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Abstract 
Named Entity Recognition is a subtask of Natural Language Processing. In the literature 

various machine learning methods have been proposed to tackle this task such as 

supervised learning, unsupervised learning and semi supervised learning. It is established 

that, for supervised learning, a large number of annotated data is needed for a system to 

have a good generalization capability. 

For Indic languages such as Sinhala it is challenging to build a Named Entity Recognition 

system due to its inherent features such as lack of capitalization. Even though there have 

been several researches conducted for Sinhala, most of them have used supervised 

learning methods with small quantities of training data. 

The resurgence of Reinforcement Learning demonstrates its effectiveness in problems that 

humans solve effectively in an incremental manner over time. Even though it is hard to 

find research that has applied Reinforcement Learning to Natural Language Processing 

tasks, there have been attempts to map tasks such as Part of Speech tagging to the 

Reinforcement Learning paradigm. 

This dissertation first casts the Sinhala Named Entity Recognition task into the 

Reinforcement Learning paradigm and then proposes a language specific Named Entity 

Recognition system that can be trained to generalize better using the current annotated 

data available. 
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Preface 
This study has been done following the SP-MDP framework that was proposed by Maes 

and Gallinari . Section 3.3 relies on the work that has been done by Maes and Gallinari in 

the paper Structured prediction with reinforcement learning. This study has adopted their 

framework and used as a specialized version to align it with the Named Entity 

Recognition task. 

The learning algorithm proposed in this study is a derivative work and it has been derived 

from the algorithm proposed by Langford and Daume in their work, Learning to Search 

[1] algorithm proposed. The implementation of the derived algorithm is an outcome of this 

research entirely. 

The dataset that has been used to train on and test against, has been prepared by the 

Language Technology Research Laboratory of University of Colombo School of 

Computing.  

Common open source libraries such as Tensorflow has been used to create the Neural 

Network. NLP open source libraries such as gensim, has been used to create word 

embedding models of the corpus. Apart from the open source libraries used, the code 

implementation for the entire system is an outcome of this study. 
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Chapter 1 - Introduction 

1.1 Background to the research 
 

Named entities have three top-level categorizations according to DARPA’s Message 

Understanding Conference: entity names, temporal expressions, and number expressions 

[2]. The entity names category describes the unique identifiers of people, locations, 

geopolitical bodies, events, and organizations.  

Some key design decisions in an NER system are proposed in [3] that cover the 

requirements of NER in the example sentence above Chunking and text representation, 

Inference and ambiguity resolution algorithms, Modeling of Non-Local dependencies, 

Implementation of external knowledge resources and gazetteers. 

Named entities are often not simply singular words, but are chunks of text, e.g. University 

of Maryland Baltimore County or The Central Bank of Australia. Therefore, some 

chunking or parsing prediction model is required to predict whether a group of tokens 

belong in the same entity. Left to right decoding, Viterbi, and beam search algorithms has 

been employed as chunking algorithms in the literature. Further, some NER systems are 

comprised primarily of text parsers as in [4], [5], and [6]. 

Inference refers to the ability of a system to determine that a chunk is actually a named 

entity, or, sometimes more importantly, to determine the classification of a named entity, 

especially in places where there is ambiguity. For example “Washington” might refer to 

either a name or a location. “Galaxy” might refer to a generic noun or the professional 

major league soccer team. Maximum Entropy Models, Hidden Markov Models and other 

statistical methods are employed to perform this analysis, usually implemented as a 

machine-learning system, as for instance in [7], [8], and [9]. 

Non-local dependency models refer to the ability to identify multiple tokens that should 

have the same label assignment or cross-reference. It is important to note that case 

becomes important here—e.g. Bengfort, bengfort, and BENGFORT should all be 

identified as the same entity, and these would break word-level rule based systems (e.g. 

find all words that are capitalized). But further, even different chunks should be identified 
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similarly – UMBC vs. University of Maryland Baltimore County or the inclusion of titles 

in one location that are absent from another as in President Barack Obama vs. Obama. The 

non-locality of these models refers to the usage of these terms outside the scope of a 

sequence of tokens that is being analyzed together (usually a sentence), but rather in the 

entire document or corpus. The papers that address non-local dependencies include [10] 

and [11], but the focus of this paper will be on solutions that require external knowledge.  

 

Names, because they uniquely identify entities, are a domain not easily captured by even 

the most expansive lexicons. For example, simply creating a list of the names of all 

companies formed in the United States would expand drastically every single year. 

However, external knowledge and name lexicons are required for many of the approaches 

and solutions, not just non-local dependency models. Therefore the construction and use 

of gazetteers and other resources are necessary. 

 

For languages such as English, which are high resourced languages which has many large 

annotated datasets, there exist many sophisticated tools developed to classify Named 

Entities with high accuracy. These models cannot be used to identify Named Entities in 

Sinhala language due to language dependent features such as non-existence of 

capitalization. Due to lack of research in this field for Sinhala, there exist only few models 

which is able to carry out this task. And there is no publicly available annotated data set. 

Considering all models that exist to solve NER, models that uses Reinforcement Learning 

can be hardly found. This study focuses on how to use Reinforcement Learning in Named 

Entity Recognition. 

 

1.2 Research Problem and Research Questions 

For Natural Language Processing (NLP) it is needed resources such as annotated corpora. 

Since NLP research conducted on Sinhala is very minimum, available annotated data is 

very minimum. Manually annotating data is time consuming. Thus it is required to 

automate this process. Machine Learning is a method of automating this process. However 
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annotated data is necessary for training an accurate Machine Learning system. Lack of 

annotated data is a common problem for low resourced languages such as Sinhala. 

The focus in this study is on Named Entity Recognition. There exist Named Entity 

Recognition(NER) systems for Languages such as English with good accuracies. However 

these cannot be directly used for Sinhala. Sinhala is a morphologically rich language. 

Unlike languages such as English, Sinhala has a complex and rich structure and complex 

words with rich morphology. Another major problem is, Sinhala lacks features such as 

capitalization. Thus, the need for such a system specifically designed for Sinhala is very 

important.  

However while there exists few NER systems for Sinhala, almost all the systems have 

used supervised learning as the learning method. Given the recent advances of other 

learning methods such as semi-supervised learning and reinforcement learning, it is 

assumed that reinforcement learning systems learn to generalize better than supervised 

learning systems. Although, whether a system could achieve better performance with RL 

than supervised learning is debatable. Even to compare these two techniques for NER 

task, it is difficult to cast the NER task as an RL problem. 

The main research questions of this study are, 

● How to cast Named Entity Recognition as a Reinforcement Learning problem. 

● Is it possible to achieve better performance with Reinforcement Learning. 

