

Deep Reinforcement Learning to
Minimize Traffic Congestion with

Emergency Facilitation

By

Dulmina Renuke Kodagoda

Index No : 15000712

This dissertation is submitted to the University of Colombo School of Computing
In partial fulfillment of the requirements for the

Degree of Bachelor of Science Honours in Computer Science

University of Colombo School of Computing
35, Reid Avenue, Colombo 07,

Sri Lanka
2019

Page | i

Declaration

I, D.R.Kodagoda hereby certify that this dissertation entitled “Deep Reinforcement
Learning to Minimize Traffic Congestion with Emergency Facilitation” is entirely my own
work and it has never been submitted nor is currently been submitted for any other
degree.

……………………………………….. …………………………………………………..
 Date Signature of Student

I, G.P.Senevirathne, certify that I supervised this dissertation entitled “Deep
Reinforcement Learning to Minimize Traffic Congestion with Emergency Facilitation”
conducted by D.R.Kodagoda in partial fulfillment of the requirements for the degree of
Bachelor of Science Honours in Computer Science.

……………………………………….. ……………………………………………………
 Date Signature of Supervisor

Page | ii

Abstract

 In the domain of intelligent traffic light control, which real-time traffic data to consider

has a huge impact on the efficiency and performance of the traffic light control system.

The rewards and state representations used in previous studies can mislead the agent

in some cases.

 This paper examines those problems and proposes a solution using the standard

deviation of the vehicle waiting time. Existing studies have not yet provided emergency

facilitation. This paper proposes a method that provides emergency facilitation.

 The proposed method is self-evaluated with another version of the proposed method

under both synthetic and real-world data, and it has proven that consideration of

standard deviation has a significant impact on performance. The proposed method is

also evaluated with a statistical method and a fixed time and has outperformed both of

them. Buy considering vehicle type it was able to approximate the emergency vehicle

waiting time to zero which was initialy at 20s when starting the training. With the help

of standard deviation of waiting time, It was able to approximate the regular vehicle

waiting time to 21s which was initialy at 60s when starting the training. The proposed

method was able to record 21.588s of average waiting time of regular vehicles at the

testing phase outperforming against methods.

Page | iii

Preface

This research is mainly focused on two novel aims. First one is to evaluate the impact of
considering the standard deviation of vehicle waiting times when making a signal
change. The concept of considering standard deviation was solely my own intuition and
has not been proposed by any other researcher. The second novel idea is providing
emergency facilitation while minimizing traffic congestion. As of my knowledge, no
previous work has considered emergency facilitation.

Design and implementation in chapter 3 and 4 of the proposed method and other
methods which are used to evaluate the proposed method are entirely my work except
the statistical method used to evaluate the proposed method is proposed by a previous
work.

The results of chapter five rely upon a simulation environment (SUMO) which is
implemented in a previous work. The training and evaluation are carried out by myself
with my supervisor and co-supervisor.

Page | iv

Acknowledgment

I want to start by expressing my sincere gratitude to my supervisor Mr.

G.P.Senevithathne, senior lecturer of the University of Colombo School of Computing

and my co-supervisor Mr. K.V.D.J.P.Kumarasinghe, lecturer of University of Colombo

School of Computing for guiding me throughout the research and the academic writing.

Without their support, this research will not be a success.

I would also like to thank all the senior lecturers, lecturers, Instructors of the University

of Colombo School of Computing for giving me their feedback.

None of this would have been possible without my parents who are the two great pillars

in my life. I am truly grateful for the moral support and the amazing chances they’ve

given me over the years, and especially believing in me and supporting me constantly

during this critical endeavor in my academic life. Both of you have inspired me to take

challenges in life and it is this mere inspiration that stimulated me to successfully

complete this research.

Last but not least, I would like to thank my best friends Wasura Wattearachchi and

Dushani Perera for their feedback and suggestions, especially for double-checking all

the documentation of this research.

Page | v

List of Acronyms
RL: Reinforcement Learning

MDPs: Markov Decision Processes

AKA: Also Known As

LSTM: Long Short-Term Memory

CNN: Convolutional Neural Network

GCNN: Graph Convolutional Neural Network

FCNN: Fully Connected Neural Network

AVG: Average

STD: STandard Deviation

SUMO: Simulation of Urban Mobility

NE: North to East

NS: North to South

NW: North to West

ES: East to South

EW: East to West

EN: East to North

SW: South to West

SN: South to North

SE: South to East

WN: West to North

WE: West to East

WS: West to South

Page | vi

Table of Contents

Declaration ...i

Abstract ..ii

Preface ..iii

Acknowledgment .. iv

Table of Contents .. vi

List of Figures ... ix

Chapter 1 .. 1

1.1 Background Theories .. 2

 Reinforcement Learning .. 2

 Exploration vs Exploitation ... 4

 Policies ... 4

 State-Value Function ... 4

 Action-Value Function ... 4

 Bellman Optimality Equation ... 5

1.2 Why Reinforcement Learning? .. 5

1.3 Research Problem ... 5

1.4 Research Questions .. 6

1.5 Justification for the research .. 6

1.6 Research Goals and Objectives .. 8

1.7 Delimitations of Scope ... 8

1.8 Research Assumptions .. 8

1.9 Methodology ... 9

1.10 Outline of the Dissertation ... 10

Chapter 2 ... 11

2.1 State Definitions ... 13

2.2 Reward Functions... 15

2.3 Action Definitions ... 16

2.4 Existing Systems .. 17

Page | vii

2.5 Synopsis .. 18

Chapter 3 ... 19

3.1 Valid States of Traffic Light .. 20

3.2 Proposed Method ... 23

 State Representation .. 24

 Action Representation .. 28

 Reward Design .. 29

 Deep Q-Network Design .. 30

 Experience Replay .. 33

 Learning the Optimal Policy .. 35

 Fixed Q-Targets .. 35

 Double Q-learning .. 36

 Exploration Vs Exploitation Tradeoff .. 36

 High-Level Architecture ... 37

3.3 Average Only Method .. 39

 State Representation .. 39

 Reward Design .. 39

 Deep Q-Network Design .. 39

3.4 Statistical Method .. 40

3.5 Fixed Time Method... 40

Chapter 4 ... 41

4.1 Configuration of SUMO ... 41

4.2 Traci (Traffic Control Interface) ... 43

4.3 Implementation of the Proposed Method ... 43

 Vehicle class ... 43

 Sumo Class ... 44

 DQN Class ... 47

 Replay Memory Class .. 48

 Agent Class .. 50

 Hyperparameter Settings .. 52

Page | viii

 Main Function .. 52

4.4 Implementation of the Average Only Method .. 53

4.5 Implementation of the Statistical Method .. 54

4.6 Implementation of the Fixed Time Method ... 55

4.7 Implementation of vehicle detection API ... 55

Chapter 5 ... 57

5.1 Evaluation Model .. 57

5.2 Evaluation Metrics .. 59

5.3 Evaluation With Synthetic Dataset .. 60

 Evaluation For Different K’s and Z’s .. 62

 Training Evaluation .. 66

 Testing Evaluation ... 70

5.4 Evaluation on real-world dataset .. 77

Chapter 6 ... 82

6.1 Conclusion .. 82

6.2 Limitations .. 83

6.3 Future Work ... 83

References .. 85

Appendix A: Figures .. 90

Appendix B: RealWorld Data Plugging to SUMO .. 93

Appendix C: Implementation of Vehicle Detection API ... 96

Page | ix

List of Figures

Figure 1.0.1: High-level Idea of RL... 3

Figure 1.0.2: Proposed research methodology ... 10

Figure 3.1: Overview of the four-way junction ... 19

Figure 3.2: Hand drawing of an invalid state ... 20

Figure 3.3: Eight valid States .. 22

Figure 3.4: Yellow state between each two valid states .. 23

Figure 3.5: Generic working of the proposed method ... 24

Figure 3.6: Two cases of vehicle waiting times-example 1 ... 25

Figure 3.7: Two cases of vehicle waiting times-example 2 ... 26

Figure 3.8: Sample traffic state ... 27

Figure 3.9: Corresponding traffic state matrices M and P ... 28

Figure 3.10: Plot of the proposed deep q-network ... 31

Figure 3.11: Summary of the proposed deep q-network ... 32

Figure 3.12: DQN architecture ... 32

Figure 3.13: Process of experience replay after each action ... 34

Figure 3.14: Idea of Double Q-learning ... 36

Figure 3.15: High-level Architecture of the Proposed Method..................................... 38

Figure 3.16: Cyclic phase change per 30s in fixed time method 40

Figure 4.1: 4-way junction design by SUMO .. 42

Figure 5.1: Evaluation model diagram ... 58

Figure 5.2: Distribution of the traffic volume for each configuration 61

Figure 5.3: Regular vehicle average waiting time for different K and Z values 63

Figure 5.4: Emergency vehicle average waiting time for different K and Z values . 63

Figure 5.5: Regular vehicle standard deviation of average waiting time for different
K and Z values .. 64

Figure 5.6: Emergency vehicle standard deviation of average waiting time for
different K and Z values ... 64

Figure 5.7: Learning to minimize average waiting time .. 67

Figure 5.8:: Learning to minimize the standard deviation of waiting time 68

Figure 5.9: Reward improvement of the proposed method and average only
method ... 70

Figure 5.10: Average waiting time control of regular vehicles by each method in the
testing environment ... 71

Figure 5.11: Average waiting time control of emergency vehicles by each method in
the testing environment .. 72

file:///D:/other/Thesis.docx%23_Toc46180380
file:///D:/other/Thesis.docx%23_Toc46180382
file:///D:/other/Thesis.docx%23_Toc46180383
file:///D:/other/Thesis.docx%23_Toc46180387
file:///D:/other/Thesis.docx%23_Toc46180388
file:///D:/other/Thesis.docx%23_Toc46180391
file:///D:/other/Thesis.docx%23_Toc46180400

Page | x

Figure 5.12: Average waiting time control of emergency vehicles by the proposed
and the statistical method in the testing environment ... 72

Figure 5.13: Standard deviation control of regular vehicles by each method in the
testing environment ... 73

Figure 5.14: Standard deviation control of emergency vehicles by each method in
the testing environment .. 74

Figure 5.15: Standard deviation control of emergency vehicles by proposed,avg
only and statistical method in the testing environment ... 75

Figure 5.16: Average waiting time control on real-world data 78

Figure 5.17: Average waiting time control on real-world data without fixed time
method ... 78

Figure 5.18: Standard deviation of waiting time control on real-world data 79

Figure 5.19: Standard deviation of waiting time control on real-world data without
fixed time method ... 79

Page | 1

Chapter 1
Introduction

The inefficient traffic light control causes congestion at the junctions as observed in

everyday life. This will lead to a huge wastage of time, money, pollution of air, pollution

of sound and even vehicle accidents. Existing traffic light control systems are explicitly

programmed based on historical information without considering the real-time traffic.

Also, we often see emergency vehicles (ex: ambulance) are stuck in traffic and the

patient's life depending on the traffic lights. Though this is a huge problem no previous

work considered the emergency vehicle facilitation with traffic congestion control.

Worst case is when there is low traffic with no vehicle passing through the intersection,

all waiting for their turn because of the explicitly programmed traffic light control

without considering the real-time traffic.

