes as can be seen in the figure  5.29. The proposed algorithm

only accepts  improvements  due thread  pool  size  increment  at  the  2nd iteration  and

improvements  due  to  decrements  at  the  4th iteration  respectively  as  explained  in

Chapter 4. This has made it possible for the algorithm to not cause the thread pool size

to increase without control and to try and correct fluctuations. 

5.2 Analysis of the effects of parameters of the algorithms

The three proposed algorithms make use of several parameters to function correctly.

During the course of this study, these parameters were fine tuned by studying their

effects  on the adaptive  concurrency control  mechanism.  This  section  discusses  the

effects of these parameters. 
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Figure 5.29: DbWrite thread pool size variation for 99th percentile optimization



5.2.1 Period between iterations of algorithms

As explained in Chapter 3, the proposed algorithms’ outer loop is executed every 10

seconds. This period has a direct impact on the detection of change of performance

metrics thereby affecting when thread pool size adjustments occur. A high value of this

period causes the server to detect changes in performance metrics with a delay. This in

turn causes a delay in thread pool size adjustments. Experiments showed that these

would result in the server being too slow to respond to changes in performance metrics

and  workload  patterns  thereby  reducing  the  ability  of  the  server  to  optimize

performance properly.

Figure  5.20 presented in the previous section showed the variation of throughput over

time  for  the  Prime1m  application  with  a  varying  workload.  This  was  the  graph

obtained as a result of using a period of 10 seconds in the outer loop of the throughput

optimization algorithm. 

 

The corresponding thread pool size over time graph of this experiment was shown in

figure  5.21. The reason for the thread pool size remaining at 11 for the period from

00:00:00 to  00:15:00 has  been explained in  the previous  section.  At  00:15:00,  the

number  of  concurrent  users  decreased  suddenly  due  to  the  nature  of  the  varying

workload test as explained in Chapter 3. The important observation here is that the

system has  converged  at  a  thread  pool  size  of  one  within  a  short  period  of  time.

Similarly,  when the  number  of  concurrent  users  increased  at  00:20:00,  the  system

increased the thread pool size to 11 and converged within such a similar short period.

This is a positive result because it shows that the proposed algorithm responds and

adapts to changes in incoming workloads within a short duration.

Figure  5.30 shows  the  variation  of  throughput  over  time  obtained  for  the  same

experiment  using a period of  1  minute  between iterations  of the outer  loop of  the

algorithm. Empirical results show how the server has been slow compared to using a

period of 10 seconds, to respond to changes in the varying workload. For example, in

the experiment with a period of 10 seconds between iterations of the outer loop of the

algorithm,  the  algorithm  recorded  a  sudden  decrease  in  throughput  shortly  after

00:15:00 which was what actually happened. However, with a period of 1 minute, the
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server shows a gradual decrease in throughput after 00:15:00 and takes until almost

00:20:00 to record the lowest value of throughput. 

This  had  a  negative  impact  on  when  increments/decrements  of  thread  pool  sizes

occurred as seen in the figure 5.31. For example, unlike the proposed algorithm using a

period of 10 seconds,  the modified  algorithm using a period of  1 minute  between

iterations of the outer loop has not converged at a thread pool size of 1 until almost

00:20:00. 

When  a  period  of  5  seconds  was  used  instead,  the  server  detected  changes  in

throughput  within  a  short  period  of  time  similar  to  what  was  observed  when  the

proposed period of 10 seconds was used. This can be observed figure 5.32.

However, upon examining the variation of thread pool size over time depicted in the

figure  5.33,  it  can be observed that  unnecessary thread pool size adjustments  have

occurred.  Although  similar  throughput  values  were  observed  from  00:00:00  to

00:05:00 and 00:10:00 to 00:15:00, the system has unnecessarily increased the thread

pool size after 00:00:00, to 21.
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Figure 5.30: Effect of long periods on throughput measurement



Furthermore,  figure  5.33 also  shows  the  effect  of  decreasing  the  thread  pool  size

increment lock duration. This figure shows a lock duration of 30 seconds. A shorter

lock duration such as this causes the system to make increments quickly even after

they do not provide improved performance. This then causes the thread pool size to

fluctuate unnecessarily. 
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Figure 5.31: Effect on long periods on thread pool size adjustment
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Figure 5.32: Effect of short period on throughout measurement



5.2.2 Thread pool size increment/decrement step size

Another  parameter  that  the  algorithms  used was  the  step  size  of  thread  pool  size

increments and decrements. Experimenting with this value showed that using a smaller

step size causes delays in convergence of the thread pool size. It was also observed that

small  changes  in  thread  pool  size did not  provide significant  improvements  in  the

observed performance metrics as well. In contrast, a larger step size of thread pool size

increments  and  decrements  caused  the  system  to  converge  at  thread  pool  sizes

unnecessarily large or small respectively.

