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Abstract

In 2019, most of the smartphones are equipped with multiple interfaces such as

WiFi, Bluetooth and Cellular. However, only one such interface can be used with

standard TCP connection. As a solution for this, channel bonding can be used.

In a situation where two interfaces connected to two ISPs, channel bonding is not

possible. To overcome this problem and to utilize the use of multiple interfaces

simultaneously, multipath TCP can be used.

In 2019 the number of mobile users stood at 4.68 billion. With this substantial

number of mobile devices, there is an opportunity to create a local ad hoc network

between these devices. When considering the utilization of multipath TCP and ad

hoc network, there is an opportunity to develop a cost-efficient way to route data

through mobile ad hoc network. Ad hoc networking can be used anytime, anywhere

with limited or no communication infrastructure. Ad hoc network structure can

be used in many real world scenarios as well.

With multipath TCP and relatively cost-efficient paths there is an opportunity

to have cost effective routing of data as well as a reliable connection. In this

research our goal was to implement a solution to prioritize the subflow that uses

the ah hoc network.

In this research we divided the problem into three sub problems. Which are

assigning a weight to the subflow to be selected more often, pass a user hint to

the kernel level to select the ad hoc network interface and improve the recovery

speed by changing the retransmission rate. In this research we managed to provide

solutions for all sub problems.

There are other researches that prioritize an interface over the others. One

similar research introduced a solution named Delphi, a transport-layer module to

choose witch interface to use. One major drawback with this method is not utilizing

other interfaces capabilities. We demonstrate that by utilizing multipath TCP this

limitation can be bypassed.
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Acronym

MPTCP Multipath Transmission Control Protocol

MANET Mobile Ad Hoc Network

ISP Internet Service Provider

OS Operating System

VM Virtual Machine

RTO Retransmission Time Out

SRTT Smooth Round Trip Time
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Chapter 1

Introduction

1.1 Background to the Research

With the increased number of lightweight devices as well as evolution in wireless

communication, the ad hoc networking technology is gaining ground with the

increasing number of widespread applications. Ad hoc networking can be used

anytime, anywhere with limited or no communication infrastructure.The ad hoc

network architecture can be used in real time business applications to increase

the productivity and profit[1]. One major concern with this is keeping internet

connectivity while connected to an ad hoc network. Standard TCP[2] utilize one

interface at a time. As a solution for this, channel bonding[3] can be used. In

a situation where two interfaces connected to two ISPs, channel bonding is not

possible. To overcome this problem and to utilize the use of multiple interfaces

simultaneously, multipath TCP[4] can be used.

In 2019 the number of mobile users stands at 4.68 billion[5]. With this

substantial number of mobile devices, there is an opportunity to create a local ad

hoc networks between these devices. When considering the utilization of multipath

TCP and ad hoc network, there is an opportunity to develop a cost-efficient way

to route data through mobile ad hoc network.

We identified three research gaps to address in this research. Three research

areas are as follows. How to prioritize multipath TCP for mobile ad hoc network,

how to schedule multipath TCP to prioritize the path with ad hoc network, how

to provide the user with the ability to choose when to prioritize ad hoc and

optimization parameters. In the research, we aim to address above areas.

There are other researches that prioritize an interface over the others. One

similar research introduced a solution named Delphi[6], a transport-layer module

to choose the interface which smartphone should use. One major drawback with

this method is not utilizing other interfaces capabilities. We demonstrate that by

utilizing multipath TCP this limitation can be bypassed.
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1.1.1 Multipath TCP

In the “TCP Extensions for Multipath Operation with Multiple Addresses” request

for comments[3], author defined multipath TCP as, set of extensions to regular TCP

to provide a Multipath TCP service. Because of this extension transport layer

obtain the ability to operate single connection across multiple paths. Because of

this ability to create a connection using multiple paths that might use multiple

availabel interfaces. MPTCP gain more fault tolerance and high throughput due

to use of multiple interfaces. This ability to create a connection using multiple

paths is achieved by creating multiple sub-flows to the same connection. These

sub-flows holds the characteristics of a standard TCP connection. Therefore there

will not be any sequence numbering errors when a middlebox analyse packets.

Figure 1.1: Multipath TCP network stack

By using multipath TCP a smartphone can hand over the workload to the other

sub-flow seamlessly. This seamless handover of the workload from one sub-flow to

another creates mobility opportunities[7]. One of the main decision that MPTCP

protocol must take is selecting the path that the next segment should take. This

selection is done by the scheduler.

1.1.2 Ad hoc network

Ad hoc is an decentralized structure where devices in an ad hoc network are

connected to one or more devices in the same network. This allows devices to

send data directly to other devices without routing through a centralized access
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point. In an ad hoc network devices are not static at any given time. One or more

devices are allowed to disconnect from the ad hoc network. Due to this nature ad

hoc networks are dynamic. There are technologies associated with ad hoc networks.

Such as

• Wireless ad hoc network

• Mobile ad hoc network

• Vehicular ad hoc network

• Smart phone ad hoc network

In this research, we mainly focus on mobile ad hoc networks and smartphone

ad hoc networks.

According to Wikipedia[8] mobile ad hoc networks are highly dynamic

topologies where each device in MANET maintains information that is required

to properly route traffic. Each device forwards traffic that is not unrelated to own

use. Each device in MANET is free to move independently in any direction, and

will therefore change its links to other devices frequently.

According to Wikipedia[8] smartphone ad hoc network leverage the existing

hardware (primarily Bluetooth and Wi-Fi) in commercially available smartphones

to create peer-to-peer networks. SPANs use the mechanism behind Wi-Fi ad-hoc

mode, which allows phones to talk directly among each other, through a transparent

neighbor and route discovery mechanism. SPANs support multi-hop routing

(ad-hoc routing) and relays and there is no centralized authority to govern,

therefore peers can join and leave at will without destroying the network.

3



1.2 Research Problem

1.2.1 Research Questions

This research can be divided in to 4 main sub topics as follows

• How multipath TCP can be prioritized for mobile ad hoc networks?

• How to pass a user hint to the MPTCP kernel level?

• How to speed up the path recovery process?

