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Abstract

Financial contracts play a vital role in the modern economy. As there are

variety of contracts being traded in the financial markets, the natural language

used to define those contracts imposed an ambiguity in the financial contracts. To

eliminate that, Peyton Jones and co-authors proposed a standard representation

towards the financial contracts by introducing a combinator library embedded in

Haskell programming language. However, the fundamental problem of the need of

a trusted central counterparty, suffered by every financial contract remained un-

changed with this representation. The existence of the middle man in the financial

contracts introduced certain risks and overhead to the contracts.

In order to overcome this situation, V.U. Wickramarachchi proposed an approach

to facilitate the autonomous contract execution by exploiting the features and use

cases of Ethereum blockchain and its scripting language Solidity. This was achieved

through the special purpose compiler which facilitates transformation from Peyton

Jones’ Contract Descriptive language to Solidity. However, the cost related to the

execution of contracts in Ethereum network curtail the benefits received through

the transformation of those contracts.

In this dissertation, a novel approach to facilitate the reduction of cost by optimiz-

ing the smart contract is proposed using different optimization techniques. This

approach involves the transformation of the Peyton Jones’ Contract Descriptive

language to Assembly language which enables the manipulation of data locations

in the Ethereum Virtual Machine.

To substantiate that, the proposed method was able to scale down the execution

cost factor in a significant manner, the solution is evaluated with the approach

which transform Peyton Jones’ CDL to solidity with a comparison between the ex-

ecution cost of both the approaches. A formal verification is provided by verifying

the semantic equivalence between the Peyton Jones’ Contract Descriptive language

and the proposed solution to make sure the correctness of the proposed approach

is preserved while it is being optimized.

.
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Preface

Transformation of financial contracts to smart contract in Assembly language is

a novel approach proposed in this study. The objectives and aims of this study has

been not explored by any other previous research of this particular domain. A novel

design was introduced in order to facilitate this transformation. Two parts used in

the design model; transforming from the Peyton Jones’ Contract Descriptive lan-

guage and the formal verification of the transformed contracts. The compiler used

to transformed the Peyton Jones’ Contract Descriptive Language was partially my

own work. Part of it was taken from the previous work. Apart from that, the pro-

posed design was solely my own work and a method similar has not been proposed

in any other study relevant to this domain.

The implementation methodology used in this study was proposed by me. The

evaluation model used in this study is a generally accepted formal verification.

However, it was further improved by myself with the input of my supervisors. .
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Chapter 1 - Introduction

1.1 Background to the research

Technological evolution in the modern world has deeply affected the global econ-

omy. The access of growing technology has many benefits over the modern economy.

It encourages new business and advances the communication. More importantly

technology has contributed towards reducing cost in many industries in modern

world. One such technology which support modern businesses immensely is smart

contracts. It is a technology which allows credible transactions without the help of

a trusted third party. In such an era, are the smart contracts in its optimized way?

1.1.1 Financial Markets and Contracts

A financial market is any marketplace where buyers and sellers participate in the

trade of assets such as equities, bonds, currencies and derivatives. Transparent

pricing, basic regulations on pricing and market forces determining the prices of

securities that trade, defines a typical financial market. Investors have access to a

large number of financial markets representing a vast array of financial products.

A derivative is a financial security with a value that is reliant upon or derived

from an underlying asset or a group of assets. The underlying asset in subject is

commonly known as an observable. The derivative itself is a contract commonly

entered into by two or more participants in the financial markets.

Some of the financial derivatives which are commonly traded in financial markets

are given below.

• Zero Coupon Bonds -It is a debt security that is issued at a deep discount to

its face value but pays no interest.

1



• European Options - It is an option that can only be exercised at the end of

its life, at its maturity.

• American Options - It is an option that can be exercised anytime during its

life. American options allow option holders to exercise the option at any time

on or before its maturity date.

• Futures -They are financial contracts obligating the buyer to purchase or the

seller to sell a financial instrument, at a predetermined future date and price.

Most of the contracts which are in existence in financial markets are compos-

ite contracts. Composite contracts are derived through the combination of sub

contracts.

1.1.2 Smart Contracts

With the emergence of the blockchain technology, smart contracts have reached

the hype in many industries, especially in the financial industry.

A smart contract is a computer protocol which digitally facilitates, verifies or en-

forces the performance of a contract between the two or more parties involved in the

contract. The agreements contained in these self-executing contracts exist across a

distributed, decentralized blockchain network which gives it a certain security and

immutability.

Smart contracts possess features such as autonomy, trust, backup, safety and ac-

curacy. They are run in just the way they are programmed.When running on the

blockchain a smart contract becomes like a self-operating computer program that

automatically execute when a certain conditions are met.

1.1.3 Ethereum

Ethereum is a platform that runs smart contracts. It is an open source and de-

centralized block-chain based platform. Anyone can use this platform to create

decentralized applications. Ether(ETH) is the currency for the Ethereum plat-

form. Ethereum is a peer-to-peer network in which the participants store and

2



execute programs on an embedded virtual machine. Ethereum is a distributed

public blockchain network simillar to bitcoin.

1.1.4 Solidity

Solidity is an object-oriented, contract-oriented, High-level programming language

for writing smart contracts. It is used for implementing smart contracts on various

blockchain platforms including Ethereum. Solidity is statically typed script lan-

guage which does the process of verifying and enforcing the constraints at compile

time as opposed to run time.

1.1.5 Etherum Virtual Machine

Ethereum Virtual Machine is a stack-based, big-endian Virtual machine which is

used to run smart contracts on the Ethereum Blockchain. It uses its own ma-

chine language known as EVM bytecode[3]. EVM makes the process of creating

blockchain applications much easier and efficient. This enables the development of

potentially thousands of different applications all one platform, without having to

build an entirely originaly blockchain for each new appliation.

1.1.6 Ethereum Gas

In order to execute an operation or a transaction in Ethereum, user must have

to pay for the computation to the network. Gas is what is used to calculate the

amount of fees that need to be paid and the gas is paid in ETH(Ether). Gas price

is the amount of ether that the user willing to pay per gas. Even though the Gas

cost is fixed per operation, the gas price is dynamic and it dictate the market

condition. Before the transaction, user specify the gas price in GWei. GWei is the

most commonly used unit of ether to specify the gas price. The total fee that the

miners get paid for the transaction is

gasPrice ∗ gasUsed (1.1)
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As EVM is a Turing-Complete, there is a possibility that a contract would enter

into an infinite loop. The "gas" which is needed to pay before the execution of a

contract would prevent this kind of situations. Each execution step that triggers

would consume a certain amount of gas and when the provided gas is over, the

executions will get stop.

1.2 Research Problem and Research Question

1.2.1 Research Problem

Financial Contracts play a vital role in modern financial and business context and

they are best used as risk management tools in which transfer the risk associated

with the underlying asset to a party who willing to take the risk. Peyton Jones’[24]

have introduced a contract definition language that describes such contracts pre-

cisely and a compositional denotational semantics that says what such contracts

are worth.

With the ongoing technological advancement in the world, execution of the financial

contracts have become automated. Smart contracts enhance financial contracts by

automating its function and reducing the risk by eliminating the need of the middle

man to execute this contracts. An approaches has been taken to map Domain Spe-

cific Language(DSL)s to autonomous, self-executing smart contracts[27] through

a high level language. Then they are deployed and executed on the Ethereum

blockchain using EVM. It combines the Ethereum properties into financial con-

tracts which reduces the security risk of exercising contracts.

Ethereum charges a fee for the transactions that take part in the Ethereum net-

work. As this fee is calculated using the amount of computation effort require to

execute a certain operation, this cost can be reduced by reducing the computa-

tional effort in a transaction. This cost reside not only as a price that user has

to bear but also as a fact that determine the correctness of the smart contract. If

the transaction runs out of gas, the transaction will reverted back to the original

position. So that a transaction to complete successfully, it needs to be provided ad-

equate amount of gas prior to the transaction. Lesser the cost, higher the chances

that the transaction complete successfully.
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1.2.2 Research Question 1

To what extent the efficiency can be increased when transforming contracts written

in Peyton Jones’ Contract Descriptive Language directly to Assembly Language.

rather than transforming through Solidity?

1.2.3 Research Question 2

To what extent the verification can be done to the contracts directly transformed

to Assembly language?

1.2.4 Research AIM and objectives

This research focuses on discovering the possibilities of improving the efficiency

of contracts transformed from Peyton Jones’ contract descriptive language into

EVM, while preserving its properties. The main aim is to facilitate autonomous

financial contracts with reduced risk and overhead without having to write identical

contracts in EVM.

The objectives of the research are as follows.

• Explore the ability to reduce the overhead by removing the middle compiler

• Enhance financial contracts by reducing the risk

• Explore the ability to verify the contracts transformed to EVM

1.3 Justification for the Research

Considering the economical importance of financial contracts and the technologi-

cal importance of smart contracts in the modern society where the technology has

revolutionised in many aspects, the motivation behind this study is to enhance the

uses of smart contracts by increasing the efficiency and reducing the computations

of these smart contracts without reducing the behaviour . By analysing the EVM

and how it works, this idea become both possible and practical.

When the computations in a transaction increases, it increases the gas cost and
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ultimately it makes the user to pay more money for the transaction to proceed.

Because the amount of gas needs for the transaction has to be paid using ether

and ether has to bought using the physical money. The economic benefit received

through the elimination of the central counter party in financial contracts by au-

tomating its functions through the use of smart contracts tend to be reduced by

the cost of gas involved in the smart contract transactions.

In the situations where the provided gas for a transaction is insufficient for it to

be completed, transaction will stop in the middle resulting in a failed transac-

tion. Even the transaction reverted back to its original state like nothing actually

happened, the gas spent on the uncompleted transaction will not returned back.

So that, in order to complete a transaction successfully, sender must have to be

provided sufficient gas amount before the proceeding of the transaction. Thus,

reducing the gas limit of the transactions would increase the chances of successful

completion of transactions.

Gas price, which is decided by the user is paid to the miner. So that miners would

prioritize the transactions with the higher gas price. Higher the gas price user

wiling to pay, faster the transaction that will be processed. Reducing the gas cost

for a transaction would give the user more chances to specify a high gas price, so

that they could process their transactions in a speedy manner. Hence, reducing

the gas limit would contribute to speedup the transactions being processed.

