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Abstract 

 

Blockchain is a decentralized distributed ledger. Today blockchain technology is one of 

the most researched and adapted to modern systems due to its security advantage. The 

digital currency Bitcoin is the living proof of how much blockchain technology can 

provide reliability and trust into any system since it is not managed or governed by any 

organization or person. But when looking into such systems which are decentralized, 

there are shortcomings like scalability. 

This research proposes a consensus algorithm for private blockchains that can scale with 

increasing number of ordering nodes. Currently almost all blockchains have a threshold 

limit of how much transactions that can be processed in a given amount of time. 

Blockchains that are public and include massive amount of users in the network process 

transactions at a very slow rate. Bitcoin and Ethereum process 7 and 15 transactions per 

second respectively. VISA processes around 25000 transactions per second. Therefore, 

blockchains are still not at a level that can replace the traditional financial systems. This 

case is similar to that of private blockchains. Even though they are faster than public 

blockchains, then again the requirement for in systems that limited in the same manner 

are even greater than what current blockchain implementations can provide. 

The Canopus consensus algorithm proposed here promises scalability to increasing 

amount of ordering nodes in the network. It is tested on the Hyperledger Fabric 

framework version 1.4. A sample smart contract is instantiated for all the tests. The 

performance was evaluated for different amounts of ordering nodes. 
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Preface 

 

Through this research, a new consensus algorithm is proposed that can be adapted instead 

of Raft and Kafka currently available in Hyperledger Fabric. It is scalable as well as crash 

fault tolerance which is the requirement for many business organizations for their 

systems. The implementation of the consensus algorithm is done over the Hyperledger 

Fabric source code. The code and design of this algorithm and the performance 

evaluation is solely based on my work. The design of the algorithm is taken from the 

Canopus research paper with no implementation details provided or the code that the 

authors have used to carry out their research. The adaptation of Canopus consensus 

algorithm for private blockchains have not been proposed by any other related work. 

Evaluation model for the performance evaluation was devised by referring related 

performance evaluation studies by myself under supervision. 
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Chapter 1 - Introduction 

 

1.1 Background to the research 

 

Blockchains have made a huge impact in distributed systems and financial systems after 

the emergence of cryptocurrency such as Bitcoin. Institutions in healthcare [38], asset 

tracking [39] utilize private blockchains for the convenience of security and the trust the 

users and customers have with time developed around this technology. But as in any new 

technologies that emerge, there are plenty of room for improvement. 

One main feature of blockchain with respect to all other traditional distributed systems 

is that it is decentralized. Decentralization is the process by which the activities of an 

organization, particularly those regarding planning and decision making, are distributed 

or delegated away from a central, authoritative body. In blockchain, this is delegated to 

all the people or users of the blockchain. This is the case in a peer-to-peer network where 

files are shared among the peers without the need of a central authority. But blockchain 

is a distributed ledger. Unlike a peer-to-peer network, there is the need of confirming the 

legitimacy of each peer’s ledger and keep the ledger consistent throughout the network. 

This is where consensus comes in to play. The consensus algorithm plays a major role in 

blockchains and is the main focus of this research. 

Depending on whether a blockchain is public where any amounts users can join the 

network or whether it is private where only certain amount of users are allowed to join 

the network determined by the organizations that deploy it, there are 2 classes of 

consensus algorithms. Proof of work, proof of stake, delegated proof of stake, proof of 

elapsed time are some consensus algorithms used in public blockchains. They are very 

slow in terms of transactions that can be processed given a time frame. It does not spam 

more than 1000 transactions per second.  

On the other hand, consensus algorithms such as PBFT, SBFT, Raft, Kafka, solo that are 

used in private blockchains have more processing power. But in most scenarios, the 

scalability of these algorithms is questionable at best. The upper threshold can be the 

reason a business organization might abandon the use of blockchains because there is no 
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capability to scale. Thus it is worthwhile to explore algorithms that can overcome this 

barrier and make blockchain suitable for huge applications that scale massively. 

 

1.2 Justification for the Research 

 

A Distributed Ledger Technology (DLT) network is a collection of interconnected nodes 

where, each node maintains a copy of the same database, called the ledger. In DLT, there 

is no centralized database which is controlled or administered by a central party that is 

trusted by every participant. The process of updating the distributed ledger requires 

exchanging transaction information between nodes, achieving distributed consensus 

among nodes, followed by adding the validated transaction as a new ledger entry. 

If blockchain is the underlying database structure of the ledger, the ledger could be 

identified as a hash chain over blocks. Thus, during the last step of updating the 

distributed ledger (‘adding the validated transactions as a new ledger entry’), validated 

transactions are grouped into blocks and appended to the ledger (i.e. the blockchain).  

Distributed Ledgers have several advantages over traditional (centralized) databases. 

DLT provides a full audit trail of information history, provides accessibility to a common 

view of information to all nodes at the same time and it is impossible to make 

unauthorized changes to the distributed ledger.  

There are two main types of distributed ledgers, namely, permissionless distributed 

ledgers and permissioned distributed ledgers. A permissionless DLT network is 

accessible to anyone, i.e. all participants are public nodes, while a permissioned DLT 

network contains an authorized consortium of participants. Procedure of obtaining 

distributed consensus in an permissionless DLT network is through “Proof of Work” 

(PoW) mining, while, in a permissioned DLT network distributed consensus is obtained 

through validation by a selected subset of ‘trusted validating nodes’. 

Blockchain has gained much popularity due to its key features and advantages over 

traditional DLT technologies. However due to limitations of blockchains in terms of 

scalability, the adaptation of blockchain to many production applications is not 

considered. Here we try to address this issue by providing a solution for scalable 

blockchains which in turn increase the application domain of blockchains. 
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1.3 Research Problem & Research Questions 

 

Is a truly scalable consensus algorithm feasible within blockchain? 

 What are the bottlenecks of achieving scalable blockchains? 

 How does consensus in blockchains limit blockchain performance? 

 Is there a consensus protocol that could overcome the bottlenecks in current 

consensus in blockchains? 

 What is the performance of proposed consensus algorithm in blockchains? 

Answers to research questions will be obtained with the completion of listed research 

objectives. All questions will be focused on the scalability factor of blockchain. All 

decentralized distributed systems like blockchain faces the drawbacks of scalability 

trilemma. Scalability trilemma describes that a system can never achieve the 3 most 

important aspects of a distributed system. They are fast or scalability, decentralization 

and security. Currently either one of these properties get compromised regardless of the 

approach and consensus that is applied. Blockchain which also prominently faces this 

issue may be able to overcome the barrier if the research becomes a success. Depending 

on the findings on the literature review, the consensus algorithm will be selected or 

modified in order to provide the required features to the blockchain. Here by adopting a 

different ordering protocol, it is expected to provide the scalability and security of a close 

to ideal system. 

 

1.4 Methodology 

 

 

  

 

 

Distributed consensus algorithms were researched from the early 1990s. State machine 

replication placed the foundation for the first ever applicable distributed consensus 

algorithm supporting atomic broadcast. Consensus traditionally means the task of 

Propose an algorithm 

that will allow 

blockchain to scale 

with increasing nodes 

Implement algorithm 

in Hyperledger Fabric 

framework 

 

Analyze and Evaluate 

performance and 

security of new 

blockchain 
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reaching an agreement on one single request whereas atomic broadcast [40] provides 

agreement on a sequence of requests needed for state-machine replication. Both terms 

will imply the same thing here but the most appropriate technical term is atomic 

broadcast. When the requirement arose to build permissioned blockchains for private 

business organizations, the most referred consensus protocols to build blockchains were 

Paxos and Viewstamped Replication [25]. On this family of protocols, permissioned 

blockchains that can tolerate both crash fault and fault tolerance consensus was built. 

Practical Byzantine Fault Tolerance, Zab protocol from Zookeeper used in Apache 

Kafka, Raft algorithm used in Hyperledger Fabric all apply the above mentioned 

protocols. However, these were meant to build resiliency and guarantee safety and 

liveness to the system. Inherent nature that followed when guaranteeing these factors was 

that it did not allow any system that applies consensus algorithms to be scalable. Before 

selecting a suitable algorithm that could be scalable, it requires to do a broad study in the 

area of consensus in distributed ledger technology. The main factors that will be 

considered when selecting a suitable consensus algorithm are that it should be at least 

crash fault tolerance and byzantine fault tolerance to some extent and it should provide a 

solution to the scalability of distributed systems with consensus. 

The selected algorithm then will be implemented in Hyperledger Fabric. The main reason 

for selecting Fabric is the capability of pluggable consensus. The total ordering of the 

requests is done separately from the execution and validation phases. This modular 

architecture has attracted many researchers to test out various consensus mechanisms 

using Hyperledger Fabric like in [30]. This research will be similar to such an approach 

and the Fabric platform provides the best features to work on it. Also this is made possible 

because Fabric is open source. A thorough walkthrough of the code especially of the 

consensus module should be carried out. Then adopting the techniques used in building 

nodes and connecting with peers and clients, develop the Canopus protocol and have this 

consensus set up instead.   

Finally, the implemented blockchain is evaluated on the amount of transactions which 

can reach consensus for a given period of time by having varied amount of orderer nodes. 

Organizations that grow will always require more performance in their systems to 

accommodate the increasing demand. Therefore, when such a situation rise and they 

decide to scale their blockchain system, it should never slow down the system. Otherwise 
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they would tend to look for alternate solutions. Providing a suitable blockchain 

framework to those businesses is the contribution through this research. 

