

Prescription Processing System
for

A Large Scale Pharmaceutical
Business

A dissertation submitted for the Degree of Master of
Information Technology

A. K. Kulasinghe
University of Colombo School of Computing

2017

Declaration

The thesis is my original work and has not been submitted previously for a degree at

this or any other university/institute.

To the best of my knowledge it does not contain any material published or written by

another person, except as acknowledged in the text.

Student Name:

Registration Number:

Index Number:

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated

and is of acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

i

Abstract

Prescription processing in a pharmaceutical business involves a set of stages that are

crucial to a consumer's health. These stages span from reading prescriptions, checking

drug availability based on required quantities, collecting drugs from store, verifying

the collected drugs against the prescription before issuing them to the customer,

billings and issuing. In large scale pharmacies multiple prescriptions are processed

simultaneously which leads to a single employee processing several prescriptions

together or several employees being involved with different stages of a single

prescription. This could result in human errors due to manual handling, leading to

high time consumption, issuance of wrong drugs, dosages and incorrect instructions

that can be fatal in certain situations.

An application that enables modeling the prescription life cycle to isolate priorities at

each life cycle stage, facilitates minimization and elimination of these errors. The

tools and technologies today enable separation and loose coupling of UI, Business

logic and Data layer, to emphasize clear focus on responsibilities of each layer there

by increasing the viability of extending, enriching and changing applications as time

and requirements demand. Microservices that enable building small, light weight,

independent services and Business Process Modeling which enables modeling work

flow logic, together enable creating Business Process Management applications.

The project is an implementation of a 'Prescription processing system for a large scale

pharmaceutical business', built using Microservices and Business process

management technologies to address the issues involved with manual handling in the

pharmaceutical businesses domain. The solution consists of a distributed system,

accessible online, by pharmaceutical staff and consumers which also facilitates

pharmacy-consumer interaction. The solution implementation is based on the

incremental development methodology, where design and implementation details

were gradually expanded as the project evolved, which ultimately lead to a significant

separation of UI, Business services/processes and Data layers, creating opportunity

for easy extension and incorporation of features.

ii

Acknowledgement

I do hereby like to take this opportunity to acknowledge and express my sincere

gratitude to my project supervisor Dr. M. K. Silva, for the guidance, corporation and

feedback offered to me through out this project.

I would also like to thank numerous WSO2 staff members of who supported and

shared their product and platform knowledge concerning WSO2 products and

Angular2 implementations.

I also take this opportunity to thank pharmaceutical professionals who co-orporated

with me through out the literature survey and evaluation by sharing their knowledge,

experience and opinion on the pharmaceutical domain and the developed application.

Last but not the least, I would like to extend my appreciation towards my parents and

my husband for the support and courage given to me throughout the entire project

period in many ways.

iii

Table of Contents
Declaration..i
Abstract..ii
Acknowledgement..iii
List of Tables...vi
List of Figures..vii
List of Abbreviations...viii
Chapter 1 : Introduction...1

1.1 Problem Statement...2
1.2 Motivation...2
1.3 Author's Approach to address the Problem..3
1.4 Objectives..3
1.5 Area of Study...4
1.6 Scope...4
1.7 Related Projects...5
1.8 Structure of the dissertation...5

Chapter 2 : Literature Review..7
2.1 Introduction...8
2.2 Prescription processing & Computerization of the process.................................8

2.2.1Prescription processing in the pharmaceutical Business Domain............8

2.2.2Issues and drawbacks of the manual process...9

2.2.3Why computerize prescription processing?...12

2.3 Business process management concepts and technologies................................13

2.3.1Business process management...13

2.3.2Business process modeling for Business Process Management............14

2.3.3Business process management Applications..15

2.4 Use of Microservices in Business Applications...16
2.5.Solution..17

2.5.1Critical review of existing solutions..17

2.5.2Process requirements to address the identified issues............................18

2.5.3Technology requirements addressing technology issues of existing
solutions..19

2.5.4Critical review of technologies to be used...19

2.5.5Finalized Technology Requirements..23

2.6.Summary..23
Chapter 3 : Analysis and Design..24

3.1.Introduction...25
3.2.Analysis...25

3.2.1Requirement Specification...25

3.2.2Approach to the system design..26

3.3.Design..27

iv

3.3.1.High level Solution Architecture..27

3.3.2.1.Consumer Interfaces..29

3.3.2.2.Business process..32

3.3.2.3.Business Services...35

3.3.2.4.Operational Systems..37

3.4.Summary..39
Chapter 4 : Implementation..40

4.1 Introduction...41
4.2.UI Layer Implementation..41

4.2.1Angular 2...41

4.2.2 Use of Angular 2 in the UI Layer..43

4.3 Services Implementation...51

4.3.1Microservices implementation with WSO2 MSF4J..............................51

4.3.2Entity Class Implementation..52

4.3.3Service Class Implementation..54

4.3.4Use of Java Persistence API (JPA) for data manipulation.....................56

4.3.5. JPA implementation within a Microservice...59

4.3.6.Service Start up...63

4.3.7.Sample service..64

4.3.8.Exposed resources...65

4.4 Business Process Implementation..66

4.4.1Prescription processing business process...66

4.4.2Business Process Illustration using Activiti Eclipse 2.0 Designer.........67

4.5 Hosting the application..77

4.5.1Use of Nginx..77

4.5.2Deployment summary..79

4.6 User Interfaces and User Manual..79
4.7 Summary..79

Chapter 5 : Evaluation & Testing...80
5.1 Introduction...81
5.2 Testing..81

5.2.1Test Approach..81

5.2.2Test Results..82

5.3 Evaluation..85

5.3.1Evaluation approach...85

5.3.2Analysis of evaluation feedback by pharmaceutical professionals........85

5.3.3Analysis of evaluation feedback by potential consumers......................87

5.4Summary...89

v

Chapter 6 : Conclusion & Future Work..90
6.1 Introduction...91
6.2 Work carried out..91
6.3 Revelations..91
6.4 Lessons Learnt...92
6.5 Future Work...93
6.6 Summary..94

References..95
Appendices...99

Appendix A – User Manual...100
Appendix B– Test Plan..115
Appendix C – Test Cases...117
Appendix D – Apache JMeter 2.13 Script...123

List of Tables

Table 2.1 Product comparison..17
Table 2.2 UI Framework comparison...20
Table 2.3 Business process management application comparison...............................21
Table 2.4 UI Framework comparison...22
Table 4.1 Exposed resources..65
Table 4.2 Business Tasks..70
Table 4.3 Deployment summary...79

vi

List of Figures

Figure 2.1 Prescription processing process and issues...11
Figure 2.2 Business Process Management...14
Figure 3.1 Usecase Diagram..26
Figure 3.2 High level solution architecture..27
Figure 3.3 Detailed solution architecture...29
Figure 3.4 Prescription Component Class Diagram...31
Figure 3.5 Prescription State transition..34
Figure 3.6 Prescription Service Class Diagram..36
Figure 3.7 Database model diagram...38
Figure 4.1 High level view of UI layer..43
Figure 4.2 Microservices..56
Figure 4.3 JPA basic flow...57
Figure 4.4 JPA Query control flow...59
Figure 4.5 Microservices Structure..64
Figure 4.6 Business process involvement in the solution..66
Figure 4.7 Business Process Engine...67
Figure 4.8 Prescription handling business process in BPMN2.0 notation...................69
Figure 4.9 Process Start – General...70
Figure 4.10 Process Start - Form..71
Figure 4.11 User task - General..71
Figure 4.12 User task - Form..71
Figure 4.13 Service task – General..72
Figure 4.14 Service task – Main config...73
Figure 4.15 Exclusive gateway – General..74
Figure 4.16 Message Flow – General...74
Figure 4.17 Message Flow – Main config..75
Figure 4.18 End event – General..75
Figure 4.19 Business process running on WSO2 Business process server..................76
Figure 5.1 JMeter summary report...84
Figure 5.2 Customer preference to upload prescriptions online..................................88
Figure 5.3 Customer preference to use online prescription submission feature..........88
Figure 5.4 Customer preference to track status online...89
Appendix A : Figure 1 Home Page...100
Appendix A : Figure 2 Login..100
Appendix A : Figure 3 Consumer Home page...101
Appendix A : Figure 4 Staff Home page..101
Appendix A : Figure 5 Sign up...102
Appendix A : Figure 6 Online prescription list..103
Appendix A : Figure 7 Online prescription..104
Appendix A : Figure 8 Prescription List...105
Appendix A : Figure 10 Add prescription item..106
Appendix A : Figure 11 Prescription items..107
Appendix A : Figure 12 Prescription in New state...107

vii

 Appendix A : Figure 13 Promote prescription to collect state...................................108
 Appendix A : Figure 14 Prescription in Collect state..108
Appendix A : Figure 15 Promote prescription to verify state.....................................109
Appendix A : Figure 16 Prescription in Verify state...109
Appendix A : Figure 17 Promote prescription to pay state..110
Appendix A : Figure 18 Prescription in Pay state...110
Appendix A : Figure 19 Promote prescription to pay state...111
Appendix A : Figure 20 Prescription in Issue state...111
Appendix A : Figure 21 Promote prescription to complete state................................112
Appendix A : Figure 22 Completed prescription..112
Appendix A : Figure 23 Completed prescription history..112
Appendix A : Figure 25 Prescription demoted to collect state...................................113
Appendix A : Figure 26 Prescription history of demoted prescription.......................114
Appendix D : Figure 1 JMeter script..123

List of Abbreviations

BPM Business Process Management

BPMN Business Process Management Notation

MSF4J Microservices Framework for JavaScript

JPA Java Persistence API

viii

Chapter 1 : Introduction

1

1.1 Problem Statement

Processing prescriptions in a pharmaceutical business involves, reading prescriptions,

checking availability of drugs, calculating drug quantities based on dosage, collecting

drugs from the store, verifying drugs against the prescription before issuing them to

the customer and billing.

In a large scale business, a large number of prescriptions is processed simultaneously

and these tasks are handled manually by different parties. This creates opportunity for

various discrepancies.

Miscommunications that occur among different parties handling a single prescription

and human errors made during simultaneous handling of several prescriptions are

commonly occurrences in large pharmacies. One fatal result that might arise from

such dependencies is the issuance of wrong drugs, incorrect drug quantities and

dosage instructions.

Rectifying human errors identified before issuance of prescribed items and billing

mishaps lead to high time consumption in processing a prescription.

When customer perspective is considered, they are required to be physically present at

a pharmacy to hand over a prescription and wait in line for prescriptions to be

processed and prepared. Ability to get in touch with a pharmacy remotely is preferred

by consumers as it will save a lot of time for them when such pharmacies with a high

work load is considered.