• What are the impacts on performance when prioritizing multipath TCP for

mobile ad hoc network?

1.2.2 Objectives

Using an ISP to transfer data is a costly operation. Ad-hoc networks provides

a Zero cost data transfer medium. Usability of connection solely depends on the

volatility of the ad-hoc network. In this research we intend to address this problem

of having a reliable connection with most cost effective routing.

To achieve this we used an implementation (MTCP) that is still in the

development phase. Therefore we aim to contribute to this open source project

so that everyone can benefit from this. We intend to route majority of data

through ad-hoc network but when an ad-hoc network fails we route the data using

alternative methods that would cost money. This is a trade between cost and

reliability. Therefore users will be able to have a reliable cost effective method of

transferring data

1.2.3 Project Aim

This research is aims to provide the users a cost effective way to route the TCP data

through a mobile ad-hoc network with minimum drawbacks to the performance of

transmitting data. We aim to implement a reliable connection with multiple paths.

This research is also focused on delivering an implementation that does not degrade

the performance.
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1.3 Justification for the Research

This research mainly contributes to two domains computer science domain and

mobile users domain. Due to the significant number of mobile users, this research

has a significant impact on society. With this research, mobile users will have the

ability to route peer to peer TCP traffic without routing through ISP. This will

significantly reduce the cost of communication. Furthermore this will reduce the

load from the ISPs giving them an opportunity to expand their customer base

without introducing additional infrastructure.

Contribution to the science domain mainly happens in the form of

functionalities to be added to the multipath TCP source files. Since this is an

open source project, this provide a huge learning opportunity society. MPTCP

is relatively new. Therefore there is improvement opportunities in this research

domain for further researchers. This can be further developed to be deployed with

the vanilla versions of Android operating systems.

1.4 Methodology

This research uses existing knowledge in multipath TCP and ad hoc networks to

identify a method to prioritize data flow through Ad hoc network. The process of

progressing through the research is two parted. The first part of the progression was

focused on accumulating knowledge about the multipath TCP implementation and

related research. The second part of the progression is focused on making changes

to Linux multipath TCP files and evaluating results on a laboratory environment.

In the first part of the progression was to do a preliminary study to identify the

similar researches already done and related work carried out by other researches.

This mainly focus on multipath TCP solutions that have already researched

on. The second step of the progression is to read through multipath TCP

documentation to identify, how a solution can be implemented.

In the second part of the progression we set up a laboratory environment for

development and evaluation purposes. Setup of this environment was on virtual

machines. This virtual machines configured with two interfaces each. Theses

interfaces was paired together into separate sub-nets. As the second step we made

improvements to Linux kernel files. This step was followed by evaluating the results

of the developed Linux kernels’ performance on laboratory setup. Step two and

three was repeated throughout the research.

To evaluate the performance a test environment was created. In this test

5



environment performance and the sub-flows of the final solution was evaluated.

Overview of the methodology is given in the figure 1.2.

Figure 1.2: Research Methodology Overview
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1.5 Outline of the Dissertation

This dissertation is structured to start from an overview of the research and step

by step move into deeper concepts. Second chapter of this research is designed to

give the reader a good grasp of the field. This chapter will explain theories about

the domain. This chapter will provide the necessary information to understand the

research in depth.

Third chapter of this research How the research was done according to the

research methodologies, sources of data, and idea about the instruments used to

carry on this research.

Fourth chapter of this research is designed to give the implementation details of

the research. Fifth chapter of this dissertation is designed to express the evaluation

results of this research. After that conclusion, the remark of this research is

presented.

1.6 Scope and Delimitations

1.6.1 In Scope

In this proof of concept research, the scope is limited to supplementing multipath

TCP kernel files with additional functionalities to handle prioritization of ad-hoc

sub-flow. To provide means for user to specify when to enable prioritization of

ad hoc sub-flow, expose an interface from user level to kernel level with minimum

violations to the network layers. Furthermore changes to multipath TCP scheduler

was made to choose strategies to optimally acquire which sub-flow use and to speed

up the recovery of lost subflows.

1.6.2 Out Scope

In this research following details will be considered as out of scope. Due to the

time constraint research evaluation on real world environment will consider as out

of scope. Also ad-hoc routing will be considered as out of scope.
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1.7 Conclusion

This chapter laid the foundations for the dissertation. This chapter gives a overview

about the research. More details about the research is presented in the following

chapters. This chapter introduced the research problem and research questions and

hypotheses. Then the research was justified, the methodology was briefly described

and justified, the dissertation was outlined, and the limitations were given. On

these foundations, the dissertation can proceed with a detailed description of the

research.
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Chapter 2

Literature Review

2.1 Multipath TCP

In the “TCP Extensions for Multipath Operation with Multiple Addresses” request

for comments[3], the researcher defined multipath TCP as a set of extensions

to regular TCP to provide a Multipath TCP service. Because of this extension

transport layer obtain the ability to operate a single connection across multiple

paths. Because of this ability to create a connection using multiple paths that

might utilize the multiple interfaces available, MPTCP gains more fault tolerance

and high throughput. This ability to create a connection using multiple paths is

achieved by creating sub-flows to the same connection. These sub-flows hold the

characteristics of a normal TCP connection. So when a middlebox analyses the

packets there will not be any sequence numbering errors.

By using multipath TCP a smartphone can hand over the workload to the other

sub-flow seamlessly. This handover of the workload from one sub-flow to another

creates mobility opportunities [9]. With MPTCP one of the main decision protocol

must take is choosing the path that the next segment should be sent. This is

handled by the scheduler.

2.2 MPTCP Scheduler

There are a number of schedulers implemented in the Linux MPTCP kernel.

Scheduler function is defined as a modular function so different scheduling policies

can be plugged into the scheduler. Currently, vanilla MPTCP kernel shipped with

four different schedules.

• MPTCP BLEST

• MPTCP Round-Robin

9



• MPTCP Redundant

• Default MPTCP Scheduler

Scheduler breaks the data into segments that can be transmitted over the

subflows and schedule these segments to an available sub-flow. Checking the

availability is also done by the scheduler. The scheduler is dependent upon

information about the availability of paths exposed by the path management

component and then makes use of the subflows to transmit queued segments. In

order to make scheduling decisions, a scheduler makes use of various information

such as state of each TCP subflow, congestion window, and RTT estimation.