 

1.5 Outline of the Dissertation 

 

The dissertation will be structured as follows. Chapter two will present a detailed review 

regarding the history and the evolution of consensus algorithms used in distributed 

systems as well as details regarding the blockchain framework that will be used for this 

research to implement the proposed consensus algorithm. Chapter three will represent 

the design of the proposed algorithm and how it will accommodate within the selected 

blockchain framework. Chapter four explains the implementation details of the 

blockchain framework and the consensus algorithm. Chapter five will include the 

evaluation of the of the implemented blockchain. The final chapter provides a conclusion 

for the thesis with prospects for future work. 

 

1.6 Delimitations of Scope 

 

In this research project, only the consensus of the blockchain is considered. No any other 

optimizations will be attempted. With the performance evaluation, crash fault tolerance 

will also be tested in the research project as it is necessary to evaluate whether the 

blockchain is compromised by the proposed consensus algorithm.  
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Chapter 2 - Literature Review 

 

2.1 Introduction 

 

This chapter will provide a detailed review of blockchains, types of blockchains, 

scalability factors of blockchains, bottlenecks, consensus algorithms used in blockchains, 

and consensus not adapted to blockchains. In the review, the first 3 research objectives 

are addressed and answered.  

 

2.2 Blockchain 

 

A distributed ledger is a database that is shared and synchronized across multiple sites, 

institutions or geographies. The main advantage in a security point of view of having 

such a database spread across multiple nodes makes it difficult for a cyber-attack to 

damage all the replicated records [1]. A blockchain is such a distributed ledger which the 

nodes that belong to the network maintain and update the records without any central 

authority [2]. Blockchains not only maintain such a ledger but they are capable of 

executing smart contracts over their network. Smart contracts are computer programs 

that can be consistently executed by a network of mutually distrusting nodes, without the 

intervention of any authority [3]. This nature of smart contracts creates their resilience to 

tampering and makes it favorable for many use cases such as executing financial 

transactions and transferring confidential documents. Therefore, blockchain is a service 

that maintains a state which is the distributed ledger and clients can invoke functions 

within the network that can update the overall state and provide a response [4] through 

smart contracts. All the nodes in the service have some stake for when the state is 

updated. On the assumption that no node is trustworthy in the network, there are certain 

protocols the blockchain implements in order to achieve a unanimous decision on the 

final updated state of the network. 



7 

 

2.3 Types of blockchains 

 

Blockchain platforms can be mainly classified into 2 main types. 

1. Permissionless blockchain 

2. Permissioned blockchain 

Permissionless blockchains as the name implies are open systems which are publicly 

available [5]. Any node which represents a certain user of the blockchain can invoke 

transactions to view and update the state as well as participate in the process of advancing 

and validating the transactions the network receives. Here the number of nodes can vary 

and extend to very large numbers. Since this is publicly accessible, most nodes are 

anonymous and must be assumed as untrustworthy [5]. The first ever permissionless 

blockchain, Bitcoin is a cryptocurrency that was first released in 2009[6]. The whitepaper 

[6] was published in October 2008 by Satashi Nakamoto who still remains unknown. 

Bitcoin is the first digital cash that was based on a truly decentralized system [7]. But 

Bitcoin did not allow the use of its technology beyond cryptocurrency. Ethereum is the 

first project that built a generalized technology where an end-developer can create their 

own smart contract and deploy over the blockchain network [8]. Besides Bitcoin and 

Ethereum, there are many more alternative platforms that have been developed 

throughout the years which implement the cryptocurrencies or smart contracts [9, 10, 11, 

12]. The number of cryptocurrencies hosted on https://coinmarketcap.com/ have 

increased from 0 to over 5000 since 2012 which show the massive popularity and 

investment that is going into blockchain technology. 

A permissioned blockchain in contrast to permissionless blockchain is operated by a 

known set of organizations or entities which is sometimes called a consortium blockchain 

where the members of it who become the stakeholders of the business operate the 

network [2]. There are separate systems within these types of blockchains that identify 

the nodes that can control and update the state of the network. A private blockchain can 

be considered a network maintained by a single body of authority [2]. Generally, the 

number of nodes in permissioned blockchains are small compared to permissionless 

blockchains. Similar in case with permissionless blockchains, there are a large number 

of permissioned blockchains that are available and provide similar features with few 

differences [13, 14, 15, 16, 17]. 
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Table 2.1- Differences and similarities of public and private blockchains 

Public Blockchain Permissioned Blockchain 

Function as an append-only ledger Function as an append-only ledger 

Each network node in both these 

blockchains has a complete replica of the 

ledger 

Each network node in both these 

blockchains has a complete replica of the 

ledger 

Validity of a record is verified Validity of a record is verified(but the 

mechanism maybe different) 

Rely on numerous users to authenticate 

edits 

Rely on numerous users to authenticate 

edits 

Anyone can take part by verifying and 

adding data to the blockchain 

Only authorized entities can participate 

and control the network 

Completely decentralized Somewhat centralized around the entities 

that own the blockchain 

Throughput is lesser Throughput is higher 

Not scalable Scalable to a certain limit 

Consume more energy (in terms of 

computation power) 

Consume less energy 

No one knows who each validator is and 

this increases the risk of potential 

collusion 

No chance of minor collision 

 

2.4 Blockchain Scalability 

 

According to Wikipedia, scalability is a property of the system to handle increasing 

amount of workload by certain techniques. On a very abstract level, there are mainly 2 

ways to scale a system. The first is vertical scaling where the system performance is 

increased by installing more powerful hardware (more RAM, storage, etc.). The other is 

horizontal scaling by adding more machines into the system and dividing the workload 

among the connected machines. This is the basic notion of distributed systems. 

Therefore, it concerns blockchains as well. 



9 

 

Bitcoin, which was the first ever blockchain platform that became publicly available, 

showed the world its ability to carry out digital transactions secure and in a transparent 

manner without any authority governing over the network [18]. Currently according to 

coindesk.com, the value of a single Bitcoin is approximately 9400 US dollars and value 

of a single Ether is over 180 US dollars. These values are so high due to the high demand 

of these currencies. The increasing adoption of cryptocurrencies has raised many 

concerns regarding scalability and the cryptocurrency community and researchers have 

been working on many techniques to improve scalability [19]. Looking at some statistics, 

Bitcoin takes 10 minutes or longer to confirm transactions, that is a node becomes able 

to create a block and transfer this block throughout the network to more than 50% of the 

users which achieves a maximum throughput of 7 transactions per second. In contrast, 

looking at a mainstream payment service like Visa or Mastercard credit, it confirms 

transactions within seconds and reach maximum throughput of 56,000 transactions per 

second [19]. If we were to move to a complete decentralized system where no governing 

body as Visa will maintain the payment service, the blockchain will require to match 

these throughput numbers for it to be considered a viable alternative. Therefore, the major 

drawback can be seen in blockchains which is the lack of scalability. 

 

 

There are mainly 2 types of scaling when concerned with blockchains. 

1. Offchain scaling 

2. Onchain scaling 
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Offchain scaling is where a solution is developed in order for small and frequent 

transactions take place over low-tier blockchain instances, executed parallel with the 

main blockchain. An example of offchain scaling is bitcoin lightning protocol [18]. The 

protocol sets up a network which effectively creates a layer on top of bitcoin, enabling 

fast and cheap transactions which can settle to the bitcoin blockchain. This network is 

responsible for creating channels between users or mainly between wallets and the 2 

parties can transfer any amount of Bitcoin without touching the information on the 

blockchain. This method is comparatively less secure and therefore used largely for small 

or micro transactions which are lower risks to the concerned parties. Therefore, the main 

concept in offchain scaling is taking the workload out of the main blockchain and 

executing in a different network of nodes without compromising security.  

Directly modifying the core blockchain design to increase the performance and 

throughput is called onchain scaling [20]. Unlike in offchain, where the main blockchain 

design remains unchanged, onchain scaling tends to change a certain core mechanism to 

increase performance that might change the whole architecture of the blockchain. Some 

techniques derive a whole new blockchain which is deployed separately. A good example 

here is Bitcoin-NG [21]. It takes the same trust model as Bitcoin but decouples leader 

election which is achieved through proof-of-work [6] from transaction serialization. A 

leader in the Bitcoin-NG network appended multiple transactions to the blockchain for 

the duration of the epoch which ends when a new leader is elected in contrast to only 

capable of appending a single block like in Bitcoin. Onchain scaling can provide massive 

benefits when compared to offchain scaling but it is the most difficult task out of the 2 

types. 

 

2.5 Scalability Metrics 

 

There are mainly 2 metrics that directly relate to blockchain scalability. 

1. Transaction throughput 

2. Latency 

Transaction throughput is the maximum rate at which the blockchain can execute and 

validate transactions i.e. transactions that can be processed per second [20]. Latency is 
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the time it takes to confirm that a transaction has been verified and appended to the 

blockchain [20]. Taking a look at Bitcoin, transaction throughput is a relation between 

the block size and the inter-block interval. The block size is the maximum allowed size 

of a block. The inter-block interval is the amount of time given to receive and append 

transactions to the block. With a block size of 1 Megabyte and a block interval of 10 

minutes, the transaction throughput is around 7 transactions per second [20]. Ethereum 

due to the gas limit imposed on each block which is around 10,000,000 gas, it gains a 

maximum throughput of 20 transactions per second. Considering a permissioned 

blockchain like Hyperledger Fabric, the transaction throughput with a block size of 2 

Megabytes and block interval of 500ms is an average between 3000-3500 transactions 

per second [13]. The latencies of each of these cases is the same as the inter-block interval 

but might differ in some other blockchains. 