5.2.3 Minimum acceptable change in performance metrics

The proposed algorithms use 10% as the minimum acceptable change in throughput to

cause a change of thread pool size. 5% is used as the minimum acceptable change in

latency (mean and 99th percentile) to cause a change of thread pool size.

Fine tuning this parameters showed that lower values for minimum acceptable change

in the measured performance metrics caused the system to unnecessarily respond to
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Figure 5.33: Effect of short period on thread pool size adjustment



minor changes in performance metrics and also to outliers. In contrast, using higher

values  as  the  minimum acceptable  change caused the system to not  be  responsive

enough to detect changes in the performance metrics measured.
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Chapter 6 - Conclusions

6.1 Introduction

The final  chapter  of the dissertation presents the conclusions about the research.  It

presents a concluding summary on each research question explaining the answers that

were obtained for them during the course of this study. Furthermore, this section also

presents implications for future research.

6.2 Conclusions about research questions

6.2.1 Question 1

How does the thread pool size impact the performance of different applications 

that receive requests under different arrival patterns?

Experiments provided evidence that for a given number of threads, the performance

that can be obtained would differ across applications and workloads. 

Empirical evidence gathered during testing showed that I/O dominant workloads such

as database write operations performed well with larger sized thread pools while CPU

dominant workloads performed better when smaller thread pools were used.

Therefore the initial hypothesis that fixed thread pool sizes are inefficient has been

proven through the empirical evidence that was gathered during experiments that were

conducted. It is can also be concluded that the worker thread pool size has a significant

impact on performance. 

65



6.2.2 Question 2

How can an algorithm/s be developed that can dynamically change the thread 

pool size depending on the changing behavior of application and incoming 

workload?

Latency and throughput were identified as performance metrics. Therefore three 

algorithms were developed to adjust the worker thread pool size. These three 

algorithms developed are a throughput optimization algorithm, a mean latency 

optimization algorithm and a 99th percentile of latency optimization algorithm. They 

adjust the worker thread pool size by periodically measuring throughput, mean latency 

and 99th percentile of latency respectively. 

To evaluate these algorithms, two sets of experiments were conducted as follows.

1. Dynamic thread pool size with fixed workload simulations

In order to test the proposed algorithms, experiments were conducted using the

proposed  algorithms  by  keeping  the  workload  from  the  client  side  fixed.

During  these  experiments  the  worker  thread  pool  size  started  at  one  and

thereafter  the  proposed  algorithms  were  made  to  change  it  as  necessary.

Testing of the proposed algorithms provided positive results thus proving that it

is indeed possible to let the proposed algorithms measure performance metrics

and adjust the thread pool size automatically.

2. Dynamic thread pool size with varying workload simulations

This stage of experiments tested the proposed algorithms by using a varying

workload.  Similar  to  the  previous  stage  of  experiments,  the  proposed

algorithms  were  made  to  adjust  the  worker  thread  pool  size  as  necessary.

Experiments conducted to evaluate the proposed algorithms showed that they

are able  to cope up with varying workloads and adjust the thread pool size
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accordingly.  However,  although  the  effects  of  fluctuations  of  performance

metrics  were  minimized,  they  can  have  an  impact  on  the  ability  of  the

algorithms to function accurately.

Therefore empirical results gathered over these experiments show that the proposed

algorithms  are  able  to  successfully  adjust  the  worker  thread  pool  size  based  on

performance metrics that are measured.

6.2.3 Question 3

How can the parameters of the adaptive thread pool adjustment algorithms be 

tuned in order to improve results?

The proposed algorithms utilize several parameters. In order to answer this question, 

these parameters were varied and their effects on the algorithms were studied.

The proposed algorithms loop continuously.  Experiments  conducted by varying the

period between iterations showed that using a high value for this parameter caused the

server to detect changes in performance metrics with a delay. Using a low value for

this period caused the algorithm to change the thread pool sizes unnecessarily. 

Experiments  conducted  to  study  the  effect  of  changing  the  thread  pool

increment/decrement  step  size  showed  that  large  step  sizes  caused  the  system  to

converge at unnecessarily large or small thread pool sizes while small step sizes caused

delays in convergence of the thread pool size. Furthermore small changes in thread

pool size did not provide significant improvements of measured performance metrics.

