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Abstract

This study introduces an anomaly detection method on time series data. An

ensemble LSTM CNN network with normalization and regularization of time series

data incorporated with a concept drift adaptation technique is used for profiling

the normal of a time series. Dynamic Time Warping(DTW) algorithm is used to

generate warp distance between observed time window and profiler output to be

used as a distance measure. Anomalies are detected when the distance between

observed time window and profiler output exceeds a pre-defined threshold value.

This study compares performance of few profiling methods on Numenta Anomaly

Detection benchmark data set. Anomaly detection method implemented using

ensemble LSTM CNN network with DTW introduced in this study performs better

that baseline anomaly detection method implemented using ARMA with DTW.

Keywords: anomaly detection, time series, LSTM, CNN, ensemble networks,

concept drift, dynamic time warping
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Chapter 1

Introduction

This research project is a further improvement of the research project “LSTM based

Framework for Time Series Anomaly Detection” [1] done by N.A.A.H.Eranga under

the supervision of Dr.M.I.E.Wickramasinghe.

Eranga has used ensemble Long Short Term Memory cell network )LSTM) Con-

volution Neural Network(CNN) with time series data normalizing and regularizing

techniques to profile normal of a time series, which will be called LSTMCNNnet

thenceforth. He has used LSTM to capture long term memory CNN to capture

short term features. He has used Dynamic Time Warping(DTW) to generate warp

distance between observed time window and profiler(LSTMCNNnet) output to de-

tect anomalies when the warp distance reaches a predefined threshold.

In this study we have explored Eranga’s [1] work and discovered that LSTMC-

NNnet does not adapt to many concept drifts due to it’s time series data normaliza-

tion and regularizing steps, although ensemble LSTM CNN does adapts to concept

drifts. Since data normalization and regularizing steps are required to generalize

the method introduced in Eranga’s work we have incorporated a Concept Drift

Adaptation method [2] to LSTCNNnet in order to fix the shortcomings of LSTM-

CNNnet. Our extended version of LSTMCNNnet will be called LSTMCNNcda

henceforth.

Motivation Motivation for this research project was the promising results shown

by LSTMCNNnet. Eranga states in his thesis [1]:

“The previous detection accuracy obtained for the NAB is 75.2%.Using

our model we were able to get an accuracy of 79.13% for the dataset.

The detection rate of these anomalies depend on the threshold values

used in DTW similarity value. By using this threshold we can further

increase the accuracy but it will result in increase of the fault detection

rate.”

1



1.1 Background to the Research

1.1.1 Anomalies and Time Series

Anomalies

An anomaly is an observation that has not been observed before or not observed

in normal conditions. Anomalies are also known as outliers, or novelty points.

.Anomalies are divided into three main types in the literature [3], point anomalies,

group anomalies, and contextual anomalies.

Time Series

A time series can be considered as a set of data points with a timestamp. With

this simple definition of time series. We can classify anomalies that occur in time

series as contextual anomalies [3]. Contextual anomaly cannot be identified by

just observing a single point at a time. To identify a contextual anomaly we have

to consider the context of the observation i.e the past data points from current

observation.

According to Box et al. [4] “A time series is a sequence of observations taken

sequentially in time”. They mention that an intrinsic feature of a time series is

that adjacent observation is dependant on previous observations, and time series

analysis is about analyzing this dependence. Hyndman et al. [5] mentions a math-

ematical model of time series consisting three main components as shown in (1.1)

where yt is the observed value, St is the seasonal component, Tt is the trend-cycle

component and Rt is the remainder component at time t. Trend-cycle consists of

Trend and Cycle components as shown in (1.2). A time series is called “stationary”

if it’s statistical properties(mean, standard deviation and other metrics of observed

values) are constant. If a time series is “stationary” we can guarantee that the

Trend component of the time series is zero but vise-versa is not true [5].

yt = St + Tt +Rt (1.1)

Tt = Trend+ Cycle (1.2)

Another salient property of time series in the real world are concept drifts.

Real concept drifts occur when the underlying features of a phenomenon that is

under observation changes [6]. In practical applications in most scenarios a time

series is generated using measurements from physical sensors. When such physical

sensor deteriorates concept drifts may occur in the observed time series generated

by sensor readings. For an example Oxygen density sensor in a combustion engine

may deteriorate with time and sensor reading of normal Oxygen density level may

change drastically with time. Figure 1.1 illustrates a concept drift in a time series.

2



Figure 1.1: Time series plot from Numenta Data Set [7] with a concept drift.

1.1.2 Evaluation techniques for anomaly detection meth-

ods

Confusion matrix in the context of anomaly detection

Confusion matrix also know as error matrix is a widely used tabular method of

evaluation used to evaluate classifiers. In the anomaly detection context anomaly

detection methods classifies data points in to two classes as “anomaly” or “normal”.

Confusion matrix provides four principle metrics which are shown in the Fig. 1.2.

These are True Positive(TP), True Negative(TN), False Positive(FP) and False

Negative(FN). Lets assume that a anomaly detection method outputs “Positive” if

a data point is an anomaly and “Negative” if a data point is normal. When a data

point truly is an anomaly and the anomaly detection method outputs “Positive”,

such output is considered as TP. If a data point is normal and the anomaly detection

method outputs “Negative”, output is considered as TN. If a data point is an

anomaly and the anomaly detection method outputs “Negative” it is considered as

a FN. Finally if a data point is normal and the anomaly detection method outputs

“Positive” output is considered as FP.

In the process of anomaly detection in time series, a manual examination part

can be included. Once an automated anomaly detection method signals the pres-

ence of an anomaly a user can check weather it is truly an anomaly or not. But if

there was a true anomaly and the automated anomaly detection method does not

3



Figure 1.2: Illustration of confusion matrix metrics. Denotes the four principle

metrics of confusion matrix True Positive, True Negative, False Positive and False

Negative in the Venn diagram. Two derived metrics Precision(PVV) and True

Positive Rate(TPR) is represented below the Venn diagram. This image is taken

and modified from en.wikipedia.org/wiki/Precision_and_recall
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signal any presence of an anomaly there might be severe consequences. Therefore it

is important that an anomaly detection method detects almost all the anomalies in

a data set. Metric used to measure this property is “TPR” or “Recall”. Derivation

of this metric is given in (1.3) and a pictorial representation of this metric is shown

in Fig. 1.2.

Recall =
True Positives

All anomalies
=

True Positives

True Positives+ False Negative
(1.3)

But any anomaly detection method can achieve TPR = 1 i.e. achieve perfect

Recall easily by classifying all the data points as “anomalies”. Therefore to compare

anomaly detection methods a metric that measures false alarm rate is suitable.

Precision is a metric that is derived from principal metrics of the confusion matrix

that measures the false alarm rate of an anomaly detection method. Equation 1.4

shows the derivation of Precision and Fig. 1.2 show Precision with respect to a

Venn diagram of principle metrics of the confusion matrix.

Precision =
True Positives

“Positive” outputs
=

True Positives

True Positives+ False Positives
(1.4)

To combine Precision and Recall we can use the weighted harmonic mean of

these two measures(harmonic mean is taken as Precision and Recall are measures

of rates). Fβ− score is the harmonic mean of Precision and Recall. β is the weight

associated with Recall, higher β value will give higher weight to Recall. Equation

1.5 represents the Fβ − score.

Fβ − score =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
(1.5)

1.2 Research Problem and Research Questions

Research Aim Aim of this research is to solve the machine learning problem of

anomaly detection.

Research Question Previous research done by Eranga [1] has a similar research

aim to this research and as a result of their research LSTMCNNnet has been imple-

mented. This research is proposed to cover the research gap of the LSTMCNNnet

for some extend.

Time series profiling method LSTMCNNnet (ensemble LSTM, CNN network

with time series data normalizing and regularization steps) fails to adapt to some

concept drifts. Which will result in anomaly detection method generating a high

5



number of false alarms when there is a concept drift. This research project ad-

dresses this issue.

Main research problem of this research is “Can anomaly detection on time

series method based on ensemble LSTM CNN network with DTW implemented in

LSTMCNnet be improved using concept drift adaptation techniques ?”.

Project objectives Objectives of this research project are aligned to archive the

aim of this research by providing a solution for the research question. Below are

the list of objective:

1. Understand the construct of concept drift in time series and explore the liter-

ature on time series concept drift. Understand the fundamentals of concept

drift and types of concept drifts in time series.

2. Improve methodology used in LSTMCNNnet for anomaly detection in time

series by considering concept drift in time series.

3. Implement a framework to develop algorithms for anomaly detection on time

series.

1.3 Justification for the research

Anomaly detection has been used extensively in the past for intrusion detection,

fraud detection, fault detection, system health monitoring, event detection in sensor

networks, and detecting ecosystem disturbances [3]. There has been many software

tools developed for anomaly detection such as SAS1 , Rapid-Miner2 , Oracle3 , etc.

Anomalies are the first indication of a system failure in any system. Since

modern society depends on may digital and analogue systems it is important to

build and develop reliable systems. To build reliable systems there must be a

mechanism to detect system failure before hand, to detect such failures anomaly

detection is a must.

Disaster management systems use anomaly detection on time series sensor data

to warn about disasters before they come. Resource management systems use nov-

elty detection systems same as anomaly detection systems to prepare to dispatch

resources which helps to maximize resource utilization. Finance and banking sector

use anomaly detection to detect credit card fraud. Public surveillance systems use

anomaly detection to detect public threats and to mitigate crimes. Social media

1https://documentation.sas.com/?docsetId=vdmmlref&docsetTarget=

p1paf478re5i4qn1aie1h4ycyi8a.htm&docsetVersion=8.3&locale=en
2https://rapidminer.com/resource/fraud-detection-prevention/
3https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm
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networks and use anomaly detection to detect popularization of fake news. Cyber-

security sector use anomaly detection to detect network attacks and to identify

attempts on unauthorized access to networks and computer systems. Aeronautical

industry use anomaly detection to detect mechanical faults on passenger air-crafts.

Space exploration industry uses anomaly detection systems to predict critical fail-

ures in rocket launches and predict system failures in space shuttles. Manufacturing

industry uses anomaly detection to predict mechanical failures that will yield to

production halts. Anomaly detection is used in many applications. Many of the

applications of anomaly detection are in technologies we use daily but they are not

visible to us.

This research contribute to the computer science community studying anomaly

detection on time series data by implementing a framework for developing algo-

rithms for anomaly detection on time series data in C++ and by improving the

time series anomaly detection method implemented in [1] LSTNCNNnet.

1.4 Methodology

We have explored anomaly detection on time series using ensemble LSTM CNN

neural networks as profiling normal of a time series, Since LSTM can be used to

recognize long term patterns in a time series [8] [9] [10] and CNN can be used to

capture local features of a time series and effectively recognize and forecast shot

term patterns [11]. By combining LSTM and CNN parallely taking the weighted

sum of outputs we can optimize weights to yield better performance than just

using LSTM or CNN. And we have used Dynamic Time Warping(DTW) [12] as

the distance measure to get the distance between observed predefined time window

and profile output to detect anomalies. Since DTW distance measure have less

effect on stretching and warping of two time series, thereby giving an accurate

interpretation of distance than distance measures like Euclidean when comparing

time series data.

We have taken Eranga’s [1] implementation of ensemble LSTM CNN network

with time series data normalization and regularization steps for normal profiling

and DTW distance measure for anomaly detection method(LSTMCNNnet) and ex-

plored his results on Numenta Anomaly Benchmark [7] data set. We have identified

that LSTMCNNnet does not adapt to some concept drifts in time series, therefore

LSTMCNNnet does not perform well when compared with baseline method of time

series normal profiling method Auto Regressive and Moving Average(ARMA) [4]

method. But ensemble LSTM CNN network without any time series data pre-

processing and post-processing steps(LSTMCNNkeras) for time series normal pro-

7



filing performs better than ARMA method.

Since time series normalization and regularization is required to generalize the

profiling method in LSTMCNNnet in order to overcome the issue of inability to

adapt to some concept drifts in LSTMCNNnet we have combined LSTMCNNnet

with a concept drift detection and adaptation method [2] (LSTMCNNcda). Fi-

nally results yielded by our experiments suggest that out method LSTMCNNcda

improves the performance of LSTMCNNnet but does not reach the performance

of ensemble LSTM CNN network without any time series data pre-processing and

post-processing steps.

1.5 Outline of the Dissertation

Chapter 2 contains a detailed literature review on various methods of anomaly de-

tection on time series, statistical methods, neural networks methods, etc. Chapter

3 contains details of design of LSTMCNNnet and design of Concept Drift Adapta-

tion methods introduced in [2]. Chapter 4 contains details about a C++ framework

we developed for anomaly detection on time series called “Sherlock” and implemen-

tation detains of various profiling methods with Sherlock framework for anomaly

detection on time series data. Chapter 5 contains results of experiments we have

carried out using profiling methods implemented on Sherlock framework and Nu-

menta Anomaly Benchmark(NAB) data set. Chapter 6 contains the conclusion of

this study from the observations of experiments carried out.

1.6 Delimitations of Scope

Scope of this project is to improving LSTMCNNnet with concept drift adaption

method to perform better on time series with gradual and rapid concept drifts, but

not with chaotic or long-term recurrent concept drifts.

1.7 Conclusion

This chapter laid the foundations for the dissertation. It introduced the research

aim, research problem, and objectives if this research. Then the research was

justified, the methodology was briefly described and justified, the dissertation was

outlined, and the limitations were given. On these foundations, the dissertation

can proceed with a detailed description of the research.
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Chapter 2

Literature Review

In the modern context data is abundant and collection of data is growing in an ex-

ponential rate. Presence of abundant data enables one to use machine learning for

anomaly detection. Sensor network data, real time market data and network activ-

ity data are some examples of time series data that is collected in an exponential

rate, with the growing complexity of modern society.

Fox [13] has introduced additive and innovation (type I and type II) outliers

in 1972. Additive (type I) outliers are global outliers which are point anomalies,

innovation (type II) outliers are conditional outliers which are context anomalies.

According to Guta et al. [3] after introduction of point and contextual anomalies

by Fox [13] have been introduced many prediction model based anomaly detection

methods on time series data. Prediction model based anomaly detection methods

on time series data consists of two main components, a prediction model and a

detection model. Prediction model predicts the next data point of a sequence of

data points and the detection model compares the predicted data point and the

real data point to detect an anomalous data point.

Section 2.1 discusses about prediction models based on Auto-regression in statis-

tics. Section 2.2 discuses use of one class support vector machines in anomaly

detection on time series by transforming time series into phase space. Section 2.3

discusses use of Neural Networks in anomaly detection on time series data and

time series forecasting. Section 2.4 discuses about use of Hierarchical Temporal

Memory(HTM) in anomaly detection.

2.1 Statistical methods

A lot of work has been carried out in modeling stationary signals in statistics [4],a

signal can be interpreted as a time series. These statistical models with distance

measures have been used to detect anomalies on time series data [13]. These mod-
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els include Auto Regressive Moving Average(ARMA). Integrated Auto Regressive

Moving Average(ARIMA), which is an extension of ARMA for non-stationary time

series data. Integrated Auto Regressive Moving Average with Exogenous vari-

ables(ARIMAX), which is an extension of ARIMA with support to model effects

of exogenous variables on a non-stationary process.

Concept of stationarity was briefly described in Section 1.1.1. Differancing is the

process of obtaining difference between consecutive observations. By differencing a

non-stationary time series we can obtain a stationary time series. For an example

time series obtained by recording velocity of a moving object under constant gravity

is non-stationary, we can obtain a stationary time series by taking the difference of

velocity under constant gravity which is acceleration of the object and it is equal

to constant gravity.

Auto Regression(AR) models are used for forecasting stationary time series

data. Equation 2.1 describes AR model of order p.

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (2.1)

where:

yt is Time point at time t

c is Bias

φp is Weight given to time point t− p

εt is White noise term

Moving average(MA) model uses past forecast error in a regression-like model

rather than using regression on past value of the forecast variable to model a time

series [4]. Equation 2.2 describes MA model of order q.