We often witness policemen directly manage the intersection by hand signals. Most of

the time this human operator can see the real-time traffic condition in the intersecting

roads and smartly determine the duration of the allowed passing time for each direction

using his/her long-term experience. But it is not practical to assign a policeman to every

junction all the time. This witness motivates us to propose a smart traffic light control

system which can take real-time traffic condition as input and manage the intersection

just like the human operator.

Page | 2

1.1 Background Theories

Real-world traffic condition evolves in a complicated way, affected by many factors:

• Vehicle arrival rate

• Road conditions

• Weather

• Driver’s preference

All of these things cannot be represented in a user-defined algorithm or from a traffic

model. Techniques which can directly learn from the observed data without making

unrealistic assumptions is needed.

 Reinforcement Learning

Reinforcement learning (RL) [39] is an area of machine learning that focuses on how

something might act in an environment to maximize some given reward. It is a trial and

error method which will learn from the observations and learn from mistakes. The

ultimate goal of a reinforcement learning agent is to learn an optimal policy function [1].

A reinforcement learning algorithm is modeled by a concept called Markov Decision

Processes (MDPs) [2].

In MDPs there are 5 main components [39]

• Set of states’ S

• Set of actions A

• State transition function P

• Reward function R

• Discount rate ℽ

Page | 3

S: At time step t, the agent observes the state of the environment st∈ S.

A, P: At time step t, the agent takes an action 𝑎𝑡 ∈ A, which will introduce a state

transition in the environment according to the state transition function.

P (𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡): S × A → S

R: At time step t+1, the agent obtains a reward 𝑟𝑡+1 from a reward function by executing

action 𝑎𝑡∈ A, in state 𝑠𝑡∈ S and moving to the state 𝑠𝑡+1∈ S.

R (𝑠𝑡, 𝑎𝑡): S × A → R

γ: The goal of an agent is to find an optimal policy that maximizes the expected return

G, which is the discounted sum of all the rewards that the agent gets. So the γ will be a

value between 0-1 and usually, it is chosen close to 1:

G = ∑ 𝜸𝒊𝒓𝒕+𝟏𝒛
𝒊 = 𝟎 where z can be infinite or finite.

Figure 1.0.1 illustrates the basic idea of reinforcement learning.

Figure 1.0.1: High-level Idea of RL

Page | 4

 Exploration vs Exploitation

There are two ways of agent selecting an action 𝑎𝑡 ∈ A, by observing the state 𝑠𝑡∈ S.

Agent will either explore the environment by taking random action 𝑎𝑡 ∈ A or exploit the

environment by taking action 𝑎𝑡 ∈ A according to a learned policy [39].

 Policies

When speaking about policies, formally we say that an agent “follows a policy.” For

example, if an agent follows policy π at time t, then π(a|s) is the probability that 𝑎𝑡= a

when 𝑠𝑡= s. This means that, at time t, under policy π, the probability of taking action a

in state s is π(a|s). The policy can be represented as a state-value function or an action-

value function [39].

 State-Value Function

State-value function (V π) defines how good it is for an agent to be in any given state

s∈ S. That is the discounted expected return from starting from state s at time t=k and

following policy π thereafter [39].

 Action-Value Function

Action-value function (𝑄𝜋) defines how good it is for an agent who is in state s∈ S to

take action a ∈ A. That is the discounted expected return by taking action a in state s

and following policy π thereafter [39].

Page | 5

 Bellman Optimality Equation

Bellman optimality equation is considered as the heart of any reinforcement learning

algorithm [2]. It is used to find an optimal policy function. In other words optimal action-

value function (Q*(s,a)) and optimal state-value function (V*(s)).

Bellman Optimality Equation For Q*

This means that, for any state-action pair (s, a) at time t, the expected return from

starting in state s∈ S, selecting action a ∈ A and following the optimal policy thereafter

(aka the Q-value of this pair) is going to be the expected reward the agent can get from

taking action a in state s, which is r t+1, plus the maximum expected discounted return

that can be achieved from any possible next state-action pair (s|, a|).

1.2 Why Reinforcement Learning?

To apply a traffic model, we need to differentiate between good and bad signal plans

given a traffic condition. But the signal plan is always relative and nature of traffic is hard

to model (depends on the weather, road condition, driver’s performance, day, time,

season) so we cannot define such signal plans. Also, we do not have such a big amount

of training data to train with. Instead, we have to first take action to change the signal

plans and then learn from the outcomes. This trial-and-error approach is also the core

idea of Reinforcement Learning (RL).

1.3 Research Problem

How do we efficiently control traffic lights to minimize traffic congestion with

emergency facilitation using real-time traffic data?

Page | 6

1.4 Research Questions

1) Does the standard deviation of vehicle waiting time distribution has a significant

impact on traffic congestion control? (This will be further explained in section

1.5)

2) Does consideration of vehicle type can provide emergency facilitation?.

1.5 Justification for the research

Intelligent traffic light control is a vast area of research. Though there are many

solutions proposed no one paid attention to emergency facilitation which is a very

critical need for intelligent traffic light control. Though this is a less frequent situation,

no intelligent traffic light control system is useful if it cannot adapt in a life-critical

scenario. There is a previous research to prioritize emergency vehicles but their primary

target is only to prioritize emergency vehicles, not to control traffic congestion [4]. So,

this research will take the vehicle type as an input and adapt the traffic light in such a

scenario and provide traffic congestion control with emergency facilitation.

Learning an optimal policy is a very challenging thing, hence a way of rewarding a

reinforcement learning agent is the most critical part. Poor reward functions can lead

the agent to learn poor policy functions. For examples consider the following traffic

state representation of vehicle waiting time.

State 1 : vehicle 1 - 50s vehicle 2 - 5s vehicle 3 - 5s

State 2: vehicle 1- 20s vehicle 2-20s vehicle 3 - 20s

Most of the previous works have considered only the average waiting time of vehicles

when rewarding the agent. Though the state one is better than state two, both the

above states have the same reward because the average waiting time of vehicles is 20

in both cases.

Page | 7

Some other works have considered queue length, vehicle speed but queue length and

speed will also be the same for both the states.

The simplest solution for this issue is to consider the maximum waiting time of vehicles

when rewarding the agent but it will raise other issues. Consider the following example.

State 1 : vehicle 1 - 50s vehicle 2 - 50s vehicle 3 - 50s

State 2: vehicle 1- 50s vehicle 2-20s vehicle 3 - 10s

Though state 2 is better than state 1 the reward is the same for both the states if we

consider maximum waiting time which is again not correct.

So to overcome this issue we consider average waiting time and the standard deviation

of waiting times of the vehicles together to reward the agent. This is very similar to

feature engineering in machine learning where a new feature is derived from doing

mathematical operations to an existing feature. This will be further discussed in section

3.2.1.

For an agent to make decisions the state representation should contain all the

necessary information about the traffic state. But that information should be easily and

accurately measurable and should have a well-connected relationship with decision

making. So in this research, we will use only the consequential traffic data to

consideration.

Finally, innovations in RL such as dueling networks, experience replay, the double

network is not applied in the field. According to the literature review, there is only one

such research [11]. Therefore, this research will address all of the above mentioned

major research gaps.

Page | 8

1.6 Research Goals and Objectives

• Goals

o Evaluate the effectiveness of considering the standard deviation

o Minimize traffic congestion

o Facilitating emergency transportation

• Objectives

o Build two versions of the agent with and without standard deviation to

evaluate the effectiveness of considering standard deviation.

o Identifying optimal policy function to reduce traffic.

o Use the type of vehicles when making a decision to provide emergency

facilitation.

1.7 Delimitations of Scope

• In Scope

o Design and development prototype of the proposed method

o Facilitating emergency transportation

o Experiments and evaluations using the simulation environment (SUMO)

• Out Scope

o Taking the real environment inputs by using cameras and sensors

o Multiple junction environment

1.8 Research Assumptions

The Local solution to the problem will achieve the global solution.

Page | 9

1.9 Methodology

Since this domain is a well-explored research area [35] the first step of this research

will be doing a deep literature review and compare how previous works handled the

problem and identify the research gap. Finding a good simulation environment will be

the next step of the methodology. The third step is to design and implement the

proposed method and finally evaluate the proposed method with synthetic data as well

as the real-world data. The evaluation step will consist of evaluating with normal traffic

conditions, rush hours, low traffic and emergencies as well. The evaluation also consists

of evaluating the proposed method with fixed time traffic control and with a user-

defined traffic model.

• This research will be using a deductive approach

• Quantitative data: (this will be further explained in section 3)

o Waiting time of a vehicle

o Route of the vehicle

o The standard deviation of waiting time

o Number of vehicles

o Phase index of the traffic light

• Qualitative data:

o Type of a vehicle

Figure 1.0.2 represents the proposed research methodology.

Page | 10

Figure 1.0.2: Proposed research methodology

1.10 Outline of the Dissertation

This dissertation outlined as follows. Chapter one states the introduction and

background theories. Chapter two contains in-depth literature review about the domain

which contains how previous works have addressed the RL components. The third

Chapter states the design of the proposed methods and other methods which are used

to evaluate the proposed method. Chapter four contains all the implementation details,

hyperparameter settings used to implement the proposed method. Chapter five states

the simulation settings, training, and evaluation of the proposed method and result

analysis. The Last chapter, demonstrates the conclusion of the research, limitations and

future work.

Litreture review

Find a simulation
environment

Design proposed
method

Evaluation

Page | 11

Chapter 2

Literature Review

Early studies on adaptive traffic control is based on simpler algorithms such as linear

programming [18], fuzzy logic [17] etc. concerning the computing power at that era. In

2014 Obadah M.A Ayesh, et al. [3] have proposed a method by using the queue length

and they suggested an equation to find out the estimated time and actual time to

determine the estimated time reference for optic Green. But it was found that the queue

length approach needs approximately 11.0849 seconds to make a decision.

Another work was done in 2014 for prioritizing emergency vehicles by using Radio

Frequency [4]. But they have only targeted on emergency facilitation.

Malik Tubaishat, et al. proposed a method using wireless sensor networks in 2007[5]

where sensors are deployed on the lanes going in and out the intersection to detect the

vehicle ’s number, speed, etc. But these methods are very costly and inefficient.

The application of AI to control traffic lights has been an active field of research since

1990. The most popular method of AI is machine learning. Machine learning provides

systems the ability to learn and improve from examples without being explicitly

programmed.

In 1994 Mikami, et al. [6] proposed distributed reinforcement learning using a genetic

algorithm to control traffic lights. Due to the limitations of computational power, it could

not be implemented at that time.

Page | 12

Until 2010 RL technique is limited to tabular Q learning [27] where they usually make

small size state spaces such as the number of waiting vehicles at a given time [7], [8],

[9], [10].

A study by applying Deep Reinforcement Learning was in 2018 by Xiaoyuan Liang, et al.
[11]. They proposed a double dueling deep Q network (3DQN) with prioritized experience

replay. They have defined the states like a grid-based on two pieces of information,

position and speed of vehicles at an intersection. the action space is defined by selecting

every phase’s duration in the next cycle. rewards as the change of the cumulative

waiting time between two neighboring cycles and they have used Adams optimizer as

the optimizer for the deep Q-Network. They conclude that their method can reduce over

20% of the average waiting time compared to the waiting time of a vehicle when training

starts. But in this research, they hadn't reflected how long a vehicle had been waiting in

the queue at the state definition which will be very important when making a signal

change.

Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) is also applied

in this field [28],[11], Tomoki Nishi et all. Proposed a method using Graph Convolutional

Neural Networks (GCNN). The authors conclude that the proposed method is able to

learn the policy twice as fast as regular Fully Connected Neural Network (FCNN) [29].

Also, there are some previous works based on Swarm Intelligence [13].

Many researchers are using RL to control traffic congestion. Below is the summary of

how other researchers have defined the basic components of RL for traffic signal

control.

Page | 13

2.1 State Definitions

State definition defines how to represent the traffic state to the RL agent. Table 2.1

 Table 2.1: State Definitions

Element Previous work

Queue length Wei et al. 2018 [14], Aslani et al. 2017 [15], Mannion et al.

2016 [22]

Waiting time Wei et al 2018 [14], Chu et al. 2019 [20]

Volume Wei et al 2018 [14], Aslani et al. 2017 [15], Casas 2017

[17]

Delay Arel et al. 2010 [9]

Speed Liang et al 2018 [11], El-Tantawy et al. 2013 [16], Casas

2017 [17]

Phase duration van der Pol et al. 2016 [18], El-Tantawy et al. 2013 [16]

Congestion Bakker et al. 2010 [19], Iša et al. 2006 [23]

Position of

vehicles

van der Pol et al. 2016 [18], Wei et al. 2018 [14], Liang et

al 2018 [11], Bakker et al. 2010 [19]

Phase

Aslani et al. 2017, 2018b; El-Tantawyet al. 2013, Wei et al.

2018 [14]

Queue length: Queue length calculated concerning the lane which is the number of

waiting vehicles on the lane. There are different definitions of a "waiting" state of a

vehicle. In [14], a vehicle with a speed of less than 0.1 m/s. is considered as waiting; in

[19], a vehicle without movement is considered as waiting.

Waiting time: How long a vehicle been waiting. As mentioned above there are different

definitions of waiting state. The starting point of the waiting time is also having different

definitions: in [18],[14], they consider the waiting time starting from the last timestamp

Page | 14

the vehicle moved, while [11] consider the waiting time from the time the vehicle enters

the road network.

Volume: number of vehicles on the lane within a given radius.

Delay: Delay of a vehicle is defined as the time taken by a vehicle to pass through the

junction minus the normal travel time (which equals the distance divided by the speed

limit).

Phase duration: Phase duration of the current phase is defined as how long the current

phase has lasted.

Speed: vehicle moving speed is also considered in previous studies. However, it is

inefficient and computationally expensive to measure and calculate the speed of each

vehicle in practical.

Congestion: Some studies take the congestion of the outgoing lane into account for

effective learning for the cases of congestion and no congestion. This is very useful for

Srilankan Context. The congestion of a lane can be defined either as an indicator (0 for

no congestion and 1 for congestion) or the level of congestion which is equal to the

number of vehicles divided by the maximum allowed vehicles on the lane.

Positions of vehicles: Some studies represent the positions of vehicles in a grid-like

structure and pass is through a CNN to recognize the traffic pattern. A matrix is used to

represent the grid and 0 indicates no vehicle in that grid and 1 indicated the presence of

vehicle [11], [14], [18].

Phase: Traffic signal combination index [14], [18].

Some recent studies such as [14], [18]. propose to use images as states. However,

these methods will take a longer time to train and because of the higher dimension of

the input, there will be a huge number of zero observations.

Page | 15

2.2 Reward Functions

Table 2.2 contains the summary and the comparison of reward functions proposed in

previous works

Table 2.2: Reward Functions

Element Previous work

Queue length Wei et al 2018 [14], Aslani et al. 2017 [15] ,van der Pol

et al. 2016 [18], Mannion et al. 2016 [22]

Waiting time Liang et al 2018 [11], Bakker et al. 2010 [19], Chu et

al. 2019 [20], Mannion et al. 2016 [22], Nishi et al.

2018 [21] ,van der Pol et al. 2016 [18], Wei

et al. 2018 [14], Xu et al. 2013 [24]

Speed Casas 2017 [17], van der Pol et al. 2016 [18], Wei et

al. 2018 [14]

Number of stops van der Pol et al 2016 [18]

Throughput Aslani et al. 2017 [15], Wei et al. 2018 [14], Xu

et al. 2013 [24]

Frequency of signal

change

Wei et al. 2018 [14]

Accident avoidance Van der Pol et al. 2016 [18]

Queue length: lower the queue length, higher the reward to the agent.

Speed. A reward that takes the average speed of all vehicles in the road. A higher

average speed of vehicles in the road network indicates the vehicles travel to their

destinations faster. Higher the speed Higher the reward.

Page | 16

The number of stops. A reward can use the average number of stops of all vehicles in

the network. Intuitively, the smaller the number of stops, the more smoothly the traffic

moves.

Throughput. The throughput is defined as the total number of vehicles that pass the

intersection or leave the network during a certain time interval after the last action.

Frequency of signal change. The frequency of signal change is defined as the number of

times the signal changes during a certain time period. Intuitively, the learned policy

should not lead to flickering, i.e. changing the traffic signal frequently, as the effective

green time for vehicles to pass through the intersection might be reduced.

Accident avoidance. Some studies have special considerations on accident avoidance.

For example, there should not be many emergency stops. Furthermore, jams or would-

be collisions should be prevented.

2.3 Action Definitions

Table 2.3 contains the summary and the comparison of action definitions proposed in

previous works

Table 2.3: Action Definitions

Element Previous work

Set the current phase

duration

Aslani et al. 2017 [15], Xu et al. 2013 [24]

Set cycle-based phase

ratio

Liang et al 2018 [11], Casas 2017 [17]

Keep or change the

current phase

van der Pol et al. 2016 [18] Wei

et al. 2018 [14], Mannion et al. 2016 [22]

Page | 17

Choose next phase Chu et al. 2019 [20], El-Tantawy et al. 2013 [16],

Nishi et al. 2018 [21], Arel et al. 2010 [9], Bakker et

al. 2010 [19]

• Set the current phase duration. Here, the agent learns to set the duration for the

current phase by choosing from pre-defined candidate time periods.

• Set cycle-based phase ratio. Here, the action is defined as the phase split ratio that

the signal will set for the next cycle. In these types of methods, the total cycle length is

defined to be fixed and action is to select a phase ratio from a pre-defined set of

candidate phase ratios.

• Keep or change the current phase. Here, an action is represented as a binary number

which indicates the agent decides to keep the current phase or change to the next phase

in a cycle-based phase sequence.

• Choose the next phase. Decide which phase to change in a variable phase sequence,

in which the phase sequence is not predetermined. Here, the action is the phase index

that should be taken next. As a result, this kind of signal timing is more flexible, and the

agent is learning to select a phase to change to, without assumptions that the signal

would change cyclically.

2.4 Existing Systems

• SCATS(Sydney Coordinated Adaptive Traffic System) installed at about 42,000

intersections in over 40 countries [32].

• SCOOT(Split Cycle Offset Optimisation Technique) [31].

They are using real-time traffic data to make decisions but both of them are developer-

defined traffic signal plans.

OPAC [33] and PRODYN [34] are some other similar solutions but due to their

complexity, they are less popular.

Page | 18

2.5 Synopsis

This chapter mainly focused on how earlier researchers proposed solutions on this

domain. This chapter encompasses two parts, firstly it briefly describes solutions

without reinforcement learning and as the next part, it contains the summary and

comparisons of other proposed methods on reinforcement learning over more than

twenty papers. The comparison compares how the main components of reinforcement

learning (States, Actions, Rewards) are defined in previous studies. Finally, it mentions

existing systems on the domain.

Page | 19

Chapter 3

Design

This chapter will elaborate on the design of the proposed method and the other three

methods (avg only method, statistical method, fixed time method) which are used to

compare and contrast the proposed method.

As the first part of the research design, a four-way junction with three incoming traffic

tracks (left turn, right turn, direct track) and one outgoing lane for each road is designed.

Figure 3.1 shows the overview of the four-way junction.

Figure 3.1: Overview of the four-way junction

Page | 20

3.1 Valid States of Traffic Light

Combination of signals which will allow vehicles to pass over intersection without

conflict is a valid state.

Traffic lights should always be one of these valid states. To be clear Figure 3.2 represents

a hand drawing of an invalid state.

Altogether 8 such valid states are defined as shown in Figure 3.3 Green lines are the

directions that the vehicles are allowed to pass through the junction in that state. Red

lines are the directions that the vehicles are not allowed to pass through the junction in

that state.

Figure 3.2 : Hand drawing of an invalid state Figure 3.2: Hand drawing of an invalid state

Page | 21

Page | 22

Figure 3.3: Eight valid States

There will be a yellow state between every two states to avoid emergency braking and

ensure safety. (

Figure 3.4)

Page | 23

Figure 3.4: Yellow state between each two valid states

3.2 Proposed Method

This section will elaborate on the design of each component of the proposed method. In

generic, the agent will observe the current traffic environment(state) and it will take

necessary action (signal change) using a deep q-network which is a deep neural

network. Then the agent will be rewarded on how it was able to minimize the traffic

congestion and how it was able to prioritize emergency vehicles. After that by using the

Bellman optimality equation (section 1.1.6) weights of the neural network will be

updated to obtain the optimal action-value function (section1.1.5). Figure 3.5

represents the Generic working of the proposed method.

Page | 24

Figure 3.5: Generic working of the proposed method

Throughout this section, state representation, action representation, reward design,

DQN design of the proposed method will be discussed.

 State Representation

Realtime traffic data around the junction should be represented in a numerical way such

that it contains all the traffic information for an agent to learn an optimal policy.

According to the literature review, there are many different ways of state

representation.

We first employed the same method that chu et al. [20] have proposed with a small

change that is to represent each lane l by a 3-dimensional vector.

𝑙𝑖,𝑡 = { lengthi, t , 𝑤𝑎𝑖𝑡𝑖,𝑡 , 𝑒𝑚𝑔
𝑖,𝑡

}

Where i is lane index t is timestamp. lengthi, t denotes the number of waiting vehicles

in that lane, 𝑤𝑎𝑖𝑡𝑖,𝑡 measures the waiting time of the front vehicle of that lane which

will obviously be the maximum waiting time of that lane, 𝑒𝑚𝑔𝑖,𝑡 denotes the

maximum waiting time of emergency vehicles in that lane. But it was found that this

representation lacks some important information about the environment.

Page | 25

Consider the following Figure 3.6 which shows two cases of vehicle waiting times in

a lane. Waiting times of vehicles are displayed under the vehicles.

For both the cases 𝑙𝑖,𝑡 will be the same because for both cases the front vehicle’s

waiting time is 30s which is the maximum waiting time of vehicles on the lane, the

number of vehicles in the lane is four and no emergency vehicle presents. But for an

adequate state representation 𝑙𝑖,𝑡 should clearly differentiate these two cases in order

for an agent to learn an optimal policy.

To overcome this we defined 𝑤𝑎𝑖𝑡𝑖,𝑡 as the average waiting time of vehicles in lane l.

