

Reinforcement Learning for Sinhala

Named Entity Recognition

H. M. S. Anuruddha

1

Reinforcement Learning for
Sinhala Named Entity Recognition

H. M. S. Anuruddha
Index No: 14000059

Supervisor: Dr. Ruvan Weerasinghe

January 2019

Submitted in partial fulfillment of the requirements of the
B.Sc in Computer Science Final Year Project (SCS4124)

2

Declaration
I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best of

my knowledge and belief, it does not contain any material previously published or written

by another person or myself except where due reference is made in the text. I also hereby

give consent for my dissertation, if accepted, be made available for photocopying and for

interlibrary loans, and for the title and abstract to be made available to outside

organizations.

Candidate Name: H. M. S. Anuruddha

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of

Mr. H. M. S. Anuruddha

under my supervision. The thesis has been prepared according to the format stipulated and
is of acceptable standard.

Principal Supervisor’s Name: Dr. Ruvan Weerasinghe

……………………………………………
Signature of Principal Supervisor Date:

Co-Supervisor’s Name: Dr. Ajantha Athukorale

……………………………………………
Signature of Co-Supervisor Date:

Abstract
Named Entity Recognition is a subtask of Natural Language Processing. In the literature

various machine learning methods have been proposed to tackle this task such as

supervised learning, unsupervised learning and semi supervised learning. It is established

that, for supervised learning, a large number of annotated data is needed for a system to

have a good generalization capability.

For Indic languages such as Sinhala it is challenging to build a Named Entity Recognition

system due to its inherent features such as lack of capitalization. Even though there have

been several researches conducted for Sinhala, most of them have used supervised

learning methods with small quantities of training data.

The resurgence of Reinforcement Learning demonstrates its effectiveness in problems that

humans solve effectively in an incremental manner over time. Even though it is hard to

find research that has applied Reinforcement Learning to Natural Language Processing

tasks, there have been attempts to map tasks such as Part of Speech tagging to the

Reinforcement Learning paradigm.

This dissertation first casts the Sinhala Named Entity Recognition task into the

Reinforcement Learning paradigm and then proposes a language specific Named Entity

Recognition system that can be trained to generalize better using the current annotated

data available.

1

Preface
This study has been done following the SP-MDP framework that was proposed by Maes

and Gallinari . Section 3.3 relies on the work that has been done by Maes and Gallinari in

the paper Structured prediction with reinforcement learning. This study has adopted their

framework and used as a specialized version to align it with the Named Entity

Recognition task.

The learning algorithm proposed in this study is a derivative work and it has been derived

from the algorithm proposed by Langford and Daume in their work, Learning to Search

[1] algorithm proposed. The implementation of the derived algorithm is an outcome of this

research entirely.

The dataset that has been used to train on and test against, has been prepared by the

Language Technology Research Laboratory of University of Colombo School of

Computing.

Common open source libraries such as Tensorflow has been used to create the Neural

Network. NLP open source libraries such as gensim, has been used to create word

embedding models of the corpus. Apart from the open source libraries used, the code

implementation for the entire system is an outcome of this study.

Acknowledgement
I would like to express my sincere gratitude to my research supervisor, Dr. A.R.

Weerasinghe, senior lecturer of University of Colombo School of Computing and my

co-supervisor, Dr D.A.S.Atukorale, senior lecturer of University of Colombo School of

Computing and my research advisor, Mr. K. V. D. J. P. Kumarasinghe, lecturer of

University of Colombo School of Computing for providing me continuous guidance and

supervision throughout the research.

I would also like to extend my sincere gratitude to my examiners and evaluatos for

providing feedback on my research proposal and interim evaluation to improve my study.

I also take the opportunity to thank Dr. H. E. M. H. B. Ekanayake for all the assistance

provided as the final year computer science project coordinator.

It is a great pleasure for me to acknowledge the assistance and contribution of all the

people who helped me to successfully complete my research.

1

Table of Contents

Chapter 1 - Introduction 0	

1.1 Background to the research 0	
1.2 Research Problem and Research Questions 1	
1.3 Justification for the research 2	
1.4 Methodology 3	
1.5 Outline of the Dissertation 4	
1.6 Delimitations of Scope 5	
1.8 Summary 5	

Chapter 2 - Literature Review 6	
2.1 Introduction 6	
2.2 Background to NER 6	
2.3 Supervised Methods 7	

2.3.1 Hidden Markov Models 7	
2.3.2 Maximum Entropy based Model 8	
2.3.3 SVM Based Models 9	
2.3.4 CRF Based Models 9	

2.4 Semi-Supervised methods 10	
2.5 Unsupervised methods 11	

2.5.1 KNOWITALL 11	
2.5.2 Unsupervised NER across Languages 12	

2.6 Named Entity Recognition for Sinhala 12	
2.7 Background to RL 13	
2.8 Markov Decision Process 14	
2.9 Applications of Reinforcement Learning 14	
2.10 Summary 15	

Chapter 3 - Design 16	
3.1 Introduction 16	
3.2 NER as a Structured Prediction problem 16	
3.3 Reduction to Reinforcement Learning 17	

2

3.4 Neural Net 20	
3.5 Reinforcement Learner 21	

Chapter 4 - Implementation 23	
4.1 Introduction 23	
4.2 Learning Algorithm 23	
4.3 Learner 24	
4.3 Induced State Space 25	
4.4 Reference policy 28	
4.5 Learned policy 29	
4.6 Feature function 30	
4.7 Embedding Builder 31	
4.8 Neural Network 32	

4.8.1 Initialization 32	
4.8.2 Training 33	
4.8.3 Testing 34	

4.9 Summary 34	
Chapter 5 - Results and Evaluation 35	

5.1 Introduction 35	
5.2 Dataset 35	
5.3 High Level Evaluation Design 35	
5.4 Evaluation strategy and results 36	

Chapter 6 - Conclusion 38	
6.1 Introduction 38	
6.2 Conclusion about the research questions 38	
6.3 Conclusion about the research problem 38	
6.5 Implications for further research 39	

List of Figures

Figure 1.1: Methodology.. 16

Figure 3.1: Initial Problem Perception... 28

Figure 3.2: High-level approach.. 29

Figure 3.3: Induced State Space ..30

Figure 3.4: Induced tree with costs.. 31

Figure 3.5: Neural Network architecture... 33

Figure 3.6: Research Design.. 34

Figure 4.1: Learning algorithm.. 35

Figure 5.1: Accuracy scatter plot... 48

1

List of Acronyms

NLP - Natural Language Processing

RL - Reinforcement Learning

NER - Named Entity Recognition

NE - Named Entity

POS - Part Of Speech

SP - Structured Prediction

MDP - Markov Decision Process

SP-MDP - Structure Prediction Markov Decision Process

DARPA - Defense Advanced Research Projects Agency

HMM - Hidden Markov Model

AI - Artificial Intelligence

MUC - message Understanding Conference

ME - Maximum Entropy

SVM - Support Vector Machine

CRF - Conditional Random Fields

CoNLL - Conference on Natural Language Learning

FSM - Finite State Machine

NNE - Non-Named Entity

NN- Neural Network

LTRL - Language Technology Research Laboratory

UCSC - University of Colombo School of Computing

Chapter 1 - Introduction

1.1 Background to the research

Named entities have three top-level categorizations according to DARPA’s Message

Understanding Conference: entity names, temporal expressions, and number expressions

[2]. The entity names category describes the unique identifiers of people, locations,

geopolitical bodies, events, and organizations.

Some key design decisions in an NER system are proposed in [3] that cover the

requirements of NER in the example sentence above Chunking and text representation,

Inference and ambiguity resolution algorithms, Modeling of Non-Local dependencies,

Implementation of external knowledge resources and gazetteers.

