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Abstract

Automatic speech recognition has progressed considerably in the past several

decades for most of the European languages, but still it is a prominent research area

for most of the low-resourced languages. This project presents a study to build an

automatic speech recognition (ASR) system using the Kaldi toolkit for the Sinhala

language which is one of the low-resourced languages with a large lexical variety.

We experiment on different deep neural architectures like pre-trained DNN, DNN,

TDNN, TDNN+LSTM to enhance the acoustic modeling process and each of their

performances is investigated in this document. A statistical model of GMM-HMM

is also trained on the same data set keeping it as the baseline model for compar-

ing the effectiveness of deep learning approach. For the language model, a corpus

containing more than 20K sentences taken from UCSC LTRL is used to generate

the 220K extended lexicon. The experiments are conducted using a phonetically

balanced training data set consisting of twenty-five hours of speech data collected

from fifty females and twenty males and tested on 1.6 hours of speech data. We

present an overview of different architectures with their procedures and compare

and contrast the performances of models with the statistical baseline approach.

The results obtained show that Deep neural network architecture exceeds the sta-

tistical baseline model with a Word Error Rate (WER) of 7.48% on the test data

set. The best observed lowest WERs are produced by the TDNN architectures.

Keywords: Sinhala, Speech recognition, Deep neural network, Kaldi
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This document has been written for the partial fulfillment of the requirements

of the B.Sc. in Computer Science (Hons) Final Year Project in Computer Sci-

ence(SCS4124). I was engaged in researching and writing this dissertation from

January 2019 to February 2020.

This basis for the research originally stemmed from my passion for contributing

to the researches relevant to my native language - Sinhala. In truth, it helps to con-

tribute to the preservation of the language. After discussing with my supervisor,

Mr.V.Welgama, we identified the problems that have emerged due to the unavail-

ability of automatic speech recognition for the Sinhala language. As the world

moves further into the digital age, the importance of automatic speech recognition

rises, since it is able to develop natural interfaces for both literate and illiterate

users by enabling hands-free technology and even aiding hearing-impaired people.

To the best of my knowledge, research work on ASR for the Sinhala language

using deep learning approaches has not been carried out so far. First, we identified

the main factors that make the ASR task challenging. They were the lack of

resources and the morphological richness in the Sinhala language. As described

in Chapter 3, we selected the DNN-HMM approach and designed the suitable

model architecture in such a way that it gets the best out of resources. We first

pre-processed the data set and trained the statistical baseline model. Thereafter

I experimented on different deep neural networks one by one and based on the

observations, I modified and tuned the architectures to obtain optimal performance.

When analyzing the results it was observed that a rich text corpus along with more

training data is necessary requirements for a robust ASR system.

With constant guidance and supervision of my supervisor and co-supervisor,

more conclusions were drawn on evaluating and training the models. This piece of

research would be a great source of knowledge for future research on Sinhala ASR

systems.
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Chapter 1

Introduction

1.1 Background to the Research

Over the past few decades, there has been a curiosity in making computers perform

what only humans could perceive. The tremendous development in machine learn-

ing paradigms has helped to achieve unbelievable success in recognizing speech,

understanding natural language, processing images, etc. Most of the researchers

are interested in adopting speech recognition because it can be used effectively to

build interactions between humans and robots. Furthermore, this helps in gener-

ating massive amounts of information that will eventually lead to a collection of a

huge amount of ideas, memories, and unstructured data. Speech has been the most

efficient and convenient way of communicating, a whole raft of applications includ-

ing commercial products like Google Assistant, Siri from Apple and Alexa from

Amazon are rapidly using this technology -Automatic Speech Recognition(ASR)

(J.Arora and Singh, 2012),(Jurafsky and Martin, 2008). These virtual assistants

are capable of voice interaction, music playback providing weather, traffic, sports,

and much other real-time information retrievals, and they keep competing.

A typical ASR system’s goal is to transform the acoustic input into a sequence of

words. The internal process of an ASR consists of several steps: feature extraction

which is transforming the audio signal into a series of vectors of acoustic features;

acoustic modeling which converts speech to relevant phonemes and lastly language

modeling which defines what kind of phoneme and word sequences are possible in

the target language, and their probabilities.
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Statistical approaches like GMM-HMM has been the state-of-art of speech

recognition in the early days. Recently, Deep Neural Networks (DNN) has become

a flagship and has proven it by improving the achieved results significantly (Hinton

et al., 2012). Moreover, DNN has the capability of generalization and the ability

to discover and learn complex structures (Deng et al., 2013),(Hinton et al., 2012).

The use of deep learning (Du et al., 2016) neural architectures such as Deep Neu-

ral Networks(DNN), Convolutional Neural Networks(CNN), and Recurrent Neural

Networks(RNN) for the speech recognition of English and European languages

have shown significant improvement with compared to conventional GMM-HMM

approach (Fohr et al., 2017),(Markovnikov et al., 2018).

1.2 Research Problem and Research Questions

Sinhala is one of the official and national languages which is used by a majority

of Sri Lankans. According to the recent analytic (wikiSinhala, n.d.), the Sinhala

language speaking population in SriLanka is 87%, making it over 16.6 million user

base. Therefore, as Sri Lankans, there is a need to pay attention to the research

area of recognizing Sinhala speeches as it will either directly or indirectly affect the

beneficial.

Unavailability of an open-source speech recognizer that can transcribe Sinhala

speeches accurately precludes the achievable performance of many local systems

compared to other global contemporary systems of well-versed languages such as

multilingual call centers and voice command-and-control systems. Besides, due

to the geographical and technological shortcomings such as the low percentage of

the global population that speaks and understands Sinhala and less contribution

towards Sinhala, speech recognition development has also precluded the services

from most commercial off-the-shelf (COTS) and open speech recognition software.

Therefore, many organizations, including both local and global establishments,

can make use of a Sinhala Automatic Speech Recognition (ASR) tool to optimize

existing processes. One of the challenging tasks in Sinhala speech recognition

is finding a large speech corpus since the model should have the capability to

estimate the probability for all possible word sequences. Moreover, Sinhala been

2



a morphologically rich language, which makes it difficult to further as they may

produce a vast number of word forms for a given root form.

The main research question that is addressed in the research is as follows.

• What deep neural architectures will perform well for Sinhala ASR with lim-

ited resources?

There is a vast range of deep neural architectures extended for tasks related to

speech recognition, voice detection, etc. But the question arises which struc-

tures would provide the most accurate transcriptions to achieve our goal?.

When addressing this question, two more essential facts need to be consid-

ered; the limited data set and the complexity of the Sinhala language. With

time constraints, it is often hard to collect a sufficient amount of resources.

Hence, by addressing this research question, this work would be able to iden-

tify the specifications that a deep neural network model should possess to

achieve the best possible accurate results with limited resources.

1.3 Justification for the research

Most of the research work (Amarasingha and Gamini, 2012),(Manamperi et al.,

2018),(Nadungodage and Weerasinghe, 2011),(Gunasekara and Meegama, 2015)

carried out so far for Sinhala speech recognition has followed only traditional ap-

proaches (i.e. GMM-HMM). However, the researches that have been conducted

for other high-resource and low-resource language ASR, it is notified that DNNs

have performed in a higher classification and generalization when compared with

the statistical-based approach. Especially, this can be observed in high-resource

languages. Thus, an exploration regarding the validity of deep learning techniques

on the task of Sinhala ASR is an unexplored direction.

Moreover, the necessity of an open domain continuous speech recognizer for

Sinhala is observable since most of the research work found is domain-specific

(Amarasingha and Gamini, 2012),(Manamperi et al., 2018). But, the practicability

of an ASR system highly depends on the number of domains it can be applied.

