

Automatic invoice Data identification with relations

By

Pettagam Tharindu Rukshan Ubewikkrama

2015/CS/136

This dissertation is submitted to the University of Colombo School of Computing

In partial fulfillment of the requirements for the

Degree of Bachelor of Science Honours in Computer Science

University of Colombo School of Computing

35, Reid Avenue, Colombo 07,

Sri Lanka

July 2020

1

Declaration

I, P.T.R Ubewikkrama of Student & Registration No.2015/cs/136 hereby certify that

this dissertation entitled Automatic invoice Data identification with relations is

entirely my own work and it has never been submitted nor is currently been

submitted for any other degree.

………………………………. …………………………………….

 <Date> Signature of the Student

I, Dr. D.D. Karunarathne, certify that I supervised this dissertation entitled <Title>

conducted by P.T.R Ubewikkrama in partial fulfillment of the requirements for the

degree of Bachelor of Science Honours in Computer Science.

………………………………. ……………………………………..

 <Date> Signature of the Supervisor

I, Mr. G P Seneviratne, certify that I supervised this dissertation entitled <Title>

conducted by P.T.R Ubewikkrama in partial fulfillment of the requirements for the

degree of Bachelor of Science Honours in Computer Science.

………………………………. ……………………………………...

 <Date> Signature of the Co-Supervisor

2

Abstract

Mobile phones became a common device to everyone. There are 6 billion

smartphone users in 2019. Because of that most of the time people tend to buy items

through the mobile phone. Billions of online transactions happen each and every

day.All generate e-invoices. People tend to use e-invoices rather than paper-based

invoices. However the processing of those e-invoices is very hard.

Most of the time need to enter the e-invoice data into computers

manually.Because no relationship between text elements makes automatic analysing

PDF is very hard.To handle billions of invoices industry spend billions of money. By

this research we introduce novel algorithm which was language independent and can

be used to identify ”Key-word , Value” pair data automatically

3

Preface

The results in this study rely upon the sample invoices created by me by using the real

invoice data set. The analysis of the data is entirely my own work which I carried out

with the help of apache pdfBox library.

4

Acknowledgement

I would like to express my sincere gratitude to my Supervisor Dr. D.D. Karunarathne

and Co-supervisor Mr. G.P. Seneviratne for the continuous support on this project, for

their patience, motivation and guidance throughout this project.

My parents for supporting me emotionally and financially as well as for being

my strength.

The participants in the evaluation from University of Colombo School of

Computing (UCSC) for their cooperation and enthusiasm.

5

Table of Contents

Declaration 2

Abstract 3

Preface4

Acknowledgement .. 5

Table of Contents. 6

List of Figures 7

List of Tables .. 8

List of Acronyms. 9

Chapter 1 - Introduction

10

1.1 Background to the Research . 1

1.2 Research Problem and Research Questions . 4

1.3 Justification for the research . 5

1.4 Methodology . 6

1.5 Outline of the Dissertation . 6

1.6 Definitions 7

1.7 Delimitations of Scope . 7

1.8 Conclusion . 8

Chapter 2 - Literature Review. .8

Chapter 3 - Design. 13

Chapter 4 - Implementation. 16

Chapter 5 - Results and Evaluation. 22

Chapter 6 - Conclusions. 39

6

6.1 Introduction . 39

6.2 Conclusions about research questions (aims/objectives)39

6.3 Conclusions about research problem39

6.4 Limitations 39

6.5 Implications for further research 39

References . 41

Appendix A: Publications 42

Appendix B: Diagrams 43

Appendix C: Code Listings . 44

7

List of Figures

1.1.1 X-Y tree generated from HTMM model.

3

1.1.2 combination of two segments. .. 4

2.1: The sparse lines in a PDF page10

2.2: three features of an invoice image. 10

3.1: Overall design Architecture 13

4.1: Overall Architecture of libraries . 16

4.2.2.1: Reading the pdf . 18

4.2.2.2: Add relevant details to the list. 18

4.2.2.3: Unicode character stream with the coordinates.

18

 4.2.2.3: How calculate the X,Y coordinate18

4.2.2.4: Combined words 19

4.2.2.5: Sample input 19

8

List of Tables

4.2.2.1: After first iteration 20

4.2.2.2: After second iteration.

21

 5.2.1.1 pre-Table special symbols and numbers

23

5.2.1.2 After table. 23

5.2.2.1 Pre-table No special symbols and have numbers 24

5.2.2.2 After table 24

5.2.3.1 pre-table No special symbols and numbers 25

5.2.3.2 After table 26

5.2.4.1 Contain special symbols and but no numbers 26

5.2.4.2 After table 27

5.2.5.1 pre-table No special symbols and with numbers

27

5.2.5.2 After table 28

5.2.6.1 pre-table No special symbols and one number 29

5.2.6.2 After table 29

5.2.7.1 pre-table Values missing horizontal

30

5.2.7.2 After table 30

5.2.8.1 pre-table Values missing vertical

31

5.2.8.2 After table 32

5.2.9.1 pre-table Complex scenario vertical 33

5.2.9.2 After table 34

9

Chapter 1 : Introduction

An invoice, bill is a commercial document issued by a seller to a buyer, relating

to a sale transaction and indicating the products, quantities, and agreed prices for

products or services the seller had provided the buyer.Payment terms are usually

stated on the invoice. Although it has a 7000 year history, still most of the time they

are processed manually. Most of the things done with the technology with higher

accuracy. However some times that accuracy was not enough. To the invoice

processing is the same. There are a lot of systems that are doing automatic invoice

processing with not enough accuracy. There are some semi-automatic systems with

higher accuracy, however user enrollment is very high in such systems. Therefore, it is

our attempt to exploit this branch of Automatic processing of invoices and thereby

contribute to the business world.

Thousands of thousands of research done to solve the automatic processing of

documents. Also there are a large number of them that are tried on business

documents. However most of them are focused on scanned or hand written

documents. That is because it was very hard to process pdf documents which had no

relationship between the components and only focused on final presentation.

Therefore, through our research we aim to address this gap in the automatic

processing of pdf documents.

1.1 Background to the Research

In the past there was a problem communicating visual material between

different computer applications and systems. The specific problem is that most

programs print to a wide range of printers, but there is no universal way to

communicate and view this printed information electronically. PDF solve this problem

which was written in PostScript language introduced by J. Warnock [1]. PostScript is a

device independent page description language and this support for PostScript as a

1

standard makes the PostScript solution a candidate for this electronic document

interchange.

Invoice can be grouped into two classes, paper-based invoices and

E-invoices.In the past, people used only paper invoices. However , because of the

revolution of technology people are more and more used to E-invoices. Billentis'

report consists of the details about the invoices volumes used around the world each

year. According to that nearly 6 billion mobile devices used around the world in 2019.

Total volume of invoices estimate for 2019 is 550 billion and 2019 volume for

e-bills/e-invoices will achieve at least 55 billion world-wide with annual growth rates

of 10-20% in mid-term. Handling such amounts of invoices is a hard task and handling

pdf invoices is a very hard task. Because when innovating the pdf , inventors only

think about the presentation of the document. No relationship between words. Less

number of tools available to manipulate pdf.