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (2.2)

where:

yt is Time point at time t

c is Bias

εt is White noise at time t

θq is Weight given to white noise at t− q
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When AR and MA is combined with weights for each component we obtain

the Auto Regressive Moving Average(ARMA) model. Integrated Auto Regressive

Moving Average(ARIMA) is obtained by taking the difference of a non-stationary

time series to form a stationary time series and applying ARMA to model that

series [4]. In ARIMA “integration” is the reverse of difference . Equation 2.3

describes ARIMA(p,d,q) model where p is the order of the Auto-regressive part, d

is the degree of first difference involved and q is the order of the Moving average

part. ARIMA models can be applied for non-stationary time series.

y′t = c+ φ1y
′
t−1 + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt (2.3)

where:

y′t is Time point at time t of the lagged series of yt

c is Bias

φ1 is Weight given to lagged time point t− 1

θ1 is Weight given to white noise at t− 1

εt is White noise at time t

Box and Tiao in 1981 [14] proposed an extension of the ARIMA model to

incorporate several time series or an “explanatory variable” to forecast one time

series. Which will add another compound term an “explanatory variable” to the

ARIMA model. Motivation of such model is to capture the dependency of a time

series on another time series. For example ambient temperature might depend on

wind speed. Figure 2.1 illustrates how AR and MA model is combined and created

ARIMA model and how ARIMA model is extended to ARIMAX model.

2.2 One Class Support Vector Machines

J. Ma and S. Perkins [15] has proposed a novel algorithm for time series novelty

detection based on one-class support vector machines(SVMs). They have chunked a

time series into time windows and transformed them to the phase space and applied

One Class Support Vector machine to classify the vectors transformed into phase

space as anomalous or normal. They have tested their method on synthetic time

series (sinusoidal signals with additive noise) and on Santa Fe Institute Competition

(SFIC)1 data set. They have concluded that their method has promising results

on those data sets.

1https://physionet.org/content/santa-fe/1.0.0/
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Figure 2.1: Illustrates the progression of Auto Regressive models.

2.3 Neural Network Methods

Most anomaly detection methods use a predetermined time window in a time series

to compare features with a normal time window. Generally, the performance of

these methods depend on predetermined time window parameter. Vig and Agar-

wal [8] has proposed Long Short Term Memory(LSTM) Networks to model non-

stationary time series for anomaly detection. LSTM allows long term memory

storage therefore long term correlations in a sequence can be learned [16]. There-

fore LSTM solves the issue of depending on predefined time window in traditional

methods. In their study they have used a stacked LSTM model to model complex

time series which may consist of more than one underlying process generating a

non-stationary time series.

They have shown that stacked LSTM models can capture features of a complex

time series at different scales, one LSTM layer captures features at a weekly time-

scale and another LSTM layer captures features at a more refined time-scale.

They has used stacked LSTMs to model the normal behavior(time series) and

taken the instances that vastly deviates from the model as anomalies. Their stacked

LSTM neural network predicts several time steps to ensure the network capture

the temporal structure of the sequence.

L. Bontemps et al [10] has used LSTM for detecting collective anomalies in time

series data. D. T. Shipmon et al [9] has compared Deep Neural Networks(DNN),

Recurrent Neural Networks(RNN), LSTM and a Fourier model in anomaly detec-

tion on time series data and concluded that Fourier and RNN were more effective

forecasting models and DNN and LSTM produce more false alarms at peaks of

time series.
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2.3.1 Recurrent neural networks

Goodfellow et al. in their book [17] “Deep Learning” mansions that Recurrent

Neural Networks(RNN) [18] are a category of neural networks for processing se-

quential data, like Convolutional Neural Networks(CNN) are a category of neural

networks specialized for processing a grid of values.

Graves in his book [19] mentions that if cyclical connections are allowed in a

Multi-layer Perceptron(MLP), Recurrent Neural Networks(RNN) can be obtained.

Even though this difference between MLP and RNN is trivial, MLP can only map

its inputs to outputs but RNN can map its entire history of inputs to its outputs in

principle. RNN allows a “memeory” of previous inputs to be kept in the internal

state of the network which enables the previous inputs to influence the current

output of the network. Figure 2.2 illustrates the structure of an RNN.

Figure 2.2: Illustrates the structure of an RNN. xt is the input at time t, ot is the

output at time t and st is the hidden state at time t of the RNN. U, V and W are

weight matrix of the corresponding edges of the network as shown in the figure.

Image taken from [20]

Graves in his book [19] also says that important benefit of RNN is that their abil-

ity to use contextual information in their mapping. But the range of context that

can be stored in the internal state of the network is limited. Since an input is cycled

around the network from its recurrent connections there could be an exponential

decay or exploding gradient problem which affects the internal state(Hidden Layer)

of the network. Figure 2.3 illustrates the issue of vanishing gradients in RNNs and

how it affects the output of the network.

Graves [19] says Long Short Term Memory(LSTM) Cell neural networks consists

of recurrently connected sub-nets called memory blocks. Each block can contain

one or more self connected memory cell having three multiplicative units: input,

output and forget gates. Which is analogous to write, read, and rest operations
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Figure 2.3: Illustrates how the effect of Inputs at Time = 1 vanishes from the

Hidden Layer and the Outputs as time progresses. Image taken from [19]

in a memory chip of a digital computer. Multiplicative gates in the LSTM cell

allows access to information stored over long period of time without the problem of

vanishing or exploding gradients in RNN. For e.g if the multiplicative input gate is

closed(activation is near zero) then the internal state is not overwritten by the new

inputs, and information on internal state can be preserved for a longer period. And

the influence of information on internal state on current output can be controlled by

the activation value on the output gate. Forget gates activation value can be used

to mutate or deviate the information in the internal state without the intervention

of input. Figure 2.4 Illustrates the structure of a LSTM cell. Figure 2.5 illustrates

how vanishing and exploding gradient issues is addressed by LSTM cells.

2.3.2 Convolutional Neural Networks

Goodfellow et al. in their book [17] “Deep Learning” says Convolutional Neural

Networks(CNN) are a category of neural networks used to process data that has a

grid-like topology. For an e.g time series, which is one dimensional grit taking data

points at regular time intervals, and an image with 2 dimensional grid of pixels.

Convolutional neural networks use the convolution with respect to image pro-

cessing. Kim and Casper [21] says “Convolution can be intuitively described as a

function that is the integral or summation of two component functions”. For an

e.g taking two single variable function convolution at a point of these two functions

are the product of values at that point of the two functions. Figure 2.6 illustrates

convolution of two functions in single dimension.
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Figure 2.4: Illustrates the structure of a LSTM cell, horizontal axis represents

the time dimension of the same LSTM cell. Image taken from hackernoon.com/

understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4

Figure 2.5: Illustrates how the hidden state in the Hidden Layer is controlled by

input and forget gates and how the effect of hidden state on output is controlled

by the output gate. Image taken from [19]
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Zheng et al. [11] has used CNN to classify time series data in their work. In

which they have used CNN as a feature extraction layer on time series and a Multi-

layer Perception(MLP) layer for classification of time series windows.

Figure 2.6: Illustrates an Input signal and an Impulse response under convolution

operator.image taken from www.mathworks.com

2.3.3 LSTM in modeling time series

In anomaly detection on time series by comparing the features of normal behavior

with observed time series features, it is important to capture the features of the

normal behavior with a high accuracy. Laptev, N. et al. [22] has used LSTM net-

works with auto-encoders for feature extraction for accurate time series forecasting

during high variance segments in a time series.

They have proposed a novel end-to-end recurrent neural network architecture

that outperforms the current state of the art event forecasting methods on Uber

data and generalizes well to a public M3 data set2 used for time-series forecasting

competitions. Their architecture leverages an auto-encoder for feature extraction.

They mention that this problem is challenging because extreme event prediction

depends on numerous external factors that can include weather, city population

growth or marketing changes (e.g., driver incentives). They have shown that a

vanilla LSTM model perform worse than their model.

They have concluded that a single generic neural network model is capable of

producing high-quality forecasts for heterogeneous time-series relative to special-

ized classical time-series models.

2https://forecasters.org/resources/time-series-data/m3-competition/
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F. Gers et al [23] has used LSTM network as an auto-regressive model for fore-

casting time series and compared it with multi-layer perceptron(MLP) model. They

have observed that MLP yields better performance and suggested that LSTM’s core

strength is to learn and remember single events for long periods.

2.4 Hierarchical Temporal Memory in anomaly

detection

Hierarchical Temporal Memory(HTM) is an online machine learning method that

was inspired by the structure of human brain. Ahmad et al. [24] has used HTM

on anomaly detection on time series data. Ahmad et al. [24] says that Hierarchical

Temporal Memory (HTM) structure is based on know properties of cortical neu-

rons in human brains. HTM has been used for sequence learning [25]. HTM has

shown good results for prediction tasks [26, 27]. HTM models the spatiotemporal

characteristics of the input sequence which can be used to forecast a time series.

Ahmad et al. [24] has used HTM as a prediction model in their work. They have

used a probabilistic model of prediction error and they have detected anomalies

using likelihood function and a predefined threshold value on the probabilistic

model of prediction error. Figure 2.7 Illustrate the structure of HTM.

Figure 2.7: Illustrates Hierarchical Temporal Memory(HTM). Image taken from

ecl.unist.ac.kr/2010/09/htmhierarchical\_temporal\_memory
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2.5 Conclusion

It is important to notice that most anomaly detection methods on time series only

observe a short time window to detect anomalies, but it is vital to have a long term

memory of the patterns observed in a time series to identify some anomalies.

[10] [11] [8] [9] have explored using LSTM in their work for anomaly detection

and shown mostly positive results. F. Gers et al [23] has suggested that LSTM’s

core strength is to learn and remember single events for long periods.

CNN has been used by Y. Zheng [11] for time series classification, since CNN

captures short term features of a time series.

It is also important to notice that since most times series observed in practice

undergo concept drifts [6] [28] it is vial for an anomaly detection method to differ-

entiate concept drifts from anomalies and adapt to such concept drifts. And there

have been many studies on identifying concept drifts on time series [29] [2].
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Chapter 3

Design

A common way of anomaly detection in time series is profiling normal of a time

series and comparing the profiled normal with observer data points with a distance

measure and if this distance reaches a certain threshold detector outputs a positive

detection [3].

In the methodology proposed in this study we have used an ensemble LSTM

and CNN network with time series data normalization and regularization steps

combined with concept drift adaptation technique [2](LSTMCNNcda) for profiling

normal of time series and fast Dynamic Time Warping(fastDTW) [30] for measuring

the distance between profile normal time series and observed data points. This

anomaly detection method is explored because of the promising results shown by

Eranga in his thesis [1].

It was observed that when exploring Eranga’s [1] implementation of ensemble

LSTM and CNN neural network with time series data normalization and regular-

ization steps for profiling method that it does not adapt to concept drifts in time

series. It was identified this inability to adapt to concept drifts occur due to the

time series data normalization and regularization steps in his implementation of

ensemble LSTM and CNN neural network. But ensemble LSTM and CNN neural

network without these time series data normalization and regularization steps do

adapt to concept drifts as observed in our experiments. But these time series data

normalization and regularization steps used by Eranga [1] has to be used to ensure

LSTM and CNN neural network performs well in general. Since Sigmoid activa-

tion functions used in LSTM CNN ensemble network will yield unexpected results

without data normalization in some scenarios.

As a solution for this issue of inability to adapt for concept drifts a concept

drift detection and adaptation method is introduced to the profiling method im-

plemented by Eranga [1].
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3.1 LSTMCNNnet

When profiling a time series it is important to capture features of long term and

short term patterns of a time series. Recurrent Neural Networks(RNN) has been

used in the literature [8] [22] [10] [23] to capture features of a series of data points.

Since training RNN with back-propagation leads to diminishing and exploding gra-

dients issue Long Short Term Memory(LSTM) Cell was introduced by S. Hochreiter

and J. Schmidhuber [16]. LSTM Cell consists of a hidden state as in RNN and

updating and forgetting the memory in the hidden state is controlled by gates.

Y. Zheng et al [11] has used Multi-channel deep CNN to predict multivariate

time series. LSTM and CNN ensemble neural networks prediction model has been

used by T. N. Sainath et al [31] for various vocabulary tasks and T. Lin et al [32]

has used LSTM and CNN hybrid neural network to predict trend and slope of time

series data to forecast time series in their forecasting model TreNet.

In Eranga’s implementation(LSTMCNNnet) he has used LSTM and CNN net-

works combined in parallel as illustrated in Fig. 3.1 using a feature combination

layer. Feature combination layer combines LSTM output and CNN output by

taking the weighted sum of outputs with predefined weights as parameters.

CNN Prediction
Model

LSTM Prediction
Model

Input PredictionFeature Combining
Layer 

Figure 3.1: LSTM CNN ensemble architecture with feature combination layer taken

from Eranga’s thesis [1]

3.1.1 LSTM Implementation

In LSTM network implementation a single LSTM layer is present containing mem-

ory blocks. Each memory block contains a single memory cell. The structure of

the memory cell is shown in Fig. 3.2 where Sigmoid activation function is used for

input and output gates and Tanh activation function is used for forget gate. Input

for the memory cell is a vector containing input at time (t) and output from cell at

time (t-1). Current cell state is affected by the current input values and previous
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output of the cell and the output is affected by the current cell state. Intuition

behind having a cell state is to preserve long term memory.

cell stateInput (t) + Out (t-1) Out (t)

state (t-1)

state (t)

o

i

f

Figure 3.2: LSTM cell structure taken from Eranga’s thesis [1]

Figure 3.3 illustrates the structure of LSTM neural network. Input layer is fully

connected to LSTM layer and output is given by a fully connected layer. Number

of memory blocks in LSTM layer, Learning rate, and the number of time steps

unfolded can be adjusted as parameters.

LSTM

LSTM

LSTM

Input OutputLSTM Layer

Figure 3.3: LSTM network structure taken from Eranga’s thesis [1]

For the LSTM neural network time series is pre-processed by taking the input

time window as a vector and normalizing it to produce a unit vector by dividing
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the vector from its magnitude. And output is regularized by multiplying it by the

previous calculated magnitude. This normalization and regularization steps where

added since the activation functions used in the network (Sigmoid function) yields

better results for normalized inputs since Sigmoid function will map values greater

than 4 to 1 and lower than -4 to 0.

Equation (3.3) shows the normalization step, and (3.4) shows the regularized

step.

input vector(v) = (t1, t2, t3, t4) (3.1)

magnitude(m) =
√
t21, t

2
2, t

2
3, t

2
4 (3.2)

normalized input = (
t1
m
,
t2
m
,
t3
m
,
t4
m

) (3.3)

regularized output = output×m (3.4)

3.1.2 CNN implementation

CNN implementation contains an input layer, convolution layer, pooling layer and

fully connected layers as illustrated in Fig. 3.4. Convulsion and pooling layers

together extracts features from the time series. These extracted features are fed

into a deep neural network with fully connected layers to learn patterns in the time

series.

Input Convolutional
Layer 

Pooling
Layer Fully Connected

Layer
Output

Figure 3.4: CNN structure taken from Eranga’s thesis [1]

In the convolution layer strides and filter size, number of filters can be adjusted

as parameters. Input matrix height and width of convolution layer can be adjusted

as parameters. Time series window size will be taken as the product of input
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matrix height and width. Pooling layer height and width can be adjusted as pa-

rameters. Number of fully connected layers and size in the deep neural network can

be adjusted as parameters. Learning rate of the CNN can adjusted as a parameter.

Time series data is pre-processed as in the LSTM network. Data points from

input time window are taken as a vector and normalized to a unit vector by dividing

its magnitude (3.3). Post processing is done by min-max feature scaling rather than

multiplying the output by previous magnitude. Equation 3.5 shows how the post

processing is done on output.

OF = (O −Omax)×
[
Rmax −Rmin

Omax −Omin

]
+Rmin (3.5)

where

OF is final output

O is current output

Omin minimum output

Omax maximum output

Rmin minimum observed value

Rmax maximum observed value

3.2 Dynamic Time Warping distance measure

Salvador, S. and Chan, P. [30] has introduced an extension of Dynamic Time Warp-

ing(DTW) [12] distance measure, they have named their algorithm as fastDTW.

