
A Robust Approach to Predict the Popularity of Songs by Identifying

Appropriate Properties

by

S. Anjana

2015/CS/013

This dissertation is submitted to the University of Colombo School of Computing

In partial fulfillment of the requirements for the

Degree of Bachelor of Science Honours in Computer Science

University of Colombo School of Computing

35, Reid Avenue, Colombo 07,

Sri Lanka

July 2020



Declaration

I, S. Anjana (2015/CS/013) hereby certify that this dissertation entitled “A

Robust Approach to Predict the Popularity of Songs by Identifying Appropriate

Properties” is entirely my own work and it has never been submitted nor is currently

been submitted for any other degree.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date S. Anjana

I, Dr. K. L. Jayaratne, certify that I supervised this dissertation entitled “A

Robust Approach to Predict the Popularity of Songs by Identifying Appropriate

Properties” conducted by S. Anjana in partial fulfillment of the requirements for

the degree of Bachelor of Science Honours in Computer Science.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date Dr. K. L. Jayaratne

i



Abstract

Hit Song Science is a major research topic which is being discussed today in the

field of Music Information Retrieval. In order to identify and predict whether a

song could be a hit song or not is yet a challenging task.

This thesis investigates the ability of using machine learning to make predictions

on Sinhala songs whether they would be a hit or not. More than 13,000 Sinhala

songs were collected by web scraping in a popular Sinhala music website which also

contributes by presenting a dataset that can be used for further research purposes.

The number of downloads and the view counts were used to derive a equation

to measure the popularity. The features extracted of each song is used by the

XGBoost classification algorithm. The songs are initially grouped into 3 classes

based on their popularity, and later by performing machine learning algorithms on

a set of features extracted on each song, the impact of the Linear Predictive Coding

(LPC) overall average (LOA) and Mel-Frequency Cepstral Coefficients (MFCC)

features, to the end result is indicated by the use of SHAP process.
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Preface

The dataset construction using techniques such as web scraping and feature

extraction of the music clips were scripted by myself. Also, the results obtained

using the machine learning algorithms which are stated in this research are carried

out by myself itself.
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Chapter 1

Introduction

1.1 Background to the Research

The music industry is one of the most widely spread industries around the world.

The expansion of online streaming services has enabled artists to promote their

musical productions across the world, and many newcomers to the industry were

lately identified. It has become an easy task for an artist to promote their

musical work online to the same audience, regardless of their skill level. But it

would be doubtful whether these songs would become an international hit or go

underrated/unpopular just after the release. Compared to the number of songs

released every year, only a few numbers of songs would get listed as top hits.

When considering the music industry in Sri Lanka, there are currently

thousands of songs produced throughout history. In addition to that, this number

gradually increases every year. Several artists produce songs every year and, yet

it would be doubtful whether these songs become popular or not. So, most of the

artists would tend to use social media and other kinds of advertising platforms to

promote their songs, which would temporarily make it a trending hit.

1.2 Research Problem and Research Questions

1.2.1 Research Problem

Some songs go viral, and some don’t. In the modern-day, due to competitive

reasons, song creators tend to use paid promotions to promote their songs to a

much broader audience. The benefit of doing this is to obtain sponsorship for

music releases and such similar reasons. However, if the song doesn’t appear to

be good for some reason, it wouldn’t stay popular for a very long time. Once the

promotion ends, the song’s existence would even be forgotten by almost everyone.

Meanwhile, some songs are still being enjoyed, which were produced years ago.
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Apparently, these songs can be considered as all-time hits.

Some researches argue that the popularity of a song is defined as a totally random

coincidence [2], while, others argue that these songs have some hidden qualities

that lie within them which makes them popular for such a long time [3]. If these

properties are identified and analyzed, it would be the key to predict the popularity

of a song at the time of release. Currently, a vast amount of open-source datasets

about songs have been collected for the purpose of research [4], and there is a

number of researches conducted under this domain, where most of them have

analyzed the high-level metadata of songs in order to predict its popularity [5].

And yet it is said to be uncertain if it is even possible to predict, better than

random if a song will be popular or not [2].

This research project analyzes the low-level features of songs, such as the audio

waveform and audio spectrum using machine learning algorithms and develop a

tool to test a song’s ability to be popular.

1.2.2 Research Questions

The main research questions which are being addressed within this research would

be as following.

1. Do most of the popular songs have some qualities in common?

2. Does the audio signal related properties of a song be useful for predicting its

popularity?

3. To what extent can popular songs be predicted using audio signal related

properties?

1.2.3 Project Aim

This aim of this research is using machine learning algorithms on music in order

to determine the qualities of popular songs and analyze their impact on popularity

prediction of songs.

1.2.4 Objectives

The following objectives were accomplished when addressing the above research

questions.

1. Identifying the audio signal characteristics of songs.

2. Identifying the popularity classes of each song.

3. Classifying the songs based on their audio signal related characteristics.
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4. Identifying the relationship between audio signal related features and the

popularity of the song.

1.3 Significance of the project

Using machine learning to predict a song’s popularity, which is also known as “Hit

Song Science,” is a problem that has been around since the last decade. Many

private organizations in the music industry are working on this problem, but the

details about the successful results are kept confidential due to competitive reasons.

This research explores new methods of predicting a song’s popularity using

scientific methods, such as analyzing the audio waveform and correlating it with

the popularity of the song, with the use of machine learning algorithms. The

conclusions of this research project can be beneficial for many in the music industry.

The results of this research can be used by composers to improve their artwork, and

as a tool for the beginners and learners in the music industry, and other interested

third parties can also request to purchase the intellectual property right of a song

at the time of release.

1.4 Methodology

The research initially defines a measure of popularity, based on the data collected

using web scraping. The songs are categorized according to this popularity measure

and the audio waveform and audio frequency data is then analyzed using machine

learning algorithms. Fourier Analysis and MFCC extraction is performed on the

audio waveform for further processing. Classification using machine learning is

used on the extracted features in order to co-relate with the popularity.

The research would next analyze the features that most impact the popularity of

songs. This is considered to be helpful when predicting the popularity of a song

The process of this research can be divided into the following steps.