1.2 Motivation

The motivation of the author is to derive a software solution, to address the above

problems exploiting the advantages of open source applications handling business

process management and re-usable software components.

2

1.3 Author's Approach to address the Problem

In the event a distributed system is available, parties at a pharmacy, handling different

tasks of the process can collaborate online during various stages of prescription

processing, there by reducing the time spent, avoiding re-work and discrepancies.

Customers will have the facility to submit prescriptions to the pharmacy online and be

notified once prescription processing is completed and drugs are ready to be collected.

Existing systems which handle such processes mostly do not take into account how

the quality of service provided for customers can be improved. Most of them are

commercial, built from scratch and have their data layer and business logic tightly

coupled with the application layer making it extremely complicated or impractical to

incorporate changes.

1.4 Objectives

 To create a web based system, modeling the prescription processing life cycle

of a large scale pharmaceutical business.

 To develop a prescription work flow that enhances the quality of service

provided to customers considering customer aspects and requirements in

prescription processing.

 To develop a system using open source applications handling business process

management and re-usable software components, to exhibit easy application

maintenance and adaptability.

 To demonstrate the efficiency and practicality of using off-the-shelf

components to build a system, as opposed to building one from scratch, in

order to minimize the ‘time to market’ factor.

3

1.5 Area of Study

The area of study of the project is pharmaceutical business process management using

open source applications and off the shelf software components.

The business process followed by large scale pharmaceutical businesses for

prescription processing is studied under this project in order to identify and analyze

the process flow, involved parties, issues and draw-backs of the manual process.

The project also studies utilization of off-the-shelf software components such as

business process management applications to model work flow logic and service

management applications to implement independent services there by eliminating the

need to repetitively implement common functionality in applications.

1.6 Scope

1. Prescription processing life cycle of a pharmacy, from receiving a prescription

to processing to issuing the prescribed items to the consumer, will be handled

by the system. Stock and payment handling is not considered for the

implementation.

2. The process life cycle is modeled using a business process modeling

application, loosely coupling it with the application and data layers to facilitate

ease of changing.

3. Data layer is modeled using, a database exposing data to the service layer

which in turn exposes its services to the Application layer in the form of

RESTful APIs , thereby eliminating business logic hard coding into the

application layer.

4. The application layer is accessible by employees and consumers online.

5. The features include the following.

Allow employees to

 Add / view prescriptions and manage prescription work flow

Consumers should be able to

 Submit prescriptions online until the actual prescription is presented

4

during collection of prescribed items.

 Be aware of prescription status in the prescription processing life cycle

1.7 Related Projects

Given below are already existing applications that cover aspects related to the project.

 Meditech EHR solution: A comprehensive health-care information system

facilitating interaction among hospital staff and handling prescription

processing.

 Siemens Pharmacy: Provides comprehensive support for pharmacy work

flow, pharmacy resource handling, clinical decision support and

communication.

 Horizon Meds Manager: A pharmacy information system that helps

improving pharmacy performance, provider work flows, and patient safety.

All these are commercial applications, built from scratch which have their business

logic tightly coupled with the application and data layers.

1.8 Structure of the dissertation

The dissertation is composed of the following structure.

 Introduction: Introduction to the project and problem domain of prescription

processing.

 Literature Review: Research revelations on the pharmaceutical business

domain, its issues, addressing the identified issues, a critical review of existing

solutions / technology requirements and derivation of process and technology

requirements.

5

 Analysis and Design: The software requirement specification and software

design of the prescription processing application.

 Implementation: Implementation details of the application.

 Evaluation and Testing: Information related to the application evaluation and

testing tasks carried out.

 Conclusion and Future Work: Project conclusion and prospects for future work

related to the application.

 References : A list of referred web and other publications refereed

 Appendices: Additional information related to the project

6

Chapter 2 : Literature Review

7

2.1 Introduction

This chapter consists of literature and research revelations based on the

pharmaceutical business domain with relevance to prescription processing, the manual

process and its issues, with the intention of deriving technology based solutions to the

issues in the manual process and existing software solutions.

2.2 Prescription processing & Computerization of the process

2.2.1 Prescription processing in the pharmaceutical Business Domain

The pharmaceutical industry is responsible for producing and marketing

pharmaceuticals used for medication. Companies operating within this domain, deal

with generic or brand medications and medical devices. Pharmacies can either be

outlets of such manufacturing companies, or may operate independently as buyers of

pharmaceutical manufacturing companies from which consumers buy products.

Prescription processing is the main and the most critical purpose of the existence of a

pharmacy. It involves the sequence of tasks carried out from the moment a

prescription is received by the pharmacy to the point where the medications, medical

equipment or medical accessories are handed over the to the customer.

In a typical scenario, prescriptions are handed over to the patient or a guardian who

will then , present the prescription at a retail pharmacy or a pharmacy at the relevant

hospital/clinic and will wait for the prescription processing to complete. The

pharmacist, then reads the prescription, checks availability of the items in the

prescription, calculates required drug quantities based on specified dosage and

duration, fetches drugs in required quantities from store, packages them, carries out

billing, verifies the items once again and hands over the items to the customer. These

tasks are performed by one or many employees of the pharmacy depending on the

pharmacy's daily work load. i.e. In a large scale pharmacy, fetching drugs from the

store, packaging them for the customer and billing may be performed by 3 different

8

employees where as the same employee many perform all 3 activities in a small

pharmacy.

2.2.2 Issues and drawbacks of the manual process

Typically, prescription processing is handled manually where as billing is the only

task that is computerized. This process is time consuming and utilizes more resources

that could be minimized with the correct use of technology.

Issues associated with the manual process and their causes are as follows.

 The customer should be physically present at the pharmacy to handover

prescriptions.

This is required to assure validity of the prescription and also as there is no

means for customers to connect with the pharmacy and present the

prescription online.

 Wrong drugs, quantities and drug dosages being issued

Miscommunications among several parties dealing with the same prescription

lead to this, which could be fatal in certain cases.

 Errors when specifying dosage instructions for drugs

This is a common issue experienced, where the dosage written on the drug

label differs from what the medical practitioner has prescribed.

 High consumption of time to process a prescription

This is a common problem with large scale pharmacies that deal with many

prescriptions simultaneously. Prescriptions may be stuck at collection, billing

etc, there by holding the processing of subsequent prescriptions. Customers

wait in line, for their prescriptions to be accepted for processing and

completed.

 The customer needs to be physically present at the pharmacy to be notified

when the items are ready to be collected.

The customer may need to step out while the prescription is being processed,

in case the processing of prescription takes a considerable amount of time.

They do not have any means to be notified when it is ready to be collected.

9

 Billing mishaps

Receipts may be issued for incorrect items, quantities and even incorrect

prescriptions due to manual handling and lack of integrity with the initially

received prescription and quantities.

10

Figure 2.1 Prescription processing process and issues

11

2.2.3 Why computerize prescription processing?

Today's businesses demand quick decisions based on facts and analysis. This requires

fast access to information with less tolerance for errors. Many businesses with routine

processes do not possess information maintained in an organized manner and they

lack analytical abilities and resources required to serve information demands. Proper

organization and maintenance of data allows business stakeholders to derive answers

and decisions rapidly. When the issues in the prescription processing domain are

considered it is evident that these issues are caused by the lack of information

availability, accessibility, organization and collaboration among stakeholders. A

computerized system accessible over the Internet enables collaboration among

different stakeholders of the business and make information available to required

parties.

A good customer experience increases the potential for business growth as the

businesses today are customer centric. Top customer service trends for the year 2016

include aspects related to ease, effectiveness and emotion according to the Forrester

article "Trends 2016: The Future Of Customer Service" published by Kate Leggett on

5th January 2016. [1]. Customer service technology integration should take these

aspects into consideration in order to create a good experience for customers.

When the customer perspective of a pharmaceutical business is considered,

pharmacies can provide means of submitting a scanned copy of the prescription

online, instead of expecting customers to be physically present at the pharmacy to

hand over the prescription. The pharmacy can also have means of notifying the

customer when the prescription is processed and the prescribed items are ready to be

collected. This makes the process efficient and convenient for the customer.

Within the pharmacy, the collaboration among employees possessing different roles

related to prescription processing can be made easier by making the prescription

available to all involved parties via the system. The employee receiving the

prescription can enter prescription details and if the required drugs are available, the

12

party that is collecting drugs can access the information related to this prescription

from his/her work station and collect the available drugs in specified quantities and

package them for the customer. The system can also be used to print labels for drugs

issued to the customer specifying standard instructions and dosages retrieved from the

prescription. Then these items can be verified at the front counter once again for

safety purposes, and invoiced. The inventory of the pharmacy can be updated based

on the product quantities issued per prescription. All these make the process of

prescription processing efficient and accurate, ultimately minimizing and almost

eliminating room for human errors.

2.3 Business process management concepts and technologies

2.3.1 Business process management

A business process is a set of interconnected activities that represent a business use

case to produce a specific output. A process may have 0 or many inputs and an output.

When a business process is executed, the sub-processes are executed in either a

synchronous and asynchronous manner to produce the final output, while interacting

with humans or equipment.

Business Process Management is an approach which seeks to improve the processes

within an organization by increasing process speed, reducing cycle time and costs,

with the intension of making the overall process efficient and effective. It is a way to

identify and adjust existing processes in order to align them with the business

objectives. This involves:

 Focusing on the outcomes instead of tasks

 Improving process before automation takes place

 Establishing processes and assigning ownership

 Standardizing process across the organization

 Enabling room for continuous improvement

Business process management involves several stages as depicted in Figure 2.2.

13

Figure 2.2 Business Process Management

Modeling stage involves studying the process and capturing business process at a high

level. It involves subjecting the processes to 'what-if' analysis under real world

business conditions.

Implementation of the derived model is carried out next. The process flows are

implemented using business process management tools. Execution stage is where the

implemented business processes are deployed or launched in order to follow in actual

business operations. The process execution and performance is monitored at the next

stage. Optimize stage involves introducing process and performance improvements

for the bottlenecks, inefficiencies and any other issues identified in the on going

process at the monitoring stage. An additional, yet important step to this cycle is

'Continuous Business Process Improvement'. This encourages the cycle to be repeated

continuously in order to incorporate changes identified as improvements to the

business process.

2.3.2 Business process modeling for Business Process Management

Business process modeling is a technique used to define, outline business processes,

data flows, data stores and systems of a business in order to study and analyze them

with the intent of restructuring business activities for improvement.

It enables isolating the process life cycle from other layers and making it independent

of other components of a software application. This creates opportunity to have a

clear focus on the business process life cycle, while incorporating life cycle changes

without impacting and changing the entire application adversely.