FastDTW is an approximation DTW. DTW has a quadratic time and space com-

plexity and fastDTW has a linear time and space complexity. Dynamic time warp-

ing (DTW) finds an optimal alignment between two time series in which one time

series may be “warped” non-linearly by stretching or shrinking its time axis. This

alignment can be used to determine similarity of two time series(where stretching

and shrinking will have minimum effect). Similarity is taken as the warp path

distance which is a scalar value. FastDTW initially samples down a time series

to a low resolution. Warp path found on low resolution is projected to a higher

resolution and new warp path is searched only in the projected warp path found in

the lower resolution. FastDTW keeps projecting and searching for a new warp path

until the time series in the original resolution. Figure 3.5 shows how projection

and searching is done.
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Figure 3.5: Projection and searching process of fastDTW algorithm taken from [30]

3.3 LSTMCNNcda

LSTMCNNcda is an extension of LSTMCNNnet which incorporates the concept

drift adaptation method [2].

3.3.1 Concept Drift Detection

Webb et al [6] has introduced formal quantitative analysis of concept drift in the

context of time series. This analysis can be applied to different contexts other than

time series as well. For classification learning problem on a data stream we can

model a process generating a stream of data points as a random variable Z. An

instance z can be drawn from Z, z represents a pair (x, y). Where x, y are instances

of X, Y variables. X models the random variable over vectors of attribute values

of data points. Y models the random variable over class labels. Random variable

Z can be modeled as the joint distribution of XY .

A machine learning algorithm takes training data as input to model a pro-

cess(function or mapping). In classification problems, P (Y ) denotes the prior

probability distribution over class labels, P (X) denotes the prior probability dis-

tribution over data points. P (X, Y ) denotes the joint probability distribution over

data points and class labels. P (Y | X) denotes the probability distribution of

observing data point X given that class label is Y and P (X | Y ) denotes the prob-

ability of data point being labeled as Y given that X data point is observed. A

data stream is a data set in which the data elements have time stamps. Therefore

in a series, in order to reference the probability distribution at a particular time

we can add a time subscript such as Pt(Z), to denote a probability distribution at

time t.

3.3.2 Learning with drift detection

Gama, J. et al [29] has compared eight concept drift detection methods used on

time series. They have chosen the concept drift detection methods in the literature

with highest number of citations, provided that there is a freely available imple-

mentation or a detailed algorithm is given in the literature. They have concluded
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that Learning with drift detection(DDM) by Gama, J et al [2] is the best method.

Gama, J. et al [2] “Learning with drift detection” paper introduce a concept

drift detection method for gradual and abrupt concept drifts. Their method can

be used to control the error rate of an online learning algorithm. Their method

will be referred to as DDM henceforth.

In an online learning scenario data points are presented as a sequence. They have

defined context as a set of data points where P (X | Y ) probability distribution is

stationary. Statistical theory guarantees that while the distribution is stationary,

the error of classification will decrease as the number of data points with class la-

bels increase. When the distribution changes, the error will increase. For a context

DDM defines a warning level, and a drift level. A new context is declared, if the

classification error increases reaching the warning level at data point TW , and the

drift level at data point TD. Online learning algorithm learns a new model using

only the data points from TW (new concept).

For an example Suppose a sequence of data points, in the form of pairs (xi, yi).

For each data point, the actual decision model predicts (zi) , that can be True

(zi = yi) or False (zi 6= yi). For a set of data points the error is a random

variable from Bernoulli trials. The Binomial distribution gives the general form of

the probability for the random variable that represents the number of errors in a

sample of n examples.

For each data point i in the sequence, the error-rate is the probability of ob-

serving False(zi 6= yi) is Pi , with standard deviation given by si =
√
Pi(1− Pi)/i.

Binomial distribution is closely approximated by a Normal distribution with the

same mean and variance(when n ≥ 30). When Considering that the probability

distribution is unchanged when the context is static, then the 1 − α/2 confidence

interval for P is approximately Pi ± α × si . The parameter α depends on the

confidence level.

DDM keeps two registers during the training of the learning algorithm, Pmin

and smin. Every time a new example i is processed those values are updated when

Pi + si is lower than Pmin + smin.

Warning level defines the optimal size of the context window. The context

window will contain the data points that are on the new context and a minimal

number of data points on the old context.

Suppose that there is a data point i with correspondent Pi and si . Confidence

level for warning has been set to 95%, that is, the warning level is reached if

Pi + si ≥ Pmin + 2× smin. The confidence level for drift has been set to 99%, that

is, the drift level is reached if Pi+si ≥ Pmin+3×smin. Suppose a sequence of data

points where the error of the actual model increases reaching the warning level at
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data point KW ,and the drift level at data point KD. This is an indication of a

change in the distribution of the data points. A new context is declared starting

from data point KW , and a new decision model is trained using only the data points

starting from KW .

It is possible to observe an increase of the error reaching the warning level,

followed by a decrease. Such situations corresponds to a false alarm of context

drift, which may be an anomaly. Figure 3.6 illustrates how concept drift window

size is identified by DDM.

Figure 3.6: How concept drift window size is identified by DDM [2]
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Chapter 4

Implementation

4.1 Sherlock Framework

Shipmon et al [9] presents a comparison of DNN, RNN, LSTM and a Fourier model

for anomaly detection on time series data. They have concluded that RNN and

Fourier models were effective predictive models and DNN and LSTM generates

false alarms in peaks of a time series. But P. Malhotra et al [8] in their study of

anomaly detection on time series using LSTM has concluded that LSTM performs

better on anomaly detection on time series. These contradictory conclusions may

be a result of data set biases of the two studies since they use different data sets in

different scenarios. From these two studies we can infer that different approaches

of anomaly detection on time series have unique advantages for different scenarios.

Therefore it is preferred to implement a framework which can be used to imple-

ment different anomaly detection methods on time series. Such a framework would

drastically reduce repetitive work to be done by a research in this domain. For

this reason we have introduced a framework for anomaly detection on time series

named “Sherlock” written in C++.

Structure of Sherlock framework is based on the generic schema provided by J.

Gama et al [28] for online adaptive learning algorithms in their survey on concept

drift adaptation. Figure 4.1 illustrates this schema. A system may consist of a

memory module which decides how and which data is presented to the learning

algorithm. And a loss estimation model to tack the performance of learning al-

gorithm and send information to change detection module to update the learned

model if required.

Sherlock framework consists of three main modules, Profiling module, Anomaly

detection module and Concept Drift Detection module. There is a singleton class

“SharedMemory” for communication in between these modules and it consists of a

buffer to store past data points observed and other metrics. Modules have different
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Figure 4.1: Generic schema provided by J. Gama et al [28] for online adaptive

learning algorithms

abstract classes with interfaces that can be used to implement different methods to

be used by those modules, which can be used to test mixtures of different methods

for profiling, detecting anomaly and concept drifts without implementing same

method again and again. A singleton class “MainLoop” handles the control of the

framework. Figure 4.2 illustrates the high level architecture of Sherlock framework.

For this study we have implemented LSTMCNNnet and LSTMCNNcda with

fastDTW [30] on Sherlock framework.

4.1.1 Profiling module

Profiling module consists of one abstract class “Profiler” with two interfaces called

“profile” which should return the expected value for current observed data point

and “init” to run initializing operations. Profiling module can access previously

observed data points and shared flags set by other modules from “SharedMemory”.

“Profiler” class has a reference to “SharedMemory” which has to be set by the

constructor of an implementing class. Other methods like “train” to train a profiler

can be implemented as private methods in an implementing class. Listing 4.1

contains the source code of “Profiler” abstract class.

Listing 4.1: “Profiler” abstract class

1 #i f n d e f PROFILER H

2 #d e f i n e PROFILER H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”
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Figure 4.2: Architecture of Sherlock framework

6

7 c l a s s P r o f i l e r

8 {
9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜ P r o f i l e r ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
25
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26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l double p r o f i l e ( ) = 0 ;

34

35 } ;

36

37 #e n d i f // PROFILER H

4.1.2 Anomaly detection module

Anomaly detection module consists of three abstract classes “AnomalyDistance-

Measure”, “AnomalyThresholdSetter”, and “AnomalyDetector”. “AnomalyDis-

tanceMeasure” provides “measureDistance” interface which should return a dou-

ble value. “AnomalyThresholdSetter” provides two interfaces “getWarningThresh-

old” and “getAlarmThreshold” which returns double values. These interfaces are

used by the “AnomalyDetector” class to signal an anomaly detection or warn-

ing.“AnomalyDetector” class provides “detectWarning” and “detectAlarm” which

return boolean values. All of these abstract classes has a reference to “SharedMem-

ory” object which has to be set in the constructor of an implementing class. And

these classes can access anomaly distance, anomaly detection and warning signal

history from the history buffer in “SharedMemory”. Listing 4.2 contains the source

code of “AnomalyDistanceMeasure” abstract class. Listing 4.3 contains the source

code of “AnomalyThresholdSetter” abstract class. Listing 4.4 contains the source

code of “AnomalyDetector” abstract class.

Listing 4.2: “AnomalyDistanceMeasure” abstract class

1 #i f n d e f ANOMALYDISTANCEMEASURE H

2 #d e f i n e ANOMALYDISTANCEMEASURE H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6

7 c l a s s AnomalyDistanceMeasure

8 {
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9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜AnomalyDistanceMeasure ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
25

26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l double measureDistance ( ) = 0 ;

34

35 } ;

36

37 #e n d i f // ANOMALYDISTANCEMEASURE H

Listing 4.3: “AnomalyThresholdSetter” abstract class

1 #i f n d e f ANOMALYTHRESHOLDSETTER H

2 #d e f i n e ANOMALYTHRESHOLDSETTER H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6

7 c l a s s AnomalyThresholdSetter

8 {
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9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜ AnomalyThresholdSetter ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
25

26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l double getWarningThreshold ( ) = 0 ;

34

35 v i r t u a l double getAlarmThreshold ( ) = 0 ;

36

37 } ;

38

39 #e n d i f // ANOMALYTHRESHOLDSETTER H

Listing 4.4: “AnomalyDetector” abstract class

1 #i f n d e f ANOMALYDETECTOR H

2 #d e f i n e ANOMALYDETECTOR H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6
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7 c l a s s AnomalyDetector

8 {
9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜AnomalyDetector ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
25

26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l bool detectWarnning ( ) = 0 ;

34

35 v i r t u a l bool detectAlarm ( ) = 0 ;

36

37 } ;

38

39 #e n d i f // ANOMALYDETECTOR H

4.1.3 Concept Drift detection module

Concept drift detection module consist of similar abstract classes to Anomaly de-

tection module “ConceptDistanceMeasure”, “ConceptThresholdSetter” and “Con-

ceptDriftDetector”. All these classes also has a reference to “SharedMemory”
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where implementing class should set “SharedMemory” object in its constructor.

concept distance history can be accessed from the history buffer in “SharedMem-

ory”. “ConceptDriftDetector” class has a single interface “detect” which returns

a boolean value. When a concept drift is detected a flag in “SharedMemory” is

set and data points in the old concept is flushed from the history buffer leaving

data points from the new concept so that the Profiling Modules “Profiler” can

train the profiler for the new concept. Listing 4.5 contains the source code of

“ConceptDistanceMeasure” abstract class. Listing 4.6 contains the source code of

“ConceptThresholdSetter” abstract class. Listing 4.7 contains the source code of

“ConceptDriftDetector” abstract class.

Listing 4.5: “ConceptDistanceMeasure” abstract class

1 #i f n d e f CONCEPTDISTANCEMEASURE H

2 #d e f i n e CONCEPTDISTANCEMEASURE H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6

7 c l a s s ConceptDistanceMeasure

8 {
9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16

17 // Dest ructor

18 v i r t u a l ˜ ConceptDistanceMeasure ( ) {
19 sharedMemory = NULL;

20 } ;

21

22 // methods

23 void setSharedMemory ( SharedMemory ∗sharedMemory ){
24 th i s−>sharedMemory = sharedMemory ;

25 }
26

27 std : : s t r i n g g e t I d e n t i f i e r ( ) {
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28 re turn th i s−>i d e n t i f y e r ;

29 }
30

31 // v i r t u a l methods

32 v i r t u a l void i n i t ( ) = 0 ;

33

34 v i r t u a l double measureDistance ( ) = 0 ;

35

36 } ;

37

38 #e n d i f // CONCEPTDISTANCEMEASURE H

Listing 4.6: “ConceptThresholdSetter” abstract class

1 #i f n d e f CONCEPTTHRESHOLDSETTER H

2 #d e f i n e CONCEPTTHRESHOLDSETTER H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6

7 c l a s s ConceptThresholdSetter

8 {
9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜ ConceptThresholdSetter ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
25

26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
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27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l double getWarningThreshold ( ) = 0 ;

34

35 v i r t u a l double getAlarmThreshold ( ) = 0 ;

36

37 } ;

38

39 #e n d i f // CONCEPTTHRESHOLDSETTER H

Listing 4.7: “ConceptDriftDetector” abstract class

1 #i f n d e f CONCEPTDRIFTDETECTOR H

2 #d e f i n e CONCEPTDRIFTDETECTOR H

3

4 #inc lude <s t r i ng>

5 #inc lude ”SharedMemory . h”

6

7 c l a s s ConceptDr i f tDetector

8 {
9 p r i v a t e :

10

11 protec ted :

12 std : : s t r i n g i d e n t i f y e r ;

13 SharedMemory ∗sharedMemory ;

14

15 pub l i c :

16 // Dest ructor

17 v i r t u a l ˜ ConceptDr i f tDetector ( ) {
18 sharedMemory = NULL;

19 } ;

20

21 // methods

22 void setSharedMemory ( SharedMemory ∗sharedMemory ){
23 th i s−>sharedMemory = sharedMemory ;

24 }
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25

26 std : : s t r i n g g e t I d e n t i f i e r ( ) {
27 re turn th i s−>i d e n t i f y e r ;

28 }
29

30 // v i r t u a l methods

31 v i r t u a l void i n i t ( ) = 0 ;

32

33 v i r t u a l i n t de t e c t ( ) = 0 ;

34

35 } ;

36

37 #e n d i f // CONCEPTDRIFTDETECTOR H

4.2 Profiling methods implementation

Auto-Regressive and Moving Average (ARMA) Profiling model is implemented as

the baseline method to compare the performance of proposed profiling model from

here on wards we will call this implementation as “arma” model.

LSTM and CNN ensemble neural network implementation is taken from Eranga’s

work [1], which is described in Section 3.1, this implementation is integrated with

Sherlock framework and it is called “LSTMCNNnet” model.

Since anomaly detection performance of LSTMCNNnet is inferior when com-

pared with arma model to validate the use of LSTM and CNN ensemble neural

network for profiling method an LSTM CNN ensemble neural network was imple-

mented using Keras1 without any pre-processing or post-processing steps. This

implementation is called “LSTMCNNkeras” model.

LSTMCNNkeras model has shown an improvement in certain metrics and draw-

backs in some metrics when compared with LSTMCNNnet model. We have identi-

fied the reason behind the improvement was that LSTMCNNkeras model adapts to

certain concept drifts in time series when predicting and LSTMCNNnet does not.

Reason for this difference in results is the presence of time series data normalization

and regularization steps in LSTMCNNnet. But these time series data normaliza-

tion and regularization steps are required to generalize our profiling model for data

sets with different feature scales. Although in a time series scale of the features

may change as new data points are generated. This is a known issue in this model.

1https://keras.io/
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Further we have implemented another model by extending LSTMCNNnet with

a concept drift detection and adaptation method desctibed in Section 3.3.2. This

implementation will be called “LSTMCNNcda”(cda stands for Concept Drift Adap-

tation) model.

4.2.1 ARMA profiling model implementation

Arma model is implemented using python Statsmodels library2. Arma model has

two parameters p and q. p is the number of previous time points taken into the

Auto Regressive(AR) model. q is the number of errors associated with previous

time points in the Moving Average(MA) model. Training data set is used to find

the arma(p,q) model that yields the minimum mean square error when predicting

the time series. Error is taken as the euclidean distance between the observed time

series and predicted time series. Parameter q and p varied from zero to three.

4.2.2 LSTMCNNnet profiling model implementation

Details of LSTMCNNnet implemented on Sherlock framework is provided in Sec-

tion 3.1. Parameters of feature combination layer weight of LSTM and weight of

CNN are set for different data sets giving higher weight for LSTM if anomaly de-

tection is higher with just LSTM profiler compared to CNN profiler and vise versa.