The proposed algorithms use 10% as the minimum acceptable change in throughput to

cause a change of thread  pool size and 5% as the minimum acceptable  change in

latency to  cause a  change of thread pool  size.  Lower values  caused the system to

respond to minor changes in performance metrics unnecessarily and to outliers as well,
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High values for this parameter caused the system to not be responsive enough to detect

changes in performance metrics.

6.3 Conclusions about research problem

This research study was aimed at finding a solution to the problem of configuring the

thread pool size to optimize performance. Experiments and background information

showed that manually setting a thread pool size is both difficult and inefficient. It is

difficult because it is not possible to accurately predict the thread pool size to be used.

It was also found to be inefficient because even if a thread pool size to maximize a

performance metric is found experimentally, this may need to be changed over time

due to reasons such as change of server hardware, variation of incoming workloads

etc. Therefore a much better solution to this problem was to let the server measure

performance  and  adjust  the  worker  thread  pool  by  itself  using  performance

optimization algorithms proposed by this study. 

In this dissertation we first investigated the impact of worker thread pool size on the

performance  of  a  set  of  applications  and  showed  that  the  performance  is  highly

dependent on the worker thread pool size. Our analysis revealed several interesting

findings which have been explained in Chapter 5 of this dissertation. 

However the main contribution of this dissertation is an adaptive concurrency control

mechanism  with  three  algorithms  to  optimize  the  performance  of  a  server.  These

optimize  performance  in  terms  of  throughput,  mean  latency  or  99th  percentile  of

latency. These algorithms are unaware of the underlying server hardware or the type of

application running on the server. This is an advantage as it prevents the proposed

algorithms  from  being  associated  with  a  particular  set  of  applications  or  server

hardware. We discussed the details of these three algorithms in detail in Chapter 4.

Extensive performance analysis of the proposed algorithms show that they are indeed

able to automatically adjust the thread pool size for different applications, different

levels  of  fixed  incoming  workloads  and  different  levels  of  varying  incoming

workloads. 
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The algorithms presented in Chapter 4 of this dissertation were obtained after tuning

the parameters of the algorithms. Experiments show that these parameters have a direct

impact on how well the server can respond to changes in performance and on its ability

to adjust the worker thread pool size.

Therefore the contributions made through this dissertation provide a practical solution

to the cumbersome task of manually adjusting the worker thread pool size of a server

to optimize performance.

6.4 Limitations

Although  the  effects  of  outliers  and  fluctuations  of  performance  metrics  on  the

proposed algorithms have been reduced by making increments and decrements during

designated iterations of the algorithms, they may still have some impact on the thread

pool size adjustment algorithms. This may cause the the thread pool size changes to

not be very smooth.

6.5 Implications for further research

This research showed that it is beneficial to let a system adaptively adjust the thread

pool size. This work can be improved further. 

This can be improved by further reducing the effects of outliers and fluctuations of

performance metrics on the thread pool size adjustment algorithms. 

Furthermore, from a software engineering standpoint, this concept may be extended to

develop an adaptive thread pool size adjustment framework that may be plugged into a

web server with little effort.
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Appendix A: Code Listings

A.1 AdaptiveConcurrencyControl.java
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 public class AdaptiveConcurrencyControl {
 
   private static final int THREAD_POOL_MODIFICATION_INITIAL_DELAY = 10;
   private static final int THREAD_POOL_MODIFICATION_PERIOD = 10;
   private static final int PORT = 15000;
   public static Logger LOGGER = 
LoggerFactory.getLogger(AdaptiveConcurrencyControl.class);

   public static void main(String[] args) throws Exception {
     if (args.length != 3) {

LOGGER.error("Arguments not found! Please specify the 3 arguments <TestName> 
<initialWorkerPoolCount> <Optimization>");

System.exit(-1);
     }
     String testName = args[0];
     int initWorkerThreads = Integer.parseInt(args[1]);
     String optimization = args[2];
     ScheduledExecutorService threadPoolSizeModifier= 
Executors.newScheduledThreadPool(1); 
     CustomThreadPool thirdThreadPool = new CustomThreadPool(initWorkerThreads); 
     threadPoolSizeModifier.scheduleAtFixedRate(new 
ThreadPoolSizeModifier(thirdThreadPool, optimization),

THREAD_POOL_MODIFICATION_INITIAL_DELAY, 
THREAD_POOL_MODIFICATION_PERIOD, TimeUnit.SECONDS);
     new NettyServer(PORT, testName, thirdThreadPool).start();