It has been shown that there are various ways [12]that the gas cost for a transaction

can be reduced. Therefore, rather than re-writing financial contracts as smart con-

tracts in a way the gas cost is reduced, it is beneficial to efficiently transform those

contracts from the domain specific language(Peyton Jones’ Contract Descriptive

Language) to the EVM Assembly. Reducing solidity code from the contracts to

the maximum possibility would contribute to the reduction of the gas cost required

for the transaction.

However, even though there are few examples of transforming a contract in the

financial domain to the Ethereum Blockchain domain, there were not any direct

transformation of contracts to EVM. This holds significant scientific value, as it

combines the two major domains and derives the best features of both the domains.
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Furthermore, the Correctness of the transactions holds a major importance in these

two domains. Without a formal verification, transacting through different parties

is a great risk. Several approaches[1][14] have been taken to the formal verification

of the smart contracts. The motive of this research is to exploit the advantages

of optimizing smart contracts while preserving the semantics of the financial con-

tracts. The importance of the outcome of this research is pointed towards both the

financial domain and the computer science research areas respective to blockchain

technologies.

1.4 Methodology

The first phase of the research followed an applied research methodology[17], in

which a solution for the optimization of smart contracts is provided by reducing

the amount of gas needed for a transaction. A novel concept for transform con-

tracts directly from source to assembly was explored in this phase.

The Haskell Combinator Library of Peyton Jones’ is a set of primitive combinators

defined based on Haskell. This library is capable of describing financial contracts

and perform contract valuation. EVM Bytecode is machine language which is un-

derstood by the Ethereum Virtual Machine.

Preliminary study of the concept would be the initial step of the project followed

by the demonstration of proof of concept. Solidity language, inline assembly of

solidity, EVM Bytecode, and how a contract is working with respect to the stack,

memory and storage was the main study that comprehensively carried out during

this period of time.

The underline aim of the research is to optimize the smart contracts through a direct

transformation to Byte code while preserving the properties of DSEL. Therefore,

in order to support the properties of DSEL on the Ethereum Virtual Machine, a

source to source compiler (as shown in Figure 1.4.1) is built.

The solidity code[27] which was transformed from HCCL was handcrafted by

adding inline assembly, to examine the optimization that could be incorporated to

the code. Development of the compiler was proceeded after inspecting the success
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Figure 1.4.1: Source to Source Compiler

of optimization in the handcrafted code. The complete analysis and discussion of

this step is included in section 4.

Furthermore, The abstract syntax tree of the transpiler[27] would be taken as

the input to the proposed method. The process of compilation would be as fol-

lows(Figure 1.4.2).

The final step focuses on the evaluation plan of the transformed contract. This

step would also include the formal verification of operational semantics in the con-

tracts transformed to assembly language. The evaluation plan would mainly con-

ducted in two phases.

1. Evaluation of the property preservation

2. Evaluation of the optimization

More details on the evaluation plan would be discussed in section 5.

As the latter part of the research, analysis of the smart contract with respect

to gas consumption, how this optimization would support the correctness of the

transaction, etc would be followed.

1.5 Outline of the Dissertation

The dissertation is as follows. Chapter two explores the existing approaches to cre-

ate DSLs for financial contracts and re-implementations of the financial contracts

for the Ethereum blockchain. In that chapter it further describes about the exist-

ing methods of formal verification of smart contracts. Chapter three describes the

proposed research design and methodology. Potential ways of addressing research
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Figure 1.4.2: Research Approach Diagram

problem is discussed in this chapter. Chapter four demonstrates the implemen-

tation details of the proposed methodology. Chapter five presents the evaluation

model and the evaluation results of the proposed approaches. The last chapter,

chapter six provides the conclusion of the dissertation and outline of the future

work.

1.6 Delimitation of Scope

The proposed methodology of this study only considered about the Peyton Jones’

Contract Descriptive language[24] as the source language for the language trans-
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formation. The input for the proposed method is the AST of the transpiler[27] and

AST optimization is not considered in the proposed method.

The intention of this research is not to develop a new domain specific language or

a new library which describes such contracts. It is out of scope to address existing

issues of Ethereum platform where the smart contract are deployed and executed.

The types of contracts considered in this study is Zero coupon bonds, American

options, European options and composite contracts. Optimization of the contracts

has been measured in terms of the amount of gas used in each contract. Due to the

time constraint, verification of the contracts has been done to the "zero", "one"

and "and" combinators.

1.7 Summary

Financial contracts are widely used in modern economy. These financial contracts

consist of large vocabulary of financial jargon. In order to address the ambiguity

caused by this, Peyton Jones’ et al.[24] introduced a Domain Specific Embedded

Language(DSEL) which describes the financial contracts. Another problem that

these representations were suffered was the need for a trusted third party. This issue

was solved by transforming the above mentioned language into smart contract[27]

in which the contracts can execute in an autonomous and trustless environment.

But as a result of this another problem occurred. That is due to the gas cost

needs for the contracts to run on the ethereum network. Therefore, it is more

desirable to optimize these smart contracts in order to reduce the gas limit of the

each transaction.

This chapter mainly highlights the background of the research, the research problem

and the research questions. Then the research was justified, the methodology was

briefly described, the dissertation was outlined, and the limitations were given. On

these foundations, the dissertation can proceed with a detailed description of the

research.
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Chapter 2 - Literature Review

2.1 Introduction

The research focuses on transforming financial contract in a DSL to Solidty As-

sembly language. So the approaches to define a DSL for financial contracts, smart

contact Applications, Gas cost analysis and source to source compiling are the ar-

eas that we considered on related works. As this research focuses on the formal

verification of the transformed contracts, related works of the formal verification

and trace equivalence are also considered.

2.2 Approaches to define a DSL for financial Con-
tract

The vocabulary used to name contracts was massive and it did not have capabil-

ity to describe a novel contract with different operational semantics. In order to

bridge the gap Peyton Jones’ et al.[24] has introduced a domain specific embedded

language (referred to as the Haskell Contract Combinator Library / HCCL) which

was based on Haskell purely functional language. Financial contracts could be de-

scribed and processed using the combinator library proposed by them.

Further, compositional denotational semantics were introduced in order to find the

value of such contracts. They also sketched an implementation of valuation seman-

tics, using as an example a simple interest rate model and its associated lattice.

Due to the compositional nature of the approach, complex contracts could be easily

described through the use of primitives for observables and primitives for contracts.

The compositional nature of this notation enables to define complex contracts in-

definitely based on the existing simpler ones. Figure 2.2.1 shows the combinators
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introduced by Peyton Jones’ et al. to describe financial contracts.

Figure 2.2.1: Combinators for defining contracts

Even though the representation of financial contracts were standardized through

this approach, it did not solve many risks such as the counterparty risk, credit risk,

etc. which still prevails when executing a financial contract. The need to trust a

third party in order to exercise the rights of the contract was also a dependency

the involved parties had to face.

Gaillourdet[11] worked on an extension to the HCCL by Peyton Jones’ et al. which

resulted in another domain specific language to describe financial contracts. She

also focused on developing a notion of equality of derivative contracts. This helped

her to model the ideal of the contract instead of its syntactic representation. The

focus of this research was to develop a more generic language than the HCCL.

Both these studies have contributed immensely to the financial domain and the

modern economy. The valuation semantics proposed, gives great insights as to how

much a contract is worth.
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2.3 Smart Contract Applications

The idea of autonomous smart contracts was first introduced by Vitalik Buterin[5]

for the Ethereum blockchain platform. Unlike the Bitcoin blockchain, the Ethereum

blockchain could process snippets of code written using a Turing-complete scripting

language, Solidity. The contracts written for the Ethereum platform was decen-

tralized. Naturally, this meant that the contracts are self-executing when triggered

by a transaction or a function call.

Smart contracts define how entities may transact, and automatically execute these

transactions when asked to. Once the smart contract is initiated, the participating

entities cannot reverse or stop the transaction unless allowed by the contract itself

or another smart contract; the agreement is enforced.

Gavin Wood in his Ethereum: A Secure Decentralized Generalized Transaction

ledger[28] provided a system which guranteed the users to interact with other indi-

viduals or organizations with obsolute confidecne in the possible outcome and how

those outcomes might come about.

Blocks, states, transactions and the execution of a transaction has been well ex-

plained by Gavin Wood in his paper. Gas limit(which is essential to any transaction

in ethereum network) calculation was well explained by giving the specific gas cost

for each instruction and the formula for gas cost calculation.

semi-automated translation of human-readable contract representations into com-

putational equivalents was proposed by Christopher K. Frantz[10] as a modeling

approach to enable the codification of laws into verifiable and enforceable compu-

tational structures which resides in a public bloackchain. They identified a smart

contract components that corresponds to real world institutions and proposed a

mapping using a domain specific language to support the contract modelling phase.
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2.4 Gas Cost Analysis

As gas is essential for a transaction, gas should be provided before the execution

of the transaction. The gas provided should be greater than the gas Limit of the

transaction(amount of gas that is required for a transaction to complete). Because

the execution proceed as long as gas is available. But the gas Limit generally can-

not be predicted ahead of time. It is not possible to reveal where in particular

within a transaction the high costs originated from.

Christoper Signer[25] has provided a tool which is known as Visualgas to visu-

alize gas costs in depth to support more gas efficient development of smart con-

tracts.Visualgas makes it easy for developers to test gas cost and explore best and

worst case execution before deployment. Furthermore, it give a detailed overview

of how the costs relate to different parts of the code.

Visualgas provides valuable insights so that it lets developers examine gas costs in

detail and find ways to save gas. It offers visual, aggregated costs linked to the

source code instead of step by step information.

As gas limit restricts the execution of Ethereum Smart Contracts, it is valuable

resource that can be manipulated by an attacker to provoke unwanted behaviour

in a victim’s smart contract.Gas-focused vulnerabilities exploit undesired behavior

when a contract runs out of gas. Neville Grech et al.[12] provided a way to classify

and identify gas-focused vulnerabilities. They presented a static program analysis

technique to automatically detect gas-focused vulnerabilities with high confidence

and it is known as MadMax. It combines a control-flow-analysis-based decompiler

and declarative program-structure queries. The combined analysis captures high-

level domain-specific concepts and achieves high precision and scalability.

2.5 Source to source Compiling

V.U Wickramarachchi[27] implemented a source to source compiler that translate

Peyton Jones’ Contract Descriptive Language to Solidity. Peyton Jones’ langauge is

a domain specific language that was implemented using Haskell. The base language
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is an object-oriented, high level language for implementing smart contracts. It was

done to combine the properties of Peyton Jones’ Contract Descriptive Language

and the properties of the Ethereum blockchain. From that it eliminate the de-

pendence on third-parties to execute financial contracts and facilitate autonomous

execution of contracts in a trust less environment in order to reduce risks encoun-

tered when exercising financial contracts.