 

2.6 Scalability Bottlenecks 

 

According to [19] the blockchain architecture can be decomposed to 5 abstract layers 

called planes that directly or indirectly affect the scalability of it. How each layer will 

contribute to scalability and what are the bottlenecks in the current systems in each layer 

will be discussed. Other than these 5 planes, there is another technique to increase the 

performance of the blockchain called parameter tuning [19]. Here we adjust certain 

values that can be easily updated in the blockchain in order to improve performance. The 

maximum block size and the inter-block interval are the 2 main parameters that can be 

fine-tuned. Since there is no design change or change in execution of processing 

transactions, it only provides very limited performance boost and it is not sufficient for 

the scaling requirement we are trying to accomplish [19]. 

The 5 main planes of a blockchain system are: 

1. Network Plane 

2. Consensus Plane 

3. Storage Plane 

4. View Plane 

5. Side Plane 
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2.7 Network Plane 

 

The network plane describes how the transaction messages get propagated among the 

nodes in the blockchain. In permissionless blockchains like Bitcoin, the messages are 

broadcasted to every other node in the network [6]. This is not the case in permissioned 

blockchains. Considering Hyperledger Fabric, the transaction messages are sent to peer 

nodes, then upon receiving their endorsements it is sent to orderer nodes. After consensus 

by the ordering nodes, the result block is sent back to peers to validate and update the 

ledger [13]. Decreasing the network latency and traffic can lead to better performance of 

transaction execution in the blockchain. 

 

2.8 Consensus Plane 

 

The main function of the consensus plane is to globally decide on the order of 

transactions to be processed in the blockchain. This plane ingests messages arriving from 

the network plane and sends the ordered messages to update the system ledger [19]. For 

example, in Bitcoin, the consensus plane is responsible for mining blocks and integrating 

it to the blockchain ledger. In this research we will be focusing on the consensus plane, 

the various types of consensus protocols available, their limitations and how to improve 

the consensus mechanism thus improving scalability. 

 

2.9 Storage Plane 

 

The storage plane is the blockchain database. It contains the blockchain ledger and other 

states that are required to be stored. This plane is also responsible for writing operations 

that modify the ledger and respond to read requests from other entities in the system like 

peer nodes [19]. Bitcoins’ storage includes the whole entire ledger which takes around 4 

days to process when a read operation is executed. Having to deal with the entire ledger 

is inefficient and unnecessary in most cases. Solutions like sharding where only certain 

parts of the ledger are stored by a single node are being researched [19]. In the case of 
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Hyperledger Fabric, only the peer nodes save the ledger of the blockchain and the ledger 

can be queried through smart contracts [13]. 

 

2.10 View Plane 

 

A state of a blockchain is the execution of the whole transaction history in the ledger. If 

a read operation or write operation needs to be executed, this state should always be 

calculated. This is a completely unnecessary operation and it is overcooked using the 

view plane. A view can be considered as a data structure derived from the full ledger 

where the state is calculated by processing all the transactions in the ledger [19]. This 

view allows any entity to access the state without reading any part of the ledger which is 

a key performance requirement in blockchains today. When Bitcoin started out, it did not 

implement any sort of view. Later a view called unspent transaction outputs(UTXO) was 

implemented that represented the state of the Bitcoin blockchain. But for a newcomer to 

the network, the node will require downloading the whole ledger and build the UTXO 

which takes around 4 days [19]. Ethereum, Fabric and other blockchains that support 

smart contracts can define and request the state of the ledger. 

 

2.11 Side Plane 

 

The side plane represents the off-chain functionalities that can be implemented over a 

blockchain which provide off-chain scalability. As discussed in chapter 2.3, some 

workloads can be executed over a separate network to increase the performance of the 

underlying blockchain. The best example here is the lightning network for Bitcoin [18]. 

 

2.12 Blockchain Trilemma 

 

Thus, the ‘Scalability Trilemma’ is defined by the founder of Ethereum, Vitalik Buterin. 

According to Buterin, the trilemma is developing a blockchain technology that offers 
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security, decentralization, and scalability without compromising any one of them. It is 

known that currently, blockchain technology can only offer two of the three variables 

[22]. Bitcoin is the example that achieves decentralization and security. 

 

2.13 Consensus 

 

Consensus in literature means arriving at a general agreement for a single request. The 

technical term for arriving at an agreement among a set of nodes on a sequence of 

requests needed for state-machine replication is called atomic broadcast [2]. Due to the 

close resemblance among the two terms, the term consensus is used in the context of 

blockchains to mean atomic broadcast. State-machine replication is the concept or 

algorithm to maintain the state of machines when they are replicated for reasons such as 

scalability and distributed computing. According to [23] there are mainly 2 tasks for 

reaching and maintaining consensus among the distributed nodes. 

1. A deterministic state machine that implements the logic to be replicated. 

2. A consensus protocol to disseminate requests among the nodes such that each 

node executes the same sequence of requests on its instance of the service. 

Consensus in blockchains was first introduced by Bitcoin. In Bitcoin’s proof of work [6] 

consensus protocol, the consensus on one shared ledger is based on voting among the 

nodes through their CPU power. The nodes work on extending the longest chain and 

reject invalid blocks which are the shorter branches of the chain. This is called the long 

chain rule [6]. With the increase of popularity of Bitcoin, existing consensus and 

replication mechanisms received renewed attention and research were done to see how 

they can contribute for more performance and scalability in blockchain.  

There are 2 types of consensus algorithms according to the type of tolerance they provide 

in a network where crashing of nodes and malicious nodes may or may not be present. 
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2.14 Crash Tolerant Consensus 

 

Crash tolerant consensus as the term means is consensus algorithms that are tolerant to 

crashes among the nodes in the network. There is a limit to the amount of nodes that are 

allowed to be crashed or offline during the consensus process. One of the most prominent 

ways to implement consensus in distributed systems containing ‘n’ nodes and have a 

probability of ‘n/2’ nodes crashing as the worst case, is the family of protocols known as 

Paxos [24] and Viewstamped Replication(VSR) [25]. The core mechanisms in these 

protocols are very similar and are implemented in many cloud services and distributed 

systems today [2]. Some prominent implementations of protocols under this family are 

Zab protocol inside ZooKeeper [26, 27] which is used in a popular stream processor 

service Apache Kafka and Raft [28] protocol which is the latest addition of consensus 

protocols which was developed in the aim of simplifying the process represented in 

Paxos. 

The consensus process in this family of protocols progress through a sequence of views 

or epochs where each epoch requires a leader node who will overlook the process. If the 

leader crashes, a new leader is appointed through a voting system and moves to the next 

epoch. During a single epoch, the leader will broadcast the messages among the nodes in 

the network in a single agreed sequence maintaining total order among all the nodes in 

the network [2]. 

 

2.14.1 Paxos 

 

Paxos [24] is the most prominent and well known due to its practicality and easy 

implementation. Paxos is used in many distributed systems like cloud computing, 

databases and even as a base framework in crash tolerant consensus in blockchains. 

Looking into consensus algorithm at a fundamental level, it ensures that a single one 

among the proposed values is chosen. Paxos guarantees that one value is chosen and 

operates correctly in a non-byzantine fault environment. Paxos protocol mainly consists 

of 3 agents. They are proposers, acceptors, and learners. When applied to a specific 

system, the names of the agents change but their function remain the same. [24] 
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approaches the solution step by step clearly explaining the reason behind the chosen 

architecture. Firstly, the choice of multiple acceptor agents instead of a single acceptor 

is because in case the single acceptor fails, progress is halted. A value is considered 

chosen when large enough set of acceptors have accepted it. Since it is required to choose 

a value even if only one value is proposed, an acceptor must accept the first proposal that 

it receives. Acceptor must be allowed to accept more than one proposal since there might 

not be a majority of acceptors choosing one value. Each value or also known as the 

proposal is tracked by assigning a number to each of them. If a proposal is chosen, then 

every higher numbered proposal issued by any proposer should have that chosen value. 

Whenever a proposal with value v and number n is issued, the majority of acceptors can 

be only in 2 states. Either no acceptor has accepted any proposal numbered less than n or 

v is the value of the highest numbered proposal among all proposals numbered less than 

n accepted by the majority of acceptors. The proposer must learn of the chosen value of 

the above rule is to stay intact. This is accomplished by the acceptor making a contract 

with the proposer to never accept any proposal that is lower than the proposed value. 

Therefore, before proposing a value, the proposer will send a prepare request that will 

create a promise never again to accept a proposal numbered less than n and send the 

proposal with the highest number less than n that it has accepted, if any. The learners get 

notified of the chosen value by receiving responses from acceptors regarding the 

accepted values. But the number of responses is equal to the product of the number of 

acceptors and the number of learners. To guarantee progress, a distinguished proposer 

must be selected as the only one to try issuing proposals. This is the overall flow of Paxos 

and has proven in many applications to be highly reliable and efficient. 

 

2.14.2 Kafka / ZooKeeper 

 

ZooKeeper [26] is a centralized service for maintaining configuration information, 

naming, providing distributed synchronization, and providing group services. ZooKeeper 

used the Zab [27] protocol which is a prominent member of the family of Paxos. The 

ZAB protocol ensures that the Zookeeper replication is done in order and is also 

responsible for the election of master/leader nodes and the restoration of any failed nodes. 

Underlying mechanism is similar to Paxos, Zab is a crash-recovery atomic broadcast 
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algorithm which is responsible for total order maintenance of messages and dependable 

delivery to ZooKeeper instances. 

 

2.14.3 Raft 

 

Raft [28] is the latest addition to protocols belonging to the family of Paxos. The outcome 

and the performance is similar to Paxos but the underlying structure is different to Paxos. 