But it was found that this representation also lacks some important information about

the environment. Consider the following Figure 3.7 which shows two cases of vehicle

waiting times in a lane. Waiting times of vehicles are displayed under the vehicles.

Figure 3.6: Two cases of vehicle waiting times-example 1

Page | 26

For both the cases 𝑙𝑖,𝑡 will be the same because for both cases the average waiting time

is 60s (2 + 2 + 2 + 54 = 60 ; 15 + 15 + 15 + 15 = 60), the number of vehicles in the lane

is four and no emergency vehicle presents.

To differentiate those kinds of cases standard deviation of waiting times of vehicles

(𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡) in each lane l along with the average waiting time is considered. That will

represent the average waiting time of vehicles and how close each vehicle’s waiting time

to the average waiting time.

𝑙𝑖,𝑡 = { lengthi, t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑒𝑚𝑔𝑖,𝑡}

As proposed in [19], [23] we decided to add congestion level ci , t of the corresponding

outgoing lane l |(lane to which vehicles are moving into) for each lane l. The final lane

representation of the proposed method is.

𝑙𝑖,𝑡 = { lengthi, t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑒𝑚𝑔𝑖,𝑡, ci , t }1𝑥5

 2s 2s 2 s 54s

 15s 15s 15s 15s

Figure 3.7: Two cases of vehicle waiting times-example 2

Page | 27

For the state representation, we also add the current phase index p of the traffic light

as proposed in [14] where 1 ≤ p ≤ 8. The hypothesis here is by using phase index the

agent will get some idea about moving vehicles. (Vehicles in which the lanes are allowed

to pass through the junction are moving vehicles).

As the final representation of the environment, we represent a state with traffic matrix

M (12x5 matrix 12 lanes and one lane 𝑙𝑖,𝑡 is represented by a vector of dimensionality

5) and one hot encoded vector [38] of phase index P (1x8).

Figure 3.8 represents a sample traffic state. Lane indexes are circled and dark squares

represent the emergency vehicles and others are regular vehicles. The numbers inside

squares represent the waiting time of the vehicle in seconds. Figure 3.9 represents the

corresponding state representation matrices M and P.

Figure 3.8: Sample traffic state

Page | 28

Figure 3.9: Corresponding traffic state matrices M and P

Each row of M contains traffic information about the matching traffic lane number with

the row index. The first column represents the number of vehicles, second column

represents the average waiting time of the lane, third column represents the standard

deviation of the lane, fourth column represents the average emergency waiting time of

the lane, fifth column represents the congestion level of the corresponding outgoing

lane. When calculating the congestion level the negative impact of the congestion is

added as the value. The maximum number of vehicles allowed in a lane is 17. For

example in the first row 12/17 = 1 – 5/17.

 Action Representation

The agent’s action space is the set of phase indexes of the traffic light A = { p1, p2, p3,

p4, p5, p6, p7, p8} [39] which is a similar approach to state spaces proposed in [20],[21],

[37]. After every twelve seconds agent will select the next phase from the action space.

If the selected next phase is the same as the current phase agent will stay in the same

state for another twelve seconds, otherwise, the agent will move to the new phase

preceded by three seconds of yellow signal phase.

Page | 29

 Reward Design

The agent will be rewarded on the action a t it makes depending on the new traffic state

after changing the traffic signal to the selected phase at time t [39]. The traffic

environment is allowed to execute for twelve seconds with the new traffic signal phase

and then observe the traffic state as the new traffic state such that vehicles will have

enough time to move and form a new traffic state.

The agent should be rewarded based on both how it controls regular vehicles and how

it controls emergency vehicles. Also, the agent should be rewarded not only with how it

reduces the average waiting time but also how good it was able to reduce standard

deviation as well so that we can guarantee that other vehicles will stay close to average

waiting time.

Then the reward R t + 1 is defined concerning the new traffic state as follows.

𝑅 𝑡 + 1 = 50 – ((reg_avg_waiting 𝑡 + 1+K * reg_std_waiting 𝑡 + 1) +

Z * (emg_avg_waiting 𝑡 + 1+K * emg_std_waiting 𝑡 + 1))

Where

• K, Z are hyperparameters (refer section 5.3.1 for different value assignments)

• reg_avg_waiting 𝑡 + 1 : average waiting time of regular vehicles around 100m

radius to the junction.

• reg_std_waiting 𝑡 + 1: standard deviation of waiting time of regular vehicles

around 100m radius to the junction.

• emg_avg_waiting 𝑡 + 1: average waiting time of emergency vehicles around

100m radius to the junction.

• reg_avg_waiting 𝑡 + 1 : average waiting time of regular vehicles around 100m

radius to the junction.

Page | 30

We used the negative impact of average waiting times [11] and the negative impact of

the standard deviation of waiting times to punish the agent with a negative reward if

the waiting time and standard deviation are considerably higher. Technically if

((reg_avg_waiting 𝑡 + 1+K * reg_std_waiting 𝑡 + 1) +Z * (emg_avg_waiting 𝑡 + 1+K *

emg_std_waiting 𝑡 + 1)) > 50 the agent will receive negative reward

otherwise it will receive positive rewards.

 Deep Q-Network Design

Since the state space is infinite, simple tabular Q-learning is not possible. Instead, a deep

neural network [41] to predict the action given the state is needed which is deep

reinforcement learning [40].

State representation matrices (M and P as discussed in section 3.2.1) are faded into the

neural network through two separate input layers and concatenated inside the neural

network.

Traffic matrix M and phase index vector P first passed through two fully connected

layers [41] and then passed through a concatenation layer to concatenate the two

outputs. The output of the concatenation layer then passed through another fully

connected layer to form the final phase index prediction. Figure 3.10, Figure 3.11 and

Figure 3.12 represent the plot and the summary of the proposed deep q-network and

the architecture of the DQN respectively.

Page | 31

Figure 3.10: Plot of the proposed deep q-network

Page | 32

Figure 3.11: Summary of the proposed deep q-network

Figure 3.12: DQN architecture

Page | 33

As shown in Figure 3.12 DQN contains eight neurons in the output layer which will

output the Q-values for each signal phase when the current traffic state M and P are

faded into the neural network through input layers. The agent then changes into the

signal phase which has the maximum q value.

Next phase = argmax (Q(s t , a) | for every a ∈ A)

Weights of the deep q-network are updated according to the Bellman optimality

equation as discussed in section 1.1.6 using experience replay.

 Experience Replay

When the agent takes an action a t at state s t then it will observe a new state s t+1 and

receive a reward at R t+1 which is an experience of taking an action in a given state. The

agent should store this experience in a memory called replay memory for the learning

purpose. Experience e is defined as a tuple of four elements as follows.

e = {a t , s t , R t+1 , s t+1 }

After each signal change agent will store the current experience in the replay memory

and take a random sample called batch out of the replay memory and train the DQN with

it which is called experience replay [42]. The training of the agent is discussed in section

3.2.6.

Replay memory has its own memory size M. When the replay memory is full of

experience, the oldest experience is removed to store the new experience. Also, the

experience replay will not be allowed to run if the number of samples in the replay

memory is less than batch size b. Figure 3.13 represents the process of experience

replay after each action.

Page | 34

Figure 3.13: Process of experience replay after each action

3.2.5.1 Advantages of Experience Replay

With the use of experience replay, the training phase has two major advantages:

1. It removes correlations in the observation sequence [43].

2. Refresh the experience of the agent [42].

In this environment, two consecutive states are naturally correlated since the state of

the environment s t+1 is a direct evolution of the state s t. Most of the information

contained in the state s t+1 does not derive as a consequence of an agent’s action, but

rather as the spontaneous transformation of the current situation s t . Therefore

experience replay has been implemented to not inducing misleading correlation in the

agent’s neural network. Secondly, during the training process, there is the possibility

that the neural network forgets the knowledge gained about a situation visited in the

early stages of the training. By using experience replay, the agent occasionally receives

a "refresh" of what it has learned before in an older state.

Page | 35

 Learning the Optimal Policy

Learning will undergo after each signal change with an experience batch size of b. Target

is to learn the optimal Q-value for any given state and action. For every sample in

experience batch, the following operations are performed [39].

1. For state s t and action a t in the experience obtain the predicted Q-value

Q (s t , a t).

2. Then calculate the target Q-value for state s t and action a t using the Belman

optimality equation.

 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t) = 𝑟𝑡+1 + 𝛾 max (Q(s t+1 , a) | for every a ∈ A)

• 𝑟𝑡+1 can be directly extracted from the experience tuple.

• To calculate max (Q(s t+1 , a) | for every a ∈ A) part s t+1 is faded into

the DQN and obtain the Q-values for s t+1

• Take the maximum Q-value for s t+1

• Calculate 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t).

3. Calculate the error E = 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t) - Q (s t , a t).

4. 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t) = Q (s t , a t) + ∆ E

 Fixed Q-Targets

Using the same DQN to obtain the Q (s t , a t) and the 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t) leads to unstable

learning of the agent since the weights of the DQN are updated after replaying every

sample (as mentioned in section 3.2.6) it will output a different 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t , a t) for

the same state and action which leads to unstable learning.

Fixed Q-Targets [43] introduced as a solution for unstable learning. It proposed using a

separate version of DQN of the agent as the target network and calculate 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (s t

Page | 36

, a t) from it. Then clone the DQN into to target graph after some rounds of experience

replay. This will make learning stable for a while.

 Double Q-learning

Double Q-learning [44] is a solution for the overestimation of Q-values. max (Q(s t+1 ,

a) | for every a ∈ A) will depend on how to DQN weights are initialized and what actions

and what states are explored by the agent which means we cannot guarantee max (Q(

s t+1 , a)) is correct. The solution proposed is to use DQN network to select the best

action of the next state s t+1 and use the target network to calculate the Q-value of that

action for state s t+1 . Figure 3.14 represents the idea of Double Q-learning

Figure 3.14: Idea of Double Q-learning

 Exploration Vs Exploitation Tradeoff

Initially, the traffic control agent knows nothing about controlling traffic so that the

agent is allowed to take random actions to explore the environment and get the

experience. With the time agent will learn to control traffic efficiently so that it will be

allowed to make signal changes with its learning. Initially, the agent is advised to Explore

the environment but with the time it is advised to exploit the environment than

exploring. For that, a concept of exploration vs exploitation tradeoff introduced [39].

Exploration rate 0 < 𝜖 < 1 is defined as

𝜖 = 𝑒− 1 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒

Page | 37

Epsilon decay rate decides how fast 𝜖 is decreasing. Then a random number is

generated r. Then the agent will decide to either explore or exploit as follows.

If r < 𝜖
 Agent explores the environment
Else
 Agent exploits the environment

 High-Level Architecture

Figure 3.15 illustrates the high-level architecture of the proposed method. For each 12

seconds agent first observe the current traffic state and build the M and P matrices. If

r < ∈ then it selects a random traffic phase from the eight valid phases, else it predicts

the best next signal phase using the DQN. The agent will then change the traffic signal

to the new traffic phase. The agent will then receive a reward calculated by reward

function as discussed in Section 3.2.3. Finally, the agent will store the experience in

replay memory and execute experience replay. Experience replay is done with the help

of Fixed Q-Targets and Double Q-Networks.