There are few schedulers already implemented to schedule data using different

policies. In my research, a new policy mechanism was created to give a subflow

a different priority than others according to user hint. In the literature review,

there is a solution to define subflows as backup subflows, but the problem with this

method is switching into backup subflows only happens when there is no available

active subflows. This method does not take other factors into consideration.

2.3 TCP Loss Recovery

Standard TCP does not tolerate packet losses. If a packet loss happens, TCP

retransmit the data segment that was lost. This retransmission process [10] is

repeated until an acknowledgement is received or retransmission retire number

exceeds the defined value in the OS. In MPTCP this mechanism is also used to

identify if a path is reactivated. There is a drawback to this mechanism when it

comes to MPTCP. In the standard TCP after one retransmission, retransmission

timeout is doubled. MPTCP relies on this mechanism to see if a path is reactivated.

As time passes, the frequency of retransmision drops. Time to recover the path

increases.

2.4 MPTCP Path Restriction

MPTCP has multiple paths to send data. Therefore MPTCP kernel should know

when a subflow level transmitting is not possible. If not, the scheduler might

schedule the next packets through the subflow which is not available at that time.

This will reduce the throughput and will waste the kernel memory. To overcome
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this issue MPTCP kernel Sets a field in socket structure to 1. In the scheduler,

this field is checked to identify whether the subflow is available at that time.

In this research, user hints must be used to restrict the paths as well. In the

current implementation of path restriction, user-level hints are not considered. This

limitation will be addressed in this research.

2.5 MPTCP Path Reactivation

MPTCP can restrict a subflow if it is not suitable to send data. These restricted

paths can become suitable with time. If a subflow becomes suitable MPTCP

reactivates the subflow. MPTCP achieves this by constant TCP retransmission

over the fallen subflow. If a retransmitted packet gets an acknowledgment, MPTCP

input handler sets the previously set socket field that restricts the use of subflow

to 0. Because every time MPTCP scheduler gets a packet to schedule MPTCP

check this field to see if the subflow is available, the next packet will be sent on this

subflow. Due to the fact that retransmission happens with exponential intervals

in between, path recovery time increases exponentially with the amount of time it

takes to recover.

In the current method of path reactivations, MPTCP does not consider

user-level information. This limitation will be addressed in this research. Current

path reactivation methods only consider the fact that the path is completely

unavailable or not. But in this research path reactivation and restriction consider

the measurements between subflows additionally.

2.6 MPTCP Loss Recovery

TCP has three different mechanisms for lost recovery, namely fast recovery,

retransmission timeouts and TCP lost probe. TCP lost probe is used to

identify tail-end losses. Fast recoveries are significantly faster than retransmission

timeouts. How fast recovery works is, when a packet is received, the packet comes

with an acknowledgment number, with this acknowledgment number sender can

identify the last received in-order packet. This works by identifying duplicate

acknowledgments. If the system identifies three duplicate acknowledgments, even

before the retransmission timeout happens TCP will send retransmission. This

significantly reduces recovery time. RTO is a timer that is set with each packet.

If the packet acknowledgment does not reach the sender before the timer expires,
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the sender will retransmit the packet again. This is significantly slower than fast

retransmission.

MPTCP also uses these mechanisms for loss recovery. However, it is not

completely clear how the loss recovery happens in the implementation [11] and

which subflow retransmits the lost packets. If the recovery is handled at the

meta-level, the lost packet may be rescheduled and retransmitted at the available

subflow with the lowest RTT. If the recovery is handled at the flow level, the

packet may be retransmitted in the same subflow. In the Linux implementation

of MPTCP, a heuristic was used for loss recovery. The heuristic says that if the

retransmission is a fast retransmit, then the same subflow is used for retransmission.

If the retransmission is for a timeout, then the scheduler would re-evaluate the

packet transmit options. In addition, the lost packet is always retransmitted on

the original subflow as required by TCP.
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Chapter 3

Design

The main focus of this research is to prioritize a subflow created by MPTCP

connection. Before focusing on the main problem of the research, exploring

the MPTCP behavior was necessary due to the fact that MPTCP is still in

the development stage and has not been released as a commercial solution.

Therefore latest version of the MPTCP at that time was configured and installed.

In this research we created a working model after analyzing the behavior and

functionalities of MPTCP. In the final stage of the research, the proposed MPTCP

solution was tested against standard TCP and original MPTCP (version 0.95) to

evaluate the results.

By considering the above-mentioned requirements, research methodology was

divided into 5 stages as follows figure 3.1. Inside the methodology stages tools used

and justification for using the tool, data source, etc. will be discussed.

3.1 Configure MPTCP

Configuring, compiling and installing MPTCP kernel was done as the fist stage of

this research. Latest stable version source code was taken to compile the MPTCP

kernel. Latest stable version of MPTCP was 0.95 at the time of this research and

was taken from the open-source repository of MPTCP [12].

For the compilation of the source code, Ubuntu 16.04 was used. The choice

of OS does not affect how the kernel behaves after the compilation. Before the

compilation of the source code, configurations were made to the makefile in order

to enable the MPTCP functionalities of the kernel. These configurations include

enabling MPTCP functionalities, advance congestion control, path manager control

and policy routing. Advance congestion control mechanisms were introduced into

the MPTCP kernel due to the fact that standard congestion controls were not

effective when handling multiple paths. These were introduced to the MPTCP
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Figure 3.1: Stages of Research

kernel. Path manager is also a loadable module in the MPTCP kernel which was

not in the Linux kernel. This module handles the path creation. Compilation was

done using GCC [13] after configuring these changes.

The virtual environment used for the analysis was as follows. Two virtual
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machines were used and a host-only network was created between these two VMs.

These VMs were created using VMware player [14]. One VM was configured as

the server and the other VM was configured as the client of this system. Both

of these VMs were configured with two interfaces each. Each of these interfaces

were given a different submask to represent two different networks in a real-world

scenario. Therefore, even though all the interfaces belong to host-only network,

one interface of a VM is directly connected to only one interface of the other VM.