 

1.3 Justification for the research 
As the technology evolves, Natural Language Processing has become a vital factor. World 

Wide Web has become a place where semantic meaning is very important. In near future, 

machines will have to understand human languages as us humans do, to serve humans 

better. Thus, it is in no doubt that Natural Language Processing has a major role in 

technology. For machines to understand human languages and to extract useful 

information, systems such as Named Entity Recognition are necessary.  



3 

Language translators such as Google translator has a general machine learning model for 

all the languages. Meaning, they don’t train a model for each language pair, as parallel 

data is hard to come by. Instead transfer learning techniques are used, and this leads to 

poor accuracy of translations for Sinhala to and from other languages. We need a language 

specific translator to improve accuracy. NER is a preprocessing task in Machine 

Translation and Information Extraction. As such, a good NER system can improve the 

performance of a Language Translator. 

 

In the literature, applying RL techniques in Natural Language Processing is not very 

common. This study could develop an interest of using RL techniques for other Natural 

Language Processing tasks in other researchers since it has been a difficult task to map 

these two areas. 

 

Reinforcement is currently the most active research area in Artificial Intelligence. And 

Natural Language Processing is another vital aspect in Artificial Intelligence. Bridging the 

gap between these two components of AI, potentially opens up novel research areas thus, 

bringing the true Artificial Intelligence closer. 

 
 

1.4 Methodology 
As the first step, the existing systems for solving NER was analyzed. Literature review 

and related theories were covered in a breadth first manner. As the second step, a basic 

Reinforcement Learning model was proposed. The third step included implementing, 

refining, and testing this model.  

Figure 1.1 shows the high level diagram of the methodology followed in this study. 
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Figure 1.1 - High level diagram of the methodology followed 

 
1.5 Outline of the Dissertation 
 

The dissertation is structured as follows. Chapter two explores the existing approaches 

related to the domain of Named Entity Recognition. Chapter three describes the proposed 

research design and methodology. Chapter four demonstrates the implementation details 

of the proposed methodology. Chapter five presents the evaluation model and the 

evaluation results of the proposed approach. The last chapter, chapter six demonstrates the 

conclusion of the thesis and outlines the future work. 
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1.6 Delimitations of Scope 

In this research, only person names, location names and organization names are 

considered as Named Entities. This study has focused on proposing a system that 

classifies each word into two classes, Named Entities and Not-Named Entities. Depending 

on the time availability, this study will move on to classifying them into each class. And 

both training and testing datasets used, should be in Sinhala Unicode. 

The goal of this study was to propose a Named Entity Recognition system that uses 

Reinforcement Learning techniques to learn. The accuracies and improvements were not 

the main concern of this study due to the limited time. Hence the scope of this research 

was to cast the NER task as an RL problem. 

 

1.8 Summary 

This chapter laid the foundations for this dissertation. It introduced the NER task and 

research gap, research questions and hypotheses. Then the research was justified, 

definitions were presented, the methodology was briefly described and justified, the 

dissertation was outlined, and the limitations were given. On these foundations, the 

dissertation can proceed with a detailed description of the research. 
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Chapter 2 - Literature Review 

2.1 Introduction 

This chapter mainly describes the current status of the literature in the Named Entity 

Recognition task and Reinforcement Learning paradigm. This chapter consists of, 

Background to NER, Supervised Methods, Semi- Supervised methods, Unsupervised 

Methods,Named Entity Recognition for Sinhala, Background to RL, Summary. 

 

2.2 Background to NER 

Named Entity Recognition (NER) is the process of locating a word or a phrase that 

references a particular entity within a text. The NER task first appeared in the Sixth 

Message Understanding Conference (MUC6) Sondheim (1995)[12] and involved 

recognition of entity names (people and organizations), place names, temporal expressions 

and numerical expressions. In MUC-6, Named entities (NEs) were categorized into three 

types of label, each of which uses specific attribute for a particular entity type. Entities and 

their labels were defined as follows: 

● ENAMEX: person, organization, location 

● TIMEX: date, time  

● NUMEX: money, percentage, quantity 

Different fine grained or domain dependent annotation schemes have been proposed by 

many researchers. In practice, it is convenient to work with coarse classification than fine 

grain classification due to data sparsity.  

Several approaches to tackle this task can be seen in the literature. In the section 2.3, 

supervised methods will be discussed. In the section 2.4, semi supervised methods will be 

discussed. In the section 2.5, Unsupervised methods will be discussed. In the section 2.6 

studies that has been conducted Sinhala Named Entity Recognition will be discussed. 
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2.3 Supervised Methods 

Supervised methods are class of algorithm that learn a model by looking at annotated 

training examples. Among the supervised learning algorithms for NER, considerable work 

has been done using Hidden Markov Model (HMM), Decision Trees, Maximum Entropy 

Models (ME), Support Vector Machines (SVM) and Conditional Random Fields (CRF). 

Typically, supervised methods either learn disambiguation rules based on discriminative 

features or try to learn the parameter of assumed distribution that maximizes the likelihood 

of training data. Each of these methods will be discussed in detail in next sections.  

 

2.3.1 Hidden Markov Models  

HMM is the earliest model applied for solving NER problem by Bikel et al. (1999) for 

English. Bikel introduced a system, IdentiFinder[13], to detect NER. According to Bikel’s 

formulation of the problem in the Identifinder system, only a single label can be assigned 

to a word in context. Therefore, the model assigns to every word, either one of the desired 

classes or the label NOT-A-NAME to represent ”none of the desired classes”. The task is 

to find the most likely sequence of name-classes(NC) given a sequence of words(W):  

𝑚𝑎𝑥	𝑃𝑟(𝑁𝐶	|	𝑊	) 

IdentiFinder reported NE accuracy of 94.9% and 90% for a mixed case English (MUC-6 

data and a collection of Wall Street Journal documents) and mixed case Spanish (MET-1 

data, comprised of articles from news agencies AFP) respectively.  

Zhou and Su (2002) [14] modified the IdentiFinder model by using mutual information. 

Given a token sequence 𝐺1
. = 	𝑔1, 𝑔2, 𝑔3. . . 𝑔. the goal of the learning algorithm is to find 

a stochastically optimal tag sequence 𝑇1
. = 	 𝑡1, 𝑡2, 𝑡3	. . . 𝑡. that maximizes, 

𝑃𝑟(𝐺1
.	|	𝑇1

.) 	= 	𝑙𝑜𝑔𝑃𝑟(𝑇1
.) 	+	

𝑃𝑟(𝑇1
.,𝐺1

.)
𝑃𝑟(𝑇1

.)𝑃𝑟(𝐺1
.) 
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Unlike IdentiFinder, Zhou’s model directly generates original NE tags from the output 

words of the noisy channel. Zhou’s model assumes mutual information independence 

while HMM assumes conditional probability independence. The HMM-based chunk 

tagger gave an accuracy of 96.6% on MUC-6 data and 94.1% on MUC-7 data. 