   }
 }



A.2 CustomThreadPool.java
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 import java.util.concurrent.Future;
 import java.util.concurrent.LinkedBlockingQueue;
 import java.util.concurrent.ThreadPoolExecutor;
 import java.util.concurrent.TimeUnit;
 
 public class CustomThreadPool {

   private final int KEEP_ALIVE_TIME = 100;
   private TimeUnit timeUnit = TimeUnit.SECONDS;
   private ThreadPoolExecutor executor;

   /**
   * The constructor
   *
   * @param initialPoolSize size of thread pool
   */
   public CustomThreadPool(int initialPoolSize) {
     executor = new ThreadPoolExecutor(initialPoolSize, initialPoolSize,
     KEEP_ALIVE_TIME, timeUnit,new LinkedBlockingQueue<Runnable>(), new 
     ThreadPoolExecutor.CallerRunsPolicy());
   }

   /**
    * Submits a task to the thread pool
    *
    * @param task to be executed in the thread pool
    */
   public void submitTask(Runnable worker) {
     executor.execute(worker);
   }

   /**
    * Increments the pool size by n. No upper limit on the pool size
    */
   public void incrementPoolSizeBy(int n) {
     executor.setMaximumPoolSize(executor.getMaximumPoolSize() + n);
     executor.setCorePoolSize(executor.getCorePoolSize() + n);
   }

   /**
    * Decrement the pool size by n. Minimum allowed size is 1
    *
    * @param n the number to increment by
    */
   public void decrementPoolSizeBy(int n) {
     if(executor.getCorePoolSize() - n > 0 && executor.getMaximumPoolSize() - n > 0) {
       executor.setCorePoolSize(executor.getCorePoolSize() - n);
       executor.setMaximumPoolSize(executor.getMaximumPoolSize() - n);
     }
   }

   /*
    * Returns the size of the thread pool
    * 
    */
   public int getThreadPoolSize() {
     return executor.getPoolSize();
   }

   public void decrementPoolSizeTo(int n) {
     if (n > 0) {
       executor.setCorePoolSize(n);
       executor.setMaximumPoolSize(n);
     }
   }

   public void incrementPoolTo(int n) {
     executor.setMaximumPoolSize(n);
     executor.setCorePoolSize(n);
   }
 }
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 public class NettyServer {

   int port;
   String test;
   CustomThreadPool executingPool;
   Timer.Context latencyTimerContext;
   
   public NettyServer(int portNum, String testName, CustomThreadPool pool) {
     this.port = portNum;
     this.test = testName;
     this.executingPool = pool;
   }

   public void start() throws Exception {
     EventLoopGroup bossGroup = new NioEventLoopGroup();
     EventLoopGroup workerGroup = new NioEventLoopGroup();

   try {
     ServerBootstrap b = new ServerBootstrap();
     b.childOption(ChannelOption.SO_RCVBUF, 2147483647); // Increase receive buffer size
     b.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class)
       .childHandler(new ChannelInitializer<SocketChannel>() {

  @Override
  public void initChannel(SocketChannel ch) throws Exception {
    latencyTimerContext = ThreadPoolSizeModifier.LATENCY_TIMER.time();
    ChannelPipeline p = ch.pipeline();
    p.addLast(new HttpServerCodec());
    p.addLast("aggregator", new HttpObjectAggregator(1048576));
    p.addLast(new NettyServerHandler(test, executingPool, latencyTimerContext));

         }
}).option(ChannelOption.SO_BACKLOG, 

1000000).childOption(ChannelOption.SO_KEEPALIVE, true);

     ChannelFuture f = b.bind(port).sync();

     f.channel().closeFuture().sync();
   } finally {
     workerGroup.shutdownGracefully();
     bossGroup.shutdownGracefully();
   }
  }
 }



A.4 NettyServerHandler.java
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 public class NettyServerHandler extends SimpleChannelInboundHandler<FullHttpRequest> {

   private String testName;
   private CustomThreadPool executingPool;
   private Timer.Context timerContext;

   public NettyServerHandler(String name,CustomThreadPool pool,Timer.Context tContext) {
     this.testName = name;
     this.executingPool = pool;
     this.timerContext = tContext;
   }

   @Override
   public void channelRead0(ChannelHandlerContext ctx, FullHttpRequest msg) {

     if (testName.equals("Prime1m")) {
       executingPool.submitTask(new Prime1m(ctx, msg, timerContext));
     } else if (testName.equals("Prime10m")) {
       executingPool.submitTask(new Prime10m(ctx, msg, timerContext));
     } else if (testName.equals("DbWrite")) {
       executingPool.submitTask(new DbWrite(ctx, msg, timerContext));
     } else if (testName.equals("DbRead")) {
       executingPool.submitTask(new DbRead(ctx, msg, timerContext));
     }
   }