Further, almost all the research work that has been conducted so far has used only
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a minimal data set for training and testing. Thus the validity of them is again

questionable.

There exist numerous deep architectures that could be applied for the task of

speech recognition as the possibilities are almost endless. This project intends to

implement a sufficient number of deep architectures for acoustic modeling in the

intended ASR system. Thus, for those who are interested in this field can get an

overview of the performances of different deep architectures and which architec-

ture or the approach is the best suited for an under-resourced, morphological rich

language like Sinhala. The project also intends to compare the performances of

deep neural architectures with the existing standard statistical methods. There-

fore, other researchers can come up with a more advanced ASR system for the

Sinhala language.

1.4 Methodology

There are several approaches for developing an ASR system such as GMM-HMM,

DNN-GMM-HMM, DNN-HMM (Pallavi Saikia and Open Learning, 2017), End-

to-end DNN (Zhang et al., 2017). Among them two significant approaches are

DNN-HMM: a hybrid architecture which uses deep neural networks for acoustic

modeling along with a Hidden Markov Model(HMM); End-to-end DNN : which

takes acoustic features as input and outputs its transcriptions directly, thus relying

solely on a deep learning architecture.

The End-to-End (E2E ASR) is a single integrated approach with a much simpler

training pipeline, and it reduces the training time and decoding time. However,

current E2E ASR systems also suffer from limitations such as these systems need

orders of magnitude more training data than hybrid ASR systems to achieve similar

word error rate (WER). These limitations arise when the training data is limited;

there is a propensity to overfit the training data. Thus, it becomes quite expensive

as it to get a higher performance, a large number of speech data should be fed

and also needs higher computing power. The DNN-HMM hybrid systems comprise

an acoustic model, a language model, and a pronunciation model. For limited

computation power and training data, this hybrid architecture can achieve better
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results (Pallavi Saikia and Open Learning, 2017) (Fohr et al., 2017). Therefore,

this project intends to follow the DNN-HMM hybrid approach (Pallavi Saikia and

Open Learning, 2017), as it enriches with the strong learning power of DNNs and

the sequential modeling of HMMs.

1.4.1 Speech Corpus

A speech corpora collected by Language Technology Research Laboratory(LTRL)

of the University Of Colombo School Of Computing(UCSC) that has recordings

from 50 females and 20 males, which would be roughly estimated to about 25 hours

of speech will be used as training data.

1.4.2 Pre-processing Raw Data

The raw speech signals are first pre-processed into a vector of numeric values, which

is also known as feature extraction. For this, the raw speech signal is divided into

small portions of typically 25 ms frames shifted by 10ms each time. A transforma-

tion is then applied as the human hearing perceptron is not linear with frequency

scales. This process can be performed with Mel-Frequency Cepstral Coefficients

(MFCCs) or filter banks.

1.4.3 Deep Neural Networks(DNNs)

DNNs work similar to the neurons in our brain. They consist of highly intercon-

nected units known as neurons and forms a data processing element. Mostly, this

project intends to focus on deep neural networks that support supervised learning.

Experiments with Deep Neural Networks(DNNs), Time-Delay Neural Networks

(TDNN/CNN1-d), Long Short Term Memory(LSTM) Networks have been carried

out for acoustic modeling. These models take a window of frames that includes

real-valued acoustic features as inputs and estimate the likelihoods of phones. The

output layer from these deep neural networks is then integrated with the Hidden

Markov Model(HMM). With the observation probabilistic scores gained by the

neural network, HMM maps them to a sequence of phones. The DNN models are

trained and fine-tuned empirically by analyzing the speech accuracy of the valida-
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tion data set. The analysis is performed quantitatively by calculating the Word

Error Rate(WER) of the models.

1.4.4 Language Modeling

A language model consists of a large amount of text data, and it aims to compute

the probability of the sequence of words to find the best word sequence of the

acoustic model. In this research, the most well-known n-gram model technique

is used to model the language. A corpus containing more than 20K sentences

collected from phonetically balanced corpora were used to generate the 220K long

grapheme lexicon.

1.5 Outline of the Dissertation

The thesis is organized as follows.

In Chapter 2, a comprehensive study in describing technologies, performances, and

special characteristics observed by authors in previous researches will be presented.

The research design, together with the high-level architecture for addressing the

research question, is presented in Chapter 3. Later in Chapter 4, a comprehensive

explanation of the implementation is carried out. Last but not least, experiments

and results of every model are evaluated in Chapter 5. Finally, Conclusion and

future work are discussed in Chapter 6.

1.6 Definitions

• GMM-HMM model is defined with several names such as ”baseline,” ”statis-

tical,” and ”traditional” in this document.

• Pre-trained DNN is defined as a model that is subjected to a training process

with a stack of Restricted Boltzmann machines at first, and later a DNN is

trained on those weights.

• Non-pre-trained DNN is defined as a DNN model that is trained on randomly

initialized weights.
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1.7 Delimitations of Scope

The below listed are boundaries that are faced when addressing the research ques-

tion,

• A limited number of appropriate deep neural network architectures will be

experimented.

• Achieving 100% performance with the limited data set will not be guaranteed

since deep neural networks inherently perform better with large data sets.

Although a moderate vocabulary of phonetically balanced Sinhala corpus

is used for training the models, it will not be sufficient to model all the

occurrences in Sinhala speech.

1.8 Conclusion

This chapter laid the foundations for the dissertation. It introduced the general

focus area and the more specific research problem and research question that are

addressed in this research. Then the research was justified analyzing the signif-

icance of the study, the important factors in methodology was briefly described

and justified, the dissertation was outlined, and the limitations were given. On

these foundations, the dissertation can proceed with a detailed description of the

research.
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Chapter 2

Literature Review

2.1 Review on Sound characteristics and feature

extraction

A speech signal is a physical representation of any waveform whose frequencies

range is in the human audible range and contains information.

Extracting the information to achieve intended objectives by transforming the raw

signals into a more informative format is known as the process of feature extrac-

tion. It is also a measure of competing for a compact numerical representation that

can be used to characterize a segment of audio. The audio signals contain features

like Mel Frequency Cepstral Coefficients (MFCC), Pitch, sampling frequency, loud-

ness, volume, etc. Among them, the most widely used technique is the extraction

of MFCCs.

2.2 Review on different approaches to ASR

Since from earlier times, specific approaches for pattern matching in speech recog-

nition have been experimented. From them, template-based,knowledge-based, dy-

namic time warping-based, statistical-based, and neural network-based are some

prominent approaches. Most of the above have been declined at present due to the

limitations they suffer.

The template-based approach is the process of matching unknown speech against
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a set of pre-recorded words or templates in order to find the best match (Sak-

samudre et al., 2015). Inefficiency in terms of both storage and computation

power and tediously speaker dependence are the drawbacks of this method. The

knowledge-based approach uses the information regarding phonetic, linguistic, and

spectrogram (Saksamudre et al., 2015), but it suffers from the limitation that it

requires expert knowledge on the language. The dynamic warping-based (DTW)

approach measures the similarity between two sequences which may vary in time

or speed, and this algorithm effectively works to cope with different vocalization

speeds(Saksamudre et al., 2015). Generally, DTW works well for only isolated word

recognition, which is a limitation. The most known approach, which has been state-

of-the-art for speech recognition for several years, is the statistical-based approach.

There, the most extended way is the traditional GMM-HMM hybrid system.

2.3 Review on Deep Neural Network algorithms

for acoustic modeling

Recently, neural network-based (NN) acoustic models have significantly improved

ASR performance over traditional Gaussian Mixture Models (GMMs). Different

types of neural network architectures have been used for training the acoustic model

of ASR systems in several attempts in speech recognition.

The following literature reviews attempt to demonstrate the usage of DNN on

speech recognition and clarify the performances of the best models obtained from

different practices.