In the server, VM Iperf [15] is used to listen to a connection and act as a server.

On second VM was used as the client. To send requests from client Iperf was used.

Client request data from the server, when this occurs two subflows were created

between two interface pairs. This was handled by the MPTCP kernel. Transfer

rates of each interface were measured using ifstat [16] to ensure both interfaces are

active and transmitting.

After all the configuration steps, configuration of the firewall was done. This was

done to allow both interfaces to connect with each other without the interference

of the firewall. After this step configuration of network interfaces was done.

Configuration of the interfaces was as follows.

• Client VM:

– Interface ens34:

∗ Address: 10.222.10.1

∗ Netmask: 255.255.255.0

– Interface ens35:

∗ Address: 10.222.20.1

∗ Netmask: 255.255.255.0

• Server VM:

– Interface ens34:

∗ Address: 10.222.10.2

∗ Netmask: 255.255.255.0

– Interface ens35:

∗ Address: 10.222.20.2

∗ Netmask: 255.255.255.0

After the configurations, using these configurations standard behavior of

MPTCP was analyzed.
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3.2 Explore the existing MPTCP kernel

In the second stage of the methodology, code was analyzed to map the behavior with

the code. This stage is crucial due to the fact that MPTCP is in the development

stage and the documentation provided for the MPTCP kernel is limited. For

this, MPTCP kernel source code was taken from the Github repository of the

MPTCP researchers. Github link of the repository is available on the official

MPTCP website [17]. In this stage, the structures that needed to be altered and

the architecture of MPTCP scheduler architecture, lost recovery architecture were

identified.

More details about the architectures will be discussed in the next section. Also

in the exploration of MPTCP some experiments were done to get the exact idea

about the behavior. This includes restricting the use of a path at a subflow creation

moment, Tuning congestion windows of a subflow to limit the use of subflow,

keeping a linear RTO till the connection expires, etc. This will be discussed in

more detail in the implementation chapter.

3.3 Prioritize a given path

In subfolw prioratization stage of the research, implementation of the solution

began. The main intention of the research was to identify a way to prioritize the

interface that is bound to an ad-hoc network. For that, identifying the behavior

of the scheduler was necessary. This was necessary because the packet scheduling

decision was taken at the scheduler. Just by understanding the behavior of the

scheduler is not enough due to the fact, users need to pass a hint to the kernel

level, stating the network interface bound to the ad-hoc network. To achieve this

functionality MPTCP controller need to be modified.

Both of these functionalities reside in the MPTCP kernel. Therefore modifying

the kernel source code is inevitable. As the first step of modifying the scheduler

and controller, functions involved in this process were studied. The second step

of this stage was to alter the source code to behave in a way that prioritizing the

ad-hoc subflow is achieved. In this stage of the research prioritizing the ad-hoc

subflow and passing user hint to the kernel level is achieved.
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3.4 Implement an alternative path recovery

This is the implementation of the lost path recovery. Implementation details of

this will be discussed in the next chapter. This function is implemented in the

output functionality of MPTCP. This function also resides in the kernel source

code. Therefore modifying the kernel source code is inevitable. As the first step of

modifying the output, functions involved in this process were studied. The second

step of this stage was to alter the source code to achieve a fast recovery.

3.5 Evaluation

For the evaluation of this research, Ubuntu 16 was installed to two VMware player

virtual machines.The kernel version of this ubuntu installation is 4.4.0 (latest at

the time of evaluation). To reduce the effect of external factors, modified MPTCP

kernel and standard MPTCP kernel were installed on the same virtual machines.

Evaluation can be divided into 5 categories.

• Same latency on both interfaces evaluation

• Path switching on modified kernel

• High latency on ad hoc, srtt difference between the minimum and the

prioritized path is less than minimum

• High latency on ad hoc, srtt difference between the minimum and the

prioritized path is greater than minimum

• Prioritized subflow recovery speed evaluation

To create these scenarios command line utilities were used. To introduce a

packet loss tc [18] command-line utility was used. To introduce latency, VMware

player was used. When measuring the ad hoc subflow recovery speed precision is

important. For all the evaluations other than hoc subflow recovery speed, the data

transfer speed was measured with one second intervals. This was done using the

ifstat command line utility. To measure the ad-hoc subflow recovery speed with

millisecond interval, ifpps [19] command-line tool was used. All these evaluations,

except the last one, were done against modified MPTCP kernel, standard MPTCP

kernel, and standard TCP kernel. The last evaluation was done against modified

MPTCP kernels’ ad hoc subflow recovery vs standard MPTCP kernels’ one subflow.

Packet loss was emulated using tc command-line tool
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Chapter 4

Implementation

As described in the previous sections, there are some issues when it comes to

prioritizing a subflow with currently implemented schedulers. Because doing so,

MPTCP kernel completely ignores the network conditions when giving the priority

to a subflow. The main focus of the research was to prioritize a subflow. While

doing so proposed solution address the above mentioned issues by introducing a

new scheduler policy that is sensitive to both user and the network conditions.

Before discussing further technical details of the implementation, dividing the

implementation into hree sub implementations would be suitable. While discussing

the sub-topics there are few architectures to be mentioned. Divided subtopics are

as follows.

• Passing user hint to the kernel

• Prioritizing ad hoc subflow

• Implementing alternative loss recovery

4.1 Passing User Hint to the Kernel

Passing the hint from user level to kernel level is done through a proc [20] file.

Proc is a pseudo file system in Linux operating system which is available on /proc.

This is an interface to the kernel data structures. Most proc files are read-only by

default. By changing a proc variable a user can pass variables to the kernel level.

In this research, the user will write the ad-hoc interface to the proc file. This value

will be passed to the kernel as a hint from the user. To achieve this first, a proc

file should be created. This was done in mptcp ctrl.c.

To create a proc file MPTCP has defined a static structure. In this structure,

MPTCP holds the proc files that have been defined. Thus we want to add

an additional proc file, we include a new object to the mptcp table array. By
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this inclusion, a proc pseudo file can be created in the /proc/net/mptcp folder.