Learning rate is set arbitrary in between 0.1-.0001 for different data sets which are

taken from Eranga’s [1] work. And in the LSTM network number of LSTM cells

and in the CNN matrix height, matrix width number of fully connected layers and

their size are taken from Eranga’s work for different data sets. In the CNN pooling

layer height and weight are set to one, Convolution layer strides, filters are set to

one and filter size is set two for all data sets. Training iterations are set to ten and

number of forecasting(profiling) points are set to one for all data sets.

4.2.3 LSTMCNNkeras profiling model implementation

LSTMCNNkeras was implemented using python Keras framework with the same

structure and parameters of LSTMCNNnet except the pre-processing and post-

processing steps in LSTM network and CNN in LSTMCNNnet, which are the time

series data normalization and regularization steps. There are no any pre-processing

or post-processing steps in the LSTMCNNkeras implementation.

2https://www.statsmodels.org/stable/index.html
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4.2.4 LSTM and CNN profiling models implementation

LSTM network and a CNN network are implemented separately in python Keras

framework with same structure and parameters of LSTM network and CNN in

LSTMCNNnet except the pre-processing and post-processing steps. These two

profiling models were implemented to compare performance increase of ensemble

LSTM and CNN network (LSTMCNNkeras) when compared with vanilla version

of LSTM and CNN.

4.2.5 LSTMCNNcda profiling model implementation

LSTMCNNcda is implemented on Sherlock framework by extending the LSTM

CNNnet implementation on Sherlock framework with Concept Drift Detection

method introduced by Gama, J. et al [2] in their paper “Learning with Drift De-

tection”. Details of this method is mentioned in Section 3.3.2. For the observation

time window for concept drifts we have used 30 data points.

4.3 Anomaly Detection method implementation

For anomaly detection we have used an implementation of fastDTW distance mea-

sure introduced by Salvador, S. and Chan, P. [30]. Details of their algorithm is

mentioned in Section 3.2. For the time window size to calculate warp distance we

have used the window size used by Eranga [1] in his work for different data sets. If

the distance between profiled time window and the observed time window exceeds

a predefined threshold, that data point is marked as an anomaly.

4.4 Threshold setting mechanism

As mentioned above a threshold value is set to detect anomalies using DTW dis-

tance measure between observed time series and profiling model output. To set

this threshold value a threshold setting process is used for the last one third of

training data available in a time series data set. As the threshold setting process

we have taken the maximum distance observed and multiplied it with a constant.

For our experiments we have selected two as this constant.
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Chapter 5

Results and Evaluation

All experiments were carried out on a laptop PC with Intel Core i7-7700HQ pro-

cessor with eight virtual cores and 2.80 Ghz clock speed. And 16 GB RAM on

Ubuntu 10.04 LTS Operating system.

5.1 Data set

For all experiments Numenta Anomaly Benchmark (NAB)1 data set was used.

NAB contains data sets of 58 different anomaly detection scenarios in seven cate-

gories. All data sets have anomalies labeled by a team of observers 2. One category

is “realAWSCloudwatch”, which contains AWS server metrics collected by Ama-

zonCloudwatch service, metrics include CPU Utilization, Network Bytes In, and

Disk Read Bytes. Another category is “realAdExchange” , which contains metrics

such as cost-per-click (CPC) and cost per thousand impressions (CPM). Another

category is “realKnownCause” , which contain data from many domains where the

anomaly cause is known and anomalies are not hand labelled. Another category

is “realTraffic” , which contain data collected from the Minnesota Department of

Transportation in city metro areas of Minnesota, which includes occupancy, speed,

and travel time captured by specific sensors. Another category is “realTweets” ,

which contain collection of Twitter mentions of a publicly traded companies such as

Google and Amazon. Value observed is the number of mentions for given 5 minute

time window. Another category is artificially generated data with anomalies. And

the final category is artificially generated data without anomalies.

Each data set is divided into two main parts: the first part of the time series

is taken for training and the second part is taken for testing. As default, first 15%

1https://github.com/numenta/NAB/tree/master/data
2https://drive.google.com/file/d/0B1_XUjaAXeV3dW1kX1B3VkYwOFE/view
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of the time series is taken as training data, but if there are anomalies in the first

15% of the time series data points up to the first anomaly is taken for training data.

First two third of the training data is taken for profiling model training and other

one third is taken for threshold setting process. Figure 5.1 illustrates training data

is selected.

Figure 5.1: How training data is selected. In the top figure a first 15% of the data

set is taken as training data. In the bottom figure first 7.8% of the data-set is taken

as training data since there is an anomaly at the 7.8% percentile of the data set.
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5.2 Results

Metrics used to compare anomaly detection performance with different profiling

models are True Positive Rate(TPR) which represents how many anomalies are

detected from all anomalies , Precision(PVV) which represents how many positive

detections are correct, and Weighted Harmonic Mean of TPR and PVV with 1500:1

weight ratio for TPR:PVV. Harmonic weights are used since TPR and PVV are

measures of rates and different profiling methods have the best value for TPR and

PVV. We have given a very high weight for TPR since we assume that in many

scenarios detecting an anomaly is has much greater importance than reducing false

alarms. Mean Square Error for forecasting time series for different profiling models

are presented to infer how efficiently profiling model forecasts time series data.

We have taken all the positive detection in an anomaly window as one True

Positive(TP) and all positive detections outside anomaly window as False Posi-

tives(FP). If there were no positive detections in an anomaly window we count it

as a False Negative(FN). And all other points as True Negatives(TN). Figure 5.2

illustrates how TPs and FPs are counted.

Figure 5.2: How True Positives(TP) and False Positives(FP) are counted.

Table 5.1 represents the number of True Positives, False Positives, False Neg-

atives and True Negatives generated by anomaly detection using each profiling

method ARMA, CNN, LSTM, LSTMCNNnet, LSTMCNNkeras, and LSTMCN-

Ncda. Highest number of True Positives and lowest number of False Negatives

were obtained by LSTMCNNkeras profiling method. From observing these metrics
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we can infer that LSTMCNNkeras model is better.

Table 5.1: Raw confusion metrics obtained for anomaly detection with ARMA,

CNN, LSTM, LSTMCNNnet, LSTMCNNkeras, and LSTMCNNcda profiling meth-

ods.
TP FP FN TN

ARMA 72 4494 44 327569

CNN 73 13194 43 318869

LSTM 64 13461 52 318602

LSTMCNNnet 51 1542 65 330521

LSTMCNNkeras 77 12924 39 319139

LSTMCNNcda 54 5719 62 326344

For further comparison we have calculated TPR, PVV and F-1500 in Table

5.2. LSTMCNNkeras has got the highest TPR which can be inferred as the pro-

filing method with most anomalies detected. LSTMCNNnet has the highest PVV

which can be inferred as the profiling method with least false alarms in anomaly

detection. F-1500 score is highest in the LSTMCNNkeras. From these metrics

we can infer that LSTMCNNkeras has better ability to detect all anomalies but

LSTMCNNnet has a better precision where less false alarms are generated, both of

these features are preferable in anomaly detection. We can observe that difference

of anomaly detection metrics from Fig. 5.3 and forecasting metrics from Fig. 5.4.

LSTMCNNkeras method has the lowest mean square error for forecasting time

series.

Table 5.2: TPR, PVV, and F-1500 metrics multiplied by 100 for anomaly detection

with ARMA, CNN, LSTM, LSTMCNNnet, LSTMCNNkeras, and LSTMCNNcda

profiling methods.

ARMA CNN LSTM LSTMCNNnet LSTMCNNkeras LSTMCNNcda

TPR 62.06 62.93 55.17 43.96 66.37 46.55

PVV 1.57 0.55 0.47 3.2 0.59 0.93

F-1500 60.52 58.51 51.22 43.59 61.8 45.08

MSE 1.71E+15 1.43E+16 1.94E+15 8.68E+15 3.12E+13 1.24E+16

Few plots of time series data sets are discussed below. Plots contain Warp dis-

tance(in green), Value(in blue) and Anomaly window(highlighted in red) of time

series data with concept drifts of LSTMCNNkeras, LSTMCNNnet, and LSTMC-

NNcda are compared.
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Figure 5.3: Bar chart of TPR, PVV, F-15000 metrics for anomaly detection using

ARMA, CNN, LSTM, LSTMCNNnet, LSTMCNNkeras, LSTMCNNcda profiling

methods.

Figure 5.4: Bar chart of mean square error of forecasting for ARMA, CNN, LSTM,

LSTMCNNnet, LSTMCNNkeras, LSTMCNNcda profiling methods.
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From Fig. 5.5 we can observe that LSTMCNNkeras profiling method adapts to

a concept drift in a very short period. But LSTMCNNnet does not adapt to the

concept drift at all. LSTMCNNcda has small adaption to the concept drift yielding

a better result that LSTMCNNnet.

From Fig. 5.6 we can observe that LSTMCNNkeras profiling method adapts to

a concept drift quickly. But LSTMCNNnet does not adapt to the concept drift.

At the beginning of the concept drift LSTMCNNcda yields worst forecasting per-

formance than LSTMCNNnet but gradually it adapts to the concept drift yielding

better performance.

From Fig. 5.7 we can observe that LSTMCNNkeras profiling method adaptor to

two concept drifts relatively closer to each other quickly. LSTMCNNnet does not

adapt to this concept drift. LSTMCNNcda tries to adopt for the 1st concept drift

when it is at the starting stages of the adaption concept again shifts to the old one

where LSTMCNNcda yields worst forecasting performance than LSTMCNNnet.
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Figure 5.5: Illustrates how LSTMCNNkeras, LSTMCNNnet, and LSTMCNNcda

behave when there is a concept drift in “grok asg anomaly” data set. Value, Warp

distance, and Anomaly window is shown in blue, green, and red respectively.
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Figure 5.6: Illustrates how LSTMCNNkeras, LSTMCNNnet, and LSTMCNNcda

behave when there is a concept drift in “rds cpu utilization e47b3b” data set.

Value, Warp distance, and Anomaly window is shown in blue, green, and red

respectively.
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Figure 5.7: Illustrates how LSTMCNNkeras, LSTMCNNnet, and LSTMCNNcda

behave when there is a concept drift in “ec2 cpu utilization 825cc2” data set.

Value, Warp distance, and Anomaly window is shown in blue, green, and red

respectively.

48



Chapter 6

Conclusions

6.1 Introduction

In conclusion we can say that ensemble LSTM CNN network for normal profiling

method with dynamic time warping for distance measure for anomaly detection on

time series performs better that baseline profiling method ARMA.

But when ensemble LSTM CNN network is introduced with data normaliza-

tion and regularization steps for generalizing the model it’s performance drops

since it fails to adapt to concept drifts. When concept drift detection and adapta-

tion method introduced in [2] is incorporated with LSTM CNN ensemble profiling

method with normalization and regularization steps there is a slight improvement

but it does not reach the performance of LSTM CNN ensemble profiling method

without normalization and regularization steps.

6.2 Conclusions about research questions

(aims/objectives)

We can conclude that ensemble LSTM CNN profiling method with DTW for

anomaly detection on time series performs better than baseline profiling method

ARMA. But LSTMCNNnet does not perform better than the baseline profiling

method ARMA.

We can also conclude that performance gap between LSTMCNNnet and LSTM-

CNNkeras is because LSTMCNNnet fails to adapt to certain concept drifts in time

series. from our observations in Chapter 5
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6.3 Conclusions about research problem

We can conclude that LSTMCNNnet performance is improved when Concept Drift

Adaptation [2] method is incorporated with LSTMCNNnet from the F-1500 metric

observed in Chapter 5. And in most cases of concept drifts LSTMCNNcda performs

better than LSTMCNNnet.

6.4 Limitations

Problem of input normalization for time series data is a complex issue which is

persistent in other LSTM and CNN based prediction models used for time series

forecasting. Since normalizing a time series is difficult because maximum and

minimum values of range is not know in most scenarios.

Threshold setting mechanism on distance measure to deferential anomalies from

normal observations used in our implementation is not an optimum solution.

6.5 Implications for further research

Further research can be carried out on time series data normalization and regular-

ization techniques or finding better concept drift adaptation method to be coupled

with LSTMCNNnet.

A dynamic threshold setting mechanism can be used to further improve perfor-

mance of proposed method.
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Appendix A

Code Listings

Listing A.1: Main method for Sherlock framework to implement and run LSTMC-

NNcda on NAB data set

1 #inc lude <s t d l i b . h>

2

3 #inc lude <iostream>

4 #inc lude <iomanip>

5 #inc lude <f stream>

6 #inc lude <thread>

7 #inc lude <mutex>

8 #inc lude <memory>

9 #inc lude <sys / types . h>

10 #inc lude <uni s td . h>

11 #inc lude <sys /mman. h>

12 #inc lude <s t d i o . h>

13 #inc lude <j s on . hpp>

14 #inc lude <iomanip>

15 #inc lude <d i r e n t . h>

16 #inc lude <sys / types . h>

17 #inc lude <sys / s t a t . h>

18 #inc lude <math . h>

19

20

21 #inc lude ”MainLoop . h”

22 #inc lude ” Hi s to ryBu f f e r . h”

23 #inc lude ”SharedMemory . h”

24

25 #inc lude ” P r o f i l e r . h”
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26 #inc lude ” D e f a u l t P r o f i l e r . h”

27 #inc lude ”LSTMCNnetProfiler . h”

28

29 #inc lude ”AnomalyDistanceMeasure . h”

30 #inc lude ”FastDTWAnomalyDistanceMeasure . h”

31

32 #inc lude ” AnomalyThresholdSetter . h”

33 #inc lude ” TrainingMaxAnomalyThresholdSetter . h”

34 #inc lude ” Conf idenceInterva lAnomalyThresho ldSetter . h”

35

36 #inc lude ”AnomalyDetector . h”

37 #inc lude ” DefaultAnomalyDetector . h”

38 #inc lude ” Conf idenceIntervalAnomalyDetector . h”

39

40 #inc lude ” ConceptDistanceMeasure . h”

41 #inc lude ”FastDTWConceptDistanceMeasure . h”

42

43 #inc lude ” ConceptThresholdSetter . h”

44 #inc lude ” Conf idence Inte rva lConceptThresho ldSet te r . h”

45

46 #inc lude ” ConceptDr i f tDetector . h”

47 // #inc lude ” NoConceptDri ftDetector . h”

48 #inc lude ”DynamicWindowConceptDriftDetector . h”

49

50

51 void runLSTMCNnet( std : : s t r i n g inputFileName , std : : s t r i n g

outputFileName ) ;

52 void processConfigJSON ( std : : s t r i n g f i leJSON ) ;

53 void processDataSet ( std : : s t r i n g f i l ePa th , std : : s t r i n g

f i leName ) ;

54 void configureMainLoop ( ) ;

55

56 Hi s to ryBu f f e r ∗ h i s t o r y B u f f e r ;

57 P r o f i l e r ∗ p r o f i l e r ;

58 SharedMemory ∗sharedMemory ;

59 MainLoop ∗mainLoop ;

60 ModelStruct ∗modelStruct ;

61

62
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63 std : : s t r i n g inputFileName = ” . . / data / nab tuned / t e s t /

Twitter volume AAPL . csv ” ; // s e t by args

64 std : : s t r i n g conf igurat ionFi l eName = ” . . / data / nab tuned / t e s t

/Twitter volume AAPL . j son ” ; // s e t by args

65 std : : s t r i n g outputFileName = ” . . / data / n a b t u n e d r e s u l t s /

t e s t 1 /Twitter volume AAPL . csv ” ; // s e t by args

66

67 bool verbose = f a l s e ;

68 i n t processedCount = 0 ;

69 i n t p roc e s s e sL im i t = −1;

70 double p r ed i c t i onTra in ingRat i o = 0 . 1 ; // s e t by args

71 double thre sho ldTra in ingRat io = 0 . 0 4 5 ; // s e t by args

72 double thresholdMaxMult ip ler = 2 . 0 ; // s e t by args

73

74 s t r u c t ROW {
75 std : : s t r i n g timestamp ;

76 double va lue ;

77 bool p r e d i c t i o n t r a i n i n g ;

78 double p r e d i c t i o n ;

79 bool l a b e l ;

80 double warp d i s tance ;

81 bool t h r e s h o l d t r a i n i n g ;

82 double d i s t a n c e t h r e s h o l d ;

83 bool p o s i t i v e d e t e c t i o n ;

84

85 ROW( ) {
86 value = 0 . 0 ;

87 p r e d i c t i o n t r a i n i n g = true ;