One of the main key reasons to implement Raft is to increase understandability, 

decomposing the functions of leader election, message broadcast, log replication, view 

change and safety property. The key differences of Raft compared to other similar 

algorithms are: 

 Strong leader election. Log entries flow from leader to other servers. It simplifies 

management of replicated logs and makes Raft easier to grasp. 

 Raft uses randomized timers to elect leaders for each epoch. This feature will 

extend the heartbeat mechanism of similar consensus algorithms. 

 A joint consensus approach is used for changing memberships for the servers in 

the cluster. It allows clusters to operate normally during configuration changes.  

 

2.14.4 Quorum Chain 

 

There are 3 types of nodes which participate in Quorum chain consensus [41]. The voter 

node is responsible for voting on the validity of the blocks. There are many voters at a 

particular time and the block with the highest number of votes passing the threshold value 

get appended to the blockchain. Block creation is allowed only by the maker node. They 

create the block and set their signature in the extra-data field of the block. The nodes 

which are neither maker or voter are called observer nodes. Observer does not take part 

in block making nor voting but instead will simply receive and validate blocks. 
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2.15 Byzantine Consensus 

 

A byzantine node is a node which is subverted from its goal to achieve consensus in the 

network by an adversary and to act maliciously disrupting the normal process. In an 

environment where the amount of participant nodes is unknown and the access to the 

network is public (similar to public blockchain), the prominent protocols are proof-of-

work, proof of stake, delegated proof of stake, proof of elapsed time and there are many 

others. In the case of a network where the nodes require a membership to access, it is 

possible to adhere to different family of protocols called practical byzantine fault 

tolerance (PBFT) [29]. It is an extension of Paxos/VSR and progresses through a 

sequence of epochs with an appointed leader. PBFT protocol tolerates one third of nodes 

acting maliciously and if this amount is exceeded, consensus is halted. Currently the only 

other variant of PBFT is BFT-SMaRT (https://github.com/bft-smart/library) which was 

actually developed before the interest in blockchains surged and have so far been 

experimented but seems to not yet used in production systems of permissioned 

blockchains [30]. 

 

2.15.1 Proof of Work 

 

Proof-of-work is the first ever consensus algorithm that was adapted for permissionless 

blockchains introduced by Bitcoin [6]. In a network that adapts proof-of-work consensus, 

a set of nodes called miners compete each other to complete transactions, create a block 

and get rewarded. All participants of the network receive tokens which include 

transaction details. The miners need to validate theses tokens and arrange them to a block. 

With this set of tokens, the miners start mining which is the process of solving a 

mathematical problem that can only be solved using brute force. Mainly idea is to create 

a hash with some specific property such as a hash with 5 zeros in the most significant 

digits of the hash value. The hash is created with values of the tokens, the hash number 

of the previous block, a nonce and some other minor values. When a miner succeeds in 

creating this hash value, his block gets appended to the chain and the block is broadcasted 
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to peer nodes. So far many cryptocurrency use proof-of-work as the consensus algorithm 

in their blockchain which include Bitcoin, Ethereum, Litecoin and many others. 

 

2.15.2 Proof of Stake 

 

Proof-of-stake [42] is a concept based on which a user can mine or validate a block 

according to how many cryptocurrency coins the user owns. This is designed as an 

alternative to proof-of-work which requires huge amount of computation energy for 

mining. While many features of proof-of-stake is similar to proof-of-work the main 

difference is that the mining power to the proportions of the coins held by the user instead 

of the computing power the user has. 

 

2.15.3 Delegated Proof of Stake (DPoS) 

 

An extension of proof-of-stake consensus algorithm. There are 2 steps in the process of 

achieving consensus in DPoS. First in electing a group of block creators whom are 

stakeholders of the network. The stakeholders are elected since they lose the most in case 

the network does not function as wanted. The next step is scheduled production where 

the block creator is allowed to create a block only during the provided time slot for that 

node.  

 

2.15.4 Practical Byzantine Fault Tolerance (PBFT) 

 

PBFT is an algorithm discovered in the year 1999 [29] more than a decade before 

blockchain was discovered. It received renewed attention with the popularity of 

blockchains. PBFT is mostly adapted in permissioned blockchains because the 

performance is too slow for widespread networks such as permissionless blockchains. 

The PBFT algorithm can be described as follows. 
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 A client sends a request to the primary server. 

 The primary server duplicates this request and sends to its backup servers. 

 The backup replicas execute the request and sent a reply back to the client. 

 The client waits for ‘f+1’ requests from different replicas where f is the number 

of faulty nodes that can be tolerated by the network. 

PBFT provides byzantine tolerance in asynchronous network environments such as the 

internet. Now there are many adaptations of PBFT such as BFT-SMaRT that are better 

performers. 

 

2.15.5 BFT-SMaRT 

 

BFT-SMaRT [43] is a byzantine tolerant consensus algorithm that are used in 

blockchains such as Symbiont and R3 Corda [2]. It implements a modular state machine 

replication protocol on top of PBFT. Here the client sends requests to all replicas which 

trigger the start of consensus. The leader of the consensus instance will propose a batch 

of requests to be decided by sending the batch to all replicas. The replicas validate 

whether the sender is the leader and whether the proposal is valid. If all is validated, each 

replica sends each other a message which include the cryptographic hash of the proposed 

batch. If a replica receives the required threshold of hash messages, the replica may 

accept the batch and sends accept message to all other replicas. 
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2.16 Overview of Blockchain Scalability 

 

2.16.1 Permissionless Blockchains 

 

As discussed in chapter 2.8, the consensus plane is one of the layers in blockchain that 

limits scalability. Let’s consider consensus protocols that are used in permissionless 

blockchains today: 

 Using the proof of work consensus, the transaction throughput of Bitcoin is 

around 7 trans/sec [18]. This value is achieved by setting 1MB block size and a 

10-minute inter-block interval. This also means a client requires to wait an 

average of 10 minutes in order to verify that the transaction is included in the 

blockchain [20]. There is also the issue of energy efficiency where a large amount 

of CPU power is required to mine the blockchain. Bitcoin offers security and 

decentralization and thus lacks scalability according to the blockchain trilemma.  

 The Etash consensus protocol used in Ethereum 1.0 [31] uses a different approach 

but similar to proof of work. Instead of dictating the block creator on raw 

computation performance, this algorithm is based on how fast data in a machine 

is moved around in memory. This is called “memory hardness”. With this new 

protocol, Ethereum was able to achieve a throughput of 20 trans/sec. This is due 

to factors such as limiting the amount of gas that can be spent on each block [18]. 

Again the scalability has been prevented. 

Although there are a number of other protocols that have been around, there is no 

evidence of these protocols being successful in production environments and there is no 

material or research on their performance and security when adapted to blockchain. 

However due to the nature of this research and the time frame to implement and test a 

consensus protocol for a permissionless blockchain is quite large, we will not focus on 

this area. 
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2.16.2 Permissioned Blockchains 

 

Discussed in chapter 2.13, we can see that both crash tolerant and byzantine tolerant 

consensus are used in permissioned blockchains. But since permissioned blockchains 

allow only authorized nodes to participate in the network and the fact that many 

applications favor speed over security such as in the case in Litecoin [32], this research 

will be focused on improving blockchains with crash tolerance. We can further validate 

this scenario with the case of Hyperledger Fabric. Before Raft, the two consensus 

protocols that were natively supported by Fabric were Kafka and PBFT. In [33] we can 

see an evaluation carried out using PBFT. But now it is discontinued and the supported 

consensus models are Kafka and Raft. Even though neither support byzantine tolerance, 

it can be observed that the demand in having byzantine tolerance in permissioned 

blockchains is low. It is also the case that consensus that tolerate byzantine faults are 

considerably slower than consensus that tolerate only crash faults.  

There are mainly two concepts of consensus approaches among the crash fault tolerant 

consensus. They are voting based or Paxos based. Protocols such as Kafka and Raft are 

Paxos based while protocols like QuorumChain are voting based. There are some 

drawbacks in the basic structure of these protocols [34]. 

 A single node is responsible for creating the set of transactions that will be 

appended to the chain. In the case of Paxos or Raft, the leader appointed in each 

epoch is responsible for collecting transactions from all its peer nodes, and 

broadcasts the ordered set of transactions back to its peers. In voting based, the 

block creator will collect all the votes until a vote threshold is reached and then 

propagate the block to peer nodes. It can be seen there is a central coordinator 

that is part of the main process of creating a block where this node carries the 

computation load in arriving to consensus. The scalability can be improved by 

distributing this task in some way among other nodes participating in the network. 

 Another issue that arises of having a central coordinator is network traffic. If there 

is a large number of nodes in the network, all the transactions received by each 

node needs to reach the leader node. This can create large traffic in the network 

connecting the leader, which can bring down performance.  
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This research will address these issues and propose a consensus protocol that can 

overcome these bottlenecks and help scale blockchain and improve performance. 

Table 2.2 - Comparison of features of several permissioned DLT platforms 

Blockchain 

Platform 

Primary 

Application 

Source Code 

Language 

Open Source / 

Proprietary 

Hyperledger Generic  Golang Open Source 

Corda Financial  Java Open Source 

Ripple  Financial  C++ Open Source 

Symbiont Financial Domain specific Open Source 

Tendermint Generic Golang Open Source 

Kadena Business ? Proprietary 

MultiChain Financial C++ Open Source 

HydraChain Extension of 

Ethereum for 

permissioned 

blockchains 

Python Proprietary 

Quorum Financial Solidity Proprietary 

  

 

2.17 Consensus Protocols Not Yet Adapted to Blockchains 

 

[2] provides an analysis on several popular permissioned blockchains on their consensus. 