Named entities are often not simply singular words, but are chunks of text, e.g. University

of Maryland Baltimore County or The Central Bank of Australia. Therefore, some

chunking or parsing prediction model is required to predict whether a group of tokens

belong in the same entity. Left to right decoding, Viterbi, and beam search algorithms has

been employed as chunking algorithms in the literature. Further, some NER systems are

comprised primarily of text parsers as in [4], [5], and [6].

Inference refers to the ability of a system to determine that a chunk is actually a named

entity, or, sometimes more importantly, to determine the classification of a named entity,

especially in places where there is ambiguity. For example “Washington” might refer to

either a name or a location. “Galaxy” might refer to a generic noun or the professional

major league soccer team. Maximum Entropy Models, Hidden Markov Models and other

statistical methods are employed to perform this analysis, usually implemented as a

machine-learning system, as for instance in [7], [8], and [9].

Non-local dependency models refer to the ability to identify multiple tokens that should

have the same label assignment or cross-reference. It is important to note that case

becomes important here—e.g. Bengfort, bengfort, and BENGFORT should all be

identified as the same entity, and these would break word-level rule based systems (e.g.

find all words that are capitalized). But further, even different chunks should be identified

1

similarly – UMBC vs. University of Maryland Baltimore County or the inclusion of titles

in one location that are absent from another as in President Barack Obama vs. Obama. The

non-locality of these models refers to the usage of these terms outside the scope of a

sequence of tokens that is being analyzed together (usually a sentence), but rather in the

entire document or corpus. The papers that address non-local dependencies include [10]

and [11], but the focus of this paper will be on solutions that require external knowledge.

Names, because they uniquely identify entities, are a domain not easily captured by even

the most expansive lexicons. For example, simply creating a list of the names of all

companies formed in the United States would expand drastically every single year.

However, external knowledge and name lexicons are required for many of the approaches

and solutions, not just non-local dependency models. Therefore the construction and use

of gazetteers and other resources are necessary.

For languages such as English, which are high resourced languages which has many large

annotated datasets, there exist many sophisticated tools developed to classify Named

Entities with high accuracy. These models cannot be used to identify Named Entities in

Sinhala language due to language dependent features such as non-existence of

capitalization. Due to lack of research in this field for Sinhala, there exist only few models

which is able to carry out this task. And there is no publicly available annotated data set.

Considering all models that exist to solve NER, models that uses Reinforcement Learning

can be hardly found. This study focuses on how to use Reinforcement Learning in Named

Entity Recognition.

1.2 Research Problem and Research Questions

For Natural Language Processing (NLP) it is needed resources such as annotated corpora.

Since NLP research conducted on Sinhala is very minimum, available annotated data is

very minimum. Manually annotating data is time consuming. Thus it is required to

automate this process. Machine Learning is a method of automating this process. However

2

annotated data is necessary for training an accurate Machine Learning system. Lack of

annotated data is a common problem for low resourced languages such as Sinhala.

The focus in this study is on Named Entity Recognition. There exist Named Entity

Recognition(NER) systems for Languages such as English with good accuracies. However

these cannot be directly used for Sinhala. Sinhala is a morphologically rich language.

Unlike languages such as English, Sinhala has a complex and rich structure and complex

words with rich morphology. Another major problem is, Sinhala lacks features such as

capitalization. Thus, the need for such a system specifically designed for Sinhala is very

important.

However while there exists few NER systems for Sinhala, almost all the systems have

used supervised learning as the learning method. Given the recent advances of other

learning methods such as semi-supervised learning and reinforcement learning, it is

assumed that reinforcement learning systems learn to generalize better than supervised

learning systems. Although, whether a system could achieve better performance with RL

than supervised learning is debatable. Even to compare these two techniques for NER

task, it is difficult to cast the NER task as an RL problem.

The main research questions of this study are,

● How to cast Named Entity Recognition as a Reinforcement Learning problem.

● Is it possible to achieve better performance with Reinforcement Learning.

1.3 Justification for the research
As the technology evolves, Natural Language Processing has become a vital factor. World

Wide Web has become a place where semantic meaning is very important. In near future,

machines will have to understand human languages as us humans do, to serve humans

better. Thus, it is in no doubt that Natural Language Processing has a major role in

technology. For machines to understand human languages and to extract useful

information, systems such as Named Entity Recognition are necessary.

3

Language translators such as Google translator has a general machine learning model for

all the languages. Meaning, they don’t train a model for each language pair, as parallel

data is hard to come by. Instead transfer learning techniques are used, and this leads to

poor accuracy of translations for Sinhala to and from other languages. We need a language

specific translator to improve accuracy. NER is a preprocessing task in Machine

Translation and Information Extraction. As such, a good NER system can improve the

performance of a Language Translator.

In the literature, applying RL techniques in Natural Language Processing is not very

common. This study could develop an interest of using RL techniques for other Natural

Language Processing tasks in other researchers since it has been a difficult task to map

these two areas.

Reinforcement is currently the most active research area in Artificial Intelligence. And

Natural Language Processing is another vital aspect in Artificial Intelligence. Bridging the

gap between these two components of AI, potentially opens up novel research areas thus,

bringing the true Artificial Intelligence closer.

1.4 Methodology
As the first step, the existing systems for solving NER was analyzed. Literature review

and related theories were covered in a breadth first manner. As the second step, a basic

Reinforcement Learning model was proposed. The third step included implementing,

refining, and testing this model.

Figure 1.1 shows the high level diagram of the methodology followed in this study.

4

Figure 1.1 - High level diagram of the methodology followed

1.5 Outline of the Dissertation

The dissertation is structured as follows. Chapter two explores the existing approaches

related to the domain of Named Entity Recognition. Chapter three describes the proposed

research design and methodology. Chapter four demonstrates the implementation details

of the proposed methodology. Chapter five presents the evaluation model and the

evaluation results of the proposed approach. The last chapter, chapter six demonstrates the

conclusion of the thesis and outlines the future work.

5

1.6 Delimitations of Scope

In this research, only person names, location names and organization names are

considered as Named Entities. This study has focused on proposing a system that

classifies each word into two classes, Named Entities and Not-Named Entities. Depending

on the time availability, this study will move on to classifying them into each class. And

both training and testing datasets used, should be in Sinhala Unicode.

The goal of this study was to propose a Named Entity Recognition system that uses

Reinforcement Learning techniques to learn. The accuracies and improvements were not

the main concern of this study due to the limited time. Hence the scope of this research

was to cast the NER task as an RL problem.

1.8 Summary

This chapter laid the foundations for this dissertation. It introduced the NER task and

research gap, research questions and hypotheses. Then the research was justified,

definitions were presented, the methodology was briefly described and justified, the

dissertation was outlined, and the limitations were given. On these foundations, the

dissertation can proceed with a detailed description of the research.

6

Chapter 2 - Literature Review

2.1 Introduction

This chapter mainly describes the current status of the literature in the Named Entity

Recognition task and Reinforcement Learning paradigm. This chapter consists of,

Background to NER, Supervised Methods, Semi- Supervised methods, Unsupervised

Methods,Named Entity Recognition for Sinhala, Background to RL, Summary.

2.2 Background to NER

Named Entity Recognition (NER) is the process of locating a word or a phrase that

references a particular entity within a text. The NER task first appeared in the Sixth

Message Understanding Conference (MUC6) Sondheim (1995)[12] and involved

recognition of entity names (people and organizations), place names, temporal expressions

and numerical expressions. In MUC-6, Named entities (NEs) were categorized into three

types of label, each of which uses specific attribute for a particular entity type. Entities and

their labels were defined as follows:

● ENAMEX: person, organization, location

● TIMEX: date, time

● NUMEX: money, percentage, quantity

Different fine grained or domain dependent annotation schemes have been proposed by

many researchers. In practice, it is convenient to work with coarse classification than fine

grain classification due to data sparsity.

Several approaches to tackle this task can be seen in the literature. In the section 2.3,

supervised methods will be discussed. In the section 2.4, semi supervised methods will be

discussed. In the section 2.5, Unsupervised methods will be discussed. In the section 2.6

studies that has been conducted Sinhala Named Entity Recognition will be discussed.