88 p r e d i c t i o n = 0 . 0 ;

89 l a b e l = f a l s e ;

90 warp d i s tance = 0 . 0 ;

91 t h r e s h o l d t r a i n i n g = true ;

92 d i s t a n c e t h r e s h o l d = 0 . 0 ;

93 p o s i t i v e d e t e c t i o n = f a l s e ;

94 }
95 } ;

96

97

98
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99

100 i n t main ( i n t argc , char ∗∗ argv )

101 {
102

103 i f ( argc < 7){
104 std : : cout << ” [ main ] Provide arguments : ’ $Sher lock

inputFileName outputFileName

conf igurat ionFi l eName pred i c t i onTra in ingRat i o

thre sho ldTra in ingRat io thresholdMaxMult ip ler ’ ”

<<std : : endl ;

105 re turn 0 ;

106 }
107 inputFileName = argv [ 1 ] ;

108 std : : cout << ” [ main ] inputFileName = ” << inputFileName

<< std : : endl ;

109 outputFileName = argv [ 2 ] ;

110 std : : cout << ” [ main ] outputFileName = ” <<

outputFileName << std : : endl ;

111 conf igurat ionFi l eName = argv [ 3 ] ;

112 std : : cout << ” [ main ] conf igurat ionFi l eName = ” <<

conf igurat ionFi l eName << std : : endl ;

113

114 pred i c t i onTra in ingRat i o = a t o f ( argv [ 4 ] ) ;

115 std : : cout << ” [ main ] p r ed i c t i onTra in ingRat i o = ” <<

pred i c t i onTra in ingRat i o << std : : endl ;

116 thre sho ldTra in ingRat io = a t o f ( argv [ 5 ] ) ;

117 std : : cout << ” [ main ] thre sho ldTra in ingRat io = ” <<

thre sho ldTra in ingRat io << std : : endl ;

118 thresholdMaxMult ip ler = a t o f ( argv [ 6 ] ) ;

119 std : : cout << ” [ main ] thresholdMaxMult ip ler = ” <<

thresholdMaxMult ip ler << std : : endl ;

120

121 std : : cout << ” [ main ] S ta r t i ng ” <<std : : endl ;

122

123

124 processConfigJSON ( conf igurat ionFi l eName ) ; // i t

c o n f i g u r e s MainLoop too

125 runLSTMCNnet( inputFileName , outputFileName ) ;

126
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127

128 std : : cout << ” [ main ] Ended” << std : : endl ;

129 re turn 0 ;

130 }
131

132 void processConfigJSON ( std : : s t r i n g f i leJSON ){
133

134 std : : i f s t r e a m fileJSONStream ( fi leJSON ) ;

135 nlohmann : : j s on JSONDocument ;

136 fi leJSONStream >> JSONDocument ;

137

138 // I n i t i a l i z i n g the s t r u c t u r e

139 modelStruct = new ModelStruct ( ) ;

140

141 i n t i n p u t s i z e = ( i n t )JSONDocument [ ” i n p u t s i z e ” ] ;

142

143 modelStruct−>l ea rn ingRate = ( double )JSONDocument [ ”

pred i c t i on mode l ” ] [ ” l ea rn ingRate ” ] ;

144 std : : cout << ” [ main : processConfigJSON ] Got l earn ingRate

from : ”<< f i leJSON << ” : ” << modelStruct−>
l ea rn ingRate << std : : endl ;

145

146 modelStruct−>t r a i n i n g I t e r a t i o n s = ( i n t )JSONDocument [ ”

pred i c t i on mode l ” ] [ ” t r a i n i n g I t e r a t i o n s ” ] ;

147 std : : cout << ” [ main : processConfigJSON ] Got

t r a i n i n g I t e r a t i o n s from : ”<< f i leJSON << ” : ” <<

modelStruct−>t r a i n i n g I t e r a t i o n s << std : : endl ;

148

149 modelStruct−>numPredPoints = 1 ;

150

151 // LSTM parameters

152 modelStruct−>memCells = ( i n t )JSONDocument [ ”

pred i c t i on mode l ” ] [ ”model” ] [ ”LSTM” ] [ ”memCells” ] ;

153 std : : cout << ” [ main : processConfigJSON ] Got LSTM params

from : ”<< f i leJSON << std : : endl ;

154

155 // CNN parameters

156 modelStruct−>matWidth = ( i n t )JSONDocument [ ”

pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”matWidth” ] ;

60



157 modelStruct−>matHeight = ( i n t )JSONDocument [ ”

pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”matHeight” ] ;

158 modelStruct−>targetC = ( i n t )JSONDocument [ ”

pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ” targetC ” ] ;

159

160 std : : vector<nlohmann : : json> Convolut ionLayers ;

161 JSONDocument [ ” pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”

Convolut ionLayers ” ] . g e t t o ( Convolut ionLayers ) ;

162

163 s t r u c t : : ConvLayStruct ∗CLs = new s t r u c t : : ConvLayStruct

[ ( i n t ) Convolut ionLayers . s i z e ( ) ] ;

164 f o r ( i n t i =0; i<( i n t ) Convolut ionLayers . s i z e ( ) ; i++) {
165 CLs [ i ] . f i l t e r S i z e = ( i n t ) Convolut ionLayers [ i ] [ ”

f i l t e r S i z e ” ] ; // f i l t e r s i z e : N x N

166 CLs [ i ] . f i l t e r s = ( i n t ) Convolut ionLayers [ i ] [ ” f i l t e r s

” ] ; // No o f f i l t e r s

167 CLs [ i ] . s t r i d e = ( i n t ) Convolut ionLayers [ i ] [ ” s t r i d e ”

] ;

168 }
169

170 // Pool ing l a y e r s

171 std : : vector<nlohmann : : json> Pool ingLayers ;

172 JSONDocument [ ” pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”

Pool ingLayers ” ] . g e t t o ( Pool ingLayers ) ;

173

174 s t r u c t : : PoolLayStruct ∗PLs = new s t r u c t : : PoolLayStruct

[ ( i n t ) Pool ingLayers . s i z e ( ) ] ;

175 f o r ( i n t i =0; i<( i n t ) Pool ingLayers . s i z e ( ) ; i++) {
176 PLs [ i ] . poolH = ( i n t ) Pool ingLayers [ i ] [ ”poolH” ] ; //

pool s i z e : N x N

177 PLs [ i ] . poolW = ( i n t ) Pool ingLayers [ i ] [ ”poolW” ] ;

178 }
179

180 // Ful ly connected l a y e r s

181 std : : vector<nlohmann : : json> FullyConnectedLayers ;

182 JSONDocument [ ” pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”

Ful lyConnectedLayers ” ] . g e t t o ( Ful lyConnectedLayers ) ;

183
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184 s t r u c t : : FCLayStruct ∗FCLs = new s t r u c t : : FCLayStruct [ (

i n t ) Ful lyConnectedLayers . s i z e ( ) ] ;

185 f o r ( i n t i =0; i<( i n t ) Ful lyConnectedLayers . s i z e ( ) ; i++) {
186 FCLs [ i ] . outputs = ( i n t ) Ful lyConnectedLayers [ i ] [ ”

outputs ” ] ; // neurons in f u l l y connected l a y e r

187 }
188

189 // Se t t i ng l a y e r order

190 std : : vector<nlohmann : : json> layerOrderJSON ;

191 JSONDocument [ ” pred i c t i on mode l ” ] [ ”model” ] [ ”CNN” ] [ ”

LayerOrder” ] . g e t t o ( layerOrderJSON ) ;

192

193 char ∗ l ayerOrder = new char [ ( i n t ) layerOrderJSON . s i z e ( )

] ;

194 std : : s t r i n g l a y e r ;

195 f o r ( i n t i =0; i<( i n t ) layerOrderJSON . s i z e ( ) ; i++) {
196 l a y e r = ( std : : s t r i n g ) layerOrderJSON [ i ] ;

197 layerOrder [ i ] = l a y e r [ 0 ] ; // neurons in f u l l y

connected l a y e r

198 }
199

200 std : : cout << ” [ main : processConfigJSON ] Got CNN params

from : ”<< f i leJSON << std : : endl ;

201 modelStruct−>netSt ruc t . l a y e r s = ( i n t ) layerOrderJSON .

s i z e ( ) ;

202 modelStruct−>netSt ruc t . layerOrder = layerOrder ;

203 modelStruct−>netSt ruc t .CL = CLs ;

204 modelStruct−>netSt ruc t .PL = PLs ;

205 modelStruct−>netSt ruc t .FCL = FCLs ;

206

207

208

209 std : : cout << ” [ main : processConfigJSON ] Done bu i l d ing

model in f i l e : ”<< f i leJSON << ” ! ” <<std : : endl ;

210

211

212 modelStruct−>t ra inDataS i ze = ( i n t ) ( i n p u t s i z e ∗
pred i c t i onTra in ingRat i o ) + 1 − ( i n t ) ( modelStruct−>
matHeight∗modelStruct−>matWidth) ;
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213

214 // # History Buf f e r

215 h i s t o r y B u f f e r = new Hi s to ryBu f f e r ( ) ;

216 i n t h i s t o r y B u f f e r S i z e = modelStruct−>t ra inDataS i ze +(

modelStruct−>matHeight∗modelStruct−>matWidth ) ;

217 double ∗ b u f f e r H i s t o r y = new double [ h i s t o r y B u f f e r S i z e ] ;

218 h i s t o ryBu f f e r−>s e t S i z e ( h i s t o r y B u f f e r S i z e , b u f f e r H i s t o r y

) ;

219

220 double lstmW = ( double )JSONDocument [ ” pred i c t i on mode l ”

] [ ”model” ] [ ”lstmW” ] ;

221 std : : cout << ” [ main : processConfigJSON ] Got LSTM Weight

from : ”<< f i leJSON << ” : ” << lstmW << std : : endl ;

222

223 double cnnW = ( double )JSONDocument [ ” pred i c t i on mode l ” ] [

”model” ] [ ”cnnW” ] ;

224 std : : cout << ” [ main : processConfigJSON ] Got CNN Weight

from : ”<< f i leJSON << ” : ” << cnnW << std : : endl ;

225

226 // # LSTMCNnetProfiler

227 p r o f i l e r = new LSTMCNnetProfiler ( ” lstmcnnnet 1” ,

modelStruct , lstmW , cnnW) ;

228

229

230 // # Shared Memory

231

232 // ## p r o f i l e r

233 i n t p r o f i l e r S i z e = ( i n t )JSONDocument [ ”dtw window” ] ;

234 Profi lerMemory ∗prof i lerMemory = new Profi lerMemory (

p r o f i l e r S i z e ) ;

235 prof i lerMemory−>inWindowSize = modelStruct−>matWidth∗
modelStruct−>matHeight ;

236 prof i lerMemory−>OutWindowSize = 1 ;

237 prof i lerMemory−>minTrainingWindowSize = modelStruct−>
t ra inDataS i ze + ( modelStruct−>matHeight∗modelStruct

−>matWidth ) ;

238

239 // ### anomaly de t e c t o r
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240 i n t anomlayDetectorInWindowSize = ( i n t )JSONDocument [ ”

dtw window” ] ;

241 i n t anomalyDistanceSize = ( i n t ) ( ( i n p u t s i z e − (

modelStruct−>t ra inDataS i ze +(modelStruct−>matHeight∗
modelStruct−>matWidth ) ) )∗ thre sho ldTra in ingRat io ) −
anomlayDetectorInWindowSize ;

242 i n t anomlayWarrningSize = 1 ;

243 i n t anomalyAlarmSize = 1 ;

244 AnomalyDetectorMemory ∗anomalyDetectorMemory = new

AnomalyDetectorMemory ( anomalyDistanceSize ,

anomlayWarrningSize , anomalyAlarmSize ) ;

245 anomalyDetectorMemory−>inWindowSize =

anomlayDetectorInWindowSize ;

246

247 // ### concept d r i f t d e t e c t o r

248 i n t conceptDetectorInWindowSize =

anomlayDetectorInWindowSize ;

249 i n t conceptDi s tanceS i ze = anomalyDistanceSize ;

250 i n t conceptWarningSize = 1 ;

251 i n t conceptAlarmSize = 1 ;

252 ConceptDriftDetectorMemory ∗ conceptDriftDetectorMemory

= new ConceptDriftDetectorMemory ( conceptDis tanceS ize

, conceptWarningSize , conceptAlarmSize ) ;

253 conceptDriftDetectorMemory−>inWindowSize=

conceptDetectorInWindowSize ;

254

255 sharedMemory = new SharedMemory ( prof i lerMemory ,

anomalyDetectorMemory , conceptDriftDetectorMemory ) ;

256 sharedMemory−>h i s t o r y = new Queue<double>(

h i s t o r y B u f f e r S i z e ) ;

257

258 configureMainLoop ( ) ;

259 }
260

261 void configureMainLoop ( ) {
262

263 mainLoop = new MainLoop ( verbose ) ;

264

265 // s e t h i s t o r y B u f f e r
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266 mainLoop−>s e t H i s t o r y B u f f e r ( h i s t o r y B u f f e r ) ;

267

268 // ## Anomaly Detect ion

269 // s e t t i n g anomaly d i s t anc e measure

270 AnomalyDistanceMeasure ∗anomalyDestanceMeasure = new

FastDTWAnomalyDistanceMeasure ( ”fastDTW 1” ) ;

271 mainLoop−>setAnomalyDistanceMeasure (

anomalyDestanceMeasure ) ;

272

273 // s e t t i n g anomaly th r e sho ld s e t t e r

274 double maxMultiplierAlarm = thresholdMaxMult ip ler ;

275 double maxMultiplierWarning = 1 . 5 ;

276 AnomalyThresholdSetter ∗ anomalyThresholdSetter = new

TrainingMaxAnomalyThresholdSetter ( ”

maxAnomalyThrehsolder 1” , maxMultiplierWarning ,

maxMultiplierAlarm ) ;

277 mainLoop−>setAnomalyThresholdSetter (

anomalyThresholdSetter ) ;

278

279 // s e t t i n g anomaly th r e sho ld s e t t e r

280 AnomalyDetector ∗anomalyDetector = new

DefaultAnomalyDetector ( ” defaultAnomalyDetector 1” ) ;

281 mainLoop−>setAnomalyDetector ( anomalyDetector ) ;

282

283 // ## Concept D r i f t Detect ion

284 // s e t t i n g concept d i s t anc e measure

285 ConceptDistanceMeasure ∗ conceptDestanceMeasure = new

FastDTWConceptDistanceMeasure ( ”fastDTW Concept1” ) ;

286 mainLoop−>setConceptDistanceMeasure (

conceptDestanceMeasure ) ;

287

288 // s e t t i n g concept th r e sho ld s e t t e r

289 double alphaWarrning = 2 ;

290 double alphaAlarm = 3 ;

291 ConceptThresholdSetter ∗ conceptThresho ldSet te r = new

Conf idence Inte rva lConceptThresho ldSet te r ( ” Conf idence

I n t e r v a l Concept Threshold S e t t e r ” , alphaWarrning ,

alphaAlarm ) ;

65



292 mainLoop−>se tConceptThresho ldSetter (

conceptThresho ldSet te r ) ;

293

294 // s e t t i n g concept d r i f t d e t e c t o r

295 // ConceptDr i f tDetector ∗ conceptDr i f tDetec to r = new

NoConceptDri ftDetector (”NoCDD”) ;

296 ConceptDr i f tDetector ∗ conceptDr i f tDetec to r = new

DynamicWindowConceptDriftDetector ( ”CDD” ) ;

297 mainLoop−>s e tConceptDr i f tDetec to r ( conceptDr i f tDetec to r )

;

298

299

300 mainLoop−>s e t P r o f i l e r ( p r o f i l e r ) ;

301

302 mainLoop−>setSharedMemory ( sharedMemory ) ;

303 }
304

305 void runLSTMCNnet( std : : s t r i n g inputFileName , std : : s t r i n g

outputFileName ){
306 /∗∗
307 ∗ Proce s s e s input f i l e s in NAB format .