Among them Raft and BFT-SMaRT are the most popular for crash tolerant consensus 

and byzantine tolerant consensus respectively. Both protocols were adapted from the 

Paxos family of protocols. There are other consensus algorithms that have not yet been 

adapted to blockchains and could have the means to overcome the drawbacks discussed 

in chapter 2.15.2. Out of them, the Canopus consensus protocol seems to be the most 

promising. 
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2.18 Canopus 

 

Canopus [34] is a parallel, network-aware, and decentralized consensus protocol 

designed for large-scale deployments. It has a few key differences compared to the 

traditional consensus algorithms used in permissioned blockchains. Paxos which is the 

widely used consensus protocol elect a centralized coordinator to enforce consensus on 

client request or proposal. The coordinator or leader is re-elected if it fails or crashes. 

Although many variants of Paxos have been developed, they have not improved the 

scalability of the protocol. Canopus does not broadcast read requests and manage total 

ordering by introducing minor delays to them. It is a network-aware protocol that 

organizes the nodes in the form of a wide-area overlay tree. Nodes located in the same 

rack form a virtual group, which can use any reliable broadcast or stronger protocol to 

reach agreement. Another way to increase performance is through exploiting network 

hardware. Canopus supports such optimizations that can improve throughput 

significantly. 

There are a few design assumptions in the Canopus protocol. This research will not focus 

on these due to the fact of unavailable hardware resources and limited time frame. Some 

assumptions are rare full rack failures, rare network partitions between ToR switches, 

client coordinator communication is similar to other consensus algorithms where client 

sends request only to one node in the network and tolerance to crash stop failures only. 

Canopus detects node failures by using a method similar to the heartbeat mechanism in 

Raft.  

One of the main reasons to select Canopus algorithm as the most suitable to improve the 

throughput of a blockchain network is its performance. The numbers show the 

improvement in performance is massive with over 3 million transactions per second for 

20% write requests while over 1.5 million trans/sec for 50% write requests [34]. With 

this understanding it would seem that Canopus is a potential candidate for obtaining a 

scalable blockchain. 

These are the key advantages of Canopus over Paxos based consensus protocols. 

 Canopus is decentralized. Each node receiving transactions will order and 

broadcast to other node groups in the network. Does not rely on a central 
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coordinator which improves scalability when more nodes participate in the 

network. 

 Super leaf groups and LOT overlay structure provide low network latency and 

prevent unnecessary traffic generated in the network by sending the ordered 

messages payload to a single node in the group and not broadcasting to all nodes 

in the network (Discussed further in chapter 3).  

 High performance and scalable consensus protocol than Paxos. 

 

2.19 Integrate Canopus to a Blockchain 

 

In order to test the hypothesis that Canopus consensus protocol is able to scale blockchain 

performance, we will need to build a blockchain framework and integrate the consensus 

protocol. However, many permissioned blockchains support “pluggable consensus” 

which implies that the consensus algorithm can be changed easily and the blockchain 

framework supports any consensus protocol due to its modular architecture. Some 

frameworks that support pluggable consensus are R3 Corda and Hyperledger Fabric 

which are among the popular frameworks. For this research, Fabric will be the blockchain 

framework of choice due to its popularity and large developer community and support. 

 

2.20 Hyperledger Fabric 

 

Hyperledger project was initiated in 2015 by different companies interested in 

blockchain technology who wanted to pool their resources and create an open-source 

blockchain technology. According to [35], stakeholders of Hyperledger project believe 

that the future of blockchain will involve modular and open-source platforms that are 

easy to use. This fact is further confirmed by the current tendency of enterprises who 

choose open source platforms to reduce risks. Instead of reinventing the wheel, they 

develop industry-specific enhancements on top of a proven platform. Thus enterprises 

choose to “stand on the shoulders” of others who pioneered work and shared it with the 

world, rather than developing an entire infrastructure and engineer all of its solutions. 



26 

 

Hyperledger provides a greenhouse structure that incubates new ideas, supports a wide 

variety of frameworks and tools while consuming only a few essential resources.  

Different scenarios where blockchain solutions have compelling use cases, have different 

requirements for confirmation times, decentralization, trust and other issues. Each issue 

represents a potential “optimization point” for the technology. Hence choice of the most 

suitable framework or tool for a given scenario is of key importance.  

In order to address the diverse frameworks and tools, all Hyperledger projects follow the 

same design philosophy. Therefore, all Hyperledger projects are modular, highly secure, 

interoperable, cryptocurrency-agnostic and complete with APIs. Hyperledger 

frameworks are designed to be modular and extensible with reusable building blocks. 

Therefore, individual components could be changed without affecting the rest of the 

system. Based on different requirements, functional modules for communication, 

consensus, smart contracts etc. could be combined to build well-suited distributed ledger 

solutions. Interoperability with different blockchain networks is provided by ‘complete 

with APIs’ feature. According to [35], Hyperledger will never issue any cryptocurrency 

since their main aim is to facilitate development of generic applications. Out of the main 

business blockchain components of Hyperledger architecture mentioned in [36], 

obtaining an understanding of consensus layer is important for this research. 

Hyperledger Fabric can be considered the most well-known blockchain platform in 

Hyperledger supported by IBM. This framework is chosen in order to test and evaluate 

the proposed consensus algorithm due to several supporting factors. Hyperledger Fabric 

is an open source project with a good community to provide support. The second 

contributing point is the ability to plug different consensus protocols to the ordering 

service of Fabric. Many other research projects too have evaluated other consensus 

algorithms using this platform. 

 

2.21 Hyperledger Fabric Architecture 

 

Hyperledger Fabric is one of the first ever extensible blockchain systems for running 

distributed applications. The support for modular consensus protocol was the attractive 

feature to choose this platform to test Canopus on blockchains. Another reason too would 
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be the large open source community that has accumulated throughout the years that can 

ease the development process. Fabric is developed using Golang, a programming 

language developed by Google. The source code can be downloaded through this link 

[37]. 

Currently Hyperledger Fabric has support for three consensus protocols natively. Table 

2.1 provides details of these protocols. Each has its own usage and limitations. 

Comparing them with Canopus, the main components can be considered the leaf-only-

tree overlay which will include the super leaves and at least one representative for each 

leaf. At least one node will be required to be running on each leaf or else the consensus 

process will be halted. Therefore, this provides crash fault tolerance to the ordering 

service. This will be highly scalable and can be used in production environments but it 

will be complicated to implement and deploy without knowledge of the Canopus 

consensus protocol. 

There are three main phases in Hyperledger Fabric in order to complete the creation of a 

single block [13]. They are execute, order and validate phases. 

 

2.21.1 Execution Phase 

 

A smart contract in Hyperledger Fabric is called chaincode, which is a program code that 

implements the application logic and runs during the execution phase. Clients would sign 

and send a transaction proposal to one or more endorsers for execution. Endorsers are set 

through an endorsement policy when deploying the blockchain. An endorsers role is to 

simulate the transaction proposal received by executing the operation on the specified 

chaincode which has been installed on the blockchain. The chaincode runs in a Docker 

container, isolated from the main endorser process. As the result of the simulation, this 

will generate a read and write set consisting of the state updates that would go through if 

the transaction is validated and committed. This set is sent back to the client in a proposal 

response. When the client has collected enough endorsements on a proposal, then it 

submits to the ordering service. 
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Table 2.3 Comparison of pluggable ordering services for Hyperledger Fabric 

  Solo Kafka Raft 

Components 
Single ordering 

service, no 

replication. 

Decentralized, 

replicated ordering 

service. 

 
Contains Apache Kafka 

Cluster. 

Decentralized, replicated 

ordering service. 

 
Ordering cluster contain 

minimum of 3 nodes. 

Usage 
For testing only For production where 

nodes are trustworthy 
For production where 

nodes are trustworthy 

Advantages 
Easy to deploy 

 
Require less 

resources 

Reliable 

 
Scalable 

Tolerance for CFT. 

Disadvantages 
Single point of 

failure. 

 
Not scalable. 

No Byzantine fault 

tolerance. 
Not scalable 
Complex 

Fault 

tolerance 

None CFT CFT 

 

 

2.21.2 Ordering Phase 

 

The client can send the set of endorsements including the transaction payload to any 

orderer node that is deployed. When the orderer node receives a certain amount of 

transactions or reaches a certain timeout, the orderer nodes will establish a total order on 

all submitted transactions per channel. After arriving at consensus over the order of 

transactions, the ordering service batches multiple transactions into blocks and outputs a 

hash-chained sequence of blocks containing transactions. Grouping or batching 

transactions into blocks improves the throughput of the broadcast protocol, which is a 

well-known technique used in fault-tolerant broadcasts. 
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2.21.3 Validation Phase 

 

There are 3 main sequential steps in the validation phase when a block is received from 

the ordering service. 

 The endorsement policy evaluation occurs in parallel for all transactions within 

the block. If the endorsement is not satisfied, the transaction will be marked as 

invalid and its effects are disregarded. 

 A read-write conflict check is done for all transactions in the block sequentially. 

 Finally, the ledger update phase is executed in which the block is appended to 

the locally stored ledger and the blockchain state is updated. After the update, the 

client will be notified whether the transaction has been committed or disregarded. 
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Chapter 3 - Design 

 

3.1 Introduction 

 

This chapter will present the details of the proposed consensus algorithm, Canopus. It 

includes a detailed description of how Canopus algorithm functions, what are the 

alterations made to the original algorithm presented by the paper [34] and how it will fit 

inside the Hyperledger Fabric framework. The overall objective of what this design will 

accomplish is also stated at the end of this chapter. 