PDFMiner is a tool for extracting information from PDF documents. Unlike other

PDF-related tools, it focuses entirely on getting and analyzing text data. PDFMiner

allows one to obtain the exact location of texts in a page, as well as other information

such as fonts or lines. It includes a PDF converter that can transform PDF files into

other text formats.Apache Tika and Apache PDFBox are other well known pdf libraries

which can be used to manipulate pdf [2][]. Those are still getting updated and there

are many other good libraries which are stopped long years back because of the

complexity of pdf documents.docsplit, Tabula, pdftohtml, pdftoxml etc.

There are two major solutions for extracting information from the pdf documents.

First Hidden Tree Markov Models for Document Image Classification[3]. When a new

document came, the system scanned it beginning from the upper left corner. When it

found some section (section is one of the three sections of the pdf document, Text

,image and vector graphics. Vector graphics are the things made with lines and curle

like basic structures. Ex tables) it creates a new node. One text segment is one node

likewise. The system scanned the whole document horizontally and vertically and

created an X-Y tree from that [figure 01]. It assumes if the some keyword is some

node then value should be child node. This system used Hidden Macro Model

algorithm to find the primitives. (primitives are primitive keywords found in the

document ex : total , description)

2

Second model is Field Extraction from Administrative Documents by Incremental

Structural Templates[4]. In this model there are three components. User component,

Database component and new invoice component. When a new invoice comes, the

system first checks whether that invoice template is already available on the

database or not. If it is available then it directly mapped the template with the invoice

and extract data. If not, it segment the invoice and ask the user to labeled it. After the

user labeled it it created a relative graph connecting each node to each one. Then it

saves it as a new template. Figure 02 shows how the nodes connected. System keeps

the angle between nodes and distance between nodes. There are a lot of commercial

solutions available constructed based on the above two models. Some of the major

products are IRIS , CLEARDATA , SmartSoft and Doc parser etc. All of those are used

scanned invoices to extract the invoices. IRIS can scanned pdf documents and extract

data, anatote data and many more. However all of these solutions are not fully

automatic, they are semi automatic. Users need to annotate the documents.

Figure 1.1.1: X-Y tree generated from HTMM model

3

Figure 1.1.2: combination of two segments

1.2 Research Problem and Research Questions

1.2.1 How effectively can we write grammar to invoices and create a layout parse

tree

to classification?

As mentioned above each and every year there are billions of invoices moving

around the world. Companies need to analyze their invoices to achieve their business

goals. If there are online shopping portals they like to what items usually buy together

(When customers buy one item, they can buy other items with buy together), what

are the most selling items etc. In the past all invoices were paper based. Before

analyzing them they need to enter each and every important details in the invoice

manually to the computer. To do that they need a lot of manpower and need to

spend a lot of money not only for the workers but also for buying papers to print the

invoices. According to the Billentis report europeans average cost to process one

manual invoice is $15 and US government spends almost $300 million just for paper

invoicing in the goods. Using E-invoices we can reduce the paper cost, However the

man power is the same. It is very important to automate this process.

Before the analysis we must classify invoices into groups. If we apply data

extraction algorithms to each invoice it becomes a very time consuming task. So must

4

first classify them. To do that we used grammar. Grammars have been useful because

they are intuitively simple to understand, and have very elegant representations.

Their ability to model semantic interpretations of patterns, both spatial and temporal,

have made them extremely popular in the research community. Also they are very

fast when executing on the computer. After segmentation of the invoices we try to

write a grammar to invoices, through that create parse tree for each and every

invoices. Then when new invoice came compare parse trees and do the extraction

steps.In hear there are no predefined classes. When a new invoice comes which has a

new layout then the system defines a new class for it. Using grammar introduces a

new way to deal with invoices to computers.

1.2.2 Can we use Spaces between segments to create logical structure?

After the classification, we need to identify the logical relationships between

segments.To do that we use spaces between the segments(As previously mentioned,

segment can be a one keyword Ex: Total). In pdf documents there are no shifts

between segments, all are well structured. If one keyword is theirs,the corresponding

value of the keyword should be located near horizontal or vertical space around the

keyword. Likewise use spaces to build relationships.

1.3 Justification for the research

As mentioned there are problems with automatic data extraction with their

relationships. Through this research I am going to introduce new novel algorithm

“Space algorithm” which solve those problem

5

1.4 Methodology

To manipulate the pdf files , we used mostly two very popular libraries.

Apache PDFBox and PDFminer.Apache PDFBox is an open-source Java library that

supports the development and conversion of PDF documents.Using this library, we

can develop Java programs that create, convert and manipulate PDF documents.

Using PDFBox, we extract Unicode text characters with the properis of them to

construct the word locator. PDFMiner is another tool for extracting information from

PDF documents. Unlike PDFbox, it focuses entirely on getting and analyzing text data.

PDFMiner allows one to obtain the exact location of texts in a page, as well as other

information such as fonts or lines same as the PDFbox. However both of two tools

cannot be used to identify tables directly.

Invoice data set was given by the Creative Software company. In the dataset

there are a lot of invoices with different languages and also different formats (image

invoices and pdf invoices). First iteration only considers the pdf invoices in the english

language.

The philosophical foundation of this research is based on the view that

existing procedures can be verified through experiments, observations and

mathematical logic. Therefore this research is an experimental research, which is

designed to collect and interpret data, based on experiments and observations.

Finally the validation will be conducted through experimentation and the findings of

the research will be observable and quantifiable.

1.5 Outline of the Dissertation

Next chapter contains the Literature Review and the following chapters

contain Design, Methodology ,implementation result and evaluation. Final chapter

contains and conclusion.

6

1.7 Delimitations of Scope

1.7.1 In-Scope

● The project will cover the process writing grammar to invoices to classification

● Create logical structure of segments using the space algorithm

● Identify the invoice data automatically

● Deal if there are unexpected message in default invoice

1.7.2 Out-Scope

● If the invoice came rather than English language they will not be covered in

the current phase of the project

● The initial phase will only cover pdf format invoices with single raw tables.

● Limited number of font Invoices may use a number of different font styles.

However within the first face of the research focused on a limited number of

fonts.

1.8 Conclusion

Above chapter explains how the handling of PDF invoices becomes a problem

to society and what are the solutions they create to solve that. To handle those

problems in this research introduce new algorithms which make layout relationships

in a better manner.

7

Chapter 2: Literature Review

In the early 1990, the origin of the adobe acrobat and the PDF happened. At

that time PostScript language was very popular all around the world. PDF builds on

the PostScript page description language by underline the document structure.Also it

has interactive navigation feature on PostScripts underlying imaging model, proving a

convenient efficient mechanism enabling document to be reliably viewed and printed

anywhere [5].PDF documents preserve the look and feel of the original documents by

describing the low-level structural objects such as a group of characters, lines, curves

and images and associated style attributes such as stroke, color, font, fill, and shapes .

Almost all PDF documents are untagged and don’t have the basic high level logical

structure information such as words, text lines, paragraphs, logos, and figure

illustrations, which makes reusing, editing or modifying the layout or the content of

the is very document difficult. When we consider a pdf document basically it consists

of three components, Text, Images and Vector graphics. There is a lot of research

going on making the pdf more than the viable format. Rather than logical structure,

creating the layout of the pdf is also very difficult [6]. The logical structure is a tree of

logical objects such as ‘title’ and ‘author’, while the layout structure is a tree of layout

objects which can be represented as rectangles. Hui Chao and Jian Fan tried to extract

the layout from the pdf documents by dividing one pdf into three separate pdf

documents , Text only pdf, image only PDF and vector graphic pdf. Identify each

object easily from related pdf and finally combine three pdfs and make a single xml

file.