14

Business process modeling incorporates different methodologies and tools to model

business processes. These are of two types.

1. Modeling and simulation

This is used to visually represent a process. Flows charts, Data flow diagrams,

Interaction diagrams, Use case diagrams, Activity diagrams based on UML and

Business process modeling notation (BPMN) are some of the examples.

2. Programming

This provides programming interfaces for applications to incorporate BPM engines

with them, in order to implement business processes programmatically Eg. Business

Process Execution Language (BPEL), XML Process Definition Language (XPDL),

Java Process Definition Language (jBPM) .

2.3.3 Business process management Applications

A Business Process Management Application is a tool that allows defining business

process work flows by enabling collaboration with a business process engine in order

to achieve a particular business goal and provide meaningful metrics to the

management. These applications can be integrated with a front end application

implementing a user friendly interface in order to hide the complex implementation

and back end details from the end user.

There are various commercial and open source business process management

applications that can be used to implement business processes depending on user

requirements.

When automating the life cycle of an entity, handling of the business process logic can

be delegated to a business process management application. The business process

management application can be made aware of the life cycle states and the state order.

On business process invocation, the business process management application

governs updating life cycle states according to the process logic defined. This

separates life cycle handling from other layers of a comprehensive application, there

by enforcing clear focus on life cycle states and allowing easy incorporation of life

cycle logic changes

15

2.4 Use of Microservices in Business Applications

A service is a software component that enables a specific functionality of a system. A

business applications uses the functionality enabled by one or more underlying

services. Typical enterprise applications consist of a client side application , a

database and a server side application that handles HTTP requests, execute domain

logic and database transactions. Changes to an application usually involve changes to

the server side application. When an application is composed of tightly coupled,

heavy services that are incapable of functioning independently, it makes it difficult to

build, maintain and extend the application.

In contrast, if the application is composed of a set of lightweight, independent

services, it enables parallel building of application components, easy maintenance and

easy extension by disassembling, re-assembling and adding components as required.

Use of microservices is a new and convenient way of implementing such services by

following best practices.

A microservice is an independently deployable, modular service, which runs on its

own process, which is ‘micro’ or small in capacity as the name implies. A set of

microservices function together by communicating using lightweight mechanisms to

serve a specific purpose.

In a nutshell, microservices enable the following.

 Software based on microservices can be separated into multiple component

services and these separate services can be tweaked and re-deployed

independently.

 Microservices are organized based on business capabilities as opposed to

traditional development approaches where different teams have different

focuses (UI, logic, data) that sometimes overlap.

 Provides a simple mechanism to receive a request, process and generate a

response.

 Enforce decentralized governance as opposed to traditional systems.

 Ideal for evolving systems that may not adhere to a specific technology/device.

16

There are several Microservices frameworks in market namely, WSO2 Microservices

Framework for Java, Spring boot etc.

2.5. Solution

2.5.1 Critical review of existing solutions

Table 2.1 consists of the comparison of a set of existing pharmaceutical solutions.

Feature

Product

Meditech EHR solution
Siemens

Pharmacy

McKesson Horizon

Meds Manager

Proprietarity Proprietary Proprietary Proprietary

Scope A comprehensive electronic

health record (EHR) system.

Consists of e-prescribing

functionality and allows

secure exchange of data

among pharmacy, providers

and patients.

Does not handle a variety of

activities within the

pharmacy.

SQL Server based

Integrates patient

information with

the pharmacy.

Conducts medical

screening based

on prescribed

drugs and patient

health history.

Offers pharmacy

management

features including

allergy screening,

drug-disease

interactions, drug-

dose checking etc

Supports Oracle

RAC

Stakeholders

Collaboration

Collaborates within the

hospital among hospital staff

Collaborates with

patients

Collaborates with

other McKesson

software

Product

access

Via Desktop client Via Desktop client Via Desktop client

Operating

system

support

Windows based OpenVMS based Supports windows

and Linux

Table 2.1 Product comparison

17

When the above comparison, along with revelations based on the author's research is

considered there are several conclusions that can be drawn.

 Lack of products addressing the drawbacks of the manual process. i.e., Existing

products mostly consider billing, drug information storage and drug screening.

They do not consider work flow within the pharmacy or customer interactions.

 Most of the well established products are proprietary.

 Most of the products do not support open source operating systems such as Linux.

 Consist of thick clients , there by making it essential to install the product on each

and every access terminal. (i.e. PC)

 The applications are tightly coupled with the database layer and the logic is built

into the product, making it impractical to incorporate database changes.

 Business process and work flow is an inbuilt feature of the application it self,

which makes it extremely complex to incorporate changes to the process work

flow if required.

2.5.2 Process requirements to address the identified issues

Requirements from work flow perspective:

 The system should allow the pharmacy to add and store details of prescriptions

brought to the pharmacy by customers or submitted online.

 Employees should be able to view added prescription whenever required.

 Different employees engaged in prescription processing should be able to update

prescription status, throughout various stages from start to end based on the

employee role.

Requirements from customer perspective

 The system should allow registered customers to submit scanned copies of

prescriptions online until the actual prescription is presented during collection.

18

 It should also be possible for the pharmacy to notify customers on the status of

their prescriptions in the process.

2.5.3 Technology requirements addressing technology issues of existing solutions

As revealed by the review of existing solutions above, the technologies selected for

the developed solution should support the following.

 The solution should be accessible over the Internet in order to eliminate the

requirement to install the software in each and every client machine.

 The solution should use open source technology and be able to run on open

source operating systems.

 De-couple data layer from application layer in order to remove data access

logic from the application, to eliminate point to point connections among data

and application layers, to enable managed and controlled data access, to create

room for database changes and enabling data and service component re-use.

 De-couple business process and work flow from the application layer in order

to enable easy and quick modeling of process work flows, easy incorporation

of work flow changes and to make the application layer independent of the

process work flow.

There exists a number of off-the-shelf products dedicated to handling of application

specific layers. Business process management applications, Data and Service

management applications serve the purpose of separating data layer and work flow

logic implementation from the front end application.

2.5.4 Critical review of technologies to be used

In order to facilitate a system that supports the above requirements, the author

identified the need for the following technologies.

 A UI framework

 A Business process management application

 A Microservices framework

19

UI Framework

A UI framework exposes APIs to build UI components. This is required in order to

build the front end application. Table 2.2 contains a comparison of widely used UI

frameworks.

Feature
UI Framework

jquery UI Angular 2

Description A lightweight JavaScript

library supporting client side

scripting for JavaScript based

web applications

A Model–view–controller

(MVC) based framework by

Google for building client-

side web applications.

Propreiterity Open source Open source

RESTful API support Not supported Supported

Supported scripting languages JavaScript JavaScript

MVC Pattern support Not supported Supported

Form Validation Not supported Supported

Localization Not supported Supported
Table 2.2 UI Framework comparison

As per the above comparison, jquery UI is merely a JavaScript library which supports

client side scripting. Angular 2 is a more sophisticated framework for building front

end applications which conform to MVC architecture. As a result of being a

framework, Angular 2 supports features including templating, data binding, routing

(for single page applications) and security.

The project targets separating the business logic layer from the application layer. In

order to realize that, it is required to expose business services to the front end

application. The ability of Angular 2 to consume RESTful APIs is one of the critical

deciding factors when selecting a UI framework for the solution. Therefore it was

decided to use Angular 2 to create the front end application.

20

Business Process Management Applications

A business process management system is required to separate the work flow logic

implementation from the application layer.

Table 2.3 consists of a comparison among existing business process management

applications.

Features Application

Apache ODE (Orchestration

Director Engine)

WSO2 Business Process Server 3.6.0

Description WS_BPEL based business

process server

Activiti and Apache ODE based

Business Process Management Server

Propreiterity Open source Open source

Supported standards WS-BPEL WS-BPEL / BPMN 2.0

Management

console support

No management console Consists of a management console

Platform Advantage Does not consist of a platform

with other features required

for the project

Consists of a middle ware platform

with products with features supporting

data services, enterprise integration,

messaging and many other solutions.
Table 2.3 Business process management application comparison

BPMN is the emerging standard for business process modeling and it consists of a

user friendly graphical notation. It is also an added advantage to have management/UI

console support for easy management and monitoring of business processes.

Therefore, after considering the above comparison and the support for the project

requirements, WSO2 Business Process Server 3.6.0 was selected as the business

process management application for the author's solution.

21

Microservices Framework for service development

Table 2.4 below contains a comparison of microservices development frameworks.

Feature
Microservices Framework

Spring Boot WSO2 MSF4J 2.1.0

Description Facilitates creating

stand-alone spring

applications.

A quick development model using simple

annotations and Spring Framework

capabilities.

Size 13MB 9MB

Memory

consumption

Minimum memory

requirement is 25MB

Low memory footprint compared to Spring

Boot (7MB)

Performance - Faster Runtime, Higher throughput an lower

latency when compared to Spring Boot

Security - Built in security with WSO2 Identity Server

JAXRS Annotation

support

No direct support Yes

Built in Analytics No Built in to the framework using WSO2 Data

analytics Server
Table 2.4 UI Framework comparison

Considering revelations of the above comparison, WSO2 MSF4j (Microservices

Framework for Java) appears to be a lightweight, high performant, secure, annotation

based framework additionally supporting Analytics in case needed. Therefore the

author is inclined towards building the components of the service layer based on

WSO2 MSF4J 2.1.0.

22

2.5.5 Finalized Technology Requirements

As concluded based on the above reviews and comparisons, the technologies and off

the shelf software products are mentioned in Table 2.6 are selected for the author's

application.

Technology/Application Product

UI framework Angular 2

Business process management application WSO2 Business Process Server 3.6.0

Microservices Framework WSO2 Microservices Framework for Java 2.1.0

Table 2.6 Finalized applications and technologies

UI framework in the context of author's solution

 Builds the UI layer

 Consumes services via APIs exposed in underlying business process and

service layers and exposes them to application users in a user friendly manner

Business Process Management Application in the context of author's solution,

 Models the work flows, also known as business processes

 Exposes business processes in the form of RESTful web services

Microservices Framework in the context of author's solutions

 Build and host microservices that define application functionality including

data access.

2.6. Summary

The literature review conducted in this chapter reveals the process requirements for

prescription management process, technology based solutions for identified issues and

technologies to be used in the author's software solution. The next chapter consists of

the analysis and design of the system.

23

Chapter 3 : Analysis and Design

24

3.1. Introduction

This chapter consists of the analysis and design details of the project along with

elaborated explanations of how the solution is arrived at. The author initially derives

functional and non-functional requirements and then the design requirements of the

solution based on the identified functional and non functional requirements.

3.2. Analysis

3.2.1 Requirement Specification

The requirements identified are types functional and non-functional requirements.