In the research paper by Alexey Karpov (2017)(Markovnikov et al., 2018), they

have described research of DNN-based acoustic modeling for Russian speech recog-

nition using Kaldi toolkit (Povey et al., 2011). The DNN models are created with

p-norm and tanh nonlinearities with a different number of hidden layers and units

and are compared with the baseline GMM-HMM models. These hybrid models are

trained using fMLLR-adopted features, the decision trees, and alignments obtained

from the SAT-fMLLR GMM system. The best result (20.30% WER) is achieved

with the p-norm DNN, which is obtained by a six-layer DNN with 1024 hidden

units in each hidden layer. The author has observed after analyzing the results,
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that the number of layers has only a slight influence on the speech recognition re-

sults. In interest, the results show that increasing the number of hidden units leads

to increasing WER, which may be caused due to the limited amount of training

data. The results showed that DNN based acoustic models have well performed

compared with the baseline GMM-HMM models with a reduction of 5% of WER.

An overview of different architectures and training procedures for DNN-based

acoustic models for the task of recognizing French speech is presented in a research

paper done by Dominique Fohr et al. (2017)(Fohr et al., 2017). The network is

implemented as an MLP with six hidden layers of 2048 neurons per layer. The

experimented dataset consists of 300 hours of manually transcribed shows from

French-speaking radio stations from which 250h recorded in a studio and 50h on

the telephone. As in figure 2.1, the results showed a significant difference in

performance between the baseline GMM-HMM model and the DNN hybrid model,

which suggests that DNN-based acoustic models achieve better classification and

generalization ability.

Figure 2.1: WER(%) for the 11 shows from GMM-HMM and DNN-HMM KATS

systems (Fohr et al., 2017)

An in-depth overview of the usage of deep neural networks to achieve a suc-

cessful model for speech recognition is presented by four research groups in the

research article by Hinton et al. (2013)(Hinton et al., 2012). All the four research

groups have managed to achieve the best accuracy results using a hybrid deep be-

lief net (DBN)/HMM – DNNs experimented on TIMIT dataset(TIMIT Dataset,

n.d.), which is a corpus of phonemically and lexically transcribed speech of Amer-
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ican English speakers. The results showed that pre-training is much more helpful

in deep neural nets than in shallow ones, mainly when limited amounts of labeled

training data are available. Also, It has resulted in reducing over-fitting, and the

time required for discriminative fine-tuning with back-propagation.

They have experimented with the AMUAV database(Samudravijaya et al.,

2000), and the results demonstrate that CD-DNN-HMMs outperform the conven-

tional CD-GMM-HMMs model and provide the improvement in a word error rate of

3.1% over the traditional model of triphone. Some recent studies(2018)(Kimanuka

and BUYUK, 2018),(Deka et al., 2018),(Saurav et al., 2018) investigated on low

resourced languages such as Turkish, Assamese, Bengali speech recognition, shows

that the use of deep neural networks for acoustic modeling has resulted in lower

WER compared with baseline GMM-HMM models.

The following literature reviews attempt to demonstrate the usage of different

advance neural network architectures for speech recognition and clarify the best

results obtained from them.

Recently, many pieces of research have been carried out investigating Recurrent

Neural Networks(RNNs) for the task of speech recognition because of its ability

to utilize dynamically changing temporal information. Although deep RNNs have

been argued to be able to model temporal relationships at different time granular-

ities, it suffers from vanishing gradient problems.

An exploration of novel approaches to constructing deep long short-term mem-

ory (LSTM) based deep recurrent neural networks are presented in the research

work by Xiangang Li (2015)(Li and Wu, 2014). The evaluations of different LSTM

networks have been done on a large vocabulary Mandarin Chinese conversational

telephone speech recognition task. The results, as shown in figure 2.2, reveals that

constructing deep LSTM architecture outperforms the standard shallow LSTM

networks and DNNs.
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Figure 2.2: Speech recognition results of different strategies of constructing deep

LSTM networks. (Li and Wu, 2014)

In the research study by Wei-Ning Hsu et al. (2016)(Hsu et al., 2016), they

have experimented deep grid LSTMs (Kalchbrenner et al., 2015) on four different

speech corpora(AMI, HKUST, GALE Mandarin, Arabic MGB) using the Kaldi

toolkit to generate Mel-scale log filter bank coefficients along with first and second

derivatives and tri-gram language model. The Computational Network Toolkit

(CNTK) has been used for the rest of neural network training. They have used the

prioritized Grid LSTM (pGLSTM) model to prioritize the depth dimension over

the temporal one to provide more updated information for the depth dimension.

The performances of baseline models and proposed models are summarized in figure

2.3. The results obtained show that the different grid LSTM architectures have

outperformed the vanilla LSTM model and suggest that prioritizing the depth

dimension is essential for achieving better performance.

Figure 2.3: Results of deep grid LSTMs on four different speech corpora(AMI,

HKUST, GALE Mandarin, Arabic MGB).(Hsu et al., 2016)

In the research paper by Nikita Markovnikov et al. (2018) (Markovnikov et al.,

2018), demonstrates a cluster of hybrid speech recognition systems cooperating

deep neural networks with Hidden Markov Models and Gaussian Mixture Models
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for recognizing Russian speech. The acoustic models of their proposed work are

implemented as CNNs, modifications of LSTM, Residual Networks, and Region-

based Convolutional Neural Networks (RCNNs). They have experimented with the

models on more than 30h of Russian speech. The authors have done a significant

job, analyzing each of the models and their results, to come up with a best-suited

model for Russian speech recognition. The results on the Kaldi baseline model using

a multi-layer perceptron (MLP), as in figure 2.4, reveals that the best outcome is

achieved when the activation function is set to p-norm.

Figure 2.4: The results on the Kaldi baseline model using a multi-layer perceptron

(MLP).(Markovnikov et al., 2018)

They have compared the results obtained from their LSTM model with a Bidi-

rectional Long Term Short Memory (BLSTM) model, which has used nnet3 Kaldi’s

configurations. The performance of BLSTM over LSTM can be viewed in fig-

ure 2.5. According to the results, except CNN model (24.96%), other models

which are LSTM (23.32%), BLSTM (23.08%),PLSTM(24.12%),ResNet(22.17%)

and RCNN(22.56%) have surpassed the baseline model (24.26%). A new model

is implemented after analyzing the above best models, including RCNN + residual

unit + max-pooling + BLSTM, which has obtained the lowest WER of 22.07%

and with a reduction of 7.5% WER compared to Kaldi baseline.
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Figure 2.5: The performance of BLSTM over LSTM and other mod-

els.(Markovnikov et al., 2018)

The experimental results have revealed that, although ResNet shows the best

results, it has been the slowest out of all.

A combination of CNN-BLSTM architectures for acoustic modeling is presented

in (2018)(Markovnikov et al., 2018) for the task of Microsoft’s conversational speech

recognition system for the Switchboard and CallHome domains. They have applied

3 CNN on the acoustic features at a time t and then applied 6 BLSTM layers to the

resulting time sequence. Unlike in an original BLSTM model, they have included

the context of each time point as an input feature in the model.

The introduction of Time Delay Neural Networks (TDNNs) was presented in

the research work by Daniel Povey et al. (2015)(Peddinti et al., 2015), where the

researchers achieved significant improvements in the field of speech recognition.

Their proposed TDNN architecture, models long term temporal dependencies with

training times comparable to standard feed-forward DNNs. During the training

phase, researchers have used the sub-sampling technique to reduce computation

power. The work presents results on several LVCSR tasks to show the effectiveness

of the TDNN architecture in learning broader temporal dependencies in both small

and large data scenarios. The results obtained on the Switchboard task show a rel-

ative improvement of 6% WER over the baseline DNN model, which is significant.