1. Data Collection

2. Preprocessing

3. Feature Extracting

4. Determining the Popularity

5. Model Training and Evaluation

Figure 1.1 depicts the approach of the research according to the above

mentioned steps.
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Figure 1.1: Research Approach

Data Collection

The Python BeautifulSoap and requests libraries were being used to collect data

from a popular Sinhala song listing website. The following data items were being

captured and stored.

1. Song Title

2. Authors (Singers/Musicians/Lyricists)

3. Download counts

4. View counts

5. MP3 audio files

1.4.1 Preprocessing

The fetched data was next being stored in a relational database for further

processing. Also the features that were extracted from the audio files were stored

in a separated table and treated as the feature vector when used to be provided as

the input of the machine learning algorithm.

Feature Extraction

A number of features are extracted and when the number of dimensions are too

large, a statistical approach such as considering the average and standard deviation

of the coefficients were used. Some features related to the MFCC and LPC are

presented with 10 and 13 parallel dimensions which are numbered according to the

index.
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1.5 Outline of the Dissertation

The first chapter provides an introduction to the research. The 2nd chapter is

about literature reviews on related research. The 3rd chapter provides a design

overview on the research. The implementation is described in the 4th chapter of

this dissertation. The results obtained and the evaluation is described in the 5th

chapter. The final 6th chapter includes the conclusions.

1.6 Scope and Delimitations

1.6.1 In Scope

This research project would intend to,

• Determine a measure for the popularity of songs.

• Analyze the audio signal related characteristics in both popular and

unpopular songs.

• Correlate these features along with their popularity classes

1.6.2 Out Scope

This research project shall not,

• Predict estimated reach of songs based on the popularity.

• Be used as a personal music recommendation system.

• Analyze the activities of the brain in response to music frequencies

5



Chapter 2

Literature Review

2.1 Literature review

While Machine Learning algorithms are used in many fields for prediction problems,

using it to predict the popularity of a song is a problem that has been addressed

in many previous attempts. Several amounts of researches have been conducted on

song popularity prediction, which is resulting in different conclusions.

Most of these researches are based on the Million Song Dataset (MSD), which

is an open dataset provided by the Echo Nest API (Currently acquired by Spotify).

The MSD is an attempt to help researchers by providing a large-scale dataset [4].

In 2008, an endeavor to validate the hypothesis that the popularity of songs

can be predicted from acoustic or human features which were conducted by Pachet

and Roy. Their experiment was based on a dataset of 32000 titles and 632 features,

which was a considerably huge dataset at that time. However, they were not able

to develop a good classification model and concluded that the popularity of a song

could not be predicted by using state-of-the-art machine learning techniques [6].

In a 2011 study made by Ni et al., provided with a positive result on the problem

of predicting music popularity. Their goal was to distinguish the top 5 hits from

top 30-40 hit list. Their dataset was based on UK charts during a time period of 50

years. 5947 unique songs were collected from the Official Charts Company (OCC),

and the audio features were extracted from The Echo Nest. They indicated that it

is possible to identify music hits [7].

Another study conducted in the same year of 2011, by Borg and Hokkanen

investigated if they could predict the popularity of a song based on its audio features

and Youtube view counts. The features for audio tracks were obtained from The

Echo Nest. For this task, several Support Vector Machines (SVM) were built
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and achieved a very modest result. The SVMs, regardless of feature choice and

parameters, never achieved more than 53% accuracy. They concluded that audio

features alone do not seem to be good predictors of what makes a song popular.

They suggest that popularity is likely driven by social forces [8].

Fan and Casey at the Dartmouth College compared the prediction of UK hit

songs against Chinese hit songs. Their research, which was published in the year of

2013, also used a time-weighted Linear Regression model and SVMs on the audio

features obtained using the Echo Nest API. The set of song tracks were collected

from OCC for UK hits and ZhongGuoGeQuPaiHangBang for Chinese hits. They

also defined a “Hit song” as the songs which were ranked 1-20 of the chart and a

“non-hit song” as the songs which ranked from 21-40. Their research concluded that

Chinese hit song prediction was more accurate than the UK hit song prediction.

The error rate for predicting Chinese songs was 41%, while the prediction of UK

hits generated a 52% error rate. The Chinese hits appeared to have significantly

different characteristics than UK hits [9].

Herremans et al. focused on classifying dance hit songs in a 2014 study. They

also extracted features using The Echo Nest API. The datasets used in the models

were based on the OCC listings. The peak chart position of the songs which ranked

from 1-40 was used in order to determine if a song was a dance hit or not. And they

were able to create a dataset of dance hit songs from 2009 to 2013. Many Machine

Learning algorithms such as Decision trees, Naive Bayes, Logistic Regression, and

SVMs were used in their research. They concluded that the Logistic Regression was

the best algorithm, which could be used to predict dance hit songs, by analyzing

audio features with an accuracy of 0.65 [10].

Another study by Pham et al., at Stanford University in 2016, used different

machine learning algorithms such as SVMs, Artificial Neural Networks, and Logistic

Regression in order to test their ability to predict the popularity of music tracks.

They classified using both audio features as well as metadata, which was obtained

by the MSD. A subset of 2,717 tracks was used after removing records which consist

of incomplete data that lacked some features of the initially selected 10,000 music

tracks. They considered a hit song as a song with a high popularity value provided

by The Echo Nest API. They finally concluded that all the models were performing

with nearly similar accuracies, around 75% [5].

While most of these researches are preliminary based on western music tracks,

there seems to be a lack of research conducted in the context of Sinhala songs. A

recent study by Paranagama et al., in 2017 came up with a solution to automate
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the process of determining the user ratings of songs by using a multilayer neural

network. They’ve finally been able to achieve an accuracy of 50% in performance

indices, with optimizing the code and solution in various ways such as using

clustering to determine the labels and using pre-stored data for feeding the input

[11].

Also, when considering music recommendation systems, Bo Shao et al.

discusses the “Collaborative filtering” and “Content-based” approaches and their

disadvantages. That is the initial startup problem of not having enough data

on user preferences over music tracks and how it would negatively affect the

recommender system’s accuracy. They propose a novel approach to overcome these

issues by using user access patterns along with content-based features [12].

Music recommendation is vastly used in industry-wide applications. According

to Covington et al., YouTube uses the watch time, and the click-through rate in

order to determine the trending videos. That is the number of users who clicked

on a video thumbnail out of the total number of impressions, and the proportion of

the total length of the video, that user watched has a significant impact rather than

the view count of a video [13]. According to Zannettou et al., YouTube content

creators tend to use more click baits with false information because the YouTubes

algorithm does not consider such click baits in their recommendation algorithm

[14].