   @Override
   public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
     cause.printStackTrace();
     ctx.close();
   }
 }
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 public class ThreadPoolSizeModifier implements Runnable {

   public static int IN_PROGRESS_COUNT;
   public static MetricRegistry METRICS;
   public static HdrBuilder BUILDER;
   public static Timer LATENCY_TIMER;
   public static MetricRegistry METRICS2;
   public static HdrBuilder BUILDER2;
   public static Timer THROUGHPUT_TIMER;
   private static double oldTenSecondRate;
   private static double oldMeanLatency;
   private static double old99PLatency;
   public static int oldInProgressCount;
   private CustomThreadPool threadPool;
   private String optimizationAlgorithm;
   private static boolean HAS_STARTED, INC_ITR, INC_CHECK_ITR, DEC_ITR, DEC_CHECK_ITR; 
   private static boolean INC_IMPROVED;
   private static boolean DEC_IMPROVED; 
   int incrementLock, decrementLock;
   int resetMemory;
   private long oldCount;

   private ArrayList<Memory> metricMemory;
   
   /*
    * Constructor
    * 
    * @param The thread pool to be modified
    */
   public ThreadPoolSizeModifier(CustomThreadPool pool, String optimization) {
     this.threadPool = pool;
     this.optimizationAlgorithm = optimization;
     metricMemory = new ArrayList<Memory>();
     METRICS = new MetricRegistry();
     BUILDER = new HdrBuilder();
     BUILDER.resetReservoirOnSnapshot();
     BUILDER.withPredefinedPercentiles(new double[] { 0.99 }); 
     LATENCY_TIMER = BUILDER.buildAndRegisterTimer(METRICS, "ThroughputAndLatency");
     METRICS2 = new MetricRegistry();
     BUILDER2 = new HdrBuilder();
     THROUGHPUT_TIMER = BUILDER2.buildAndRegisterTimer(METRICS2, 
"ThroughputAndLatency2");
     HAS_STARTED = false;
     INC_ITR = false;
     INC_CHECK_ITR = false;
     DEC_ITR = false;
     DEC_CHECK_ITR = false;
     INC_IMPROVED = true;
     DEC_IMPROVED = true;
     AdaptiveConcurrencyControl.LOGGER.info(

"Thread pool size, Current 10 Second Throughput, 
Throughput Difference, In pogress count, Average Latency, 99th percentile Latency"); 

   }
   @Override
   public void run() {
     try {

if (HAS_STARTED == false && (LATENCY_TIMER.getCount() > 0)) { 
  INC_ITR = true;
  HAS_STARTED = true;
}
int currentThreadPoolSize = threadPool.getThreadPoolSize();
double currentTenSecondRate = THROUGHPUT_TIMER.getTenSecondRate();
double rateDifference = (currentTenSecondRate - oldTenSecondRate) * 100 / 

oldTenSecondRate;
int currentInProgressCount = IN_PROGRESS_COUNT;

        Snapshot latencySnapshot = LATENCY_TIMER.getSnapshot();
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        double currentMeanLatency = latencySnapshot.getMean() / 1000000; 
double current99PLatency = latencySnapshot.get99thPercentile() / 1000000; 
AdaptiveConcurrencyControl.LOGGER.info(currentThreadPoolSize + ", " + 

currentTenSecondRate + ", " + rateDifference + ", " + currentInProgressCount + ", " + 
currentMeanLatency + ", " + current99PLatency); 

if (optimizationAlgorithm.equals("T")) { // If Throughput Optimized
if ((DEC_ITR == false || (DEC_ITR == true && DEC_IMPROVED == false)) && 

(((oldTenSecondRate - currentTenSecondRate) / oldTenSecondRate) * 100 > 10) && 
resetMemory != 300) {

  Memory current;
  for (int i = 0; i < metricMemory.size(); i++) {
    current = metricMemory.get(i);
  }
  for (int i = 0; i < metricMemory.size() - 1; i++) {
    if (metricMemory.get(i).getThreadPoolSize() == 0) {
      continue;
    }
    if (currentTenSecondRate <= (metricMemory.get(i).getValue()+ 

metricMemory.get(i + 1).getValue()) / 2) {
      if (currentThreadPoolSize < metricMemory.get(i).getThreadPoolSize()) {
        threadPool.incrementPoolTo(metricMemory.get(i).getThreadPoolSize());
      }else if(currentThreadPoolSize>metricMemory.get(i).getThreadPoolSize()) {
       threadPool.decrementPoolSizeTo(metricMemory.get(i).getThreadPoolSize());
      }
      break;
    }

