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Abstract 
 
 

 In the domain of intelligent traffic light control, which real-time traffic data to consider 

has a huge impact on the efficiency and performance of the traffic light control system. 

The rewards and state representations used in previous studies can mislead the agent 

in some cases. 

 This paper examines those problems and proposes a solution using the standard 

deviation of the vehicle waiting time. Existing studies have not yet provided emergency 

facilitation. This paper proposes a method that provides emergency facilitation. 

 The proposed method is self-evaluated with another version of the proposed method 

under both synthetic and real-world data, and it has proven that consideration of 

standard deviation has a significant impact on performance. The proposed method is 

also evaluated with a statistical method and a fixed time and has outperformed both of 

them. Buy considering vehicle type it was able to approximate the emergency vehicle 

waiting time to zero which was initialy at 20s when starting the training. With the help 

of standard deviation of waiting time, It was able to approximate the regular vehicle 

waiting time to 21s which was initialy at 60s when starting the training. The proposed 

method was able to  record 21.588s of average waiting time of regular vehicles at the 

testing phase outperforming against methods. 
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Preface 
 

This research is mainly focused on two novel aims. First one is to evaluate the impact of 
considering the standard deviation of vehicle waiting times when making a signal 
change. The concept of considering standard deviation was solely my own intuition and 
has not been proposed by any other researcher. The second novel idea is providing 
emergency facilitation while minimizing traffic congestion. As of my knowledge, no 
previous work has considered emergency facilitation. 
 
Design and implementation in chapter 3 and 4 of the proposed method and other 
methods which are used to evaluate the proposed method are entirely my work except 
the statistical method used to evaluate the proposed method is proposed by a previous 
work. 
 
The results of chapter five rely upon a simulation environment (SUMO) which is 
implemented in a previous work. The training and evaluation are carried out by myself 
with my supervisor and co-supervisor. 
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Chapter 1 
Introduction 

The inefficient traffic light control causes congestion at the junctions as observed in 

everyday life. This will lead to a huge wastage of time, money, pollution of air, pollution 

of sound and even vehicle accidents. Existing traffic light control systems are explicitly 

programmed based on historical information without considering the real-time traffic. 

Also, we often see emergency vehicles (ex: ambulance) are stuck in traffic and the 

patient's life depending on the traffic lights. Though this is a huge problem no previous 

work considered the emergency vehicle facilitation with traffic congestion control. 

Worst case is when there is low traffic with no vehicle passing through the intersection, 

all waiting for their turn because of the explicitly programmed traffic light control 

without considering the real-time traffic. 

We often witness policemen directly manage the intersection by hand signals. Most of 

the time this human operator can see the real-time traffic condition in the intersecting 

roads and smartly determine the duration of the allowed passing time for each direction 

using his/her long-term experience. But it is not practical to assign a policeman to every 

junction all the time. This witness motivates us to propose a smart traffic light control 

system which can take real-time traffic condition as input and manage the intersection 

just like the human operator. 
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1.1 Background Theories 

Real-world traffic condition evolves in a complicated way, affected by many factors: 

• Vehicle arrival rate 

• Road conditions 

• Weather 

• Driver’s preference 

All of these things cannot be represented in a user-defined algorithm or from a traffic 

model. Techniques which can directly learn from the observed data without making 

unrealistic assumptions is needed. 

 Reinforcement Learning 

Reinforcement learning (RL) [39] is an area of machine learning that focuses on how 

something might act in an environment to maximize some given reward. It is a trial and 

error method which will learn from the observations and learn from mistakes. The 

ultimate goal of a reinforcement learning agent is to learn an optimal policy function [1]. 

A reinforcement learning algorithm is modeled by a concept called Markov Decision 

Processes (MDPs) [2]. 

In MDPs there are 5 main components [39] 

• Set of states’ S 

• Set of actions A 

• State transition function P 

• Reward function R 

• Discount rate ℽ 
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S: At time step t, the agent observes the state of the environment st∈ S. 

A, P: At time step t, the agent takes an action 𝑎𝑡 ∈ A, which will introduce a state 

transition in the environment according to the state transition function. 

 

P (𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡): S × A → S 

 

R: At time step t+1, the agent obtains a reward 𝑟𝑡+1 from a reward function by executing 

action 𝑎𝑡∈ A, in state  𝑠𝑡∈ S and moving to the state 𝑠𝑡+1∈ S. 

 

R (𝑠𝑡, 𝑎𝑡): S × A → R 

 

γ: The goal of an agent is to find an optimal policy that maximizes the expected return 

G, which is the discounted sum of all the rewards that the agent gets. So the γ will be a 

value between 0-1 and usually, it is chosen close to 1: 

G = ∑ 𝜸𝒊𝒓𝒕+𝟏𝒛
𝒊 = 𝟎    where z can be infinite or finite. 

Figure 1.0.1  illustrates the basic idea of reinforcement learning. 

 

 

Figure 1.0.1: High-level Idea of RL 
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 Exploration vs Exploitation 

There are two ways of agent selecting an action 𝑎𝑡 ∈ A, by observing the state 𝑠𝑡∈ S. 

Agent will either explore the environment by taking random action 𝑎𝑡  ∈ A or exploit the 

environment by taking action 𝑎𝑡  ∈ A according to a learned policy [39]. 

 Policies 

When speaking about policies, formally we say that an agent “follows a policy.” For 

example, if an agent follows policy π at time t, then π(a|s) is the probability that 𝑎𝑡= a 

when 𝑠𝑡= s. This means that, at time t, under policy π, the probability of taking action a 

in state s is π(a|s). The policy can be represented as a state-value function or an action-

value function [39]. 

 State-Value Function 

State-value function (V π ) defines how good it is for an agent to be in any given state 

s∈ S. That is the discounted expected return from starting from state s at time t=k and 

following policy π thereafter [39]. 

 

 Action-Value Function 

Action-value function (𝑄𝜋)  defines how good it is for an agent who is in state  s∈ S to 

take action a ∈ A. That is the discounted expected return by taking action a in state s 

and following policy π thereafter [39]. 
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 Bellman Optimality Equation 

Bellman optimality equation is considered as the heart of any reinforcement learning 

algorithm [2]. It is used to find an optimal policy function. In other words optimal action-

value function (Q*(s,a) ) and optimal state-value function (V*(s)). 

Bellman Optimality Equation For Q* 

 

This means that, for any state-action pair (s, a) at time t, the expected return from 

starting in state s∈ S, selecting action a ∈ A  and following the optimal policy thereafter 

(aka the Q-value of this pair) is going to be the expected reward the agent can get from 

taking action a in state s, which is r t+1,  plus the maximum expected discounted return 

that can be achieved from any possible next state-action pair ( s|, a|).  

1.2 Why Reinforcement Learning? 

To apply a traffic model, we need to differentiate between good and bad signal plans 

given a traffic condition. But the signal plan is always relative and nature of traffic is hard 

to model (depends on the weather, road condition, driver’s performance, day, time, 

season) so we cannot define such signal plans. Also, we do not have such a big amount 

of training data to train with. Instead, we have to first take action to change the signal 

plans and then learn from the outcomes. This trial-and-error approach is also the core 

idea of Reinforcement Learning (RL). 

 

1.3 Research Problem 

How do we efficiently control traffic lights to minimize traffic congestion with 

emergency facilitation using real-time traffic data? 
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1.4 Research Questions 

1) Does the standard deviation of vehicle waiting time distribution has a significant 

impact on traffic congestion control? (This will be further explained in section 

1.5)  

2) Does consideration of vehicle type can provide emergency facilitation?. 

1.5 Justification for the research 

Intelligent traffic light control is a vast area of research. Though there are many 

solutions proposed no one paid attention to emergency facilitation which is a very 

critical need for intelligent traffic light control. Though this is a less frequent situation, 

no intelligent traffic light control system is useful if it cannot adapt in a life-critical 

scenario. There is a previous research to prioritize emergency vehicles but their primary 

target is only to prioritize emergency vehicles, not to control traffic congestion [4]. So, 

this research will take the vehicle type as an input and adapt the traffic light in such a 

scenario and provide traffic congestion control with emergency facilitation. 

Learning an optimal policy is a very challenging thing, hence a way of rewarding a 

reinforcement learning agent is the most critical part. Poor reward functions can lead 

the agent to learn poor policy functions. For examples consider the following traffic 

state representation of vehicle waiting time. 

State 1 : vehicle 1 -  50s vehicle 2 - 5s  vehicle 3 - 5s 

State 2: vehicle 1- 20s vehicle 2-20s  vehicle 3 - 20s 

Most of the previous works have considered only the average waiting time of vehicles 

when rewarding the agent. Though the state one is better than state two, both the 

above states have the same reward because the average waiting time of vehicles is 20 

in both cases. 
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Some other works have considered queue length, vehicle speed but queue length and 

speed will also be the same for both the states.  

The simplest solution for this issue is to consider the maximum waiting time of vehicles 

when rewarding the agent but it will raise other issues. Consider the following example. 

State 1 : vehicle 1 -  50s vehicle 2 - 50s  vehicle 3 - 50s 

State 2: vehicle 1- 50s vehicle 2-20s  vehicle 3 - 10s 

Though state 2 is better than state 1 the reward is the same for both the states if we 

consider maximum waiting time which is again not correct. 