The performance of TDNNs over different LVCSR tasks is indicated in figure 2.6.
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Figure 2.6: Baseline vs TDNN on various LVCSR tasks with different amount of

training data. (Peddinti et al., 2015)

From figure 2.6, it is shown that the Resource Management medium-vocabulary

task has not gained any performance using TDNNs due to its limited amount of

training data. As the authors suggest, this could be due to the slight increase

in parameters in the TDNN architecture when processing broader input contexts.

Nevertheless, they have gained an average relative improvement of 5.52% over

the baseline DNN architecture through the use of TDNN architecture to process

broader contexts.

In a comparative study between different neural network architectures for speech

recognition by Mohamed Maher Zenhom et al. (2018), the authors have shown that

a combination of TDNN and LSTM architectures exceed by a large margin, the

performance of deep and convolutional neural networks. The work presents a com-

prehensive study on building an automatic speech recognition (ASR) system using

the KALDI toolkit for the Arabic language, which presents many challenges re-

lated to a large lexical variety of the language. They have used a grapheme based

lexicon generated with more than 478K entries and a dataset consisting of 90 hours

of Modern Standard Arabic (MSA) broadcast news. The best WER of 8.09% from

the TDNN-LSTM model is obtained from 2048 neurons per layer for six hidden

layers after performing six epochs, and 40 frames in Chunk left Context in TDNN-

LSTM. Also, to get better frame accuracy and lower WER, the authors suggest

using higher gram LM or RNN in building the language model instead of using

the probabilistic model and also using deeper architectures in TDNN-BLSTM with

more neurons in each layer and more samples per iterations if required computa-
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tional resources meet.

In the research paper by Irina Kipyatkova in 2017(Subasa, n.d.), they have

studied an application of time-delay neural networks (TDNNs) in acoustic modeling

for large vocabulary continuous Russian speech recognition and compared it with

baseline DNN model with p-norm activation functions implemented according to

Dan’s implementation in Kaldi. Training of acoustic models has been carried out on

a Russian speech corpus containing phonetically balanced phrases with a duration

of 30h. They have created several TDNNs with a diverse number of hidden layers,

different temporal contexts, and splice indexes. The TDNN has achieved the lowest

WER of 19.04% with five hidden layers and a time context of [−8, 8]. The usage of

the models with larger temporal times has led to increasing in WER that also can

be caused by over-training. The results show that the TDNN model has surpassed

the results obtained by the baseline DNN with a relative WER reduction of 9%.

2.4 Summary

As a summary of the literature review presented in Chapter 2, the following points

can be notified.

• Different neural network architectures for acoustic modeling has recorded

in greater accuracy than the vanilla DNN architecture. Specifically, LSTM,

TDNN, and combinations such as TDNN-LSTM have dramatically improved

the model performances in most of the research works. However, computa-

tional resources should meet up to experiment with these types of deeper

architectures.

• There is a major possibility of the higher number of hidden layers resulting

in higher WER, which signifies that it is better to keep a moderate number

of layers in between 4 -10 in NNs.
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Chapter 3

Design

As stated before, speech recognition systems tend to characterize the acoustic infor-

mation of a given audio signal and recognize its text version. Thus, the recognizer

needs to segment the audio signal into successive frames where each frame outputs

corresponding phone and then transcribe the recognized phones into a text. This

research design involves developing a method that takes the utterances of speakers

as audio signals and produces the texts corresponding to those.

Figure 3.1 demonstrates the high-level architecture of the proposed solution for

the speech recognition of the Sinhala language. The design process of the research

is described in detail below.

17



Figure 3.1: High-level architecture of the research design

The main design of the speech recognizer consists of

1. acoustic model

2. lexicon

3. language model

3.1 Acoustic Model (AM)

Considering the mathematical formulation of the task of speech recognition, let

the speech signal in a time S(t) be represented by a set of acoustic observations

O = o1, o2, ..on and its corresponding word sentence W = w1, w2, ...wn. Then

P (W |O) denotes the probability that the words W were spoken, given the evidence

O observed from the sound waves. Using Bayer’s rule, the most probable outcome

can be computed by maximizing the following equation,
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W ∗ = maxw
P (O|W )P (W )

P (O)
(3.1)

The acoustic model is responsible for computing P (O|W ) the probability of an

output sentence given a set of words.

The training data that is used in this research are audio files collected from 50

females and 20 males in the University of Colombo School of Computing LTRL,

and it is approximately 25 hours of speech. This data is divided into training,

validation, and test where the hours of speech will be 22,1.5, and 1.5, approximately.

The splitting of data is done in a way that makes sure there are no overlapping

speakers and sentences and gender distribution inequality in the train, validation,

and test sets and thus ensuring the validity of the experiments.

The steps involved in training the acoustic model of the speech recognition

system are described in the below subsections.

3.1.1 Feature Extraction

First, the raw audio files are pre-processed to obtain a vector of numeric values,

which are often referred to as ‘Mel frequency spectrograms,’ which contains the

acoustic information. The speech features are extracted by Mel Frequency Cep-

stral Coefficients(MFCC) features after normalizing by a standard 13- dimensional

cepstral mean-variance. For that, the raw audio data are segmented into 25 ms of

frames shifted by 10ms each time. Then for each frame, a windowing function is

applied to extract the data. As the next step, a Fourier Transform is applied to

convert the samples from the time domain to the frequency domain, which helps

to compute the power spectrum.

3.1.2 Getting alignments from GMM-HMM model

To tackle the problem of limited data available for the Sinhala language, training

of DNNs immediately from utterance level transcriptions is not performing since

DNN requires a good initial approximation. Even with useful data, DNN training

is tricky because it’s not guaranteed to converge to an optimal point. Therefore,
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as the first phase of the acoustic modeling, a GMM-HMM model is trained on the

same data set to generate the alignments for the audio signals, as in the figure

3.2. Then, the DNN training is bootstrapped using the labeled frames (phoneme-

to-audio alignments), which were generated by the GMM-HMM system. Thus,

when the audio frames are fed into the input layer of the DNN model, the net will

assign a phoneme label to a frame, and it will be compared with the phoneme label

obtained from the GMM-HMM alignments.

Figure 3.2: Acoustic modeling process in a GMM-HMM

The final alignments of the GMM-HMMmodel are taken after generating mono-

phone HMMs and thereafter triphone HMMs.

• Monophone model training and alignment

This model will also be the building block for the following triphone models.

Monophone training depends on the contextual information of a single phone.

Thus, monophone models do not give a good result, usually as phones sound

different in different contexts.

• Triphone model training and alignment

The phoneme variants in the context of the two phonemes, typically the

preceding and following phones are considered in the training of the triphone

model, thus ensuring a better prediction of alignments.

A pass of the alignment process is repeated after each training process to op-

timize the correct predictions between the text transcriptions and audio and also

to make sure to have the proper latest alignments for the latest model in each
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stage. Standard delta+delta-delta and LDA+MLLT training algorithms were used

to obtain better alignments.

Training algorithms for GMM-HMM model

• Delta+delta-delta

This algorithm computes the delta and double delta features that represent

the first and second derivatives of the features, respectively. These delta

features are computed on the window of the original MFCC features while the

double delta features are computed on that of the delta features computed.

• LDA+MLLT

LDA+MLLT term stands for Linear discriminant analysis – Maximum likeli-

hood Linear Transform. LDA builds HMM states for the feature vectors, but

with reduced feature space for all data. MLLT takes that reduced feature

space output by LDA and derives a unique transformation for each speaker.

This process is considered as a step for speaker normalization to minimize

the differences among speakers.