7

2.3 Supervised Methods

Supervised methods are class of algorithm that learn a model by looking at annotated

training examples. Among the supervised learning algorithms for NER, considerable work

has been done using Hidden Markov Model (HMM), Decision Trees, Maximum Entropy

Models (ME), Support Vector Machines (SVM) and Conditional Random Fields (CRF).

Typically, supervised methods either learn disambiguation rules based on discriminative

features or try to learn the parameter of assumed distribution that maximizes the likelihood

of training data. Each of these methods will be discussed in detail in next sections.

2.3.1 Hidden Markov Models

HMM is the earliest model applied for solving NER problem by Bikel et al. (1999) for

English. Bikel introduced a system, IdentiFinder[13], to detect NER. According to Bikel’s

formulation of the problem in the Identifinder system, only a single label can be assigned

to a word in context. Therefore, the model assigns to every word, either one of the desired

classes or the label NOT-A-NAME to represent ”none of the desired classes”. The task is

to find the most likely sequence of name-classes(NC) given a sequence of words(W):

𝑚𝑎𝑥	𝑃𝑟(𝑁𝐶	|	𝑊)

IdentiFinder reported NE accuracy of 94.9% and 90% for a mixed case English (MUC-6

data and a collection of Wall Street Journal documents) and mixed case Spanish (MET-1

data, comprised of articles from news agencies AFP) respectively.

Zhou and Su (2002) [14] modified the IdentiFinder model by using mutual information.

Given a token sequence 𝐺1
. = 	𝑔1, 𝑔2, 𝑔3. . . 𝑔. the goal of the learning algorithm is to find

a stochastically optimal tag sequence 𝑇1
. = 	 𝑡1, 𝑡2, 𝑡3	. . . 𝑡. that maximizes,

𝑃𝑟(𝐺1
.	|	𝑇1

.) 	= 	𝑙𝑜𝑔𝑃𝑟(𝑇1
.) 	+	

𝑃𝑟(𝑇1
.,𝐺1

.)
𝑃𝑟(𝑇1

.)𝑃𝑟(𝐺1
.)

8

Unlike IdentiFinder, Zhou’s model directly generates original NE tags from the output

words of the noisy channel. Zhou’s model assumes mutual information independence

while HMM assumes conditional probability independence. The HMM-based chunk

tagger gave an accuracy of 96.6% on MUC-6 data and 94.1% on MUC-7 data.

2.3.2 Maximum Entropy based Model

Maximum entropy model, unlike HMM, are discriminative model. Given a set of features

and training data, the model directly learns the weight for discriminative features for

classification. In Maximum entropy models, objective is to maximize the entropy of the

data, so as to generalize as much as possible for the training data. In ME models each

feature is associated with parameter 𝜆9. Conditional probability is thus obtained as

follows:

𝑃(𝑓|ℎ) 	= 	
∏9 𝜆9

=>(?,@)

𝑍B(ℎ)

𝑍B(ℎ) 	= 	C
@

D
9

𝜆9
=>(?,@)

Maximizing the entropy ensures that for every feature 𝑔9 , the expected value of 𝑔9,

according to M.E. model will be equal to empirical expectation of 𝑔9in the training corpus.

Finally, Viterbi algorithm is used to find the highest probability path through the trellis of

conditional probabilities which produces the required valid tag sequences.

The MENE system [15] - Accuracy reported for the MENE system on MUC-7 data is

88.80%.

Curran’s ME Tagger [16] - Reported an accuracies of 84.89% for the English test data and

68.48% for the German test data of CoNLL-2003 shared task.

9

2.3.3 SVM Based Models

Support Vector Machine was first introduced by Cortes and Vapnik (1995) [17] based on

the idea of learning a linear hyperplane that separate the positive examples from negative

example by large margin. Large margin suggests that the distance between the hyperplane

and the point from either instances is maximum. The points closest to hyper plane on

either side are known as support vectors.

The linear classifier is based on two parameters, a weight vector W perpendicular to the

hyperplane that separates the instances and a bias b which determines the offset of the

hyperplane from the origin. A sample x is classified as positive instance if ,

𝑓(𝑥) 	= 	𝑤𝑥	 + 	𝑏	 > 	0

and negative otherwise. If the data points are not linearly separable, then a slack is used to

accept some error in classification. This prevents the classifier to over fit the data. When

there are more than two classes, a group of classifiers are used to classify the instance.

McNamee and Mayfield (2002) tackle the problem as binary decision problem,i.e. if the

word belongs to one of the 8 classes, i.e. B- Beginning, I- Inside tag for person,

organization, location and misc tags. Thus there are 8 classifiers trained for this purpose.

For CoNLL 2002 data, reported accuracies were 60.97 and 59.52 for Spanish and Dutch

respectively.

2.3.4 CRF Based Models

Conditional random field were introduced by Lafferty et al. (2001) [18] as a statistical

modeling tool for pattern recognition and machine learning using structured prediction.

McCallum and Li (2003) [19] proposed a feature induction method for CRF in NE. Let,

𝑜	 =	< 𝑜1, 𝑜2, , 𝑜I > be some observed input data sequence, such as a sequence of

words in a text inside the document (the values on n input nodes of the graphical model).

Let S be a set of FSM states, each of which is associated with a label, l L, (such as ORG).

Let 𝑠	 =	< 𝑠1, 𝑠2, , 𝑠I > be some sequence of states, (the values on T output nodes).

10

By the Hammersley Clifford theorem, CRFs define the conditional probability of a state

sequence given an input sequence to be,

𝑃(𝑠|𝑜) 	= 	
1
𝑍 	𝑒𝑥𝑝(C

I

MN1

𝜆O𝑓O(𝑠MP1, 𝑠M, 𝑜, 𝑡))

where 𝑍is the normalization factor obtained by marginalizing over all state sequences,

𝑓O(𝑠MP1, 𝑠M, 𝑜, 𝑡)is an arbitrary feature function and 𝜆Ois the learned weight for each feature

function. By using dynamic programming, state transition between two CRF states can be

efficiently calculated. The modified forward values, 𝛼I(𝑠9), to be the ”unnormalized

probability” of arriving state si given the observations < 𝑜1, 𝑜2, , 𝑜I >. 𝛼0(𝑠)is set to

probability of starting in each state 𝑠, and recursively calculated as :

𝛼MR1(𝑠) 	= 	∑T ′ 𝛼M(𝑠′)𝑒𝑥𝑝(∑O 𝜆O𝑓O(𝑠′, 𝑠, 𝑜, 𝑡))

The backward procedure and Baum-Welch have been similarly modified. 𝑍0is given by

∑O 𝛼I(𝑠). Viterbi algorithm for finding the most likely state sequence given the

observation sequence have been 7 modified from its HMM form. Experiments were

performed on CoNLL 2003 shared task data, and achieved an accuracy of 84.04% for

English and 68.11% for German

2.4 Semi-Supervised methods

Semi supervised learning algorithms use both labeled and unlabeled corpus to create their

own hypothesis. Algorithms typically start with small amount of seed data set and create

more hypothesis’ using large amount of unlabeled corpus. Semi-supervised NER systems

will be discussed in the next section.

Carreras et al. (2002) [20] have modeled (NER using AdaBoost) the Named entity

identification task as sequence labeling problem through BIO labeling scheme. Input is

considered as word sequence to label with one of the Beginning of NE (B-) tag, Inside of

tag (I-) and outside of NE (O-) tag. Three binary classifiers are used for tagging, one

corresponding to each tag.

11

Orthographic and semantic features were evaluated over a shifting window allowing a

relational representation of examples via many simply binary propositional features.

The binary AdaBoost is used to with confidence rated predictions as learning algorithm

for the classifiers. The boosting algorithm combines several fixed-depth decision trees.

Each tree is learned sequentially by presenting the decision tree a weighting over the

examples which depend on the previous learned trees.