Page | 38

Figure 3.15: High-level Architecture of the Proposed Method

Page | 39

3.3 Average Only Method

To demonstrate that considering average and the standard deviation (proposed

method) has a significant improvement over only considering the average, another

version of the same agent is designed by only considering the average waiting time of

vehicles. Which will be called as the average only method.

Only the state representation, reward design, and DQN is the difference when compared

to the proposed method. All other design elements remain the same for both the agents.

 State Representation

The only difference with the proposed method state representation is that this

representation doesn’t contain 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡 column to represent the traffic condition in

each lane. Which means the 𝑙𝑖,𝑡 is defined as

𝑙𝑖,𝑡 = { lengthi, t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑒𝑚𝑔
𝑖,𝑡

, ci , t }1𝑥4

This also means that the dimension of M will be 12x4 matrix and p remains in the same

dimension 1x8.

 Reward Design

The reward design of the average only method is very similar to the proposed method

without considering the standard deviation of vehicles when rewarding the agent. The

reward for the average only method is defined as follows.

𝑅 𝑡 + 1 = 30 – (reg_avg_waiting 𝑡 + 1 + Z * emg_avg_waiting 𝑡 + 1)

 Deep Q-Network Design

Since the diamention of the M is changed the only difference is that input layer of M is

in dimention 12x3 every other designs of the DQN remains the same.

Page | 40

3.4 Statistical Method

The method proposed by Binbin Zhou et.all [48] is used as the statistical method to

evaluate the proposed method.

3.5 Fixed Time Method

The fixed time method allows each phase to stay in 30 seconds and cyclically move to

the next phase. This means the fixed time method is not considering real-time traffic

data. Figure 3.16 represents the cyclic phase change of the fixed time method.

Figure 3.16: Cyclic phase change per 30s in fixed time method

Page | 41

Chapter 4

Implementation

This chapter mainly focuses on the implementation details of the proposed method,

average only method, statistical method and fixed time method. Apart from that,

configuration of the simulation environment is also discussed in this chapter.

Implementation and evaluation were done using ASUS Intel® core™ i5-6200U CPU @

2.30GHz 2.40GHz with 8GB RAM and 2GB of NVIDIA GeForce 920MX GPU.

4.1 Configuration of SUMO

Sumo (Simulation of Urban MObility)[30] is used as the simulation software for real-

time traffic simulation. Sumo is developed using C++ by the Institute of Transportation

Systems at the German Aerospace Center.

The simulation environment is originally in the left-hand driving mode so that it has to

be converted to the right-hand driving mode to match with the local scenario. A four-

way junction with three incoming traffic tracks (left turn, right turn, direct track) and one

outgoing lane for each road is designed using net edit which is a sub tool of sumo. Figure

4.1 shows the overview of the four-way junction.

Page | 42

Figure 4.1: 4-way junction design by SUMO

Two types of vehicles are used in the simulation environment.

• Regular

 <vType id="SUMO_DEFAULT_TYPE" accel="2.6" decel="4.5" sigma="1"
length="4" minGap="2" maxSpeed="50"/>

• Emergency(ambulance,VIP vehicles etc)

<vType id="emergency" guiShape="emergency" accel="2.9" decel="4.5"
sigma="1" length="5" minGap="2" maxSpeed="60"/>

Emergency vehicles have higher acceleration speed and max speed than
regular vehicles.

Page | 43

4.2 Traci (Traffic Control Interface)

Traci is an API to access Sumo and retrieve values of simulated objects and to

manipulate their behavior "on-line". Sumo and Traci are working as client-server

architecture. In this case, sumo is working as the server and Traci is working as the client.

The following functions of Traci are used to get the data and manipulate objects.

• traci.lane.getLastStepVehicleIDs(lane_id)
 Returns the vehicle id in a given lane id.

• traci.vehicle.getTypeID(vehicle_id)
 Returns the type of the vehicle given the vehicle id.

• traci.vehicle.getLanePosition(vehicle_id)
 Returns the position of the vehicle given vehicle id.

• traci.trafficlight.setPhase('0',2)
 Used to change the phase of the signal light.

• traci.simulationStep()
 Proceed simulation by one timestep

4.3 Implementation of the Proposed Method

A popular machine learning library Keras is used as the main library with Tensorflow

GPU as the backend using python 3.6.

 Vehicle class

Defined a vehicle class to store information about each vehicle which will contain vehicle

id, waiting time and type of the vehicle as attributes. Vehicles within 100m area from the

junction are considered as the traffic data.

Page | 44

 Sumo Class

Class Sumo is defined to contain all the details about the simulation environment.

Abstract of the sumo class as follows.

Attributes

• RedYellowGreenStates : A list to contain all the phase indexes of the traffic light.

• Hyper parameters K and Z: As discussed in section 3.2.3

• nearby_vehicles : list to contain vehicle objects within 100m radius

Methods

• updateWaitingTime() : Update waiting time of nearby vehicles. This will add new

coming vehicles to nearby_vehicles list concerning the lane index

remove vehicles from the list which leaves the junction.

If the vehicle is already in the list and still in the queue, it will increment the

waiting time of that vehicle by 1s.

Page | 45

This method is called for every time step.

• getState() : Return the current traffic state M and P

generate P by one-hot encoding the phase index.

calculating average and standard deviation of waiting time for each lane

Prepare matrix M. values are scaled to the range 0-1 to increase the effectiveness.

When scaling two constraints are used. The first one is the maximum waiting time

of a vehicle is 100s. The second one is the maximum number of vehicles that can

be fit into the 100m range is 17.

Page | 46

• changePhase(next_phase_index) : change the traffic signal phase to a new traffic

phase given the new phase index. This will generate a yellow state given the current

traffic phase and new traffic phase and it will first change the traffic signal to the

corresponding yellow state for 3 seconds and then it will be changed to the new

traffic state.

Page | 47

• Reward(current_state_distribution) : Returns the reward for the current waiting

time of vehicles.

 DQN Class

This class contains three methods.

• load_model() : Loads the saved model from the disk

• save_model() : Save the model to the disk

• createDQN() : Creates a new DQN and return the model

Keras functional API is used to implement the DQN model. Two input layers are

defined. The first input layer is of dimensionality 12x5 to feed M. Then it is passed

through 3 fully connected layers (dense layers) each contains 50, 30, 20 neurons

respectively. All three layers have the activation function of ‘’relu’’ [47].

The second input layer is of dimensionality 1x8 to feed P. Then it is passed through

a fully connected layer which contains 20 neurons with activation ‘’relu’’.

Then the two outputs are concatenated with a concatenation layer. After that

concatenated output is passed through a fully connected layer of 16 neurons with

activation ‘’relu’’. Finally, the output layer contains 8 neurons which correspond to

the phases with no activation function because we need to get the exact Q (s t , a t).

Adam optimizer[45] is used as the optimizer and mean squared error (mse) [46] is

used to calculate the loss of the model when training.

Page | 48

 Replay Memory Class

This class contains all the details about replay memory and it handles experience replay

of the agent. It contains five attributes and two methods.

Attributes

• capacity : This defines the maximum number of experience tuples that can be stored

in replay memory

• replay_memory : A list to contain experience tuples

• push_count : Contains the number of insertions were done to replay memory from

the beginning.

• buffer_state : Used to hold the previous state

• buffer_action : Used to hold the previous action

Page | 49

Methods

• addToReplayBuffuer(self,current_state,action,reward) : This method will add new

experience to experience replay memory.

To record an experience, current state s t , current action a t , reward r t+1 and the

next state s t+1 is needed.

The problem with these kinds of environments is that the next state and the reward

cannot be directly observed here because it takes some time for vehicles to move

and actually become another state after making a decision. Which means that we

have to buffer the current state s t and current action a t until the method is called

again and adds that current state as the next state of the previous experience.

Similarly, the current state in the second call is used to calculate the reward for the

buffered state because the current state is the next state for the buffer state and

action.

• Replay (self,replay_batch_size): This will handle the experience replay of the agent.
The method will first check if the replay memory contains samples more than the

batch size. If not it will simply return without going to experience replay.

If true it will extract an experience batch form the replay memory and for each

sample, it starts training.

Page | 50

Current Q-value extracted by passing the state variable to the PolicyNetwork which

is the DQN.

Then it will identify the best action of the new state by feeding the new state into

the PolicyNetwork. After that, the target network is used to get the Q-value for the

best action selected by the PolicyNetwork.

Then the bellman optimality equation is used to calculate the Q target. After that,

the PolicyNetwork will train on the experience.

 Agent Class

Two versions of DQN are maintained (PoliciyNetwork and TargetNetwork) for the

concept of Fixed Q-Targets as discussed in Section 3.2.7. This class handles the decision

makings of the agent and maintaining the weights of the target DQN. It contains two

attributes and two methods.

Page | 51

Attributes

• step_number : Represents the number of actions (signal changes) that the agent

made so far.

• tau : This is a hyperparameter that decides the amount of the weight difference of

the two DQNs will be added to the weights of the target DQN.

Methods

• getAction(self, state): Predict and output the next best signal phase given the

current state using the PolicyNetwork. If first calculates the epsilon value and a

random value between zero and one. If epsilon value is greater than the random

number it outputs a random phase which is the concept of the exploration, else it

predicts the next best signal phase using the Policy network. Epsilon will get

decreased when the step_number getting lager. Epsilon has its minimum limit.

• update_target_graph(self): Updates the target DQN weights with the Policy
network by using tau.

Page | 52

 Hyperparameter Settings

Below are the tuned values of the hyperparameters used.

 Main Function

It creates two versions of DQN.

The main function will run the training of the agent for twenty episodes each which
will contain 5000 steps. The simulation environment is reinitialized in each episode
and taken into an intermediate traffic state before training.

For each second it calls the updateWaitingTime () method of the sumo class to update
the waiting times of vehicles and take action between every 12 seconds.

Page | 53

During each decision, it first obtains the current state using the getState() method in
sumo class and then passes it to the getAction (current_state) method in the agent
class to get the next phase. It will then invoke the chngePhase (action) method of
sumo class to change the traffic signal.

Then the reward is obtained which corresponding to the action and adds that to the
replay memory. Experience replay is performed after each action.

updating the target graph is performed 4 times per episode.

4.4 Implementation of the Average Only Method

The implementation of the average only method is almost identical to the proposed
method. The only difference is it is not using the standard deviation in the state
representation and reward function so the agent will be only rewarded by considering
the average waiting time and state representation doesn’t contain any information
about the standard deviation of vehicle waiting times.

Page | 54

4.5 Implementation of the Statistical Method

The method proposed by Binbin Zhou et.al [48] is implemented with bellow changes to
support emergency facilitation and to match with the proposed method environment.

If an emergency vehicle arriving on a lane this method will give that lane the highest

priority. If there is no emergency vehicle it selects the phases which contain green for

the lane which has the maximum traffic as candidate phases. Then among those

candidate phases select the phase which contains green for the lane which has the

second maximum traffic.

Page | 55

4.6 Implementation of the Fixed Time Method

The traffic signal will change to the next phase after 30 seconds without considering
any realtime traffic data. This will continue cyclically.

4.7 Implementation of vehicle detection API

When deploying the proposed method in the real world we need a way to detect

vehicles in the images captured through surveillance cameras. It should also be able to

Page | 56

detect lanes and vehicle types. An initial approach to detect this information is

implemented using Tensorflow Object Detection API. Refer to Appendix C.