Determining hyper-parameters for triphone models

Training of triphone models takes into consideration two parameters; the number of

leaves in the decision tree(HMM states) and the total number of Gaussians across

all states in the model for fine-tuning the model for the best alignments. The

number of leaves parameter sets the maximum number of leaves in the decision

tree while the number of Gaussians sets the maximum number of Gaussians dis-

tributed across the leaves. The number of Gaussians per leaf can be calculated by

dividing the number of total Gaussians by the number of leaves. Since, 47 Sinhala

phonemes are used in this project, it will require 47*47*47; nearly 100,000 models if

a separate model is used for each triphone which will be computationally infeasible.

These parameters were set using the information retrieved after literature re-

viewing and then fine-tuning for our model, changing one parameter at once. In

triphone training, the current phone, the preceding, and the following phone are

considered as well. Thus, it requires at least 47*3 HMM states to model the con-
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textual variation in the triphone model. Therefore,training of models were started

with HMM states beginning from 250.

3.1.3 DNN training

As the final stage of the acoustic model, the resulting alignments and features

are passed through different deep learning architectures such as a feed-forward

network(DNN), Time Delay Neural Network(TDNN), and hybrid architectures

of TDNN and LSTM(TDNN-LSTM). Since DNNs inherently perform well with

large datasets, for our dataset, different techniques such as mini-batch Stochastic

Gradient Descent, RBM pre-training,early-stopping, and dropouts were applied to

enhance the performances of the models without getting over-fitted.

Mini-batch Stochastic Gradient Descent

The data set is divided into several n small batches, and the model error is cal-

culated to update the model coefficients. Using this gradient descent method, the

models enrich with the robustness of stochastic gradient descent and also the effi-

ciency from training in small batches.

Dropouts

Dropouts are applied to overcome the problem of overfitting;the system performs

well on trained data but performs very poorly on data that has never seen. Over-

fitting is a major problem especially when trained on a limited data set.

In TDNN, LSTM-TDNN training, the dropouts are applied layer-wise by introduc-

ing a new hyper-parameter that specifies the probability at which outputs of the

layer are dropped out.

RBM Pre-training

According to Kaldi nnet1 setup(Hinton et al., 2012), before training the feed-

forward network, an unsupervised pre-training process is applied to the training

data. The resulting pre-trained Deep Belief Network is then passed into DNN

training. With the use of pre-training, it adds a robustness to the system by giving

a better generalization consistently.
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3.2 Lexicon

The primary forms of lexicons found in natural language processing are phoneme

and grapheme lexicons. The phoneme based lexicon takes into consideration the

different pronunciation for each grapheme word; thus it has different sequences for

each word, while the grapheme lexicon doesn’t take the pronunciation into account.

The proposed lexicon for the research is of type - grapheme. The grapheme lexicon

that is used in this work contains over 220K entries with one unique grapheme

sequence per word. This lexicon was created using the transcripts of the UCSC

LTRL phonetically balanced corpus. Extracted Sinhala words were encoded to

English letters and modified according to the rules in Sinhala transliteration. For

this, the “Subasa” Sinhala transliteration software that has been developed by

UCSC LTRL was used by modifying its Java scripts accordingly to prepare a lexicon

in the Kaldi standard format. The figure 3.3 depicts the Sinhala transliteration

scheme, which includes 28 distinct consonants, 19 distinct vowels where one of

them is represented by a consonant character,17 distinct modifiers where vowel

characters represent 15 of them. Therefore, altogether the length of the distinct

phoneme set is 47 characters.
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Figure 3.3: Sinhala transliteration scheme

3.3 Language Model

Modeling the way the words are connected to form sentences is done in language

modeling. A tri-gram language model was built using the training corpus, provided

lexicon, silence phones, and non-silence phones. For the validity of the experiments,

the transcriptions relevant to the test data set were excluded from the text cor-

pus as it would bias the performances of models. The SRILM language modeling

tool(Stolcke, 2004) was used to create our own Sinhala language model. Kaldi

framework also supports various language modeling tool kits.

3.4 Summary

In this chapter, the high level architecture and the overall design for addressing the

research question were discussed in detail. The main components of the design and
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each of their contributions to the ASR system were stated in this chapter. Next

chapter, Chapter 4 will discuss the implementation of these components in detail.
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Chapter 4

Implementation

The following sections will present the implementations performed in each step.

Mainly, the experiments were carried out in the Kaldi speech recognition toolkit

(Povey et al., 2011), which is freely available under the Apache License.

• Data Preparation

• Implementing the baseline model - (GMM-HMM)

• Implementing DNN models

4.1 Data Preparation

The data preparation stage requires a certain amount of time as the rest of the ASR

pipeline highly depends on the consistency and integrity of the data preparation

step. Kaldi requires data to be organized in a way that it supports all Kaldi

underlying programming constructs.

The collected recordings from UCSC LTRL, which have a total of 15095 records.

From the 15095 audio files, 700 of them were removed from test and validation sets

as the speakers were reading the same script/sentences repeatedly and since it

would bias the performances of the models by giving a too-low word error rate.

The primary five files Kaldi requires for configuring the preparing stage are text,

utt2spk, wav.scp, spk2gender, and segments. The format of the text and wav files

that were used for the research are represented in 4.1 and 4.2, respectively. This

lexicon is used for all the experiments conducted throughout the study.
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Figure 4.1: Part of the generated text file

Figure 4.2: Part of the generated wav.scp file

The figure 4.3 shows a part of the lexicon which was generated according to the

Kaldi format by modifying the ‘Subasa Transliteration Software’ as stated under

the design chapter. SIL and UNK refer to the silence and spoken noise, respectively.

Figure 4.3: Part of the generated Sinhala lexicon
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4.2 Implementing the baseline model - (GMM-

HMM)

A detailed theoretical description of the steps involved in the implementation of

the GMM-HMM model was presented in Chapter 3. Figure 4.4 presents the first

part of the implementation steps of the monophone and triphone passes in the

GMM-HMM model in an abstract way.

Figure 4.4: Part of monophone and triphone passes

4.3 Implementing DNN models

This section presents different deep neural architectures that were implemented

using the Kaldi toolkit to find out the architectures that perform well for the Sinhala

speech recognition. In our Sinhala ASR system, the DNNs are applied on the top

of the MFCC acoustic features extracted from Sinhala audio files with a variant

number of hidden layers, hidden dimensions, activation functions, initial weights

and other network parameters such as dropout schedules and number of epochs to

compare and contrast the efficiency of the models. The following subsections give

brief information about the DNN models that are implemented in the research.
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4.3.1 Pre-trained DNN model

Layer-wise, pre-training is a still used technique that helps neural nets to converge

faster and better. If the pre-training process is done rightly, it can put the model

into better spots in function space that allow for better generalization, regularizing

the architecture in a local, dataset dependent way. According to (Hinton et al.,

2012), the supervised optimization from pre-trained weights consistently yields bet-

ter performances rather than from randomly initialized weights in a neural network.

The only difference from the standard neural network training is that its starting

point in parameter space will be obtained after unsupervised pre-training.

Karel’s nnet1(Hinton et al., 2012) sample setup present in the Kaldi toolkit

which has been implemented according to (Hinton, 2010) was used for the pre-

training process. The pre-training was done unsupervised manner on the training

data set using a stack of Restricted Boltzmann machines, which is also known as

a “Deep Belief Network.”

4.3.2 Non pre-trained DNN model

Pre-training DNN models need extra hyper-parameters, and the computational

time is also more substantial than training a general multilayer feed-forward net-

work. Moreover, the results do not clearly show how the unsupervised generative

model affects the final performance of our targeted supervised model. Because of

this reason, the implementation of a regular deep neural network with randomly

initialized weights was implemented using the same Karel’s nnet1 sample setup.