To extract text from the pdf there are a huge number of libraries. But to

extract vector graphics there are a very limited number of tools. Identify the tables

and text within them is very hard in pdfs.Extracting table metadata is a challenging

problem for several reasons: diverse medium types, no formal table designing

8

rules/standards, different presentation schemes in different mediums, different table

layout requirements of different publishers, diverse table cell types etc. In order to

characterize tables spanning over a wide range of documents, a rich and flexible set

of representation metadata is required. Ying Liu, Prasenjit Mitra propose a set of

medium independent table metadata to facilitate the table indexing, searching, and

exchanging. To extract the contents of tables and their metadata, they used

automatic table metadata extraction algorithm[6] They done it by converting a PDF

document into a formatted text file, detecting the table candidates based on location

analysis and keyword matching (table environment/geography metadata is extracted

in this phase), confirming/denying table candidates, and recognizing the table

structure. Identifying table boundaries correctly helps to improve table data

detection . Ying Liu introduced a method to improve the table boundary detection

performance by considering the sparse-line property of table rows [7,8,9]. That

method easily simplifies the table boundary detection problem into the sparse line

analysis problem with much less noise.There are many sparse lines that can be found

within the same document same as the invoice.

Figure metadata extraction in invoices is also very important sometimes.

There can exist two companies who are using the same invoice template. When we

classify them into groups , in parse trees there is no difference. So we need to analyse

company logo details which are inside the image object.Extraction of figures and text:

We use a popular Java based PDF processing library PDFBox to extract text (text lines

are extracted sequentially, as they appear in the original file) and raster graphics

(image file for the graphic element, location, length and width) from PDF files.

PDFBox or other common PDF processing libraries (Xpdf, PyPDF8) are not suitable for

extraction of vector graphics. Also, they do not extract text from scanned articles,

which need to be processed by OCR. Further we can divide image text identification

in to three main parts.Color feature extraction, Text feature extraction and shape

feature extraction [10]

9

Figure 2.1: The sparse lines in a PDF page

Figure 2.2: three features of an invoice image

From the information extraction point of view one problem is that the order

of

10

textual objects in the file do not always correspond to the reading order. Several

converters are available either open-source or commercial (a good survey can be

found in [11]).More recently, in [12] text objects are extracted from the PDF and a

word and line segmentation is produced based on heuristics using the distance

between characters , their geometrical positions and ontologies can be used.

Greenstone open source library software which can be used to information

extraction. However because of geometrical usage they have some problems

explained in the section below [13].

Identify the values in the invoice we use grammar. Grammars are very popular

in the research community because of simplicity and very fast execution. Grammars

have been useful for providing structural descriptions of a variety of objects like

telephone numbers,addresses, English sentences etc., and associating semantic

information with the resulting models. They have been most widely used by the

natural language processing community..Grammars consist of a collection of basic

primitives and a set of rules which compose patterns out of these primitives. Thus

collections of objects which exhibit structural similarity can be designed using

grammar. For example, the set { 00110, 0110, 01110…} describes the set of

sequences over 01 which have a sequence of 1s bounded by two 0s. Much more

complicated sets, which exhibit regularity in higher dimensions including time, can be

modeled using grammar. Roughly speaking, they generate sub-patterns out of basic

primitives, and then generate bigger or more complicated patterns from these

subpatterns. English words can be constructed by combination of characters. Address

can be constructed by a set of numbers followed by symbol followed by number or

character sequence. We can define those grammar rules. There are several issues in

the modeling of objects or events using grammar. The first issue is the choice of basic

primitives and the appropriate grammar type. The choice of primitives is determined

by how easily basic features can be extracted from the data, while the choice of

grammar type is determined by the complexity of the desired structure. Ex : When

identifying telephone numbers, primitives will be Symbol + / 0-9 numbers.

Logical connections can be identified by using spaces. Scanning all spaces

between pdf objects we can find the two threshold values . threshold calculated using

the four spaces around the world. Left, right, top and bottom. Least distance is the

11

distance between keywords. It is used as the one threshold. Otherone is the second

least common distance . that is the distance between the keyword and value. If there

are symbols, the first threshold is the between symbols and the second one is

between keywords.[14].

Use machine training techniques for identification vast popular method in

now

days. How ever pre defined knowledge is the main disadvantage.Marc ̧al Rusi n ̃ o

propose an information extraction method that also relies on registering portions of

layout elements. The proposed model is extremely simple and requires a minimum of

human intervention. In addition, our main contribution is that although the template

model is learned using a single annotated image, the subsequent processed images

incrementally adjust this model by a reformulation of the tf-idf statistic. The main

advantage of such a method is that the learned model can absorb variations of the

invoice layout through time and learns in an unsupervised way which are the

discriminative layout elements that help the most to extract a certain field[15]. Some

use knowledge based methods to extract information.[16] here If the analysis system

fails to analyze an example document, the knowledge descriptions are incrementally

modified to cover the correct layout objects included in that document.

12

Chapter 3 - Design

Figure 3.1: Overall design Architecture

This section explains the overall design of the system. This path used to create

the parse tree for the invoice. PDF document content stream lists all the page objects

such as text objects, image objects, path objects etc. First we define these objects as

primitives and other direction primitives.Path objects are referred to as vector

graphics objects or drawings and paintings composed of lines, curves and rectangles.

Page objects in PDF documents don’t reflect nor are related to the logical structure or

logical components of the document. For example, a text object may only have part

of the characters of a word; path objects which are the building blocks for the

graphical illustrations, such as bar charts, pie charts and logos are often just a fraction

of the whole figure illustrations e.g. one bar in a bar chart. To discover the logical

structure of a document, first we need to analyze and segment the document and get

the characteristics of each object (text object have text size, font, text width,x-axis

and y-axis coordinates from the left upper corner which conder as “0,0” etc. image

object may contain the size ,location etc, path (vector graphic) object may contain

the width,size and location)

13

Using the different pdf manipulation libraries identify the three typed

segments and characteristics .In this research if there are some text within an image,

they are not considered. Just take that component as an image component. However

tables are considered. But when considering a table, we did not assume it as a table.

Just take as the combination of lines. Directive primitives used to create hold the

relative positions of the objects and grammar word :

Ex : some invoice get the output as :

 “Text”->”west”->”line”->”text”->”right”->”text”->”down”->”line”->”text”->”left”->”text”

Using grammar parser test the above word of the language with the already

available words in the layout database library. If there is a matching word that means

we already identified that layout. So then we can ask from the annotated invoice

library to get the meaning of that layout.

In here basically do the creation of logical structure. First consider

inputs.Three inputs needed to the algorithm.

● Spaces between object (can be calculated within the algorithm when the

locations are given)

● Special characters (Double colon, dot , dash line etc)

● Numbers

Spaces are the primary input. When segmenting the image we get the

coordinates of each object. Use them as input and calculate the spaces between the

objects. In general space between the two key word sections are less than the space

between the keyword and the value. In an invoice if there is a keyword which has a

value (ex Total , address) then the related value must be in a horizontal way or in

vertical way from the key word. Using that concept we can create logical structure to

some extent without even considering the internal data of the object.figure

When analysing the data we found some invoices which are the spaces

between the keywords and the spaces between the values are the same. To handle

this kind of scenario we use special characters and font sizes as inputs. If the

algorithm finds the spaces are the same then it uses other inputs to process further. If

there's a special character and it is close to some side from the left and right sides ,

14

that means algorithms find the keyword section. The other section near to special

character must be the value. After the same spaces if there are no special characters

then algorithm checks for font sizes. In general, most of the time keyword sections

get the higher font size. Addition to that algorithm consider the content of the text

objects. Whether it is a numeric segment or alphabet segment.if near two segments

are from two different types, that means alphabet one must be keyword.