So to overcome this issue we consider average waiting time and the standard deviation 

of waiting times of the vehicles together to reward the agent. This is very similar to 

feature engineering in machine learning where a new feature is derived from doing 

mathematical operations to an existing feature. This will be further discussed in section 

3.2.1. 

For an agent to make decisions the state representation should contain all the 

necessary information about the traffic state. But that information should be easily and 

accurately measurable and should have a well-connected relationship with decision 

making. So in this research, we will use only the consequential traffic data to 

consideration. 

Finally, innovations in RL such as dueling networks, experience replay, the double 

network is not applied in the field. According to the literature review, there is only one 

such research [11]. Therefore, this research will address all of the above mentioned 

major research gaps. 
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1.6 Research Goals and Objectives 

• Goals 

o Evaluate the effectiveness of considering the standard deviation 

o Minimize traffic congestion 

o Facilitating emergency transportation 

• Objectives 

o Build two versions of the agent with and without standard deviation to 

evaluate the effectiveness of considering standard deviation. 

o Identifying optimal policy function to reduce traffic. 

o Use the type of vehicles when making a decision to provide emergency 

facilitation. 

 

1.7 Delimitations of Scope 

• In Scope 

o Design and development prototype of the proposed method 

o Facilitating emergency transportation 

o Experiments and evaluations using the simulation environment (SUMO) 

• Out Scope 

o Taking the real environment inputs by using cameras and sensors 

o Multiple junction environment 

 

1.8 Research Assumptions 

The Local solution to the problem will achieve the global solution. 
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1.9 Methodology 

Since this domain is a well-explored research area [35] the first step of this research 

will be doing a deep literature review and compare how previous works handled the 

problem and identify the research gap. Finding a good simulation environment will be 

the next step of the methodology. The third step is to design and implement the 

proposed method and finally evaluate the proposed method with synthetic data as well 

as the real-world data. The evaluation step will consist of evaluating with normal traffic 

conditions, rush hours, low traffic and emergencies as well. The evaluation also consists 

of evaluating the proposed method with fixed time traffic control and with a user-

defined traffic model. 

• This research will be using a deductive approach 
 
• Quantitative data: (this will be further explained in section 3) 

 
o Waiting time of a vehicle 

o Route of the vehicle 

o The standard deviation of waiting time 

o Number of vehicles 

o Phase index of the traffic light 
 

• Qualitative data: 

o Type of a vehicle 

Figure 1.0.2 represents the proposed research methodology. 
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Figure 1.0.2: Proposed research methodology 

1.10 Outline of the Dissertation 

This dissertation outlined as follows. Chapter one states the introduction and 

background theories. Chapter two contains in-depth literature review about the domain 

which contains how previous works have addressed the RL components. The third 

Chapter states the design of the proposed methods and other methods which are used 

to evaluate the proposed method. Chapter four contains all the implementation details, 

hyperparameter settings used to implement the proposed method. Chapter five states 

the simulation settings, training, and evaluation of the proposed method and result 

analysis. The Last chapter, demonstrates the conclusion of the research, limitations and 

future work. 
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Chapter 2  
 

Literature Review 
 

Early studies on adaptive traffic control is based on simpler algorithms such as linear 

programming [18], fuzzy logic [17] etc. concerning the computing power at that era.  In 

2014 Obadah M.A Ayesh, et al. [3] have proposed a method by using the queue length 

and they suggested an equation to find out the estimated time and actual time to 

determine the estimated time reference for optic Green. But it was found that the queue 

length approach needs approximately 11.0849 seconds to make a decision. 

Another work was done in 2014 for prioritizing emergency vehicles by using Radio 

Frequency [4]. But they have only targeted on emergency facilitation.  

Malik Tubaishat, et al. proposed a method using wireless sensor networks in 2007[5] 

where sensors are deployed on the lanes going in and out the intersection to detect the 

vehicle ’s number, speed, etc. But these methods are very costly and inefficient. 

The application of AI to control traffic lights has been an active field of research since 

1990. The most popular method of AI is machine learning. Machine learning provides 

systems the ability to learn and improve from examples without being explicitly 

programmed. 

In 1994 Mikami, et al. [6] proposed distributed reinforcement learning using a genetic 

algorithm to control traffic lights. Due to the limitations of computational power, it could 

not be implemented at that time. 



Page | 12  
 

Until 2010 RL technique is limited to tabular Q learning [27] where they usually make 

small size state spaces such as the number of waiting vehicles at a given time [7], [8], 

[9], [10]. 

A study by applying Deep Reinforcement Learning was in 2018 by Xiaoyuan Liang, et al. 
[11]. They proposed a double dueling deep Q network (3DQN) with prioritized experience 

replay. They have defined the states like a grid-based on two pieces of information, 

position and speed of vehicles at an intersection. the action space is defined by selecting 

every phase’s duration in the next cycle. rewards as the change of the cumulative 

waiting time between two neighboring cycles and they have used Adams optimizer as 

the optimizer for the deep Q-Network. They conclude that their method can reduce over 

20% of the average waiting time compared to the waiting time of a vehicle when training 

starts. But in this research, they hadn't reflected how long a vehicle had been waiting in 

the queue at the state definition which will be very important when making a signal 

change. 

Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) is also applied 

in this field [28],[11], Tomoki Nishi et all.  Proposed a method using Graph Convolutional 

Neural Networks (GCNN). The authors conclude that the proposed method is able to 

learn the policy twice as fast as regular Fully Connected Neural Network (FCNN) [29]. 

Also, there are some previous works based on Swarm Intelligence [13]. 

Many researchers are using RL to control traffic congestion. Below is the summary of 

how other researchers have defined the basic components of RL for traffic signal 

control. 
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2.1 State Definitions 

State definition defines how to represent the traffic state to the RL agent. Table 2.1 

 Table 2.1: State Definitions 

Element Previous work 

Queue length Wei et al. 2018 [14], Aslani et al. 2017 [15], Mannion et al. 

2016 [22] 

Waiting time Wei et al 2018 [14], Chu et al. 2019 [20] 

Volume Wei et al 2018 [14], Aslani et al. 2017 [15], Casas 2017 

[17] 

Delay Arel et al. 2010 [9] 

Speed Liang et al 2018 [11], El-Tantawy et al. 2013 [16], Casas 

2017 [17] 

Phase duration van der Pol et al. 2016 [18], El-Tantawy et al. 2013 [16] 

Congestion Bakker et al. 2010 [19], Iša et al. 2006 [23] 

Position of 

vehicles 

van der Pol et al. 2016 [18], Wei et al. 2018 [14], Liang et 

al 2018 [11], Bakker et al. 2010 [19] 

Phase 

 

Aslani et al. 2017, 2018b; El-Tantawyet al. 2013, Wei et al. 

2018 [14] 

 

Queue length: Queue length calculated concerning the lane which is the number of 

waiting vehicles on the lane. There are different definitions of a "waiting" state of a 

vehicle. In [14], a vehicle with a speed of less than 0.1 m/s. is considered as waiting; in 

[19], a vehicle without movement is considered as waiting. 

Waiting time: How long a vehicle been waiting. As mentioned above there are different 

definitions of waiting state. The starting point of the waiting time is also having different 

definitions: in [18],[14], they consider the waiting time starting from the last timestamp 
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the vehicle moved, while [11] consider the waiting time from the time the vehicle enters 

the road network. 

Volume: number of vehicles on the lane within a given radius. 

Delay: Delay of a vehicle is defined as the time taken by a vehicle to pass through the 

junction minus the normal travel time (which equals the distance divided by the speed 

limit). 

Phase duration: Phase duration of the current phase is defined as how long the current 

phase has lasted. 

Speed: vehicle moving speed is also considered in previous studies. However, it is 

inefficient and computationally expensive to measure and calculate the speed of each 

vehicle in practical. 

Congestion: Some studies take the congestion of the outgoing lane into account for 

effective learning for the cases of congestion and no congestion. This is very useful for 

Srilankan Context. The congestion of a lane can be defined either as an indicator (0 for 

no congestion and 1 for congestion) or the level of congestion which is equal to the 

number of vehicles divided by the maximum allowed vehicles on the lane. 

Positions of vehicles: Some studies represent the positions of vehicles in a grid-like 

structure and pass is through a CNN to recognize the traffic pattern. A matrix is used to 

represent the grid and 0 indicates no vehicle in that grid and 1 indicated the presence of 

vehicle [11], [14], [18]. 

Phase: Traffic signal combination index [14], [18]. 

Some recent studies such as [14], [18]. propose to use images as states. However, 

these methods will take a longer time to train and because of the higher dimension of 

the input, there will be a huge number of zero observations. 
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2.2 Reward Functions 

Table 2.2 contains the summary and the comparison of reward functions proposed in 

previous works 

Table 2.2: Reward Functions 

Element Previous work 

Queue length Wei et al 2018 [14], Aslani et al. 2017 [15] ,van der Pol 

et al. 2016 [18], Mannion et al. 2016 [22] 

Waiting time Liang et al 2018 [11], Bakker et al. 2010 [19], Chu et 

al. 2019 [20], Mannion et al. 2016 [22], Nishi et al. 