 

2.3.2 Maximum Entropy based Model  

Maximum entropy model, unlike HMM, are discriminative model. Given a set of features 

and training data, the model directly learns the weight for discriminative features for 

classification. In Maximum entropy models, objective is to maximize the entropy of the 

data, so as to generalize as much as possible for the training data. In ME models each 

feature is associated with parameter 𝜆9. Conditional probability is thus obtained as 

follows: 

𝑃(𝑓|ℎ) 	= 	
∏9 𝜆9

=>(?,@)

𝑍B(ℎ)
 

𝑍B(ℎ) 	= 	C
@

D
9

𝜆9
=>(?,@) 

Maximizing the entropy ensures that for every feature 𝑔9 , the expected value of 𝑔9, 

according to M.E. model will be equal to empirical expectation of 𝑔9in the training corpus. 

Finally, Viterbi algorithm is used to find the highest probability path through the trellis of 

conditional probabilities which produces the required valid tag sequences.  

The MENE system [15] - Accuracy reported for the MENE system on MUC-7 data is 

88.80%.  

Curran’s ME Tagger [16] - Reported an accuracies of 84.89% for the English test data and 

68.48% for the German test data of CoNLL-2003 shared task. 
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2.3.3 SVM Based Models 

Support Vector Machine was first introduced by Cortes and Vapnik (1995) [17] based on 

the idea of learning a linear hyperplane that separate the positive examples from negative 

example by large margin. Large margin suggests that the distance between the hyperplane 

and the point from either instances is maximum. The points closest to hyper plane on 

either side are known as support vectors. 

The linear classifier is based on two parameters, a weight vector W perpendicular to the 

hyperplane that separates the instances and a bias b which determines the offset of the 

hyperplane from the origin. A sample x is classified as positive instance if , 

𝑓(𝑥) 	= 	𝑤𝑥	 + 	𝑏	 > 	0  

and negative otherwise. If the data points are not linearly separable, then a slack is used to 

accept some error in classification. This prevents the classifier to over fit the data. When 

there are more than two classes, a group of classifiers are used to classify the instance.  

McNamee and Mayfield (2002) tackle the problem as binary decision problem,i.e. if the 

word belongs to one of the 8 classes, i.e. B- Beginning, I- Inside tag for person, 

organization, location and misc tags. Thus there are 8 classifiers trained for this purpose. 

For CoNLL 2002 data, reported accuracies were 60.97 and 59.52 for Spanish and Dutch 

respectively. 

 

2.3.4 CRF Based Models  

Conditional random field were introduced by Lafferty et al. (2001) [18] as a statistical 

modeling tool for pattern recognition and machine learning using structured prediction. 

McCallum and Li (2003) [19] proposed a feature induction method for CRF in NE. Let, 

𝑜	 =	< 𝑜1, 𝑜2, . . . . . , 𝑜I > be some observed input data sequence, such as a sequence of 

words in a text inside the document (the values on n input nodes of the graphical model). 

Let S be a set of FSM states, each of which is associated with a label, l L, (such as ORG). 

Let 𝑠	 =	< 𝑠1, 𝑠2, . . . . . , 𝑠I > be some sequence of states, (the values on T output nodes). 
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By the Hammersley Clifford theorem, CRFs define the conditional probability of a state 

sequence given an input sequence to be, 

𝑃(𝑠|𝑜) 	= 	
1
𝑍 	𝑒𝑥𝑝(C

I

MN1

𝜆O𝑓O(𝑠MP1, 𝑠M, 𝑜, 𝑡)) 

where 𝑍is the normalization factor obtained by marginalizing over all state sequences, 

𝑓O(𝑠MP1, 𝑠M, 𝑜, 𝑡)is an arbitrary feature function and 𝜆Ois the learned weight for each feature 

function. By using dynamic programming, state transition between two CRF states can be 

efficiently calculated. The modified forward values, 𝛼I(𝑠9), to be the ”unnormalized 

probability” of arriving state si given the observations < 𝑜1, 𝑜2, . . . . . , 𝑜I >. 𝛼0(𝑠)is set to 

probability of starting in each state 𝑠, and recursively calculated as :  

𝛼MR1(𝑠) 	= 	∑T ′ 𝛼M(𝑠′)𝑒𝑥𝑝(∑O 𝜆O𝑓O(𝑠′, 𝑠, 𝑜, 𝑡))  

The backward procedure and Baum-Welch have been similarly modified. 𝑍0is given by 

∑O 𝛼I(𝑠). Viterbi algorithm for finding the most likely state sequence given the 

observation sequence have been 7 modified from its HMM form. Experiments were 

performed on CoNLL 2003 shared task data, and achieved an accuracy of 84.04% for 

English and 68.11% for German 

 

2.4 Semi-Supervised methods 

Semi supervised learning algorithms use both labeled and unlabeled corpus to create their 

own hypothesis. Algorithms typically start with small amount of seed data set and create 

more hypothesis’ using large amount of unlabeled corpus. Semi-supervised NER systems 

will be discussed in the next section.  

Carreras et al. (2002) [20] have modeled (NER using AdaBoost) the Named entity 

identification task as sequence labeling problem through BIO labeling scheme. Input is 

considered as word sequence to label with one of the Beginning of NE (B-) tag, Inside of 

tag (I-) and outside of NE (O-) tag. Three binary classifiers are used for tagging, one 

corresponding to each tag.  
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Orthographic and semantic features were evaluated over a shifting window allowing a 

relational representation of examples via many simply binary propositional features.  

The binary AdaBoost is used to with confidence rated predictions as learning algorithm 

for the classifiers. The boosting algorithm combines several fixed-depth decision trees. 

Each tree is learned sequentially by presenting the decision tree a weighting over the 

examples which depend on the previous learned trees. 

The Spanish data corresponds to the CoNLL 2002 Shared Task Spanish data and shows a 

performance of 79.28% 

 

2.5 Unsupervised methods 

A major problem with supervised setting is requirement of specifying large number of 

features. For learning a good model, a robust set of features and large annotated corpus is 

needed. Many languages don’t have large annotated corpus available at their disposal. To 

deal with lack of annotated text across domains and languages, unsupervised techniques 

for NER have been proposed.  

2.5.1 KNOWITALL 

KNOWITALL is domain independent system proposed by Etzioni et al. (2005)[21] that 

extracts information from the web in an unsupervised, open-ended manner. KNOWITALL 

uses 8 domain independent extraction patterns to generate candidate facts. 