 

3.2 What Canopus Is & Not 

 

Distinguishing the features of Canopus is important compared to other consensus 

protocols to understand how this algorithm is more refined and optimized and has the 

potential to be the next best consensus algorithm for permissioned blockchains. The 

following sections will discuss some main features of Canopus while also discussing any 

limitations to implement these features in this research. 

 

3.3 Centralization & Decentralization 

 

Paxos [24] was the most successful and established consensus protocol that was widely 

used in many distributed systems. It’s atomic broadcast capability was highly reliable 

and had high throughput numbers. One main feature of this algorithm is the central 

coordinator as discussed in chapter 2. This is also the case in Raft consensus. The central 

node bears the weight of all the processing happening in the network for consensus and 

has to communicate with its peer nodes to retrieve the approval for the proposed ordered 

set of transactions. This is a limitation to scalability where when more nodes participate 

in the network, the more time it takes to send and retrieve messages among them.  
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Canopus eliminates this barrier of having a central coordinator. All nodes in the network 

participating in consensus will be allowed to receive transactions from peers. Each node 

will order these transactions to the time of arrival. When the consensus cycle starts, these 

transactions are distributed methodically where then each Canopus node will receive a 

subset of ordered nodes. They are again ordered on the large random number generated 

by each node that is also shared with the transaction payload. There are representative 

nodes that play an important role in each super leaf node. The representative node is 

responsible of retrieving transaction payloads from other branches of the leaf-only-tree 

network topology. This will be discussed in the next chapters. Overall the algorithm 

removes the central coordinator barrier that will allow to distributing the processing 

payload to all nodes in the network. 

 

 

 

 

Send proposed 

transaction order 

Respond with 

validation 

Figure 3.1 - Illustration of Raft consensus 
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3.4 Exploiting Network Hardware 

 

There are several consensus algorithms that take advantage of high end network 

hardware to achieve more performance. Devices like low latency switches, high 

performance machines, fast data communication mediums (fiber cables) and other 

specialized hardware. Canopus too can take advantage of such hardware. But due to 

unavailability of such resources, the performance gains from hardware exploits won’t be 

tested in this research. 

 

3.5 Leaf Only Trees 

 

Many of the current consensus algorithms broadcast the messages to its peer nodes in the 

network. But in Canopus this is not the case. Each Canopus node need to disseminate the 

write requests it receives to every other node in a series of rounds. The most common 

way to approach this is to broadcast the requests to every node group which could flood 

the network quickly depending on the incoming traffic of requests from peers. But 

instead Canopus rely on message dissemination which follows paths on a topology aware 

virtual tree overlay. The overlay used here is the Leaf Only Tree overlay(LOT) [44]. 

There are a few distinguishing features of LOT. 

 There are 2 types of nodes in a LOT, physical nodes and virtual nodes. Physical 

nodes as the name implies are the only real dedicated process that is running in 

the network as a service. Internal nodes in the tree are all virtual nodes in the case 

they do not exist as a separate service running in the network. But instead these 

virtual nodes are mapped to physical nodes when nodes in other branches in the 

network attempt to communicate with such a node. Meaning each physical node 

emulates all of its ancestor nodes. 

 Each physical node emulates its ancestor virtual nodes. Therefore, each physical 

node becomes aware of the state of each of its ancestor nodes. This allows any of 

the physical nodes to respond to query requests when any of the virtual nodes are 

queried. The replication is also an advantage in a case of a node failure where 
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another node having replicated the same set of ancestor nodes can respond to a 

query.  

 All the physical nodes in a server rack or machine will be grouped in to a single 

super leaf. There are mainly 2 reasons for this design. Firstly, this reduces the 

number of messages that are exchanged between any 2 super leaves. Instead of 

having all to all communication between every physical node in the super leaves, 

a subset of super leaf nodes called representatives of the super leaf will 

communicate with the representative of the another super leaf. Second, because 

all the physical nodes in a super-leaf replicate their common parents’ state, a 

majority of the super-leaf members need to simultaneously fail to cause the super-

leaf to fail. 

For this research, the blockchain platform where the consensus algorithm is tested won’t 

be deployed in multiple datacenters due to cost and unavailability but will be tested over 

virtual machines hosted in the cloud using Docker to deploy.  Here then we assume the 

latency that will occur over the network is insignificant. 

 

3.6 Consensus Cycle 

 

The protocol divides execution into a sequence of consensus cycles. Ordering of the write 

requests is done by having each node, for each cycle, independently choose a large 

random number, then ordering write requests based on those random numbers. Requests 

received by the same node are ordered by their order of arrival. In each cycle a node 

disseminates the write requests it receives during the previous cycle to every other node. 

Message dissemination follows paths on a topology aware virtual tree overlay called the 

Leaf-Only Tree(LOT) overlay [44]. Three distinguishing properties of LOTs are 

presence of physical and virtual nodes, node emulation where physical nodes emulate its 

ancestor nodes and super leaves are nodes located in the same rack.
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Figure 3.2 - LOT in Canopus
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Figure 3.3 - Six nodes arranged in two super-leaves in a LOT of height 2 

 

The first round of the consensus cycle will:  

 Prepare a proposal message and broadcast the message to the peers in its super-

leaf using a reliable broadcast protocol. 

 Each node generates a random large number called a proposal number. 

 Each physical node independently orders the proposals according to their 

proposal numbers. 

Other rounds in the consensus cycle:  

 Representative node sends a proposal-request to emulators of the virtual node in 

order to retrieve that virtual nodes state. 

 Receiver node replies with the proposal message belonging to the required 

virtual node. 

 After receiving all proposals, compute the order of all collected write requests. 

 Repeat until the state of the root virtual node is computed. 

According to figure 3.3, there are two super leaves each having 3 nodes. At the end of 

the first consensus cycle, all nodes in super leaf Sx will have calculated the state of x 

while all the nodes in super leaf Sy would have calculated the state of y. Then a 

representative from each super leaf will share the state of their immediate ancestor to 

start the second consensus cycle. This will be the last cycle in which all nodes would 

have calculated the state of z which is the root and ancestor of all nodes in the LOT. 

Figure 3.4 shows the high level architecture of the design when Canopus is plugged into 

Hyperledger Fabric framework. Clients send requests to peer nodes, peers endorse and 
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send a response back to clients. Clients then send the endorsements to orderer nodes. 

Orderer nodes arrive at consensus with regard to all endorsement received by clients. The 

ordered transactions are sent to peers for validation. The peers finally respond to clients 

whether the requests were successfully processed or not. 

 

Figure 3.4 - High level architecture of proposed blockchain network 
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3.7 Conclusion 

 

This chapter presented the overall architecture and processes that are involved in the 

design process of Canopus algorithm. With the understanding of the blockchain process 

in Hyperledger Fabric, it becomes much clearer how the orderer service fits in and how 

the Canopus algorithm will be implemented. Next chapter presents the details of 

implementation of Canopus in Hyperledger Fabric, the interfaces Hyperledger has to 

implement a consensus, the structure of the source code and how to deploy the newly 

built algorithm as an ordering service. 
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Chapter 4 - Implementation 

 

4.1 Introduction 

 

This chapter will provide the most relevant implementation details with regarding to 

developing the Canopus algorithm within the Hyperledger Fabric framework. Appendix 

B will contain further code listings that went into the source code of this implementation. 

Sections will follow through each step of deploying a Fabric network and what changes 

were required to make in order to support Canopus consensus algorithm. For simplicity 

of explaining the implementation process, we will assume the development of a LOT 

which contain 5 nodes and 2 super leaves each having 3 and 2 nodes respectively. 

 

4.2 Define Organizations 

 

Each peer and orderer node in the Fabric network should belong to an organization. The 

organizations are a virtual construct of where the peers and orderer nodes reside in the 

network. An organization can have either peer nodes or orderer nodes and not both. The 

organizations of the network are defined in a configtx.yaml file. This file is used when 

generating the genesis block and the channel configuration for the network. Each 

organization defined require a name, ID, the directory which include the membership 

service provider configurations and the policies. When using TLS which we will when 

implementing Canopus, each organization in the network requires authorized to verify 

its identity. Policies are restrictions that are enacted on the network for each type of node. 

There are mainly 4 types of user nodes and when defining an organization, it is required 

to define the policies for each of these user types.  

 Readers 

 Writers 

 Admins 

 Endorsement (only in peer organizations) 
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Peer organizations are required to define the location of anchor peers which are used for 

cross gossip communication.  

In the case of deploying a Canopus consensus protocol, it is possible to have all the 

physical nodes of the network to belong in a single organization or have a separate 

organization for each super leaf. If a different organization requires control of some 

subset of the orderer nodes, a separate organization for the subset of super leaves is the 

way to go when deploying. Else having one organization is sufficient. Refer appendix 

C.1 for code segment. 

 

4.3 Generate Cryptographic Certificates 

 

All nodes and clients including the Canopus nodes will require cryptographic certificates 

to communicate using TLS. Hyperledger Fabric has an inbuilt tool to generate these 

certificates. When using the blockchain in a production environment, it is possible to use 

any other certificate authority than the one provided by Fabric. The crypto-config.yaml 

file is used to define the nodes and their organizations in order to generate the certificates. 

This file is consumed by the cryptogen tool and the certificates are separated through 

directories (appendix C.2). 