Second, after the creation of the logical structure we use natural language

dictionary and ontologis to validate the result. When we write the same keywords in

different invoices we can write it in completely different ways but it must be the

same. To solve that problem we use a natural language dictionary. Through that we

map the key words to the general keyword. Also if only we construct logical trees it

was not useful. There is a way to map the output to the real world general invoice

layout. For that also this mapping is very important.

Then we use ontologies to identify the values of keywords. For example, there

is a way to construct an address, write a date , discount etc. though that validate the

keyword value matching are correct.

After getting the relationships combine the logical structure and the parse

tree of the same algorithm and store in the Annotated invoices with semantics

database.

15

Chapter 4 -Implementation

This project is accomplished through open source software. It is written in

Java

language using IntelIdea IDE.

4.1 Discussion on technology used

This section discusses the technology that is used in this project and code

implementations can be found in Appendix A. The overall architecture of the libraries

and the connections among them is given in Figure 4.1.

Figure 4.1: Overall Architecture of libraries

4.1.1 Personal Computer(PC)

The PC used in this project has the following specifications, as it has to have

the processing power to accommodate the requirements.

● Processor: Intel Core i5-8250U

● Ram: 16GB

● Operating System: Windows 10

4.1.2 intellij idea

IntelliJ IDEA is an integrated development environment (IDE) written in Java

for developing computer software. It is developed by JetBrains (formerly known as

IntelliJ), and is available as an Apache 2 Licensed community edition, and in a

proprietary commercial edition. Both can be used for commercial development. In

this research I used the community version of the IDE.

16

4.1.3 Apache PDFBox® - A Java PDF Library

The Apache PDFBox® library is an open source Java tool for working with PDF

documents. This library allows creation of new PDF documents, manipulation of

existing documents and the ability to extract content from documents. Apache

PDFBox also includes several command-line utilities. Apache PDFBox is published

under the Apache License v2.0. This has built in functionality for text extraction with

their characteristics. This research used PDFBox version 2.0.15 released in

2019/04/11 and used the above functionality to take the character stream with their

related characteristics.

4.1.4 tabula-java

4.2 Implementation of the functionalities

This chapter discusses how the required functionalities were implemented

using predefined libraries in java. Steps which were implemented separately are

discussed here. In addition, the benefits and drawbacks of each stage will further be

discussed.

4.2.1 Data Gathering

Invoice contains personal information about the buyer and seller. If the

invoice is publically available then there is a privacy violation. So there are no dataset

over the internet. Looking at the some sample invoices I have to create dummy

invoices with dummy data which protect the original invoice structure. Most of the

original invoices were given by the creative software company which contains the

different invoices with different styles.

4.2.2 Read PDF and Character extraction

As the first step, first read the PDF file using the Java PDFbox PDFTextStripper

class. To get the text position coordinates, font style characteristics, Unicode values

of the characters and text size can be extracted using the writeString class. After

17

reading override the writeString class to get the relevant characteristics of each and

every character including the space characters.

Figure 4.2.2.1: Reading the pdf

Figure 4.2.2.2: Add relevant details into list

In this research only used location details of each character. X direction, Y direction of

each text and the unicode character of the text are added to the list named

“positionList”. Directions are calculated considering the left top corner as 0,0 position

and take the absolute value of the output value.

Figure 4.2.2.3: Unicode character stream with the coordinates

Figure 4.2.2.3: How calculate the X,Y coordinates

18

As the second step then combine those characters into groups to create meaningful

words. Simple regular grammar expressions used for that. each and every character

given as input and if the next input character is an escape character then it considers

the previous input stream as a one word. If the grammar found the word, then it

mark the first letter of the word as the starting point of a word.

But creating the words are not useful if they didn’t give a meaningful

definition. Spaces between the two characters within the word and between the

word and the word and the text segment and text segment are totally different.

Space between word and the word higher than the character and the character.

Space between segment and segment is higher than the space between the two

words. Algorithm used that characteristic to divide the segments. After creating the

words used simple algorithm which take the words by words and compare them with

the leftmost character position of each word and calculate the spaces (left most

character coordinates represent the coordinates of the word Ex : In Figure 4.1 word

‘page’ coordinates equal to the character ‘p’ coordinates which was X = 50.666 and Y

= 516.359). Figure 4.1 shows sample segmented text output.

Figure 4.2.2.4: Combined words

As shown in Figure 4.1: those words make a meaning segment. When we consider the

value ‘1 437,95’ and ‘SEK’ as two words they didn’t make any sense. However

combining those gave a meaningful segment. But important to mention this

algorithm works on the horizontal words. But writing an address most often is written

in a vertical fashion. To solve those scenarios used space algorithm which explains the

later sub section.

19

4.2.2 Space Algorithm

This was a novel algorithm which was very accurately working on text

segments and creating logical structure between them. As input to the algorithm

need to give the text segment with the coordinates. This algorithm works

independently of the language so it can be used for any language invoices.

Figure 4.2.2.5: Sample input

There are few predefined values for the algorithm.

● If space higher than below one then return 1 else 0

● If the numeric characters found in the words then return -2 else +2

● if Special symbols can be found then return +2 else 0

These values are assigned to give the higher value to the Key Word part of the

KeyWord, Value combination. Looking at the values then algorithm mark the text

segments as keywords and their related values. As example given the input figure

4.2.2.5 sample input then as shown in Figure 4.1 are the related values for each word

calculated after the first iteration. When in the second iteration it changes the values

according to some section process. First it checks the two values of related

coordinates are less than its value. if not it continues to the next value. if not again

continues. This process repeats until it finds less than values. If they are found then it

selects its child from the two values and updates the related space values by adding

one more to previous values. Doing so changes the previous unmatched cases to

matched cases. Repeat this until it covers the whole text segments in the document.

In the above scenario algorithm need to only run twice to map the details.

20

 Space Number Spec.Char Total

Name: 1 +2 +2 5

Email: 1 +2 +2 5

Age 1 +2 0 3

Invoice No 0 +2 0 2

Tharindu Rukshan 1 +2 0 3

Ptr.Ubewikkrama@gmail.com 1 +2 0 3

18 1 -2 0 -1

18ADS2122 0 -2 0 -2

Table 4.2.2.1: After first iteration

 Space Number Spec.Char Total

Name: 1 +2 +2 5

Email: 2 +2 +2 6

Age 2 +2 0 4

Invoice No 1 +2 0 3

Tharindu Rukshan 1 +2 0 3

Ptr.Ubewikkrama@gmail.com 1 +2 0 3

18 1 -2 0 -1

18ADS2122 0 -2 0 -2

Table 4.2.2.2: After second iteration

21

5. Results and Evaluation

This section is divided into three main subtopics. First introduce the detailed

dataset (5.1) then the second research question results are evaluated (5.2) and finally

the first research question results are evaluated(5.3).