4.3.3 TDNN models

After training with DNN models, the next model selection was a Time Delay Neural

Network as they represent a mapping between past and present values. Although

the same memory capture can be achieved through RNNs, when learning long

term dependencies with RNNs, the “vanishing/exploding” gradient problem oc-

curs, which means that as the error signals are propagated backward through the

network’s structure they tend to vanish or explode.

In recent researches such as (Liu et al., 2019),(Peddinti et al., 2015) and (Huang
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et al., 2019), time-delay neural networks with sub-sampling have been proposed

for effective modeling of long temporal contexts of speech. In a TDNN, the upper

layers deal with information from a wider temporal context and thus can learn

wider temporal relationships.

Two TDNN network types were experimented on the Kaldi toolkit. The first

network has an asymmetric left and right context spliced frames while the second

one is a factorized form of the TDNN with symmetric left and right contexts(time-

strides), which has been introduced in the paper (Povey et al., 2018). The signifi-

cant difference in the factorized TDNN is that it uses the resnet-type skips rather

than skip-splicing. The experiments related to the first network type are car-

ried out, changing the number of relu-renormalized layers(Rectified Linear Units-

re-normalized), varying the left and right contexts of tdnn layers, and hidden di-

mensions in each layer.

Both the network types were trained on the 40-dimensional MFCC acoustic

features. In addition to that, i-vectors of audios that have 100-dimensions were

also extracted according to the run_ivector_common script provided in wall street

journal Kaldi recipe. I-vector is a mapping from a variable-length speech segment

to a fixed-dimensional representation that captures the long-term characteristics

of the audio, such as the speaker characteristics or recording device. In ASR, it

provides an additional input along with the MFCC acoustic features to the TDNN

acoustic models, which helps the network learn to be robust to speaker and channel

variations.

The next choice of the neural net architecture was a TDNN network followed

by an LSTM layer. In recent literature, the experiments conducted for Russian

(Markovnikov et al., 2018) and Mandarin Chinese (Li and Wu, 2014) speeches

using combinations of LSTMs have resulted in higher accuracies. The experiments

of these hybrid architecture were conducted using both TDNN and Factored TDNN

network settings.

Implementation steps related to TDNN model trainings are depicted in the

figure 4.5.
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Figure 4.5: Implementation steps related to TDNN model trainings

4.4 Research Tools

• Kaldi

Kaldi is an open-source toolkit for speech recognition written in C++ and

licensed under the Apache License v2.0. It aims to provide software that

is flexible and extensible. Kaldi tools support CUDA processing and other

distributed parallel processing such as Grid Engine.

• “Antpc” server

Training of all deep neural architectures and the decoding of the models were

carried out on a single GPU - GeForce RTX 2080 Ti of 10.8GB provided by

the Antpc server. A GPU-based instance is used to access to NVIDIA GPUs,

thereby accelerate the deep learning training process by leveraging CUDA.
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4.5 Summary

Throughout this chapter, the technical aspects related to implementation of the

baseline model and four other deep neural networks were discussed. In addition

to that, the tools and GPU specifications that enabled the implementation of the

experiments were addressed in brief. Chapter 5 will address the results and evaluate

the effects of these implementations for Sinhala ASR.
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Chapter 5

Results and Evaluation

The first section of this chapter will discuss the evaluation metrics that are used in

this research. In the second part, a detailed evaluation of the results experimented

on the baseline model and DNN models will be discussed.

5.1 Evaluation Metric

The performance of this Sinhala speech recognition system is evaluated in terms

of accuracy on the recordings taken in a quiet environment. This accuracy can be

obtained by calculating either Word Error Rate (WER) or Sentence Error Rate

(SER). WER is the number of words that are wrongly identified out of the total

number of words in the audio sample used for recognition. SER is the number

of sentences that are improperly identified out of the total number of sentences.

Mostly, the WER is used in discrete speech recognition, whereas SER is used in

continuous speech recognition where whole sentences are uttered. However, the

standard measurement to assess the performance of an ASR system is the so-called

WER.

5.1.1 Word Error Rate (WER)

Technically, WER is a minimum edit-distance measure produced by applying a dy-

namic alignment between the output of the ASR system and a reference transcript.

It defines the following errors that can be distinguished in the alignment process,

• substitutions (sub)
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• deletions (del) and

• insertions (ins)

Thus, the WER measure can be defined as follows,

WER =
100 ∗ (sub+ ins+ del)

n
(5.1)

n refers to the total number of words in reference transcript.

Mainly, the WER measure will be used to evaluate the results obtained from

both baseline and deep neural network models.

5.2 Experiments and results

5.2.1 Data set

Training the models involves a total data set from 70 speakers where 50 are female,

and 20 are males. The data set is split in the ratio 8:1:1 for train, validation, and

test data sets approximately. The training data set has audio recordings from 40

females and 16 males speakers, and the total utterances are 12295 sentences, which

is 25h of speech data. As the validation data set,1050 speech utterances from five

females and two male speakers are taken for fine-tuning the models. Testing the

models involve a data set from five female speakers and two male speakers where

they utter 1050 speech sentences altogether. Each of the validation and testing

data set is 1.6 hours long. The overall details about the data sets are given in

table 5.1.

Table 5.1: Details of train,validation and test data sets

Data set Female speakers Male speakers Hours

Train 40 16 22h

Validation 5 2 1.6h

Test 5 2 1.6h
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5.2.2 Results of GMM-HMM model

As described in Chapter 3, a GMM-HMM model was trained on the same training

data set to generate the alignments for the audio signals to bootstrap the DNN

training. Thus getting correct alignments from GMM-HMM model highly affects

the performances of DNN models.

After the monophone training process, the alignments are passed to three other

triphone passes to fine-tune the models by modifying HMM states and the number

of Gaussians. It was observed that cycling through training and alignment phases

can better optimize the process.

After the observations made by decoding the triphone models, the lowest WER

results were shown using the model configurations depicted in table 5.2.

Table 5.2: Results of GMM-HMM model

Training Pass
WER% Valid

set

WER% Test

set

Monophone 4.67 48.07

Triphone Pass 1 3.81 42.88

Triphone Pass 2 3.94 42.69

Triphone Pass 3 3.80 42.64

5.2.3 Results of DNN models

As stated in previous chapters, these experiments were conducted by substituting

the Gaussian Mixture Model by a Deep Neural Network algorithm. The MFCC

features and CMVN were both used along with the alignments produced by the

last triphone phase in the GMM-HMM to train the same training data set using

each neural network algorithm.

The results generated using the RBM pre-trained deep neural network with

different neural net configurations are shown in the table 5.3. The number of

epochs were set to a constant value of 20 after experimenting several rounds.
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Table 5.3: Results of pre-trained DNN models

# hidden

layers

Activation

function
# epochs

#hidden

units per

layer

WER% Valid

set

WER% Test

set

2 Sigmoid 20

256 3.54 40.04

512 3.50 40.08

1024 3.54 40.06

3 Sigmoid 20

256 3.61 39.92

512 3.50 40.33

1024 3.55 40.01

4 Sigmoid 20

256 3.46 40.39

512 3.41 40.50

1024 3.63 40.41

5 Sigmoid 20

256 3.52 40.59

512 3.45 40.62

1024 3.65 40.68

6 Sigmoid 20

256 3.50 40.33

512 3.59 40.84

1024 3.47 40.72

7 Sigmoid 20

256 3.61 41.60

512 3.60 40.58

1024 3.52 41.29

The results display the improvement gained over the baseline GMM-HMM

model by lowering a WER of 2% or more in every model in the pre-trained DNN.