2018 [21] ,van der Pol et al. 2016 [18], Wei 

et al. 2018 [14], Xu et al. 2013 [24] 

Speed Casas 2017 [17], van der Pol et al. 2016 [18], Wei et 

al. 2018 [14] 

Number of stops van der Pol et al 2016 [18] 

Throughput Aslani et al. 2017 [15], Wei et al. 2018 [14], Xu 

et al. 2013 [24] 

Frequency of signal 

change 

Wei et al. 2018 [14] 

Accident avoidance Van der Pol et al. 2016 [18] 

 

Queue length: lower the queue length, higher the reward to the agent. 

Speed. A reward that takes the average speed of all vehicles in the road. A higher 

average speed of vehicles in the road network indicates the vehicles travel to their 

destinations faster. Higher the speed Higher the reward. 
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The number of stops. A reward can use the average number of stops of all vehicles in 

the network. Intuitively, the smaller the number of stops, the more smoothly the traffic 

moves. 

Throughput. The throughput is defined as the total number of vehicles that pass the 

intersection or leave the network during a certain time interval after the last action.  

Frequency of signal change. The frequency of signal change is defined as the number of 

times the signal changes during a certain time period. Intuitively, the learned policy 

should not lead to flickering, i.e. changing the traffic signal frequently, as the effective 

green time for vehicles to pass through the intersection might be reduced. 

Accident avoidance. Some studies have special considerations on accident avoidance. 

For example, there should not be many emergency stops. Furthermore, jams or would-

be collisions should be prevented. 

2.3 Action Definitions 

Table 2.3 contains the summary and the comparison of action definitions proposed in 

previous works 

Table 2.3: Action Definitions 

Element Previous work 

Set the current phase 

duration 

Aslani et al. 2017 [15], Xu et al. 2013 [24] 

Set cycle-based phase 

ratio 

Liang et al 2018 [11], Casas 2017 [17] 

Keep or change the 

current phase 

van der Pol et al. 2016 [18] Wei 

et al. 2018 [14], Mannion et al. 2016 [22] 
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Choose next phase Chu et al. 2019 [20], El-Tantawy et al. 2013 [16], 

Nishi et al. 2018 [21], Arel et al. 2010 [9], Bakker et 

al. 2010 [19] 

 

• Set the current phase duration. Here, the agent learns to set the duration for the 

current phase by choosing from pre-defined candidate time periods. 

• Set cycle-based phase ratio. Here, the action is defined as the phase split ratio that 

the signal will set for the next cycle. In these types of methods, the total cycle length is 

defined to be fixed and action is to select a phase ratio from a pre-defined set of 

candidate phase ratios. 

• Keep or change the current phase. Here, an action is represented as a binary number 

which indicates the agent decides to keep the current phase or change to the next phase 

in a cycle-based phase sequence. 

• Choose the next phase. Decide which phase to change in a variable phase sequence, 

in which the phase sequence is not predetermined. Here, the action is the phase index 

that should be taken next. As a result, this kind of signal timing is more flexible, and the 

agent is learning to select a phase to change to, without assumptions that the signal 

would change cyclically. 

2.4 Existing Systems 

• SCATS(Sydney Coordinated Adaptive Traffic System) installed at about 42,000 

intersections in over 40 countries [32]. 

• SCOOT(Split Cycle Offset Optimisation Technique) [31]. 

They are using real-time traffic data to make decisions but both of them are developer-

defined traffic signal plans. 

OPAC [33] and PRODYN [34] are some other similar solutions but due to their 

complexity, they are less popular. 



Page | 18  
 

2.5 Synopsis 

This chapter mainly focused on how earlier researchers proposed solutions on this 

domain. This chapter encompasses two parts, firstly it briefly describes solutions 

without reinforcement learning and as the next part, it contains the summary and 

comparisons of other proposed methods on reinforcement learning over more than 

twenty papers. The comparison compares how the main components of reinforcement 

learning (States, Actions, Rewards) are defined in previous studies. Finally, it mentions 

existing systems on the domain.  
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Chapter 3  

Design 

This chapter will elaborate on the design of the proposed method and the other three 

methods (avg only method, statistical method, fixed time method) which are used to 

compare and contrast the proposed method.  

As the first part of the research design, a four-way junction with three incoming traffic 

tracks (left turn, right turn, direct track) and one outgoing lane for each road is designed. 

Figure 3.1 shows the overview of the four-way junction. 

 

Figure 3.1: Overview of the four-way junction 
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3.1 Valid States of Traffic Light 

Combination of signals which will allow vehicles to pass over intersection without 

conflict is a valid state. 

Traffic lights should always be one of these valid states. To be clear Figure 3.2 represents 

a hand drawing of an invalid state. 
 
 

Altogether 8 such valid states are defined as shown in Figure 3.3 Green lines are the 

directions that the vehicles are allowed to pass through the junction in that state. Red 

lines are the directions that the vehicles are not allowed to pass through the junction in 

that state. 

Figure 3.2 : Hand drawing of an invalid state Figure 3.2: Hand drawing of an invalid state 
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Figure 3.3: Eight valid States 

 

There will be a yellow state between every two states to avoid emergency braking and 

ensure safety. ( 

Figure 3.4) 
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Figure 3.4: Yellow state between each two valid states 

 

3.2 Proposed Method 

This section will elaborate on the design of each component of the proposed method. In 

generic, the agent will observe the current traffic environment(state) and it will take 

necessary action (signal change) using a deep q-network which is a deep neural 

network. Then the agent will be rewarded on how it was able to minimize the traffic 

congestion and how it was able to prioritize emergency vehicles. After that by using the 

Bellman optimality equation (section 1.1.6) weights of the neural network will be 

updated to obtain the optimal action-value function (section1.1.5). Figure 3.5 

represents the Generic working of the proposed method. 
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Figure 3.5: Generic working of the proposed method 

Throughout this section, state representation, action representation, reward design, 

DQN design of the proposed method will be discussed. 

 State Representation 

Realtime traffic data around the junction should be represented in a numerical way such 

that it contains all the traffic information for an agent to learn an optimal policy. 

According to the literature review, there are many different ways of state 

representation. 

We first employed the same method that chu et al. [20] have proposed with a small 

change that is to represent each lane l by a 3-dimensional vector. 

𝑙𝑖,𝑡 = { lengthi,  t , 𝑤𝑎𝑖𝑡𝑖,𝑡  , 𝑒𝑚𝑔
𝑖,𝑡

} 

Where i is lane index t is timestamp. lengthi,  t denotes the number of waiting vehicles 

in that lane, 𝑤𝑎𝑖𝑡𝑖,𝑡 measures the waiting time of the front vehicle of that lane which 

will obviously be the maximum waiting time of that lane, 𝑒𝑚𝑔𝑖,𝑡 denotes the 

maximum waiting time of emergency vehicles in that lane. But it was found that this 

representation lacks some important information about the environment.  
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Consider the following Figure 3.6 which shows two cases of vehicle waiting times in 

a lane. Waiting times of vehicles are displayed under the vehicles. 

 

For both the cases 𝑙𝑖,𝑡 will be the same because for both cases the front vehicle’s 

waiting time is 30s which is the maximum waiting time of vehicles on the lane, the 

number of vehicles in the lane is four and no emergency vehicle presents. But for an 

adequate state representation 𝑙𝑖,𝑡  should clearly differentiate these two cases in order 

for an agent to learn an optimal policy. 

To overcome this we defined 𝑤𝑎𝑖𝑡𝑖,𝑡 as the average waiting time of vehicles in lane l. 

But it was found that this representation also lacks some important information about 

the environment. Consider the following Figure 3.7 which shows two cases of vehicle 

waiting times in a lane. Waiting times of vehicles are displayed under the vehicles. 

Figure 3.6: Two cases of vehicle waiting times-example 1 
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For both the cases 𝑙𝑖,𝑡 will be the same because for both cases the average waiting time 

is 60s ( 2 + 2 + 2 + 54 = 60 ; 15 + 15 + 15 + 15 = 60), the number of vehicles in the lane 

is four and no emergency vehicle presents. 

To differentiate those kinds of cases standard deviation of waiting times of vehicles 

(𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡 ) in each lane l  along with the average waiting time is considered. That will 

represent the average waiting time of vehicles and how close each vehicle’s waiting time 

to the average waiting time. 

𝑙𝑖,𝑡 = { lengthi,  t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑒𝑚𝑔𝑖,𝑡} 

As proposed in [19], [23]  we decided to add congestion level ci , t of the corresponding 

outgoing lane l |( lane to which vehicles are moving into ) for each lane l. The final lane 

representation of the proposed method is. 

𝑙𝑖,𝑡 = { lengthi,  t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡, 𝑒𝑚𝑔𝑖,𝑡, ci , t }1𝑥5
 

      2s                 2s            2 s       54s 

     15s   15s            15s       15s 

Figure 3.7: Two cases of vehicle waiting times-example 2 
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For the state representation, we also add the current phase index  p of the traffic light 

as proposed in [14] where 1 ≤ p ≤ 8. The hypothesis here is by using phase index the 

agent will get some idea about moving vehicles. ( Vehicles in which the lanes are allowed 

to pass through the junction are moving vehicles ). 