5.1 Dataset

Dataset contains 56 invoices with different layout styles with dummy data

(Same layout as original).Invoices are in english language. However there are 10

possible scenarios which can happen within the invoice. Applying those cases to each

layout generates 840 invoices. All 560 invoices are used for result calculations.

5.2 Results with the algorithm

Following subsection describes how Space algorithms behave and generate

results in each different possible cases.

5.2.1 Contain special symbols and numbers

In this case keywords contain the special symbols at the end “:” and values

contain the numbers within it. Both “Date” and “Invoice number” get +2 for without

number and +2 for special symbols and only “Date” gets +1 for space. because the

algorithm cannot calculate space probability for “Invoice number” because it didn’t

have a bottom member. Table 5.2.1.1 contains the pre assigned values.

22

 Number Special Symbol Space Total

Date +2 +2 +1 5

Invoice Number +2 +2 0 4

2019-12-22 -2 0 0 -2

5FS5233SD -2 0 0 -2

Table 5.2.1.1 pre-Table special symbols and numbers

In the second iteration algorithm changed the previous values when it found

the clear positive number difference between two related text segments. Here

“Date” has value +5 and its right member has value -2 and the bottom memer has

value +5. So the right member gives a higher difference than the bottom member (-7

< 0). Then the algorithm assigns the value “2019-12-22 ” to the “Date” and increment

the “Invoice number” previous value by one and decrease the “5FS5233SD” by one

(Table 5.2.1.2)because the nebouring segments also have higher probability to found

its related value in the right hand location.

 Previous New

Date 5 5

Invoice Number 4 5

2019-12-22 -2 -2

5FS5233SD -2 -3

Table 5.2.1.2 After table

5.2.2 No special symbols and have numbers

In this case keywords do not contain any special symbols at the end and one

value contains the numbers within it. Both “Name” and “Invoice number” get +2 for

23

without number and 0 for special symbols andand only “Name” gets +1 for space.

Table 5.2.2.1 contains the pre assigned values.

 Number Special Symbol Space Total

Name +2 0 +1 3

Invoice Number +2 0 0 2

Tharindu Rukshan +2 0 0 2

5FS5233SD -2 0 0 -2

Table 5.2.2.1 Pre-table No special symbols and have numbers

In the second iteration, “Name” has value +3 and both right and bottom members

have value 2. So algorithm can't find the difference. Then it passes the

implementation from “Name” to “Invoice number”. Here “Invoice number” has value

+2 and the right member has value -2. There algorithm can find the difference. Then

the algorithm assigns the value “5FS5233SD ” to the “Invoice Number” and increment

the “Name” previous value by one and decrease the “Tharindu Rukshan” by one

(Table 5.2.2.2)because the nebouring segments which passed iteration to it also have

higher probability to found its related value in the right hand location. Then there is a

clear difference between “Name” and “Tharindu Rukshan” and it creates a

relationship between those two.

 Previous New

Name 3 4

Invoice Number 3 3

Tharindu Rukshan 2 1

5FS5233SD -2 -2

Table 5.2.2.2 After table

24

5.2.3 No special symbols and numbers

In this case both keywords and values do not contain any special symbols or numbers.

All get +2 for without number and 0 for special symbols andand only “Name” gets +1

for space. Table 5.2.3.1 contains the pre assigned values.

 Number Special Symbol Space Total

Name +2 0 +1 3

City +2 0 0 2

Tharindu Rukshan +2 0 0 2

Colombo +2 0 0 2

Table 5.2.3.1 pre-table No special symbols and numbers

In the second iteration, Here “Name” has value +3 and both right and bottom

members have value 2. So algorithms can't find the difference. Then it passes the

implementation from “Name” to “City”. Here “City” has value +2 and the right

member also has value +2. Their algorithm can find the difference. But no bottom

member is available for the “City” . Because of that algorithm assigns the value

“Colombo ” to the “City” and increment the “Name” previous value by one and

decrease the “Tharindu Rukshan” by one (Table 5.2.3.2)because the nebouring

segments which passed iteration to it also have higher probability to found its related

value in the right hand location. Then there is a clear difference between “Name” and

“Tharindu Rukshan” and it creates a relationship between those two.

25

 Previous New

Name 3 4

City 2 4

Tharindu Rukshan 2 1

Colombo 2 2

Table 5.2.3.2 After table

5.2.4 Contain special symbols and but no numbers

In this case both keywords have a special symbol “-” and values do not contain any

special symbols or numbers. All get +2 for without number and Keywords get “+2” for

special symbols and only “Name” gets +1 for space. Table 5.2.4.1 contains the pre

assigned values.

 Number Special Symbol Space Total

Name +2 +2 +1 5

City +2 +2 0 4

Tharindu Rukshan +2 0 0 2

Colombo +2 0 0 2

Table 5.2.4.1 Contain special symbols and but no numbers

In the second iteration, Here “Name” has value +5 and its right member has

value +2 and the bottom memer has value +4. So the right member gives a higher

difference than the bottom member (1 < 3). Then the algorithm assigns the value

“Tharindu Rukshan ” to the “Name” and increment the “City” previous value by one

26

and decrease the “Colombo” by one (Table 5.2.4.2)because the nebouring segments

also have higher probability to found its related value in the right hand location.

 Previous New

Name 5 5

City 4 5

Tharindu Rukshan 2 2

Colombo 2 1

Table 5.2.4.2 After table

5.2.5 No special symbols and with numbers

In this case both keywords and values do not contain any special symbols and

values contain numbers. In previous examples keyword value pairs are located in a

horizontal direction and now they are located in Vertical direction. This is a situation

like a single raw table. All keywords get +2 for without number and 0 for special

symbols and “ID” and “Description” gets +1 for space. Table 5.2.5.1 contains the pre

assigned values.

 Number Special Symbol Space Total

ID +2 0 +1 3

Description +2 0 +1 3

Prize +2 0 0 2

01 -2 0 0 -2

04 Buns -2 0 0 -2

Rs . 200 /= -2 0 0 -2

Table 5.2.5.1 pre-table No special symbols and with numbers

27

In the second iteration , Here “ID” has value +3 and its right member has value

+3 and the bottom memer has value -2. So the bottom member gives a higher

difference than the bottom member (-5 < 0). Then the algorithm assigns the value

“01” to the “ID” and increment the “Description” previous value by one and decrease

the “04 Buns” by one (Table 5.2.5.2) ,because the neighbouring segments also have

higher probability to found its related value in the right hand location. In

“Description” it’s right member and bottom member both have less values, However

the bottom value has the minimum value. So repeat the same procedure done by the

“ID'' segment.

 Previous New

ID +3 3

Description +3 4

Prize 2 3

01 -2 -2

04 Buns -2 -3

Rs . 200 /= -2 -3

Table 5.2.5.2 After table

5.2.6 No special symbols and one number

In this case both keywords and values do not contain any special symbols and

only one value contains a number. This is a special case where algorithm didn’t assign

values to key words just looking at the space values. It iterates till it can find the best

difference then recursively come back. In here also keyword value pairs are located in

a Vertical direction. All keywords get +2 for without number and 0 for special

symbols and “Name” and “Description” gets +1 for space. Table 5.2.6.1 contains the

pre assigned values.