 

4.4 Define Orderer Related Parameters & Profile 

 

There are several parameters that can be adjusted on the orderer service before 

deployment. Some of these parameters are: 

 BatchTimeout – The amount of time to wait after receiving a single transaction 

payload by an ordering node on a channel before creating a batch to generate a 

block. In the case of Canopus, when this timeout is reached, we start the 

consensus cycles by first sending the current payload to other nodes in its super 

leaf and requesting the payload from relevant virtual nodes. A timeout is 

important in a scenario where the transactions in the network are relatively less 

and it takes a long time to reach the batch message limit. 
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 BatchSize – Defines 3 sub parameters related to the size requirement of each 

block. 

o MaxMessageCount – The maximum number of messages that is allowed 

to a block is defined here. A batch will be created as soon as this limit is 

reached regardless of the timeout. 

o AbsoluteMaxBytes – The maximum size of the block is defined here. 

Regardless of message count and timeout, if the current transaction 

payload exceeds this value, a batch will be created. 

o PreferredMaxBytes – This parameter has the least priority. If at one 

moment the payload has reached this limit, it will attempt to create a 

batch. 

 Addresses – The addresses of all the orderer nodes need to be included here. 

Orderer settings are defined in configtx.yaml file. The default settings for each consensus 

algorithm is included under the Orderer field. It is possible to define profiles that override 

these values. This increase the easiness of creating new orderer nodes and changing their 

configuration. In case no profile flag is provided, the default values will be written to the 

genesis block (refer appendix C.3 for relevant code snippets). 

 

4.5 Generate Channel Artifacts 

 

After properly setting up the configuration files, we generate artifacts that is required by 

the Fabric blockchain to initialize and configure. There are mainly 2 artifacts that are 

required for this purpose. 

 

4.5.1   Genesis Block 

 

The genesis block is a configuration block that initializes the ordering service, or serves 

as the first block on a chain. It includes all the configuration details defined in 

configtx.yaml file. When generating the genesis block, in order to generate the orderer 

nodes for Canopus, we can provide the name of the profile where the Canopus consensus 
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nodes are defined. Then the specific parameters get written to the genesis block. When 

bootstrapping the ordering service, the values written to the genesis block is been used. 

Therefore, creating the genesis block is a vital step in the process of deploying the right 

consensus algorithm in the network. 

 

4.5.2   Channel Configuration Transaction 

 

In order to initialize or change the configuration of a channel over the Fabric network, 

we need to issue a configuration transaction. These transactions too get sent over the 

orderer service and then committed into blocks. For initialization configuration, we can 

create the transaction using the configtxgen tool. This transaction is then sent to the 

network after it is deployed. When creating this transaction, we provide a channel name, 

any profile of channel configuration and the output directory. 

 

Figure 4.1 - Command line to build genesis block 

 

Next step is to start up the network. Before this step of course, we require to implement 

the consensus algorithm and create a Docker image in order to deploy the algorithm. 

Next section will provide in depth details of the implementation process. 
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4.6 Implementing Canopus Consensus 

 

4.6.1   Introduction 

 

This section will provide implementation details of each step of achieving the Canopus 

consensus. Details from when an ordering node receives messages from peers and nodes 

to finally writing blocks to the chain and committing the transactions over to peers is 

presented here. 

 

4.6.2   Receiving Transaction Messages 

 

There are 2 ways an orderer node receive messages. The first is from a client whom have 

received the sufficient endorsements from peer nodes. The payload from the client will 

arrive as a single message. Hyperledger Fabric have pre-defined interfaces to handle 

messages arriving from clients. This interface has to be adapted by all consensus 

algorithms implemented in Fabric. The interface that defines a way to inject messages 

for ordering is Chain. The Order function in this interface accepts the messages from 

clients while the Configure function accepts messages that are related to channel 

configuration transactions. Due to time limitations, we will not be working on 

configuration transactions. The orderer node receive an Envelope object which include 

the payload and other metadata.  

The second route of receiving messages is from another orderer node. When starting the 

consensus cycle, a orderer node will receive transactions from other nodes in the network. 

We implement a dispatcher that will manage the retrieval of such messages. The 

OnSubmit method will provide the ID of the orderer node who sent the payload and the 

payload itself. A difference to messages received by this way is the payload will include 

the random number generated by that orderer node for that specific cycle that is required 

to order the messages before committing.  

When messages arrive from either way, the Submit function is called passing in the 

retrieved message with the sender ID. 
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Figure 4.2 - Dispatcher.go functions to receive messages from other orderer nodes 

 

4.6.3   Queue Messages and Trigger the Start of Consensus 

 

The messages received by an orderer node from clients can be ordered to the time it 

arrives. One way is to set a timestamp for each message that arrives and sort them before 

creating a batch. This is an extra step and the computation time increases unless they can 

me maintained in some sort of data structure that support well with asynchronous access 

to that object. Golang channels can do just this. In Go a channel is a medium through 

which a thread can communicate with another thread which is also lock free. Threads in 

go are called goroutines. They are light weighted and easy to implement. With channels 

we can maintain not only the messages received through the Order function but 
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messages received from the Dispatcher. We set up the channels to the Chain object as 

shown in figure 4.3. 

 

Figure 4.3 - Chain struct in chain.go file 

 

The amount of elements in the channel can be easily obtained through the len function. 

When the number of messages in the channel exceeds the batch max message count 

which was provided in configtx.yaml file, the function to start the first cycle of consensus 

is triggered. This is also triggered in the case where the time after receiving the first 

message exceeds the batch time out.  

There is also a third scenario where the consensus cycle should be triggered. Consider 

when an orderer node has not received any transactions. It would be staying idle till it 

receives any transactions. The idea behind receiving a message through dispatcher means 

another node is ready to start the consensus cycle. Here too it will be necessary to trigger 

the start of consensus cycle of that orderer node.  
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4.6.4   Distribute Messages 

 

When distributing messages among the orderer nodes, the data format in which the 

message is wrapped should be able to encode and decode quickly for better performance. 

Most common data formats that allow to serialize and transmit are JSON and XML. Here 

we use Protocol Buffers or known as Protobufs, a data structure introduced by Google. 

Due to its efficient serialization and deserialization, it is most suited for a network with 

large traffic and interchanges many messages. In order to send the messages received by 

an orderer node to other nodes, we define a rpc object file that submits these transactions 

to other nodes in the network given the recipients node ID. The proto file and the relevant 

code is shown in figure 4.4. 

 

Figure 4.4 - SendSubmit function to distribute messages with other nodes in the orderer service 

 

4.6.5   Calculate The Final State 

 

The state of each virtual node gets calculated when the messages from the relevant nodes 

are received. Considering the example scenario, orderer 1 waits until orderer 2 and 

orderer 3 sends their transactions. When they are received, the state of the parent node 

can be calculated. Then this total order of transactions is sent to a representative of the 



38 

 

other super leaf. To calculate the final state, orderer 1 waits for messages from orderer 4 

or orderer 5. The message received from either should be again distributed among the 

super leaf nodes of that orderer. Therefore, it can be clearly seen depending on the 

number of orderer nodes, the number of super leaves, whether the orderer node is a 

representative and the structure of LOT, the functions of each orderer differs from 

another. 

When the final state is calculated, the messages are passed sequentially to the Ordered 

function of the Blockcutter object. The Blockcutter creates batches that are then used 

to create a Block object. This block is finally passed to the writeBlock function that 

writes the block to the chain and sends to the peer for validation. These functions are 

built in the Fabric source code and can be reused for Canopus consensus too (refer 

appendix C.5). 

 

4.7 Build Orderer Package & Docker Image 

 

The Makefile file in the root of the Hyperledger Fabric source code provide make 

commands to easily build the orderer Go package and the Docker image. We simply run 

these commands when changes on the files are completed. Refer appendix C.4 for 

commands and outputs in terminal. 

 

4.8 Start and Initialize Fabric Network 

 

Starting the network include creating and starting the containers for each peer and orderer 

node in the Fabric network. This is accomplished by writing a Docker compose file that 

defines each container and the required parameters for each container. Mainly this would 

include defining the services which are peers and orderers, container name, image name, 

port and the volumes where the binaries of Fabric and certificates needs to be copied.  

Finally, we invoke configuration transactions to initiate the channel, join the peers to the 

channel and install the chaincode.  
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4.9 Summary 

 

The chapter provided all required details of the implementation of Canopus algorithm in 

Hyperledger Fabric and deploying the blockchain. The Hyperledger Fabric version used 

for development was 1.4.4. The process of creating a new consensus is shown and the 

implementation of the Canopus algorithm is presented in section 4.6. The steps to deploy 

the blockchain network and changes required to make in order to facilitate another 

algorithm is also presented.  
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Chapter 5 - Results and Evaluation 

 

5.1 Introduction 

 

The main purpose of the evaluation is to provide answers to the fourth research question. 

This chapter provides details regarding the benchmark results of Hyperledger Fabric 

running Canopus algorithm and compared to its natively supported consensus protocols, 

Kafka and Raft. Evaluation model followed in this chapter was based on [47] while sub 

evaluations were performed to verify speculations made during main evaluation process. 

The implementation provided in chapter 4 and the evaluation process was performed 

using Hyperledger Fabric version 1.4.4. The benchmarking of each instance of different 

ordering nodes and consensus protocols were performed on an AWS t2.large instance (2 

vCPUs, 8GB RAM, 64bit), Docker version 18.09.2 and Docker compose version 1.23.2. 

 

5.2 Evaluation Process 

 

The evaluation process will determine 2 main metric values discussed in chapter 2.4 

which are transaction throughput and latency for Hyperledger Fabric running Canopus 

protocol. These metrics were compared to the performance of Kafka and Raft which is 

natively supported by Fabric. Each consensus protocol is evaluated against increasing 

number of ordering nodes and their throughput and latency values were observed. The 

details regarding the configuration of Fabric is listed below. 