HY Chang et al. implies how crucial the selection of appropriate music genre,

when using music recommendations for stress-related therapies. They proposed a

personalized stress-relieving music recommendation system based on EEG feedback

[15].

Several previously conducted researches suggest that the popularity of a song

can be predicted using machine learning techniques; some also disagree with

it. Also, by considering the need of having studies on predicting the popularity

of Sinhala songs, this research would expect to continue to investigate this problem.

Heckard et al. askes [16] the question: ”Will you always like the music

that you like now?”, and describes it as if you are about 20 years old, the

likely answer is “yes,” according to research reported in the Journal of Consumer

Research [1]. The researchers concluded that we tend to acquire our popular music

preferences during late adolescence and early adulthood.

In the study, 108 participants from 16 to 86 years old listened to 28 hit songs that

had been on Billboard’s Top 10 list for popular music sometime between 1932 and

1986. Respondents rated the 28 songs on a 10-point scale, with 1 corresponding

to “I dislike it a lot” and 10 corresponding to “I like it a lot.” Each individual’s
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ratings were then adjusted so that the mean rating for each participant was 0.

On this adjusted rating scale, a positive score indicates a rating that was above

average for a participant, whereas a negative score indicates a below-average

rating. For each of the 108 participants 3 28 songs, a “song-specific age” was

calculated representing how old the participant was when that song was popular.

If the song was popular before the person was born, the song-specific age was

negative. For example, the youngest participant in the study was born in 1971,

so the song from 1932 was popular 39 years before that person was born, for a

song-specific age of -39. The oldest participant was born in 1901, so the song

from 1986 was popular 85 years after that person was born, for a song-specific

age of +85. These were the two extremes, so the song-specific ages range from

-39 to +85. Figure 3.3 shows the relationship between the average adjusted song

ratings and the song-specific ages. There are 124 points in the scatter plot, one

for each songspecific age from -39 to +85. The overall pattern in Figure 2.1

looks somewhat like an inverted U, and the highest preference ratings occur when

song-specific ages are in the late teens and early twenties. A straight line does

not describe the overall pattern, so the association is called nonlinear or curvilinear.

Figure 2.1: Song-specific age and music-preference score [1]

Review

For further processing, the understanding of how audio is being represented in a

digital format is important.

The Sound is represented in the form of an audio signal having parameters such

as frequency, bandwidth, decibel etc. A typical audio signal can be expressed as a

function of Amplitude and Time as depicted in Figure 2.2.

These sounds are available in many formats which makes it possible for the

computer to read and analyze them. In this research, the following audio formats

9



Figure 2.2: Representation of Audio Signals

will be used.

1. MPEG Audio Layer-3 (MP3) format

2. Waveform Audio File Format (WAV) format

Since the MP3 format uses lossy data-compression to encode data using inexact

approximations and the partial discarding of data 1, it should be converted to

the WAV format before the feature extraction begins. Since the WAV files are

uncompressed, they contain lossless audio 2 that would occupy more disk space

when storing.

1https://en.wikipedia.org/wiki/MP3
2https://www.howtogeek.com/392504/what-are-wav-and-wave-files-and-how-do-i-open-them/
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Chapter 3

Design

3.1 Design

This research is designed to identify the audio signal related characteristics of songs,

determining a measure for the popularity of songs and correlating them in order

to observe a classification model.

Web scrapers are used to gather publicly available data from a popular Sinhala

songs website1. The song title, artist related data, visits count, download count,

and the song file in MP3 format is fetched using the Python script. Othe than the

song file being saved as a Binary Large Object (BLOB), all the other song related

metadata which were fetched is saved in the MySQL database in a relational form.

Since a song can have many artists with many roles such as multiple vocalists,

multiple lyricists, and multiple music composers while at the same time, a single

artist also may contribute to multiple songs in may roles (types), a many-to-many

(m : n) relationship should be implemented between the songs and artists entities.

When normalized a new entity named song artist is formed in order to hold the

relationship. The composition of all three attributes which are song id, artist id,

and role will be unique in the song artist table. The Entity Relationship Diagram

(ERD) in Figure 3.1 is part of the database design where the web-scraped data is

stored.

The download count and the view count in the songs tables is stored for the purpose

of ranking songs where a measure for the popularity could be determined. The song

files are stored separately in the hard drive instead of being stored as a BLOB file in

the database, where only the file name has to be recorded in the songs table. Since

the song files are stored in the MP3 format, they are required to be converted in to

the WAV in order to be further processed in the feature extraction stage. Usually

the WAV files occupy reasonably more storage space in the hard drive. Therefore,

1https://sarigama.lk
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Figure 3.1: The partial ER Diagram which is used to store the web-scraped data

the WAV files are created temporarily, and as soon as the features are extracted,

they are deleted in order to preserve the disk space.

The Figure 3.2 depicts the flow of the processes in this research, where initially

a set of songs which were web-scraped and the audio features were extracted. The

set of features were then being used as an input to the XGBoost classification in

order to determine the popularity class of each of them. The popularity class is a

factor derived by using the view count and the download count of each song.

Figure 3.2: The process flow of the research
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3.2 Tools and Programs Used

The Python requests2 and BeautifulSoap3 libraries were used to fetch the song

related data and the song audio clips. The Python Librosa library [17] was used to

extract the duration and tempo (beats per second) of each song. The jAudio tool

[18] was being used for the extraction of all the other features.

The data collected was stored in a MySQL database. Figure 3.3 depicts the

database design which was used for further processing using machine learning

algorithms. This includes the table features which is being used to store the feature

vector of each song.

Figure 3.3: The Entity Relationship Diagram of the Database Design

3.3 Ethical Issues

Here the data collected was obtained only through publicly available channels

(Online Websites). And since the data-set is only being used for

non-commercial/academic purposes, it wouldn’t violate any ethics.

2https://requests.readthedocs.io/en/master
3https://www.crummy.com/software/BeautifulSoup/bs4/doc
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Chapter 4

Implementation

4.1 Web Scraping

T he web-scraping process was done according to a functional approach. First,

the number of pages in the song listing website was determined by the page count

indicator in each page, and there by the number of iterations were derived.