The Spanish data corresponds to the CoNLL 2002 Shared Task Spanish data and shows a

performance of 79.28%

2.5 Unsupervised methods

A major problem with supervised setting is requirement of specifying large number of

features. For learning a good model, a robust set of features and large annotated corpus is

needed. Many languages don’t have large annotated corpus available at their disposal. To

deal with lack of annotated text across domains and languages, unsupervised techniques

for NER have been proposed.

2.5.1 KNOWITALL

KNOWITALL is domain independent system proposed by Etzioni et al. (2005)[21] that

extracts information from the web in an unsupervised, open-ended manner. KNOWITALL

uses 8 domain independent extraction patterns to generate candidate facts.

For example, the generic pattern ”NP1 such as NPLIST2” indicates that the head of each

simple noun phrase(NP) in the list of NPLIST2 is a member of class named NP1. It then

automatically tests the plausibility of the candidate facts it extracts using point-wise

mutual information (PMI) computed using large web text as corpus. Based on PMI score,

KNOWITALL associates a probability with every facts it extracts, enabling it to manage

the trade-off between precision and recall. It relies on bootstrapping technique that induces

seeds from generic extraction patterns and automatically generated discriminator phrases.

12

2.5.2 Unsupervised NER across Languages

Munro and Manning (2012) have proposed a system that generates seed candidates

through local, cross language edit likelihood and then bootstraps to make broad

predictions across two languages, optimizing combined contextual, word-shape and

alignment models. It is completely unsupervised, with no manually labelled items, no

external resources, only using parallel text that does not need to be easily alignable. The

results are strong, with F = 0.85 for purely unsupervised named entity recognition across

languages, compared to just F = 0.35 on the same 37 data for supervised cross-domain

named entity recognition within a language. A combination of unsupervised and

supervised methods increases the accuracy to F = 0.88. The tests were done on the parallel

corpus of English and Haitian Krreyol text messages used in the 2010 Shared Task for the

Workshop on Machine Translation.

2.6 Named Entity Recognition for Sinhala

Considering all these common methods to solve Named Entity Recognition, there are few

attempts to apply these methods to indic languages and more specifically Sinhala

language.

Although there are successful NER systems for languages such as English, the amount of

prior research done on NER for Sinhala is very minimal. The effectiveness of the data

driven techniques for Sinhala language is described in the papers Named entity

recognition for Sinhala language[22] and Ananya - a Named-Entity-Recognition (NER)

system for Sinhala language[23]. J.K.Dahanayaka and A.R.Weerasinghe [22] have tested

Sinhala NER performance with both ME and CRF methods and reported the results using

a manually annotated corpus. Their work only focused on identifying Named Entity

boundaries in a given text, but the classification part (classifying named entities into

different classes such as person, location, and organization) was not done. They conclude

that the CRF model gives better results compared to ME model.

13

In a later research, Udayangi and A.R.Weerasinghe [24] discuss a solution based on a

hybrid approach for Sinhala NER. The hybrid approach includes an NER system based on

CRF and a Rule-based post-processor. The rule-based post-processor makes use of

context-based word lists to identify named entities. They have improved the work in [22]

by classifying the extracted named entities into three different NE classes (Person names,

Locations and Organizations). But the annotated corpus used in their research had no

contextual information, because the corpus was created by getting set of words per each

class separately (Person names, Locations, Organization and NonNEs), annotate words in

each set for the class tag and mixing all of them together. In other words, this corpus

contained only named entities.

Structured Prediction or Structured (output) Learning is an umbrella term for supervised

machine learning techniques that involves predicting structured objects, rather than scalar

discrete or real values [25]. Named Entity Recognition in textual data is a structured

prediction problem because the output is a sequence of words which has a structure. All

the approaches described above use either supervised or Rule-based or hybrid methods.

However, due to lack of resource (Annotated corpus) for Sinhala language, the learning

ability of the supervised learning models is limited.

2.7 Background to RL

Markov Decision Problems (MDPs) are sequential decision making problem, in which a

system has to make a decision in each decision making state. Richard Bellman showed

that MDPs can be effectively solved using Dynamic Programming (DP). However, the

classical dynamic programming methods break down on the problems with large-scale and

complex MDPs. This is due to the requirement of computing power to solve such

problems.

Reinforcement Learning (RL) emerged as a technique of solving these large-scale and

complex MDPs in a near-optimal way. The modern science of RL has emerged from

combining of notions from four different fields namely, Dynamic Programming, Artificial

14

Intelligence (AI), stochastic approximation and function approximation (regression,

Bellman error, and neural networks).

2.8 Markov Decision Process

MDP is a framework used in stochastic control theory of discrete-event systems. MDPs

are driven by underlying Markov chains. In a Markov chain, at each discrete time step, the

system jumps from one state to another. The probability of such transitions to the next

state depend only on the current state and not on the previous states. In such a setting, at

some states, the system has to choose an action from a set of predefined actions. The

actions to be taken from each state, is called a policy. Policy is a mapping from the set of

states to the set of actions. The system earns a reward in transitioning from one state to

another under the influence of the chosen action. Solving an MDP is to find the optimal

policy that yields the maximum amount of rewards.

2.9 Applications of Reinforcement Learning

RL has been applied in a large number of domains successfully. Here we enumerate a few

case studies related to operations management. In particular, we describe the special

features of the algorithms that made them suitable for the domain of application.

Continuous-time discounted algorithms[26] were employed for elevator scheduling[27]

because the problem structure had a continuous-time Markov chain underlying it. The job-

shop scheduling problem in Zhang and Dietterich (1995) had an episodic nature, and

hence TD(λ) became preferable[28].

The AGV routing problem in Tadepalli and Ok (1998)[29] is one of the few case studies

of model-building RL for large-scale problems. The model they learn is able to capture the

complex dynamics of the AGV problem. A well-known “revenue management

problem”[30] can be set up as an average-reward SMDP. The work related to hyper

15

heuristics can be used when RL is to be used dynamically to select a meta-heuristic. An

SMDP with a discount factor was employed for a cell phone network-management

problem [31] that allowed handy combination with a neuron-based function approximator.

The retailer-inventory management problem[32] used regular Q-Learning with a vanishing

discount factor. It is likely that the field of applied RL will explode in the coming years

because of RL’s ability to solve problems previously considered intractable.

2.10 Summary

Throughout the literature many solutions for NER can be found. Most of the solutions

work with a significant amount of accuracy for languages such as English which is well

resourced. However, for Sinhala, due to its inherent features such as lack of capitalization,

such a system cannot be used.

There are few research conducted for Sinhala NER. Most of them use rule based methods,

or supervised learning methods. No attempt can be found where RL has been applied to

solve NER for Sinhala.

16

Chapter 3 - Design

3.1 Introduction

This chapter mainly elaborates the proposed solutions to the research problem. It consists

of four sections, namely; Research Design, NER as a Structured Prediction problem,

Reduction to Reinforcement Learning and the Reinforcement Learner.

3.2 NER as a Structured Prediction problem

Most of the existing solutions for Sinhala Named Entity Recognition use the information

about the word that is in consideration, or a word window that includes the said word.

However, the information about the structure can be exploited in order to have more

insights, in a sequence tagging problem. Capturing the structure or the dependency

between the output variables is considered important as much as the relationship between

the input and the output structured prediction. Figure 3.1 shows the initial problem

perception.

Figure 3.1 - Initial Problem Perception

17

3.3 Reduction to Reinforcement Learning

In order to apply RL techniques, the problem should be converted to an RL problem. In an

RL problem, there are States that an RL agent can explore, Actions that an RL agent can

perform, and Rewards that an agent receive based on the state and the action it is in.

Following the work, Structured Prediction with reinforcement learning [16] of Francis et

al., the Named Entity Recognition task has been reformed as a Markov Decision Problem.

After the conversion, a learning algorithm has been proposed which lets the RL agent

learn from exploring and rewards. Figure 3.2 shows the high-level approach of the study.