As the final representation of the environment, we represent a state with traffic matrix 

M (12x5 matrix 12 lanes and one lane 𝑙𝑖,𝑡 is represented by a vector of dimensionality 

5) and one hot encoded vector [38] of phase index P (1x8). 

Figure 3.8 represents a sample traffic state. Lane indexes are circled and dark squares 

represent the emergency vehicles and others are regular vehicles. The numbers inside 

squares represent the waiting time of the vehicle in seconds. Figure 3.9 represents the 

corresponding state representation matrices M and P. 

  

Figure 3.8: Sample traffic state 
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Figure 3.9: Corresponding traffic state matrices M and P 

 

Each row of M contains traffic information about the matching traffic lane number with 

the row index. The first column represents the number of vehicles, second column 

represents the average waiting time of the lane, third column represents the standard 

deviation of the lane, fourth column represents the average emergency waiting time of 

the lane, fifth column represents the congestion level of the corresponding outgoing 

lane. When calculating the congestion level the negative impact of the congestion is 

added as the value. The maximum number of vehicles allowed in a lane is 17. For 

example in the first row 12/17  =  1 – 5/17. 

 Action Representation 

The agent’s action space is the set of phase indexes of the traffic light A = { p1, p2, p3, 

p4, p5, p6, p7, p8} [39] which is a similar approach to state spaces proposed in [20],[21], 

[37]. After every twelve seconds agent will select the next phase from the action space. 

If the selected next phase is the same as the current phase agent will stay in the same 

state for another twelve seconds, otherwise, the agent will move to the new phase 

preceded by three seconds of yellow signal phase. 



Page | 29  
 

 Reward Design 

The agent will be rewarded on the action a t it makes depending on the new traffic state 

after changing the traffic signal to the selected phase at time t [39]. The traffic 

environment is allowed to execute for twelve seconds with the new traffic signal phase 

and then observe the traffic state as the new traffic state such that vehicles will have 

enough time to move and form a new traffic state. 

The agent should be rewarded based on both how it controls regular vehicles and how 

it controls emergency vehicles. Also, the agent should be rewarded not only with how it 

reduces the average waiting time but also how good it was able to reduce standard 

deviation as well so that we can guarantee that other vehicles will stay close to average 

waiting time. 

Then the reward R t + 1  is defined concerning the new traffic state as follows. 

𝑅 𝑡 + 1  = 50 – (( reg_avg_waiting 𝑡 + 1+K * reg_std_waiting 𝑡 + 1) + 

Z * ( emg_avg_waiting 𝑡 + 1+K * emg_std_waiting 𝑡 + 1)) 

Where  

• K, Z are hyperparameters (refer section 5.3.1 for different value assignments) 

• reg_avg_waiting 𝑡 + 1 : average waiting time of regular vehicles around 100m 

radius to the junction. 

• reg_std_waiting 𝑡 + 1: standard deviation of waiting time of regular vehicles 

around 100m radius to the junction. 

• emg_avg_waiting 𝑡 + 1:  average waiting time of emergency vehicles around 

100m   radius to the junction. 

• reg_avg_waiting 𝑡 + 1 : average waiting time of regular vehicles around 100m 

radius to the junction. 
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We used the negative impact of average waiting times [11] and the negative impact of 

the standard deviation of waiting times to punish the agent with a negative reward if 

the waiting time and standard deviation are considerably higher. Technically if 

(( reg_avg_waiting 𝑡 + 1+K * reg_std_waiting 𝑡 + 1) +Z * ( emg_avg_waiting 𝑡 + 1+K * 

emg_std_waiting 𝑡 + 1)) > 50  the agent will receive negative reward 

otherwise it will receive positive rewards. 

 Deep Q-Network Design 

Since the state space is infinite, simple tabular Q-learning is not possible. Instead, a deep 

neural network [41] to predict the action given the state is needed which is deep 

reinforcement learning [40]. 

State representation matrices (M and P as discussed in section 3.2.1) are faded into the 

neural network through two separate input layers and concatenated inside the neural 

network. 

Traffic matrix M and phase index vector P first passed through two fully connected 

layers [41] and then passed through a concatenation layer to concatenate the two 

outputs. The output of the concatenation layer then passed through another fully 

connected layer to form the final phase index prediction. Figure 3.10, Figure 3.11 and 

Figure 3.12 represent the plot and the summary of the proposed deep q-network and 

the architecture of the DQN respectively. 
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Figure 3.10: Plot of the proposed deep q-network 
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Figure 3.11: Summary of the proposed deep q-network 

 

 
Figure 3.12: DQN architecture 
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As shown in Figure 3.12 DQN contains eight neurons in the output layer which will 

output the Q-values for each signal phase when the current traffic state M and P are 

faded into the neural network through input layers. The agent then changes into the 

signal phase which has the maximum q value. 

Next phase = argmax ( Q( s t , a  ) | for every a ∈ A) 

Weights of the deep q-network are updated according to the Bellman optimality 

equation as discussed in section 1.1.6 using experience replay. 

 Experience Replay 

When the agent takes an action a t  at state s t then it will observe a new state s t+1  and 

receive a reward at R t+1 which is an experience of taking an action in a given state. The 

agent should store this experience in a memory called replay memory for the learning 

purpose. Experience e is defined as a tuple of four elements as follows. 

 

e = {a t , s t , R t+1 , s t+1 } 

 

After each signal change agent will store the current experience in the replay memory 

and take a random sample called batch out of the replay memory and train the DQN with 

it which is called experience replay [42]. The training of the agent is discussed in section 

3.2.6. 

Replay memory has its own memory size M. When the replay memory is full of 

experience, the oldest experience is removed to store the new experience. Also, the 

experience replay will not be allowed to run if the number of samples in the replay 

memory is less than batch size b. Figure 3.13 represents the process of experience 

replay after each action. 
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Figure 3.13: Process of experience replay after each action 

3.2.5.1 Advantages of Experience Replay 
 

With the use of experience replay, the training phase has two major advantages: 

1. It removes correlations in the observation sequence [43]. 

2. Refresh the experience of the agent [42]. 

In this environment, two consecutive states are naturally correlated since the state of 

the environment s t+1 is a direct evolution of the state s t. Most of the information 

contained in the state s t+1 does not derive as a consequence of an agent’s action, but 

rather as the spontaneous transformation of the current situation s t . Therefore 

experience replay has been implemented to not inducing misleading correlation in the 

agent’s neural network. Secondly, during the training process, there is the possibility 

that the neural network forgets the knowledge gained about a situation visited in the 

early stages of the training. By using experience replay, the agent occasionally receives 

a "refresh" of what it has learned before in an older state. 
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 Learning the Optimal Policy 

Learning will undergo after each signal change with an experience batch size of b. Target 

is to learn the optimal Q-value for any given state and action. For every sample in 

experience batch, the following operations are performed [39]. 

 
1. For state s t and action a t in the experience obtain the predicted Q-value  

Q ( s t , a t ). 
 

2. Then calculate the target Q-value for state s t and action a t using the Belman 

optimality equation. 

 
 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t , a t ) = 𝑟𝑡+1 + 𝛾 max ( Q( s t+1 , a  ) | for every a ∈ A ) 
 

• 𝑟𝑡+1 can be directly extracted from the experience tuple. 

• To calculate max ( Q( s t+1 , a  ) | for every a ∈ A ) part s t+1 is faded into 

the DQN and obtain the Q-values for s t+1 

• Take the maximum Q-value for s t+1 

• Calculate 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t , a t ). 

3. Calculate the error E = 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t , a t )  -  Q ( s t , a t ). 
 

4. 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t , a t )  =  Q ( s t , a t ) + ∆ E 
 

 Fixed Q-Targets 

Using the same DQN to obtain the Q ( s t , a t ) and the 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t , a t ) leads to unstable 

learning of the agent since the weights of the DQN are updated after replaying every 

sample (as mentioned in section 3.2.6) it will output a different 𝑄𝑡𝑎𝑟𝑔𝑒𝑡  ( s t , a t )  for 

the same state and action which leads to unstable learning. 

Fixed Q-Targets [43] introduced as a solution for unstable learning. It proposed using a 

separate version of DQN of the agent as the target network and calculate 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 ( s t 
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, a t )  from it. Then clone the DQN into to target graph after some rounds of experience 

replay. This will make learning stable for a while. 

 Double Q-learning 

Double Q-learning [44] is a solution for the overestimation of Q-values. max ( Q( s t+1 , 

a  ) | for every a ∈ A ) will depend on how to DQN weights are initialized and what actions 

and what states are explored by the agent which means we cannot guarantee max ( Q( 

s t+1 , a  ) ) is correct. The solution proposed is to use DQN network to select the best 

action of the next state s t+1 and use the target network to calculate the Q-value of that 

action for state s t+1 . Figure 3.14 represents the idea of Double Q-learning 

 

 
Figure 3.14: Idea of Double Q-learning 

 

 Exploration Vs Exploitation Tradeoff 

Initially, the traffic control agent knows nothing about controlling traffic so that the 

agent is allowed to take random actions to explore the environment and get the 

experience. With the time agent will learn to control traffic efficiently so that it will be 

allowed to make signal changes with its learning. Initially, the agent is advised to Explore 

the environment but with the time it is advised to exploit the environment than 

exploring. For that, a concept of exploration vs exploitation tradeoff introduced [39]. 