The name given for the proc file is adhoc interface. This proc was created with

permissions as follows.

Permissions:

• root: read, write

• group: read

• others: read

To write to this pseudo file, a user can use sysctl command in the Linux kernel.

Eg: sysctl net.mptcp.adhoc interface=10.222.10.1

Just by creating a proc file would not let users pass values to the user level.

When a value is written to a proc file there should be a handler to handle the proc.

As the second step of creating proc, proc handler was implemented. Proc handler,

handles two major functionalities. Namely,

• Handling proc reading

• Handling writing to proc

Even after writing to the proc, proc reading happens. This means regardless of

reading from the proc or writing to the proc, proc reading should happen. Before

implementing these functions, there should be a place to hold the value. To store

the value char array was created in the mptcp ctrl named face addr. This array

is shared between functions in mptcp ctrl.c and my.h file. Justification for sharing

variables with my.h will be explained later on. The reason defining this value in the

global scope of this file is if defined in the global scope this function will be reset

every time a user calls the proc handler. But this value needs to be persistent.

After defining a variable to store the value, as the next step reading from the

variable and showing it whenever the proc is called was implemented. To do this

a structure will be created with value and length of the string. The structure is as

follows.

struct ctl table tbl = {
.data = val,

.maxlen = 16,

}
Then assigning values to this structure happens. To do this string copy was

used. One downside of using string copy function is, it is on the heavy side of the

sense of computations. This does not have a huge effect on the performance of

MPTCP due to this function is only called when a user reads from proc or writes
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to the proc. Reading or writing to the proc does not happen often. After this step,

the value of the face addr will be copied into the data field of the structure. After

this step returning the data to the proc pseudo file happens. This was done using

the proc dostring function which is defined in the MPTCP kernel. This is the steps

to show the value stored in face addr to the user.

As explained above before even after writing to the proc, reading from the proc

should happen. This is due to the fact, the value should be displayed to the user

after writing to the proc. Therefore in the implementation proc dostring function is

called to show the value. To proc dostring function, integer named write is passed

as an argument. From this value proc dostring determines if it is a write or a read.

If it is a write, proc dostring write to the address of the data field of the struct tbl.

This will ultimately write to the face addr value. After writing, written value will

be returned to the proc.

After writing to the face addr, the value will be stored as a string. This is

not optimum when it comes to comparisons. When two strings are compared, it is

costly. In order to reduce the computational cost of checking if the user has defined

an ad-hoc interface, whenever a user defines a value other than 0.0.0.0 value was

stored in an integer name adhoc avail. But this value is not bound to connections.

To bind this to a connection, a field was introduced to the socket structure called

is adhoc avail. To understand where this value was assigned socket architecture is

needed.

As explained in the literature review, user-level programs do not know that

the program is connected to a MPTCP socket. This is achieved by defining a

standard socket directly connected to a meta socket. All data sent and received on

a Multipath TCP connection passes through the meta socket. This meta socket

contains the head of the pointers to various structures including the pointer to

the MPTCP control block. This is the head of the MPTCP subflow linked list.

MPTCP cb points to the first TCP subflow. This socket is wrapped in a MPTCP

socket. This MPTCP socket holds the pointer to the next TCP subflow and so on.

This is illustrated in the diagram below. Figure 4.1

As explained before mptcp cb can be used to hold information about the

connection. Therefore if there is an ad hoc subflow available, information can

be stored in the mptcp cb structure. In this research, this value is stored in a new

field that was introduced to mptcp cb called is adhoc avail. Every time a packet

is scheduled to be sent on a subflow this value will be checked. After defining

is adhoc avail field in the structure, binding adhoc avail to is adhoc avail should

happen. This is achieved in the MPTCP socket creation stage.

When a MPTCP connection initiates, at least one subflow must be created.
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Figure 4.1: MPTCP Socket Structure

For a subflow MPTCP socket wrapper is present. In this socket wrapper pointer

to mptcp cb is present. Using this pointer, value to is adhoc avail field in

the mptcp cb is assigned. Adding this MPTCP wrapper socket is also present

in mptcp ctrl.c. Therefore we define adhoc avail globally to be accessed by

the function mptcp add sock. In this function, adhoc avail will be assigned to

is adhoc avail variable in the mptcp cb structure. This will conclude the passing
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user variable to the kernel level section.

4.2 Prioritizing ad-hoc Subflow

After passing the hint and defining a method to identify if a path through an ad

hoc network is available, we can move onto the second subtopic that is prioritizing

the subflow. This is a scheduling decision. If there are two or more paths that a

packet can take to reach the receiver, a decision to be made to selec a path. This

decision is taken in the MPTCP scheduler. The following figure gives an abstract

idea about schedulers’ functionalities.

Figure 4.2: Overview of MPTCP Scheduler

In this research scheduler that was implemented is highly influenced by the

default scheduler. The default schedulers’ policy is to take the subflow if there

are no packets scheduled or select the minimum latency path. Here in this

scheduler, there is a function that defines what subflow to schedule a packet. In this
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research, alterations were made to get subflow from selectors function to achieve

the expected functionality.

Before moving into finer details, it is better to give an overview of this function.

First, this function takes a pointers to MPTCP control block, scheduled socket

buffer, whether searching for a subflow in active paths or backup path, zero window

test value, and a variable to express if a path has been found. Then each subflow in

the MPTCP control block is checked with escape conditions. This can be illustrated

as a state diagram below.

Figure 4.3: State Diagram of MPTCP Scheduler

As explained in the diagram, before beginning to prioritize the subflow, there

are some requirements to be checked. These requirements are

• Is there an ad-hoc network connected
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• Is this ad hoc subflow path available

• In this connection if at least one packet routed on initial subflow

In this scheduler implementation, first we check if at least one network interface

is connected to an Ad hoc. This was done by comparing the value in the

is adhoc avail variable in MPTCP control block, which was set in the connection

creation time with the use of a hint that was passed onto the kernel by the user. If

at least one interface is connected to an Ad hoc network, it will continue onto other

checks. If there are no interfaces connected to Ad hoc network, the scheduler will

switch to state A. More details about state A will follow later on in this chapter.