308 ∗ CSV f i l e s with header ”timestamp , value , anomaly score

, l abe l , S ( t ) reward low FP rate , S ( t )

reward low FN rate , S ( t ) s tandard ”

309 ∗
310 ∗/
311

312 // F i l e po in t e r

313 std : : f s t ream inputStream { inputFileName , std : : i o s : : in } ;

// open inputFileName

314 std : : f s t ream outputStream {outputFileName , std : : i o s : :

out } ; // open inputFileName

315

316 // Read the Data from the f i l e

317 // as St r ing Vector

318 std : : vector<std : : s t r i ng> row ;

319 std : : s t r i n g l i n e , word , temp ;

320 i n t lineNumber = 1 ;

321 bool cor rectHeader = f a l s e ;
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322

323 ROW writeROW ;

324

325 whi l e ( ! inputStream . eo f ( ) ) {
326

327 row . c l e a r ( ) ;

328

329 // read an e n t i r e row and

330 // s t o r e i t in a s t r i n g v a r i a b l e ’ l i n e ’

331 std : : g e t l i n e ( inputStream , l i n e ) ;

332 // used f o r breaking words

333 std : : s t r i ng s t r eam str ingStream ( l i n e ) ;

334

335 i f ( l i n e != ”” ){
336 // read every column data o f a row and

337 // s t o r e i t in a s t r i n g var i ab l e , ’ word ’

338 whi le ( std : : g e t l i n e ( str ingStream , word , ’ , ’ ) ) {
339 // add a l l the column data

340 // o f a row to a vec to r

341 row . push back ( word ) ;

342 }
343

344 // check i f header i t i s in c o r r e c t format

345 i f ( lineNumber == 1){// header

346 i f ( row [ 0 ] == ”timestamp” &&

347 row [ 1 ] == ” value ” &&

348 row [ 2 ] == ” anomaly score ” &&

349 row [ 3 ] == ” l a b e l ” ){
350 correctHeader = true ;

351 std : : cout << ” [ main : runLSTMCNnet ] Input

f i l e header i s c o r r e c t ! ” << std : :

endl ;

352 } e l s e {
353 std : : cout << ” [ main : runLSTMCNnet ] Input

f i l e header i s I n c o r r e c t ! ” << std

: : endl ;

354 }
355 outputStream << ”timestamp , value ,

p r e d i c t i o n t r a i n i n g , p r ed i c t i on , l abe l ,
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warp distance , t h r e s h o l d t r a i n i n g ,

d i s t a n c e t h r e s h o l d , p o s i t i v e d e t e c t i o n ”

<< std : : endl ;

356 lineNumber++;

357 } e l s e i f ( cor rectHeader ){
358 writeROW . timestamp = row [ 0 ] ;

359 writeROW . value = std : : stod ( row [ 1 ] ) ; // get

double

360 writeROW . l a b e l = std : : s t o i ( row [ 3 ] ) ; // get

i n t

361 lineNumber++;

362

363 // Run MainLoop Tick

364 h i s t o ryBu f f e r−>wr i t eSa f e (writeROW . value ) ;

// wt i t e to h i s t o r y

365 mainLoop−>t i c k ( ) ;

366 h i s t o ryBu f f e r−>se tTickedPrev ious ( t rue ) ;

367

368 // Get data and wr i t e to o u t p u t f i l e

369 outputStream << writeROW . timestamp << ” , ” ;

370 outputStream << writeROW . value << ” , ” ;

371

372 writeROW . p r e d i c t i o n t r a i n i n g = sharedMemory

−>p r o f i l e r −>t r a i n i n g ;

373

374 // outputStream << std : : s e t p r e c i s i o n (1 ) ;

375 outputStream << ( double )writeROW .

p r e d i c t i o n t r a i n i n g << ” , ” ;

376

377 i f ( sharedMemory−>p r o f i l e r −>p r o f i l e−>index <

0){
378 writeROW . p r e d i c t i o n = 0 . 0 ;

379 } e l s e {
380 writeROW . p r e d i c t i o n = sharedMemory−>

p r o f i l e r −>p r o f i l e−>data [ sharedMemory

−>p r o f i l e r −>p r o f i l e−>index ] ;

381 }
382 outputStream << ( double )writeROW . p r e d i c t i o n

<< ” , ” ;
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383 outputStream << ( ( double )writeROW . l a b e l ) <<

” , ” ;

384

385 i f ( sharedMemory−>anomalyDetector−>di s tance

−>index < 0){
386 writeROW . warp d i s tance = 0 . 0 ;

387 } e l s e {
388 writeROW . warp d i s tance = sharedMemory−>

anomalyDetector−>di s tance−>data [

sharedMemory−>anomalyDetector−>
di s tance−>index ] ;

389 }
390 outputStream << ( double )writeROW .

warp d i s tance << ” , ” ;

391

392 writeROW . t h r e s h o l d t r a i n i n g = sharedMemory

−>anomalyDetector−>t r a i n i n g ;

393 i f ( sharedMemory−>p r o f i l e r −>t r a i n i n g ){
394 writeROW . t h r e s h o l d t r a i n i n g = f a l s e ;

395 }
396 outputStream << ( double )writeROW .

t h r e s h o l d t r a i n i n g << ” , ” ;

397

398 writeROW . d i s t a n c e t h r e s h o l d = sharedMemory

−>anomalyDetector−>thresholdAlram ;

399 outputStream << ( double )writeROW .

d i s t a n c e t h r e s h o l d << ” , ” ;

400

401 i f ( sharedMemory−>anomalyDetector−>alarm−>
index < 0){

402 writeROW . p o s i t i v e d e t e c t i o n = f a l s e ;

403 } e l s e {
404 writeROW . p o s i t i v e d e t e c t i o n =

sharedMemory−>anomalyDetector−>alarm

−>data [ sharedMemory−>anomalyDetector

−>alarm−>index ] ;

405 }
406 outputStream << ( double )writeROW .

p o s i t i v e d e t e c t i o n ;
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407

408 outputStream << std : : endl ; ;

409 i f ( i snan (writeROW . p r e d i c t i o n ) ){
410 break ;

411 }
412 }
413 }
414 }
415 std : : cout << ” [ main ] Done Proce s s ing f i l e ! ” << std : :

endl ;

416 }

Listing A.2: JSON format used to store parameters for each NAB data set used

by Sherlock implementation of LSTMCNNnet, LSTMCNNcda and python imple-

mentation of ARMA, CNN, LSTM, and LSTMCNNkeras

1 {
2 ” pred i c t i on mode l ” : {
3 ” l earn ingRate ” : 0 . 003 ,

4 ”model” : {
5 ”CNN” : {
6 ” Pool ingLayers ” : [

7 {
8 ”poolH” : 1 ,

9 ”poolW” : 1

10 }
11 ] ,

12 ”matWidth” : 30 ,

13 ” Ful lyConnectedLayers ” : [

14 {
15 ” outputs ” : 40

16 } ,

17 {
18 ” outputs ” : 20

19 } ,

20 {
21 ” outputs ” : 1

22 }
23 ] ,

24 ”LayerOrder” : [
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25 ”C” ,

26 ”P” ,

27 ”F” ,

28 ”F” ,

29 ”F”

30 ] ,

31 ”matHeight” : 2 ,

32 ” targetC ” : 1 ,

33 ” Convolut ionLayers ” : [

34 {
35 ” s t r i d e ” : 1 ,

36 ” f i l t e r S i z e ” : 2 ,

37 ” f i l t e r s ” : 1

38 }
39 ]

40 } ,

41 ”lstmW” : 0 . 5 ,

42 ”LSTM” : {
43 ”memCells” : 10

44 } ,

45 ”cnnW” : 0 .5

46 } ,

47 ” t r a i n i n g I t e r a t i o n s ” : 10 ,

48 ” t ra inDataS i ze ” : 200 ,

49 ”numPredPoints” : 1

50 } ,

51 ” i n p u t s i z e ” : 1624 ,

52 ”dtw window” : 8

53 }

Listing A.3: LSTMCNNnet profiling method implemented Sherlock as a Profiler

in Sherlock

1 #inc lude ”LSTMCNnetProfiler . h”

2

3 #inc lude <iostream>

4 #inc lude <algor ithm>

5 #inc lude <vector>

6 #inc lude ”LSTMCNnet . hpp”

7
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8 #inc lude <iostream>

9

10 // Constructors

11 LSTMCNnetProfiler : : LSTMCNnetProfiler ( std : : s t r i n g i d e n t i f y e r

, ModelStruct ∗model , double lstmWeight , double

cnnWeight )

12 {
13 th i s−>i d e n t i f y e r = i d e n t i f y e r ;

14 std : : cout << ” [ LSTMCNnetProfiler ] Construct ing {” <<

i d e n t i f y e r << ”}” << std : : endl ;

15

16 th i s−>modelStruct = model ;

17 lstmW = lstmWeight ;

18 cnnW = cnnWeight ;

19

20 std : : cout << ” [ LSTMCNnetProfiler ] Done Construct ing

us ing g iven LSTMCNnet ModelStruct {” << i d e n t i f y e r

<< ”}” << std : : endl ;

21 }
22

23 // Destroying

24 LSTMCNnetProfiler : : ˜ LSTMCNnetProfiler ( )

25 {
26 std : : cout << ” [ LSTMCNnetProfiler ] Destroying {” <<

i d e n t i f y e r << ”}” << std : : endl ;

27 d e l e t e pred ict ionMode l ;

28 d e l e t e modelStruct ;

29 }
30

31 void LSTMCNnetProfiler : : i n i t ( )

32 {
33 std : : cout << ” [ LSTMCNnetProfiler ] I n i t i a l i z i n g {” <<

i d e n t i f y e r << ”}” << std : : endl ;

34

35 i f ( modelStruct−>numPredPoints == −1){
36 modelStruct−>numPredPoints = sharedMemory−>p r o f i l e r

−>OutWindowSize ;

37 }
38
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39

40 th i s−>pred ict ionMode l = new LSTMCNNFCPredictionModel (

modelStruct ) ;

41

42 std : : cout << ” [ LSTMCNnetProfiler ] Done I n i t i a l i z i n g {”

<< i d e n t i f y e r << ”}” << std : : endl ;

43 }
44

45 double LSTMCNnetProfiler : : p r o f i l e ( )

46 {
47 double p r o f i l e = 0 ;

48 i f ( modelStruct−>t ra inDataS i ze < modelStruct−>matHeight∗
modelStruct−>matWidth ){

49 std : : cout << ” [ LSTMCNnetProfiler :ERROR! ] Not enogh

t r a i n i n g data to t r a i n model ! {” << i d e n t i f y e r

<< ”}” << std : : endl ;

50 } ;

51 i f ( ( modelStruct−>t ra inDataS i ze + ( modelStruct−>
matHeight∗modelStruct−>matWidth−1) ) > sharedMemory−>
h i s to ry−>index ){

52 i f ( verbose )

53 std : : cout << ” [ LSTMCNnetProfiler ] C o l l e c t i n g data

to t r a i n ! {” << i d e n t i f y e r << ”}” << std : : endl

;

54 sharedMemory−>p r o f i l e r −>t r a in ingDataCo l l e c t ed += 1 ;

55 } e l s e {
56 i f ( ( modelStruct−>t ra inDataS i ze + ( modelStruct−>

matHeight∗modelStruct−>matWidth−1) ) >

sharedMemory−>p r o f i l e r −>t r a in ingDataCo l l e c t ed ){
57 i f ( verbose )

58 std : : cout << ” [ LSTMCNnetProfiler ] C o l l e c t i n g

data to t r a i n f o r new concept ! {” <<

i d e n t i f y e r << ”}” << std : : endl ;

59 sharedMemory−>p r o f i l e r −>t r a in ingDataCo l l e c t ed

+= 1 ;

60 } e l s e i f ( sharedMemory−>p r o f i l e r −>t r a i n i n g ) {
61 std : : cout << ” [ LSTMCNnetProfiler ] Done

C o l l e c t i n g data to t r a i n . Train ing ! {” <<

i d e n t i f y e r << ”}” << std : : endl ;
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62

63 // Train ing the networks in the model

64 predict ionModel−>t r a i n ( sharedMemory−>h i s to ry−>
data , sharedMemory−>h i s to ry−>index ) ;

65 sharedMemory−>p r o f i l e r −>t r a i n i n g = f a l s e ;

66

67 std : : cout << ” [ LSTMCNnetProfiler ] Done Train ing

! {” << i d e n t i f y e r << ”}” << std : : endl ;

68 }
69

70

71 // parameters f o r model outputs

72 i n t p r e d i c t i o n s = 1 ;

73 i n t abs = 1 ;

74

75 double ∗inWondow = new double [ sharedMemory−>
p r o f i l e r −>inWindowSize ] ;

76

77 f o r ( i n t i=sharedMemory−>p r o f i l e r −>inWindowSize

−1; i >= 0 ; i−−){
78 inWondow [ sharedMemory−>p r o f i l e r −>

inWindowSize −1 − i ] = sharedMemory−>
h i s to ry−>data [ sharedMemory−>h i s to ry−>
index − i ] ;

79 } ;

80

81 // g e t t i n g pred i c t ed time s e r i e s data po in t s

82 p r o f i l e = predict ionModel−>p r e d i c t ( p r ed i c t i o n s ,

inWondow , sharedMemory−>p r o f i l e r −>
inWindowSize , lstmW , cnnW, abs ) [ 0 ] ;

83

84 d e l e t e inWondow ;

85 sharedMemory−>p r o f i l e r −>pro f i l edCount++;

86

87 }
88

89 re turn p r o f i l e ;

90 }
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Listing A.4: FastDTW implementation

1 #inc lude ”DTW. hpp”

2

3 DTW: :DTW( ) { }
4

5 DTW: : ˜DTW( ) { }
6

7 double DTW: : g e t S i m i l a r i t y ( Eigen : : VectorXd inputVector1 ,

Eigen : : VectorXd inputVector2 ) {
8

9 Eigen : : MatrixXd matrix ( inputVector1 . s i z e ( ) ,

inputVector2 . s i z e ( ) ) ;

10 matrix (0 , 0 ) = 0 ;

11 f o r ( i n t i = 1 ; i < inputVector1 . s i z e ( ) ; i++) {
12 matrix ( i , 0 ) = std : : abs ( inputVector1 ( i )−inputVector2

(0 ) ) + matrix ( i −1 ,0) ;

13 }
14 f o r ( i n t j = 1 ; j < inputVector2 . s i z e ( ) ; j++) {
15 matrix (0 , j ) = std : : abs ( inputVector1 (0 )−inputVector2

( j ) ) + matrix (0 , j−1) ;

16 }
17 f o r ( i n t i = 1 ; i < inputVector1 . s i z e ( ) ; i++) {
18 f o r ( i n t j = 1 ; j < inputVector2 . s i z e ( ) ; j++) {
19 matrix ( i , j ) = std : : abs ( inputVector1 ( i )−

inputVector2 ( j ) ) + getMinimum ( matrix ( i −1, j ) ,

matrix ( i , j−1) , matrix ( i −1, j−1) ) ;

20 }
21 }
22

23 double warpDistance = 0 ;

24 double minimum , a , b , c ;

25 i n t i = inputVector1 . s i z e ( )−1;

26 i n t j = inputVector2 . s i z e ( )−1;

27

28 warpDistance += matrix ( i , j ) ;

29 whi l e ( ( i !=0) | | ( j !=0) ) {
30

31 i f ( ( i −1) >= 0 ) a = matrix ( i −1, j ) ;

32 e l s e a = std : : numer i c l im i t s<double > : :max( ) ;
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33 i f ( ( j−1) >= 0 ) b = matrix ( i , j−1) ;

34 e l s e b = std : : numer i c l im i t s<double > : :max( ) ;

35 i f ( ( ( i −1) >= 0 ) && ( ( j−1) >= 0 ) ) c = matrix ( i −1,

j−1) ;

36 e l s e c = std : : numer i c l im i t s<double > : :max( ) ;

37

38 minimum = getMinimum (a , b , c ) ;

39 warpDistance += minimum ;

40 i f (minimum == a ) i−−;

41 e l s e i f (minimum == b) j−−;

42 e l s e i f (minimum == c ) { i−−; j−−;}
43

44 }
45

46 re turn warpDistance ;

47 }
48

49 double DTW: : fastDTW( Eigen : : VectorXd inputVector1 , Eigen : :

VectorXd inputVector2 , i n t rad iu s ) {
50

51 i n t minimumSize = rad iu s + 2 ;

52 i f ( ( inputVector1 . s i z e ( ) <= minimumSize ) | | (

inputVector2 . s i z e ( ) <= minimumSize ) ) {
53 // Terminiat ion step

54 re turn g e t S i m i l a r i t y ( inputVector1 , inputVector2 ) ;