Page | 57

Chapter 5

Training and Evaluation

This chapter evaluates the performance and success level of the proposed solution. The

evaluation will undergo according to a proper evaluation model as follows using the

simulation environment SUMO [30].

5.1 Evaluation Model

The evaluation model contains 2 major parts that are to evaluate with the synthetic

dataset and to evaluate with the real-world dataset. For both the datasets, first, the

performance of the proposed method (Avg + Std) Vs Avg only method is evaluated. As

the next step, the proposed method will be evaluated with a fixed time method and with

a user-defined traffic model (statistical method). All of the above comparisons will be

done under low, moderate, high traffic scenarios and dynamic traffic scenarios. Figure

5.1 represents the diagram of the evaluation model.

Page | 58

Figure 5.1: Evaluation model diagram

Page | 59

5.2 Evaluation Metrics

The following matrices are used to measure the performance of each method in the

evaluation process.

1. Average waiting time of regular vehicles (𝐴𝑊𝑇𝑟)

𝐴𝑊𝑇𝑟 =
∑ 𝑊𝑖,𝑡

𝑛
𝑖 = 0

𝑛

 Average waiting time of regular vehicles around 100m radius where the n is the

total number of regular vehicles around 100m radius in a given time t.

2. Standard deviation of regular vehicle waiting time (𝑆𝑇𝐷𝑟)

𝑆𝑇𝐷𝑟 = √
∑ (𝐴𝑊𝑇 − 𝑊𝑖,𝑡)2𝑛

𝑖 = 0

𝑛

Standard deviation of regular vehicle waiting time around 100m radius where

the n is the total number of regular vehicles around 100m radius in a given time

t.

3. Average waiting time of emergency vehicles (𝐴𝑊𝑇𝑒)

𝐴𝑊𝑇𝑒 =
∑ 𝑊𝑖,𝑡

𝑛
𝑖 = 0

𝑛

 Average waiting time of emergency vehicles around 100m radius where the n is

the total number of emergency vehicles around 100m radius in a given time t.

4. Standard deviation of emergency vehicle waiting time (𝑆𝑇𝐷𝑒)

𝑆𝑇𝐷𝑒 = √
∑ (𝐴𝑊𝑇 − 𝑊𝑖,𝑡)2𝑛

𝑖 = 0

𝑛

Standard deviation of emergency vehicle waiting time around 100m radius

where the n is the total number of emergency vehicles around 100m radius in a

given time t.

Page | 60

5.3 Evaluation With Synthetic Dataset

The proposed method against the other three methods namely average only method

statistical method and fixed time method are evaluated with the evaluation matrices

mentioned in section 5.2 under dynamic traffic configuration which includes low,

moderate, high traffic hours and which is also a combination of configurations used in

[14], [37]. Sumo supports vehicle arrival approximation to Poisson Distribution by using

the probability attribute of the vehicle flow tag. When the probability attribute is used it

generates vehicles randomly with the given probability on each second. Table 5.1 shows

the traffic flow settings for dynamic traffic configuration according to Poisson

Distribution. In Table 5.1 SE is to mention South to East direction and similarly for N:

North and W: West.

Table 5.1: Traffic flow settings according to Poisson Distribution

Vehicle type Arrival rate (probability/sec) Start time
(s)

End time
(s)

Regular For all directions: 0.05

 +
• NE, SE: 0.03
• WE : 0.05
• WS, ES: 0.03
• NS: 0.05
• WN, EN: 0.03
• SN: 0.05
• NW, SW: 0.03
• SN: 0.05

0

5000
5000
15000
15000
25000
25000
40000
42000

50000

9000
10000
20000
21000
30000
35000
45000
46000

Emergency • WE: 0.01
• WS: 0.01
• WN: 0.007
• EW: 0.006
• ES: 0.006
• EN: 0.007
• SW: 0.01
• SE: 0.007

0
2000
5000
7000
9000
12500
18000
20000

10000
10000
20000
15000
50000
50000
20000
50000

Page | 61

• SN: 0.005
• NW: 0.08
• NE: 0.07
• NS: 0.005

23000
30500
30500
40000

25000
50000
50000
50000

In table Table 5.1 For all directions: 0.05 means vehicles will be generated with a

probability of 0.05 per second in each direction from 0s to 5000s of simulation time. At

5000s another vehicle flow of vehicle generation probability 0.03 is added to NE, SE

direction so that the total arrival rate of NE, SE direction will be increased while other

directions remain in the same single flow of probability 0.05 from 5000s to 9000s.

Distribution of the traffic volume with the 15 minute time intervals is shown in Figure

5.2 for each configuration. Rush hours (high traffic) are marked between red dotted

lines.

Figure 5.2: Distribution of the traffic volume for each configuration

Page | 62

Apart from traffic flow configurations, regular vehicles and emergency vehicles have

different simulation settings as shown in Table 5.2 similar to settings used in [37].

Table 5.2: Vehicle simulation settings

Parameter Regular Vehicle Emergency Vehicle

Acceleration 2.6m/s 2.9m/s

Deacceleration 4.5m/s 4.9m/s

length 4m 5m

Minimum gap between
vehicles

2m 2m

Maximum speed 50kmph 60kmph

The proposed method and avg only method is trained on 275h of simulated traffic in the

SUMO environment under the implementation settings mentioned in section 4.3.

 Evaluation For Different K’s and Z’s

Before evaluating with other methods the proposed method undergoes a self

evaluation with different values K’s and Z’s to pinpoint the best values for K and Z. Below

are the four different configurations for K and Z to the self evaluation.

1. K = 0.5, Z = 2 (low priority to std, high priority to emergency vehicles)
2. K = 1, Z = 2 (high priority to std, high priority to emergency vehicles)
3. K = 0.5, Z = 1 (low priority to std, medium priority to emergency vehicles)
4. K = 0.5, Z = 0 (low priority to std, no priority to emergency vehicles)

Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 shows how each configuration was able to

minimize the traffic congestion at the junction. In these figures, x-axis is the number of

actions that the agent takes that means the number of signal changes (either to stay in

the same phase or move to another phase). The agent will take action for every

Page | 63

12second intervals. More enlarged versions (starting from 3000 for the x-axis) of these

figures can be found in Appendix A to get a clear view.

Figure 5.3: Regular vehicle average waiting time for different K and Z values

Figure 5.4: Emergency vehicle average waiting time for different K and Z values

Page | 64

Figure 5.5: Regular vehicle standard deviation of average waiting time for different K and Z

values

Figure 5.6: Emergency vehicle standard deviation of average waiting time for different K

and Z values

Page | 65

According to Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 Configuration 1,3,4 have

shown almost similar results while configuration 2 shows poor results for the regular

vehicles. Among configuration 1,3,4 the configuration 3 has shown slightly better

results compared to other configurations. Configuration 4 was not able to minimize

emergency vehicle waiting time as other configurations since Z is assigned zero. When

Z is zero it does not consider the vehicle type. Table 5.3 shows the maximum, minimum

and average of evaluation matrices of all the four configurations for the total training

time.

Table 5.3: Performance for different configurations of K and Z

Evaluation matrix K = 0.5

Z = 2

K = 1

Z = 2

K = 0.5

Z = 1

K = .5

Z = 0

Maximum of regular

vehicle average waiting

time (s)

111.388 106.427 94.023 136.100

Minimum of regular

vehicle average waiting

time (s)

24.843 27.733 21.980 24.199

Mean of regular vehicle

average waiting time (s) 44.844 46.566 43.511 43.095

Maximum of emergency

vehicle average waiting

time (s)

52.520 37.450 28.110 131.88

Minimum of emergency

vehicle average waiting

time (s)

0.390 0.260 0.480 0.35

Mean of emergency

vehicle average waiting

time (s)

4.886 5.340 5.065 22.21

Page | 66

Maximum of regular

vehicle std of waiting

time (s)

101.738 91.742 79.503 113.293

Minimum of regular

vehicle std of waiting

time (s)

19.338 21.487 16.819 18.874

Mean of regular vehicle

std of waiting time (s) 36.315 37.456 34.670 34.71

Maximum of emergency

vehicle std of waiting

time (s)

5.235 6.500 4.850 80.068

Minimum of emergency

vehicle std of waiting

time (s)

0 0 0 0

Mean of emergency

vehicle std of waiting

time (s)

0.121 0.142 0.216 6.013

From Table 5.3 it is clear that configuration 3 was able to minimize vehicle traffic

congestion than the other three configurations. From here onwards configuration 3 is

used to compare the proposed method with the statistical method, average only

method, and fixed time method.

 Training Evaluation

The proposed method and avg only method is trained on 500h of simulated traffic in the

SUMO environment under configuration 3 which was found as the best value

assignments for K and Z in section 5.3.1. These reinforcement learning methods are

compared with the fixed time method and statistical method while training.

Page | 67

Figure 5.7 represents how each method was able to minimize the average waiting time

of vehicles at the junction and Figure 5.8 represents how each method was able to

minimize the standard deviation of waiting time at the junction.

Figure 5.7: Learning to minimize average waiting time

Page | 68

Figure 5.8:: Learning to minimize the standard deviation of waiting time

Page | 69

According to Figure 5.7 and Figure 5.8 initially, the reinforcement learning methods

(proposed method and average only method) are not performing well since they are not

aware of the environment at the beginning. But with the help of exploration and

exploitation (section 1.1.2) reinforcement learning agents were able to learn how to

minimize the average waiting time and the standard deviation of waiting times.

Reinforcement learning methods perform even worse than the fixed time method at the

beginning but at half of the training time, they were easily able to outperform the fixed

time method. The statistical method was performing well from the beginning but with

the time reinforcement learning methods were able to outperform the statistical

method as well.

However, the average only method shows only small improvement over statistical

method but the proposed method shows better results than every method at the end

buy reducing the average waiting time and the standard deviation.

Figure 5.9 represents how reinforcement learning methods were able to improve the

reward with time. Since there is no learning for the fixed time method and statistical

method those methods were not able to improve the reward with the time. In

Appendix A Figure A.5 shows how all four methods gain the reward with the time while

Figure 5.9 only shows the reinforcement learning methods for clear comparison.

Page | 70

Figure 5.9: Reward improvement of the proposed method and average only method

Both the reinforcement learning methods initially get very lower minus rewards but

with the time both of the algorithms learned to receive a higher reward. The proposed

method outperforms the average only method in the 2000’th action and there onwards

it continues to improve well than the average only method.

 Testing Evaluation

5.3.3.1 Average Waiting Time

Figure 5.10 shows how each method controlled regular vehicle traffic for 14hrs. Peaks

of the lines show the rush hours and pits show the low traffic time while in between

them is the moderate traffic time. The X-axis is the two-minute time stamps which the

average waiting time is calculated for. One timestamp is the average waiting time of

vehicles for two minutes. And y-axis shows the average waiting time of the vehicles.

Graphs are smoothed using the smoothing factor of 300.

Page | 71

Figure 5.10: Average waiting time control of regular vehicles by each method in the testing
environment

According to Figure 5.10 Fixed time method has very poor performance compared to

the other three methods. The average only method and proposed method have similar

performance but the proposed method outperformed the average only method most of

the time. The average only method failed to efficiently control traffic around the 3000th

timestamp. There are some cases that the statistical method was able to reduce

average waiting time than the proposed method, but most of the time, the proposed

method was able to minimize the average waiting time than the other three methods.