The overview of the compilation process is shown in the Figure 2.5.1. The initial

methodology(up to Abstract Syntax Tree) of this research can be taken to our re-

search as ours is a continuation of this research.

Matt Suiche[26] has developed a open source tool named as Porosity as a decom-

piler for EVM Bytecode that generate readable Solidity Syntax Contracts. So that

it enabled static and dynamic anaysis of such compiled contracts.

Figure 2.5.1: Compilation Process

2.6 Formal Verification

Due to the immutability nature of smart contracts, it is impossible to change after

they arep deployed. So it is important to verify the contracts by defining the seman-
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tics. Jiao Jiao et al. [16] develop the structural operational semantics for solidity,

which allows to identify multiple design issues which underlines many problematic

smart contracts.Furthermore, the semantics developed by them were executable in

the K framework, so that it allows to verify/falsify contract automatically.

Karthikeyan Bhargavan et al. introduced a framework to analyze and verify both

the runtime safely and functional correctness of the Ethereum contracts by transla-

tion to F*, which is a functional programming language to verify programs. Their

approach was based on shallow embeddings and typechecking within an existing

verifcation framework. So that it was convenient for exploring the formal verifca-

tion of contracts coded in Solidity and EVM bytecode.

Magnus O. Myreen[18] presented a new approach for program verification based on

translation.The automation and the proofs have been implemented in the HOL4

theorem prover, using a new machine code.

Xiaomin BAI[4] introduces a formal modelling and verification in formal methods

to build smart contract model and verify the properties of smart contracts. Formal

methods combined with smart contracts aim to reduce the cost and potential errors

during contract development process. Spin model checker was used to verify the

correctness and necessary properties for a smart contract template.

Zeinab Nehai et al.[19] propose a modelling method for an Ethereum application

based on smart contracts. It was aim to apply a formal method(model checking)

to verify that the application implementation complies with its specification, for-

malized by a set of temporal logic propositions. NuSMV tool has been chosen to

support this model.

A formal verification tool for EVM Byetcode was introduced by Daejun Park at

el.[23] To precisly reason about all the behaviours of the EVM Bytecode, they

adopted KEVM. KEVM is complete formal semantics of the EVM, and instanti-

ated the Kframework’s reachability logic theorem prover. It is used to generate a

correct-by-construction deductive verifier for the EVM. They further optimized the

it by introducing EVM-specific abstractions and lemmas to improve its scalability.

As they have chosen EVM bytecode as the verification target language, they can

directly verify what is actually executed without the need to trust the correctnes
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of the compiler.

Smart Contracts in Ethereum are executed by the Ethereum Virtual Machine.

Yoichi Hirai[14] defined the Ethereum Virtual Machine for interactive theorem

provers. It was the first formal EVM defnition for smart contract verifcation that

implements all instructions. It was defined using Lem so that it can be compiled

to a few interactive theorem provers such as coq,Isabella/HOL,HOL4. Using the

definition, they proved some safety properties of Ethereum smart contracts in an

interactive theorem prover Isabelle/HOL.

Everett Hildenbrandt et al.[13] presented a first fully executable formal semantics

of EVM, the bytecode language in which smart contracts are executed. They have

created these semantics in the K framework which was a framework for executable

semantics. Their approach was feasible and not computationally restrictive.

Russell O’Connor[22] defined a new language known as Simplicity which was de-

signed to be used for crypto-currencies and blockchains. Simplicity is bounded,

without loop but is expressive enough to represent any unitary function. Simplic-

ity is amenable to static analysis that can be used to generate upper bounds on

the computational resources needed, prior to execution. while Turing incomplete,

Simplicity can express any unitary function, which we believe is enough to build

useful smart contracts" for blockchain applications.

2.7 Equivalance

An important aspect of language translation is to verify whether those systems are

equivalent to each other after the translation has been taken place.The checking of

the equivalence has to be done in a formal manner to make sure that it eliminate

with certainty as many problems as possible. Behavioral Equivalence make sure

that two expressions behaves in the same way and those expressions evaluate to

the same value. One of the most successful approach for describing the formal be-

havior of concurrent systems is the operational semantics. In this approach, these

concurrent systems are modeled as Labelled Transitions systems(LTS) and they

are consisted of set of states, set of transitions labels and a transition relation.

The states represent the programs while the transition labels between the states
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represent the actions or interactions that are possible in a given state.

Rocco De Nicola presented different equivalences[20] that preserve significantly dif-

ferent properties of systems. Extensional equivalences[21] for Transition systems

are also presented by her. R.D. Nicola has presented another paper about the test-

ing equivalences[7] for processes. In that paper she defined three different equiv-

alences on process when the the processes and the set of tests for those processes

were given.

The simplest of all equivalences is the trace equivalence[8][6]. Two processes are

deemed trace equivalent, if and only if they can perform exactly the same sequence

of actions, starting from their initial states. The Figure 2.7.1 further explains

about the theorem. Tim Wood et al. has described a method for establishing

the existence of the equivalence between the behavior of two programs using trace

Equivalence. They have automatically checked a proof that their method is sound

using the Dafny program verifier. But a drawback of Trace Equivalence is that it

is not sensitive to deadlocks. Completed Trace Equivalence would solve that draw-

back. However, Completed Trace Equivalence is also consist of it is own problems.

LTS can be compared using the simulation or bi-simulation based equivalence re-

lations. Bi-simulation can be considered as a strong form of equivalence and it

is much stronger than the input/output equivalence. So that two LTSs may not

be bisimilar despite the fact that they have the same behavior and they simu-

late each other. J.C. Fernandez et al.[9] deals with the efficiently minimizing and

comparing LTSs with respect to bi-simulations and simulations based equivalence

relations.They have implemented their experiments within the tool Aldebaran of

various decision procedures for behavioral equivalence relations.

Figure 2.7.1: Trace Equivalance
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2.8 Summary

This chapter described about the current status of the research domain, espe-

cially targeting towards the Peyton Jones’ Contract Descriptive language, Source

to source compiling and smart contracts. Then this chapter described about the

different formal verification methodologies. Finally, it discussed about the trace

Equivalence theorem.
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Chapter 3 - Design

3.1 Introduction

This chapter elaborates the overview of the proposed solution to the research prob-

lem. It consist of four major sections, namely; Research Design, Optimizing the

contracts, compiler design and formal verification.

3.2 Research Design

The research design comprise of three main sections. They are optimizing the con-

tracts, Source-to-source compilation and the formal verification of the transformed

contracts.

3.3 Optimizing the contracts

In order to do an optimization to the contracts, identification of how the gas cost

calculated in a contract was the first phase in this section. Gas fees for the EVM

are charged under three distinct circumstances. The first is the fee built-in to the

computations of the operation. Different operations cost differently while the cost

per operation is fixed for each operation. The detailed list of the fee schedule is

shown in Figure 3.3.1. The second is the gas deducted to form the payment for

a subordinate message call or contract creation. This forms the payment for the

CREATE, CALL or CALLCODE. The contracts used in this study does not need

these mentioned instructions to be included. So considering this for the optimiza-

tion is purposeless. The third is the gas paid due to an increase in the usage of

memory. The three data locations in EVM, the storage, memory and the stack re-

quire different amount of gas cost to store data in each of those locations. Among
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them storage requires the highest gas cost while the stack requires the lowest gas

cost. When considering those facts, it is understood that appropriate use of op-

erations and data locations would enable the optimization of the contracts.The

definition of the general gas cost function is shown in Figure 3.3.2

Figure 3.3.1: Fee Schedule[28]

Two main costs are associate with the transactions that is executing on the

Ethereum network. They are the Transaction cost and the execution cost .Execu-

tion cost is the cost of the computational operations which are executed as a result

of the transaction. It is mainly consisted with the storage of the global variables,

processing power used for calculations and the manipulation of local variables. As

the execution cost is included in the transaction cost, it has been understood that

reducing the execution cost which lead to the reduction of both the execution and

the transaction cost. As mentioned above, efficient use of storage and calculations

will lead to the reduction of the execution cost. Transaction cost is the cost of

sending the contract code to the ethereum network and it depends on the size of

the contract. It consisted with four main parts. The base transaction cost which
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Figure 3.3.2: Gas Cost[28]

is 21 000(gas) and the cost for the contract deployment which is 32 000(gas) are

fixed cost for any transaction. It is understood that the Transaction cost for any

contract would be higher than 53 000(gas). Other two parts of the transaction cost

are the transaction input cost and the contract initiated transactions cost. Reduc-

ing the transaction input and the size of the contract appropriately will lead to the

reduction of the transaction cost. The figure 3.3.1 has shown the categorization of

the operations according to the transaction and execution cost.

Current implementations of the smart contracts are in Higher level languages

like solidity. Use of operations and data locations in an optimized manner is not

easily done with higher level languages. In order to handle operations and data

locations effectively, inline assembly was embedded into the Solidity Code. Hand-

crafting the solidity code by replacing it with inline assembly as much as possible

and replacing the code beyond the line by line replacing, enhanced the code with

optimization in a better way.
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3.4 Compiler Design

The source language for this study is Peyton Jones’ Contract Descriptive Language.

The unambiguous and composible nature of this language allows to create complex

contracts by combining the simple combinators.

The target language, which is to be executed in the EVM is the solidity language

with the embedded inline assembly.

The compiler for this study has not been designed from the beginning. The begin-

ning to the AST generator was taken from the Synergy compiler[27] to reduce the

redundant work(The parse tree outputs of Synergy compiler includes in Appendix

A). The compiler, from the AST has been designed to support the optimization.

The tree walker of the compiler, walks the AST for the transformation of the con-

tract in terms of combinators and the necessary logic to the target language. This

performs the final geneartion of the optimized code. The compiler architecture is

showed in Figure 3.4.1(Code listing includes in Appendix B )

Figure 3.4.1: Compiler Architecture

According to Peyton Jones’ CDL, a contract is consisted with a set of standard

basic primitives(combinators). The following Figure3.4.2 shows the basic struc-

ture of the contract according to the AST. A basic contract would comprised with

one or more combinators and that is depend on the input provided to the com-

piler(contract in the Peyton Jones’ CDL).
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Figure 3.4.2: Structure of a basic contract

While traversing the AST, when the tree walker gets the ’get’ combinator, a

basic contract between two parties are created. According to the other combinators

necessary components added to the created contract.