The lowest or the best WER is observed to be 39.92%, which is 2.72% lower than

the best WER of the baseline model. However, the results do not clearly show how

the unsupervised generative model affects the final performance of our targeted su-

pervised model. Because of this reason, as described in Chapter 4, a regular deep

neural network with randomly initialized weights was implemented. The results

generated for the non-pre-trained models with the same network configurations as

in the pre-trained models are depicted in the table 5.4.
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Table 5.4: Results of non pre-trained DNN models

# hidden

layers

Activation

function
# epochs

#hidden

units per

layer

WER% Valid

set

WER% Test

set

2 Sigmoid 20

256 3.54 40.52

512 3.68 40.32

1024 3.76 40.28

3 Sigmoid 20

256 3.60 40.41

512 3.78 39.81

1024 3.77 39.92

4 Sigmoid 20

256 3.59 40.31

512 3.65 40.09

1024 3.78 40.15

5 Sigmoid 20

256 3.61 40.06

512 3.61 40.05

1024 3.59 40.21

6 Sigmoid 20

256 3.52 40.22

512 3.59 39.69

1024 3.78 40.15

7 Sigmoid 20

256 3.58 41.60

512 3.59 40.58

1024 3.76 41.29

The results observed from the DNN models without pre-training are slightly

better when compared with the pre-trained models under the same network con-

figurations. The best WER was found to be 39.69%, which is only 0.23% lower

than the best pre-trained DNN result. However, both the results from the DNN

models surpass the performance of the baseline model. Another set of experiments

was conducted by changing the activation function of these models from sigmoid to

Tanh function. But the results observed were higher WERs for the same network

configuration except the learning rate.

Since the results gained so far remain in a higher WER, the next experiments
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were conducted on a different deep network structure named TDNN, as described

in detail in Chapter 4. The results experimented on the two network types of

TDNNs are summarized in table 5.5.

Table 5.5: Results of two network settings of TDNN

TDNN network

type

# of TDNN

layers

layer

dimensions

WER% Valid

set

WER% Test

set

1 6

128 3.42 40.49

512 3.52 39.27

1024 4.71 40.36

2 9 1024 5.36 35.48

2 13

256 5.90 35.16

512 5.09 35.44

1024 4.75 35.45

As depicted in table 5.5, the lowest WER so far was observed from the TDNN

network type 2, which is 35.16%. With compared to baseline, pre-trained, and

non-pre-trained models, the WER has been decreased by 7.48%, 4.76%, and 4.53%,

respectively.

Another variation of TDNN network was experimented by layering an LSTM

on the top of TDNN layers. Experiments were conducted by layering the LSTM

layer on both the TDNN and factored TDNN layers. An experiment was conducted

by layering an LSTM on top of the best scored(35.16%) TDNN model. However,

the WER was increased up to 35.87%. The overall results observed from these

experiments are shown in table 5.6.
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Table 5.6: Results of TDNN+LSTM models

# of TDNN

layers

# of LSTM

layers

layer

dimensions

WER% Valid

set

WER% Test

set

4 1
512 -TDNN

384 -LSTM
4.43 36.23

256 -TDNN

384 -LSTM
4.80 36.33

13 1 256 - TDNNF

384 - LSTM
4.35 35.87

The results from TDNN+LSTM does not surpass the performance of TDNN

only models. This may due to the increase in the complexity of the models when

adding an LSTM layer. The number of parameters blows up a lot since LSTMs

makes four different projections from its input. Therefore, further experiments

adding lstm layers were not conducted. However, there is a possibility of slightly

changing the WERs when tuned with different network configurations.

5.2.4 Evaluation of results

In this research, four variations of deep neural networks and a statistical baseline

model were experimented for the task of speech recognition of the Sinhala language.

A comprehensive evaluation of these models will be conducted in this section.

Table 5.7 shows a summary of the best performance or the lowest WER obtained

from each model for the test data set.

Table 5.7: Summary of the best WERs obtained from all the models

DNN model
WER% Test

set

Baseline GMM-HMM 42.64

Pre-trained DNN 39.92

Non pre-trained DNN 39.69

TDNN 35.16

TDNN+LSTM 35.87
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According to table 5.7, the TDNN network has shown the lowest WER, which

means it is the best network setting observed from the experiments conducted in

this research. Even the hybrid architecture of TDNN+LSTM shows a lower WER

than the regular DNNs, which highlights the factor that TDNNs perform much

better in speech recognition tasks.

To clearly distinguish how the performances of models have practically affected

the test audio files, a comparison of four translated sentences have been made in

figure 5.1.
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Figure 5.1: Four translated example sentences based on baseline GMM-HMM, pre-

trained DNN, non-pre-trained DNN, TDNN, and TDNN+LSTM. Phrases in the

bold green text show the exact matching compared to the correct test sentence.

Phrases in the bold red text show the words that are incorrectly translated by the

models while the phrases highlighted in yellow shows the word segmentation issues

and slight deviations
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When considering the test sentence 1, all the models have failed to correctly

translate the words "ඇඹ╍╣හ╃, "ක╃ෙ╿ෙරා්ටය." When analyzing the sentence, it was

found, these words are not used in the corpus, although they are included in the

lexicon. Therefore, the models have failed to find any relationship between the

words and have lead to incorrect translations. This signifies that the richness of

the text corpus, along with the lexicon, is an essential factor for developing a

robust speech recognition system. However, the TDNN type models has been able

to slightly translate those words, which is a noteworthy feature. This same scenario

has happened in the test sentence four also, where all the models have failed to

identify the word "හෑ╃╁වට ".

Significant performance is shown from TDNN and TDNN+LSTM models in

the test sentence 2, as they have been able to identify the word "╄░▍" correctly.

In the text corpus, the phrase " ╶░▍" is not followed by any suffix that is relevant

to this sentence. However, the phrase "╄░▍" is followed by suffixes such as " ය☁","

ක╍","ක╍ව▌ෙ◻ "," ක╍ෙ◻" in several times. The baseline, pre-trained, and non-pre-

trained models have wrongly identified the word as "╶░▍". This is because these

models don’t have the capability to learn long-term dependencies of speech as they

only focus on the current context. The TDNN and TDNN+LSTM models have

correctly identified the word since they are capable of modeling information from

a wider temporal context and can find wider temporal relationships.

When analyzing the translated sentences, most of the sentences that are trans-

lated from the pre-trained and non-pre-trained DNNs take the same form as their

best WERs also has only a small difference. This can be seen in test sentences 1,2,

and 3 in figure 5.1.

5.3 Summary

The results from each experimented model were presented in this chapter in detail.

Together with the results, an analysis of the WER scores and translated sentences,

comparing different experiments, was also discussed. The potential conclusions

that can be drawn from these results are presented in Chapter 6.
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Chapter 6

Conclusions

6.1 Introduction

This thesis is on developing an automatic speech recognition system for the Sinhala

language by using deep learning techniques. Initially, this research started with

an in-depth look at the literature of the Automatic Speech Recognition(ASR). In

chapter 2, a comprehensive literature review was conducted to figure out the gaps

in this area of study. It becomes evident that less research has been done in the

field of Sinhala speech recognition. The reason for this is the limited resources to

continue a research study.

This chapter provides an overall picture of the conclusions drawn from the whole

research work conducted by us.

6.2 Conclusions about research questions and ob-

jectives

The main research objectives of this comprehensive study are developing a Sinhala

ASR system using deep learning techniques and comparing the performances of

the experimented DNN models with the statistical baseline model, which is GMM-

HMM. For this, we are addressing the research question, ”What deep neural archi-

tectures will perform well for Sinhala ASR with limited resources?”.

Initially, we started developing the statistical model, which has been the state-of-

the-art method for speech recognition for several years. To tackle the problem of
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fewer resources, the training of deep neural networks were performed on the align-

ments generated using the baseline model rather than training immediately from

utterance level transcriptions.