Functional Requirements

 The consumers should be able to register themselves.

 Registered consumers should be able to submit scanned copies of prescriptions

online.

 Registered consumers who have submitted prescriptions online, should be able to

check prescription status online.

 The staff should be able to enter details of prescriptions submitted manually or

online.

 The staff should be able to accept or reject prescriptions submitted online.

 The pharmaceutical staff should be able to promote new prescriptions to the

following stages of the prescription processing life cycle.

◦ New → Collect → Verify → Pay → Issue → Completed

 Non-Functional Requirements

 Authorization based on user role when exposing system data and functionality to

pharmaceutical staff and pharmaceutical product consumers.

25

Figure 3.1 consists of the Use case diagram of the application. Note that the Login use

case is not included for clarity.

Figure 3.1 Usecase Diagram

3.2.2 Approach to the system design

As revealed through the literature review, the tight coupling of components of a

system including tight UI, business logic and data layer coupling hinders and

obstructs system improvement and incorporation of changes. Therefore the author

intends to approach a solution with a clear separation of concerns based on a multi tier

architecture.

26

The main architectural concern of the solution is to separate Data, Business logic and

Presentation layer from each other there by ensuring loose coupling among these

layers.

3.3. Design

3.3.1. High level Solution Architecture

Figure 3.2 High level solution architecture

The Figure 3.2 depicts the high level solution architecture of the proposed system.

The solution is to be built based on 4 layers that interact to form the complete

solution. These 4 layers together correspond to Presentation, Business Logic and Data

layers. The consumer Interface layer corresponds to the presentation layer. Business

Process and Business Services layer together form the business logic layer.

Operational Systems layer corresponds to the Data layer.

The high level explanation of these layers is as follows.

27

Consumer Interfaces

This is the User Interface Layer which can be exposed via the web through the

computer, mobile devices and various other interfaces. The services exposed by the

solution are accessed by consumers via this layer. The user interface of author's

solution addresses 2 distinct communities , Pharmaceutical product consumers and

Pharmaceutical staff.

Business Processes

Business processes consist of several loosely coupled services that are sequentially

aligned to form a process. I.e.: Prescription work flow service that governs the

prescription life cycle. Business processes are triggered by human tasks and a

triggered business process governs navigation within the work flow.

Business Services

Services that perform database interactions and enable other functionality are located

in this layer. Eg; Drug service

Operational Systems

This layer consists of other components and systems providing data required for the

solution to function. Eg: Databases, User stores to maintain consumer/patient

information etc.

Figure 3.3 below depicts the expanded solution architecture with component mapping.

28

Figure 3.3 Detailed solution architecture

The next 3 sections explain Figure 3.3 in detail.

3.3.2.1. Consumer Interfaces

This is the UI layer which exposes interfaces to the 2 distinct parties using the

application namely, pharmaceutical product consumers and pharmaceutical staff.

To facilitate the above functional requirements, the following interfaces are required.

Pharmaceutical product consumer web UI

Requires interfaces to:

 Login to the application

 Register at the pharmacy

 Upload prescriptions

 View prescription details and status

29

Pharmacy web UI

Requires interfaces to:

 Add and View prescriptions and manage prescription statuses

 View prescriptions submitted online

This layer will be implemented using Angular 2.

Prescription handling UI plays a major role in the UI layer which is represented by the

prescription component of the Angular 2 application. The class diagram of the

prescription component is given in Figure 3.4. Further implementation details of the

prescription component are elaborated in section 4.2.2 of Implementation Chapter.

30

Figure 3.4 Prescription Component Class Diagram

31

3.3.2.2. Business process

This layer consists of the 'Prescription Processing Process' , which handles the work

flow throughout the prescription life cycle within the pharmacy domain. This is

implemented using the WSO2 Business Process Server 3.6.0.

Features that define business process requirements

 The Business Process spans over the involvement of 6 distinct roles in the

pharmacy namely

1. Admin : Administrator of the entire application with privileges to perform all

actions

2. Receiver : The user who initially verifies and enters a prescription in the system

3. Collector : The user who collects prescribed items from storage

4. Verifier : The user who verifies collected items against the prescription

5. Cashier : The user who collects payment for a prescription

6. Issuer : The user who hands over the prescribed items to the consumer

 A user may have one or more of the above roles.

 The business process starts with a user with 'receiver ' role entering details of a

prescription manually. When a prescription is added to the system in this manner,

its state will be marked as 'New'.

 In order to proceed to collect items specified in the prescription , its state should

be promoted to as 'Collect'.

 A user with 'collector ' role then collects the required drugs/items, packages them

and promotes the prescription state to 'Verify'.

 A user with 'verifier ' role then verifies the collected items against the prescription

and promotes the state to 'Pay' if the verification is successful. If the verification

fails the prescription state is demoted to 'Collect.' (The collector will have to re-

collect the items and promote the prescription to 'Verify once again)

 A user with ' cashier' role accepts payment for prescriptions in state 'Pay' and

32

promotes the state to 'Issue' of the payment is successful.

 In case the payment fails, the process will be ended by marking the prescription

state as 'Payment failure'.

 A user with 'issuer' role then , hands over the prescribed items to the customer and

promotes the prescription state to 'Completed'.

State transition of a prescription within the business process depicted in Figure 3.5.

33

Figure 3.5 Prescription State transition

34

3.3.2.3. Business Services

The services defined in this layer directly facilitate business functions.

Drug Search Services

Defines back end services required for the drug management functionality.

Prescription Service

This service facilitates prescription handling which is an internal function used to

manage prescription processing and it exposes itself to the 'Prescription Processing

Process' of the business process layer.

Auth Service

Defines back end services required for login/logout functionality.

User Service

Defines back end services required for pharmacy staff authorization.

Consumer Service

Defines back end services required for the Consumer detail management.

These services will be implemented using WSO2 Microservices Framework for Java.

Prescription service plays a major role in the service layer. The class diagram

depicting the Classes and communication among classes in the prescription service is

given in Figure 3.6. Further implementation details of the prescription service are

elaborated in section 4.3.1 of the Implementation Chapter.

35

Figure 3.6 Prescription Service Class Diagram

36

3.3.2.4. Operational Systems

This layer corresponds to the database layer which holds drug, prescription and

consumer related data.

The complete database design derived as per the application requirements is depicted

in Figure 3.7.

37

Figure 3.7 Database model diagram

38

3.4. Summary

The analysis and design tasks carried out in this chapter provide a detailed and a

planned approach for implementation of different layers of the solution. Initially the

author derived functional and non functional requirements of the solution. Then

solution architecture has been derived and expanded from high level to Detailed

solution architecture describing different components associated with it. This has

further been elaborated with design context explanations of UI, Business process,

Business Services and Operational systems layers. The next chapter consists of

application implementation related details and illustrations.

39

Chapter 4 : Implementation

40

4.1 Introduction

In this chapter, the author attempts to provide an insight to the third party components

used and then to the approaches followed to implement the application by explaining

implementation details at each layer.

4.2. UI Layer Implementation

4.2.1 Angular 2

Angular is a HTML, JavaScript or TypeScript based framework that enables building

client side applications. Angular applications are composed of one or more modules

which contain

 HTML templates with Angularized markup

 Component classes to manage the HTML templates

 Services defining application logic

The building blocks of an Angular application are as follows.

Modules

Angular modules are named NgModules are identified with @NgModule decorator.

Each Angular application is composed of at least the root module named AppModule

or AppModule and several modules. Each module corresponds to a dedicated

feature/domain within the application.

A NgModule consists of following properties, which determine module and its scope.

 declarations : classes that belong to the module

 exports : declarations that should be visible to other modules

 imports : other modules of which the exported classes are required

 providers : services that should be visible to the entire application

41

 bootstrap : main application view or root component hosting all other views.

Components

A component corresponds to a particular view of the UI. The application logic of a

component is defined inside a class which interacts with the view.

Templates

A component view is defined in a HTML based template instructing how to render it.

Metadata

Metadata binds the class of a component to Angular framework and instructs Angular

where to retrieve the building blocks that are specified in a component. Metadata is

attached to a class using the @Component decorator.

Data binding

Data binding is the mechanism that coordinates parts of a template with parts of a

component. This could be in the form of interpolation (retrieving a property value),

property binding (passing a property value to a component), event binding (attaching

an event to a piece of data) or a combination of property and event binding.

Directives

Directive is a class with directive metadata instructing how to transform DOM of a

template dynamically when rendered by Angular. I.e A component is a directive with

a template.

Services

A service is a class with one or many methods with well defined purposes.

Components are the consumers of services. Services are responsible for fetching data

from the server, validating user inputs etc.

Dependency Injection

Dependency injection provides new components with required services. When a

component requires a service, the service should possess an injector for it to be used

by the component.

42

4.2.2 Use of Angular 2 in the UI Layer

Angular version 2, ie Angular 2 was used in the UI layer implementation. Angular

enforces single page applications. The author made use of an 'Angular2 single page

seed project', which consists of basic structural components including Angular 2

libraries, and pre-configured scripts that build up a basic Angular 2 application. The

UI layer is composed of an Angular 2 application which contains a single Angular

module, with several components. Navigation among components is handled by App

router (i.e. app.routing.ts). The Angular module (i.e. UI layer) communicates with

business process and business services layers in the form of JSON messages. Figure

4.1 contains the high level view of solution at the UI layer.

Figure 4.1 High level view of UI layer

The structure of the Angular2 application in the solution is as follows.

the-pharmasist
|__ ….../
|__ src/
 |__app/

|__home/
|__login/
|__drug/
|__consumer/
|__onlinePrescription/
|__prescription/
|__ …..
|__app.component.html
|__app.component.ts
|__app.module.ts
|__app.routing.ts

|__index.html

The 'app' directory consists of all the components that the application is composed of.

43

app.component.ts and app.component.html

app.component.ts is a typescript file which defines the structure of the application

(menus, header,footer etc) using its template file 'app.component.html'. It defines the

'AppComponent' class, which implements 'OnInit' and 'OnDestroy' interfaces. The

methods 'ngOnInit()' and 'ngOnDestroy()' belonging to the above interfaces are

implemented within this class, to define actions to perform on component

initialization and component unloading respectively.

export class AppComponent implements OnInit, OnDestroy {

 public loggedIn: boolean;

 private loginSub;

 constructor(private loginService: LoginService) { }

 ngOnInit(): void {

 this.loginSub = this.loginService.loggedInObservable.subscribe(val => {

 console.info("AppComponent login status updated: " + val);

 this.loggedIn = val;

 });

 }

 ngOnDestroy() {

 this.loginSub.unsubscribe();

 }

}

'ngOnInit()' method determines session availability and sets the value of the boolean

variable 'loggedIn'. This is checked in the 'app.component.html' page in order to

determine display of 'Sign In', 'Sign Out' and 'Sign Up' menu items.