Figure 3.2 - High-level approach of the study

18

The main components of an RL problem has been defined as following,

• States

For this study, it is assumed that the input sentences are of fixed length. For each sentence,

initially a state space is generated. Figure 3.3 shows such an induced search space for a

binary classification.

Figure 3.3 - Induced State Space for a Binary Classification

Each state contains both an input x and a partial output	𝑦. Let 𝑌 be the set of all possible

partial outputs. The set of states is then S = X×𝑌. There is one initial state per possible

input x: s initial(x) = (x,	𝑦W) where 𝑦𝜖	𝜖	𝑌	is the initial empty solution. Each state except

for leaf nodes, has two children, one for each action in binary classification. For a

multiclass problem, the states in the induced tree may contain a number of children equal

to the number of classes. Final states contain the complete outputs where each word in the

input sequence has a tag.

19

 • Actions

Actions are defined as elementary modifications of the partial output 𝑦. For example,

Partial outputs are partially labeled sequences and an elementary modification might be

the addition of a single label prediction to the current partial output. An action can be

denoted as 	𝐴T ⊂ 	𝐴 where A is the set of actions available in state s. In this study, only the

binary classification has been considered, thus only actions in a particular state are adding

the next label as a Named Entity or Non-Named Entity. However this can be extended by

adding more actions. i.e.: Next label is a Person or a Location or an Organization or a

Non-Named Entity.

• Transitions

Transitions are deterministic and replace the current partial output by the transformed

partial output. Transitions do not change the current input: 𝑇	((𝑥, 𝑦), 𝑎) 	= 	 (𝑥, 𝑎(𝑦))

where 𝑎(𝑦) denotes the partial output modified by action a.

• Rewards

Rewards are given for each decision step. Initially, when the reference policy is generated,

all the costs for actions are generated. Figure 3.4 shows the induced tree with the

calculated costs for each action for a particular input.

Figure 3.4 – Induced tree with cost values

20

In the figure, Non-Named Entity (NNE) labels are denoted with 0 and Named

Entities(NE) are denoted with 1. From each state, the left branch shows tagging the next

word as an NNE and the right branch shows tagging the next word as an NE. The cost for

each action for a 3-word sentence is depicted above with the cost values. The cost for leaf

states are calculated as follows.

𝑐𝑜𝑠𝑡(𝑠) 	= 	
\{^>	|	^>	N	^>}	\

|	^>|

where 𝑠 is a leaf state, 𝑦9 is the 𝑖M? label in the partial output 𝑦 , and 𝑦9 is the 𝑖M? label in

the true label set y. Cost function for non-leaf nodes are defined as follows.

 𝑐𝑜𝑠𝑡(𝑠, 𝑎) 	= ∑a>bc deTM(I(T,f),f>)
∑a>bc ∑agbc deTM(I(T,f>),fg)

	

where 𝑠 is not a leaf state, 𝑇 is the transition function and 𝑇(𝑠, 𝑎) denotes the next state

when the action 𝑎 is taken from state 𝑠 and 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎.} is the set of actions.

For a binary classifications, there two actions for each state.

3.4 Neural Net

In a simple reinforcement learning problem, a table can be used to store the learned

information about the particular problem. However in an NER problem, using a table to

look up such information is impractical since the number of states can be large and it has

to deal with unseen inputs. Hence, an approximator should be used to learn the structure.

For this particular task, a simple multilayer perceptron has been used as the function

approximator. Figure 3.5 shows the network architecture of the neural network.

21

Figure 3.5 - Network architecture of the neural network

3.5 Reinforcement Learner

The final system consists of a Learning algorithm and a Neural Network. Learner takes

sentences as inputs, and for each input, it generates an induced state space, a reference

policy which contains costs for each actions at each state using correct labels and a

learned policy using the Neural network. Learner then explores the state using the learned

policy, and collects cost examples as each state using a combination of learned and

reference policy. The cost examples is then returned to the experience set, and then

randomly selected. Figure 3.6 shows the diagram of the research design.

22

Figure 3.6 - Research Design

23

Chapter 4 - Implementation

4.1 Introduction

This chapter mainly elaborates the implementation details of this study. It consists of

seven sections, namely; Learning Algorithm, Learner, Induced State Space, Reference

Policy, Learned Policy, Feature Function, Embedding Builder, Neural Network and

Summary.

4.2 Learning Algorithm

Figure 4.1 shows the learning algorithm of the Reinforcement Learner.

Figure 4.1 - Learning algorithm of the Reinforcement Learner

24

Input for the algorithm, is a set of sentences 𝑥9 of length 10 and their corresponding tag

sequence 𝑦9	, h{𝑥1, 𝑦2}, {𝑥2, 𝑦2}, , {𝑥.P1, 𝑦.P1}, {𝑥., 𝑦.}i. The algorithm loops over the

set, and for each input 𝑥9	, it generates an action sequence (learned policy) to reach a leaf

state using the cost estimations given the neural network. Then it generates the actual cost

values for each action(reference policy) using the true label set 𝑦9	. Initially, the network

will output random cost values after the random initialization. For each action in learned

policy, the algorithm will roll-out using a combination of the learned policy and the

reference policy to reach a leaf state and will collect a cost example for the particular state.

After the end of the loop over actions of learned policy, it will send the collected set of

cost examples to train the Neural Network.

4.3 Learner

The learning algorithm is implemented in the class Learner. It consists of the learning

algorithm, Neural Network, and other required components of the system. Following code

snippet shows the implementation of the learning algorithm.

from induced_tree import InducedTree
import tensorflow as tf
from gensim.models import Word2Vec
import numpy as np
import random
class Learner:
 def learn(self, beta):
 import numpy as np
 training_data = self.training_data
 training_labels = self.training_labels
 actions = self._actions
 for i in range(len(training_data)):
 self._induced_tree = self._induce_tree(training_data[i])
 learned_policy = self._generate_learned_policy()
 reference_policy = self._generate_reference_policy(self._induced_tree,
training_labels[i])
 experience = []
 s = 0
 for j in range(len(training_data[i])):

25

 costs = []
 min_cost = 1
 for action in actions:
 choice = int([np.random.choice([0, 1],
 1,
 p=[beta, 1 - beta])][0][0])
 if choice == 0:
 policy = reference_policy
 else:
 policy = learned_policy
 action_cost = self._roll_out(policy, choice, s, actions[action],
self._induced_tree, training_labels[i])
 costs.append(action_cost)
 feature_vector = self._generate_feature_vector(s)
 experience.append([feature_vector, costs])
 s = learned_policy[s]

 sample = self._sample(experiences)
 self._train_classifier(sample, i)

4.3 Induced State Space

The state space is generated using a tree data structure. Two classes namely, Node and

InducedTree, have been used to build the state space. Nodes store the necessary

information and InducedTree class creates the data structure to hold the Nodes. Following

code snippet shows the Node class.

class Node:
 def __init__(self, sentence, labels):
 self._sentence = sentence
 self._labels = labels
 self._cost = 0
 self._optimal_action = None
 self._action_cost = [None, None]

 def get_sentence(self):
 return self._sentence

 def get_labels(self):
 return self._labels

 def set_labels(self, labels):

26

 self._labels = labels

 def set_optimal_action(self, action):
 self._optimal_action = action

 def get_optimal_action(self):
 return self._optimal_action

 def set_cost(self, cost):
 self._cost = cost

 def get_cost(self):
 return self._cost

 def get_action_cost(self, action):
 if action == 0 or action == 1:
 return self._action_cost[action]

 def set_action_cost(self, action, cost):
 if action == 0 or action == 1:
 self._action_cost[action] = cost