Exploration rate 0 < 𝜖 < 1 is defined as  

𝜖 = 𝑒− 1 ∗ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒  
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Epsilon decay rate decides how fast 𝜖 is decreasing. Then a random number is 

generated r. Then the agent will decide to either explore or exploit as follows. 

 

If r < 𝜖 
 Agent explores the environment 
Else 
 Agent exploits the environment 

 
 

  High-Level Architecture 

Figure 3.15 illustrates the high-level architecture of the proposed method. For each 12 

seconds agent first observe the current traffic state and build the M  and P  matrices.  If  

r < ∈ then it selects a random traffic phase from the eight valid phases, else it predicts 

the best next signal phase using the DQN. The agent will then change the traffic signal 

to the new traffic phase. The agent will then receive a reward calculated by reward 

function as discussed in Section 3.2.3. Finally, the agent will store the experience in 

replay memory and execute experience replay. Experience replay is done with the help 

of Fixed Q-Targets and Double Q-Networks. 
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Figure 3.15: High-level Architecture of the Proposed Method 
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3.3  Average Only Method 

To demonstrate that considering average and the standard deviation (proposed 

method) has a significant improvement over only considering the average, another 

version of the same agent is designed by only considering the average waiting time of 

vehicles. Which will be called as the average only method.  

Only the state representation, reward design, and DQN is the difference when compared 

to the proposed method. All other design elements remain the same for both the agents. 

 State Representation 

The only difference with the proposed method state representation is that this 

representation doesn’t contain 𝑠𝑡𝑑_𝑤𝑎𝑖𝑡𝑖,𝑡 column to represent the traffic condition in 

each lane. Which means the 𝑙𝑖,𝑡  is defined as 

𝑙𝑖,𝑡 = { lengthi,  t , 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖,𝑡,  𝑒𝑚𝑔
𝑖,𝑡

, ci , t }1𝑥4
 

This also means that the dimension of M will be 12x4 matrix and p remains in the same 

dimension 1x8. 

 Reward Design 

The reward design of the average only method is very similar to the proposed method 

without considering the standard deviation of vehicles when rewarding the agent. The 

reward for the average only method is defined as follows. 

𝑅 𝑡 + 1  = 30 – ( reg_avg_waiting 𝑡 + 1 +  Z *  emg_avg_waiting 𝑡 + 1) 

 Deep Q-Network Design 

Since the diamention of the M is changed the only difference is that input layer of M is 

in dimention 12x3 every other designs of the DQN remains the same. 
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3.4 Statistical Method 

The method proposed by Binbin Zhou et.all [48] is used as the statistical method to 

evaluate the proposed method. 
 

3.5 Fixed Time Method 

The fixed time method allows each phase to stay in 30 seconds and cyclically move to 

the next phase. This means the fixed time method is not considering real-time traffic 

data. Figure 3.16 represents the cyclic phase change of the fixed time method. 

 

Figure 3.16: Cyclic phase change per 30s in fixed time method 
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Chapter 4  

Implementation 

This chapter mainly focuses on the implementation details of the proposed method, 

average only method, statistical method and fixed time method. Apart from that, 

configuration of the simulation environment is also discussed in this chapter. 

Implementation and evaluation were done using ASUS Intel® core™ i5-6200U CPU @ 

2.30GHz 2.40GHz with 8GB RAM and 2GB of NVIDIA GeForce 920MX GPU. 

4.1 Configuration of SUMO 

Sumo (Simulation of Urban MObility)[30] is used as the simulation software for real-

time traffic simulation. Sumo is developed using  C++ by the Institute of Transportation 

Systems at the German Aerospace Center. 

The simulation environment is originally in the left-hand driving mode so that it has to 

be converted to the right-hand driving mode to match with the local scenario. A four-

way junction with three incoming traffic tracks (left turn, right turn, direct track) and one 

outgoing lane for each road is designed using net edit which is a sub tool of sumo. Figure 

4.1 shows the overview of the four-way junction. 
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Figure 4.1: 4-way junction design by SUMO 

 

Two types of vehicles are used in the simulation environment. 

• Regular 
 

 
 

 <vType id="SUMO_DEFAULT_TYPE" accel="2.6" decel="4.5" sigma="1" 
length="4" minGap="2" maxSpeed="50"/> 

 

• Emergency(ambulance,VIP vehicles etc) 
 

     

<vType id="emergency" guiShape="emergency" accel="2.9" decel="4.5" 
sigma="1" length="5" minGap="2" maxSpeed="60"/> 

 

Emergency vehicles have higher acceleration speed and max speed than 
regular vehicles. 
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4.2 Traci (Traffic Control Interface) 

Traci is an API to access Sumo and retrieve values of simulated objects and to 

manipulate their behavior "on-line". Sumo and Traci are working as client-server 

architecture. In this case, sumo is working as the server and Traci is working as the client. 

The following functions of Traci are used to get the data and manipulate objects. 

 

• traci.lane.getLastStepVehicleIDs(lane_id) 
    Returns the vehicle id in a given lane id. 

 

• traci.vehicle.getTypeID(vehicle_id) 
    Returns the type of the vehicle given the vehicle id. 

 

• traci.vehicle.getLanePosition(vehicle_id) 
    Returns the position of the vehicle given vehicle id. 

 

• traci.trafficlight.setPhase('0',2) 
    Used to change the phase of the signal light. 
 

• traci.simulationStep() 
     Proceed simulation by one timestep 

4.3 Implementation of the Proposed Method 

A popular machine learning library Keras is used as the main library with Tensorflow 

GPU as the backend using python 3.6. 

 Vehicle class 

Defined a vehicle class to store information about each vehicle which will contain vehicle 

id, waiting time and type of the vehicle as attributes. Vehicles within 100m area from the 

junction are considered as the traffic data.  
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 Sumo Class 

Class Sumo is defined to contain all the details about the simulation environment. 

Abstract of the sumo class as follows. 

Attributes 

• RedYellowGreenStates : A list to contain all the phase indexes of the traffic light. 

• Hyper parameters K and Z: As discussed in section 3.2.3 

• nearby_vehicles : list to contain vehicle objects within 100m radius 

 

Methods 

• updateWaitingTime() : Update waiting time of nearby vehicles. This will add new 

coming vehicles to nearby_vehicles list concerning the lane index  

 
 

remove vehicles from the list which leaves the junction.  

 
 

If the vehicle is already in the list and still in the queue, it will increment the 

waiting time of that vehicle by 1s.  
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This method is called for every time step. 

 

• getState() : Return the current traffic state M and P  

 

generate P by one-hot encoding the phase index. 

 
 

calculating average and standard deviation of waiting time for each lane 

 
 

Prepare matrix M. values are scaled to the range 0-1 to increase the effectiveness. 

When scaling two constraints are used. The first one is the maximum waiting time 

of a vehicle is 100s. The second one is the maximum number of vehicles that can 

be fit into the 100m range is 17. 
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• changePhase(next_phase_index) : change the traffic signal phase to a new traffic 

phase given the new phase index. This will generate a yellow state given the current 

traffic phase and new traffic phase and it will first change the traffic signal to the 

corresponding yellow state for 3 seconds and then it will be changed to the new 

traffic state. 
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• Reward(current_state_distribution) : Returns the reward for the current waiting 

time of vehicles. 

 

 DQN Class 

This class contains three methods. 
 

• load_model() : Loads the saved model from the disk 

• save_model() : Save the model to the disk 

• createDQN() : Creates a new DQN and return the model 
 

Keras functional API is used to implement the DQN model. Two input layers are 

defined. The first input layer is of dimensionality 12x5 to feed M. Then it is passed 

through 3 fully connected layers (dense layers) each contains 50, 30, 20 neurons 

respectively. All three layers have the activation function of ‘’relu’’  [47]. 
 

The second input layer is of dimensionality 1x8 to feed P. Then it is passed through 

a fully connected layer which contains 20 neurons with activation ‘’relu’’. 
 

Then the two outputs are concatenated with a concatenation layer. After that 

concatenated output is passed through a fully connected layer of 16 neurons with 

activation ‘’relu’’. Finally, the output layer contains 8 neurons which correspond to 

the phases with no activation function because we need to get the exact Q ( s t , a t). 
 

Adam optimizer[45] is used as the optimizer and mean squared error (mse) [46] is 

used to calculate the loss of the model when training. 
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 Replay Memory Class 

This class contains all the details about replay memory and it handles experience replay 

of the agent. It contains five attributes and two methods. 

 

Attributes 

• capacity : This defines the maximum number of experience tuples that can be stored 

in replay memory 

• replay_memory : A list to contain experience tuples 

• push_count : Contains the number of insertions were done to replay memory from 

the beginning. 

• buffer_state : Used to hold the previous state 

• buffer_action : Used to hold the previous action 
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Methods 

• addToReplayBuffuer(self,current_state,action,reward) : This method will add new 

experience to experience replay memory. 

To record an experience, current state s t , current action a t , reward r t+1 and the 

next state  s t+1 is needed.  