Apart from the basic combinators provided by Peyton Jones’ CDL, there are ad-

ditional information and actions required by the smart contracts in order to execute

in the blockchain. For that purpose, an external contract named as Marketplace

was introduced. All the functions that required for the execution is implemented

in this Marketplace. The compiler generating contracts would call the functions

from the Marketplace.

However, developing the compiler further more with the aspect of optimization,

the Marketplace was eliminated by adding the additional information provided by

the Marketplace to the transformed contract itself.

3.5 Formal Verification

The contracts introduced by the Peyton Jones’ Language are more general in nature

and they are not specifically designed to be executed on the EVM. When those con-

tracts executed on the Ethereum network, those contracts need to be instantiated
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with the parties related to the contract. When those general contracts executed

in Ethereum with real addresses of the users, ambiguities might be occurred.When

the contracts deployed and execute in the ethereum network, additional informa-

tion and actions required which has not been needed to the contracts in the Peyton

Jones’ CDL. In order to show that the proposed contracts behave exactly the same

way as the contracts in Peyton Jones’ CDL behave and the semantics of Peyton

Jones’ CDL are preserved in the proposed contract, verification of the contracts in

a formal manner was required. Therefore the proposed methodology in this study

developed the traces for the contracts in Peyton Jones’ CDL and the proposed

contract and verified their equality using trace equivalence.
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Chapter 4 - Implementation

4.1 Introduction

This chapter provides the implementation details of the proposed solutions. Section

4.2 describes the software tools utilized for the implementation process, section

4.3 illustrate how the contracts were optimized, section 4.4 describes the formal

verification of the contract.

4.2 Technologies and Software Tools

The Remix IDE was used to deploy and execute the Ethereum smart contracts.

It was used to check the gas cost for each transaction. It was used to test the

behavior of the deployed contracts using test data. The code-generator of the

compiler developed using JavaScript. The traces for the formal verification was

built using the spin model checker. The language used to model the logic was

PROMELA verification modeling language.

4.3 Optimizing the contracts

4.3.1 The Marketplace

This is an external contract which the compiler generated contracts used to call

functions. All the functions that needs to be executed in order to do a transaction

was implemented in this contract.The other additional details that the Ethereum

network requires other than the Peyton Jones’ CDL has mentioned are included

in this contract. Marketplace enable the modularize and the scalable nature of

the proposed solution. Further, information such as contract addresses and user

balances for different commodities are kept in here. Before deploying any contract,
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the instance of an Marketplace need to be deployed to the blockchain.

As all the function implementations are included in the Marketplace, the amount

of gas need for the deployment of this contract is higher than the other contracts.

So that the major optimization techniques are applied to the Marketplace. The

Marketplace contract was handcrafted in order to achieve the optimization.

As the most expensive operation in a transaction in terms of gas cost is storing

data in the storage data location of EVM, the use of storage has been minimized

in the code. However, as there are information that has to be kept through out

the contract, it is impossible to avoid using the storage locations completely. So

that, few information has been stored in the storage in the Marketplace contract.

Rather than declaring three new variables for user addresses(address of the contract

holder, counter party, and the creator), one variable known as ContractMetadata

was introduced. In the same way for the balances of the contract holder and the

counter party two variables have declared for the two commodities, USD and GBP

as USDbalances and GBPbalances. The information other than the addresses

used the uint data type. It is always better to use uint data type over the string

data type whenever possible because it is expensive to use string data type in terms

of the gas cost. uint is equal to uint256. Even the data that we need to store is less

than uint256 and can be used some other data type less than uint256(e.g.-uint8),

it is still recommended to use uint because uint cost lesser than the other data

types(e.g.- uint is cost lesser than the uint8). The reason for that is, the base

uint for EVM is 256bits, so to downscale from 256 to a lesser size it need some

operations and that makes the cost increased.

Few key functions enables the contract execution on the Ethereum network.

Inline assembly was used to implement all the functions in the Mareketplace. As

it is used as an intermediate language for the solidity compiler, it has reduced the
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gas cost in a large number. It has been beneficial to provide an efficient code.

This gives more control towards the code by providing the ability to handle the

instructions and data locations. However, the method signature was not written in

inline assembly. Solidity was used for that. If the method signature was in inline

assembly, calling functions internally required some of the instructions like ’jump’

which obfuscate the control flow. It was mentioned in the solidity documentation[2]

that not to make use of explicit ’JUMP’, ’JUMPI’ statements. Not using of those

instructions makes it easier to analyze the control flow, so that it help in formal

verification and optimization.

The propose function is used to propose or sell the contract to another party

by the counter party. When the propose method is executed it will keep up the

necessary information for the further transaction. The addresses of the counter

party, holder and the creator of the contract are get stored in the storage memory

location, so that it can be used through out the contract. The addresses stored in

the storage sequentially using the variable declared outside the function. As the

Ethereum address holds a 20 bytes value, starting from the declared variable, the

location to store address were manually mentioned while leaving the 20 bytes value

for each address.

The sign method allows the other party to agree with the contract. When the

counter party propose the contract, holder can agree to it by the execution of this

method. During the process, the state of the contract is changed by changing the

variable of isSigned. Type of that variable is uint and the default value of that

variable is ’0’, which means the contract is not signed and it is assigned ’1’ when

the contract is signed.

Preparatory too execute the following functions, the contract needs to be signed.

That means the isSigned variable needs to be stored with ’1’. The get method
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is used to establish the contract between two parties while storing the expiry date

of the contract. The give method does the same with reversed counter party and

holder. The receive method allows counter party to transfer a certain amount of

money in the particular commodity to the contract holder. As the use of String

data type is expensive in terms of gas cost, uint data type was used to identify the

commodity type. The values ’0’ and ’1’ used for that while ’0’ represent the ’USD’

commodity, ’1’ represent the ’GBP’ commodity.

Another approach was also introduced for the receive functionality. In this

approach, user balances were stored in wei which is the smallest denomination of

ether. As the Peyton Jones’ has defined the CDL to the currencies of USD and

GBP, the commodities needs to be in USD and GBP. But the money transfer in
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the Ethereum network happens using the currency ether. In order to reduce more

gas cost, the USD or GBP to wei conversion was done in the compiler. By using

the balance(a) instruction, wei balance at address ’a’ can be easily accessed. By

using this approach, input parameters of the function and the computations inside

the function has been reduced, which would lead to the reduction of the gas cost.
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4.3.2 Contract Transformation

The contract transformation has been done in two approaches. They are,

1. Contracts with the Marketplace

2. Contracts without the Marketplace

In the first approach solidity code was generated from the transformation. The

calls to the necessary functionalities in the Marketplace was done in this code. The

parameters for the functions were passed in the compiler.

In order to execute each contract that transformed through the compiler, Mar-

ketplace contract needed to be deployed before the compiled contract is deployed

to the network. It was understood that to execute some of the simple transaction,

deploying a contract with many functionalities was unnecessary. If only the nec-

essary functions deployed with each contract, the gas cost could be saved from a

high number.

So that, in the second approach Marketplace was removed. Necessary function-

alities require to do the transactions are implemented within the contract that

transformed through the compiler. An assembly code was generated from the com-

piler to make sure to achieve a reduction in the gas cost. The propose and the sign

functions also included in the contract. After the counter party has proposed the

contract and as soon as the other party sign the contract, the transaction is started

to be executed. Less functions and functional calls would enable to reduce the gas

cost of these contracts.

When analysing the AST it was understood that code templates could be cre-

ated for the each part of traversal of the AST. The template of the propose function
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and the part of the sign function needs to be included in every contract. The other

templates are generated according to the AST and they are parameterized appro-

priately. While traversing the AST, compiler select the suitable template from the

list of predefined templates. Finally the transformed contracts were deployed to

the Ethereum Blockchain.

4.4 Formal Verification of the contract

In order to verify the generated contracts, it was required to develop the traces for

the each processes in the propsoed approach and the Peyton Jones’ approach. The

traces ware developed using the spin(Spin Promela Interpreter)[15] model checker.

It is an open source tool which used to verify correctness of the concurrent soft-

ware models. It is one of the most popular and powerful tool for detecting software

defects in concurrent system designs. The intended use of this tool is to verify the

process behaviour which are considered suspect. The relevant behaviour was mod-

eled in Promela(a Process Meta Language). It is a verification modelling language.

The structure of Spin simulation and verification is shown in Figure 4.4.1.
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Figure 4.4.1: Structure of Spin simulation and verification[15]

1 active proctype ONE{

2 int t1=5,t=2, HolderAccount =50, CounterpartyAccount =50;

3 if

4 ::t<=t1->HolderAccount = HolderAccount -1; CounterpartyAccount

+1;

5 ::else ->skip

6 fi;

7 }

A promela model consist of type declarations, channel declarations, variable

declarations, process declarations and an init process. The above shows a process

defined for the ONE combinator of Peyton Jones’ CDL. A process is defined by

a proctype definition. Process can be created using the active keyword by adding
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it in front of the proctype declaration. Several variables have been declared as

local variables.The variables ’t’ and ’t1’ are declared for the current date and the

horizon. For easy and more clear comparison the dates variables are declared in

type int. However, there is no specific data type for date in Promela. The date

of the transformed assembly code also compared usingg the timestamp. So that

comparing two integers to model the date will not do any harm to the correctness

of the model.

First it check whether the current date is before the horizon. The fund transfer

will execute if only the current date is a date before the horizon. The value of the

sender is decremented by one unit while the holder’s account is incremented by one

unit.

The following code shows the transfer of 100 USD in accordance to the Peyton

Jones’ CDL. In the Peyton Jones’ CDL, this happens by scaling the ONE com-

binator by the scale amount and transfer the amount between the parties. The

variable ’k’ is defined for the amount to be sent between two accounts.

1 active proctype ONE{

2 int t1=5,t=2, HolderAccount =50, CounterpartyAccount =50,one=1,

scale =100,k;

3 if

4 ::t<=t1->k=one*scale;

5 ->HolderAccount = HolderAccount -k;CounterpartyAccount+k

;

6 ::else ->skip;

7 fi;

8 }

The Promela modeled code for the same scenario but in the proposed solution

is shown in below. The scaling happens at the compiler so that the compiler

generated code would transfer the scaled amount without a scaling operation at

the code. There are some of the extra parts(e.g.-Propose and sign) added to this

code which has not added to the Promela model of the Peyton Jones’ CDL.