Following code snippet shows the InducedTree class.
class InducedTree:
 def __init__(self, sentence):
 """
 dictionary = { 1: node, 2: node }
 node = {_sentence : sentence,
 _labels : partial_labels,
 _cost: [0: left_cost, 1: right_cost],
 _optimal_action: 0 or 1
 }
 relations = { 1: [left child of 1, right child of 1], 2: [left child of 2,
right child of 2]}
 """
 self._dictionary = {}
 self._relations = {}
 self._induce_tree(self._dictionary, self._relations, sentence)

 def _induce_tree(self, dictionary, relations, sentence):
 length = len(sentence)
 for i in range(2 ** (length+1)):
 node = Node(sentence, [])
 dictionary[i] = node
 count = 1
 for i in range(2 ** length - 1):

27

 relations[i] = [count]
 count += 1
 relations[i].append(count)
 count += 1
 self._generate_labels(dictionary, length)

 def _generate_labels(self, dictionary, levels):
 state = 0
 dictionary[0].set_labels([None] * levels)
 for level in range(1, levels + 1):
 num_of_nodes = 2 ** level
 num_of_nones = levels - level
 for node in range(num_of_nodes):
 state += 1
 labels = bin(node)[2:].zfill(level)
 labels = list(map(int, list(labels))) + num_of_nones * [None]
 dictionary[state].set_labels(labels)

 def get_right_child(self, state):
 if state in self._relations:
 return self._relations[state][1]
 return None

 def get_left_child(self, state):
 if state in self._relations:
 return self._relations[state][0]
 return None

 def get_node(self, state):
 if state in self._dictionary:
 return self._dictionary[state]
 else:
 return None

 def is_leaf(self, state):
 if self.get_left_child(state) is None and self.get_right_child(state) is None:
 return True
 else:
 return False

 def get_dictionary(self):
 return self._dictionary

 def transition(self, state, action):
 if self.is_leaf(state):
 return None
 elif action == 0:

28

 return self.get_left_child(state)
 elif action == 1:
 return self.get_right_child(state)
 else:
 raise ValueError("Invalid value for action")

4.4 Reference policy

The reference policy is generated recursively. First the leaf node costs are calculated and

stored. The action corresponds to the least cost value is marked as the reference policy

action corresponds to that state. Then the cost values for ancestors are generated

recursively in a bottom up manner. All the states are marked with an action that leads to

the subtree with the least cost. Then the optimal action sequence from any state to a leaf

state, is returned as the reference policy. Following code snippet shows the generation of

the reference policy.

 def _generate_reference_policy(self, induced_tree, labels):

 self._generate_node_costs(induced_tree, labels)
 policy = self._get_reference_policy(induced_tree)
 return policy

 def _generate_node_costs(self, tree, labels):
 current = 0
 self._recurse(current, tree, labels)

 def _recurse(self, state, tree, labels):
 if tree.is_leaf(state):
 node = tree.get_node(state)
 partial_labels = node.get_labels()
 correct_count = 0
 for j in range(len(partial_labels)):
 if partial_labels[j] == labels[j]:
 correct_count += 1
 cost = 1 - (float(correct_count) / len(labels))
 node.set_cost(cost)
 return len(labels) - correct_count
 else:
 node = tree.get_node(state)

29

 left = self._recurse(tree.get_left_child(state),
 tree, labels)
 right = self._recurse(tree.get_right_child(state),
 tree, labels)
 total = float(left + right)
 node.set_action_cost(0, left / total)
 node.set_action_cost(1, right / total)
 return total

 def _get_reference_policy(self, tree):
 tree_dict = tree.get_dictionary()
 policy = {}
 for i in tree_dict:
 action = tree_dict[i].get_optimal_action()
 if action == 0:
 s = tree.get_left_child(i)
 else:
 s = tree.get_right_child(i)
 policy[i] = s
 return policy

4.5 Learned policy

The learned policy is generated using the Neural Network output. The states are

transformed using a feature function and fed into the Neural Network. The Neural

Network outputs the costs for each action. The algorithm will choose the action with the

minimum cost for each state and returns the optimal action sequence from any state to a

leaf state. Following code snippet shows the Learned policy generation.

def _generate_learned_policy(self):
 learned_policy = {}
 tree = self._induced_tree
 current_state = 0
 while not tree.is_leaf(current_state):
 current_feature_vector = self._generate_feature_vector(current_state)
 action = self.predict(current_feature_vector)
 action = np.array(action).tolist()[0]
 if action is 0:
 learned_policy[current_state] = tree.get_left_child(current_state)

30

 current_state = tree.get_left_child(current_state)
 else:
 learned_policy[current_state] = tree.get_right_child(current_state)
 current_state = tree.get_right_child(current_state)
 return learned_policy

4.6 Feature function

For this particular study, the state has been encoded using a trigram word window. This

function can be customized. The only constraint is, the output dimension of the feature

function should match the input dimension of the Neural Network. In this study, the

feature function will take the word embeddings of the three words namely, previously

tagged word, current word, and the next word, and combine them together to encode the

state. The reason behind this choice was, word embedding captures relationships between

the words using the context. As the study was more focused on the structure of the

sentence, the information about the relationships between words were important.

The word embedding dimension is decided as 7 as the vocabulary size of the training

corpus is approximately 2500. This was decided following a general rule of thumb, which

is the 4th root of the size of the vocabulary should be the size of the embedding

dimension. Following code snippet shows the feature function. To generate the word

embeddings, Fast text algorithm of the gensim python library has been used. The word

embedding model has to be built prior to the training using the corpus. Embedding builder

class is explained in the section 4.7.

def _generate_feature_vector(self, state):
 word2vec_model = Word2Vec.load(self._model)
 partial_labels = self._induced_tree.get_node(state).get_labels()
 sentence = self._induced_tree.get_node(state).get_sentence()
 word_index = -1
 for i in range(len(partial_labels)):
 if partial_labels[i] is None:
 word_index = i
 break

31

 previous_word_vector = [0. for i in range(50)]
 next_word_vector = [0. for i in range(50)]
 if word_index > 1:
 previous_word = sentence[word_index-1]
 previous_word_vector = self._get_word_embedding(word2vec_model.wv,
 previous_word)
 previous_word_vector = np.array(previous_word_vector).tolist()
 current_word = sentence[word_index]
 if word_index < len(sentence) - 1:
 next_word = sentence[word_index+1]
 next_word_vector = self._get_word_embedding(word2vec_model.wv,
 next_word)
 next_word_vector = np.array(next_word_vector).tolist()
 current_word_vector = self._get_word_embedding(word2vec_model.wv,
 current_word)
 current_word_vector = np.array(current_word_vector).tolist()
 vector = previous_word_vector + current_word_vector +
 next_word_vector
 return vector

 def _get_word_embedding(self, embedding_model, word):
 try:
 return embedding_model[word]
 except:
 return [0. for i in range(50)]

4.7 Embedding Builder

Python gensim library has been used to build the embedding model used in the feature

function. As mentioned in the section 4.6, the dimension of the embedding has been

decided as 7, and the size of the context window has been decided as 3. The sentences of

length 10 has been obtained from the input file ignoring the ‘.’.

import codecs
from gensim.models import FastText
class Word2VecBuilder:

 def __init__(self, inputfile, outputfile,
 size=7, window=3, min_count=1, workers=4, sg=1):
 with codecs.open(inputfile, 'rb',
 encoding='utf-16', errors='ignore') as infile:
 fin = infile.read()
 lines = [[]]

32

 word = ""
 for letter in fin:
 if letter == "\t":
 if not word == "":
 lines[len(lines) - 1].append(word)
 word = ""
 continue
 elif letter == ".":
 lines.append([])
 continue
 elif not (u'\u0d80' <= letter <= u'\u0dff'):
 continue
 word += letter
 model_ted = FastText(lines, size=size, window=window,
 min_count=min_count, workers=workers, sg=sg)
 model_ted.save(outputfile)

4.8 Neural Network

Since this study focuses on the conversion of the NER task to an RL problem and lay out

the groundwork that future studies can improve upon, a simple Neural Network has been

used to learn the cost function. As mentioned in the design chapter, the Neural Network

has an input layer, on hidden layer and an output layer. The input later dimension is

decided as 21 in order to match the dimension of 3 word embeddings. The output

dimension is decided as 2 in order to match the number of classes. And the dimension of

the hidden layer is decided as 12, following a general rule of thumb, the number of

neurons in the hidden layer should be the mean of the number of neurons in the input layer

and the output layer. The Neural Network has been implemented using Tensorflow python

library.