For example, the generic pattern ”NP1 such as NPLIST2” indicates that the head of each 

simple noun phrase(NP) in the list of NPLIST2 is a member of class named NP1. It then 

automatically tests the plausibility of the candidate facts it extracts using point-wise 

mutual information (PMI) computed using large web text as corpus. Based on PMI score, 

KNOWITALL associates a probability with every facts it extracts, enabling it to manage 

the trade-off between precision and recall. It relies on bootstrapping technique that induces 

seeds from generic extraction patterns and automatically generated discriminator phrases. 
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2.5.2 Unsupervised NER across Languages  

Munro and Manning (2012) have proposed a system that generates seed candidates 

through local, cross language edit likelihood and then bootstraps to make broad 

predictions across two languages, optimizing combined contextual, word-shape and 

alignment models. It is completely unsupervised, with no manually labelled items, no 

external resources, only using parallel text that does not need to be easily alignable. The 

results are strong, with F = 0.85 for purely unsupervised named entity recognition across 

languages, compared to just F = 0.35 on the same 37 data for supervised cross-domain 

named entity recognition within a language. A combination of unsupervised and 

supervised methods increases the accuracy to F = 0.88. The tests were done on the parallel 

corpus of English and Haitian Krreyol text messages used in the 2010 Shared Task for the 

Workshop on Machine Translation. 

 

2.6 Named Entity Recognition for Sinhala 

Considering all these common methods to solve Named Entity Recognition, there are few 

attempts to apply these methods to indic languages and more specifically Sinhala 

language.  

Although there are successful NER systems for languages such as English, the amount of 

prior research done on NER for Sinhala is very minimal.  The effectiveness of the data 

driven techniques for Sinhala language is described in the papers Named entity 

recognition for Sinhala language[22] and  Ananya - a Named-Entity-Recognition (NER) 

system for Sinhala language[23]. J.K.Dahanayaka and A.R.Weerasinghe [22] have tested 

Sinhala NER performance with both ME and CRF methods and reported the results using 

a manually annotated corpus. Their work only focused on identifying Named Entity 

boundaries in a given text, but the classification part (classifying named entities into 

different classes such as person, location, and organization) was not done. They conclude 

that the CRF model gives better results compared to ME model.  
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In a later research, Udayangi and A.R.Weerasinghe [24] discuss a solution based on a 

hybrid approach for Sinhala NER. The hybrid approach includes an NER system based on 

CRF and a Rule-based post-processor. The rule-based post-processor makes use of 

context-based word lists to identify named entities. They have improved the work in [22] 

by classifying the extracted named entities into three different NE classes (Person names, 

Locations and Organizations). But the annotated corpus used in their research had no 

contextual information, because the corpus was created by getting set of words per each 

class separately (Person names, Locations, Organization and NonNEs), annotate words in 

each set for the class tag and mixing all of them together. In other words, this corpus 

contained only named entities. 

Structured Prediction or Structured (output) Learning is an umbrella term for supervised 

machine learning techniques that involves predicting structured objects, rather than scalar 

discrete or real values [25]. Named Entity Recognition in textual data is a structured 

prediction problem because the output is a sequence of words which has a structure. All 

the approaches described above use either supervised or Rule-based or hybrid methods. 

However, due to lack of resource (Annotated corpus) for Sinhala language, the learning 

ability of the supervised learning models is limited.  

 

2.7 Background to RL 

Markov Decision Problems (MDPs) are sequential decision making problem, in which a 

system has to make a decision in each decision making state. Richard Bellman showed 

that MDPs can be effectively solved using Dynamic Programming (DP). However, the 

classical dynamic programming methods break down on the problems with large-scale and 

complex MDPs. This is due to the requirement of computing power to solve such 

problems.  

Reinforcement Learning (RL) emerged as a technique of solving these large-scale and 

complex MDPs in a near-optimal way. The modern science of RL has emerged from 

combining of notions from four different fields namely, Dynamic Programming, Artificial 
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Intelligence (AI), stochastic approximation and function approximation (regression, 

Bellman error, and neural networks). 

 

2.8 Markov Decision Process 

MDP is a framework used in stochastic control theory of discrete-event systems. MDPs 

are driven by underlying Markov chains. In a Markov chain, at each discrete time step, the 

system jumps from one state to another. The probability of such transitions to the next 

state depend only on the current state and not on the previous states. In such a setting, at 

some states, the system has to choose an action from a set of predefined actions. The 

actions to be taken from each state, is called a policy.  Policy is a mapping from the set of 

states to the set of actions. The system earns a reward in transitioning from one state to 

another under the influence of the chosen action. Solving an MDP is to find the optimal 

policy that yields the maximum amount of rewards. 

 

 

2.9 Applications of Reinforcement Learning 

RL has been applied in a large number of domains successfully. Here we enumerate a few 

case studies related to operations management. In particular, we describe the special 

features of the algorithms that made them suitable for the domain of application. 

Continuous-time discounted algorithms[26] were employed for elevator scheduling[27] 

because the problem structure had a continuous-time Markov chain underlying it. The job-

shop scheduling problem in Zhang and Dietterich (1995) had an episodic nature, and 

hence TD(λ) became preferable[28].  

The AGV routing problem in Tadepalli and Ok (1998)[29] is one of the few case studies 

of model-building RL for large-scale problems. The model they learn is able to capture the 

complex dynamics of the AGV problem. A well-known “revenue management 

problem”[30] can be set up as an average-reward SMDP. The work related to hyper 
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heuristics can be used when RL is to be used dynamically to select a meta-heuristic. An 

SMDP with a discount factor was employed for a cell phone network-management 

problem [31] that allowed handy combination with a neuron-based function approximator. 

The retailer-inventory management problem[32] used regular Q-Learning with a vanishing 

discount factor. It is likely that the field of applied RL will explode in the coming years 

because of RL’s ability to solve problems previously considered intractable. 

 

 

2.10 Summary 

Throughout the literature many solutions for NER can be found. Most of the solutions 

work with a significant amount of accuracy for languages such as English which is well 

resourced. However, for Sinhala, due to its inherent features such as lack of capitalization, 

such a system cannot be used.  

There are few research conducted for Sinhala NER. Most of them use rule based methods, 

or supervised learning methods. No attempt can be found where RL has been applied to 

solve NER for Sinhala.  
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Chapter 3 - Design 
 

3.1 Introduction 

This chapter mainly elaborates the proposed solutions to the research problem. It consists 

of four sections, namely; Research Design, NER as a Structured Prediction problem, 

Reduction to Reinforcement Learning and the Reinforcement Learner. 

 

3.2 NER as a Structured Prediction problem 

Most of the existing solutions for Sinhala Named Entity Recognition use the information 

about the word that is in consideration, or a word window that includes the said word. 

However, the information about the structure can be exploited in order to have more 

insights, in a sequence tagging problem. Capturing the structure or the dependency 

between the output variables is considered important as much as the relationship between 

the input and the output structured prediction. Figure 3.1 shows the initial problem 

perception. 