28

 Number Special Symbol Space Total

Name +2 0 +1 3

Description +2 0 +1 3

Prize +2 0 0 2

Buns +2 0 0 2

Cream Buns +2 0 0 2

Rs . 200 /= -2 0 0 -2

Table 5.2.6.1 pre-table No special symbols and one number

In the second iteration , Here “Name” has value +3 and its right member has

value +3 and the bottom memer has value 2. So the bottom member gives a higher

difference than the bottom member . However the only situation which can happen

on 1 difference in second iteration is by space difference. Therefore the algorithm

didn't create a relationship and continue to the next member. In “Description” both

right and bottom members have the same value. So continue. Finally the “Prize” has

no right member and the bottom member has a clear difference .Then it makes a

relationship and updates the previous values. It increases the “Description” previous

value by one and decreases the “Cream Buns” by one (Table 5.2.6.2) ,because the

neighbouring segments also have higher probability to find its related value in the

bottom hand location. Same happens to the “Name” member.

 Previous New

Name +3 +4

Description +3 +4

Prize 2 2

Buns 2 1

Cream Buns 2 1

Rs . 200 /= -2 -2

5.2.6.2 After table

29

5.2.7 Values missing horizontal

In this case all keywords have a special symbol “-” and one values contains

numbers. All get +2 for without number and Keywords get “+2” for special symbols

and only “Name” gets +1 for space. Table 5.2.7.1 contains the pre assigned values.

 Number Special Symbol Space Total

Name +2 +2 +1 5

City +2 +2 0 4

Tharindu Rukshan +2 0 0 2

Tp +2 +2 0 4

0711234567 -2 0 0 -2

Table 5.2.7.1 pre-table Values missing horizontal

In the second iteration, Here “Name” has value +5 and its right member has

value +2 and the bottom memer has value +4. So the right member gives a higher

difference than the bottom member (1 < 3). Then the algorithm assigns the value

“Tharindu Rukshan ” to the “Name” and increment the “City” previous value by one.

“City” doesn’t have the right member , only the bottom member. Although it has a

higher value than the bottom one, it did not take the bottom one as the value.

Because he knows that his value is increased by the above one which means the value

relent to it should have on the right side. but no value on the right side. then it takes

an empty string as its value. But it increases the “Tp'' by one. (Table 5.2.7.2)because

the neighbouring segments also have a higher probability to find its related value in

the right hand location.

30

 Previous New

Name 5 5

City 4 5

Tharindu Rukshan 2 2

Tp 4 5

0711234567 -2 -2

Table 5.2.7.2 After table

5.2.8 Values missing vertical

In this case both keywords and values do not contain any special symbols and

values contain numbers. This is a situation like a single raw table with one value

missing. All keywords get +2 for without number and 0 for special symbols and “ID”

gets +1 for space. Table 5.2.8.1 contains the pre assigned values.

 Number Special Symbol Space Total

ID +2 0 +1 3

Description +2 0 0 2

Prize +2 0 0 2

01 -2 0 0 -2

Rs . 200 /= -2 0 0 -2

Table 5.2.8.1 pre-table Values missing vertical

In the second iteration , Here “ID” has value +3 and its right member has value

+2 and the bottom memer has value -2. So the bottom member gives a higher

difference than the bottom member (-5 < 1). Then the algorithm assigns the value

“01” to the “ID” and increment the “Description” previous value by one (Table 5.2.8.2

31

) ,“Description” doesn’t have the bottom member , only the right member. it did not

take the right one as the value. Because he knows that his value is increased by the

left one which means the value relent to it should have on the bottom side. but no

value on the bottom side. then it takes an empty string as its value. But it increases

the “Prize”' by one.

 Previous New

ID 3 3

Description 2 +3

Prize 2 +3

01 -2 -2

Rs . 200 /= -2 -2

Table 5.2.8.2 After table

5.2.9 Complex scenario vertical

Space algorithm start with random locations . It may be the leftmost element

or may not.Here consider if it starts with the leftmost one and the scenario if it starts

with the next element.. In this case all keywords have a special symbol “-” and some

values contain numbers. All get +2 for without number and Keywords get “+2” for

special symbols and “Name”, “City”,”Tharindu Rukshan”,”Balapitiya” and “Code” gets

+1 for space. Table 5.2.7.1 contains the pre assigned values.

 Number Special Symbol Space Total

Name +2 +2 +1 5

City +2 +2 +1 5

Tharindu Rukshan +2 0 +1 3

Tp +2 +2 0 4

32

0711234567 -2 0 0 -2

Balapitiya +2 0 +1 3

Code +2 +2 +1 5

SA546224 -2 0 0 -2

Date +2 +2 0 4

2019/10/22 -2 0 0 -2

Table 5.2.9.1 pre-table Complex scenario vertical

If it starts in the leftmost one it changes the values as below.

 Previous New

Name 5 5

City 5 6

Tharindu Rukshan 3 3

Tp 4 4

0711234567 -2 -3

Balapitiya 3 2

Code 5 5

SA546224 -2 -2

Date 4 5

2019/10/22 -2 -3

Table 5.2.9.2 After table

If it started next to the left most one “Tharindu Rukshan” , It first checked it

with two members “Code” and “Balapitiya”. However the right member has a higher

value than the starting one. That means it starts with the wrong location. Then it

changes to the left one of it “Name".Then the algorithm behaves normally as above.

33

5.2.10 Complex scenario vertical and horizontal

In this case algorithm assign special symbols +2 for “Name” and “Tp” and

“SA546224” get -2 for numbers.

 Number Special Symbol Space Total

Name +2 +2 +1 5

Tharindu Rukshan +2 0 0 2

Tp +2 0 1 3

0711234567 -2 0 0 -2

Code +2 0 0 2

SA546224 -2 0 0 -2

Table 5.2.10.1 pre-table Complex scenario vertical and horizontal

In the second iteration, it checks the right and the left members of the

“Name”. “Tharindu Rukshan” has a higher difference then it takes it as value and then

it increases the “Tp” by one and “Code” by -1. However the “Code” is a keyword.

When it comes to the “Tp” its two members “0711234567” has lower value. Then it

assigns the value and decreases the value of “Code” by 1 again. So no change

happened to “Code”.

34

 Previous New

Name 5 5

Tharindu Rukshan 2 3

Tp 3 4

0711234567 -2 -2

Code 2 2

SA546224 -2 -1

Table 5.2.10.2 After table

5.3 Performance of the algorithm

Dataset contains 560 preposeced invoices. Each invoice contains between 20

to 36 keyword-value relationship couples. All it contains 17600 couples.

Case Total Couples Correctly
mapped

prasentage

Contain special symbols and
numbers

2650 2650 100%

No special symbols and have
numbers

2500 2500 100%

No special symbols and numbers 1250 1194 95.52%

Contain special symbols and but no
numbers

2420 2420 100%

No special symbols and with
numbers

1200 1200 100%

No special symbols and one number 1300 1300 100%

Values missing horizontal 1250 1250 100%

Values missing vertical 1250 1156 92.48%

Complex scenario vertical 2300 2300 100%

Complex scenario vertical and
horizontal

1480 1480 100%

35

Two cases algorithm gave less accuracy than others. This happens if the user did not

follow the layout of the invoice. In the first case there are no special characters or

numbers. Also they didn't follow the order of the invoice. They are not correctly

aligned. “Company Name”, “Delivery address” and “No. persons” are correctly

aligned but “Contact person” is not. They just create the invoice like a paragraph

(Image 5.3.1). Which was an exceptional case found. And in the next case they follow

the layout for a little bit. This also No symbol No number case and even they didn’t

have space differences. Algorithm map them assuming they are horizontal. But it can

be vertical(Image 5.3.2).