The following menu items defined in 'app.component.html' are loaded only if the

variable 'loggedIn' is set to 'true'.

<ul id="nav-2" class="right hide-on-med-and-down" *ngIf="loggedIn">

 Sign Out

<ul id="nav-3" class="right hide-on-med-and-down" *ngIf="!loggedIn">

 Sign In

 Sign Up

app.module.ts

For each module, it is required to declare and import all components used. This file

declares and imports all components used by the root module, which in the author's

solution is the only module.

44

All required components are imported initially.
import './rxjs-extensions';

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpModule, JsonpModule } from '@angular/http';

import { AppComponent } from './app.component';

….

import { PrescriptionComponent } from './prescription/prescription.component';

import { PrescriptionDetailComponent } from './prescription/prescription-detail.component';

….

In order to identify this as a module, the @NgModule decorator is used.

@NgModule({

 declarations: [

 AppComponent, HomeComponent, LoginComponent, PrescriptionComponent,

PrescriptionDetailComponent,

 …...

],

 imports: [

 BrowserModule, routing, FormsModule, HttpModule, MaterializeModule, JsonpModule

],

 providers: [

 PrescriptionService, LoginService, AuthGuard, ManufacturerService,

 …...

],

 bootstrap: [AppComponent]

})

All component classes of the module are listed under 'declarations' and third party

modules are specified as 'imports'. 'providers' are the service classes that expose

application functions. 'bootstrap' specifies the root component, which in this solution

is the AppComponent itself.

app.routing.ts

This defines the navigation from one page to another within the application.

{ path: 'prescription', component: PrescriptionComponent, canActivate: [AuthGuard], data: { roles:

['admin', 'receiver', 'collector', 'verifier', 'cashier', 'issuer'] } },

{ path: 'prescription-detail/:prescId', component: PrescriptionDetailComponent, canActivate:

[AuthGuard], data: { roles: ['admin', 'receiver', 'collector', 'verifier', 'cashier',

'issuer'] } },

A 'component' is attached to a specific 'path' or a context. The context '/prescription'

in the above code segment, loads the component ' PrescriptionComponent', and

45

context '/prescription-detail/:prescId' loads the ' PrescriptionDetailComponent', with

it's html page populated with prescription details of the prescription matching the

prescription ID in the path parameter. As the access to various application components

is role based, loading certain components involves a role check as given in the above

code segment.

Prescription Component

The component 'prescription' is the most important custom component in the Angular

2 application. Other modules are mainly supportive modules that help enable the

prescription component's functionality. Therefore the use of Angular 2 in the UI layer

development will be explained based on the prescription component.

The prescription component consists of the following content.

prescription

|__ prescription.ts

|__ prescription-item.ts

|__ prescription-state.ts

 |__ prescription.service.ts

|__ prescription.component.ts

|__ prescription.component.html

|__ prescription-detail.component.ts

|__ prescription-detail.component.html

Entity Classes (prescription.ts, prescriotion.item.ts, prescription.state.ts)

Angular is based on object oriented concepts. The entity classes representing the

prescription, prescription items and prescription states are maintained in the files

prescription.ts, prescriotion.item.ts and prescription.state.ts respectively.

The concept of 'prescription' is maintained as an entity in the file 'prescription.ts'.

export class Prescription {

 id: number;

 type: string;

 date: string;

 state: string;

 medicalPractitioner: string;

 pharmacistComment: string;

 consumerComment: string;

 consumer: Consumer;

46

 itemList: PrescriptionItem[] = [];

 stateList: PrescriptionState[] = [];

 newPrescription: boolean;

}

The attributes defined in the Prescription Class, correspond to columns of the

database table PM_PRESCRIPTION. Each prescription is associated with one or

more drugs/items, held in the database table PM_PRESCRIPTION_ITEM. The class

PrescriptionItem defined in prescription.item.ts represents prescription item entity

and it corresponds to columns of this table. Each prescription is associated with one or

more states held in the database table PM_PRESCRIPTION_STATE. The class

PrescriptionState defined in prescription.state.ts represents the prescription state

entity and it corresponds to the columns of this table.

Service Class (prescription.service.ts)

The class PrescriptionService defined in this file, declares methods that enable

prescription related functionality based on CRUD operations. The back end service

URL for the Prescription service exposed by the service layer (i.e. WSO2

Microservices for Java) is specified in the variable 'presServiceURL' and accessed by

methods defined in this class. Angular 2 passes data in the form of JSON objects to

the service layer.

private presServiceURL =

'http://localhost:8090/msf4j/pharmacy/prescriptions';

The service class itself is defined with the decorator '@Injectable()'. This marks the

class as available to be injected to other components, when the its methods are

invoked from within.

The return type of methods is set to 'Observable'. An observable enables asynchronous

operations, returning data over time. If the operations occur synchronously, a

component will not be loaded until the associated operations have returned all data

requested for. Eg: In the solution, when the user clicks on 'Prescription' menu item to

view the prescription list, the relevant UI will not be loaded until the associated

method finishes returning all available prescriptions. But the use of Observables

makes the application more user friendly, as it loads the requested component first and

then the requested data eventually.

47

getAllPrescriptions(): Observable<Prescription[]> {

 if (!this.prescriptions) {

 this.prescriptions = this.http.get(this.presServiceURL + "?state=NEW")

 .map(this.extractData).do(ignored => console.info("fetched Prescriptions"))

 .catch(this.handleError);

 }

 return this.prescriptions;

 }

The class consists of methods to :

 Retrieve all prescriptions on Prescription component loading

getAllPrescriptions(): Observable<Prescription[]> {}

 Retrieve details of a selected prescription

getPrescription(id: number): Observable<Prescription> {}

 Save a prescription

savePrescription (prescription:Prescription): Observable<Prescription> {}

 Promote a prescription to the next state in prescription life cycle

promotePrescription(id:number, state:PrescriptionState): Observable<Prescription>

{}

 Demote a prescription to the previous state in prescription life cycle

demotePrescription(id:number, state:PrescriptionState): Observable<Prescription>

{})

48

prescription.component.ts and prescription.component.html

The PrescriptionComponent class of prescription.component.ts determines the content

of prescription list UI. It refers to its template 'prescription.component.html'.

@Component({

 selector: 'prescription',

 templateUrl: './prescription.component.html',

})

The service methods in the PrescriptionService class of prescription.service.ts are

invoked by the prescription.component.ts to handle prescription data. Eg: Invoke

getAllPrescriptions() method in the PrescriptionService class to load a list of

prescriptions on component loading.

 getPrescriptions(): void {

 this.prescriptionService.getAllPrescriptions()

 .subscribe(prescriptions => this.prescriptions = prescriptions);

 }

The component has to subscribe to the observable returned by the

getAllPrescriptions() method, so that the data can be accessed when retrieved. In

order for this method to be invoked on component loading, the getPrescriptions()

method invocation itself is invoked within ngOnInit() method which is invoked

during component initialization.

 ngOnInit(): void {

 this.getPrescriptions();

 }

Apart from this PrescriptionComponent class itself defines a few methods to enable

adding new prescriptions and view details of a selected prescription.

gotoNew() method passes a prescription object with the ID set to -1 to the router,

which will evaluate to a new prescription object that enables adding a new

prescription.
 gotoNew(): void {

 this.router.navigate(['/prescription-detail', -1]);

 }

The application also allows selecting a prescription from the list and loading details of

that prescription. The onSelect() method determines the selected prescription and

gotoDetail() method enables loading the prescription detail UI.

49

onSelect(prescription: Prescription): void {

 this.selectedPrescription = prescription;

}

gotoDetail(): void {

 this.router.navigate(['/prescription-detail', this.selectedPrescription.id]);

}

These methods are invoked within the prescription.component.html file on user click

event, in the prescription list.
<tbody>

 <tr *ngFor="let prescription of prescriptions" (click)="onSelect(prescription)"

(click)="gotoDetail()">

 <td>{{prescription.id}}</td>

 <td>{{prescription.type}}</td>

 </tr>

</tbody>

'ngFor' directive lists items in a list. 'prescriptions' array is defined in the

prescription.component.ts, of which the items are accessed iteratively (i.e. ' let

prescription of prescriptions') to populate the prescription list.

prescription-detail.component.ts and prescription-detail.component.html

prescription-detail.component.ts determines the structure of the prescription detail

page when viewing an existing prescription or adding a new prescription. It refers to

its template 'prescription-detail.component.html' and invokes required methods

defined in prescription.service.ts in order to save , delete, promote and demote

prescriptions.

gotoDetail() method of prescription.component.ts passes the prescription ID when

loading PrescriptionDetailComponent , which in turn invokes the

'getPrescription(id:number): Observable<Prescription>{}' method of Service class on

initialization. In case a prescription ID set to '-1' is received, the method initializes a

new prescription object there by enabling adding a new prescription.

50

4.3 Services Implementation

4.3.1 Microservices implementation with WSO2 MSF4J

Back-end services are broken down into a set of independent services, i.e.

microservices functioning together realizing the overall application capabilities These

services are implemented as RESTful web services, using WSO2 Microservices

Framework for Java (WSO2 MSF4J). These services makes use of Java Persistence

API (JPA) for data manipulation.

The service layer consists of the following Microservices.

 auth : to handle login/logout functionality

 user: to handle authorizations

 consumer : to handle consumer profiles

 drug :to handle drug details and search

 prescription :to handle prescriptions

In general each service implementation consists of the following.

 One or many entity classes

 Service Class implementing RESTful methods

 Classes handling JPA implementations

Additionally, WSO2 MSF4J makes use of annotations, which are meta data to

communicate certain information to the compiler. By default it supports a subset of

JAX-RS (Java API for RESTful Web Services) and additionally the use of JPA (Java

Persistance API) annotations.

51

4.3.2 Entity Class Implementation

Entity classes define an entity which represents an object. i.e. Prescription entity class

represents the Prescription object. Each of these objects directly maps to a row in the

relevant database table. i.e. Prescription object maps to a row in

PM_PRESCRIPTION table. This class defines the mapping of each attribute in the

entity to a column in the relevant database table.

@Entity

@Table(name = "PM_PRESCRIPTION")

public class Prescription {
 @Id

 @TableGenerator(name = "prescription_id_gen", table = "PM_ID_GEN", pkColumnName =
"PM_GEN_NAME", valueColumnName = "PM_GEN_VAL", allocationSize = 1)

@GeneratedValue(strategy = GenerationType.TABLE, generator = "prescription_id_gen")

 @Column(name = "PM_PRESC_ID")

 private int id;

 @Column(name = "PM_PRESC_TYPE")

 private String type;

 @Column(name = "PM_PRESC_C_STATE")

 private String state;

 @Column(name = "PM_PRESC_DATE")

 private Date date;

 @OneToOne(targetEntity = Consumer.class)

 @JoinColumn(name="PM_CONSUMER_ID")

 private Consumer consumer;

 …........