Once the loop iterates through each page, the song listing includes a link

for each song, in order to view all the details related to that relevant song in

another page. There the artist related data, and the download and views counts

are indicated. These are obtained by extracting the content within the Hypertext

Markup Language (HTML) elements. As soon as these details were available to the

Python web-scraping script in a single fetch, they are stored in the relevant tables

of the database. For each record inserted to a table, the database is configured to

use an automatically incremented integer value name the id field, which is being

used as the Primary Key of the table.

When these records are inserted for a single song details fetch, the song file is

download by within the same HyperText Transfer Protocol (HTTP) session, by

identifying the Uniform Resource Locator (URL) to the specific song. The content

obtained when fetching the song file is written to the hard disk as a binary file.

Once the song related details are inserted to the songs table in the database, the

Primary Key (id) filed will be available to the script. For the purpose of further

simplification, and in order to avoid duplicate file names being overwritten, this id

field is used to rename the song file as <id>.mp3 when saving to the hard disk.

4.2 Feature Extraction

The extraction was initially performed by the jAudio tool by compiling it as a

Java ARchive (JAR) file. A database table was maintained to save these extracted

features. The Python Librosa library was used to extract the duration, and tempo

of each song and updated the same database table. The acronyms used for each
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feature, is listed in the Table 4.1.

Attribute Acronym

scosd Spectral Centroid Overall Standard Deviation

srposd Spectral Roll off Point Overall Standard Deviation

sfosd Spectral Flux Overall Standard Deviation

cosd Compactness Overall Standard Deviation

svosd Spectral Variability Overall Standard Deviation

rmsosd Root Mean Square Overall Standard Deviation

folewosd Fraction of Low Energy Windows Overall Standard Deviation

zcosd Zero Crossings Overall Standard Deviation

sbosd Strongest Beat Overall Standard Deviation

bsosd Beat Sum Overall Standard Deviation

sosbosd Strength Of Strongest Beat Overall Standard Deviation

mosd (0 - 12) MFCC Overall Standard Deviation

Losd (0-9) LPC Overall Standard Deviation

scoa Spectral Centroid Overall Average

srpoa Spectral Rolloff Point Overall Average

sfoa Spectral Flux Overall Average

coa Compactness Overall Average

svoa Spectral Variability Overall Average

rmsoa Root Mean Square Overall Average

folewoa Fraction Of Low Energy Windows Overall Average

zcoa Zero Crossings Overall Average

sboa Strongest Beat Overall Average

bsoa Beat Sum Overall Average

sosboa Strength Of Strongest Beat Overall Average

moa (0 - 12) MFCC Overall Average

loa (0 - 9) LPC Overall Average

tempo Beats per Minute

duration Song Length

popularity Norm(downloads)*(Click Through Rate)

Table 4.1: The feature acronyms

The details of each of these features can be described as following.

Spectral Centroid Overall Standard Deviation

The center of mass of the power spectrum. This is the overall standard

deviation over all windows.
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Spectral Roll off Point Overall Standard Deviation

The fraction of bins in the power spectrum at which 85% of the power is at

lower frequencies. This is a measure of the right-skewedness of the power

spectrum. This is the overall standard deviation over all windows.

Spectral Flux Overall Standard Deviation

A measure of the amount of spectral change in a signal. Found by calculating

the change in the magnitude spectrum from frame to frame. This is the overall

standard deviation over all windows

Compactness Overall Standard Deviation

A measure of the noisiness of a signal. Found by comparing the components

of a window’s magnitude spectrum with the magnitude spectrum of its

neighboring windows. This is the overall standard deviation over all windows

Spectral Variability Overall Standard Deviation

The standard deviation of the magnitude spectrum. This is a measure of

the variance of a signal’s magnitude spectrum. This is the overall standard

deviation over all windows

Root Mean Square Overall Standard Deviation

A measure of the power of a signal. This is the overall standard deviation

over all windows

Fraction of Low Energy Windows Overall Standard Deviation

The fraction of the last 100 windows that has an RMS less than the mean

RMS in the last 100 windows. This can indicate how much of a signal is quite

relative to the rest of the signal. This is the overall standard deviation over

all windows

Zero Crossings Overall Standard Deviation

The number of times the waveform changed sign. An indication of frequency

as well as noisiness. This is the overall standard deviation over all windows

Strongest Beat Overall Standard Deviation

The strongest beat in a signal, in beats per minute, found by finding the

strongest bin in the beat histogram. This is the overall standard deviation

over all windows

Beat Sum Overall Standard Deviation

The sum of all entries in the beat histogram. This is a good measure of the

importance of regular beats in a signal. This is the overall standard deviation

over all windows
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Strength Of Strongest Beat Overall Standard Deviation

How strong the strongest beat in the beat histogram is compared to other

potential beats. This is the overall standard deviation over all windows

MFCC Overall Standard Deviation

MFCC calculations based upon Orange Cow code This is the overall standard

deviation over all windows. This feature contains 13 parallel dimensions,

which are named from mosd 0 to mosd 12.

LPC Overall Standard Deviation

Linear Prediction Coefficients calculated using autocorrelation and

Levinson-Durbin recursion. This is the overall standard deviation over all

windows. This feature contains 10 parallel dimensions, which are named

from losd 0 to losd 9.

Spectral Centroid Overall Average

The center of mass of the power spectrum. This is the overall average over

all windows

Spectral Rolloff Point Overall Average

The fraction of bins in the power spectrum at which 85% of the power is at

lower frequencies. This is a measure of the right-skewedness of the power

spectrum. This is the overall average over all windows

Spectral Flux Overall Average

A measure of the amount of spectral change in a signal. Found by calculating

the change in the magnitude spectrum from frame to frame. This is the overall

average over all windows

Compactness Overall Average

A measure of the noisiness of a signal. Found by comparing the components

of a window’s magnitude spectrum with the magnitude spectrum of its

neighboring windows. This is the overall average over all windows

Spectral Variability Overall Average

The standard deviation of the magnitude spectrum. This is a measure of the

variance of a signal’s magnitude spectrum. This is the overall average over

all windows

Root Mean Square Overall Average

A measure of the power of a signal. This is the overall average over all

windows
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Fraction Of Low Energy Windows Overall Average

The fraction of the last 100 windows that has an RMS less than the mean

RMS in the last 100 windows. This can indicate how much of a signal is quite

relative to the rest of the signal. This is the overall average over all windows

Zero Crossings Overall Average

The number of times the waveform changed sign. An indication of frequency

as well as noisiness. This is the overall average over all windows

Strongest Beat Overall Average

The strongest beat in a signal, in beats per minute, found by finding the

strongest bin in the beat histogram. This is the overall average over all

windows

Beat Sum Overall Average

The sum of all entries in the beat histogram. This is a good measure of the

importance of regular beats in a signal. This is the overall average over all

windows

Strength Of Strongest Beat Overall Average

How strong the strongest beat in the beat histogram is compared to other

potential beats. This is the overall average over all windows

MFCC Overall Average

MFCC calculations based upon Orange Cow code This is the overall average

over all windows. This feature contains 13 parallel dimensions, which are

named from moa 0 to moa 12.