 
Figure 3.1 - Initial Problem Perception 
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3.3 Reduction to Reinforcement Learning 

In order to apply RL techniques, the problem should be converted to an RL problem. In an 

RL problem, there are States that an RL agent can explore, Actions that an RL agent can 

perform, and Rewards that an agent receive based on the state and the action it is in. 

Following the work, Structured Prediction with reinforcement learning [16] of Francis et 

al., the Named Entity Recognition task has been reformed as a Markov Decision Problem. 

After the conversion, a learning algorithm has been proposed which lets the RL agent 

learn from exploring and rewards. Figure 3.2 shows the high-level approach of the study. 

 

 

 

Figure 3.2 - High-level approach of the study 
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The main components of an RL problem has been defined as following, 

• States 

For this study, it is assumed that the input sentences are of fixed length. For each sentence, 

initially a state space is generated. Figure 3.3 shows such an induced search space for a 

binary classification. 

 

 

Figure 3.3 - Induced State Space for a Binary Classification 

 

Each state contains both an input x and a partial output	𝑦. Let 𝑌 be the set of all possible 

partial outputs. The set of states is then S = X×𝑌. There is one initial state per possible 

input x: s initial(x) = (x,	𝑦W ) where 𝑦𝜖	𝜖	𝑌	is the initial empty solution. Each state except 

for leaf nodes, has two children, one for each action in binary classification. For a 

multiclass problem, the states in the induced tree may contain a number of children equal 

to the number of classes. Final states contain the complete outputs where each word in the 

input sequence has a tag.  
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 • Actions 

Actions are defined as elementary modifications of the partial output 𝑦. For example, 

Partial outputs are partially labeled sequences and an elementary modification might be 

the addition of a single label prediction to the current partial output. An action can be 

denoted as 	𝐴T ⊂ 	𝐴 where A is the set of actions available in state s. In this study, only the 

binary classification has been considered, thus only actions in a particular state are adding 

the next label as a Named Entity or Non-Named Entity. However this can be extended by 

adding more actions. i.e.: Next label is a Person or a Location or an Organization or a 

Non-Named Entity. 

• Transitions 

Transitions are deterministic and replace the current partial output by the transformed 

partial output. Transitions do not change the current input: 𝑇	((𝑥, 𝑦), 𝑎) 	= 	 (𝑥, 𝑎(𝑦)) 

where 𝑎(𝑦) denotes the partial output modified by action a.  

• Rewards 

Rewards are given for each decision step. Initially, when the reference policy is generated, 

all the costs for actions are generated. Figure 3.4 shows the induced tree with the 

calculated costs for each action for a particular input.  

 
Figure 3.4 – Induced tree with cost values 
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In the figure, Non-Named Entity (NNE) labels are denoted with 0 and Named 

Entities(NE) are denoted with 1. From each state, the left branch shows tagging the next 

word as an NNE and the right branch shows tagging the next word as an NE. The cost for 

each action for a 3-word sentence is depicted above with the cost values. The cost for leaf 

states are calculated as follows. 

𝑐𝑜𝑠𝑡(𝑠) 	= 	
\{^>	|	^>	N	^>}	\

|	^>|
  

where 𝑠 is a leaf state, 𝑦9 is the 𝑖M? label in the partial output 𝑦 , and 𝑦9 is the 𝑖M? label in 

the true label set  y. Cost function for non-leaf nodes are defined as follows. 

 𝑐𝑜𝑠𝑡(𝑠, 𝑎) 	= ∑a>bc deTM(I(T,f),f>)
∑a>bc ∑agbc deTM(I(T,f>),fg)

	 

where 𝑠 is not a leaf state, 𝑇 is the transition function and 𝑇(𝑠, 𝑎) denotes the next state 

when the action 𝑎 is taken from state 𝑠 and 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . . 𝑎.} is the set of actions. 

For a binary classifications, there two actions for each state. 

 

3.4 Neural Net 

In a simple reinforcement learning problem, a table can be used to store the learned 

information about the particular problem. However in an NER problem, using a table to 

look up such information is impractical since the number of states can be large and it has 

to deal with unseen inputs. Hence, an approximator should be used to learn the structure. 

For this particular task, a simple multilayer perceptron has been used as the function 

approximator.  Figure 3.5 shows the network architecture of the neural network. 
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Figure 3.5 - Network architecture of the neural network 

 

 

3.5 Reinforcement Learner 

The final system consists of a Learning algorithm and a Neural Network. Learner takes 

sentences as inputs, and for each input, it generates an induced state space, a reference 

policy which contains costs for each actions at each state using correct labels and  a 

learned policy using the Neural network. Learner then explores the state using the learned 

policy, and collects cost examples as each state using a combination of learned and 

reference policy. The cost examples is then returned to the experience set, and then 

randomly selected. Figure 3.6 shows the diagram of the research design. 
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Figure 3.6 - Research Design   
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Chapter 4 - Implementation 

4.1 Introduction 

This chapter mainly elaborates the implementation details of this study. It consists of 

seven sections, namely; Learning Algorithm, Learner, Induced State Space, Reference 

Policy, Learned Policy, Feature Function, Embedding Builder, Neural Network and 

Summary. 

 

4.2 Learning Algorithm 
 

Figure 4.1 shows the learning algorithm of the Reinforcement Learner. 

 

 

Figure 4.1 - Learning algorithm of the Reinforcement Learner 
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Input for the algorithm, is a set of sentences 𝑥9 of length 10 and their corresponding tag 

sequence 𝑦9	, h{𝑥1, 𝑦2}, {𝑥2, 𝑦2}, . . . . . . , {𝑥.P1, 𝑦.P1}, {𝑥., 𝑦.}i. The algorithm loops over the 

set, and for each input 𝑥9	, it generates an action sequence (learned policy) to reach a leaf 

state using the cost estimations given the neural network. Then it generates the actual cost 

values for each action(reference policy) using the true label set 𝑦9	. Initially, the network 

will output random cost values after the random initialization. For each action in learned 

policy, the algorithm will roll-out using a combination of the learned policy and the 

reference policy to reach a leaf state and will collect a cost example for the particular state. 

After the end of the loop over actions of learned policy, it will send the collected set of 

cost examples to train the Neural Network. 