1 int ContractMetaData [3];
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2 int isSigned=0, HolderAccount =50, CounterpartyAccount =50,t=5,t1=8,

creator=3, k;

3 proctype Propose(int Counterparty , int holder){

4 ContractMetaData [0]= Counterparty;

5 ContractMetaData [1]= holder;

6 ContractMetaData [2]= creator;

7 }

8 proctype sign(int holder){

9 if

10 ::( isSigned ==0) ->isSigned =1;

11 ::else ->skip;

12 fi

13 if

14 ::(t<+t1)->k=100; HolderAccount=HolderAccount -k;

CounterpartyAccount=CounterpartyAccount+k;

15 ::else ->skip;

16 fi

17 }

18 init{

19 run Proposal (1,2);

20 run sign (2);

21 }

Uisng the Promela codes, the traces were generated to each scenario in the Spin

Model checker. The equivalence of the generated traces for same scenario both

in accordance to the Peyton Jones’ CDL and the proposed approach was done

using the trace Equivalence. The drawback of trace equivalence, which is that it

does not sensitive to deadlocks will not be an effect to the verification because

as the traces are drawn using spin model checker, it will check for the absence of

deadlocks, unspecified receptions and unexecutable code. The two traces cannot be

prove equal using bi-simulation because there is an additional part in the proposed

method which is required for a transaction to be executed on ethereum network.

But using the trace equivalance we can prove that all the necessary parts in the

Peyton Jones’ CDL us inlcuded in the proposed method.

When the source language and the proposed language compared with each other

for the equivalence, it is to be noted that these two languages are different in type.

Haskel, the language in which the Peyton Jones’ has implemented combinator li-
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brary is a functional programming language while the assembly in which the source

is transformed to can be classified as procedural language. There are difference in

those language itself. Functional programming languages emphasized on evaluating

functions and it does not work on executing commands. Contrast to that proce-

dural languages works on executing systematic sequence of statements,and com-

mands to complete a computational task or program. By the nature of functional

languages, the order of execution does not provide any problems but procedural

language might resulted in different way for the different order of execution. This

was considered and reckoned while doing the verification.

4.5 Summary

In this chapter the tools and technologies used in implementing the proposed solu-

tion is elaborated. The different options used for the optimization is mentioned and

elaborated the important functionalities of each of those proposed options. The

generation of the codes from the AST is also explained in this chapter. The steps

followed in the formal verification is also explained in detail in the last subsection

of this chapter.
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Chapter 5 - Results and Evaluation

5.1 Introduction

This chapter elaborates the obtain results, how the results are evaluated and the

success level of the proposed solution.

5.2 Transformed Contracts

Once the input of Peyton Jones’ CDL is processed by the compiler, the transformed

contract is obtained. The contract is generated by the tree walker after walking

the AST.

5.2.1 With the Marketplace

This is the first option when generating the contracts. The external contract which

is known as ’Marketplace’ is deployed to the network and the contract which is

generated from the compiler will call the required function from the Marketplace.

As the functions in the Marketplace are implemented in Solidity assembly, the

compiler generated code is a solidity code. The below code shows the compiler

generated code of the basic ’one’ contract, where 1 GBP is immediately received

at contract execution.

1 pragma solidity ^0.5.10;

2 pragma experimental ABIEncoderV2;

3 import {marketplace} from ’./ Marketplace.sol’;

4 contract one {

5 constructor (Marketplace marketplace)public{

6 }

7
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8 function proceed () public{

9 marketplace marketplace;

10 marketplace.receive (1,1);

11 marketplace.AskForKill ();

12 }

13 }

Contract invocation is done by calling the proceed() method in the generated

code. The contract logic execution happens through calling the particular functions

inside the proceed function. The two parameters in the receive function refers to

the commodity type which is GBP(1 is for GBP) and the amount which is one.

Then the compiler generated code for a basic contract component is shown

below.(Receive $100 on a particular date("2020-03-17") in future. )

1 pragma solidity ^0.5.10;

2 pragma experimental ABIEncoderV2;

3 import {marketplace} from ’./ Marketplace.sol’;

4 contract one {

5 constructor (Marketplace marketplace)public{

6 }

7 function proceed () public{

8 marketplace marketplace;

9 marketplace.get("2020 -03 -17");

10 marketplace.receive (0 ,100);

11 marketplace.AskForKill ();

12 }

13 }

5.2.2 Without the Marketplace

This is the second option when generating the contracts. To deploy this contract no

other external contract is not required. Once the input of the Peyton Jones’ CDL

is processed by the compiler, the transformed contract in assembly was obtained.

The contract was obtained after walking the tree walker and appropriate code

templates are generated from the predefined list of code templates. Then the
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generated templates are parameterized appropriately. The below code shows the

compiler generated code of the basic ’one’ contract, where 1 GBP is immediately

received at contract execution.

1 pragma solidity ^0.5.10;

2 pragma solidity ^0.5.10;

3 pragma experimental ABIEncoderV2;

4 contract A {

5 address public ContractMetadata;

6 uint isSigned = 0;

7 uint public USDbalances;

8 uint public GBPbalances;

9 address creator;

10 uint today = now;

11 function propose(address counterparty , address holder)

public{

12 assembly{

13 sstore(ContractMetadata_slot , counterparty)

14 sstore(add(ContractMetadata_slot , 0x20), holder)

15 sstore(add(add(ContractMetadata_slot , 0x20), 0

x20), sload(creator_slot))

16 }

17 }

18 function sign(address holder) public{

19 assembly{

20 if eq(sload(add(ContractMetadata_slot ,0x20)),

holder) {

21 for{} eq(sload(isSigned_slot) ,0) {} {

22 sstore(isSigned_slot ,1)

23 }

24 }

25 let expireDate

26 let balanceHolder

27 let balanceTo

28 expireDate := 1547058600

29 if lt(sload(today_slot),expireDate) {

30 balanceHolder := add(sload(

GBPbalances_slot) ,1)

39



31 balanceTo := sub(sload(add(GBPbalances_slot

,0x20)) ,1)

32 sstore(USDbalances_slot ,balanceHolder)

33 sstore(add(USDbalances_slot ,0x20),balanceTo

)

34 }

35 selfdestruct(ContractMetadata_slot)

36 }

37 }

38 }

When the holder proposed, the meta data of the contract will be stored in the

ContractMetadata slot in the storage data location of the EVM. As soon as the

counterparty sign the contract, the contract execution happens by transferring the

one GBP. Finally the contract will call the self destruct function in order to suicide

itself.

Next the compiler generated assembly code for a basic contract component is shown

below. (Receive $100 on a particular date("2020-03-17") in future.)

1 pragma solidity ^0.5.10;

2 pragma solidity ^0.5.10;

3 pragma experimental ABIEncoderV2;

4 contract A {

5 address public ContractMetadata;

6 uint isSigned = 0;

7 uint public USDbalances;

8 uint public GBPbalances;

9 address creator;

10 uint today = now;

11 function propose(address counterparty , address holder)

public{

12 assembly{

13 sstore(ContractMetadata_slot , counterparty)

14 sstore(add(ContractMetadata_slot , 0x20), holder)

15 sstore(add(add(ContractMetadata_slot , 0x20), 0

x20), sload(creator_slot))

16 }
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17 }

18 function sign(address holder) public{

19 assembly{

20 if eq(sload(add(ContractMetadata_slot ,0x20)),

holder) {

21 for{} eq(sload(isSigned_slot) ,0) {} {

22 sstore(isSigned_slot ,1)

23 }

24 }

25 let expireDate

26 let balanceHolder

27 let balanceTo

28 expireDate := 1547058600

29 if lt(sload(today_slot),expireDate) {

30 balanceHolder := add(sload(

USDbalances_slot) ,100)

31 balanceTo := sub(sload(add(USDbalances_slot

,0x20)) ,100)

32 sstore(USDbalances_slot ,balanceHolder)

33 sstore(add(USDbalances_slot ,0x20),balanceTo

)

34 }

35 selfdestruct(ContractMetadata_slot)

36 }

37 }

38 }

5.2.3 Order of execution

The order of contract execution of the proposed solution under the aproach 1 is in

the Figure 5.2.1. The process starts with the transformation of the Peyton Jones’

contract and ends when the transformed contract logic is executed on the Ethereum

blockchain.

The order of contract execution of the proposed solution under the approach 2

where there is no Marketplace contract is in the Figure 5.2.2
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Figure 5.2.1: Order of execution of a contract from transformation to contract logic

execution in the approach 1

5.2.4 Formal Verification

The traces have been generated for the different scenario in the Peyton Jones’ CDL

and the proposed solution. The following Figure 5.2.3 shows the trace for the ONE

contract in the Peyton Jones’ CDL which has been generated from the Spin model

checker.

The following figures 5.2.4 5.2.5 5.2.6 shows the corresponding trace for the

ONE contract in the proposed solution. As it is a combination of two functions,

three traces have been generated from the proposed assembly code and they for
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Figure 5.2.2: Order of execution of a contract from transformation to contract logic

execution in the approach 2

the propose function, sign function and the init function which combines the both

the functions.

The formal verification by the trace equivalence to check the equivalence of both

contract will be explained in the section 5.3.2.
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Figure 5.2.3: Trace for ONE contract in Peyton Jones’ CDL

Figure 5.2.4: Trace of the Propose function in the proposed solution

5.3 Evaluation

In order to evaluate the results obtained, the evaluation was done in two phases.

Evaluation of the two research questions has been done to make sure the success44



Figure 5.2.5: Trace of the sign function in the proposed solution

of the proposed solution. Evaluation has been done in terms of optimization and

the correctness.

5.3.1 Optimization

The optimization of the proposed solution has been evaluated in terms of the cost of

the execution. The execution cost on the Ethereum bockchain is measured in unit of

gas on the Ethereum blockchain. The comparison of the two approaches proposed

in this research has been compared to each other and the proposed solution has

been compared with a previous approach. The transformed contracts were executed

and tested using Remix IDE.
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Figure 5.2.6: Trace of the init function of the promela code

The gas estimation for a contract is done beforehand and then the adequate number

of gas units are specified for a contract. If the execution runs out of gas before

completion, the contracts get void and the gas is lost. The executor cannot regain

the gas spent. Therefore, it is critical to specify adequate number of gas units for

execution completion.