Image 5.3.1 Irrelevant layout

Image 5.3.2 no space change

36

In the second case”Values missing vertical” , some invoices contain the

column values which expand to other columns(Image 5.3.3). This scenario algorithm

fails to identify which column it was related to. Because of that it took 92.48%

accuracy. Overall performance of the algorithm is approximately 98.8% . This was a

significant improvement than the previous methods but it cannot directly compare

with those because there are not benchmark dataset available.

Image 5.3.3 Irrelevant table filling

5.3 Parse tree results

Classifying invoices is very important for efficiency. However what happens if

it consumes more time to classify the invoice rather than directly identify

relationships. Keywords are the primary and only building block for a parse tree. But

we cannot get the keywords in the first iteration. First need to identify the

relationships using the “Space algorithm”, then keywords can be identified. But

primary goal is to create the logical structure and it can be achieved in a fast manner

without a parse tree. Graphs show how the time behaves when the relashipsize

increases to create a parse tree (Image 5.4.1).

37

Image 5.4.1 Parse tree vs algorithm relational time comparison

38

6 . Conclusion

6.1 Introduction

This research introduces a new novel algorithm “Space algorithm” which can

be used to build the relationships between segments in the invoices. This achieved

98.8% accuracy which was very good for automatic solution.

6.2 Conclusions about research questions (aims/objectives)

Two research questions are tested in this research and one of them is less

profitable in practical scenarios. First , “ How effectively can we write grammar to

invoices and create a layout parse tree to classification?” . As mentioned in the results

section “Time to create parse tree” > “Time to build relationships”. It was more than

one second higher. It was more effective rather than classifying , doing direct

relationship building.

Second, “ Can we use Spaces between segments to create logical structure?”

.Space algorithm used to build logical structure. Space algorithm uses spaces as

primary input and most calculations use them (Even pre processing data) . This was

achieved by higher accuracy with the algorithm.

6.3 Limitations

Some invoices contain the tables. They can be single row or multiple rows.

This research only covers the PDF invoices without a table and with a single row table.

Only consider “Spaces” “Numbers” and “Special Characters” as input to the algorithm

and not used “Fonts” and “Font sizes”. Multi language invoices are not handled in this

iteration.

39

6.4 Implications for further research

Three scenarios are introduced as future research improvements. First

invoices are different from organization to organization. Some government invoices

use multiple languages within the same invoice (Image 6.5.1). To handle those

situations need to improve the methodology of the algorithm and need to be

combined with the Natural Language Processing activities. Because the system needs

to understand that the same word is written using different languages with the

invoice.

Second, Invoices come with different fonts and different font sizes. Most of

the time keywords have different font and big font size than the values. Same

situation in the tables. Column names have different font or big font size. In this

iteration of the algorithm , only consider Spaces , Numbers and special characters. To

improve the accuracy can provide fonts and font sizes as input to the algorithm.

Third, some invoices contain very complex tables with very complex table

structures. Those are not handling this iteration.

Image 6.4.1 Multilingual invoice

40

References

01. Warnock, J. (n.d.). The Camelot Project. [online] Available at:

http://www.eprg.org/G53DOC/pdfs/warnock_camelot.pdf.

02. Unixuser.org. (2014). PDFMiner. [online] Available at:

http://www.unixuser.org/~euske/python/pdfminer/ [Accessed 5 Jan. 2020].

03. Diligenti, M., Frasconi, P. and Gori, M. (2003). Hidden tree markov models for

document image classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, [online] 25(4), pp.520–524. Available at:

https://ieeexplore.ieee.org/abstract/document/1190578.

04. Rusinol, M., Benkhelfallah, T. and dAndecy, V.P. (2013). Field Extraction from

Administrative Documents by Incremental Structural Templates. 2013 12th

International Conference on Document Analysis and Recognition. [online]

Available at: https://ieeexplore.ieee.org/abstract/document/6628784 .

05. Adobe system Incorporated . Pdf reference 1.7 Available at :

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000

_2008.pdf

06. Chao, H. and Fan, J. (2004). Layout and Content Extraction for PDF Documents.

Document Analysis Systems VI, pp.213–224.

07. Acm.org. (2020). Identifying table boundaries in digital documents via sparse

line detection | Proceedings of the 17th ACM conference on Information and

knowledge management. [online] Available at:

https://dl.acm.org/citation.cfm?id=1458255 .

08. Acm.org. (2015). Automatic extraction of table metadata from digital

documents | Proceedings of the 6th ACM/IEEE-CS joint conference on Digital

libraries. [online] Available at: https://dl.acm.org/citation.cfm?id=1141835 .

09. Acm.org. (2015). TableSeer | Proceedings of the 7th ACM/IEEE-CS joint

conference on Digital libraries. [online] Available at:

https://dl.acm.org/citation.cfm?id=1255193 .

41

10. Lu, X., Kataria, S., Brouwer, W.J., Wang, J.Z., Mitra, P. and Giles, C.L. (2009).

Automated analysis of images in documents for intelligent document search.

International Journal on Document Analysis and Recognition (IJDAR), [online]

12(2), pp. 65–81. Available at:

https://clgiles.ist.psu.edu/pubs/IJCAR2009-image-analysis-search.pdf .

11. H. D´ejean and J.-L. Meunier (2006) A system for converting PDF documents

into structured XML format.’ In DAS ’06. 7th IAPR Int’l Workshop on

Document Analysis Systems, pages 129–140, 2006.

12. K. Hadjar, M. Rigamonti, D. Lalanne, and R. Ingold. Xed:’a (2004) new tool for

extracting hidden structures from electronic documents’. In DIAL ’04. First Int’l

Conference on Document Image Analysis for Libraries, pages 212–224

13. Marinai, S. (2009). Metadata Extraction from PDF Papers for Digital Library

Ingest. 2009 10th International Conference on Document Analysis and

Recognition. [online] Available at:

https://ieeexplore.ieee.org/abstract/document/5277711 .

14. Chanda, G. and Dellaert, F. (2011). Grammatical Methods in Computer Vision:

An Overview. Gatech.edu. [online] Available at:

https://smartech.gatech.edu/handle/1853/3738 .

15. Kise, K., Yajima, N., Babaguchi, N. and Fukunaga, K. (2020). Incremental

acquisition of knowledge about layout structures from examples of

documents. Proceedings of 2nd International Conference on Document

Analysis and Recognition (ICDAR ’93). [online] Available at:

https://ieeexplore.ieee.org/abstract/document/395649 .

16. Nagy, G., Seth, S. and Viswanathan, M. (1992). A prototype document image

analysis system for technical journals. Computer, [online] 25(7), pp.10–22.

Available at: https://ieeexplore.ieee.org/abstract/document/144436 .