LPC Overall Average

Linear Prediction Coefficients calculated using autocorrelation and

Levinson-Durbin recursion. This is the overall average over all windows.

This feature contains 10 parallel dimensions, which are named from loa 0 to

loa 9.

4.3 A Measure for the Popularity

The popularity score for each song is calculated according to the following formula.

First the the download count for a single song is normalized to a value between 0

and 1 (inclusive) according to the following formula.

Norm(download count) = download count of the song−min(downloads)
max(downloads)−min(downloads)

Next the view count for a single song is normalized to a value between 0 and 1
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(inclusive) according to the following formula.

Norm(view count) = view count of the song−min(views)
max(views)−min(views)

The Click Through Rate (Downloads per View) is obtained by the following

formula.

click through rate = Norm(download count)
Norm(view count)

Finally the popularity score is derived by this formula.

The popularity score = Norm(download count) ∗ click through rate

The click through rate is an optimal method in order to determine the popularity

where the ranking happens based on the reach to a particular audience [19, 20]. A

study by Zhou et al. presents their findings stating that the click through rate is

an important factor in YouTube video recommendation which also concludes that

the popularity of the video is based on the proper recommendation mechanism

[21]. Therefore, here the click through rates is being used as the measure of the

popularity score.

Experimentally by observing the distributions, the songs which have a download

count less than or equal to 41,250 and a view count less than or equal to 93,874

are only considered. Other song statistics are considered as noise.

The popularity scores are a value between 0 and 1. The songs are divided

into 3 classes based on these popularity values. The upper bound and the lower

bound for each of these classes are decided by observing the elbow curve turning

points when the ordered distribution of the popularity score values are plotted.

The KneeLocator Python library is being used for this.

4.4 Model Training and Evaluation

The eXtreme Gradient Boosting (XGBoost) algorithm was used to train

the data. Here an Ensemble learning is being used where multiple models, such as

classifiers or experts, are strategically generated and combined to solve a particular

computational intelligence problem. Next the the impact of the features for the

results are further indicated by the SHAP process.
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Chapter 5

Results and Evaluation

5.1 The Dataset

The initial web scraped dataset consisted of 15,732 songs by 1,892 artists. 13,614

valid mp3 audio files were obtainable and after noise reductions and eliminating

missing components in data, a set of 13,504 songs were used to extract features.

This set was splitted as 70% for training and 30% for testing. The reason

to split in 7:3 ratio is, if more training data is available, a better model can be

obtained, and if more testing data is available, a less variance in the results such

as the accuracy and false positive rate can be expected. Therefore, a training set

of around 9,452 songs were able to be used.

5.2 Song Popularity Scores Distribution

The popularity scores are normalized to a value between [0 – 1] based on the

download counts and the view counts combined. In the Figure 5.1 a sorted

representation (ascending order) of these scores are depicted for the visualization

purpose.

Figure 5.1: Song Popularity Scores Distribution
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5.3 Song Popularity Classes Distribution

The popularity classes are determined based on the popularity scores according

to the following conditions. The Figure 5.2 is the histogram obtained for the

number of songs per each class. The Table 5.1 list outs the upper-bounds and the

lower-bounds which were used when determining the classes.

Table 5.1: Determining the Song Popularity class based on the song popularity
scores

Lower Bound Upper Bound Class
0 0.022996829493705295 Class 1

0.022996829493705295 0.294071579342863 Class 2
0.294071579342863 1 Class 3

Figure 5.2: Song Popularity Classes Distribution

5.4 Evaluation

A classifier can be evaluated by the confusion matrix generated for a given sample.

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative

(FN) were calculated for each test case. Then accuracy and FP rate was calculated

for each test case. Reducing FP rate is significant as same as increasing the accuracy

given that this method mainly focuses on identifying music on radio broadcasts.

accuracy and FP rate can be calculated from the formulas given below.
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Accuracy =
TP + TN

TP + TN + FP + FN

FP Rate =
FP

FP + TN

The Extended Gradient Boosting Classification Algorithm produced the

following results.

Shape of training data : (9452, 69)

Shape of testing data : (4052, 69)

accuracy score on train dataset : 0.7329665679221329

accuracy score on test dataset : 0.7129812438302073

5.5 Explaining the Results

For further explaining the results the SHAP process was being used as depicted

in the Figure 5.3. This produces the SHAP values for the significant features and

their impact for the predictions [22].

Figure 5.3: SHAP values of the trained model

As presented in the Figure 5.3 the feature loa 2 (2nd coefficient of the LPC

overall average) indicates to be having the highest on the model output magnitude,

which is then followed by the duration and the 2nd coefficient of the MFCC overall

average.
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Chapter 6

Conclusions

6.1 Introduction

Here the review of the findings and how the research objectives were accomplished

are described. While only the audio signal related features were used in this research

as the key component for analysis, it yet produces a result that could be used for

further analysis with different statistical approaches.

6.2 Conclusions About the Research Questions

The purpose of using machine learning algorithms in this project was to determine

if such patterns exist in popular music and the experiments would suggest that

the music audio signal consists of patterns which makes it a likable song for many.

With the results produced by this research, it could also considered that the forms

of repetition within a song impacts to the popularity, since it makes the song more

memorable.

6.3 Conclusions About the Research Problems

The purpose of using machine learning algorithms in this project was to determine

if such patterns exist in popular music and the experiments would suggest that

the music audio signal consists of patterns which makes it a likable song for many.