After checking to see if there is an Ad hoc interface present, a second check

will be done to check if the subflows connected to Ad hoc interface are viable. In

standard MPTCP kernel viability of path only depends on the availability of the

path. In this research viability of the ad hoc subflow depends on the availability

of the path as well, the smooth round trip time of the ad hoc subflow compared

to the minimum smooth round trip time of all the other subflows. Implementation

details about the comparison will be explained later in this chapter. Therefore a

new variable is needed to hold this information. This variable is defined in the

MPTCP control block structure as adhoc priority. This will indicate if the ad hoc

subflow in this connection is viable to use. This was defined in the MPTCP control

block to achieve better performance. If this variable was defined in the MPTCP

socket structure, check for this variable has to be done inside the loop that wll be

explained in the state transition diagram. This is a costly operation. Therefore

this variable is defined in the MPTCP control block structure.

After the check of the path viability of ad-hoc subflow, the scheduler must check

if at least one data packet is sent on the connection initiation subflow. This one

packet needed to startup the dataflow. If this check is not there and the initial

connection happened on a subflow that is not through ad-hoc interface, if kernel

schedules the first packet through ad hoc subflow, the data flow will not start. In

this research main priority is to route all the data through ad hoc subflow, this will

occur. To overcome this, the scheduler will switch to state A. This variable is also

defined in the MPTCP control block. This variable was given a name adhoc tries.

If any of these checks fail, the scheduler will switch to state A.

4.2.1 State A

State A functionalities are heavily influenced by default TCP scheduler. The

functionality of state A is as follows. In state A, the scheduler executes a loop to
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traverse all the subflows of MPTCP control block. In each iteration as the initial

step scheduler checks if the selected subflow of that iteration is wanted socket.

Meaning this function search for if it is defined as an active subflow or a backup

subflow. This is due to get subflow from selectors function execute twice, first to

find active subflow that is viable, if not a second time to find backup subflow that is

viable. Next step of this iteration is to search if the data segment to be transmitted

is already scheduled in this socket. After that check scheduler is checking if this

socket is definitely unavailable at that time or temporarily unavailable. These

conditions are used to skip the iteration if necessary.

After these steps state A store the minimum srtt of the subflows and the pointer

to that socket. At this point state A also stores the srtt of ad hoc socket. Identifying

an ad hoc socket was done by comparing the source address of sockets. If the source

address matches the address that the user passed onto kernel, that socket will be

considered as an ad hoc subflow socket and the srtt of this socket will be stored

locally in adhoc srtt. The code segment for this is presented in the Appendix.

Entering to state A decision is taken with the above mentioned comparisons.

Whenever an ad hoc path is viable, the scheduler should prioritize the ad hoc

path. Therefore once an ad-hoc path becomes viable, the next packet schedule

path should switch to the state B to prioritize the ad hoc path. Therefore switching

from state A to state B mechanism is needed. As the next step of this execution,

this condition is being checked. Switching from state A to state B occurs whenever

the following conditions are true. Conditions of this switch are, If ad hoc socket

is available and if the srtt difference between ad hoc srtt and minimum srtt is less

than minimum srtt. If both of these conditions satisfied adhoc priority variable is

changed to indicate that a viable ad hoc routing path is available.

State A is the state that handles packet scheduling if there is no viable ad hoc

subflow. The functions of this state are explained above. If all of the following

conditions, is there an Ad hoc network connected, is this ad hoc subflow path

available and, in this connection did at least one packet sent on initial subflow are

true scheduler will fall into state B.

4.2.2 State B

State B is the state that handles the scheduling when an ad hoc route is viable. In

this state also as in state A, a loop is executing to traverse all the subflows. As in

state A, each subflow is examined to identify if it is an active or backup subflow.

Then check whether the data segment is already scheduled on this. Then move

onto checking if the subflow is definitely unavailable or temporarily unavailable.
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These conditions are used to skip the iteration if necessary.

After these considerations, state B attempts to find a socket that is bound to

an ad hoc interface. This is done by comparing the source address of sockets. If the

source address matches the address that the user passed onto kernel, that socket

will be considered as an ad hoc subflow socket and the srtt of this socket will be

stored locally in adhoc srtt. If there exists a socket that is bound to an ad hoc

interface, the viability of this socket should be checked. This is done by comparing

with the minimum srtt as explained in state A. If the viability check passes, the

socket will be returned. Otherwise adhoc priority variable in the control block will

be changed to express there aren’t any viable ad hoc paths available.

4.3 Implementing Alternative Loss Recovery

The final section of the implementation forcused on implementing an alternative

loss recovery. This is needed due to the fact, lost recovery attempts should happen

frequently in an ad hoc network. This is due to the fact that ad-hoc network is a

volatile entity. This alternative method was implemented in the tcp timer.c. This

alteration was integrated into the tcp retransmit timer function. As explained in

the MPTCP path recovery in the literature review, MPTCP reactivates a path

when a reply to retransmission happens. By speeding up the retransmission rate,

we can achieve faster path recovery.

In standard MPTCP kernel, for each unsuccessful retransmission,

retransmission timeout is doubled. This limits the ability of faster recovery.

In this research, we implemented a policy to have retransmission keep the double

of its initial retransmission timeout for 10 retransmissions and the switch to

doubling retransmission timeout. To do so first we check if the socket that

retransmitting is an ad hoc socket. Then if it is an ad hoc socket, change the

policy to the policy we implemented otherwise keep the normal policy.
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4.4 Additional Information

4.5 Backward Compatibility

Backward compatibility of MPTCP kernels is one of the main concerns when it

comes to implementation. This means if either one of the machines involved in the

ends were not compatible with MPTCP, MPTCP kernel should change to Standard

TCP implementation. Therefore the implementation of this research should be

backward compatible as well.

Since the implementation was done within MPTCP boundary and the MPTCP

kernel is backward compatible, implementation of this research is also backward

compatible. All the changes were made MPTCP socket structures. Therefore

backward compatibility is not an issue.
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Chapter 5

Results and Evaluation

As mentioned in the research design evaluation is done on Ubuntu 16.04

environment with two virtual machines with two interfaces. Rather than using

a real-world environment virtual environment was used due to easy maintenance

and easily configurable to emulate scenarios. This evaluation was configured into

four categories.