42

Appendix A: Publications

43

Appendix C: Code Listings

The getXYValues used to retrieve the related members of the one segment. This

used the parameter word index which was the index of the manin member.

private static String[][] getXYValues(int wordIndex) {

 String p[] = new String[6];

 int arrayIndex = 0, r = 1;

 int wordLocatorX;

 float xCoordinate = positionList.get(wordIndex).getxCoordinate();

 float yCoordinate = positionList.get(wordIndex).getyCoordinate();

 p[0] = positionList.get(wordIndex).getFullWord();

for (wordLocatorX = wordIndex + 1; wordLocatorX < positionList.size() - 1;

wordLocatorX++) {

 if (positionList.get(wordLocatorX).getIsFullWord() == 1) {

float xXCoordinate =

positionList.get(wordLocatorX).getxCoordinate();

float xYCoordinate =

positionList.get(wordLocatorX).getyCoordinate();

if (yCoordinate == xYCoordinate & (xXCoordinate - xCoordinate) <

pageWidth / 2.5) {

 p[r] = positionList.get(wordLocatorX).getFullWord();

 break;

 } else {

 break;

 }

 }

 }

 int counterX = 0;

 for (String aP : p)

 if (aP != null) {

 counterX++;

 }

 String values[][] = new String[4][10];

 if (counterX % 2 == 0) {

 for (int c = 0; c < counterX; c++) {

 values[arrayIndex][0] = p[c];

 values[arrayIndex][1] = p[c + 1];

44

values[arrayIndex][2] = "" +

positionList.get(wordIndex).getyCoordinate();

values[arrayIndex][3] = "" +

positionList.get(wordIndex).getxCoordinate();

 values[arrayIndex][4] = "X";

values[arrayIndex][5] = "" +

positionList.get(wordLocatorX).getyCoordinate();

values[arrayIndex][6] = "" +

positionList.get(wordLocatorX).getxCoordinate();

 c++;

 arrayIndex++;

 }

 }

 String py[] = new String[6];

 int ry = 1;

 int wordLocatorY;

 py[0] = positionList.get(wordIndex).getFullWord();

for (wordLocatorY = wordIndex + 1; wordLocatorY < positionList.size() - 1;

wordLocatorY++) {

 if (positionList.get(wordLocatorY).getIsFullWord() == 1) {

float yYCoordinate =

positionList.get(wordLocatorY).getyCoordinate();

float yXCoordinate =

positionList.get(wordLocatorY).getxCoordinate();

if (yXCoordinate == xCoordinate & (yYCoordinate - yCoordinate) <

40) {

 py[ry] = positionList.get(wordLocatorY).getFullWord();

 break;

 }

 }

 }

 int counterY = 0;

 for (String aPy : py) {

 if (aPy != null) {

 counterY++;

 }

 }

 if (counterY % 2 == 0) {

 for (int c = 0; c < counterY; c++) {

 values[arrayIndex][0] = py[c];

 values[arrayIndex][1] = py[c + 1];

45

values[arrayIndex][2] = "" +

positionList.get(wordIndex).getyCoordinate();

values[arrayIndex][3] = "" +

positionList.get(wordIndex).getxCoordinate();

 values[arrayIndex][4] = "Y";

values[arrayIndex][5] = "" +

positionList.get(wordLocatorY).getyCoordinate();

values[arrayIndex][6] = "" +

positionList.get(wordLocatorY).getxCoordinate();

 c++;

 arrayIndex++;

 }

 }

 String[][] subArray = new String[arrayIndex][10];

 for (int i = 0; i < arrayIndex; i++) {

 subArray[i] = Arrays.copyOfRange(values[i], 0, 9);

 }

 return subArray;

}

Following code images show the code for the “Space algorithm”. Which changed

the values pre assigned according to the differences.

private int valChanger(Float id) {

 Node node = hashMapWords.get(id);

 if (node.getRightId() != 0 & node.getBottomId() == 0) {

 if (node.getTopId() != 0) {

hashMapWords.get(node.getTopId()).setTotalPro(hashMapWords.get(node.getTopId(

)).getTotalPro() + 1);

 if (hashMapWords.get(node.getRightId()).getTopId() != 0) {

 node.setUsed();

 node.setKeyWord();

 hashMapWords.get(node.getRightId()).setUsed();

 hashMapWords.get(node.getRightId()).setNotKeyWord();

hashMapRelations.put(node.getValue(),

hashMapWords.get(node.getRightId()).getValue());

46

hashMapWords.get(hashMapWords.get(node.getRightId()).getTopId()).setTotalPro(

hashMapWords.get

(hashMapWords.get(node.getRightId()).getTopId()).getTotalPro() - 1);

 return 0;

 }

 } else {

 node.setUsed();

 node.setKeyWord();

 hashMapRelations.put(node.getValue(), "");

hashMapWords.get(node.getRightId()).setTotalPro(hashMapWords.get(node.getRigh

tId()).getTotalPro() + 1);

 return valChanger(node.getRightId());

 }

 return 0;

 } else if (node.getRightId() == 0 & node.getBottomId() != 0) {

 node.setUsed();

 node.setKeyWord();

 hashMapWords.get(node.getBottomId()).setUsed();

 hashMapWords.get(node.getBottomId()).setNotKeyWord();

hashMapRelations.put(node.getValue(),

hashMapWords.get(node.getBottomId()).getValue());

 return 0;

 }

if ((!node.getUsed()) & node.getRightId() != 0 & node.getBottomId() != 0)

{

if (node.getTotalPro() <

hashMapWords.get(node.getRightId()).getTotalPro()) {

 return 0;

 }

if (hashMapWords.get(node.getRightId()).getTotalPro() <

hashMapWords.get(node.getBottomId()).getTotalPro()) {

//System.out.println("Keyword : " + node.val+ "\tValue :"+

node.totalPro);

if (node.getTotalPro() >

hashMapWords.get(node.getRightId()).getTotalPro()) {

 node.setUsed();

 node.setKeyWord();

 hashMapWords.get(node.getRightId()).setUsed();

 hashMapWords.get(node.getRightId()).setNotKeyWord();

47

hashMapRelations.put(node.getValue(),

hashMapWords.get(node.getRightId()).getValue());

hashMapWords.get(node.getBottomId()).setTotalPro(hashMapWords.get(node.getBot

tomId()).getTotalPro() + 1);

 if (hashMapWords.get(node.getRightId()).getBottomId() != 0) {

hashMapWords.get(hashMapWords.get(node.getRightId()).getBottomId()).setTotalP

ro(hashMapWords.get

(hashMapWords.get(node.getRightId()).getBottomId()).getTotalPro() - 1);

 }

 return valChanger(node.getBottomId());

 } else {

 return 0;

 }

} else if (hashMapWords.get(node.getRightId()).getTotalPro() ==

hashMapWords.get(node.getBottomId()).getTotalPro()) {

 return valChanger(node.getBottomId());

 } else {

if (node.getTotalPro() >

hashMapWords.get(node.getBottomId()).getTotalPro()) {

 node.setUsed();

 node.setKeyWord();

 hashMapWords.get(node.getBottomId()).setUsed();

 hashMapWords.get(node.getBottomId()).setNotKeyWord();

hashMapRelations.put(node.getValue(),

hashMapWords.get(node.getBottomId()).getValue());

hashMapWords.get(node.getRightId()).setTotalPro(hashMapWords.get(node.getRigh

tId()).getTotalPro() + 1);

 if (hashMapWords.get(node.getBottomId()).getRightId() != 0) {

hashMapWords.get(hashMapWords.get(node.getBottomId()).getRightId()).setTotalP

ro(hashMapWords.get

(hashMapWords.get(node.getBottomId()).getRightId()).getTotalPro() - 1);

 }

 return valChanger(node.getRightId());

 } else {

 return 0;

 }

48

 }

 }

 return 0;

}

49