 

4.3 Learner 

The learning algorithm is implemented in the class Learner. It consists of the learning 

algorithm, Neural Network, and other required components of the system. Following code 

snippet shows the implementation of the learning algorithm. 

 
from induced_tree import InducedTree 
import tensorflow as tf 
from gensim.models import Word2Vec 
import numpy as np 
import random 
class Learner:  
   def learn(self, beta): 
       import numpy as np 
       training_data = self.training_data 
       training_labels = self.training_labels 
       actions = self._actions 
       for i in range(len(training_data)): 
           self._induced_tree = self._induce_tree(training_data[i]) 
           learned_policy = self._generate_learned_policy() 
           reference_policy = self._generate_reference_policy(self._induced_tree,  
training_labels[i]) 
           experience = [] 
           s = 0 
           for j in range(len(training_data[i])): 
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               costs = [] 
               min_cost = 1 
               for action in actions: 
                   choice = int([np.random.choice([0, 1], 
                                                  1, 
                                                  p=[beta, 1 - beta])][0][0]) 
                   if choice == 0: 
                       policy = reference_policy 
                   else: 
                       policy = learned_policy 
                   action_cost = self._roll_out(policy, choice, s, actions[action], 
self._induced_tree, training_labels[i]) 
                   costs.append(action_cost) 
               feature_vector = self._generate_feature_vector(s) 
               experience.append([feature_vector, costs]) 
               s = learned_policy[s] 
 
           sample = self._sample(experiences) 
           self._train_classifier(sample, i) 
 

 

4.3 Induced State Space 

The state space is generated using a tree data structure. Two classes namely, Node and 

InducedTree, have been used to build the state space. Nodes store the necessary 

information and InducedTree class creates the data structure to hold the Nodes. Following 

code snippet shows the Node class. 

 

class Node: 
   def __init__(self, sentence, labels): 
       self._sentence = sentence 
       self._labels = labels 
       self._cost = 0 
       self._optimal_action = None 
       self._action_cost = [None, None] 
 
 
   def get_sentence(self): 
       return self._sentence 
 
   def get_labels(self): 
       return self._labels 
 
   def set_labels(self, labels): 
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       self._labels = labels 
 
   def set_optimal_action(self, action): 
       self._optimal_action = action 
 
   def get_optimal_action(self): 
       return self._optimal_action 
 
   def set_cost(self, cost): 
       self._cost = cost 
 
   def get_cost(self): 
       return self._cost 
 
   def get_action_cost(self, action): 
       if action == 0 or action == 1: 
           return self._action_cost[action] 
 
   def set_action_cost(self, action, cost): 
       if action == 0 or action == 1: 
           self._action_cost[action] = cost 

 

 

Following code snippet shows the InducedTree class. 
class InducedTree:  
   def __init__(self, sentence): 
       """ 
       dictionary = { 1: node, 2: node ....... } 
       node = {_sentence : sentence, 
               _labels : partial_labels, 
               _cost: [ 0: left_cost, 1: right_cost], 
               _optimal_action: 0 or 1 
               } 
       relations = { 1: [left child of 1, right child of 1], 2: [left child of 2, 
right child of 2]} 
       """ 
       self._dictionary = {} 
       self._relations = {} 
       self._induce_tree(self._dictionary, self._relations, sentence) 
 
   def _induce_tree(self, dictionary, relations, sentence): 
       length = len(sentence) 
       for i in range(2 ** (length+1)): 
           node = Node(sentence, []) 
           dictionary[i] = node 
       count = 1 
       for i in range(2 ** length - 1): 
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           relations[i] = [count] 
           count += 1 
           relations[i].append(count) 
           count += 1 
       self._generate_labels(dictionary, length) 
 
   def _generate_labels(self, dictionary, levels): 
       state = 0 
       dictionary[0].set_labels([None] * levels) 
       for level in range(1, levels + 1): 
           num_of_nodes = 2 ** level 
           num_of_nones = levels - level 
           for node in range(num_of_nodes): 
               state += 1 
               labels = bin(node)[2:].zfill(level) 
               labels = list(map(int, list(labels))) + num_of_nones * [None] 
               dictionary[state].set_labels(labels) 
 
   def get_right_child(self, state): 
       if state in self._relations: 
           return self._relations[state][1] 
       return None 
 
   def get_left_child(self, state): 
       if state in self._relations: 
           return self._relations[state][0] 
       return None 
 
   def get_node(self, state): 
       if state in self._dictionary: 
           return self._dictionary[state] 
       else: 
           return None 
 
   def is_leaf(self, state): 
       if self.get_left_child(state) is None and self.get_right_child(state) is None: 
           return True 
       else: 
           return False 
 
   def get_dictionary(self): 
       return self._dictionary 
 
   def transition(self, state, action): 
       if self.is_leaf(state): 
           return None 
       elif action == 0: 
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           return self.get_left_child(state) 
       elif action == 1: 
           return self.get_right_child(state) 
       else: 
           raise ValueError("Invalid value for action") 

 

 

4.4 Reference policy 

The reference policy is generated recursively. First the leaf node costs are calculated and 

stored. The action corresponds to the least cost value is marked as the reference policy 

action corresponds to that state. Then the cost values for ancestors are generated 

recursively in a bottom up manner. All the states are marked with an action that leads to 

the subtree with the least cost. Then the optimal action sequence from any state to a leaf 

state, is returned as the reference policy. Following code snippet shows the generation of 

the reference policy. 

 
   def _generate_reference_policy(self, induced_tree, labels): 
 
       self._generate_node_costs(induced_tree, labels) 
       policy = self._get_reference_policy(induced_tree) 
       return policy 
 
   def _generate_node_costs(self, tree, labels): 
       current = 0 
       self._recurse(current, tree, labels) 
 
   def _recurse(self, state, tree, labels): 
       if tree.is_leaf(state): 
           node = tree.get_node(state) 
           partial_labels = node.get_labels() 
           correct_count = 0 
           for j in range(len(partial_labels)): 
               if partial_labels[j] == labels[j]: 
                   correct_count += 1 
           cost = 1 - (float(correct_count) / len(labels)) 
           node.set_cost(cost) 
           return len(labels) - correct_count 
       else: 
           node = tree.get_node(state) 
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           left = self._recurse(tree.get_left_child(state),  
                                tree, labels) 
           right = self._recurse(tree.get_right_child(state),  
                                tree, labels) 
           total = float(left + right) 
           node.set_action_cost(0, left / total) 
           node.set_action_cost(1, right / total) 
           return total 
 
   def _get_reference_policy(self, tree): 
       tree_dict = tree.get_dictionary() 
       policy = {} 
       for i in tree_dict: 
           action = tree_dict[i].get_optimal_action() 
           if action == 0: 
               s = tree.get_left_child(i) 
           else: 
               s = tree.get_right_child(i) 
           policy[i] = s 
       return policy 

 
 
 

4.5 Learned policy 

The learned policy is generated using the Neural Network output. The states are 

transformed using a feature function and fed into the Neural Network. The Neural 

Network outputs the costs for each action. The algorithm will choose the action with the 

minimum cost for each state and returns the optimal action sequence from any state to a 

leaf state. Following code snippet shows the Learned policy generation. 