The cost of a contract in terms of physical money can be calculated as follows. As

of January 2020, the price of the Ether is approximately $167. Additionally, the

cost per unit of gas is approximately 1.1GWei (2 ×10−9 Ether). Let’s assume, a

particular contract to be executed cost 1797270 gas.

2× 10−9
Ether

gas
× $167

Ether
× 1797270gas = $0.6002 (5.1)

Remix, an in-browser Solidity compiler and blockchain simulator was used in

this study to compile, deploy and measure the contracts. All contracts were com-

piled with the Solidity compiler –optimize flag enabled. Remix reports both the

transaction and the execution cost of a contract. The Figure 5.3.1 shows the com-

parison of transaction costs of different actions of two approaches of proposed solu-

tion(Named as approach 1 and approach 2) and the previous approach(Synergy).

Approach 1 of the proposed solution is the approach with the external contract

Marketplace and the approach 2 is the approach without the external contract
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Marketplace. When comparing the cost, the transaction cost is considered, as the

execution cost is also included in the transaction cost.

Figure 5.3.1: Comparison of transaction costs in terms of gas units on the Ethereum

blockchain

By analysing the cost of each part in the contracts, it is understood that the

composibility nature of the contracts is preserved in the cost calculation as well.

5.3.2 Correctness

In order to check the correctness, a basic verification that can be done is the seman-

tic comparison of the two contracts, contracts in Peyton Jones’ CDL and contracts

in the proposed solution. So for that, the comparison is done between a financial

contract written in natural language, a financial contract represented in Peyton

Jones’ CDL and the contract which was trasformed to a smart contract.

Zero Contract

• Natural Language - No transactions

• Peyton Jones’ CDL - ’zero’
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• smart contract code snippet

1 pragma solidity ^0.5.10;

2 pragma solidity ^0.5.10;

3 pragma experimental ABIEncoderV2;

4 contract A {

5 address public ContractMetadata;

6 uint isSigned = 0;

7 uint public USDbalances;

8 uint public GBPbalances;

9 address creator;

10 uint today = now;

11 function propose(address counterparty , address holder)

public{

12 assembly{

13 sstore(ContractMetadata_slot , counterparty)

14 sstore(add(ContractMetadata_slot , 0x20), holder)

15 sstore(add(add(ContractMetadata_slot , 0x20), 0

x20), sload(creator_slot))

16 }

17 }

18 function sign(address holder) public{

19 assembly{

20 if eq(sload(add(ContractMetadata_slot ,0x20)),

holder) {

21 for{} eq(sload(isSigned_slot) ,0) {} {

22 sstore(isSigned_slot ,1)

23 }

24 }

25 let expireDate

26 let balanceHolder

27 let balanceTo

28 selfdestruct(ContractMetadata_slot)

29 }

30 }

31 }

The ’zero’ contract is one of the basic contracts in the financial contract world. It

simple says do nothing. In order to define this contract which does nothing, Pey-

48



ton Jones’ et al. has introduced the ’zero’ combinator. The transformed assembly

code of this basic combintor does not execute any transaction, it only performs the

propose and the sign functions of the contract which is an essential thing in the

contract. It simply kills the contract as soon as the it executed the sign function

with no transaction happening. There is no action as a result of this contract.

Therefore, the ‘Zero’ combinator and the ‘Zero contract in Assembly’ functions in

the same manner which make those semantically equivalent.

It is important to note that, as this contract does not involve any transactions

and it will not result with any changes to the parties related to the contract, the

contract is included with the propose and sign functions. The reason for this is

even though this contract does not provide any result, in a case of a sequential or

inter dependent contracts, the execution of this zero contract might lead to another

contract. The chain of execution will be break at the middle if this contract is not

executed with these important functionalities. Therefore, inclusion of the propose

and sign functions regardless of the cost for the execution of them is very important

when writing these contracts.

One Contract

• Natural Language - Receive $1 immediatly

• Peyton Jones’ CDL - ’one USD’

• smart contract code snippet

1 pragma solidity ^0.5.10;

2 pragma experimental ABIEncoderV2;

3

4 contract A{

5 address public ContractMetadata;

6 uint isSigned = 0;

7 uint public USDbalances;

8 uint public GBPbalances;

9 address creator;

10 uint today = now;
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11

12 function propose(address counterparty , address holder)

public{

13 assembly{

14 sstore(ContractMetadata_slot , counterparty)

15 sstore(add(ContractMetadata_slot , 0x20), holder)

16 sstore(add(add(ContractMetadata_slot , 0x20), 0x20)

, sload(creator_slot))

17 }

18 }

19

20 function sign(address holder) public{

21 assembly{

22 if eq(sload(add(ContractMetadata_slot ,0x20)),

holder) {

23 for{} eq(sload(isSigned_slot) ,0) {} {

24 sstore(isSigned_slot ,1)

25 }

26 }

27 let expireDate := "1569868200 "

28

29

30 if lt(sload(today_slot),expireDate) {

31 let balanceHolder := add(sload(USDbalances_slot)

,1)

32 let balanceTo := sub(sload(add(USDbalances_slot ,0

x20)) ,1)

33 sstore(USDbalances_slot ,balanceHolder)

34 sstore(add(USDbalances_slot ,0x20),balanceTo)

35 }

36 selfdestruct(ContractMetadata_slot)

37

38 }

39 }

40 }

The one contract is the other basic contract among financial contracts. The

semantic of this contract is for the counterparty to receive $1 immediately from

the holder of the contract. For this, Peyton Jones et al. have introduced the
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‘one’ combinator and the contract is written as ‘one USD’. When the transformed

assembly code of this contract is executed, the ’sign’ function of the contract is

executed by the counter party after the holder is proposed, When the ’sign’ function

is called by the counter party, the contract transfers $1 from the holder’s account

to counter party’s account. Therefore, the behavior of the transformed contract

is the same as how the semantics suggests in the Peyton Jones’ CDL. As such,

the transformed ‘one contract’ is semantically equivalent to the Peyton Jones’ one

contract.

Contract Component (i.e.: Zero Coupon Bond)

• Natural Language - Receive $100 on the 20th of March 2020

• Peyton Jones’ CDL - ’get (truncate "20 03 2020" (scale 100 (one USD)))’

• smart contract code snippet

1 let balanceHolder := add(sload(USDbalances_slot) ,1)

2 let balanceTo := sub(sload(add(USDbalances_slot ,0x20)) ,1)

3 sstore(USDbalances_slot ,balanceHolder)

4 sstore(add(USDbalances_slot ,0x20),balanceTo)

As explained in chapter 3, the basic contract can consist one or more combi-

nators from one, scale, truncate and get/give. A zero coupon bond is one such

contract which includes all these combinators. The semantics of this particular

contract states that $100 should be received by the counterparty at the specified

future date. The transformed assembly code of this particular contract transform

100 USD to the counterparty on the said date when ’sign’ function is invoked afte

the calling of the ’propose’ functionaity. Therefore, the semantics stand correct for

the basic contract component introduced as well.

Complex Cotract (i.e.: A contract with operator ’and’)

• Natural Language - Receive $100 on the 20th of March 2020 and give $10 on

the 5th of April 2020

• Peyton Jones’ CDL - ’get (truncate "20 03 2020" (scale 100 (one USD)))

‘and‘ give (truncate "5 04 2020" (scale 10 (one USD)))’
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• smart contract code snippet

1 pragma solidity ^0.5.10;

2 pragma experimental ABIEncoderV2;

3 contract A {

4 address public ContractMetadata;

5 uint isSigned = 0;

6 uint public USDbalances;

7 uint public GBPbalances;

8 address creator;

9 uint today = now;

10 function propose(address counterparty , address holder)

public{

11 assembly{

12 sstore(ContractMetadata_slot , counterparty)

13 sstore(add(ContractMetadata_slot , 0x20), holder)

14 sstore(add(add(ContractMetadata_slot , 0x20), 0

x20), sload(creator_slot))

15 }

16 }

17 function sign(address holder) public{

18 assembly{

19 if eq(sload(add(ContractMetadata_slot ,0x20)),

holder) {

20 for{} eq(sload(isSigned_slot) ,0) {} {

21 sstore(isSigned_slot ,1)

22 }

23 }

24 let expireDate

25 let balanceHolder

26 let balanceTo

27 expireDate := 1580668200

28 if lt(sload(today_slot),expireDate) {

29 balanceHolder := add(sload(

USDbalances_slot) ,100)

30 balanceTo := sub(sload(add(USDbalances_slot

,0x20)) ,100)

31 sstore(USDbalances_slot ,balanceHolder)
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32 sstore(add(USDbalances_slot ,0x20),balanceTo

)

33 }

34 expireDate := 1588530600

35 if lt(sload(today_slot),expireDate) {

36 balanceHolder := add(sload(

USDbalances_slot) ,10)

37 balanceTo := sub(sload(add(USDbalances_slot

,0x20)) ,10)

38 sstore(USDbalances_slot ,balanceHolder)

39 sstore(add(USDbalances_slot ,0x20),balanceTo

)

40 }

41 selfdestruct(ContractMetadata_slot)

42 }

43 }

44 }

A complex contract is combined with one or more operators(and/or). The seman-

tics of a contract which has two basic contracts combined by "and" implied that

both basic contract components should be executed. The transformed assembly

code behaves in a way, where both contracts are executed. When the contracts are

transformed, the each basic contract is transformed one after the other to a single

contract file. This enables the sequential execution of the transformed contracts in

their appropriate days. This replicates the functionality of the ’and’ combinator

introduced by Peyton Jones’ CDL. Therefore, two basic contract components tied

together with an ‘and’ behaves as expected in par with the representation of Pey-

ton Jones’ CDL. As the semantics of the proposed contract and the Peyton Jones’

CDL are equal, it has been shown that the composable nature of the Peyton Jones’

CDL has preserved through the compiler built in this study.

The correctness of the proposed solution was verified formally by the formal

verification for the traces develop for the proposed solution and the Peyton Jones’

CDL. Trace Equivalence has been used for the formal verification.

The formal verification of some of the contracts in Peyton Jones’ CDL and

proposed solution, and their relevant traces are as follows. (In the figures the left

figure shows the trace for the Peyton Jones’ CDL and the right figure shows the
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trace for the proposed solution for the particular contract in Peyton Jones’ CDL.)

Please note in the verification, CPA is referred to CounterPartyAccount and HA

referred to HolderAccount.