This research considered only the audio signal related data in order to predict

whether a hit or not. The test results produced a 71% accuracy in predicting the

correct popularity class for unseen data. And the audio frequency related features,

duration and tempo would be key elements where a songs popularity depends on.

As depicted in the SHAP values, the ’loa 2’ (The second coefficient of the Linear

Predictive Coding ) has the most significance and contribution towards the output.

The Linear predictive coding is a method used mostly in audio signal processing

and speech processing for representing the spectral envelope of a digital signal of
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speech in compressed form, using the information of a linear predictive model. In

addition to that, it is also used to identify the resonance 1 characteristics of audio

[23]. This indicates that the repetition property which lies within the audio signal

is a key element that correlates with the music popularity.

Additionally most of the similar researches in this area have been using the

Million Song Dataset [4] where the features are already extracted using proprietary

algorithms. Since this research describes how the features were extracted and the

dataset is re-obtainable by anyone, it would be contributing to further research on

predicting the popularity of songs.

6.4 Limitations

The webscraping was performed in the year 2019. So, the song download and view

counts may differ when in a further webscrapping. And, the availability of the

songs may subject to change in future depending on the decisions made by the

website owners.

6.5 Implications for Further Research

This research only depends on the data collected at particular point of time. Since

the trends of music change over time, a further research can be done by collecting

a dataset over a period of time and analyze the results. Also, this research uses

the XGBoost algorithm for processing. Other machine learning algorithms can be

used to compare results in order to find the best model.

1The quality in a sound of being deep, full, and reverberating
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Appendix A

Code Listings

A.1 The Python Script for Webscraping

import requests

import urllib.request

import time

from bs4 import BeautifulSoup

from datetime import datetime

import re

import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="root",

passwd="",

database="songs"

)

headers = {

’User-Agent’: ’Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108

Safari/537.36’,

’Accept’: ’text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3’,

’DNT’: ’1’,

’Host’: ’sarigama.lk’,

’Range’: ’bytes=0-’,

’Sec-Fetch-Mode’: ’no-cors’,

’Sec-Fetch-Site’: ’same-origin’

}

def addArtist(name, url):
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selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_artists‘ WHERE ‘url‘ =

’"+url+"’ "

selectCursor.execute(search_sql)

isExist = selectCursor.fetchall()

if(len(isExist) > 0):

return isExist[0][0]

else:

insertCursor = mydb.cursor()

insert_sql = "INSERT INTO ‘sarigama_artists‘ (‘name‘, ‘url‘,

‘created_at‘) VALUES(%s, %s, %s)"

vals = (name, url, str(datetime.now()))

insertCursor.execute(insert_sql, vals)

mydb.commit()

artist_id = insertCursor.lastrowid

return artist_id

def addSong(title, url, views, downloads):

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_lk‘ WHERE ‘url‘ =

’"+url+"’ "

selectCursor.execute(search_sql)

isExist = selectCursor.fetchall()

if(len(isExist) > 0):

return isExist[0][0]

else:

insertCursor = mydb.cursor()

insert_sql = "INSERT INTO ‘sarigama_lk‘ (‘title‘, ‘url‘,

‘views‘, ‘downloads‘, ‘created_at‘) VALUES(%s, %s, %s, %s, %s)"

vals = (title, url, str(views), str(downloads),

str(datetime.now()))
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insertCursor.execute(insert_sql, vals)

mydb.commit()

song_id = insertCursor.lastrowid

return song_id

def addSongArtist(song_id, artist_id, type_of):

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_song_artists‘

WHERE ‘song_id‘ = ’"+str(song_id)+"’ AND ‘artist_id‘ =

’"+str(artist_id)+"’ AND ‘type_of‘ = ’"+str(type_of)+"’"

selectCursor.execute(search_sql)

isExist = selectCursor.fetchall()

if(len(isExist) > 0):

return isExist[0][0]

else:

insertCursor = mydb.cursor()

insert_sql = "INSERT INTO ‘sarigama_song_artists‘

(‘song_id‘, ‘artist_id‘, ‘type_of‘,‘created_at‘) VALUES(%s, %s,

%s, %s)"

vals = (str(song_id), str(artist_id), str(type_of),

str(datetime.now()))

insertCursor.execute(insert_sql, vals)

mydb.commit()

song_artist_id = insertCursor.lastrowid

return song_artist_id

def updateSong(song_id, file_name):

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_lk‘ WHERE ‘id‘ =

’"+str(song_id)+"’ "

selectCursor.execute(search_sql)

isExist = selectCursor.fetchall()
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if(len(isExist) > 0):

updateCursor = mydb.cursor()

update_sql = "UPDATE ‘sarigama_lk‘ SET ‘file_name‘ =

’"+file_name+"’ WHERE ‘id‘ = ’"+str(song_id)+"’"

updateCursor.execute(update_sql)

mydb.commit()

row_count = updateCursor.rowcount

return row_count

else:

return isExist[0][0]

def downloadSong(song_id, header_name, force_song_file_url, s):

song = s.get(force_song_file_url, headers=headers)

if(str(song.status_code)[0] != ’2’):

return -1

online_file_name = song.headers.get(header_name).replace(’"’,

’’)

file_name = str(song_id)

regex = re.compile(’[^\s0-9a-zA-Z\_\-\.]’)

file_name = regex.sub(’’, file_name)+online_file_name[-4:]

open("./songs/"+file_name, "wb").write(song.content)

return updateSong(song_id, file_name)

def fetchSong(song_url):

print("\n\n=======\nSong url: ", song_url, "\n=======\n")

s = requests.Session()

song_resp = s.get(song_url)
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song_soup = BeautifulSoup(song_resp.text, "html.parser")

meta_divs = song_soup.findAll(’div’, {’class’: ’item-action

m-b’})

if(len(meta_divs) > 0):

counts = meta_divs[0].findAll(’span’)

downloads = int(counts[0].text)

views = int(counts[1].text)

song_title_h1 = song_soup.find(’h1’)

song_title = song_title_h1.text

print("song title: ", song_title)

song_id = addSong(song_title, song_url, views, downloads)

print("\n----------\n Views: ", views, " , downloads: ",

downloads, "\n----------\n" )

artists_table = meta_divs[1].find(’table’)

artists_table_trs = artists_table.findAll(’tr’)

artists = {’singers’:[], ’lyricist’:[], ’musicians’:[]}

for atr in range(len(artists_table_trs)):

icon = artists_table_trs[atr].findChildren(’i’,

{’class’:’icon’})

artist_anchors = artists_table_trs[atr].findAll(’a’)

if("singer" in " ".join(icon[0][’class’])):

for si in range(len(artist_anchors)):

artist_name = artist_anchors[si].text.strip()

artist_url = artist_anchors[si][’href’]

artists[’singers’] += [{’name’: artist_name,

’url’: artist_url }]

artist_id = addArtist(artist_name, artist_url)

song_artist_id = addSongArtist(song_id,

artist_id, 1)

if("lyrics" in " ".join(icon[0][’class’])):

for si in range(len(artist_anchors)):

artist_name = artist_anchors[si].text.strip()

artist_url = artist_anchors[si][’href’]
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artists[’lyricist’] += [{’name’: artist_name,