 The network included 2 peers each belonging to a different organization. The 

peers are connected to a single channel with the ordering service and the 

chaincode is installed on this channel. These 2 peers act as the endorsing peers 

for each transaction submitted by client nodes. 

 2 client nodes submitted transactions to the network with a fixed rate of 100 

transactions per second. This value is chosen because neither consensus protocol 

regardless of different configurations ever reached this value. 
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 There are 2 smart contracts implemented in the chaincode for testing.  

o Open-account smart contract which simulates opening new accounts in 

the ledger with a provided value as the account balance. This function is 

independent of the rest of the data in the ledger of the blockchain. 

o Transfer-money smart contract which simulates money transfer between 

2 randomly selected accounts for provided value. Since this is dependent 

of the state of the accounts concerned, generally the throughput value of 

this contract is much lower than the open-account smart contract. 

 The batch time out parameter is set to 2 seconds. The maximum message count 

for each block is limited to 50 and the maximum block size is set to 1 megabyte.  

 4 Kafka instances and 2 ZooKeeper instances were deployed when evaluating the 

performance of Kafka consensus. 

 

5.3 Evaluation of Consensus Protocols 

 

As pointed out in [19], the consensus plane plays an important role in the scalability and 

performance of blockchains. Here we evaluate a decentralized consensus protocol not 

yet adapted to permissioned blockchains and compare to the most prominent consensus 

mechanisms Paxos and Raft. The evaluations were under taken using a tool called 

Hyperledger Caliper [46] which is a benchmark tool for all Hyperledger blockchain 

products. 

 

5.3.1   Evaluation of open-account smart contract 

 

The transaction throughput and latency were evaluated on the open-account smart 

contract against 3 consensus algorithms, Kafka, Raft and Canopus. 
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Figure 5.1 Transaction throughput of consensus algorithms on open-account smart contract 

 

It can be observed from figure 5.1 that the highest performance is seen from Raft 

consensus, followed by Canopus and at last Kafka. The throughput decreases with 

increasing number of orderer nodes as expected. It is clearly observed that Kafka 

performs weaker than Raft and Canopus. It uses the Paxos protocol which is quite 

outdated comparatively. Even though we expected Canopus to perform comparatively 

better than Raft, this is not the case here. It has a closer performance to Raft but 

throughput deprecates in the same gradient as Raft with increasing number of orderer 

nodes.  

 

Figure 5.2 Latency of consensus algorithms on open-account smart contract 
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The same evaluation can be said from figure 5.2 with regard to latencies of the 3 

consensus protocols. Kafka which is the slower among the 3 has the highest latency while 

again the latencies of Canopus and Raft are very similar with Raft reporting the lowest 

latency values. 

 

5.3.2   Evaluation of transfer-money smart contract 

 

The transaction throughput and latency were evaluated on the transfer-money smart 

contract against 3 consensus algorithms, Kafka, Raft and Canopus. 

 

 

Figure 5.3 Transaction throughput of consensus algorithms on transfer-money smart contract 

 

Compared to open-account smart contract which had a maximum throughput of 47.5 

trans/sec, the maximum of transfer-money smart contract is around 18 trans/sec as 

observed in figure 5.1 and figure 5.3. One main reason for this is since the contract 

depends on the accounts which transfers occur; some transactions get invalidated when 

2 or more transactions occur on the same account. Therefore, the portion of transactions 

that get invalidated do not make to the block and not considered as a processed 

transaction.  

6.2

8.2 8.2
7.2

17.4

14.5

13.1

17.9

14.5

8

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18

TH
R

O
U

G
H

P
U

T(
TR

A
N

S/
SE

C
)

ORDERER NODES

TRANSFER-MONEY SMART CONTRACT

Kafka Raft Canopus



44 

 

The same trend can be seen here as the open-account smart contract shown in figure 5.3. 

Kafka performs the weakest among the 3. Canopus performs slightly better than Raft up 

to around 8 orderer nodes but drastically drop afterwards. The throughput overall 

decreases with increasing number of orderer nodes on all 3 consensus algorithms. 

 

 

Figure 5.4 Latency of consensus algorithms on transfer-money smart contract 

 

The same pattern can be seen in latency values of the 3 algorithms from figure 5.4.  

 

5.4 Summary 

 

Through the evaluation performed in this chapter, it can be inferred that Raft consensus 

protocol performs the best among the other protocols. By the hypothesis, we were 

expecting Canopus due to its decentralized coordination and reduced network traffic on 

a single node can perform better than the centralized coordinator Raft consensus 

protocol. The performance was similar in both Canopus and Raft with few 

inconsistencies in Canopus after 8 orderer nodes in transfer-money smart contract. The 

possible reasons will be discussed in chapter 6. 
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Kafka is the poorest performer here. Raft will mostly replace Kafka in the nearby future 

due to its increasing popularity, simplicity and stable performance. Many permissioned 

blockchains have already adapted Raft or in the process of developing support for it.  
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Chapter 6 - Conclusion 

 

6.1 Introduction 

 

The aim of this research was to provide more scalability performance of blockchains by 

introducing a decentralized consensus algorithm in order to overcome the bottlenecks of 

current consensus algorithms adapted in blockchains. Through this research a 

permissioned distributed ledger was designed with a decentralized consensus algorithm 

called Canopus and implemented using the Hyperledger Fabric blockchain framework 

and evaluated for performance in terms of transaction throughput and latency. 

We considered all aspects of blockchain and how each process in blockchain effects 

scalability. Among these processes we chose to optimize the consensus algorithm which 

is responsible for making total order of transactions in a network of nodes. Then we 

critically analyzed both permissionless blockchains and permissioned blockchains and 

the consensus algorithms they’ve adapted.   Considering the time frame of the research, 

developing and testing a consensus mechanism in a permissionless blockchain was not 

practical. Therefore, we settled on optimizing the consensus in permissioned 

blockchains. Given CFT priority, we analyzed the consensus algorithms adapted in 

permissioned blockchains, looked into the bottlenecks in these methods and proposed a 

decentralized consensus protocol called Canopus that can overcome them.  

Subsequently the popular consensus algorithms and the proposed Canopus consensus 

were evaluated in the Hyperledger Fabric blockchain framework in terms of transaction 

throughput and latency. 
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6.2 Conclusions About Research Questions 

 

We have analyzed the blockchain platform and identified the processes that limit 

scalability of the blockchain. Among them was the consensus mechanism in blockchains. 

After the analysis of consensus mechanism in permissioned blockchains, we attempted 

to optimize the performance by introducing a decentralized consensus algorithm called 

Canopus. The algorithm was tested by using a framework that supported pluggable 

consensus such as Hyperledger Fabric. However, the results were not as expected. The 

Raft consensus algorithm performed slightly better than Canopus. But there can be many 

reasons for this. The test was carried out in a single virtual machine using Amazon EC2. 

To get the advantages of network bottleneck over Raft, the test should have been 

conducted in different data centers. This is how Canopus was supposed to be 

implemented. Due to unavailability of the resources, this was not tested.  The other reason 

for less performance is the developed Canopus algorithm may not have been well 

optimized. Due to the limited time frame, all variables to optimize the algorithm could 

not have been covered. Raft on the other hand is open source and developed by many 

professionals in the field continuously.  It is at the peak performance as it is intended in 

production environments. The workforce difference on these 2 implementations is 

massive and therefore the comparison is somewhat at a disadvantage in this research. 

The conclusion that is arrived after observing the evaluation is that a decentralized 

consensus mechanism cannot scale blockchains. However, if more time is provided to 

refine the algorithm, it can be possible to perform better than existing consensus 

protocols. 

The next section on limitation and further work would present future prospects and 

possibilities for optimizing the consensus mechanism and maybe adapt Canopus to be 

Byzantine fault tolerant. 

 

 

 

 

 



48 

 

6.3 Limitations and Implications for Further Research 

 

There were several features in Canopus that was not implemented for this research due 

to the limited time frame. Also many more optimizations could have been made that 

might have been overlooked during the design and implementation of the consensus 

protocol. These features and optimizations maybe carried out as future prospects for 

increasing scalability in blockchains. 

Since we adapted Hyperledger Fabric as the blockchain framework to test out Canopus, 

the implementation was done over the execute-order-validate architecture. There can be 

room for improvement on different architectures in blockchains that support pluggable 

consensus.  

The blockchain network was deployed as a network of Docker containers on a virtual 

machine instance. This implies the CPU power is divided among all the peer and orderer 

nodes. This can be speculated as another reason for lower throughput in all consensus 

algorithms. Provided enough CPU power, there is the possibility of Canopus consensus 

to overcome the performance of Raft. 

Canopus can be adapted to support Byzantine fault tolerance. A theoretical paper 

proposed this algorithm as RCanopus [45] and it can be implemented over the Canopus 

protocol which can benefit to development and adaptation of blockchains in untrusting 

environments. 
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Appendix C 

 

Appendix C.1 

Configtx.yaml 
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Appendix C.2 

Crypto-config.yaml 

 

Command to build cryptographic certificates 
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Directories created to separate certificates for each organization and node 
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Appendix C.3 

 

Orderer related parameters 
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Canopus and channel profiles 
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Appendix C.4 

 

Terminal command and output to create fabric packages and orderer Docker 

image 
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Appendix C.5 

 

When receiving message from orderer node or client node 

 

When block interval time has expired 
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Finalize block execution 

 

Each message received is ordered and validated 

 