Figure 5.11 shows how each method controlled emergency vehicle traffic for 14hrs.

Since the fixed time method producing bad results and average only method fails at

3000th timestamp Figure 5.12 shows the performance comparison without the fixed

time method and the average only method for the clear comparison.

Page | 72

Figure 5.11: Average waiting time control of emergency vehicles by each method in the
testing environment

Figure 5.12: Average waiting time control of emergency vehicles by the proposed and the
statistical method in the testing environment

Page | 73

According to Figure 5.12, both the methods are performing well on emergency vehicles

because all of the methods were able to maintain the average waiting time of

emergency vehicles under four. Overall the proposed method performed well than the

statistical method.

5.3.3.2 Standard Deviation

Figure 5.13 shows how each method controlled regular vehicle traffic for 14hrs. The X-

axis is the two-minute timestamps in which the standard deviation of average waiting

time is calculated. One timestamp is the standard deviation of the average waiting time

of vehicles for two minutes. And y-axis shows the average waiting time of the vehicles.

Figure 5.13: Standard deviation control of regular vehicles by each method in the testing
environment

Figure 5.13 is very similar to Figure 5.10 that observed for average waiting time. All four

methods performed in the exact way that they performed on average waiting time. That

demonstrates the proposed method is not only reducing the average waiting time but it

also able to reduce the standard deviation of waiting times which guarantees that all

the vehicles will have a waiting time which is close to average waiting time.

Page | 74

Figure 5.14 shows how each method controlled emergency vehicle traffic for 14hrs.

Since the fixed time method producing bad results average only method fails at 3000th

timestamp Figure 5.15 shows the performance comparison without the fixed time

method and average only method.

Figure 5.14: Standard deviation control of emergency vehicles by each method in the
testing environment

Page | 75

Figure 5.15: Standard deviation control of emergency vehicles by proposed,avg only and
statistical method in the testing environment

5.3.3.3 Testing Summary

Table 5.4 shows the maximum, minimum and average of evaluation matrices of all the

four methods for the total simulation time (14 hrs).

Table 5.4: Performance summary for evaluation matrices

Evaluation matrix Proposed

method

Average only

method

Fixed time

method

Statistical

method

Maximum of regular

vehicle average waiting

time (s)

27.941 56.059 85.730 30.594

Minimum of regular

vehicle average waiting

time (s)

17.989 19.064 51.797 16.781

Page | 76

Mean of regular vehicle

average waiting

 time (s)

21.588 23.631 69.597 22.652

Maximum of emergency

vehicle average waiting

time (s)

2.31 78.31 58.545 3.55

Minimum of emergency

vehicle average waiting

time (s)

0 0 0 0

Mean of emergency

vehicle average waiting

time (s)

0.684 3.609 17.391 0.896

Maximum of regular

vehicle std of waiting

time (s)

21.270 44.457 64.388 23.092

Minimum of regular

vehicle std of waiting

time (s)

13.756 14.259 41.049 12.780

Mean of regular vehicle

std of waiting time (s) 16.579 18.026 54.326 16.938

Maximum of emergency

vehicle std of waiting

time (s)

0.16 10.99 7.7 0.26

Minimum of emergency

vehicle std of waiting

time (s)

0 0 0 0

Mean of emergency

vehicle std of waiting

time (s)

0.014 0.436 0.935 0.020

Page | 77

As summarized in Table 5.4 the proposed method outperforms all other methods on

most of the cases and all the mean cases as highlighted in the table.

5.4 Evaluation on real-world dataset

Realworld traffic volume data set is available for download which contains traffic data

around junctions in Canada [36]. Each row of the dataset contains the following

attributes.

• Intersection ID

• Intersection name

• Datetime_bin: Traffic volume is calculated for 15 min intervals

• Classification: Vehicle type

• Leg: Vehicles approaching direction

• Dir: Vehicles headed direction

• Volume: Number of vehicles observed within 15 minutes

Unfortunately, there are no emergency type vehicles in the dataset. So the evaluation

with real-world data is only possible for regular vehicles. This real-world dataset is

embedded to SUMO using a python script which converts the dataset to an XML format

that the SUMO supports. The implementation of the python script can be found in

Appendix B.

Figure 5.16 and Figure 5.18 show the average waiting time and the standard deviation

of average waiting time for each method. Since the fixed time method not performing

well Figure 5.17 and Figure 5.19 represent graphs without the fixed time method.

Page | 78

Figure 5.16: Average waiting time control on real-world data

Figure 5.17: Average waiting time control on real-world data without fixed time method

Page | 79

Figure 5.18: Standard deviation of waiting time control on real-world data

Figure 5.19: Standard deviation of waiting time control on real-world data without fixed

time method

Page | 80

Unlike synthetic data, the proposed method and average only method performed better

than the statistical method. According to Figure 5.17 and Figure 5.19 it is clear that the

proposed method was able to perform well in real-world traffic data with the help of

standard deviation of vehicle waiting times than the average only method.

Table 5.5: Performance summary for evaluation matrices on the real-world dataset

Evaluation matrix Proposed

method

Average only

method

Fixed time

method

Statistical

method

Maximum of regular

vehicle average waiting

time (s)

23.281 23.728 88.974 27.679

Minimum of regular

vehicle average waiting

time (s)

16.720 17.377 49.337 16.603

Mean of regular vehicle

average waiting

 time (s)

18.787 19.474 63.005 20.942

Maximum of regular

vehicle std of waiting

time (s)

17.689 17.681 66.957 20.751

Minimum of regular

vehicle std of waiting

time (s)

12.314 12.815 39.336 12.607

Mean of regular vehicle

std of waiting time (s) 14.101 14.394 48.737 16.041

Page | 81

According to Table 5.5 which contains the overall summary of the evaluation metrics,

Highlighted values are the matrices in which the proposed method performed better

than other methods. The statistical method was able to maintain a lower minimum

regular vehicle average waiting time than the proposed method while the average only

method was able to maintain a lower maximum of regular vehicle standard deviation of

waiting time. Apart from those two instances, the proposed method has the best

performance than the other methods including all the mean cases. From all the above

facts, it is clear that the proposed method outperforms the statistical method, average

only method and fixed time method with the help of standard deviation.

Page | 82

Chapter 6

Discussion and Conclusion

6.1 Conclusion

This research is mainly focused on evaluating the significance of considering vehicle's

standard deviation of waiting time around the junction to effectively control the traffic.

The proposed RL agent was designed with a state representation that contains the

number of vehicles, the average waiting time of vehicles, the waiting time standard

deviation of vehicles and vehicle type for each lane with the current signal phase index.

The agent's action is to select the next signal phase from the predefined traffic phase

pool which ensures the safe green signal combinations. The agent is rewarded on four

factors which are the average waiting time of regular vehicles, the average waiting time

of emergency vehicles, the standard deviation of regular vehicle waiting time and the

standard deviation of the emergency vehicle waiting time.

The proposed method is evaluated on both synthetic and real-world dataset using the

SUMO simulation environment. As against method to evaluate the proposed method, a

different version of the proposed method is implemented without considering the

standard deviation. Evaluation results have proven that by using standard deviation it

was able to minimize traffic congestion than average only method. This concludes that

considering standard deviation has a positive impact. Furthermore, both RL methods

Page | 83

were able to outperform the statistical method and the fixed time method on the real-

world dataset.

The second main research question is a way to provide emergency facilitation. For that,

the vehicle type is embedded in state representation and it has shown that the proposed

method was capable of prioritizing emergency vehicles and approximate emergency

vehicle waiting time to zero while the method which is not considering the vehicle type

has not performed well. Which concludes considering the type of vehicle has a

significant value.

The third research question is a way to use standard deviation for effectively rewarding

the agent. Result evaluation has stated that the proposed agent was able to learn well

and outperform the other methods with the help of the proposed reward function which

considers both the average waiting time and the standard deviation when rewarding

the agent.

6.2 Limitations

The proposed method failed to maintain a lower maximum of the standard deviation of

the regular vehicle waiting time when compared to the average only method on the real-

world dataset. More training and expanding the DQN hidden layers can be a solution to

this limitation. The learning of the agent to prioritize the emergency vehicles is a slow

process since the arrival of an emergency vehicle to the junction is a rare case. This can

be solved using the prioritized experience replay which pays more attention to the

important experiences.

6.3 Future Work

When come to real-world the coordination between traffic junctions will be important

for global traffic congestion minimization. Therefore a coordinated multi-agent scenario

can be explored considering standard deviation with emergency facilitation.

Furthermore, there can be more useful information to represent the traffic state such

as vehicle position and velocity. But when considering those types of information one

Page | 84

should pay attention to whether that information is efficiently capturable or not.

Treating intelligent traffic light control as a sequence problem is another area of

exploration where one can use a sequence of traffic states as the input to the agent.

Though the model uses the congestion level of the outgoing lane when making a signal

change, it is not tested on those kinds of traffic conditions where the outgoing lane is

congested. Training and testing agents on those traffic conditions will add a novel

contribution to the domain. The model-free Reinforcement Learning is another type of

RL which does not need to model the transition function (non-deterministic state

transition) and the reward function. Evaluating the Effectiveness of standard deviation

with a model-free RL agent is another area to explore.

Page | 85

References

[1] Richard S Sutton, Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT
press.

[2] R. Bellman, “A markovian decision process,” tech. rep., DTIC Document, 1957.

[3] Obadah M.A Ayesh, Venus W. Samawi, and Jehad Q. Alnihoud.”Traffic light control
utilizing queue length”.Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

[4] M. H. A. Ilmudin, N. M. Z. Hashim, A. S. Ja’afar, A. Salleh, A. Jaafar, M. F. M. Sam.”Traffic
Light Control System using 434 MHz Radio Frequency”.2014.

[5] Malik Tubaishat, Yi Shang and Hongchi Shi.”Adaptive Traffic Light Control with
Wireless Sensor Networks”.2007.

[6] S. Mikami and Y. Kakazu, “Genetic reinforcement learning for cooperative traffic signal
control,” in Evolutionary Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on. IEEE, 1994, pp. 223–228.

[7] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement learning for true adaptive
traffic signal control,” Journal of Transportation Engineering, vol. 129, no. 3, pp. 278–
285, May 2003.

[8] Y. K. Chin, N. Bolong, A. Kiring, S. S. Yang, and K. T. K. Teo, “Q-learning based traffic
optimization in management of signal timing plan,” International Journal of
Simulation, Systems, Science & Technology, vol. 12, no. 3, pp. 29–35, June 2011.

[9] I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-based multi-agent
system for network traffic signal control,” IET Intelligent Transport Systems, vol. 4,
no. 2, pp. 128–135, June 2010.

[10] P. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control using
reinforcement learning agents,” IET Intelligent Transport Systems, vol. 4, no. 3, pp.
177–188, September 2010.

[11] Xiaoyuan Liang, Xusheng Du, Guiling Wang, Zhu Han.”Deep Reinforcement Learning
for Traffic Light Control in Vehicular Networks”.2018.

Page | 86

[12] Ying Liu, Lei Liu, Wei-Peng,“Intelligent Traffic Light Control Using Distributed Multi-
agent Q Learning” Chen Fujitsu Laboratories of America, Inc., Sunnyvale, CA, USA
Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ, USA
2017.