 

def _generate_learned_policy(self): 
    learned_policy = {} 
    tree = self._induced_tree 
    current_state = 0 
    while not tree.is_leaf(current_state): 
       current_feature_vector = self._generate_feature_vector(current_state) 
       action = self.predict(current_feature_vector) 
       action = np.array(action).tolist()[0] 
       if action is 0: 
         learned_policy[current_state] = tree.get_left_child(current_state) 
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         current_state = tree.get_left_child(current_state) 
       else: 
         learned_policy[current_state] = tree.get_right_child(current_state) 
               current_state = tree.get_right_child(current_state) 
       return learned_policy 

 

 

4.6 Feature function 

For this particular study, the state has been encoded using a trigram word window. This 

function can be customized. The only constraint is, the output dimension of the feature 

function should match the input dimension of the Neural Network. In this study, the 

feature function will take the word embeddings of the three words namely, previously 

tagged word, current word, and the next word, and combine them together to encode the 

state. The reason behind this choice was, word embedding captures relationships between 

the words using the context. As the study was more focused on the structure of the 

sentence, the information about the relationships between words were important.  

The word embedding dimension is decided as 7 as the vocabulary size of the training 

corpus is approximately 2500. This was decided following a general rule of thumb, which 

is the 4th root of the size of the vocabulary should be the size of the embedding 

dimension. Following code snippet shows the feature function. To generate the word 

embeddings, Fast text algorithm of the gensim python library has been used. The word 

embedding model has to be built prior to the training using the corpus. Embedding builder 

class is explained in the section 4.7. 

 

def _generate_feature_vector(self, state): 
    word2vec_model = Word2Vec.load(self._model) 
    partial_labels = self._induced_tree.get_node(state).get_labels() 
    sentence = self._induced_tree.get_node(state).get_sentence() 
    word_index = -1 
    for i in range(len(partial_labels)): 
       if partial_labels[i] is None: 
           word_index = i 
           break 



31 

       previous_word_vector = [0. for i in range(50)] 
       next_word_vector = [0. for i in range(50)] 
       if word_index > 1: 
         previous_word = sentence[word_index-1] 
         previous_word_vector = self._get_word_embedding(word2vec_model.wv, 
                                                         previous_word) 
       previous_word_vector = np.array(previous_word_vector).tolist() 
       current_word = sentence[word_index] 
       if word_index < len(sentence) - 1: 
         next_word = sentence[word_index+1] 
         next_word_vector = self._get_word_embedding(word2vec_model.wv,  
                                                     next_word) 
       next_word_vector = np.array(next_word_vector).tolist() 
       current_word_vector = self._get_word_embedding(word2vec_model.wv,   
                                                      current_word) 
       current_word_vector = np.array(current_word_vector).tolist() 
       vector = previous_word_vector + current_word_vector +  
                next_word_vector 
       return vector 
 
 
   def _get_word_embedding(self, embedding_model, word): 
       try: 
           return embedding_model[word] 
       except: 
           return [0. for i in range(50)] 

 

 

4.7 Embedding Builder 

Python gensim library has been used to build the embedding model used in the feature 

function. As mentioned in the section 4.6, the dimension of the embedding has been 

decided as 7, and the size of the context window has been decided as 3. The sentences of 

length 10 has been obtained from the input file ignoring the ‘.’. 

 
import codecs 
from gensim.models import FastText 
class Word2VecBuilder: 

   def __init__(self, inputfile, outputfile,  
                 size=7, window=3, min_count=1, workers=4, sg=1): 
       with codecs.open(inputfile, 'rb', 
                        encoding='utf-16', errors='ignore') as infile: 
           fin = infile.read() 
       lines = [[]] 
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       word = "" 
       for letter in fin: 
           if letter == "\t": 
               if not word == "": 
                   lines[len(lines) - 1].append(word) 
                   word = "" 
               continue 
           elif letter == ".": 
               lines.append([]) 
               continue 
           elif not (u'\u0d80' <= letter <= u'\u0dff'): 
               continue 
           word += letter 
       model_ted = FastText(lines, size=size, window=window, 
                             min_count=min_count, workers=workers, sg=sg) 
       model_ted.save(outputfile) 

 

4.8 Neural Network 

Since this study focuses on the conversion of the NER task to an RL problem and lay out 

the groundwork that future studies can improve upon, a simple Neural Network has been 

used to learn the cost function. As mentioned in the design chapter, the Neural Network 

has an input layer, on hidden layer and an output layer. The input later dimension is 

decided as 21 in order to match the dimension of 3 word embeddings. The output 

dimension is decided as 2 in order to match the number of classes. And the dimension of 

the hidden layer is decided as 12, following a general rule of thumb, the number of 

neurons in the hidden layer should be the mean of the number of neurons in the input layer 

and the output layer. The Neural Network has been implemented using Tensorflow python 

library.  

 

4.8.1 Initialization 

Following code snippets show the Neural Network initialization. It creates a multilayer 

perceptron with one hidden layer and uses AdamOptimizer to optimize the 

backpropagation algorithm. 
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def _init_classifier(self): 
    self._x = tf.placeholder("float", [None, self._n_input]) 
    self._y = tf.placeholder("float", [None, self._n_classes]) 
    weights = { 
       'h1': tf.Variable(tf.random_normal([self._n_input,  
                              self._n_hidden_1])), 
       'out': tf.Variable(tf.random_normal([self._n_hidden_1,  
                              self._n_classes])) 
    } 
 
    biases = { 
       'b1': tf.Variable(tf.random_normal([self._n_hidden_1])), 
       'out': tf.Variable(tf.random_normal([self._n_classes])) 
    } 
 
    self._weights_biases['weights'] = weights 
    self._weights_biases['biases'] = biases 
    self._pred = self._multilayer_perceptron(tf, weights, biases) 
    self._cost = 
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self._pred,  
                                                        labels=self._y)) 
    self._optimizer = 
tf.train.AdamOptimizer(learning_rate=self._learning_rate).minimize(self._cost) 
    pred = tf.nn.softmax(self._pred) 
    self._prediction = tf.argmin(pred, 1) 
    init = tf.global_variables_initializer() 
    self._tf_session = tf.Session(config=tf.ConfigProto()) 
    self._tf_session.run(init) 

 
 

4.8.2 Training 

Following code snippet shows the implementation of the training. This method is called in 

the learn for every sentence of the input after collecting cost examples for each sentence. 

 
   def _train_classifier(self, experience, counter): 

       inp = experience[0] 
       inp = np.array([np.array(xi) for xi in inp]) 
       labels = experience[1] 
       labels = np.array([np.array(xi) for xi in labels]) 
       _, c = self._tf_session.run([self._optimizer, self._cost],  
                                    feed_dict={self._x: inp, 
                                    self._y: labels}) 
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4.8.3 Testing 

Following code snippet shows the implementation of the testing. This method is called 

from the main file after the training is finished.  