4.8.1 Initialization

Following code snippets show the Neural Network initialization. It creates a multilayer

perceptron with one hidden layer and uses AdamOptimizer to optimize the

backpropagation algorithm.

33

def _init_classifier(self):
 self._x = tf.placeholder("float", [None, self._n_input])
 self._y = tf.placeholder("float", [None, self._n_classes])
 weights = {
 'h1': tf.Variable(tf.random_normal([self._n_input,
 self._n_hidden_1])),
 'out': tf.Variable(tf.random_normal([self._n_hidden_1,
 self._n_classes]))
 }

 biases = {
 'b1': tf.Variable(tf.random_normal([self._n_hidden_1])),
 'out': tf.Variable(tf.random_normal([self._n_classes]))
 }

 self._weights_biases['weights'] = weights
 self._weights_biases['biases'] = biases
 self._pred = self._multilayer_perceptron(tf, weights, biases)
 self._cost =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self._pred,
 labels=self._y))
 self._optimizer =
tf.train.AdamOptimizer(learning_rate=self._learning_rate).minimize(self._cost)
 pred = tf.nn.softmax(self._pred)
 self._prediction = tf.argmin(pred, 1)
 init = tf.global_variables_initializer()
 self._tf_session = tf.Session(config=tf.ConfigProto())
 self._tf_session.run(init)

4.8.2 Training

Following code snippet shows the implementation of the training. This method is called in

the learn for every sentence of the input after collecting cost examples for each sentence.

 def _train_classifier(self, experience, counter):

 inp = experience[0]
 inp = np.array([np.array(xi) for xi in inp])
 labels = experience[1]
 labels = np.array([np.array(xi) for xi in labels])
 _, c = self._tf_session.run([self._optimizer, self._cost],
 feed_dict={self._x: inp,
 self._y: labels})

34

4.8.3 Testing

Following code snippet shows the implementation of the testing. This method is called

from the main file after the training is finished.

 def test_classifier(self):
 X_test = self.testing_data
 print("test size", len(X_test))
 Y_test = self.testing_labels
 accuracy = 0.
 for i in range(len(X_test)):
 prediction = self.predict_labels(X_test[i])
 correct_count = 0.
 for j in range(len(prediction)):
 if prediction[j] == Y_test[i][j]:
 correct_count += 1
 accuracy += (correct_count/len(prediction))
 accuracy = accuracy/len(X_test)
 return accuracy

4.9 Summary

This chapter elaborated the implementation details of the proposed solution and justified

the implementation decision. The goal of this study was to cast the NER task as a

Reinforcement Learning problem. Thus the implementation has been more focused on the

integrating all the required components and build a simple, understandable, and

customizable code that can be used in the same task, or in other structured prediction

tasks.

35

Chapter 5 - Results and Evaluation

5.1 Introduction

This chapter mainly elaborates the evaluation details and the results of this study. It

consists of four sections, namely; Dataset, High Level Evaluation Design, Evaluation

Strategy and Results, Discussion of the result and Discussion of the model.

5.2 Dataset

A Part Of Speech (POS)-tagged corpus prepared by LTRL (Language Technology

Research Laboratory) of UCSC (University of Colombo School of Computing) has been

used for training and testing the Reinforcement Learner. It consists of about 75,000

Sinhala words, collected from publisher content and archived web content. Each word and

punctuation marks having the appropriate Part Of Speech tag label. This POS tagged

corpus is retagged for maximal NE’s and used as training dataset.

5.3 High Level Evaluation Design

Evaluation of this study has been carried out by splitting the data set mentioned in the

section 5.2 into training and testing sets. It is strictly ensured not to use training data for

testing. The training data set consist of about 68205 NE annotated Sinhala words while the

test set has 5902 Sinhala words extracted from the corpus randomly. The NER system has

been trained with the prepared training data set. The evaluation is done by comparing the

system output with the output of human linguists. The test set was used to complete that

task. Most evaluation systems require exact match on both boundary and entity type. The

share task for CONLL 2003 (Sang and Meulder, 2003) is one of the examples for the

exact matching. However, in this study, only the individual words and binary tagging has

36

been the main focus. For instance, “සනත් ජයසූරිය” was treated as two separate named

entities. Thus, the boundaries were ignored.

5.4 Evaluation strategy and results

The study has been focused on converting the Named Entity Recognition task to a

Reinforcement Learning problem and developing a customizable code base that can be

adjusted and experimented on. Thus the most suitable strategy was to evaluate the learning

capability of the system with the change of the size of the data set it has been trained on.

The training corpus has 7452 sentences of length 10. The training corpus has been split

into 10 training sets. The sets included 100, 250, 500, 1000, 2000, 3000, 5000, 6000, 7452

sentences respectively. For each training set, the testing was done using the previously

mentioned test set of approximately 6000 words.

In order to measure the stability of the learning algorithm, for each training set, accuracies

of 10 iterations was taken. Figure 5.1 shows the scatter plot of the accuracies against the

iteration number.

Figure 5.1 Accuracies for each training set for 10 iterations

37

Each line represents a training dataset. And for each line, a point represents the accuracy

at each iteration.

5.5 Discussion of the results

As shown in the figure 5.1, the accuracy has been increased with respect to the size of the

data set. The accuracy for the smaller training sets were near random and the variance of

the accuracies were also high. It is clear that, as the training data set gets bigger,

accuracies improve and stabilize.

However, since the data set contains about 66955 Non-Named Entities and only about

7562 Named Entities, the accuracy yield of the learning algorithm tends to saturate around

90%. This is because, it starts to learn that the likelihood of a word being a Non Named

Entity is significantly higher than it being a Named Entity. Since this study only used

Word Embedding encoding as the input, the learner has not been able to exploit the

language dependent features such as “මයා”, “හිමි”, ”මහත්මිය”.

5.6 Discussion of the model

The present experiments were able to achieve appreciable accuracies. However, the main

goal of, mapping between the NLP task of Named Entity Recognition and the

Reinforcement Learning paradigm, has yielded a model that is able to be reused as more

data becomes available. The source code has been developed in a way such that the main

components of the system namely, the feature function, the reward function and the neural

network, can easily be updated or eve completely replaced.

38

Chapter 6 - Conclusion

6.1 Introduction

This chapter mainly elaborates the conclusion of this research. It consists of four sections,

namely; Conclusion about the research question, Conclusion about the research problem,

Limitations and Implications for further research.

6.2 Conclusion about the research questions

The first research question of this study was, how to cast Sinhala Named Entity

Recognition task as a Reinforcement Learning problem. In the literature there has been

many studies conducted in the area of NER and RL. Although, the amount of studies

conducted on studies which attempt to bridge the gap between these two areas. This study

has addressed this gap. And the study has shown that such a mapping is possible and the

approximations of Reinforcement Learning techniques can be applied to Named Entity

Recognition.

However the second research question has not been answered to the extent where it would

achieve state of the art results for Sinhala Named Entity Recognition. However, this study

has laid the groundwork for such improvement in future researches by providing a

learning algorithm and a simple and customizable implementation of the learning

algorithm.

6.3 Conclusion about the research problem

As a low resourced language, it is difficult to find good solutions using data driven

techniques for Natural Language Processing tasks for Sinhala. Named Entity Recognition

is an important aspect of Natural Language Processing, and having low resources, it is

difficult to create a very accurate Machine Learning system for this task. Given the recent

resurgence of Reinforcement Learning, it was assumed that Reinforcement Learning

39

techniques are able to learn to generalize better than other learning techniques. However,

to compare the learning capabilities of these techniques a Reinforcement Learning system

for Sinhala Named Entity Recognition was necessary.