 }

JPA Annotations @Entity, @Table and @Column, are used to specify that the Class is

an entity class, the database table to which the entity class maps and the column in the

table each variable in the entity Class maps to , respectively. @Id indicates the

primary key, which is the column PM_PRESC_ID in the PM_PRESCRIOTION table

of the database.

Certain columns in a tables are foreign keys that map to different tables. Eg;

'Consumer'.

@OneToOne(targetEntity = Consumer.class)

@JoinColumn(name="PM_CONSUMER_ID")

private Consumer consumer;

The above code segment specifies the cardinality of the relationship among

Prescription and Consumer entities using standard JPA annotations. One

52

prescription can have only one consumer. Therefore the annotation @OneToOne is

used specify that each Prescription object corresponds to only one object of the

Consumer class. This relationships is maintained in the mapping on 'consumer'

variable to the PM_CONSUMER_ID, which acts as a foreign key in the

PM_PRESCRIPTION table which is also the primary key of PM_CONSUMER

table.

Constructors are defined in entity classes for the initialization of the relevant object.

Eg: Prescription Entity Class defines the following constructors.

1. Default constructor for new Prescriptions

public Prescription() {}

2. A constructor with arguments for viewing existing prescriptions

public Prescription(String type, String state, Date date, String medicalPractitioner,

String pharmacistComment, String consumerComment) {

 this.type = type;

 this.state = state;

 this.date = date;

 this.medicalPractitioner = medicalPractitioner;

 this.pharmacistComment = pharmacistComment;

 this.consumerComment = consumerComment;

}

In addition entity classes define a set of getter and setter methods for individual

variables which are required by other classes/ services.

Eg:

 public int getId() {
 return id;
 }

 public String getState() {
 return state;
 }
 public void setState(String state) {
 this.state = state;
 }

The following segment defines the table ID generation strategy.

@Id

@TableGenerator(name = "prescription_id_gen", table = "PM_ID_GEN", pkColumnName = "PM_GEN_NAME",

valueColumnName = "PM_GEN_VAL", allocationSize = 1)

@GeneratedValue(strategy = GenerationType.TABLE, generator = "prescription_id_gen")

@Column(name = "PM_PRESC_ID")

The annotation @Id identifies the primary key of the entity. The solution involves JPA

53

ID generation strategy, 'Table strategy' [23] which generates and maintains a unique

ID for a table. For this purpose , the database consists of the table PM_ID_GEN,

which holds the table name and the next primary key value of each table.

4.3.3 Service Class Implementation

Service classes expose resources for data manipulation, which are accessed by the UI

layer for RESTful manipulation of data.

@Path("/pharmacy/prescriptions")

public class PrescriptionService {

…....

@POST

public Response addPrescription(Prescription prescription) {

 prescription.setDate(Calendar.getInstance().getTime());

 PrescriptionState newState = prescription.getStateList().get(0);

 newState.setUpdatedTime(Calendar.getInstance().getTime());

 newState.setStatus("NEW");

 dbLink.addPrescription(prescription);

 return Response.ok()

 .entity("Prescription added successfully.").build();

}

….....

}

The supported REST method is specified by annotations @GET, @POST, @PUT and

@DELETE. @Path annotation specifies the resource path, where as the resource path

'/*' is supported by methods that do not specify a path. Eg : Path for the class is

defined as ' @Path("/pharmacy/prescriptions")', Each resource specifies its path within

the Class. i.e. the path for addPrescription() method is '/*'. Therefore the complete

resource path for addPrescription() method is 'http://{host>:

{port}//pharmacy/prescriptions/'.

Each of these methods are associated with a method in JPA implementation class of

the relevant service. When a service class method is invoked, in turn it invokes the

associated method in JPA implementation class. The above code segment sets the

Prescription date, Prescription state and then invokes the addPrescription() method in

the JPA implementation class using the instance 'dbLink' of the JPA implementation

54

mailto:'@Path
mailto:'@Path

class instance.

dbLink.addPrescription(prescription);

This method triggers the database operations required for resource manipulation. (JPA

implementation details are explained in the next section). Once the method is

executed, a response is returned indicating the method execution status.

 return Response.ok(.entity("Prescription added

successfully.").build();

Service invocation

The UI layer (Angular 2 application) communicates data to the service via a JSON

message. For example when a prescription is added, Angular2 sends the prescription

data to the Microservices layer in the form of a JSON object. Eg:

{
 "id":641,
 "type":"Manual",
 "state":"Collect",
 "date":"Dec 30, 2016 8:50:37 PM",
 "consumer":{
 "id":28,
 "firstName":"Peter",
 "lastName":"Clinton",
 "contactNo":"077734534",
 "email":"peterc@gmail.com`",
 "address":"No 20, Hill Street, Colombo 5",
 "isRegisteredUser":false
 },
 "medicalPractitioner":"A.B.C. George",
 "consumerComment":"",
 "itemList":
 {
 "id":638,
 "drugId":0,
 "drugName":"Betamethazone Ointment",
 "drugStrengthId":4,
 "drugStrength":"0.10%",
 "quantity":3,
 "quantityUnit":"pill",
 "noOfTimes":1,
 "frequency":1,
 "perUnitTime":"Day(s)",
 "beforeOrAfterMeal":"before",
 "duration":1,
 "durationUnit":"Week(s)",
 "instructions":""
 }
 "stateList":[
 {
 "id":15,
 "status":"NEW",
 "updatedBy":"AsanthiK",
 "updatedTime":"Dec 30, 2016 8:50:37 PM",
 "comment":""
 },
 "comment":"verify prmoted"
 },

]
}

Microservices engine serializes the incoming JSON message into a Prescription Java

55

object and invokes 'addPrescription' method in PrescriptioService class, which in turn

invokes 'addPrescription' method of PrescriptionDBLink class by passing the

Prescription object. addPrescription' method of PrescriptionDBLink Class (i.e. the

JPA layer) then creates a SQL query to add the prescription and adds prescription

details to relevant database tables.

4.3.4 Use of Java Persistence API (JPA) for data manipulation

JPA is a Java specification for manipulating data among relational databases and Java

objects or classes. It creates a bridge between Java objects and relational database

tables by exposing high level APIs and Interfaces to access, persist and manipulate

data in databases there by eliminating the need for the services at service layer to

specify SQL queries.

The Microservices engine converts the incoming message to a Java object and

invokes a specified service. The service should define an entity class which maps to

the relevant database tables to be manipulated and access/implement required JPA

APIs/Interfaces in order to communicate with the database layer.

The JPA layer accepts the Java Object passed by the service layer and converts these

Java objects to SQL queries and accesses the database to perform the required

operations.

Figure 4.2 Microservices

Implementation of JPA is as follows.

56

EntityManager

In JPA, an instance of the interface 'EntityManager', which provides data manipulation

functionality represents a database connection, . Every HTTP request makes use of an

EntityManager instance. An instance of the interface 'EntityManagerFactory' is

required to instantiate EntityManager instances. In order to create an

EntityManagerFactory instance, the method 'createEntityManagerFactory()' of

'Persistence' class is made use of. It accepts database connection details.

EntityManagerFactory emf = Persistence.createEntityManagerFactory (
PERSISTENCE_UNIT_NAME, dbConfigs);

This emf object is used to invoke the createEntityManager() method of
'EntityManager' to create a new EntityManager instance.

EntityManager em = emf.createEntityManager();

Database transactions (EntityTransaction) and query related operations (Query)are
preformed using an EntityManager instance obtained in this manner.

Figure 4.3 JPA basic flow

Performing Transactions

The obtained EntityManager instance 'em' is used to access the database to perform

various transactions.

Operations that make database modifications (add, update, delete) are associated with

the interface 'EntityTransaction'. These operations should be performed using the

EntityManager's getTransaction() method.

Eg: em.getTransaction().begin();

 em.getTransaction().commit();

 em.getTransaction().rollback();

57

Also a simple search based on the primary key value can be performed using he find()

method of EntityManager.

 try {

 return em.find(Prescription.class, id);

 }

 finally {

 em.close();

 }

It is also required to invoke the close() method, in order to release resources back to

the EntityManagerFactory at the end of the database operation performed.

Executing Queries

There are requirements to build queries during runtime. These queries may be

complex and not based on a simple primary key based search. Such queries in JPA are

built using the interface 'Query'. When the result type of the query is unknown or in

case it returns polymorphic results, the query is assigned to an instance of interface

type 'Query'. On the other hand, if the result type is known, an instance of the

interface 'TypedQuery' , which is a sub interface of 'Query', is used to hold the query.

The service layer makes use of TypedQueries as the query result types are always

known.

A TypedQuery instance cannot be acquired directly. This is done via the

EntityManager.

Initially, an instance of the interface 'CriteriaBuilder' is created using the operation

'getCriteriaBuilder' of EntityManager instance 'em'.

 CriteriaBuilder cb = em.getCriteriaBuilder();

The CriteriaBuilder operation 'createQuery' is used to build a 'CriteriaQuery' instance

'cq'. By associating it with the required entity type (i.e. Prescription in this case).

 CriteriaQuery<Prescription> cq=criteriaBuilder.createQuery(Prescription.class);

'Root' is the entity which defines the basis for all attributes, joins and paths in the

query. A root instance is generated using the from() method of CriteriaQuery instance

accepting the relevant class.

 Root<Prescription> rootEntry = cq.from(Prescription.class);

The select operations are performed by passing the Root instance to the select()

58

method, to create a new CriteriaQuery instance, using the previously created

CriteriaQuery instance.

CriteriaQuery<Prescription> all = cq.select(rootEntry);

(Here, all elements in the Root instance 'rootEntry' , i.e all Prescription entries are

selected.)

Once the CriteriaQuery instance holding all information required for the query is

obtained in this manner, it is used to create the query using createQuery() method of

the EntityManager instance. The result type of the query is known, therefore it is held

in a 'TypedQuery' object instance.
TypedQuery<Prescription> tq = em.createQuery(all);

The operation getResultList() of 'TypedQuery' is invoked using the above created

instance to hold the results. The retrieved results can be returned as follows.
 return tq.getResultList();

The Figure 4.5 depicts the flow of control form EntityManager to Query.

Figure 4.4 JPA Query control flow

4.3.5. JPA implementation within a Microservice

Each Microservice has a service class and JPA implementation class. The JPA

implementation class handles database operations required for the relevant

microservice.