         }
}
if (INC_ITR == true && INC_IMPROVED == true) {

         threadPool.incrementPoolSizeBy(10);
}
if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
  if (((currentTenSecondRate - oldTenSecondRate) / oldTenSecondRate ) * 100 < 

10) {
    INC_IMPROVED = false;
    threadPool.decrementPoolSizeBy(10);
    incrementLock = 6; // Prevent increments for the next 8 sets of iterations
  }
}

        Memory current = new Memory();
boolean isInAList = false;
for (int i = 0; i < metricMemory.size(); i++) {
  current = metricMemory.get(i);
  if (current.getThreadPoolSize() == currentThreadPoolSize) {
    isInAList = true;
    current.setValue(((current.getValue() * current.getCount()) + 

currentTenSecondRate) / (current.getCount() + 1));
    current.setCount(current.getCount() + 1);
    break;
  }
}
if (isInAList == false) {
  metricMemory.add(new Memory(currentThreadPoolSize, 1, currentTenSecondRate));
}

      }
      if (optimizationAlgorithm.equals("M")) { // If Mean latency Optimized
        if (INC_ITR == true && INC_IMPROVED == true) {

   threadPool.incrementPoolSizeBy(10);
 }
 if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
   if ((((oldMeanLatency - currentMeanLatency) / oldMeanLatency) * 100) < 5) {
     INC_IMPROVED = false;
     threadPool.decrementPoolSizeBy(10);
     incrementLock = 6; // Lock increments
   }
 }

        if (DEC_ITR == true && DEC_IMPROVED == true) {
   threadPool.decrementPoolSizeBy(10);

        }
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        if (DEC_CHECK_ITR == true && DEC_IMPROVED == true) {
          if ((((oldMeanLatency - currentMeanLatency) / oldMeanLatency) * 100) < 5) {
          DEC_IMPROVED = false;

  threadPool.incrementPoolSizeBy(10);
  decrementLock = 6; // Lock decrements
  }
 }
}
if (optimizationAlgorithm.equals("99P")) { 
  if (INC_ITR == true && INC_IMPROVED == true) {
    threadPool.incrementPoolSizeBy(10);
  }
    if (INC_CHECK_ITR == true && INC_IMPROVED == true) {
      if ((((old99PLatency - current99PLatency) / old99PLatency) * 100) < 5) {

                INC_IMPROVED = false;
 threadPool.decrementPoolSizeBy(10);
 incrementLock = 6; // Lock increments

      }
    }
  if (DEC_ITR == true && DEC_IMPROVED == true) {
    threadPool.decrementPoolSizeBy(10);
  }
  if (DEC_CHECK_ITR == true && DEC_IMPROVED == true) {
    if ((((old99PLatency - current99PLatency) / old99PLatency) * 100) < 5) {
      DEC_IMPROVED = false;
      threadPool.incrementPoolSizeBy(10);

              decrementLock = 6; // Lock decrements
    }
  }
}

       oldTenSecondRate = currentTenSecondRate;
       oldMeanLatency = currentMeanLatency;
       old99PLatency = current99PLatency;
       oldInProgressCount = currentInProgressCount;

if (INC_ITR == true) { //
          INC_ITR = false;

   INC_CHECK_ITR = true;
   DEC_ITR = false;
   DEC_CHECK_ITR = false;
} else if (INC_CHECK_ITR == true) { //
  if (optimizationAlgorithm.equals("T")) {
    INC_ITR = true;
    DEC_ITR = false;
  } else {
    INC_ITR = false;
    DEC_ITR = true;
  }
  INC_CHECK_ITR = false;
  DEC_CHECK_ITR = false;
} else if (DEC_ITR == true) { 
  INC_ITR = false;
  INC_CHECK_ITR = false;
  DEC_ITR = false;
  DEC_CHECK_ITR = true;
} else if (DEC_CHECK_ITR == true) { 
  INC_ITR = true;
  INC_CHECK_ITR = false;
  DEC_ITR = false;
  DEC_CHECK_ITR = false;
}
if (incrementLock > 0) {
  incrementLock--;
} else if (incrementLock == 0) { 
  INC_IMPROVED = true;
}
if (decrementLock > 0) {

         decrementLock--;
} else if (decrementLock == 0) { 
DEC_IMPROVED = true;
}

        long currentCount = LATENCY_TIMER.getCount();
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        if ((currentCount - oldCount == 0) && (threadPool.getThreadPoolSize()>1) ) {
  threadPool.decrementPoolSizeTo(1);
}
oldCount = currentCount;