• Same latency on both interfaces evaluation

• Path switching on modified kernel

• High latency on ad hoc, srtt difference between the minimum and the

prioritized path is less than minimum

• High latency on ad hoc, srtt difference between the minimum and the

prioritized path is greater than minimum

• Prioritized subflow recovery speed evaluation

In all the evaluations cost of routing through Ad hoc will be taken as 1 per kB

and the cost of routing through other networks will be taken as C per kB for the

calculations. Routing through an ad hoc is free. Therefore always C greater than

1.

5.1 Same Latency on Both Interfaces Evaluation

Blue Line: Prioritized Interface

Orange Line: Standard Interface

This evaluation was taken to measure the performance impact after the

modification to the kernel. This evaluation was emulated on a network that has 4

Mbs maximum throughput to be closer to the real-world environment.
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Figure 5.1: Same Latency on Both Interfaces with Modified MPTCP: Without
Setting Priority

Figure 5.2: Same Latency on Both Interfaces with Standard MPTCP

In the comparison of figure 5.1 and figure 5.2, Both the interfaces on the

modified MPTCP kernel reaches 500 kB/s speed. Also in the standard MPTCP

kernel, Maximum data rate is 500 kB/s. Therefore significant gain or loss was not

recorded when an ad hoc path is not specified.
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Figure 5.3: Same Latency on Both Interfaces with Modified MPTCP: With Setting
Priority and Initial Connection Through the Prioritized Network

Figure 5.4: Same Latency on Both Interfaces with Modified MPTCP: With Setting
Priority and Initial Connection Through the Non-prioritized Network

When comparing figure 5.3 and figure 5.4 together we can see scheduler,

schedule packets to that interface. But by doing this data rate will be dropped

to half of the data rate that we achieved before. The data rate is not the only

factor we consider when we are choosing a route. By forcing data to follow the

path that route through the Ad hoc network, we can reduce the cost of transmitting

data. Thus if a user is sending 500 kB of data cost of routing with modified MPTCP

with set priority will be 500. If a user were to send data using standard MPTCP
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kernel cost will be (1 + C)/2. Therefore C is always greater than 1, the cost will

be increased.

Figure 5.5: Standard TCP Performance

The performance of modified MPTCP kernel can be compared with standard

TCP kernel. This comparison can be done by comparing figure 5.5 with figure

5.3 or figure 5.4. In this comparison, one can see the modified MPTCP kernel

utilizes the single path as much as standard TCP utilize a path. So comparing

the performance gain there isn’t any significant loss of performance. But using the

Modified MPTCP kernel is reliable. It switches between paths without destroying

the connection. Standard TCP kernels lack this ability.

5.2 Path Switching on Modified Kernel

Blue Line: Prioritized Interface

Orange Line: Standard Interface

This evaluation was done to illustrate how the path switching was handled in

the modified MPTCP kernel. Parameters of this evaluation are 40 ms latency, 4

Mb/s maximum throughput network. Every five seconds the server drops all the

packets on ad-hoc interface for a five second duration. This emulates a connection

loss and connection reestablishment.
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Figure 5.6: Modified MPTCP Path Switching

Switching between paths can be identified from the valleys of the subflows in

figure 5.6. Whenever the ad hoc subflow is reactivated, the modified MPTCP

scheduler schedules packets to the ad hoc subflow.

5.3 High latency on ad hoc, srtt difference

between the minimum and the prioritized

path is less than minimum

Blue Line: Prioritized Interface

Orange Line: Standard Interface

This evaluation was done to emulate an ad hoc subflow that have higher latency.

There is a condition for this to be true. As explained in the implementation chapter,

subflow is not always given priority. The difference between the ad hoc subflow

srtt and minimum srtt should be less than the minimum srtt. Parameters of this

evaluation are, 40 ms latency on non-prioritized subflow and 60 ms latency on

prioritized subflow, 4 Mb/s maximum throughput network.

As illustrated in figure 5.7 even though prioritized subflow has a higher latency

scheduler choose to send data through the prioritized subflow.
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Figure 5.7: High Latency With Path Priority 01

5.4 High latency on ad hoc, srtt difference

between the minimum and the prioritized

path is greater than minimum

Blue Line: Prioritized Interface

Orange Line: Standard Interface

This scenario illustrate how scheduler behaves if users specify to prioritize a

subflow and the latency difference between minimum srtt and the prioritized path

is greater than minimum srrt. Parameters of this evaluation are, 40 ms latency

on non-prioritized subflow and 200 ms latency on prioritized subflow, 4 Mb/s

maximum throughput network.

As illustrated in figure 5.8 when the latency is high, the scheduler will fallback

to the default behavior. In the default behavior, both paths were given the

same priority. This is the intended functionality. This will include network

characteristics to the scheduler decision making as well as users’ input.
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Figure 5.8: High Latency With Path Priority 02

5.5 Prioritized Subflow Recovery Speed

Evaluation

Blue Line: Standard MPTCP Kernel

Orange Line: Modified MPTCP Kernel

This evaluation was done to evaluate the path recovery speed. This was done

by dropping all the packets for 8 seconds and removing the restriction. This was

compared against prioritized path recovery of modified MPTCP kernel and normal

path recovery of standard MPTCP kernel. Parameters of this evaluation are 40 ms

latency on both interfaces on both VMs, 4 Mb/s maximum throughput network.

As illustrated in figure 5.9, prioritized path recovery occurs 40 ms earlier. This

is a significant improvement due to the fact that the latency of the interface is also

40 ms.
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Figure 5.9: Path Recovery Speed Comparison
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Chapter 6

Conclusions

Transmission Control Protocol is a protocol that have been in use to make a

reliable connection between two hosts. One limitation of this protocol is that

this protocol only utilizes one interface at a given time. But in this modern

society most of the mobile devices are produced with more than one network

interface. Under utilization of this multiple network interface was a problem until

Multipath Transmission Control Protocols’ birth (MPTCP). MPTCP is a cutting

edge implementation that is even on this day, it is still in the development stage.