55 } e l s e {
56 // Recurs ive s tep

57 i n t tmpSize1 = inputVector1 . s i z e ( ) /2 , tmpSize2 =

inputVector2 . s i z e ( ) ;

58 Eigen : : VectorXd tmpVector1 = inputVector1 . head (

tmpSize1 ) ;

59 Eigen : : VectorXd tmpVector2 = inputVector2 . head (

tmpSize2 ) ;

60 double lowPath = fastDTW( tmpVector1 , tmpVector2 ,

r ad iu s ) ;

61 }
62

63 re turn 0 . 0 ;

64 }
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65

66 double DTW: : getMinimum ( double x1 , double x2 , double x3 ) {
67 re turn std : : min ( std : : min ( x1 , x2 ) , x3 ) ;

68 }

Listing A.5: Concept drift detection method [2] implemented on Sherlock as Con-

ceptThresholdSetter

1 #inc lude ” Conf idence Inte rva lConceptThresho ldSet te r . h”

2

3 #inc lude <iostream>

4

5 // Constructors

6 Conf idence Inte rva lConceptThresho ldSet te r : :

Conf idence Inte rva lConceptThresho ldSet te r ( std : : s t r i n g

i d e n t i f y e r )

7 {
8 th i s−>i d e n t i f y e r = i d e n t i f y e r ;

9 std : : cout << ” [ Conf idence Inte rva lConceptThresho ldSet te r

] Construct ing {” << i d e n t i f y e r << ”}” << std : : endl

;

10 }
11

12 Conf idence Inte rva lConceptThresho ldSet te r : :

Conf idence Inte rva lConceptThresho ldSet te r ( std : : s t r i n g

i d e n t i f y e r , double warningAlpha , double alarmAlpha ){
13 th i s−>i d e n t i f y e r = i d e n t i f y e r ;

14 th i s−>warningAlpha = warningAlpha ;

15 th i s−>alarmAlpha = alarmAlpha ;

16

17

18 std : : cout << ” [ Conf idence Inte rva lConceptThresho ldSet te r

] Construct ing {” << i d e n t i f y e r << ”}” << std : : endl

;

19 }
20

21 // Destroying

22 Conf idence Inte rva lConceptThresho ldSet te r : : ˜

Conf idence Inte rva lConceptThresho ldSet te r ( )

23 {
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24 std : : cout << ” [ Conf idence Inte rva lConceptThresho ldSet te r

] Destroying {” << i d e n t i f y e r << ”}” << std : : endl ;

25 }
26

27 void Conf idence Inte rva lConceptThresho ldSet te r : : i n i t ( )

28 {
29 std : : cout << ” [ Conf idence Inte rva lConceptThresho ldSet te r

] I n i t i a l i z i n g {” << i d e n t i f y e r << ”}” << std : : endl

;

30

31 windowSize = sharedMemory−>conceptDr i f tDetec tor−>
di s tance−>s i z e − 1 ;

32

33 warningThreshold = −1;

34 alarmThreshold = −1;

35

36 std : : cout << ” [ Conf idence Inte rva lConceptThresho ldSet te r

] Done i n i t i a l i z i n g {” << i d e n t i f y e r << ”}” << std

: : endl ;

37 }
38

39 double Conf idence Inte rva lConceptThresho ldSet te r : :

ca lculateMean ( )

40 {
41 // c a l c u l a t e s Mean f o r d i s t anc e [ 0 n−1 , n ] 0 to n−1, n i s

l e f t out

42 double mean = 0 ;

43 f o r ( i n t i =0; i < th i s−>windowSize ; i++){
44 mean += sharedMemory−>conceptDr i f tDetec tor−>

di s tance−>data [ sharedMemory−>
conceptDr i f tDetec tor−>di s tance−>s i z e −2 − i ] ;

45 }
46 mean = mean/ th i s−>windowSize ;

47 re turn mean ;

48

49 } ;

50

51 double Conf idence Inte rva lConceptThresho ldSet te r : :

ca l cu lateSD ( double mean)
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52 {
53 // c a l c u l a t e s Standard dev i a t i on f o r d i s t anc e [ 0 n−1 , n ]

0 to n−1, n i s l e f t out

54

55 double f ina lSD = 0 ;

56 double SD;

57 f o r ( i n t i =0; i < th i s−>windowSize ; i++){
58 SD += sharedMemory−>conceptDr i f tDetec tor−>di s tance

−>data [ sharedMemory−>conceptDr i f tDetec tor−>
di s tance−>s i z e −2 − i ] ;

59 SD = mean − SD;

60 i f (SD < 0){
61 SD = 0 − SD;

62 }
63 f ina lSD += SD;

64 }
65 f ina lSD = f ina lSD / th i s−>windowSize ;

66 re turn f ina lSD ;

67 } ;

68

69

70 double Conf idence Inte rva lConceptThresho ldSet te r : :

getWarningThreshold ( )

71 {
72 // f o r d i s t anc e [ 0 n−1 , n ] 0 to n−1 used f o r

c a l c u l a t e i n g minSD and minMean , n i s l e f t out

73 double SD;

74 double mean ;

75 firstMeanAndSD = sharedMemory−>conceptDr i f tDetec tor−>
t r a i n i n g ;

76 i f ( ( ! sharedMemory−>p r o f i l e r −>t r a i n i n g ) &&

77 ( sharedMemory−>p r o f i l e r −>pro f i l edCount +

sharedMemory−>conceptDr i f tDetec tor−>inWindowSize

) >= windowSize &&

78 sharedMemory−>conceptDr i f tDetec tor−>di s tance−>index

+2 >= windowSize ){
79

80 mean = th i s−>calculateMean ( ) ;

81 SD = th i s−>ca lcu lateSD (mean) ;
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82

83 i f ( firstMeanAndSD ){
84 th i s−>minMean = mean ;

85 th i s−>minSD = SD;

86 th i s−>firstMeanAndSD = f a l s e ;

87 }
88 i f (mean < th i s−>minMean){
89 th i s−>minMean = mean ;

90 }
91 i f (SD < th i s−>minSD){
92 th i s−>minSD = SD;

93 }
94

95 alarmThreshold = th i s−>minMean + ( th i s−>alarmAlpha

∗ th i s−>minSD) ;

96 warningThreshold = th i s−>minMean + ( th i s−>
warningAlpha ∗ th i s−>minSD) ;

97

98

99 sharedMemory−>conceptDr i f tDetec tor−>t r a i n i n g =

f a l s e ;

100

101 }
102

103

104 re turn warningThreshold ;

105 }
106

107 double Conf idence Inte rva lConceptThresho ldSet te r : :

getAlarmThreshold ( )

108 {
109 re turn alarmThreshold ;

110 }

Listing A.6: Concept drift detection method [2] implemented on Sherlock as Con-

ceptDriftDetector

1 #inc lude ”DynamicWindowConceptDriftDetector . h”

2

3 #inc lude <iostream>
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4

5 // Constructors

6 DynamicWindowConceptDriftDetector : :

DynamicWindowConceptDriftDetector ( std : : s t r i n g i d e n t i f y e r

)

7 {
8 th i s−>i d e n t i f y e r = i d e n t i f y e r ;

9 std : : cout << ” [ DynamicWindowConceptDriftDetector ]

Construct ing {” << i d e n t i f y e r << ”}” << std : : endl ;

10 }
11

12 // Destroying

13 DynamicWindowConceptDriftDetector : : ˜

DynamicWindowConceptDriftDetector ( )

14 {
15 std : : cout << ” [ DynamicWindowConceptDriftDetector ]

Destroying {” << i d e n t i f y e r << ”}” << std : : endl ;

16 }
17

18 void DynamicWindowConceptDriftDetector : : i n i t ( )

19 {
20 std : : cout << ” [ DynamicWindowConceptDriftDetector ]

I n i t i a l i z i n g {” << i d e n t i f y e r << ”}” << std : : endl ;

21

22 windowSize = sharedMemory−>conceptDr i f tDetec tor−>
di s tance−>s i z e − 1 ;

23

24 std : : cout << ” [ DynamicWindowConceptDriftDetector ] Done

i n i t i a l i z i n g {” << i d e n t i f y e r << ”}” << std : : endl ;

25 }
26

27 double DynamicWindowConceptDriftDetector : : ca lculateMean ( )

28 {
29 // c a l c u l a t e s Mean f o r d i s t anc e [ 0 n−1 , n ] 1 to n , 0 i s

l e f t out

30 double mean = 0 ;

31 f o r ( i n t i =0; i < th i s−>windowSize ; i++){
32 mean += sharedMemory−>conceptDr i f tDetec tor−>

di s tance−>data [ sharedMemory−>
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conceptDr i f tDetec tor−>di s tance−>s i z e −1 − i ] ;

33 }
34 mean = mean/ th i s−>windowSize ;

35 re turn mean ;

36

37 } ;

38

39 double DynamicWindowConceptDriftDetector : : ca l cu lateSD (

double mean)

40 {
41 // c a l c u l a t e s Standard dev i a t i on f o r d i s t anc e [ 0 n−1 , n ]

1 to n , 0 i s l e f t out

42 double f ina lSD = 0 ;

43 double SD;

44 f o r ( i n t i =0; i < th i s−>windowSize ; i++){
45 SD += sharedMemory−>conceptDr i f tDetec tor−>di s tance

−>data [ sharedMemory−>conceptDr i f tDetec tor−>
di s tance−>s i z e −1 − i ] ;

46 SD = mean − SD;

47 i f (SD < 0){
48 SD = 0 − SD;

49 }
50 f ina lSD += SD;

51 }
52 f ina lSD = f ina lSD / th i s−>windowSize ;

53 re turn f ina lSD ;

54 } ;

55

56

57 i n t DynamicWindowConceptDriftDetector : : getNewConceptCount ( )

58 {
59 i f ( ! sharedMemory−>conceptDr i f tDetec tor−>warning−>data [

sharedMemory−>conceptDr i f tDetec tor−>warning−>index ] )

{
60 re turn −1;

61 }
62 i n t newConceptCount = 1 ;

63 i n t i = sharedMemory−>conceptDr i f tDetec tor−>warning−>
index ;
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64 whi l e ( i >= 0 &&

65 sharedMemory−>conceptDr i f tDetec tor−>warning−>data [ i

] ) {
66 newConceptCount += 1 ;

67 i −= 1 ;

68 }
69 re turn newConceptCount ;

70 }
71

72 i n t DynamicWindowConceptDriftDetector : : d e t e c t ( )

73 {
74 i n t newConceptCount = −1;

75 double mean = th i s−>calculateMean ( ) ;

76 double SD = th i s−>ca lcu lateSD (mean) ;

77 double metr ic = mean + SD;

78

79 i f ( metr ic >= sharedMemory−>conceptDr i f tDetec tor−>
thresholdAlram ){

80 // Alarm

81 newConceptCount = th i s−>getNewConceptCount ( ) ;

82 sharedMemory−>conceptDr i f tDetec tor−>warning−>
enQueue ( t rue ) ;

83 sharedMemory−>conceptDr i f tDetec tor−>alarm−>enQueue (

t rue ) ;

84 } e l s e i f ( metr ic >= sharedMemory−>conceptDr i f tDetec tor

−>thresholdWarning ){
85 // Warnning

86 sharedMemory−>conceptDr i f tDetec tor−>warning−>
enQueue ( t rue ) ;

87 sharedMemory−>conceptDr i f tDetec tor−>alarm−>enQueue (

f a l s e ) ;

88 } e l s e {
89 // None

90 sharedMemory−>conceptDr i f tDetec tor−>warning−>
enQueue ( f a l s e ) ;

91 sharedMemory−>conceptDr i f tDetec tor−>alarm−>enQueue (

f a l s e ) ;

92

93 }
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94

95 re turn newConceptCount ;

96 }

Listing A.7: ARMA implementation in python

1 import mode l he lper s

2 import numpy as np

3 import s ta t smode l s . ap i as sm

4 import warnings

5

6 c l a s s arma :

7 de f i n i t ( s e l f , data , t r a i n i n g r a t i o , ar max=3,

ma max=3) :

8 s e l f . ar max = ar max # maximum AR parameter

9 s e l f . ma max = ma max # maximum MA parameter

10 t r a i n i n g d a t a e n d = i n t ( l en ( data )∗ t r a i n i n g r a t i o )

11 t e s t i n g d a t a s t a r t = t r a i n i n g d a t a e n d

12 s e l f . t r a i n i n g d a t a = data [ : t r a i n i n g d a t a e n d ] .

astype ( ’ f l o a t 6 4 ’ )

13 s e l f . t e s t i n g d a t a = data [ t e s t i n g d a t a s t a r t : ] .

astype ( ’ f l o a t 6 4 ’ )

14 s e l f . params = None

15

16 de f t r a i n ( s e l f ) :

17 ar max = s e l f . ar max

18 ma max = s e l f . ma max

19 params = np . z e r o s ( ( ar max+1, ma max+1) )

20 y = s e l f . t r a i n i n g d a t a

21

22 f o r ar in range (0 , ar max+1) :

23 f o r ma in range (0 ,ma max+1) :

24 t ry :

25 with warnings . catch warn ings ( ) :

26 warnings . s i m p l e f i l t e r ( ” i gnor e ” )

27 arma model = sm . t sa .ARMA(y , order=(

ar ,ma) )

28 arma re su l t = arma model . f i t ( trend=

’ c ’ , d i sp=−1)

29 y p r e d i c t i o n = arma re su l t . p r e d i c t ( )
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30 mse = mode l he lpe r s .MSE(y , y p r e d i c t i o n )

31 except ValueError :

32 mse = f l o a t ( ” i n f ” )

33 except np . l i n a l g . LinAlgError :

34 mes = f l o a t ( ” i n f ” )

35 params [ ar ] [ ma] = mse

36 p r i n t ( ” ( ”+s t r ( ar )+” , ”+s t r (ma)+” ) : ” +s t r (

mse ) )

37

38 minAR, minMA = mode l he lpe r s . get min matr ix ( params )

39 p r i n t ( ” Best model : ( ”+s t r (minAR)+” , ”+s t r (minMA)+” )

| with MSE = ”+s t r ( params [minAR ] [ minMA] ) )

40 s e l f . params = params

41 s e l f . ar = minAR

42 s e l f .ma = minMA

43 return minAR,minMA

44

45 de f get output ( s e l f ) :

46 ar = s e l f . ar

47 ma = s e l f .ma

48 y = s e l f . t e s t i n g d a t a

49 with warnings . catch warn ings ( ) :

50 warnings . s i m p l e f i l t e r ( ” i gnor e ” )

51 try :

52 arma model = sm . t sa .ARMA(y , order=(ar ,ma) )

53 arma re su l t = arma model . f i t ( trend=’ c ’ ,

d i sp=−1)

54 except ValueError :

55 p r i n t ( ”model : ( ”+s t r ( ar )+” , ”+s t r (ma)+” )

f a i l e d ! g e t t i n g next bes t model” )

56 s e l f . params [ ar ] [ ma] = f l o a t ( ” i n f ” )

57 minAR, minMA = mode l he lpe r s . get min matr ix

( s e l f . params )

58 p r i n t ( ” Best model : ( ”+s t r (minAR)+” , ”+s t r (

minMA)+” ) | with MSE = ”+s t r ( s e l f . params

[minAR ] [ minMA] ) )

59 s e l f . ar = minAR

60 s e l f .ma = minMA

61 return s e l f . ge t output ( )
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62 except np . l i n a l g . LinAlgError :

63 p r i n t ( ”model : ( ”+s t r ( ar )+” , ”+s t r (ma)+” )

f a i l e d ! g e t t i n g next bes t model” )

64 s e l f . params [ ar ] [ ma] = f l o a t ( ” i n f ” )

65 minAR, minMA = mode l he lpe r s . get min matr ix

( s e l f . params )

66 p r i n t ( ” Best model : ( ”+s t r (minAR)+” , ”+s t r (

minMA)+” ) | with MSE = ”+s t r ( s e l f . params

[minAR ] [ minMA] ) )

67 s e l f . ar = minAR

68 s e l f .ma = minMA

69 return s e l f . ge t output ( )

70

71 y p r e d i c t i o n = arma re su l t . p r e d i c t ( )