In this research, we have trained four types of deep neural networks, namely pre-

trained DNN, non-pre-trained regular DNN, TDNN, and TDNN, followed by LSTM

(TDNN+LSTM). When evaluating the results, the highest WER was observed from

the baseline GMM-HMM model, which is 42.64%. This result is used for evaluat-

ing the performance of deep neural networks over the statistical approach. It was

observed that the results obtained from pre-trained and regular DNN are compar-

atively similar. As in table 5.3, the best WER from the pre-trained model, which

is 39.92% can be obtained using three hidden layers with 256 hidden units, 0.008

of the learning rate, and Sigmoid activation function. When experimented under

the same learning rate and activation function, the best WER of the regular DNN

was observed as 39.69% when trained on six hidden layers with 512 hidden units.

However, these two DNN models have a small improvement of 2.72% and 2.95%

when compared with the baseline model. While in table 5.5, it can be observed

that the TDNN model is dramatically better than the previous three models, in-

cluding the baseline model. This proves the efficiency of TDNN network settings

towards the task of speech recognition. The best WER achieved from the TDNN

model, which is 35.16% can be obtained from the factored TDNN setting with 13

TDNN layers, each having 256 hidden units. The performance of the best TDNN

model over the baseline and previous DNN models is 7.48%, 4.76%, and 4.53%,

respectively. Later, when trained with the hybrid architecture - TDNN+LSTM as

in table 5.6, the WER got from TDNN was increased slightly by 0.71% . This may

due to the model complexity getting increased compared to the limited data set.

A significant improvement of the WERs can be observed, especially when using

the factored form of TDNN layers where the architecture uses the resnet-type skips

rather than skip-splicing. In Chapter 5, as analyzed the performance by bringing

out example sentences from each model, it was observed that if the models can learn

broader temporal contexts, they are likely to identify the correct words for the given

audio frame. Thus, we could identify the Time Delay Neural Network(TDNN)

as one of the deep neural architectures that perform well for the Sinhala speech
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recognition even with a limited data set of about 25hours. The results obtained

show that the Deep neural network architectures exceed the baseline - GMM-HMM

performance model with a maximum WER of 7.48% on the test data set.

6.3 Conclusions about research problem

According to the results concluded in section 6.2, this research has been able to

find a DNN model that will averagely perform better for speech recognition of the

Sinhala language. Chapter 5 showed the lowest WERs observed from each DNN

model and the baseline GMM-HMM model. In Section 5.2.4, it can be noted that

if the text corpus is extended further along with more training data, the models

are able to identify most of the words correctly.

When compared with previous work (Amarasingha and Gamini, 2012),(Manam-

peri et al., 2018),(Nadungodage andWeerasinghe, 2011),(Gunasekara and Meegama,

2015), that has been done on Sinhala ASR, this research has used relatively an ex-

tensive data set and have come up with a DNN solution that outperforms the

statistical model results. Thus, this study contributed to the domain of speech

recognition by exploring deep neural architectures that give better results for the

Sinhala language with low resources.

6.4 Limitations

A moderate vocabulary of Sinhalese speech data is used for all the training con-

ducted in the research. As this research aims in developing an ASR system that

works for the general domain, it needs to have an adequate amount of speech

data as well as a rich text corpus. However, the used data set was created by

UCSC LTRL, and it was extended further by collecting recordings from time to

time. Therefore, the training of models had to be repeated several times with the

extended data set, which required a lot of time and effort.

Initially, the research experiments had to be conducted using the GCP per-

sonal account with minimal computational power until the University provides the

computational facility. However, with the demand increases for computational

resources, the jobs had to be kept in the waiting queue for several days.
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Since it is impractical to train on every possible network configuration related

to a particular model, the hidden layers were incrementally increased from 2 to 7,

observing 256,512 and 1024 hidden dimensions in DNNs. In TDNN networks,the

number of layers and hidden units were changed randomly based on the results.

These network configurations were mostly based on the literature related to DNN

training.

Understanding the Kaldi coding style, I/O internals, data structures, and pro-

cess communication styles is a tedious task compared to other frameworks that are

written in higher-level languages such as Java. It took several months to get famil-

iar to the framework thoroughly. The reason for this is the Kaldi core is written

in C++, and executable programs are consolidated in bash scripts, which are from

little to no readable.

6.5 Implications for further research

Many investigations can be carried out to develop an improved robust model that

will deliver lower WER and better frame accuracy. Since the lowest WER was ob-

served from TDNN models, experimenting on the TDNN with a different numbers

of layers, contexts, epochs, and other configurations can be conducted as future

work. A deep error analysis on the outputs gained by different network types and

network configurations can be carried out as a future enhancement. It would help

to identify the types of words that can be easily recognized by the developed sys-

tem. Since the size of the speech corpus affects the results of the models, another

future work is creating a more extensive corpus with a phonetically balanced vo-

cabulary can be done. In addition to that, with a larger corpus, experimenting on

TDNN networks concatenating CNN, LSTM, and BLSTM layers is another future

enhancement to this research.
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Appendix A

Model Specifications

The network specifications of the pre-training process are depicted in table A.1.

Table A.1: Network specifications of pre-trained DBN

# RBM hidden

layers

#hidden

units per

layer

RBM learning

rate

Lower RBM

learning rate

6 2048 0.4 0.01

The network specifications of the best TDNN model are represented in table

A.2.
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Table A.2: Network specifications of the best TDNN model

Network type
TDNN

layer information
# Dimensions # Epochs

2

relu-batchnorm-layer name=tdnn1

tdnnf-layer name=tdnnf2 time-stride=1

tdnnf-layer name=tdnnf3 time-stride=1

tdnnf-layer name=tdnnf4 time-stride=1

tdnnf-layer name=tdnnf5 time-stride=0

tdnnf-layer name=tdnnf6 time-stride=3

tdnnf-layer name=tdnnf7 time-stride=3

tdnnf-layer name=tdnnf8 time-stride=3

tdnnf-layer name=tdnnf9 time-stride=3

tdnnf-layer name=tdnnf10 time-stride=3

tdnnf-layer name=tdnnf11 time-stride=3

tdnnf-layer name=tdnnf12 time-stride=3

tdnnf-layer name=tdnnf13 time-stride=3

256 10

The network configurations of the best TDNN+LSTM model is depicted in the

figureA.3.
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Table A.3: Network specifications of TDNN+LSTM model

layer information
# TDNN

dimensions

# LSTM

dimensions
# Epochs

relu-batchnorm-layer name=tdnn1

tdnnf-layer name=tdnnf2 time-stride=1

tdnnf-layer name=tdnnf3 time-stride=1

tdnnf-layer name=tdnnf4 time-stride=1

tdnnf-layer name=tdnnf5 time-stride=0

tdnnf-layer name=tdnnf6 time-stride=3

tdnnf-layer name=tdnnf7 time-stride=3

tdnnf-layer name=tdnnf8 time-stride=3

tdnnf-layer name=tdnnf9 time-stride=3

tdnnf-layer name=tdnnf10 time-stride=3

tdnnf-layer name=tdnnf11 time-stride=3

tdnnf-layer name=tdnnf12 time-stride=3

tdnnf-layer name=tdnnf13 time-stride=3

lstm-layer name=lstm3 decay-time=20 delay=-3

256 384 10
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Appendix B

Decoded text

Figure B.1: Three other translated sentences based on baseline GMM-HMM, pre-

trained DNN, non-pre-trained DNN, TDNN, and TDNN+LSTM. Phrases in the

bold green text show the exact matching compared to the correct test sentence.

Phrases in the bold red text show the words that are incorrectly translated by the

models while the phrases highlighted in yellow shows the word segmentation issues

and slight deviations
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