In the prescription microservice, this is PrescriptionDBLink class. Methods in this

class handle database operations corresponding to resource manipulation methods in

the PrescriptionService Class. When a resource manipulation method in

PrescriptionService class is invoked, it in turn invokes the corresponding method in

PrescriptionDBLink Class that performs database operations.

59

In order for data manipulation methods to function, an EntityManagerFactory instance

should be available. This is passed on the to JPA implementation class by the main

class (Application class) during service initialization at start up via the service class.

The Application class refers to a set of constants that refer to the application and its

database connection details in a separate class named 'Constants;

public class Constants {

 public static class Database {
 public static final String PERSISTENCE_JDBC_URL =

"javax.persistence.jdbc.url";
 public static final String PERSISTENCE_JDBC_USER = "javax.persistence.jdbc.user";
 public static final String PERSISTENCE_JDBC_PASSWORD =

"javax.persistence.jdbc.password";
 public static final String C3P0_MAX_CONNECTION_POOL_SIZE = "hibernate.c3p0.max_size";
 }
 public static final String PERSISTENCE_UNIT_NAME = "org.abc.pharmacy.unit";

 }

These constants are passed into a Map named 'dbConfigs' defined in the Application

class to form the database connection details.

public class Application {
 public static void main(String[] args) {
 Map<String, Object> dbConfigs = new HashMap<>();
 String url = "jdbc:mysql://localhost:3306/pharmacy_db?autoReconnect=true";

 if (url != null) {
 dbConfigs.put(Constants.Database.PERSISTENCE_JDBC_URL, url);}
 String user = "root";
 if (user != null) {
 dbConfigs.put(Constants.Database.PERSISTENCE_JDBC_USER, user);}
 String password = "root";
 if (password != null) {
 dbConfigs.put(Constants.Database.PERSISTENCE_JDBC_PASSWORD, password);}
 String maxSize = "100";
 if (maxSize != null) {
 dbConfigs.put(Constants.Database.C3P0_MAX_CONNECTION_POOL_SIZE, maxSize);}

…....
}

The Application class also creates an EntityManagerFactory instance, by invoking the

createEntityManagerFactory() method of Persistence class. This method accepts the

'dbConfigs' which contains database connection details related to the application

which is identified by the constant ' PERSISTENCE_UNIT_NAME'.

public class Application {
 public static void main(String[] args) {
 …..

EntityManagerFactory emf;

try {
 emf = Persistence.createEntityManagerFactory(
 PERSISTENCE_UNIT_NAME,
 dbConfigs);
}

…....
}

When starting the microservices, each service class is instantiated via its constructors

60

within the main class, which is the Application class.
public class Application {

….

EntityManagerFactory emf;

new MicroservicesRunner()
 .deploy(new PrescriptionService(emf))
 .start();
….
}

Application class passes the EntityManagerFactory object, 'emf' to service class

constructor. For this, service class defines a constructor accepting an

EntityManagerFactory object.
public class PrescriptionService {

private PrescriptionDBLink dbLink;
public PrescriptionService(EntityManagerFactory emf) {
 dbLink = new PrescriptionDBLink(emf);
}

…
}

This constructor instantiates an object of the JPA implementation class (eg:

PrescriptionDBLInk class) named 'dbLink' , by invoking a constructor accepting an

EntityManagerFactory implemented in the JPA implementation class. This way, the

EntityManagerFactory instance is passed over to the JPA implementation class.

public class PrescriptionDBLink {

 private EntityManagerFactory emf;
 public PrescriptionDBLink(EntityManagerFactory emf) {
 this.emf = emf;
 }

When the microservice is started , objects of the service class and the JPA

implementation class are instantiated in this manner.

When a service method is invoked it invokes the relevant JPA implementation class

method which triggers the database transaction related to the operation.

public class PrescriptionService {
….......
public Response addPrescription(Prescription prescription) {
 …......

 dbLink.addPrescription(prescription);
 return Response.ok()
 .entity("Prescription added successfully.")
 .build();
}
…........
}

This method invokes the relevant operation in the JPA implementation class using the

JPA implementation class object instantiated at the service start up.

public class PrescriptionDBLink {

…..............

public void addPrescription(Prescription prescription) {

61

 EntityManager entityManager = null;
 try {
 entityManager = emf.createEntityManager();
 entityManager.getTransaction().begin();
 entityManager.persist(prescription);
 if (prescription.getItemList() != null) {
 for (PrescriptionItem item : prescription.getItemList()) {
 item.setPrescription(prescription);
 entityManager.persist(item);
 }
 }
 if (prescription.getStateList() != null) {
 for (PrescriptionState state : prescription.getStateList()) {
 state.setPrescription(prescription);
 entityManager.persist(state);
 }
 }
 if (prescription.getConsumer() != null) {
 entityManager.persist(prescription.getConsumer());
 }
 entityManager.getTransaction().commit();
 } catch (PersistenceException e) {
 if (entityManager != null) {
 entityManager.getTransaction().rollback();
 }
 throw new RuntimeException("Exception occurred while connecting to the database: ", e);
 } finally {
 if (entityManager != null && entityManager.isOpen()) {
 entityManager.close();
 }
 }
}
…........
}

During the method invocation, an EntityManager object , 'entityManager' is created

by invoking the createEntityManager() method of EntityManagerFactory interface.

This object is used to acquire and begin the database transaction using

getTransaction() and begin() methods.

entityManager.getTransaction().begin();

The persist() method persists an instance of an Entity class. Prescription items and the

prescription state is also persisted as in this method implementation.
entityManager.persist(prescription);

Once data persistence is done, the transaction is committed.

entityManager.getTransaction().commit();

In case an exception occurs the transaction needs to rollback.
entityManager.getTransaction().rollback();

Finally, it is closed to release all EntityManager resources acquired.
entityManager.close();

JPA implementation class also consists of methods performing various database
queries, such as filtering a list of Prescriptions.

public class PrescriptionDBLink {

…..............

 public List<Prescription> getAllPrescriptions() {
 EntityManager entityManager = emf.createEntityManager();

62

 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<Prescription> pCriteriaQuery =

criteriaBuilder.createQuery(Prescription.class);
 Root<Prescription> rootEntry = pCriteriaQuery.from(Prescription.class);
 CriteriaQuery<Prescription> all = pCriteriaQuery.select(rootEntry);
 TypedQuery<Prescription> allQuery = entityManager.createQuery(all);
 …........

 }
….......

}

As explained in the previous section on JPA query implementation, these methods

make use of an EntityManager instance to build a CriteriaBuilder instance which in

turn is used to build a new CriteriaQuery instance. This CriteriaQuery instance is used

to build a Root instance. The Root instance passed to the previous CriteriaQuery

instance to build another CriteriaQuery instance, containing all details required for the

query. This instance is used to build the query and is assigned to an instance of

TypedQuery. The query formed is executed and assigned to a List of type

'Prescription', as there are multiple results returned.

public class PrescriptionDBLink {

…..............

 public List<Prescription> getAllPrescriptions() {
 …...........
 List<Prescription> prescriptionList = allQuery.getResultList();
 …............
 return prescriptionList;
 }
…........
}

4.3.6. Service Start up

The Class 'Application' is the main class of the microservices implementation project.

As explained in the previous section, in order for a service to start the service

constructors accepting EntityManagerFactory objects need to be instantiated via the

MicroservicesRunner().deploy() method. As follows.

new MicroservicesRunner()
 .deploy(new DrugManufacService(emf))
 .deploy(new DrugMgtService(emf))
 .deploy(new PrescriptionService(emf))
 .deploy(new ConsumerService(emf))
 .deploy(new AuthService(emf))
 .start();

Once the service is added here, and the application is run, added services will be

accessible.

63

4.3.7. Sample service

Eg: 'prescriptions' service in the application contains the following classes.

The 'prescription' service consists of the following Classes.

 Entity classes : Prescription, PrescriptionItem, PrescriptionState,

OnlinePrescription

 RESTful resource implementation class : PrescriptionService

 JPA implementation class : PrescriptionDBLink

Figure 4.5 Microservices Structure

64

4.3.8. Exposed resources

Given below are the resources and sample endpoint URLs of back end resources

exposed via these services.

Service CRUD
operation

Description Resource Endpoint URL

Drug GET

All drugs http://localhost:8080/pharmacy/drugs/

Strengths of

a drug
http://localhost:8080/pharmacy/drugs/6/strengths

Prescription

GET

All

prescriptions
http://localhost:8080/pharmacy/prescriptions

Specific

prescription
http://localhost:8080/pharmacy/prescriptions/639

POST

Prescription http://localhost:8080/pharmacy/prescriptions

Promote a

prescription

http://localhost:8080/pharmacy/prescriptions/644/

promote

Demote a

prescription

http://localhost:8080/pharmacy/prescriptions/644/

demote

Consumer
GET

All

consumers
http://localhost:8080/pharmacy/consumer

Specific

consumer
http://localhost:8080/pharmacy/consumer/39

POST Consumer http://localhost:8080/pharmacy/consumer/register

Auth GET

Login
 http://localhost:8080/pharmacy/auth/login

Logout http://localhost:8080/pharmacy/auth/logout

Table 4.1 Exposed resources

65

http://localhost:8080/pharmacy/auth/logout
http://localhost:8080/pharmacy/auth/login
http://localhost:8080/pharmacy/consumer/register
http://localhost:8080/pharmacy/consumer/39
http://localhost:8080/pharmacy/consumer
http://localhost:8080/pharmacy/prescriptions/644/demote
http://localhost:8080/pharmacy/prescriptions/644/demote
http://localhost:8080/pharmacy/prescriptions/644/promote
http://localhost:8080/pharmacy/prescriptions/644/promote
http://localhost:8080/pharmacy/prescriptions
http://localhost:8080/pharmacy/prescriptions/639
http://localhost:8080/pharmacy/prescriptions
http://localhost:8080/pharmacy/drugs/6/strengths
http://localhost:8080/pharmacy/drugs/

4.4 Business Process Implementation

4.4.1 Prescription processing business process

The involvement of the business process within the application is show in Figure 4.8
below.

Figure 4.6 Business process involvement in the solution

Using BPMN2.0 notation the business process can be modeled in the form of an

illustration similar to a state transition diagram. A business process defined this way

acts as a blue print representing the life cycle of a particular process, which in the

case of this project, the prescription life cycle.

How the business process works

For each prescription created, a new instance of the business process is generated,

which is associated with the prescription ID, also known as the 'Correlation ID' in

the context of BPMN notation.

A business process instance created in this manner stays active from start to the

completion of the defined prescription life cycle. This instance is aware of its current

state in the life cycle.

When the status of a prescription needs to be updated, a service call is made to the

business process engine (i.e. Activiti engine), which is the container of business

processes.