’url’: artist_url }]

artist_id = addArtist(artist_name, artist_url)

song_artist_id = addSongArtist(song_id,

artist_id, 2)

if("music" in " ".join(icon[0][’class’])):

for si in range(len(artist_anchors)):

artist_name = artist_anchors[si].text.strip()

artist_url = artist_anchors[si][’href’]

artists[’musicians’] += [{’name’: artist_name,

’url’: artist_url }]

artist_id = addArtist(artist_name, artist_url)

song_artist_id = addSongArtist(song_id,

artist_id, 3)

print("---------artists:\n", artists, "\n------------\n")

download_url_div = song_soup.find(’div’,

{’class’:’download-play-btn-group’})

if(download_url_div is not None and len(download_url_div) > 0):

download_btns = download_url_div.findAll(’a’)

if(download_btns is not None and len(download_btns) > 1):

song_file_url = download_btns[1][’href’]

song_file_page = s.get(song_file_url)

song_file_soup = BeautifulSoup(song_file_page.text,

"html.parser")

divs = song_file_soup.find(’div’, {’class’:’col-md-12

text-center’})

links = divs.findAll(’a’)

if(links is not None and len(links) > 0):

download_status = downloadSong(song_id,

’Content-Disposition’, links[0][’href’], s)

if(download_status == -1):

audio_src = song_soup.findAll("source",

{"itemprop":"audio"})

mp3_link = audio_src[0][’src’]

download_status = downloadSong(song_id,

’filename’, mp3_link, s)
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else:

print("\n+=+=+=+=+=+=+=+=+=+\nNo links available to

download\n+=+=+=+=+=+=+=+=+=+\n")

else:

print("\n+=+=+=+=+=+=+=+=+=+\nNo button available to

download\n+=+=+=+=+=+=+=+=+=+\n")

else:

print("\n+=+=+=+=+=+=+=+=+=+\nNo button divs available to

download\n+=+=+=+=+=+=+=+=+=+\n")

def fetchPage(base_url, page_no):

page_url = base_url + "&page="+str(page_no)

page_resp = requests.get(page_url)

page_soup = BeautifulSoup(page_resp.text, "html.parser")

song_divs = page_soup.findAll(’div’, {"class": "item-media

song"})

song_divs_count = len(song_divs)

print("\n==============\n\n Fetching page:

"+str(page_no)+"......\n\n Found ",song_divs_count," songs in

page:",page_no,", starting with:",base_url[-1],"\n===============\n")

for s in range(song_divs_count):

song_links = song_divs[s].findAll(’a’)

for t in range(len(song_links)):

if(song_links[t]["href"].lower().startswith("https")):

fetchSong(song_links[t]["href"])

break

def fetchPages(base_url, pg_limit, current_page):

for x in range(current_page, pg_limit):

fetchPage(base_url, x)

for i in range(86,91):

c = chr(i)

print("\n============================\nSongs starting with

",c,"\n=============================\n")

pg_url = "https://sarigama.lk/songs?starts-with="+c
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pg_resp = requests.get(pg_url)

pg_soup = BeautifulSoup(pg_resp.text, "html.parser")

print("\n=====================\nFetching page 1 for song listing

starting with: ",c,"\n======================\n")

if(i == 86):

first_page = 2

else:

first_page= 1

fetchPage(pg_url, first_page)

pagination = pg_soup.findAll(’a’, {"class": "page-link"})

if(len(pagination) > 2):

last_pg = int(pagination[len(pagination) - 2].text)

print("\n==============\nFound upto",(last_pg + 1)," pages.

Fetching each.\n===============\n")

fetchPages(pg_url, (last_pg + 1), (first_page + 1))

A.2 Feature Extraction

import random

import csv

import time

from decimal import Decimal

import math

from kneed import KneeLocator

import matplotlib.pyplot as plt

import seaborn as sns

import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="root",

passwd="",

database="songs"

)

song_ids = []
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def getSong(song_id):

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_lk‘ WHERE ‘id‘ =

’"+str(song_id)+"’ AND file_name IS NOT NULL "

selectCursor.execute(search_sql)

song_data = selectCursor.fetchone()

return list(song_data)

def isFileExist(song_id):

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_lk‘ WHERE ‘id‘ =

’"+str(song_id)+"’ AND file_name IS NOT NULL "

selectCursor.execute(search_sql)

isExist = selectCursor.fetchall()

if(len(isExist) > 0):

return True

else:

return False

def getAll(limit = -1, offset = 0):

ids = "’,’".join(list(map(str, song_ids)))

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_features‘ WHERE ‘song_id‘

NOT IN (’"+ids+"’) AND ‘downloads‘ <= 41250 AND ‘views‘ <= 93874 "

if(limit > 0):

search_sql += " LIMIT "+str(limit)+" OFFSET "+str(offset)

selectCursor.execute(search_sql)

result = selectCursor.fetchall()

for x in result:

song_ids.append(x[0])
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def getFeatureAttr():

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_temp‘ WHERE ‘downloads‘ <=

41250 AND ‘views‘ <= 93874 "

selectCursor.execute(search_sql)

feature_attrs = []

for i in selectCursor.description:

feature_attrs.append(i[0])

return feature_attrs

def getRandomFeatures(limit = -1, offset = 0):

ids = "’,’".join(list(map(str, song_ids)))