 
   def test_classifier(self): 
       X_test = self.testing_data 
       print("test size", len(X_test)) 
       Y_test = self.testing_labels 
       accuracy = 0. 
        for i in range(len(X_test)): 
           prediction = self.predict_labels(X_test[i]) 
           correct_count = 0. 
           for j in range(len(prediction)): 
               if prediction[j] == Y_test[i][j]: 
                   correct_count += 1 
           accuracy += (correct_count/len(prediction)) 
       accuracy = accuracy/len(X_test) 
       return accuracy 

 

4.9 Summary 

This chapter elaborated the implementation details of the proposed solution and justified 

the implementation decision. The goal of this study was to cast the NER task as a 

Reinforcement Learning problem. Thus the implementation has been more focused on the 

integrating all the required components and build a simple, understandable, and 

customizable code that can be used in the same task, or in other structured prediction 

tasks. 
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Chapter 5 - Results and Evaluation 
 

5.1 Introduction 

This chapter mainly elaborates the evaluation details and the results of this study. It 

consists of four sections, namely; Dataset, High Level Evaluation Design, Evaluation 

Strategy and Results, Discussion of the result  and Discussion of the model. 

 

5.2 Dataset 

A Part Of Speech (POS)-tagged corpus prepared by LTRL (Language Technology 

Research Laboratory) of UCSC (University of Colombo School of Computing) has been 

used for training and testing the Reinforcement Learner. It consists of about 75,000 

Sinhala words, collected from publisher content and archived web content. Each word and 

punctuation marks having the appropriate Part Of Speech tag label. This POS tagged 

corpus is retagged for maximal NE’s and used as training dataset.  

 

5.3 High Level Evaluation Design 

Evaluation of this study has been carried out by splitting the data set mentioned in the 

section 5.2 into training and testing sets. It is strictly ensured not to use training data for 

testing. The training data set consist of about 68205 NE annotated Sinhala words while the 

test set has 5902 Sinhala words extracted from the corpus randomly. The NER system has 

been trained with the prepared training data set. The evaluation is done by comparing the 

system output with the output of human linguists. The test set was used to complete that 

task. Most evaluation systems require exact match on both boundary and entity type. The 

share task for CONLL 2003 (Sang and Meulder, 2003) is one of the examples for the 

exact matching. However, in this study, only the individual words and binary tagging has 
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been the main focus. For instance, “සනත් ජයසූරිය” was treated as two separate named 

entities. Thus, the boundaries were ignored.  

 

5.4 Evaluation strategy and results 

The study has been focused on converting the Named Entity Recognition task to a 

Reinforcement Learning problem and developing a customizable code base that can be 

adjusted and experimented on. Thus the most suitable strategy was to evaluate the learning 

capability of the system with the change of the size of the data set it has been trained on.  

The training corpus has 7452 sentences of length 10. The training corpus has been split 

into 10 training sets. The sets included 100, 250, 500, 1000, 2000, 3000, 5000, 6000, 7452 

sentences respectively. For each training set, the testing was done using the previously 

mentioned test set of approximately 6000 words. 

In order to measure the stability of the learning algorithm, for each training set, accuracies 

of 10 iterations was taken. Figure 5.1 shows the scatter plot of the accuracies against the 

iteration number. 

 
Figure 5.1 Accuracies for each training set for 10 iterations 
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Each line represents a training dataset. And for each line, a point represents the accuracy 

at each iteration. 

 

5.5 Discussion of the results 

As shown in the figure 5.1, the accuracy has been increased with respect to the size of the 

data set. The accuracy for the smaller training sets were near random and the variance of 

the accuracies were also high. It is clear that, as the training data set gets bigger, 

accuracies improve and stabilize.  

However, since the data set contains about 66955 Non-Named Entities and only about 

7562 Named Entities, the accuracy yield of the learning algorithm tends to saturate around 

90%. This is because, it starts to learn that the likelihood of a word being a Non Named 

Entity is significantly higher than it being a Named Entity. Since this study only used 

Word Embedding encoding as the input, the learner has not been able to exploit the 

language dependent features such as “මයා”, “හිමි”, ”මහත්මිය”. 

 

5.6 Discussion of the model 

The present experiments were able to achieve appreciable accuracies. However, the main 

goal of, mapping between the NLP task of Named Entity Recognition and the 

Reinforcement Learning paradigm, has yielded a model that is able to be reused as more 

data becomes available. The source code has been developed in a way such that the main 

components of the system namely, the feature function, the reward function and the neural 

network, can easily be updated or eve completely replaced.  
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Chapter 6 - Conclusion 

6.1 Introduction 

This chapter mainly elaborates the conclusion of this research.  It consists of four sections, 

namely; Conclusion about the research question, Conclusion about the research problem,    

Limitations and Implications for further research. 

 

6.2 Conclusion about the research questions 

The first research question of this study was, how to cast Sinhala Named Entity 

Recognition task as a Reinforcement Learning problem. In the literature there has been 

many studies conducted in the area of NER and RL. Although, the amount of studies 

conducted on studies which attempt to bridge the gap between these two areas. This study 

has addressed this gap. And the study has shown that such a mapping is possible and the 

approximations of Reinforcement Learning techniques can be applied to Named Entity 

Recognition. 

However the second research question has not been answered to the extent where it would 

achieve state of the art results for Sinhala Named Entity Recognition. However, this study 

has laid the groundwork for such improvement in future researches by providing a 

learning algorithm and a simple and customizable implementation of the learning 

algorithm. 

 

6.3 Conclusion about the research problem 

As a low resourced language, it is difficult to find good solutions using data driven 

techniques for Natural Language Processing tasks for Sinhala. Named Entity Recognition 

is an important aspect of Natural Language Processing, and having low resources, it is 

difficult to create a very accurate Machine Learning system for this task. Given the recent 

resurgence of Reinforcement Learning, it was assumed that Reinforcement Learning 
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techniques are able to learn to generalize better than other learning techniques. However, 

to compare the learning capabilities of these techniques a Reinforcement Learning system 

for Sinhala Named Entity Recognition was necessary.  

This research problem has been addressed by this study and it has proposed a complete 

Reinforcement Learning System. The implementation of this study can be customized and 

used as a test bed for future researches. The source code of the implementation will be 

made publicly available. 

 

6.4 Limitations 

This study has given the importance on proposing a mapping between Sinhala Named 

Entity Recognition task and Reinforcement Learning. Thus, for the system, a simple 

feature function, a simple neural network, and a simple reward function has been used.  

Though it can be conveniently extended to classifying Named Entities into Person, 

Location, and Organization, only the binary classification for NE’s and Non NE’s has 

been considered.  

      

6.5 Implications for further research 

The work that has been done in this study could be further improved by introducing new 

feature functions that best suit for Sinhala. And the Neural Network can be replaced to fit 

the amount of training data that is available. These adjustments can be done in a trial and 

error manner and improve upon the implementation that will be made publicly available. 
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