Zero Contract

Figure 5.3.2: Traces of Zero Contract

Verification for Zero Contract

Traces(s1) = {end}

Traces(s7) = {end}

Trace(s1) = Trace(s7)

Therefore, wecansay,

Trace(zero) = Trace(zeroProposed)

(5.2)

One Contract
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Figure 5.3.3: Traces of One Contract

Verification for One Contract

Traces(s6) = {(t <= t1), CPA,HA, else, 1, end}

Traces(s12) = {(t <= t1), CPA,HA, else, 1, end}

Traces(s6) = Traces(s12)

Trace(s2) = {CPA,HA, end}

Trace(s8) = {CPA,HA, end}

Traces(s2) = Traces(s8)
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Trace(s3) = {HA, end}

Trace(s9) = {HA, end}

Traces(s3) = Traces(s9)

Trace(s5) = {1, end}

Trace(s11) = {1, end}

Traces(s5) = Traces(s11)

Trace(s8) = {end}

Trace(s14) = {end}

Traces(s8) = Traces(s14)

Therefore, wecansay,

Trace(One) = Trace(OneProposed)
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Contract Component(i.e. Zero Coupon Bond)

Figure 5.3.4: Traces of ZCB Contract
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Verification for ZCB Contract

Trace(s7) = {(t <= t1), k, CPA,HA, else, 1, end}

Trace(s13) = {(t <= t1), k, CPA,HA, else, 1, end}

Traces(s7) = Traces(s13)

Trace(s2) = {k, CPA,HA, end}

Trace(s8) = {k, CPA,HA, end}

Traces(s2) = Traces(s8)

Trace(s3) = {CPA,HA, end}

Trace(s9) = {CPA,HA, end}

Traces(s3) = Traces(s9)

Trace(s4) = {HA, end}

Trace(s10) = {HA, end}

Traces(s4) = Traces(s10)

Trace(s6) = {1, end}

Trace(s12) = {1, end}

Traces(s6) = Traces(s12)

Trace(s9) = {end}

Trace(s15) = {end}

Traces(s9) = Traces(s15)

Therefore, wecansay,

Trace(ZCB) = Trace(ZCBProposed)
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Complex Contract(i.e. A contract with operator ’and’)

Figure 5.3.5: Traces of ’and’ Complex Contract
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Verification for ’and’ Complex Contract

Trace(s7) = {(t <= t1), k, CPA,HA, else, 1, (t <= t2), k, CPA,HA, else, 1, end}

Trace(s13) = {(t <= t1), k, CPA,HA, else, 1, (t <= t2), k, CPA,HA, else, 1, end}

Traces(s7) = Traces(s13)

Trace(s2) = {k, CPA,HA, (t <= t2), k, CPA,HA, else, 1, end}

Trace(s8) = {k, CPA,HA, (t <= t2), k, CPA,HA, else, 1, end}

Traces(s2) = Traces(s8)

Trace(s3) = {CPA,HA, (t <= t2), k, CPA,HA, else, 1, end}

Trace(s9) = {CPA,HA, (t <= t2), k, CPA,HA, else, 1, end}

Traces(s3) = Traces(s9)

Trace(s4) = {HA, (t <= t2), k, CPA,HA, else, 1, end}

Trace(s10) = {HA, (t <= t2), k, CPA,HA, else, 1, end}

Traces(s4) = Traces(s10)

Trace(s6) = {1, (t <= t2), k, CPA,HA, else, 1, end}

Trace(s12) = {1, (t <= t2), k, CPA,HA, else, 1, end}

Traces(s6) = Traces(s12)

Trace(s15) = {(t <= t2), k, CPA,HA, else, 1, end}

Trace(s21) = {(t <= t2), k, CPA,HA, else, 1, end}

Traces(s15) = Traces(s21)

Trace(s10) = {k, CPA,HA, end}

Trace(s16) = {k, CPA,HA, end}

Traces(s10) = Traces(s16)

Trace(s11) = {CPA,HA, end}

Trace(s17) = {CPA,HA, end}

Traces(s11) = Traces(s17)

60



Trace(s12) = {HA,end }

Trace(s18) = {HA,end }

Traces(s12) = Traces(s18)

Trace(s14) = {1, end }

Trace(s20) = {1, end }

Traces(s14) = Traces(s20)

Trace(s17) = {end }

Trace(s23) = {end }

Traces(s17) = Traces(s23)

Therefore, we can say,

Trace(and) = Trace(andProposed)

5.4 Summary

This chapter detailed about the results of the proposed evaluation model for con-

tract transformation from the financial contract domain to smart contract do-

main.The proposed evaluation method for the proposed method was explained

in detail in this chapter. Formal verification of the proposed method was included

in this chapter precisely. Comparison with the past method and the two methods

proposed in this study was included in this section and the benefits of the proposed

method was highlighted in this section.
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Chapter 6 - Conclusion

6.1 Introduction

This chapter is comprised with a review of the research aims and objectives, re-

search problem, limitations of the current work and implications for the further

research.

6.2 Conclusion about the research questions

The main aim of this research was to optimize the autonomous smart contracts in

terms of the gas cost required for a particular contract. After a thorough analysis

of the cost structure and the cost evaluation of Ethereum contracts, it was under-

stood that manipulating the data locations in the contracts would lead to the gas

reduction of these Ethereum smart contacts. In order to achieve this, by gaining a

control of the internal structures of the contracts, Assembly language was used.

The first research question was about the extent of the efficiency that can be in-

creased when transforming contracts written in Peyton Jones’ CDL to Assembly

language. A compiler was built to transform contracts in Peyton Jones’ CDL to

Assembly and the compiler was enhanced to preserve the composable nature of the

Peyton Jones’ CDL. Finally the converted contracts were deployed to the Ethereum

blockchain to check their functionality. After comparing the cost required for the

proposed method with the previous method, it was possible to show that transform-

ing the contracts to Assembly language has increased the efficiency of the contracts

in terms of gas cost in a significant way. Through this, we managed to achieve the

main objectivity and the first research question of this study.

The second research question was about the formal verification of the transformed
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contracts. Formal verification make sure the properties of Peyton Jones’ CDL has

preserved in the proposed solution. By comparing the semantics of the Peyton

Jones’ CDL and the proposed solution, it was identified that the semantics were

preserved in the transformed contract. By the formal verification, it was possi-

ble to prove the equivalence of the Peyton Jones’ CDL and the proposed method

formally. Further, the composable nature of the Peyton Jones’ CDL was also pre-

served through the compiler built in this study as the transformed contract too

portrayed composability. The composable nature of the contract enabled the for-

mal verification of any given complex contract using the formal verification done

to the basic contracts. It was possible to let the transformed contract execute

at a future date through the Ethereum Alarm clock service which guaranteed the

autonomous execution at a future date. In this way, we were enabled to achieve

second research question of this study.

Thus, it can be concluded that the proposed solution in this study provides an

optimized code through a proposed compiler and enables to formally verify the

correctness of these provided codes.

6.3 Conclusion about research problem

The concern of the risk of involving the central counter party in the financial con-

tracts have been eliminated with the approaches of building autonomous contracts,

which did not need a central counter party to manage the transactions. There were

many attempts in the past to re-implement the financial contracts in the Ethereum

blockchain using solidity. However, they suffered from the cost that has to be in-

curred for the deployment and the execution of these contracts. The gas cost

sustained on the contracts in Ethereum network might hinder the cost benefit that

gained by eliminating the central counter party. This adverse effect of this gas cost

might be in a higher degree for a contract which runs frequently and transact a

small amount of money. Even more this might effect the correctness of the smart

contract by running out of gas before the transaction completes. This was a clear

research gap identified after conducting the literature review.

As the gas cost is an essential part in the ethereum network, it was impossible to
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remove gas cost completely from the transactions. This study has contributed to

the smart contract domain significantly by reducing the gas cost imposed on the

smart contracts by transforming the smart contracts to assembly language rather

than to solidity as in the previous approaches. Preparatory to building the com-

piler to serve the transformation, the assembly code was handcrafted in order to

explore the instances where the optimization could embedded in. The code in the

assembly has improved the accessibility of the internal data locations of the con-

tract and the ability to manipulate those locations. The proposed solution of this

study has contributed to the correctness of the smart contracts as well by reducing

the chances of in-completed contracts due to insufficient gas balance.

A compiler was built in this study which is a significant computer scientific contri-

bution. The compiler can be extended to transform financial contracts of different

types. At the same time the compiler can be extended to transform contacts with

different commodities. As mentioned above assembly was taken as the language

for the transformed output of code.

The another problem that arise with this is the correction of the transformed con-

tract with respect to Peyton Jones’ CDL. As the contracts are transformed from

Peyton Jones’ CDL to Assembly, to make sure the proposed solution is correct

even after using the optimization strategies, the proposed solution was compared

with the Peyton Jones’ CDL. To make a more formal comparison, equivalance of

the Peyton Jones’ CDL and proposed solution was considered in a formal manner.

With the contribution of this study, it could be concluded that the smart contracts

can be written in optimized manner while preserving its properties.

In summary, this study has proposed a compiler to convert financial contracts to

smart contracts, explored the ways to optimize such contracts in order to reduce

the gas cost associate with it and has proven that financial contracts suggested

by Peyton Jones’ CDL can be expressed in Ethereum smart contracts in assembly

language in the similar manner.
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6.4 Limitations

In the transformation from source language to assembly language, it was unable to

completely remove solidity from the transformed code due to the unavailability of

an assembler that converts solidity assembly language to EVM Bytecode, As the

transformed contracts deploy and executed on the Remix IDE, it did not support

standalone assembly to be deployed on that. The assembly language has to be

included as inline to solidity, to be deployed in the Remix IDE. Even though the

inclusion of solidity language was at its minimum level in this approach, if the

entire code is written in assembly, cost reduction could have been achieved further.

The source language of this research is restricted to the Peyton Jones’ CDL

and did not explore any other DESL for financial contracts due to time constraint.

Further, the language extension (of the Peyton Jones’ CDL) done in this study

was only for the combinators of the contracts. The combinators for observables

weren’t extended nor utilized for the transformation in the compiler. A readily

usable, optimized compiler was not build through this.

As the contracts are deployed and executed on the Etherum platform, the extent

to which a transformed contract is reliable, transparent and efficient depends on the

facilitations of the Ethereum platform as well. Since it is still under development,

certain limitations are imposed on our results as well. Some of thosee limitations

are discussed below.