This implementation utilizes the multiple interfaces in a device. MPTCP is also

backward compatible with the standard TCP. Which means if one of the devices

that is involved in communication does not understand MPTCP protocol, MPTCP

implementation has the ability to fallback to standard TCP.

With the multiple path utilization arises a problem that the transport layer of

OSI model did not have before. This is taking the routing decision on the transport

layer. This issue should be addressed without disrupting the OSI model. MPTCP

implementation does this by using the data that is visible to the transport layer.

However while making this routing decisions we had to import data fom other OSI

layers. Therefore MPTCP violates OSI model to some extent. As explained above,

MPTCP needs to make decisions on where to route the next packet. Therefore a

loadable module is implemented. Meaning in the run time scheduling policy can

be changed. This creates an overhead to the packet transmission.

With multiple paths involved, MPTCP has to deal with congestion controls as

well. Normal congestion controls are not sufficient enough to provide fair congestion

controls. Therefore coupled congestion controls were invented. Then with multiple

paths another problem occurs. This is how to restrict path use when the subflow is

faulty and how to re-enable the path when it recovers from it. In this research, we

had to struggle with all these problems to give the user the desired output, that is

giving the user the ability to prioritize a subflow over others. While implementing

this we dealt with the assumption, that the path needs to be prioritized is bound

to a volatile ad-hoc network. This allowed us to implement additional methods to
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identify a reactivated subflow with speed.

6.1 Conclusions about research questions

In this research four main research questions were answered. How can an ad-hoc

subflow be prioritized? As shown in the evaluation chapter this was achieved by

scheduling the data to route through the ad-hoc interface, if the ad-hoc interface

is available. Second question answered in this research was how to pass a user

hint to the kernel level. This was achieved by writing the value to the proc file.

Implementation details on this is present in the implementation chapter. Third

question answered in this research is how to recover a subflow quickly. This was

achieved by introducing retransmission policy to subflow level. Evaluation chapter,

results explained that there is a speed up when the new method is introduced.

Fourth question of this research was performance of this implementation. This is

thoroughly explained in the evaluation chapter.

6.2 Conclusions about research problem

As explained in the above subtopic, this research managed to find a solution for

the problems that were defined at the beginning. Therefore this research holds a

value to the general population. This implementation can be used to develop a

cost effective reliable data transmission.

6.3 Limitations

As this was done in a virtual environment evaluation process need to be done in

a real world environment to get an absolute idea about the performance. This

research is currently limited to linux kernel, this can be extended to Android to

get a better use.
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6.4 Implications for further research

This research was done to prioritize ad-hoc subflows. Identifying if the subflow is

bound to an ad-hoc interface is done by string comparison. This is computationally

costly. This can be addressed by introducing a variable to the subflow levels and

set it at the creation of the subflow to state whether it is an ad-hoc subflow

would be faster. Also while a connection is established if the user changes the

priority, priority change would not be visible to the established connection. This

can be improved. Furthermore modularizing path recovery mechanism to change

the policy at the run time would be a good improvement. Lastly implementation

of priority levels is encouraged.
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Appendix A

Code Modification

This chapter is appended to give information about the code implementation

and modification in MPTCP kernel. This chapter is closely related with the

implementation chapter. All the alterations done to the kernel source code are

listed below.

A.1 MPTCP Control Block

le containing mptcp cb structure resides on the /include/net/mptcp.h of MPTCP

kernel. Three new variables were introduced to the mptcp cb structure. Namely

adhoc priority, Is adhoc avail, adhoc tries. These variables are used to store the

information if ad-hoc should be given priority, is there an ad-hoc bounded interface,

and did at least one packet was sent through the connection initiation subflow.

Figure A.1: MPTCP Control Block Code
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A.2 Proc Table

This code segment is located at the /net/mptcp/mptcp ctrl.c. This is the structure

that stores the information about proc that was created.

Figure A.2: Proc Table Code

In the line number 202 name of the proc was defined. In the line number 203

permission of the proc is defined. In the line number 204 maximum length that

allowed to write to the proc is defined. In line number 205 what function should

trigger when a operation to the proc happens defined.

A.3 User Hint information

This code segment is located at the /net/mptcp/mptcp ctrl.c. This code segment

is used to store the user hint.

Figure A.3: User Hint information

A.4 Proc Handler

This code segment is located at the /net/mptcp/mptcp ctrl.c. This is the function

that gets triggered when an operation to the proc happens. Functionality of this

segment is explained in the implementation chapter.
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Figure A.4: Proc Handler Code

A.5 Initial Value Assignment

This code segment is located at the /net/mptcp/mptcp ctrl.c. This code segment

is defined inside mptcp add sock function. This is where the initial values to the

mptcp cb structure are assigned.

Figure A.5: Initial Value Assignment Code

A.6 Should Prioritize the Path or not Decision

This code segment is located at the /net/mptcp/mptcp sched.c. This code segment

is the decision maker that determines if the scheduler should jump to state A or

state B as explained in the implementation.
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Figure A.6: Should Prioritize the Path or not Decision Code

A.7 State A

This code segment is located at the /net/mptcp/mptcp sched.c. This is the code

segment of state A as explained in the implementation.

Figure A.7: State A Code

A.8 State B

This code segment is located at the /net/mptcp/mptcp sched.c. This is the code

segment of state B as explained in the implementation.

45



Figure A.8: State B Code

A.9 Socket Address Comparison

This code segment is located at the /include/net/my.h. This is the code segment

of that compares socket address with the user hint address.

Figure A.9: Socket Address Comparison Code

In this code segment line 01 makes face addr shared with the my.h. In the

function is adhoc, it takes TCP socket as the argument. In line 07 TCP sockets

source address is converted into a string. In line 08 string comparison is done and

returns the value.

46



A.10 Retransmission Speed up Code

This code segment is located at the /net/ipv4/tcp timer.c. This code segment is

integrated with tcp retransmit timer. This is the code segment that implements

the steady RTO.

Figure A.10: Retransmission Speed up Code
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