The problem with these kinds of environments is that the next state and the reward 

cannot be directly observed here because it takes some time for vehicles to move 

and actually become another state after making a decision. Which means that we 

have to buffer the current state s t and current action a t until the method is called 

again and adds that current state as the next state of the previous experience. 

Similarly, the current state in the second call is used to calculate the reward for the 

buffered state because the current state is the next state for the buffer state and 

action. 

 

• Replay (self,replay_batch_size):  This will handle the experience replay of the agent. 
The method will first check if the replay memory contains samples more than the 

batch size. If not it will simply return without going to experience replay.  

 

 
 

If true it will extract an experience batch form the replay memory and for each 

sample, it starts training. 
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Current Q-value extracted by passing the state variable to the PolicyNetwork which 

is the DQN. 

 

 

Then it will identify the best action of the new state by feeding the new state into 

the PolicyNetwork. After that, the target network is used to get the Q-value for the 

best action selected by the PolicyNetwork. 

 

Then the bellman optimality equation is used to calculate the Q target. After that, 

the PolicyNetwork will train on the experience. 

 

 Agent Class 

Two versions of DQN are maintained (PoliciyNetwork and TargetNetwork) for the 

concept of Fixed Q-Targets as discussed in Section 3.2.7. This class handles the decision 

makings of the agent and maintaining the weights of the target DQN. It contains two 

attributes and two methods. 
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Attributes 

• step_number : Represents the number of actions (signal changes) that the agent 

made so far.  

• tau : This is a hyperparameter that decides the amount of the weight difference of 

the two DQNs will be added to the weights of the target DQN. 

Methods 

• getAction( self, state): Predict and output the next best signal phase given the 

current state using the PolicyNetwork. If first calculates the epsilon value and a 

random value between zero and one. If epsilon value is greater than the random 

number it outputs a random phase which is the concept of the exploration, else it 

predicts the next best signal phase using the Policy network. Epsilon will get 

decreased when the step_number getting lager. Epsilon has its minimum limit. 

 

• update_target_graph(self): Updates the target DQN weights with the Policy 
network by using tau. 
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 Hyperparameter Settings 

Below are the tuned values of the hyperparameters used. 
 

 
 

 
 

 Main Function 

It creates two versions of DQN. 
 

 
 

The main function will run the training of the agent for twenty episodes each which 
will contain 5000 steps. The simulation environment is reinitialized in each episode 
and taken into an intermediate traffic state before training. 
 

 
 

For each second it calls the updateWaitingTime () method of the sumo class to update 
the waiting times of vehicles and take action between every 12 seconds. 
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During each decision, it first obtains the current state using the getState() method in 
sumo class and then passes it to the getAction (current_state) method in the agent 
class to get the next phase. It will then invoke the chngePhase (action) method of 
sumo class to change the traffic signal. 
 
Then the reward is obtained which corresponding to the action and adds that to the 
replay memory. Experience replay is performed after each action. 
 

 
 
updating the target graph is performed 4 times per episode. 
 

 

4.4 Implementation of the Average Only Method 

The implementation of the average only method is almost identical to the proposed 
method. The only difference is it is not using the standard deviation in the state 
representation and reward function so the agent will be only rewarded by considering 
the average waiting time and state representation doesn’t contain any information 
about the standard deviation of vehicle waiting times. 
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4.5 Implementation of the Statistical Method 

The method proposed by Binbin Zhou et.al [48] is implemented with bellow changes to 
support emergency facilitation and to match with the proposed method environment. 
 

 
 
If an emergency vehicle arriving on a lane this method will give that lane the highest 

priority. If there is no emergency vehicle it selects the phases which contain green for 

the lane which has the maximum traffic as candidate phases. Then among those 

candidate phases select the phase which contains green for the lane which has the 

second maximum traffic. 
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4.6 Implementation of the Fixed Time Method 

The traffic signal will change to the next phase after 30 seconds without considering 
any realtime traffic data. This will continue cyclically. 
 

 
 

4.7 Implementation of vehicle detection API  

When deploying the proposed method in the real world we need a way to detect 

vehicles in the images captured through surveillance cameras. It should also be able to 
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detect lanes and vehicle types. An initial approach to detect this information is 

implemented using Tensorflow Object Detection API. Refer to Appendix C. 
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Chapter 5  

Training and Evaluation 

This chapter evaluates the performance and success level of the proposed solution. The 

evaluation will undergo according to a proper evaluation model as follows using the 

simulation environment SUMO [30]. 

5.1 Evaluation Model 

The evaluation model contains 2 major parts that are to evaluate with the synthetic 

dataset and to evaluate with the real-world dataset. For both the datasets, first, the 

performance of the proposed method ( Avg + Std) Vs Avg only method is evaluated. As 

the next step, the proposed method will be evaluated with a fixed time method and with 

a user-defined traffic model (statistical method). All of the above comparisons will be 

done under low, moderate, high traffic scenarios and dynamic traffic scenarios. Figure 

5.1 represents the diagram of the evaluation model. 
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Figure 5.1: Evaluation model diagram 
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5.2 Evaluation Metrics 

The following matrices are used to measure the performance of each method in the 

evaluation process. 

1. Average waiting time of regular vehicles ( 𝐴𝑊𝑇𝑟 ) 

𝐴𝑊𝑇𝑟 = 
∑ 𝑊𝑖,𝑡

𝑛
𝑖 = 0

𝑛
 

 Average waiting time of regular vehicles around 100m radius where the n is the 

total number of regular vehicles around 100m radius in a given time t. 

2. Standard deviation of regular vehicle waiting time ( 𝑆𝑇𝐷𝑟 ) 

𝑆𝑇𝐷𝑟  = √
∑ (𝐴𝑊𝑇 − 𝑊𝑖,𝑡)2𝑛

𝑖 = 0

𝑛
 

Standard deviation of regular vehicle waiting time around 100m radius where 

the n is the total number of regular vehicles around 100m radius in a given time 

t. 

3. Average waiting time of emergency vehicles ( 𝐴𝑊𝑇𝑒 ) 

𝐴𝑊𝑇𝑒 = 
∑ 𝑊𝑖,𝑡

𝑛
𝑖 = 0

𝑛
 

 Average waiting time of emergency vehicles around 100m radius where the n is 

the total number of emergency vehicles around 100m radius in a given time t. 

4. Standard deviation of emergency vehicle waiting time (𝑆𝑇𝐷𝑒) 

𝑆𝑇𝐷𝑒  = √
∑ (𝐴𝑊𝑇 − 𝑊𝑖,𝑡)2𝑛

𝑖 = 0

𝑛
 

Standard deviation of emergency vehicle waiting time around 100m radius 

where the n is the total number of emergency vehicles around 100m radius in a 

given time t. 
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5.3 Evaluation With Synthetic Dataset 

The proposed method against the other three methods namely average only method 

statistical method and fixed time method are evaluated with the evaluation matrices 

mentioned in section 5.2 under dynamic traffic configuration which includes low, 

moderate, high traffic hours and which is also a combination of configurations used in 

[14], [37]. Sumo supports vehicle arrival approximation to Poisson Distribution by using 

the probability attribute of the vehicle flow tag. When the probability attribute is used it 

generates vehicles randomly with the given probability on each second. Table 5.1 shows 

the traffic flow settings for dynamic traffic configuration according to Poisson 

Distribution. In Table 5.1 SE is to mention South to East direction and similarly for N: 

North and W: West. 

 
Table 5.1: Traffic flow settings according to Poisson Distribution 

Vehicle type Arrival rate (probability/sec) Start  time 
(s) 

End time 
(s) 

Regular For all directions: 0.05 

                  + 
• NE, SE: 0.03 
• WE : 0.05 
• WS, ES: 0.03 
• NS: 0.05 
• WN, EN: 0.03 
• SN: 0.05 
• NW, SW: 0.03 
• SN: 0.05 

0 
 
5000 
5000 
15000 
15000 
25000 
25000 
40000 
42000 

50000 
 
9000 
10000 
20000 
21000 
30000 
35000 
45000 
46000 

Emergency • WE: 0.01 
• WS: 0.01 
• WN: 0.007 
• EW:  0.006 
• ES: 0.006 
• EN: 0.007 
• SW: 0.01 
• SE:  0.007 

0 
2000 
5000 
7000 
9000 
12500 
18000 
20000 

10000 
10000 
20000 
15000 
50000 
50000 
20000 
50000 
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• SN: 0.005 
• NW: 0.08 
• NE: 0.07 
• NS: 0.005 

23000 
30500 
30500 
40000 

25000 
50000 
50000 
50000 

 
 
In table Table 5.1 For all directions: 0.05 means vehicles will be generated with a 

probability of 0.05 per second in each direction from 0s to 5000s of simulation time. At 

5000s another vehicle flow of vehicle generation probability 0.03 is added to NE, SE 

direction so that the total arrival rate of NE, SE direction will be increased while other 

directions remain in the same single flow of probability 0.05 from 5000s to 9000s. 

Distribution of the traffic volume with the 15 minute time intervals is shown in Figure 

5.2  for each configuration. Rush hours (high traffic) are marked between red dotted 

lines. 