      } catch (Exception e) {
e.printStackTrace();

      }
    }
}

 public class Memory {
   int threadPoolSize;
   int count;
   double value;

 public Memory(int size, int c, double val) {
   this.threadPoolSize = size;
   this.count = c;
   this.value = val;
 }

 public Memory() {
 }

 public int getThreadPoolSize() {
   return threadPoolSize;
 }

 public void setThreadPoolSize(int threadPoolSize) {
   this.threadPoolSize = threadPoolSize;
 }

 public int getCount() {
   return count;
 }

 public void setCount(int count) {
   this.count = count;
 }

 public double getValue() {
   return value;
 }

 public void setValue(double value) {
   this.value = value;
 }

}
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 public class Prime1m implements Runnable {

   private FullHttpRequest msg;
   private ChannelHandlerContext ctx;
   private Timer.Context timerContext;

   public Prime1m(ChannelHandlerContext ctx,FullHttpRequest msg,Timer.Context 
timerCtx) {
     this.msg = msg;
     this.ctx = ctx;
     this.timerContext = timerCtx;
   }

   @Override
   public void run() {
   Timer.Context 
throughputTimerContext=ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
   ByteBuf buf = null;
   try {
     ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
     Random rand = new Random();
     int number = rand.nextInt((1000021) - 1000000 ) + 1000000;  
     String resultString = "true";
     for (int i=2; i<number; i++) {
       if (number%i == 0) {
         resultString="false";

  break;
}

     }
     buf = Unpooled.copiedBuffer(resultString.getBytes());
     ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
   } catch (Exception e) {
   AdaptiveConcurrencyControl.LOGGER.error("Exception in Prime1m Run method", e);
   }

   boolean keepAlive = HttpUtil.isKeepAlive(msg);
   FullHttpResponse response = null;
   try {
     response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
   } catch (Exception e) {
     AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
   }
   String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
   if (contentType != null) {
     response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
   }
   response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,   
response.content().readableBytes());
   if (!keepAlive) {
     ctx.write(response).addListener(ChannelFutureListener.CLOSE);
   } else {
     response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
     ctx.write(response);
   }
   ctx.flush();
   throughputTimerContext.stop();
   timerContext.stop(); // Stop Dropwizard metrics timer
  }
}
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 public class Prime10m implements Runnable {

   private FullHttpRequest msg;
   private ChannelHandlerContext ctx;
   private Timer.Context timerContext;

   public Prime10m(ChannelHandlerContext ctx,FullHttpRequest msg,Timer.Context 
timerCtx) {
     this.msg = msg;
     this.ctx = ctx;
     this.timerContext = timerCtx;
   }

   @Override
   public void run() {
   Timer.Context 
throughputTimerContext=ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
   ByteBuf buf = null;
   try {
     ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
     Random rand = new Random();
     int number = rand.nextInt((10000021) - 10000000 ) + 10000000;  
     String resultString = "true";
     for (int i=2; i<number; i++) {
       if (number%i == 0) {
         resultString="false";

  break;
}

     }
     buf = Unpooled.copiedBuffer(resultString.getBytes());
     ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
   } catch (Exception e) {
   AdaptiveConcurrencyControl.LOGGER.error("Exception in Prime10m Run method", e);
   }

   boolean keepAlive = HttpUtil.isKeepAlive(msg);
   FullHttpResponse response = null;
   try {
     response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
   } catch (Exception e) {
     AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
   }
   String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
   if (contentType != null) {
     response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
   }
   response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,   
response.content().readableBytes());
   if (!keepAlive) {
     ctx.write(response).addListener(ChannelFutureListener.CLOSE);
   } else {
     response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
     ctx.write(response);
   }
   ctx.flush();
   throughputTimerContext.stop();
   timerContext.stop(); // Stop Dropwizard metrics timer
  }
}
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 public class DbWrite implements Runnable {

   private FullHttpRequest msg;
   private ChannelHandlerContext ctx;
   private Timer.Context timerContext;

  public DbWrite(ChannelHandlerContext ctx, FullHttpRequest msg, Timer.Context 
timerCtx) {
    this.msg = msg;
    this.ctx = ctx;
    this.timerContext = timerCtx;
  }
  @Override
  public void run() {
  Timer.Context throughputTimerContext= 
ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
  ByteBuf buf = null;
  try {
    ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
    Connection connection = null;
    PreparedStatement stmt = null;
    try {
      Connection = 
DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/echoserver?
useSSL=false&autoReconnect=true&failOverReadOnly=false&maxReconnects=10",
"root", "root");
      Timestamp current = Timestamp.from(Instant.now());
      String sql = "INSERT INTO Timestamp (timestamp) VALUES (?)";
      stmt = connection.prepareStatement(sql);
      stmt.setTimestamp(1, current);
      stmt.executeUpdate();
      buf = Unpooled.copiedBuffer(current.toString().getBytes());
    } catch (Exception e) {

AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
    } finally {

if (stmt != null) {
        try {
          stmt.close();

} catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

    }
    }
    if (connection != null) {
      try {

connection.close();
      } catch (Exception e) {
        AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
      }
     }
    }
    ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
    } catch (Exception e) {

AdaptiveConcurrencyControl.LOGGER.error("Exception in DbWrite Run method", e);
    }

   boolean keepAlive = HttpUtil.isKeepAlive(msg);
   FullHttpResponse response = null;
   try {
     response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
   } catch (Exception e) {
     AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
   }
   String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
   if (contentType != null) {
     response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
   }
   response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,       
response.content().readableBytes());
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if (!keepAlive) {
     ctx.write(response).addListener(ChannelFutureListener.CLOSE);
   } else {
     response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
     ctx.write(response);
   }
   ctx.flush();
   throughputTimerContext.stop();
   timerContext.stop(); // Stop Dropwizard metrics timer
  }
}

 public class DbRead implements Runnable {

   private FullHttpRequest msg;
   private ChannelHandlerContext ctx;
   private Timer.Context timerContext;

  public DbRead(ChannelHandlerContext ctx, FullHttpRequest msg, Timer.Context 
timerCtx) {
    this.msg = msg;
    this.ctx = ctx;
    this.timerContext = timerCtx;
  }
  @Override
  public void run() {
  Timer.Context throughputTimerContext= 
ThreadPoolSizeModifier.THROUGHPUT_TIMER.time();
  ByteBuf buf = null;
  try {
    ThreadPoolSizeModifier.IN_PROGRESS_COUNT++;
    Connection connection = null;
    PreparedStatement stmt = null;
    try {

Random randId = new Random();
int toRead = randId.nextInt(50000) + 1;
connection = 

DriverManager.getConnection(”jdbc:mysql://127.0.0.1:3306/echoserver?
useSSL=false&autoReconnect=true&failOverReadOnly=false&maxReconnects=10",

"root", "root");
String sql = "SELECT timestamp FROM Timestamp WHERE id=?";
stmt = connection.prepareStatement(sql);
stmt.setInt(1, toRead);
rs = stmt.executeQuery();
while (rs.next()) {
  readTimestamp = rs.getTimestamp("timestamp");
}

    } catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

    } finally {
if (stmt != null) {

        try {
          stmt.close();

} catch (Exception e) {
AdaptiveConcurrencyControl.LOGGER.error("Exception", e);

    }
    }
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    if (connection != null) {
      try {

connection.close();
      } catch (Exception e) {

 AdaptiveConcurrencyControl.LOGGER.error("Exception", e);
      }
     }
    }
     String readTimestampStr = readTimestamp.toString() + "\n";
     buf = Unpooled.copiedBuffer(readTimestampStr.getBytes());
     ThreadPoolSizeModifier.IN_PROGRESS_COUNT--;
    } catch (Exception e) {
      AdaptiveConcurrencyControl.LOGGER.error("Exception in DbRead Run method", e);
    }
   boolean keepAlive = HttpUtil.isKeepAlive(msg);
   FullHttpResponse response = null;
   try {
     response = new DefaultFullHttpResponse(HTTP_1_1, OK, buf);
   } catch (Exception e) {
     AdaptiveConcurrencyControl.LOGGER.error("Exception in Netty Handler", e);
   }
   String contentType = msg.headers().get(HttpHeaderNames.CONTENT_TYPE);
   if (contentType != null) {
     response.headers().set(HttpHeaderNames.CONTENT_TYPE, contentType);
   }
   response.headers().setInt(HttpHeaderNames.CONTENT_LENGTH,   
response.content().readableBytes());
   if (!keepAlive) {
     ctx.write(response).addListener(ChannelFutureListener.CLOSE);
   } else {
     response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
     ctx.write(response);
   }
   ctx.flush();
   throughputTimerContext.stop();
   timerContext.stop(); // Stop Dropwizard metrics timer
  }
}
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