72 re turn ar , ma, np . array ( y p r e d i c t i o n )

Listing A.8: CNN implementation in python

1 import numpy as np

2 from keras . models import Sequent i a l

3 from keras . l a y e r s import Dense , Conv1D , MaxPooling1D ,

Flat ten

4 from keras import op t im i z e r s

5

6 c l a s s cnn :

7 de f i n i t ( s e l f , data , epochs , ba t ch s i z e ,

t r a i n i n g r a t i o , sequance length , C L 1 f i l t e r s =1,

CL1kerna l s i z e =2, CL1str ides =1, PL1poo l s i z e =1,

DL1units =20, DL2units=5, DL3units=1, l earn ingRate

=0.001) :

8 s e l f . C L 1 f i l t e r s = C L 1 f i l t e r s

9 s e l f . CL1kerna l s i z e = CL1kerna l s i z e

10 s e l f . CL1str ides = CL1str ides

11 s e l f . s equance l ength = sequance l ength

12 s e l f . PL1poo l s i z e = PL1poo l s i z e

13 s e l f . DL1units = DL1units

14 s e l f . DL2units = DL2units

15 s e l f . DL3units = DL3units

16 s e l f . epochs = epochs

17 s e l f . b a t c h s i z e = b a t c h s i z e
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18 s e l f . l ea rn ingRate = learn ingRate

19 t r a i n i n g d a t a e n d = i n t ( t r a i n i n g r a t i o ∗ l en ( data ) )

20 t e s t i n g d a t a s t a r t = t r a i n i n g d a t a e n d −
s equance l ength

21 t r a i n i n g d a t a = data [ : t r a i n i n g d a t a e n d ]

22 t e s t i n g d a t a = data [ t e s t i n g d a t a s t a r t : ]

23

24 s e l f . t r a i n i n g f e a t u r e s e t = [ ]

25 s e l f . l a b e l s = [ ]

26 f o r i in range ( sequance length , l en ( t r a i n i n g d a t a ) )

:

27 s e l f . t r a i n i n g f e a t u r e s e t . append ( t r a i n i n g d a t a [

i−s equance l ength : i ] )

28 s e l f . l a b e l s . append ( t r a i n i n g d a t a [ i ] )

29 s e l f . l a b e l s = np . array ( s e l f . l a b e l s )

30 s e l f . t r a i n i n g f e a t u r e s e t = np . array ( s e l f .

t r a i n i n g f e a t u r e s e t )

31 s e l f . t r a i n i n g f e a t u r e s e t = np . reshape ( s e l f .

t r a i n i n g f e a t u r e s e t , ( s e l f . t r a i n i n g f e a t u r e s e t

. shape [ 0 ] , s e l f . t r a i n i n g f e a t u r e s e t . shape [ 1 ] ,

1) )

32

33 s e l f . t e s t i n g f e a t u r e s e t = [ ]

34 f o r i in range ( sequance length , l en ( t e s t i n g d a t a ) ) :

35 s e l f . t e s t i n g f e a t u r e s e t . append ( t e s t i n g d a t a [ i−
s equance l ength : i ] )

36 s e l f . t e s t i n g f e a t u r e s e t = np . array ( s e l f .

t e s t i n g f e a t u r e s e t )

37 s e l f . t e s t i n g f e a t u r e s e t = np . reshape ( s e l f .

t e s t i n g f e a t u r e s e t , ( s e l f . t e s t i n g f e a t u r e s e t .

shape [ 0 ] , s e l f . t e s t i n g f e a t u r e s e t . shape [ 1 ] , 1) )

38

39 de f t r a i n ( s e l f ) :

40 s e l f . model = Sequent i a l ( )

41 s e l f . model . add (Conv1D( f i l t e r s=s e l f . C L 1 f i l t e r s ,

k e r n e l s i z e=s e l f . CL1kerna l s i ze , s t r i d e s=s e l f .

CL1str ides , input shape=( s e l f . s equance length ,

1) ) )

42 s e l f . model . add ( MaxPooling1D ( p o o l s i z e=s e l f .
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PL1poo l s i z e ) )

43 s e l f . model . add ( Flat ten ( ) )

44 s e l f . model . add ( Dense ( un i t s = s e l f . DL1units ) )

45 s e l f . model . add ( Dense ( un i t s = s e l f . DL2units ) )

46 s e l f . model . add ( Dense ( un i t s = s e l f . DL3units ) )

47

48 adam = opt im i z e r s .Adam( l r=s e l f . l ea rn ingRate )

49

50 s e l f . model . compi le ( opt imize r = adam , l o s s = ’

mean squared error ’ , met r i c s =[”mse” ] )

51 s e l f . model . f i t ( s e l f . t r a i n i n g f e a t u r e s e t , s e l f .

l a b e l s , b a t c h s i z e=s e l f . ba t ch s i z e , epochs=s e l f .

epochs )

52

53 de f get output ( s e l f ) :

54 p r e d i c t i o n s = s e l f . model . p r e d i c t ( s e l f .

t e s t i n g f e a t u r e s e t )

55 r e t p r e d i c t i o n = np . z e r o s ( p r e d i c t i o n s . shape [ 0 ] )

56 f o r i in range (0 , p r e d i c t i o n s . shape [ 0 ] ) :

57 r e t p r e d i c t i o n [ i ] = p r e d i c t i o n s [ i ] [ 0 ]

58 re turn r e t p r e d i c t i o n

Listing A.9: LSTM implementation in python

1 import numpy as np

2 from keras . models import Sequent i a l

3 from keras . l a y e r s import Dense , LSTM

4 from keras import op t im i z e r s

5

6

7 c l a s s lstm :

8 de f i n i t ( s e l f , data , epochs , ba t ch s i z e ,

t r a i n i n g r a t i o , sequance length , l s tmCe l l s =10,

l earn ingRate =0.001) :

9 s e l f . l s tmCe l l s = l s tmCe l l s

10 s e l f . s equance l ength = sequance l ength

11 s e l f . epochs = epochs

12 s e l f . b a t c h s i z e = b a t c h s i z e

13 s e l f . l ea rn ingRate = learn ingRate

14 t r a i n i n g d a t a e n d = i n t ( l en ( data )∗ t r a i n i n g r a t i o )
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15 t e s t i n g d a t a s t a r t = t r a i n i n g d a t a e n d −
s equance l ength

16 t r a i n i n g d a t a = data [ : t r a i n i n g d a t a e n d ]

17 t e s t i n g d a t a = data [ t e s t i n g d a t a s t a r t : ]

18 s e l f . t r a i n i n g f e a t u r e s e t = [ ]

19 s e l f . l a b e l s = [ ]

20 f o r i in range ( s e l f . s equance length , l en (

t r a i n i n g d a t a ) ) :

21 s e l f . t r a i n i n g f e a t u r e s e t . append ( t r a i n i n g d a t a [

i−s e l f . s equance l ength : i ] )

22 s e l f . l a b e l s . append ( t r a i n i n g d a t a [ i ] )

23 s e l f . l a b e l s = np . array ( s e l f . l a b e l s )

24 s e l f . t r a i n i n g f e a t u r e s e t = np . array ( s e l f .

t r a i n i n g f e a t u r e s e t )

25 s e l f . t r a i n i n g f e a t u r e s e t = np . reshape ( s e l f .

t r a i n i n g f e a t u r e s e t , ( s e l f . t r a i n i n g f e a t u r e s e t

. shape [ 0 ] , s e l f . t r a i n i n g f e a t u r e s e t . shape [ 1 ] ,

1) )

26

27 s e l f . t e s t i n g f e a t u r e s e t = [ ]

28 f o r i in range ( s e l f . s equance length , l en (

t e s t i n g d a t a ) ) :

29 s e l f . t e s t i n g f e a t u r e s e t . append ( t e s t i n g d a t a [ i−
s e l f . s equance l ength : i ] )

30 s e l f . t e s t i n g f e a t u r e s e t = np . array ( s e l f .

t e s t i n g f e a t u r e s e t )

31 s e l f . t e s t i n g f e a t u r e s e t = np . reshape ( s e l f .

t e s t i n g f e a t u r e s e t , ( s e l f . t e s t i n g f e a t u r e s e t .

shape [ 0 ] , s e l f . t e s t i n g f e a t u r e s e t . shape [ 1 ] , 1) )

32

33 de f t r a i n ( s e l f ) :

34 s e l f . model = Sequent i a l ( )

35 s e l f . model . add (LSTM( un i t s=s e l f . l s tmCe l l s ) )

36 s e l f . model . add ( Dense ( un i t s =1) )

37

38 adam = opt im i z e r s .Adam( l r=s e l f . l ea rn ingRate )

39

40 s e l f . model . compi le ( opt imize r = adam , l o s s = ’

mean squared error ’ , met r i c s =[”mse” ] )
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41 s e l f . model . f i t ( s e l f . t r a i n i n g f e a t u r e s e t , s e l f .

l a b e l s , epochs = s e l f . epochs , b a t c h s i z e = s e l f .

b a t c h s i z e )

42

43

44 de f get output ( s e l f ) :

45 p r e d i c t i o n s = s e l f . model . p r e d i c t ( s e l f .

t e s t i n g f e a t u r e s e t )

46 r e t p r e d i c t i o n = np . z e r o s ( p r e d i c t i o n s . shape [ 0 ] )

47 f o r i in range (0 , p r e d i c t i o n s . shape [ 0 ] ) :

48 r e t p r e d i c t i o n [ i ] = p r e d i c t i o n s [ i ] [ 0 ]

49 re turn r e t p r e d i c t i o n

Listing A.10: LSTMCNNkeras model implementation in python

1 import numpy as np

2 from keras . models import Model

3 from keras . l a y e r s import Dense , Input , Add , Layer , LSTM,

Conv1D , MaxPooling1D , Flat ten

4 from keras import op t im i z e r s

5

6 # Def ine custom l a y e r f o r weighted sum

7 c l a s s WeightedSum ( Layer ) :

8 de f i n i t ( s e l f , weight1 , weight2 , ∗∗kwargs ) :

9 s e l f . weight1 = weight1

10 s e l f . weight2 = weight2

11 super ( WeightedSum , s e l f ) . i n i t (∗∗ kwargs )

12 de f c a l l ( s e l f , model outputs ) :

13 re turn s e l f . weight1 ∗ model outputs [ 0 ] + ( s e l f .

weight2 ) ∗ model outputs [ 1 ]

14 de f compute output shape ( s e l f , input shape ) :

15 re turn input shape [ 0 ]

16

17 c l a s s LSTMCNNkeras :

18 de f i n i t ( s e l f , data , epochs , ba t ch s i z e ,

t r a i n i n g r a t i o , sequance length , l s tmCe l l s =10,

C L 1 f i l t e r s =1, CL1kerna l s i z e =2, CL1str ides =1,

PL1poo l s i z e =1, CNNDL1units=20, CNNDL2units=5,

CNNDL3units=1, lstmWeight =0.5 , cnnWeight =0.5 ,

l earn ingRate =0.001) :
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19 s e l f . l s tmCe l l s = l s tmCe l l s

20

21 s e l f . C L 1 f i l t e r s = C L 1 f i l t e r s

22 s e l f . CL1kerna l s i z e = CL1kerna l s i z e

23 s e l f . CL1str ides = CL1str ides

24 s e l f . PL1poo l s i z e = PL1poo l s i z e

25 s e l f . CNNDL1units = CNNDL1units

26 s e l f . CNNDL2units = CNNDL2units

27 s e l f . CNNDL3units = CNNDL3units

28

29 s e l f . lstmWeight = lstmWeight

30 s e l f . cnnWeight = cnnWeight

31

32 s e l f . l ea rn ingRate = learn ingRate

33

34 s e l f . s equance l ength = sequance l ength

35 s e l f . epochs = epochs

36 s e l f . b a t c h s i z e = b a t c h s i z e

37 t r a i n i n g d a t a e n d = i n t ( l en ( data )∗ t r a i n i n g r a t i o )

38 t e s t i n g d a t a s t a r t = t r a i n i n g d a t a e n d −
s equance l ength

39 t r a i n i n g d a t a = data [ : t r a i n i n g d a t a e n d ]

40 t e s t i n g d a t a = data [ t e s t i n g d a t a s t a r t : ]

41 s e l f . t r a i n i n g f e a t u r e s e t = [ ]

42 s e l f . l a b e l s = [ ]

43 f o r i in range ( s e l f . s equance length , l en (

t r a i n i n g d a t a ) ) :

44 s e l f . t r a i n i n g f e a t u r e s e t . append ( t r a i n i n g d a t a [

i−s e l f . s equance l ength : i ] )

45 s e l f . l a b e l s . append ( t r a i n i n g d a t a [ i ] )

46 s e l f . l a b e l s = np . array ( s e l f . l a b e l s )

47 s e l f . t r a i n i n g f e a t u r e s e t = np . array ( s e l f .

t r a i n i n g f e a t u r e s e t )

48 s e l f . t r a i n i n g f e a t u r e s e t = np . reshape ( s e l f .

t r a i n i n g f e a t u r e s e t , ( s e l f . t r a i n i n g f e a t u r e s e t

. shape [ 0 ] , s e l f . t r a i n i n g f e a t u r e s e t . shape [ 1 ] ,

1) )

49

50 s e l f . t e s t i n g f e a t u r e s e t = [ ]
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51 f o r i in range ( s e l f . s equance length , l en (

t e s t i n g d a t a ) ) :

52 s e l f . t e s t i n g f e a t u r e s e t . append ( t e s t i n g d a t a [ i−
s e l f . s equance l ength : i ] )

53 s e l f . t e s t i n g f e a t u r e s e t = np . array ( s e l f .

t e s t i n g f e a t u r e s e t )

54 s e l f . t e s t i n g f e a t u r e s e t = np . reshape ( s e l f .

t e s t i n g f e a t u r e s e t , ( s e l f . t e s t i n g f e a t u r e s e t .

shape [ 0 ] , s e l f . t e s t i n g f e a t u r e s e t . shape [ 1 ] , 1) )

55

56 de f t r a i n ( s e l f ) :

57

58 input shape = Input ( shape=( s e l f . s equance length , 1)

)

59

60 #lstm

61 lstm = LSTM( un i t s=s e l f . l s tmCe l l s ) ( input shape )

62 lstmdense = Dense ( un i t s = 1) ( lstm )

63

64 #cnn

65 cnn = Conv1D( f i l t e r s=s e l f . C L1 f i l t e r s , k e r n e l s i z e=

s e l f . CL1kerna l s i ze , s t r i d e s=s e l f . CL1str ides ,

input shape=( s e l f . s equance length , 1) ) (

input shape )

66 cnnpool ing = MaxPooling1D ( p o o l s i z e=s e l f .

PL1poo l s i z e ) ( cnn )

67 cnn f l a t en = Flat ten ( ) ( cnnpool ing )

68 cnndense1 = Dense ( un i t s = s e l f . CNNDL1units ) (

cnn f l a t en )

69 cnndense2 = Dense ( un i t s = s e l f . CNNDL2units ) (

cnndense1 )

70 cnndense3 = Dense ( un i t s = s e l f . CNNDL3units ) (

cnndense2 )

71

72 #combinantion l a y e r

73 out = WeightedSum ( s e l f . lstmWeight , s e l f . cnnWeight )

( [ lstmdense , cnndense3 ] )

74

75 s e l f . model = Model ( input shape , out )
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76

77 adam = opt im i z e r s .Adam( l r=s e l f . l ea rn ingRate )

78

79 s e l f . model . compi le ( opt imize r = adam , l o s s = ’

mean squared error ’ , met r i c s =[”mse” ] )

80 s e l f . model . f i t ( s e l f . t r a i n i n g f e a t u r e s e t , s e l f .

l a b e l s , epochs = s e l f . epochs , b a t c h s i z e = s e l f .

b a t c h s i z e )

81

82 de f get output ( s e l f ) :

83 p r e d i c t i o n s = s e l f . model . p r e d i c t ( s e l f .

t e s t i n g f e a t u r e s e t )

84 r e t p r e d i c t i o n = np . z e r o s ( p r e d i c t i o n s . shape [ 0 ] )

85 f o r i in range (0 , p r e d i c t i o n s . shape [ 0 ] ) :

86 r e t p r e d i c t i o n [ i ] = p r e d i c t i o n s [ i ] [ 0 ]

87 re turn r e t p r e d i c t i o n
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