• Reliability of contract execution is mostly weighed upon the Ethereum plat-

form. One major dependency of contract execution in this study was facilitat-

ing autonomous execution through the Ethereum Alarm Clock Service. This

is a third party service which needs to be integrated explicitly as a separate

smart contract. The lifetime of autonomous execution of contracts proposed

in this study depends on how long this service would be maintained by the

developers/ community.

• Efficiency is another major problem when it comes to financial contracts.

Financial markets operate on the scale of milliseconds. However, operations

on the blockchain cannot accommodate such speed efficiency.As of now, in the

Ehtereum network it takes 10 to 20 seconds approximately for a block to be
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mined and to be added to the blockchain. As there is no parallel processing

in Ethereum mining, the maximum throughput of the Ethereum blockchain

is approximately 15 transactions per second. By contrast, the NYSE(New

York Stock Exchange) Group takes only 5 milliseconds to execute a trade.

Therefore, the blockchain does not seem to facilitate the speed required by

financial markets.

• Transparency is achieved on the blockchain by the distributed ledger system.

Each peer on the network would be aware of all transactions and contract

executions on the blockchain. However, since Ethereum addresses are not tied

up with public identities, transparency in terms of who performs a transaction

is limited. This creates a problem of liability on the network in terms of debt

enforcement when executing contract logic.

Even though these limitations have minor impact on our proposed solution, further

research and development is required to mitigate these in order to use such a system

in a real financial market.

6.5 Implication for further research

6.5.1 Increasing the speed

The proposed solution does not give any concerns to the efficiency of the contracts

in terms of the time that it require to execute the transactions. To make these

solutions more usable in real world, when transformed from financial contract to

autonomous smart contracts, the contracts need to be inline with the speed of the

tradings in the financial markets. Despite financial markets trade in milliseconds,

it takes 5 seconds to 15 minutes to process a transaction in Ethereum network if the

standard gas price is being paid. The concept of gas price make the process time

of a transaction in ethereum volatile. Therefore, the time taken to execute these

smart contracts is a crucial thing which would require to be studied and developed

in the future.
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6.5.2 Insufficient account balance

In a situation where the holder’s account balance is less than the amount to be

send or in a situation where the holder’s commodity balance is zero, the way the

situation handled is not discussed in this study. After the commodity balance gets

zero, there would be no commodities transferred to the counter party. Handling

this type of situation in Ethereum blockchain is not a trivial task and it would

require extensive further study to solve this issue.

6.5.3 AST Optimization

It was understood that optimization of gas cost could be achieved by optimizing

the AST. By the AST optimization, it would be enable to reduce the number of

contracts created for a particular input. It would lead to the further reduction of

cost and increase the performance of contract execution on the blockchain. Even

though the AST optimization is concerned and explored in this study, it was not

implemented in this study due to time constraint. Further study and development

on that would be able to explore many aspects of optimization.

6.5.4 Extending the compiler

This study and the previous studies concerned only the primitive combinators of

Peyton Jones’ CDL. As Peyton Jones’ CDL consisted with primitive combinators

and obeservables, the compiler could be extended to support observables as well.

This is a key extension that will be required as most derivatives execute based on

observable values.
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Appendix A - Diagrams

get(truncate "10 2 2019" (scale 100 (one USD)))

Figure A.0.1: Parse tree of a zero coupon Bond
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get(truncate "10 2 2019" (scale 100 (one GBP))) ’and’ get(truncate

"10 5 2019" (scale 30 (one GBP)))

Figure A.0.2: Parse tree for a complex contract
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Appendix B - Code Listings

1 const fs = require(’fs’);

2 let contract = ‘‘;

3

4 function contractCreation(tree) {

5 let TimeStamp = "";

6 let list = [];

7 let contractName = "A";

8 let headers = ‘‘ +

9 ‘pragma solidity ^0.5.10;\n‘ +

10 ‘pragma experimental ABIEncoderV2 ;\n‘;

11

12 fs.writeFileSync("./ contractFiles/test.sol", headers , function

(err) {

13 if(err) {

14 return console.log(err);

15 }

16 console.log("The file was saved!");

17 });

18

19 contract = contract + ‘contract ${contractName} {\n‘ +

20 ‘ address public ContractMetadata ;\n‘ +

21 ‘ uint isSigned = 0;\n‘ +

22 ‘ uint public USDbalances ;\n‘ +

23 ‘ uint public GBPbalances ;\n‘ +

24 ‘ address creator ;\n‘+

25 ‘ uint today = now;\n‘+

26 ‘ function propose(address counterparty , address

holder) public {\n‘ +

27 ‘ assembly {\n‘+
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28 ‘ sstore(ContractMetadata_slot ,

counterparty)\n‘+

29 ‘ sstore(add(ContractMetadata_slot , 0x20)

, holder)\n‘+

30 ‘ sstore(add(add(ContractMetadata_slot , 0

x20), 0x20), sload(creator_slot))\n‘+

31 ‘ }\n‘+

32 ‘ }\n‘+

33 ‘ function sign(address holder) public {\n‘+

34 ‘ assembly {\n‘+

35 ‘ if eq(sload(add(ContractMetadata_slot ,0

x20)),holder) {\n‘+

36 ‘ for{} eq(sload(isSigned_slot) ,0) {}

{\n‘+

37 ‘ sstore(isSigned_slot ,1)\n‘+

38 ‘ }\n‘+

39 ‘ }\n‘+

40 ‘ let expireDate\n‘+

41 ‘ let balanceHolder\n‘+

42 ‘ let balanceTo\n‘;

43

44 fs.appendFile("./ contractFiles/test.sol", contract , function (

err) {

45 if (err) {

46 return console.log(err);

47 }

48 console.log("The file was saved!");

49 });

50

51 list = recurse(tree , list);

52 console.log(list);

53

54 let closeBrackets = ‘‘;

55 closeBrackets = closeBrackets +

56 ‘ selfdestruct(ContractMetadata_slot)\n‘+

57 ‘ }\n‘+

58 ‘ }\n‘+

59 ‘}\n‘;

60
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61 fs.appendFile("./ contractFiles/test.sol", closeBrackets ,

function (err) {

62 if (err) {

63 return console.log(err);

64 }

65

66 console.log("The file was saved!");

67 });

68 }

69 function recurse (tree , list) {

70 let tempList = [];

71 let currentKeyword;

72

73

74 if (tree.getChildCount () == 0) {

75 let nodeText = tree.getText ();

76 if (nodeText === "(" || nodeText === ")") {

77 return list;

78 }

79 list.push(tree.getText ());

80 console.log("list"+list);

81 return list;

82 }

83

84 for (let i = 0; i < tree.getChildCount (); i++) {

85 tempList = recurse(tree.getChild(i), tempList);

86 console.log(tempList);

87 }

88

89 for (let i = 0; i < tempList.length; i++) {

90 let keywordList = [’get’, ’scale’, ’one’, ’zero’, ’give’,

’truncate ’, ’then’, ’anytime ’, ’‘and ‘’, ’‘or‘’];

91 for (let j = 0; j < keywordList.length; j++) {

92 if (keywordList[j] === tempList[i]) {

93 currentKeyword = tempList[i];

94 console.log("CurrentKeyword"+ currentKeyword);

95 }

96 }

97 }
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98 switch (currentKeyword) {

99 case ’scale’: {

100 console.log("scale");

101 list.push(tempList [1]);

102 list.push(tempList [2]);

103 console.log("listScale"+ list);

104 return list;

105 }

106 case ’get’: {

107 console.log("get");

108 let commodity = tempList [1]. contractValue [1];

109 let quantity = tempList [1]. contractValue [0];

110 let balanceSlot;

111 if (commodity == "USD"){

112 balanceSlot = "USDbalances_slot";

113 }

114 else{

115 balanceSlot = "GBPbalances_slot";

116 }

117 let contract = ‘‘ +

118 ‘ expireDate := ${TimeStamp }\n‘ +

119 ‘ if lt(sload(today_slot),expireDate)

{ \n‘+

120 ‘ balanceHolder := add(sload(${

balanceSlot }),${quantity })\n‘ +

121 ‘ balanceTo := sub(sload(add(${

balanceSlot },0x20)),${quantity })\n‘ +

122 ‘ sstore(USDbalances_slot ,

balanceHolder)\n‘ +

123 ‘ sstore(add(USDbalances_slot ,0

x20),balanceTo)\n‘+

124 ‘ }\n‘;

125

126 fs.appendFile("./ contractFiles/test.sol", contract ,

function (err) {

127 if (err) {

128 return console.log(err);

129 }

130 console.log("The file was saved!");
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131 });

132 return list;

133 }

134 case ’give’: {

135 let commodity = tempList [1]. contractValue [1];

136 let quantity = tempList [1]. contractValue [0];

137 let balanceSlot;

138 if (commodity == "USD"){

139 balanceSlot = "USDbalances_slot";

140 }

141 else{

142 balanceSlot = "GBPbalances_slot";

143 }

144 let contract = ‘‘ +

145 ‘ expireDate := ${TimeStamp }\n‘ +

146 ‘ if lt(sload(today_slot),

expireDate) { \n‘+

147 ‘ balanceHolder := add(

sload(${balanceSlot }),${quantity })\n‘ +

148 ‘ balanceTo := sub(sload(add

(${balanceSlot },0x20)),${quantity })\n‘ +

149 ‘ sstore(USDbalances_slot ,

balanceHolder)\n‘ +

150 ‘ sstore(add(

USDbalances_slot ,0x20),balanceTo)\n‘+

151 ‘ }\n‘;

152

153 fs.appendFile("./ contractFiles/test.sol", contract ,

function (err) {

154 if (err) {

155 return console.log(err);

156 }

157 console.log("The file was saved!");

158 });

159 return list;

160 }

161 case ’truncate ’: {

162 let truncateObj = {};

163 truncateObj.horizon = tempList [1];
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164 truncateObj.contractValue = [tempList [2], tempList

[3]];

165 let date = truncateObj.horizon;

166 TimeStamp = toTimestamp(date)

167 list.push(truncateObj);

168 return list;

169 }

170 case ’one’: {

171 console.log("one");

172 return [tempList [1]];

173

174 }

175 default: {

176 if(list.length > 0){

177 for(let i=0; i<tempList.length;i++)

178 list.push(tempList[i]);

179 return list;

180 }

181 return tempList;

182 }

183 }

184 }

185

186 function toTimestamp(strDate){

187 var datum = Date.parse(strDate);

188 console.log("print datum")

189 console.log(datum)

190 return datum /1000;

191 }

192

193 exports.contractCreation = contractCreation;
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