[13] S.T.Rakkesh, A.Ruvan Weerasinghe, R.A.Chaminda Ranasinghe.“Traffic Light
Optimization Solutions using Multimodal,Distributed and Adaptive Approaches”.
International Conference on Advances in ICT for Emerging Regions (ICTer) 2015 .

[14] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. IntelliLight: A
Reinforcement Learning Approach for Intelligent Traffic Light Control. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD). 2496–2505.

[15] Mohammad Aslani, Mohammad Saadi Mesgari, and Marco Wiering. 2017. Adaptive
traffic signal control with actor-critic methods in a real-world traffic network with
different traffic disruption events. Transportation Research Part C: Emerging
Technologies 85 (2017), 732–752.

[16] Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. 2013. Multiagent
reinforcement learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC): methodology and large-scale application on downtown Toronto.
IEEE Transactions on Intelligent Transportation Systems 14, 3 (2013), 1140–1150.

[17] Noe Casas. 2017. Deep deterministic policy gradient for urban traffic light control.
arXiv preprint arXiv:1703.09035 (2017).

[18] Van der Pol et al. 2016. Coordinated Deep Reinforcement Learners for Traffic Light
Control. NIPS.

[19] Bram Bakker, Shimon Whiteson, Leon Kester, and Frans CA Groen. 2010. Traffic light
control by multiagent reinforcement learning systems. In Interactive Collaborative
Information Systems. Springer, 475–510.

[20] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. 2019. Multi-Agent Deep
Reinforcement Learning for Large-scale Traffic Signal Control.

[21] Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa, and Takayoshi Yoshimura. 2018.
Traffic Signal Control Based on Reinforcement Learning with Graph Convolutional
Neural Nets. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 877–883.

Page | 87

[22] Patrick Mannion, Jim Duggan, and Enda Howley. 2016. An experimental review of
reinforcement learning algorithms for adaptive traffic signal control. In Autonomic
Road Transport Support Systems. Springer, 47–66.

[23] Jirı Iša, Julian Kooij, Rogier Koppejan, and Lior Kuijer. 2006. Reinforcement learning of
traffic light controllers adapting to accidents. Design and Organisation of Autonomous
Systems (2006), 1–14.

[24] Lun-Hui Xu, Xin-Hai Xia, and Qiang Luo. 2013. The study of reinforcement learning for
traffic self-adaptive control under multiagent markov game environment.
Mathematical Problems in Engineering 2013 (2013).

[25] S. Chiu and S. Chand, “Adaptive traffic signal control using fuzzy logic,” in The First
IEEE Regional Conference on Aerospace Control Systems, April 1993, pp. 1371–1376.

[26] B. De Schutter, “Optimal traffic light control for a single intersection,” in American
Control Conference, vol. 3, June 1999, pp. 2195–2199.

[27] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[28] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li “Multi-Agent Deep
Reinforcement Learning for Large-scale Traffic Signal Control” 2019.

[29] Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa and Takayoshi Yoshimura, “Traffic
Signal Control Based on Reinforcement Learning with Graph Convolutional Neural
Nets”. 2018 21st International Conference on Intelligent Transportation Systems
(ITSC).

[30] D. Krajzewicz, M. Bonert, and P. Wagner, “The open source traffic simulation package
SUMO,” RoboCup 2006 Infrastructure Simulation Competition, 2006.

[31] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and M. C. Royle, “The SCOOT on-line traffic
signal optimization technique,” Traffic Engineering & Control, vol. 23, no. 4, 1982.

[32] J. Y. K. Luk, “Two traffic-responsive area traffic control methods: SCAT and SCOOT,”
Traffic engineering & control, vol. 25, no. 1, pp. 14–22, 1984.

[33] N. H. Gartner, Demand-responsive Decentralized Urban Traffic Control. US
Department of Transportation, Research and Special Programs Administration, 1982.

Page | 88

[34] J.-J. Henry, J.-L. Farges, and J. Tuffal, “The PRODYN real time traffic algorithm,” in
Proceedings of the IFAC/IFIPI/FORS Conference On Control, 1984.

[35] Hua Wei, Guanjie Zheng, Vikash Gayah, Zhenhui Li “A Survey on Traffic Signal Control

Methods”, arXiv:1904.08117.

[36] Toronto Open Data Team 2018. King St. Transit Pilot−Detailed Traffic & Pedestrian
Volumes. https://open.toronto.ca/dataset/king-st-transit-pilot-detailed-traffic-
pedestrian-volumes/

[37] Dunhao Zhong and Azzedine Boukerche. (2019). Traffic Signal Control Using Deep

Reinforcement Learning with Multiple Resources of Rewards. 23-28.
10.1145/3345860.3361522.

[38] Potdar, Kedar & Pardawala, Taher & Pai, Chinmay. (2017). A Comparative Study of

Categorical Variable Encoding Techniques for Neural Network Classifiers.
International Journal of Computer Applications. 175. 7-9. 10.5120/ijca2017915495.

[39] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction.

[40] Yuxi Li, Deep Reinforcement Learning: An Overview, arXiv:1701.07274v6 [cs.LG] 26

Nov 2018.

[41] Arnold, Ludovic & Rebecchi, Sébastien & Chevallier, Sylvain & Paugam-Moisy, Hélène.
(2011). An Introduction to Deep Learning. Proceedings of the European Symposium
of Artificial Neural Network, ESANN2011. 1. 477-488.

[42] L-J LIN. “Reinforcement Learning for Robots Using Neural Networks”. In: Ph.D.

thesis, Carnegie Mellon University (1993).

[43] Volodymyr Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I.
Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518 (7540):529–533, 2015.

[44] Hado van Hasselt and Arthur Guez and David Silver Google DeepMind. Deep

Reinforcement Learning with Double Q-learning 2015.

[45] Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic Optimization.

https://open.toronto.ca/dataset/king-st-transit-pilot-detailed-traffic-pedestrian-volumes/
https://open.toronto.ca/dataset/king-st-transit-pilot-detailed-traffic-pedestrian-volumes/
https://arxiv.org/search/cs?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/cs?searchtype=author&query=Ba%2C+J

Page | 89

[46] Kalyan Das1, Jiming Jiang2and J. N. K. Rao. MEAN SQUARED ERROR OF EMPIRICAL
PREDICTOR.

[47] Abien Fred M. Agarap. Deep Learning using Rectified Linear Units (ReLU).
arXiv:1803.08375v2.

[48] B. Zhou, J. Cao, X. Zeng and H. Wu, "Adaptive Traffic Light Control in Wireless Sensor

Network-Based Intelligent Transportation System," 2010 IEEE 72nd Vehicular
Technology Conference - Fall, Ottawa, ON, 2010, pp. 1-5.

Page | 90

Appendix A: Figures
Figure A.1-A.4 represents the enlarged versions of Figure 5.3, Figure 5.4, Figure 5.5,
Figure 5.6.

Figure A.1: Regular vehicle average waiting time for different K and Z values starting from

3000 for the x-axis

Figure A.2: Emergency vehicle average waiting time for different K and Z values starting

from 3000 for the x-axis

Page | 91

Figure A.3: Regular vehicle standard deviation of average waiting time for different K and Z
values starting from 3000 for the x-axis

Figure A.4 Emergency vehicle standard deviation of average waiting time for different K

and Z values starting from 3000 for the x-axis

Page | 92

Figure A.5 represents how all the four methods were able to gain the reward with the
learning. Since the is no learning for statistical method and fixed time method they
were not able to improve the reward while the reinforcement learning method does.
The proposed method was able to get a higher reward than the average only method
with time.

Figure A.5: Reward gain for each method with the training

Page | 93

Appendix B: RealWorld Data Plugging to
SUMO
Used pandas and LXML etree libraries to build the XML rout file with the real-world
data file. Since the data file contains a large amount of data, only the first 510 rows
are taken to build the XML file.

Page | 94

Page | 95

Page | 96

Appendix C: Implementation of Vehicle
Detection API

Page | 97

Page | 98

Page | 99

Figure C.1 shows how the Canny edge detector was able to detect roads.

Figure C.1: Road edge detection using canny edge detector

Figure C.2 shows that the identified vehicles are marked using a boundary box. It also
contains the type of the vehicle and the confidence. Since this is the first attempt
algorithm, some vehicles are not detected.

Page | 100

Figure C.2: Identified vehicles are marked using boundary box

	Declaration
	Abstract
	Preface
	Acknowledgment
	Table of Contents
	List of Figures
	Chapter 1
	1.1 Background Theories
	1.1.1 Reinforcement Learning
	1.1.2 Exploration vs Exploitation
	1.1.3 Policies
	1.1.4 State-Value Function
	1.1.5 Action-Value Function
	1.1.6 Bellman Optimality Equation

	1.2 Why Reinforcement Learning?
	1.3 Research Problem
	1.4 Research Questions
	1.5 Justification for the research
	1.6 Research Goals and Objectives
	1.7 Delimitations of Scope
	1.8 Research Assumptions
	1.9 Methodology
	1.10 Outline of the Dissertation

	Chapter 2
	2.1 State Definitions
	2.2 Reward Functions
	2.3 Action Definitions
	2.4 Existing Systems
	2.5 Synopsis

	Chapter 3
	3.1 Valid States of Traffic Light
	3.2 Proposed Method
	3.2.1 State Representation
	3.2.2 Action Representation
	3.2.3 Reward Design
	3.2.4 Deep Q-Network Design
	3.2.5 Experience Replay
	3.2.5.1 Advantages of Experience Replay

	3.2.6 Learning the Optimal Policy
	3.2.7 Fixed Q-Targets
	3.2.8 Double Q-learning
	3.2.9 Exploration Vs Exploitation Tradeoff
	3.2.10 High-Level Architecture

	3.3 Average Only Method
	3.3.1 State Representation
	3.3.2 Reward Design
	3.3.3 Deep Q-Network Design

	3.4 Statistical Method
	3.5 Fixed Time Method

	Chapter 4
	4.1 Configuration of SUMO
	4.2 Traci (Traffic Control Interface)
	4.3 Implementation of the Proposed Method
	4.3.1 Vehicle class
	4.3.2 Sumo Class
	4.3.3 DQN Class
	4.3.4 Replay Memory Class
	4.3.5 Agent Class
	4.3.6 Hyperparameter Settings
	4.3.7 Main Function

	4.4 Implementation of the Average Only Method
	4.5 Implementation of the Statistical Method
	4.6 Implementation of the Fixed Time Method
	4.7 Implementation of vehicle detection API

	Chapter 5
	5.1 Evaluation Model
	5.2 Evaluation Metrics
	5.3 Evaluation With Synthetic Dataset
	5.3.1 Evaluation For Different K’s and Z’s
	5.3.2 Training Evaluation
	5.3.3 Testing Evaluation
	5.3.3.1 Average Waiting Time
	5.3.3.2 Standard Deviation
	5.3.3.3 Testing Summary

	5.4 Evaluation on real-world dataset

	Chapter 6
	6.1 Conclusion
	6.2 Limitations
	6.3 Future Work

	References
	Appendix A: Figures
	Appendix B: RealWorld Data Plugging to SUMO
	Appendix C: Implementation of Vehicle Detection API