This research problem has been addressed by this study and it has proposed a complete

Reinforcement Learning System. The implementation of this study can be customized and

used as a test bed for future researches. The source code of the implementation will be

made publicly available.

6.4 Limitations

This study has given the importance on proposing a mapping between Sinhala Named

Entity Recognition task and Reinforcement Learning. Thus, for the system, a simple

feature function, a simple neural network, and a simple reward function has been used.

Though it can be conveniently extended to classifying Named Entities into Person,

Location, and Organization, only the binary classification for NE’s and Non NE’s has

been considered.

6.5 Implications for further research

The work that has been done in this study could be further improved by introducing new

feature functions that best suit for Sinhala. And the Neural Network can be replaced to fit

the amount of training data that is available. These adjustments can be done in a trial and

error manner and improve upon the implementation that will be made publicly available.

40

References

[1] K. Chang, A. Krishnamurthy, A. Agarwal, H. Daumé III and J. Langford, "Learning to

Search Better Than Your Teacher", arXiv.org, 2019. [Online]. Available:

http://arxiv.org/abs/1502.02206. [Accessed: 07- Jan- 2019].

[2] Nancy Chinchor, Erica Brown, Lisa Ferro, and Patty Robinson, "1999 Named Entity

Recognition Task Definition," MITRE and SAIC, 1999.

[3] Lev Ratinov and Dan Roth, "Design Challenges and Misconceptions in Named Entity

Recognition," in CoNLL '09 Proceedings of the 13th Conference on Computational

Natural Language Learning, Stroudsburg, PA, 2009, pp. 147-155.

[4] GuoDong Zhou and Jian Su, "Named Entity Recognition Using an HMM-Based

Chunk Tagger," in ACL '02 Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, Stroudsburg, PA, 2002, pp. 473-480.

[5] Jenny Rose Finkel and Christopher D. Manning, "Joint Parsing and Named Entity

Recognition," in NAACL '09 Proceedings of Human Language Technologies,

Stroudsburg, Pa, 2009, pp. 326-334.

[6] Hirotaka Funayama, Tomohide Shibata, and Sadao Kurohashi, "Bottom-Up Named

Entity Recognition Using a Two-Stage Machine Learning Method," in MWE '09

Proceedings of the Workship on Multiword Expressions: Identification, Interpretation,

Disambiguation, and Applications, Stroudsburg, PA, 2009, pp. 55-62.

[7] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang, "Named Entity

Recognition Through Classifier Combination," in CONLL '03 Proceedings of the 7th

Conference on Natural Language Learning, vol. 4, Stroudsburg, PA, 2003, pp. 168-171.

[8] Hai Leong Chieu and Hwee Tou Ng, "Named Entity Recognition: A Maximum

Entropy Approach Using Global Information," in COLING '02 Proceedings of the 19th

International Conference on Computational Linguistics, vol. 1, Stroudsburg, PA, 2002, pp.

1-7.

41

[9] Andrew McCallum and Wei Li, "Early Results for Named Entity Recognition with

Conditional Random Fields, Feature Induction, and Web-Enhanced Lexicons," in CONLL

'03 Proceedings of the 7th Conference on Natural Language Learning, vol. 4, Stroudsburg,

PA, 2003, pp. 188-191.

[10] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and

Shivakumar Vaithyanathan, "Domain Adaption of Rule-Based Annotators for Named

Entity Recognition Tasks," in EMNLP '10 Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, Stroudsburg, PA, 2010, pp. 1002-

1012.

[11] Vijay Krishnan and Christopher D. Manning, "An Effective Two-Stage Model for

Exploiting Non-Local Dependencies in Named Entity Recognition," in ACL-44

Proceedings of the 21st International Conference on Computational Linguistics,

Stroudsburg, PA, 2006, pp. 1121- 1128.

[12] Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference

Held in Columbia, Maryland, November 6-8, 1995

[13] D. Bikel, R. Schwartz and R. Weischedel, Machine Learning, vol. 34, no. 13, pp.

211-231, 1999.

[14]G. Zhou and J. Su, "Named entity recognition using an HMM-based chunk tagger",

Proceedings of the 40th Annual Meeting on Association for Computational Linguistics -

ACL '02, 2001.

[15]Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). Description of the

MENE named entity system as used in MUC-7. In Proceedings of the Seventh Message

Understanding Conference (MUC-7), Fairfax, Virginia, April 29-May 1, 1998

[16] Curran and S. Clark, "Language independent NER using a maximum entropy tagger",

Proceedings of the seventh conference on Natural language learning at HLT-NAACL

2003 -, 2003.

[17] C. Cortes and V. Vapnik, "Support-vector networks", Machine Learning, vol. 20, no.

3, pp. 273-297, 1995.

42

[18] John Lafferty, Andrew McCallum, and Fernando C.N. Pereira, "Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", . June 2001.

[19] A. McCallum and W. Li, "Early results for named entity recognition with conditional

random fields, feature induction and web-enhanced lexicons", Proceedings of the seventh

conference on Natural language learning at HLT-NAACL 2003 -, 2003.

[20] X. Carreras, L. Màrquez and L. Padró, "A simple named entity extractor using

AdaBoost", Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003 -, 2003.

[21] M. Cafarella, D. Downey, S. Soderland and O. Etzioni, "KnowItNow", Proceedings

of the conference on Human Language Technology and Empirical Methods in Natural

Language Processing - HLT '05, 2005.

[22] J.K. Dahanayaka, A.R. Weerasinghe, "Named Entity Recognition for Sinhala

Language", in 2014 International Conference on Advances in ICT for Emerging Regions

(ICTer), UCSC Building Complex, No. 35, Reid Avenue, Colombo 7, Sri Lanka., 2014.

[23] S. Manamini, A. Ahamed, R. Rajapakshe, G. Reemal, S. Jayasena, G. Dias, S.

Ranathunga, "Ananya-a Named-Entity-Recognition (NER) system for Sinhala language",

Moratuwa Engineering Research Conference (MERCon), pp. 30-35, 2016, 2016.

[24] K. Udayangi and A. Weerasinghe, "A Hybrid Approach for Named Entity

Recognition."

[88] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van

den Driessche, G., Graepel, T. and Hassabis, D. (2017). Mastering the game of Go without

human knowledge. Nature, 550(7676), pp.354-359.

[25] "Structured prediction", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Structured_prediction. [Accessed: 07- Jan- 2019].

[26] A. Barto, S. Bradtke and S. Singh, "Learning to act using real-time dynamic

programming", Artificial Intelligence, vol. 72, no. 1-2, pp. 81-138, 1995. Available:

10.1016/0004-3702(94)00011-o.

43

[27] A. Barto, "Reinforcement Learning and Dynamic Programming", IFAC Proceedings

Volumes, vol. 28, no. 15, pp. 407-412, 1995. Available: 10.1016/s1474-6670(17)45266-9.

[28] Jing Peng and R. Williams, "Efficient Learning and Planning Within the Dyna

Framework", Adaptive Behavior, vol. 1, no. 4, pp. 437-454, 1993. Available:

10.1177/105971239300100403.

[29] P. Tadepalli and D. Ok, "Model-based average reward reinforcement learning",

Artificial Intelligence, vol. 100, no. 1-2, pp. 177-224, 1998. Available: 10.1016/s0004-

3702(98)00002-2.

[30] "Revenue management", En.wikipedia.org, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Revenue_management. [Accessed: 07- Jan- 2019].

[31] D. Bertsekas, J. Tsitsiklis and C. Wu, "Reinforcement Learning in POMDP’s via

Direct Gradient Ascent", Journal of Heuristics, vol. 3, no. 3, pp. 245-262, 1997.

Available: 10.1023/a:1009635226865.

[32] B. Van Roy et al., "A Neuro-Dynamic Programming Approach to Retailer Inventory

Management", 1997. [Accessed 7 January 2019].