 

 

Figure 5.2: Distribution of the traffic volume for each configuration 
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Apart from traffic flow configurations, regular vehicles and emergency vehicles have 

different simulation settings as shown in Table 5.2 similar to settings used in [37]. 

 

Table 5.2: Vehicle simulation settings 

Parameter Regular Vehicle Emergency Vehicle 

Acceleration 2.6m/s 2.9m/s 

Deacceleration 4.5m/s 4.9m/s 

length 4m 5m 

Minimum gap between 
vehicles 

2m 2m 

Maximum speed 50kmph 60kmph 

 

The proposed method and avg only method is trained on 275h of simulated traffic in the 

SUMO environment under the implementation settings mentioned in section 4.3. 

 Evaluation For Different K’s and Z’s 

Before evaluating with other methods the proposed method undergoes a self 

evaluation with different values K’s and Z’s to pinpoint the best values for K and Z. Below 

are the four different configurations for K and Z  to the self evaluation. 

 
1. K = 0.5, Z = 2 (low priority to std, high priority to emergency vehicles) 
2. K = 1, Z = 2     (high priority to std, high priority to emergency vehicles) 
3. K = 0.5, Z = 1 (low priority to std, medium priority  to emergency vehicles) 
4. K = 0.5, Z = 0 (low priority to std, no priority to emergency vehicles) 

 
Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 shows how each configuration was able to 

minimize the traffic congestion at the junction. In these figures, x-axis is the number of 

actions that the agent takes that means the number of signal changes (either to stay in 

the same phase or move to another phase). The agent will take action for every 
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12second intervals. More enlarged versions (starting from 3000 for the x-axis) of these 

figures can be found in Appendix A to get a clear view. 

 

 
Figure 5.3: Regular vehicle average waiting time for different K and Z values 

 
 
 
 

 
Figure 5.4: Emergency vehicle average waiting time for different K and Z values 
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Figure 5.5: Regular vehicle standard deviation of average waiting time for different K and Z 

values 

 
Figure 5.6: Emergency vehicle standard deviation of average waiting time for different K 

and Z values 
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According to Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 Configuration 1,3,4 have 

shown almost similar results while configuration 2 shows poor results for the regular 

vehicles. Among configuration 1,3,4 the configuration 3 has shown slightly better 

results compared to other configurations. Configuration 4 was not able to minimize 

emergency vehicle waiting time as other configurations since Z is assigned zero. When 

Z is zero it does not consider the vehicle type. Table 5.3 shows the maximum, minimum 

and average of evaluation matrices of all the four configurations for the total training 

time. 

 

Table 5.3: Performance for different configurations of K and Z 

Evaluation matrix K = 0.5  

Z = 2 

K = 1 

Z = 2 

K = 0.5  

Z = 1 

K = .5 

Z = 0 

Maximum of regular 

vehicle average waiting 

time (s) 

111.388 106.427 94.023 136.100 

Minimum of regular 

vehicle average waiting 

time (s) 

24.843 27.733 21.980 24.199 

Mean of regular vehicle 

average waiting time  (s) 44.844 46.566 43.511 43.095 

Maximum of emergency 

vehicle average waiting 

time (s) 

52.520 37.450 28.110 131.88 

Minimum of emergency 

vehicle average waiting 

time (s) 

0.390 0.260 0.480 0.35 

Mean of emergency 

vehicle average waiting 

time (s) 

4.886 5.340 5.065 22.21 
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Maximum of regular 

vehicle std of waiting 

time (s) 

101.738 91.742 79.503 113.293 

Minimum of regular 

vehicle std of waiting 

time (s)  

19.338 21.487 16.819 18.874 

Mean of regular vehicle 

std of waiting time (s) 36.315 37.456 34.670 34.71 

Maximum of emergency 

vehicle std of waiting 

time (s) 

5.235 6.500 4.850 80.068 

Minimum of emergency 

vehicle std of waiting 

time (s) 

0 0 0 0 

Mean of emergency 

vehicle std of waiting 

time (s) 

0.121 0.142 0.216 6.013 

 

From Table 5.3 it is clear that configuration 3 was able to minimize vehicle traffic 

congestion than the other three configurations. From here onwards configuration 3 is 

used to compare the proposed method with the statistical method, average only 

method, and fixed time method. 

 Training Evaluation  

The proposed method and avg only method is trained on 500h of simulated traffic in the 

SUMO environment under configuration 3 which was found as the best value 

assignments for K and Z in section 5.3.1. These reinforcement learning methods are 

compared with the fixed time method and statistical method while training. 
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Figure 5.7 represents how each method was able to minimize the average waiting time 

of vehicles at the junction and Figure 5.8 represents how each method was able to 

minimize the standard deviation of waiting time at the junction. 

 

 

 

Figure 5.7: Learning to minimize average waiting time 
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Figure 5.8:: Learning to minimize the standard deviation of waiting time 
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According to Figure 5.7 and Figure 5.8 initially, the reinforcement learning methods 

(proposed method and average only method) are not performing well since they are not 

aware of the environment at the beginning. But with the help of exploration and 

exploitation (section 1.1.2) reinforcement learning agents were able to learn how to 

minimize the average waiting time and the standard deviation of waiting times. 

Reinforcement learning methods perform even worse than the fixed time method at the 

beginning but at half of the training time, they were easily able to outperform the fixed 

time method. The statistical method was performing well from the beginning but with 

the time reinforcement learning methods were able to outperform the statistical 

method as well. 

However, the average only method shows only small improvement over statistical 

method but the proposed method shows better results than every method at the end 

buy reducing the average waiting time and the standard deviation.  

Figure 5.9 represents how reinforcement learning methods were able to improve the 

reward with time. Since there is no learning for the fixed time method and statistical 

method those methods were not able to improve the reward with the time. In       

Appendix A Figure A.5 shows how all four methods gain the reward with the time while 

Figure 5.9 only shows the reinforcement learning methods for clear comparison. 
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Figure 5.9: Reward improvement of the proposed method and average only method 

Both the reinforcement learning methods initially get very lower minus rewards but 

with the time both of the algorithms learned to receive a higher reward. The proposed 

method outperforms the average only method in the 2000’th action and there onwards 

it continues to improve well than the average only method. 

 Testing Evaluation 

5.3.3.1 Average Waiting Time 

Figure 5.10 shows how each method controlled regular vehicle traffic for 14hrs. Peaks 

of the lines show the rush hours and pits show the low traffic time while in between 

them is the moderate traffic time. The X-axis is the two-minute time stamps which the 

average waiting time is calculated for. One timestamp is the average waiting time of 

vehicles for two minutes. And y-axis shows the average waiting time of the vehicles. 

Graphs are smoothed using the smoothing factor of 300. 
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Figure 5.10: Average waiting time control of regular vehicles by each method in the testing 
environment 

According to Figure 5.10  Fixed time method has very poor performance compared to 

the other three methods. The average only method and proposed method have similar 

performance but the proposed method outperformed the average only method most of 

the time. The average only method failed to efficiently control traffic around the 3000th 

timestamp. There are some cases that the statistical method was able to reduce 

average waiting time than the proposed method, but most of the time, the proposed 

method was able to minimize the average waiting time than the other three methods. 

Figure 5.11 shows how each method controlled emergency vehicle traffic for 14hrs. 

Since the fixed time method producing bad results and average only method fails at 

3000th timestamp Figure 5.12  shows the performance comparison without the fixed 

time method and the average only method for the clear comparison. 
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Figure 5.11: Average waiting time control of emergency vehicles by each method in the 
testing environment 

  

Figure 5.12: Average waiting time control of emergency vehicles by the proposed and the 
statistical method  in the testing environment 
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According to Figure 5.12, both the methods are performing well on emergency vehicles 

because all of the methods were able to maintain the average waiting time of 

emergency vehicles under four. Overall the proposed method performed well than the 

statistical method. 

5.3.3.2 Standard Deviation 

Figure 5.13 shows how each method controlled regular vehicle traffic for 14hrs. The X-

axis is the two-minute timestamps in which the standard deviation of average waiting 

time is calculated. One timestamp is the standard deviation of the average waiting time 

of vehicles for two minutes. And y-axis shows the average waiting time of the vehicles. 
 

  

Figure 5.13: Standard deviation control of regular vehicles by each method in the testing 
environment 

Figure 5.13 is very similar to Figure 5.10  that observed for average waiting time. All four 

methods performed in the exact way that they performed on average waiting time. That 

demonstrates the proposed method is not only reducing the average waiting time but it 

also able to reduce the standard deviation of waiting times which guarantees that all 

the vehicles will have a waiting time which is close to average waiting time. 
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Figure 5.14 shows how each method controlled emergency vehicle traffic for 14hrs. 

Since the fixed time method producing bad results average only method fails at 3000th 

timestamp Figure 5.15  shows the performance comparison without the fixed time 

method and average only method. 

 

Figure 5.14: Standard deviation control of emergency vehicles by each method in the 
testing environment 
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Figure 5.15: Standard deviation control of emergency vehicles by proposed,avg only and 
statistical method  in the testing environment 

 

5.3.3.3 Testing Summary 

Table 5.4 shows the maximum, minimum and average of evaluation matrices of all the 

four methods for the total simulation time (14 hrs). 