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_temp‘ WHERE ‘song_id‘ NOT

IN (’"+ids+"’) AND ‘downloads‘ <= 2500 AND ‘views‘ <= 50000 ORDER BY

RAND() "

if(limit > 0):

search_sql += " LIMIT "+str(limit)+" OFFSET "+str(offset)

selectCursor.execute(search_sql)

result = selectCursor.fetchall()

song_features = []

for x in result:

feature = []

for y in x:

if(isinstance(y, Decimal)):

feature.append(float(y))

else:

feature.append(y)

song_ids.append(x[0])

song_features.append(feature)

return song_features

def getAllFeatures(limit = -1, offset = 0):
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ids = "’,’".join(list(map(str, song_ids)))

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_temp‘ WHERE ‘song_id‘ NOT

IN (’"+ids+"’) AND ‘downloads‘ <= 41250 AND ‘views‘ <= 93874 "

if(limit > 0):

search_sql += " LIMIT "+str(limit)+" OFFSET "+str(offset)

selectCursor.execute(search_sql)

result = selectCursor.fetchall()

song_features = []

for x in result:

feature = []

for y in x:

if(isinstance(y, Decimal)):

feature.append(float(y))

else:

feature.append(y)

song_ids.append(x[0])

song_features.append(feature)

return song_features

def getRandom(limit = 300):

ids = "’,’".join(list(map(str, song_ids)))

selectCursor = mydb.cursor()

search_sql = "SELECT * FROM ‘sarigama_lk‘ WHERE file_name

IS NOT NULL AND ‘id‘ NOT IN (’"+ids+"’) ORDER BY RAND() LIMIT

"+str(limit)

selectCursor.execute(search_sql)

result = selectCursor.fetchall()

for x in result:

song_ids.append(x[0])

def writeToCSV(fieldnames, data, prefix = "features_", dropping=[]):
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dropped_indexes = []

headers = []

for a in range(len(dropping)):

if(dropping[a] in fieldnames):

dropping_index = fieldnames.index(dropping[a])

dropped_indexes.append(dropping_index)

for b in range(len(fieldnames)):

if(b not in dropped_indexes):

headers.append(fieldnames[b])

filename = "./datasets/"+prefix+str(time.time())+".csv"

with open(filename, ’w’, newline=’’) as csvfile:

writer = csv.DictWriter(csvfile, fieldnames=headers)

writer.writeheader()

for d in range(len(data)):

vals = {}

datum = data[d]

for f in range(len(datum)):

if(f in dropped_indexes):

continue

else:

vals[fieldnames[f]] = datum[f]

writer.writerow(vals)

print("CSV file", filename, "created!")

song_features = getAllFeatures()

num_features = len(song_features)

downloads = []

views = []

for x in range(num_features):

song_feature = song_features[x]

downloads.append(song_feature[-4]) ## the number of downloads

views.append(song_feature[-5])

min_d = min(downloads)
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max_d = max(downloads)

min_v = min(views)

max_v = max(views)

d_norms = []

v_norms = []

popularities = []

popularity_scores = []

for i in range(num_features):

song_feature = song_features[i]

download_count = song_features[i][-4]

view_count = song_features[i][-5]

ctr = download_count / view_count

d_norm = (download_count - min_d)/(max_d - min_d)

v_norm = (view_count - min_v)/(max_v - min_v)

popularity = d_norm * ctr

is_popular = 0

if(popularity >= 0.294071579342863):

is_popular = 2

elif(popularity >= 0.022996829493705295):

is_popular = 1

song_features[i][-1] = is_popular

popularities.append(is_popular)

d_norms.append(d_norm)

v_norms.append(v_norm)

popularity_scores.append(popularity)

dataset = song_features

random.shuffle(dataset)

dt_len = len(dataset)

train_len = int(dt_len*0.7)

test_len = dt_len - train_len

train_data = dataset[:train_len]

test_data = dataset[test_len*-1:]

feature_attr = getFeatureAttr()
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yt = popularity_scores

yt.sort()

yt = yt[::1]

x = [i for i in range(len(yt))]

kn = KneeLocator(x, yt, curve=’convex’, direction=’increasing’,

online=False)

print("Knee:", kn.knee, " - ", yt[kn.knee] )

print("Elbow:", kn.elbow, " - ", yt[kn.elbow] )

plt.plot(x, yt)

plt.hlines(yt[kn.knee], plt.xlim()[0], plt.xlim()[1], colors=’y’,

linestyles=’dashed’)

plt.hlines(0.022996829493705295, plt.xlim()[0], plt.xlim()[1],

colors=’g’, linestyles=’dashed’)

plt.show()

sns.distplot(popularities, hist=True, kde=False, bins=[0,

1, 2, 3], color=’darkblue’, hist_kws={’edgecolor’:’black’},

kde_kws={’linewidth’: 4})

plt.show()

A.3 Processing using XGBoost

import pandas as pd

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

import xgboost as xgb

import matplotlib.pyplot as plt

import shap

features_data = pd.read_csv(’./datasets/features_1579111035.0951855.csv’)

train_data, test_data = train_test_split(features_data, test_size =

0.3)
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# shape of the dataset

print(’Shape of training data :’,train_data.shape)

print(’Shape of testing data :’,test_data.shape)

# Now, we need to predict the missing target variable in the test

data

# target variable - Survived

# seperate the independent and target variable on training data

train_x = train_data.drop(columns=[’popularity’],axis=1)

train_y = train_data[’popularity’]

# seperate the independent and target variable on testing data

test_x = test_data.drop(columns=[’popularity’],axis=1)

test_y = test_data[’popularity’]

model = XGBClassifier()

# fit the model with the training data

model.fit(train_x,train_y)

# predict the target on the train dataset

predict_train = model.predict(train_x)

print(’\nTarget on train data’,predict_train)

# Accuray Score on train dataset

accuracy_train = accuracy_score(train_y,predict_train)

print(’\naccuracy_score on train dataset : ’, accuracy_train)

# predict the target on the test dataset

predict_test = model.predict(test_x)

print(’\nTarget on test data’,predict_test)

# Accuracy Score on test dataset

accuracy_test = accuracy_score(test_y,predict_test)

print(’\naccuracy_score on test dataset : ’, accuracy_test)

shap_values = shap.TreeExplainer(model).shap_values(train_x)

shap.summary_plot(shap_values, train_x, plot_type="bar")
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