 

Table 5.4: Performance summary for evaluation matrices  

Evaluation matrix Proposed 

method 

Average only 

method 

Fixed time 

method 

Statistical 

method 

Maximum of regular 

vehicle average waiting 

time (s) 

27.941 56.059 85.730 30.594  

Minimum of regular 

vehicle average waiting 

time (s) 

17.989  19.064 51.797  16.781  
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Mean of regular vehicle 

average waiting 

 time (s)  

21.588 23.631  69.597  22.652 

Maximum of emergency 

vehicle average waiting 

time (s) 

2.31 78.31  58.545 3.55  

Minimum of emergency 

vehicle average waiting 

time (s) 

0 0 0 0 

Mean of emergency 

vehicle average waiting 

time (s) 

0.684 3.609 17.391 0.896 

Maximum of regular 

vehicle std of waiting 

time (s) 

21.270 44.457 64.388 23.092 

Minimum of regular 

vehicle std of waiting 

time (s) 

13.756 14.259 41.049 12.780 

Mean of regular vehicle 

std of waiting time (s) 16.579  18.026 54.326 16.938 

Maximum of emergency 

vehicle std of waiting 

time (s) 

0.16 10.99 7.7 0.26 

Minimum of emergency 

vehicle std of waiting 

time (s) 

0 0 0 0 

Mean of emergency 

vehicle std of waiting 

time (s) 

0.014 0.436 0.935 0.020 
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As summarized in Table 5.4 the proposed method outperforms all other methods on 

most of the cases and all the mean cases as highlighted in the table. 

5.4 Evaluation on real-world dataset 

Realworld traffic volume data set is available for download which contains traffic data 

around junctions in Canada [36]. Each row of the dataset contains the following 

attributes. 

• Intersection ID  

• Intersection name 

• Datetime_bin: Traffic volume is calculated for 15 min intervals 

• Classification: Vehicle type 

• Leg: Vehicles approaching direction 

• Dir: Vehicles headed direction 

• Volume: Number of vehicles observed within 15 minutes  

 

Unfortunately, there are no emergency type vehicles in the dataset. So the evaluation 

with real-world data is only possible for regular vehicles. This real-world dataset is 

embedded to SUMO using a python script which converts the dataset to an XML format 

that the SUMO supports. The implementation of the python script can be found in 

Appendix B. 

Figure 5.16  and Figure 5.18 show the average waiting time and the standard deviation 

of average waiting time for each method. Since the fixed time method not performing 

well Figure 5.17  and Figure 5.19 represent graphs without the fixed time method. 
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Figure 5.16: Average waiting time control on real-world data 

 

 
Figure 5.17: Average waiting time control on real-world data without fixed time method 
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Figure 5.18: Standard deviation of waiting time control on real-world data 

 

 
Figure 5.19: Standard deviation of waiting time control on real-world data without fixed 

time method 
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Unlike synthetic data, the proposed method and average only method performed better 

than the statistical method. According to Figure 5.17  and Figure 5.19 it is clear that the 

proposed method was able to perform well in real-world traffic data with the help of 

standard deviation of vehicle waiting times than the average only method. 

 
Table 5.5: Performance summary for evaluation matrices on the real-world dataset 

Evaluation matrix Proposed 

method 

Average only 

method 

Fixed time 

method 

Statistical 

method 

Maximum of regular 

vehicle average waiting 

time (s) 

23.281 23.728 88.974 27.679 

Minimum of regular 

vehicle average waiting 

time (s) 

16.720 17.377 49.337 16.603 

Mean of regular vehicle 

average waiting 

 time (s)  

18.787 19.474 63.005 20.942 

Maximum of regular 

vehicle std of waiting 

time (s) 

17.689 17.681 66.957 20.751 

Minimum of regular 

vehicle std of waiting 

time (s) 

12.314 12.815 39.336 12.607 

Mean of regular vehicle 

std of waiting time (s) 14.101 14.394 48.737 16.041 
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According to Table 5.5 which contains the overall summary of the evaluation metrics, 

Highlighted values are the matrices in which the proposed method performed better 

than other methods. The statistical method was able to maintain a lower minimum 

regular vehicle average waiting time than the proposed method while the average only 

method was able to maintain a lower maximum of regular vehicle standard deviation of 

waiting time. Apart from those two instances, the proposed method has the best 

performance than the other methods including all the mean cases. From all the above 

facts, it is clear that the proposed method outperforms the statistical method, average 

only method and fixed time method with the help of standard deviation.  
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Chapter 6                                                                                                 
 

Discussion and Conclusion 

6.1 Conclusion 

This research is mainly focused on evaluating the significance of considering vehicle's 

standard deviation of waiting time around the junction to effectively control the traffic. 

The proposed RL agent was designed with a state representation that contains the 

number of vehicles, the average waiting time of vehicles, the waiting time standard 

deviation of vehicles and vehicle type for each lane with the current signal phase index. 

The agent's action is to select the next signal phase from the predefined traffic phase 

pool which ensures the safe green signal combinations. The agent is rewarded on four 

factors which are the average waiting time of regular vehicles, the average waiting time 

of emergency vehicles, the standard deviation of regular vehicle waiting time and the 

standard deviation of the emergency vehicle waiting time. 

The proposed method is evaluated on both synthetic and real-world dataset using the 

SUMO simulation environment. As against method to evaluate the proposed method, a 

different version of the proposed method is implemented without considering the 

standard deviation. Evaluation results have proven that by using standard deviation it 

was able to minimize traffic congestion than average only method. This concludes that 

considering standard deviation has a positive impact. Furthermore, both RL methods 
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were able to outperform the statistical method and the fixed time method on the real-

world dataset.  

The second main research question is a way to provide emergency facilitation. For that, 

the vehicle type is embedded in state representation and it has shown that the proposed 

method was capable of prioritizing emergency vehicles and approximate emergency 

vehicle waiting time to zero while the method which is not considering the vehicle type 

has not performed well. Which concludes considering the type of vehicle has a 

significant value. 

The third research question is a way to use standard deviation for effectively rewarding 

the agent. Result evaluation has stated that the proposed agent was able to learn well 

and outperform the other methods with the help of the proposed reward function which 

considers both the average waiting time and the standard deviation when rewarding 

the agent. 

6.2 Limitations 

The proposed method failed to maintain a lower maximum of the standard deviation of 

the regular vehicle waiting time when compared to the average only method on the real-

world dataset. More training and expanding the DQN hidden layers can be a solution to 

this limitation. The learning of the agent to prioritize the emergency vehicles is a slow 

process since the arrival of an emergency vehicle to the junction is a rare case. This can 

be solved using the prioritized experience replay which pays more attention to the 

important experiences. 

6.3 Future Work 

When come to real-world the coordination between traffic junctions will be important 

for global traffic congestion minimization. Therefore a coordinated multi-agent scenario 

can be explored considering standard deviation with emergency facilitation. 

Furthermore, there can be more useful information to represent the traffic state such 

as vehicle position and velocity. But when considering those types of information one 
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should pay attention to whether that information is efficiently capturable or not. 

Treating intelligent traffic light control as a sequence problem is another area of 

exploration where one can use a sequence of traffic states as the input to the agent. 

Though the model uses the congestion level of the outgoing lane when making a signal 

change, it is not tested on those kinds of traffic conditions where the outgoing lane is 

congested. Training and testing agents on those traffic conditions will add a novel 

contribution to the domain. The model-free Reinforcement Learning is another type of 

RL which does not need to model the transition function ( non-deterministic state 

transition) and the reward function. Evaluating the Effectiveness of standard deviation 

with a model-free RL agent is another area to explore.  
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Appendix A: Figures 
Figure A.1-A.4 represents the enlarged versions of Figure 5.3, Figure 5.4, Figure 5.5, 
Figure 5.6. 
 

 
Figure A.1: Regular vehicle average waiting time for different K and Z values starting from 

3000 for the x-axis 

 
Figure A.2: Emergency vehicle average waiting time for different K and Z values starting 

from 3000 for the x-axis 
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Figure A.3: Regular vehicle standard deviation of average waiting time for different K and Z 
values starting from 3000 for the x-axis 

 
Figure A.4 Emergency vehicle standard deviation of average waiting time for different K 

and Z values starting from 3000 for the x-axis 
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Figure A.5 represents how all the four methods were able to gain the reward with the 
learning. Since the is no learning for statistical method and fixed time method they 
were not able to improve the reward while the reinforcement learning method does. 
The proposed method was able to get a higher reward than the average only method 
with time. 
 

 
Figure A.5: Reward gain for each method with the training 
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Appendix B: RealWorld Data Plugging to 
SUMO 
Used pandas and LXML etree libraries to build the XML rout file with the real-world 
data file. Since the data file contains a large amount of data, only the first 510 rows 
are taken to build the XML file. 
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Appendix C: Implementation of Vehicle 
Detection API 
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Figure C.1 shows how the Canny edge detector was able to detect roads. 
 

 
Figure C.1: Road edge detection using canny edge detector 

 

Figure C.2 shows that the identified vehicles are marked using a boundary box. It also 
contains the type of the vehicle and the confidence. Since this is the first attempt 
algorithm, some vehicles are not detected. 
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Figure C.2: Identified vehicles are marked using boundary box 
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