The business process engine identifies, the relevant business process depending on the

66

request and then the request is dispatched to the business process instance associated

with the prescription by mapping the Correlation ID.

The service call updates status of the instance and invokes the back-end services

associated with it to update the prescription state in the database.

Figure 4.7 Business Process Engine

4.4.2 Business Process Illustration using Activiti Eclipse 2.0 Designer

A typical business process is composed of a set of sequentially executed tasks.
Activiti Engine, which forms the basis of the Business Process Server supports
several task types namely,

 Start Task : The task that marks the beginning of the flow

 Java Service Task : Tasks that are used ti invoke external Java classes

 User Task : Tasks that are use to model an action carrier out by a human actor.

(Eg: Promoting or demoting the prescription)

 Exclusive Gateway : A gateway controls the execution flow. It uses process

variables to determine the path to continue the process.

When the business process required for the solution is considered it requires all of the
above task types.

67

Given in Figure 4.10 is the Business Process implemented using the Eclipse BPMN
2.0 designer plug-in on eclipse.

When the business process is illustrated using BPMN2.0 notation, the business
process code is automatically generated in XML

68

Figure

4.8 Prescription handling business process in BPMN2.0 notation

69

Task list

Each user task is mapped to an associated service task and each service task is
mapped to the relevant back end Microservice endpoint URL in their property
definitions.

Given below is a list of user tasks and associated service tasks identified for the
process.

Start Task User Task Service Task End Task

Start process Update and perform initial verification Promote to collect state

Collect prescribed items Promote to verify state

Demote to new state

Verify collected items Promote to pay state

Demote to collect state

Collect payment Promote to issue state

Notify payment failure End process

Issue prescribed items Complete End process
Table 4.2 Business Tasks

Next section contains an explanation of how different components of the business
process were implemented.

Process Start

Process start event is added by specifying a name.

Figure 4.9 Process Start – General

70

Figure 4.10 Process Start - Form

When a business process instance is started for a prescription, the prescription ID is
set.

User tasks

The service calls coming from the UI layer (Angular 2 Application), invoke the user
tasks.

Each user tasks should be given an ID and a task name.

Figure 4.11 User task - General

Each user task in the business process is associated with 3 parameters as follows.

 Approved : A boolean value indicating that the user task is triggered

 updatedUsername: User name of the user who performed the user task

 comment: User comments

Figure 4.12 User task - Form

71

Autogenerated XML content for the user task is as follows.

Eg:

<userTask id="usertask1" name="Update and perform initial verification" activiti:assignee="admin"
activiti:candidateGroups="admin">
 <extensionElements>

 <activiti:formProperty id="approved" name="Confirmation" type="enum"
variable="receiverApproval" default="false" required="true">
 <activiti:value id="true" name="approve"></activiti:value>
 <activiti:value id="false" name="reject"></activiti:value>
 </activiti:formProperty>
 <activiti:formProperty id="updatedUsername" name="Updated Username" type="string"
variable="updatedUsername"></activiti:formProperty>
 <activiti:formProperty id="comment" name="Comment" type="string"
variable="comment"></activiti:formProperty>
 </extensionElements>
 </userTask>

Service tasks

Each service tasks should be given an ID and a task name.

Figure 4.13 Service task – General

Each triggered service task invokes the back end operation updating the database

based on the promote/demote action performed.

Eg: When the 'Promote to collect state' service task is triggered, it invokes the back

end microserivce operation with the URL

'http://localhost:8090/msf4j/pharmacy/prescriptions/${prescriptionID}/promote'.

The HTTP request with the input payload and transport headers are constructed in this

configuration.

72

http://localhost:8090/msf4j/pharmacy/prescriptions/$

Figure 4.14 Service task – Main config

Auto generated XML content for the service task is as follows.

Eg:

<serviceTask id="servicetask3" name="Promote To Collect State"
activiti:class="org.wso2.carbon.bpmn.extensions.rest.RESTTask"
activiti:extensionId="org.wso2.developerstudio.bpmn.extensions.restTask.RESTTask">
 <extensionElements>
 <activiti:field name="serviceURL">
 <activiti:expression>http://localhost:8090/msf4j/pharmacy/prescriptions/$
{prescriptionID}/promote</activiti:expression>
 </activiti:field>
 <activiti:field name="method">
 <activiti:string>POST</activiti:string>
 </activiti:field>
 <activiti:field name="outputVariable">
 <activiti:string>prescription</activiti:string>
 </activiti:field>
 <activiti:field name="input">
 <activiti:expression>{ "status":"Collect", "updatedBy":"${updatedUsername}","comment":"$
{comment}"}</activiti:expression>
 </activiti:field>
 <activiti:field name="headers">

<activiti:string>{"Accept":"application/json","Content-
Type":"application/json"}</activiti:string>
 </activiti:field>
 </extensionElements>
 </serviceTask>

73

Exclusive Gateway

Figure 4.15 Exclusive gateway – General

An exclusive gateway decides on the actions to perform on a condition. The negative

flow is marked as the default.

Auto generated XML content for the exclusive gate is as follows.

Eg:

<exclusiveGateway id="exclusivegateway1" name="Exclusive Gateway"
default="flow6"></exclusiveGateway>

Message flow

Figure 4.16 Message Flow – General

All message flows that are associated with a 'promote' action, are marked with a
condition, which requires the 'approved' parameter value to be 'true'.

74

Figure 4.17 Message Flow – Main config

Auto generated XML content for the message flow is similar to the following.

Eg:

 <sequenceFlow id="flow18" sourceRef="exclusivegateway1" targetRef="servicetask3">

 <conditionExpression xsi:type="tFormalExpression"><![CDATA[${approved ==
"true"}]]></conditionExpression>

 </sequenceFlow>

Process End

Process end event is defined as follows.

Figure 4.18 End event – General

75

4.4.3 Invocation and deployment of Business Process

A deployment artifact was created with .bar extension for the implemented business
process and deployed on the WSO2 Business Process Server 3.6.0.

Figure 4.19 Business process running on WSO2 Business process server

The service calls coming from the UI layer (Angular 2 Application), invoke the users

tasks on this business process deployed on WSO2 BPS 3.6.0.

The implementation details from business process invocation to prescription status

update in the database are as follows.

Initially a business process instance associated with a prescription is started. For this

the Angular 2 application contains the 'addPrescription()' method in 'prescription-

detail.component.ts' which invokes the 'initBPMNProcess(id:string)' method of

'prescription.service.ts' along with a prescription ID to initiate a business process

instance for a prescription.

Then, when a status update is made, the relevant business process instance and the

associated user task needs to be identified and invoked. For this, the 'prescription-

detail-component.ts' invokes promotePrescription(id: number, state:

PrescriptionState)' or 'demotePrescription(id: number, state: PrescriptionState)'

methods in 'prescription.serivce.ts' according to the type of status update made. These

methods retrieve the business process instance ID associated with the prescription ID.

Using the process instance ID the next user task in the sequence is identified. This

user task in invoked by invoking the following method in 'prescription.serivce.ts'.

invokeBPMNTask(taskID: number, approve: string, updatedUsername: string,

comment: string)'

76

The triggered user task in turn triggers the associated service task according to its type

of status update made (promote or demote). i.e. If the user task is 'Update and

perform initial verification', the servie task 'Promote to collect state' is triggered.

Then the invoked service task invokes the associated microservice operations to

update the prescription service in the database by constructing a request with the

details provided in the service task configuration.

Eg:

Service URL : http://localhost:8090/msf4j/pharmacy/prescriptions/$

{prescriptionID}/promote

HTTP method : POST

Input payload : {"status":"Collect","updatedBy":"$

{updatedUsername}","comment":"${comment}"}

Transport headers : {"Accept":"application/json","Content-Type":"application/json"}

4.5 Hosting the application

4.5.1 Use of Nginx

NodeJS (Run time environment of the Angular2 Application) exposes its services via

HTTP port 4200. (i.e. http://localhost:4200) WSO2 MSF4J exposes its Java services

via HTTP port 8080. (i.e. http://localhost:8080) and WSO2 BPS exposes its services

via HTTP port 9763.

The browser communicates with NodeJS, WSO2 MSF4J and WSO2 BPS when

operating the application. But the browser is not capable of dealing with requests

from 3 different origins, due to the same origin policy. The origin is the combination

of URI scheme, host name and port. Port differences create the difference in origins of

NodeJS, WSO2 MSF4J and WSO2 BPS. This creates the need to expose all 3

endpoints to the browser via the same port. Nginx comes into play, to facilitate this.

Nginx is an open source reverse proxy server that is used for load balancing. In the

solution it exposes services of NodeJS, WSO2 MSF4J and WSO2 BPS' via a

77

http://localhost:8080/
http://localhost:4200/
http://localhost:8090/msf4j/pharmacy/prescriptions/$

common defined port, so that requests tall 3 origins appear to be to and from the same

port to the browser.

Nginx Configuration

server {
 listen 8090;

 server_name localhost;

 location /msf4j/ {

 proxy_pass http://localhost:8080/;

 proxy_redirect http://localhost:8080 http://localhost:8090/msf4j;

 }

 location /bpmn/ {

 proxy_pass http://localhost:9763/;

 proxy_redirect http://localhost:9763 http://localhost:8090/bpmn;

 }

 location / {

 proxy_pass http://localhost:4200/;

 proxy_redirect http://localhost:4200 http://localhost:8090;

 }

 }

}

'server' configuration specifies the host and port of requests, Nginx listens to. In the

configuration , the Nginx server listens to port 8090 from the localhost.

'proxy pass' specifies which URL to forward the requests hitting a specified 'location'

of the above host/port combination. '. I.e. Requests targeting

http://localhost:8090/msf4j/ will be forwarded to , rhttp://localhost:8080equests

targeting http://localhost:8090/ will be forwarded to http://localhost:4200 and requests

targeting http://localhost:8090/bpmn/ will be forwarded to http://localhost:9763.

'proxy redirect' specifies the mapping of requests originating from other servers to the

host/port exposed via Nginx. I.e Requests coming from http://localhost:8080 will be

mapped to the target URL http://localhost:8090/msf4j, requests coming from

http://localhost:4200 will be mapped to the target URL http://localhost:8090/ and

requests coming from http://localhost:9763 will be mapped to the target URL

http://localhost:8090/bpmn.

This way, Nginx exposes the port 8090 to the browser, so that the browser is

perceived to think that it only deals with port 8090. Nginx takes care of port mapping

of requests with ports of NodeJS, WSO2 MSF4J and WSO2 BPS.

78

http://localhost:8090/bpmn
http://localhost:9763/
http://localhost:8090/
http://localhost:4200/
http://localhost:8090/msf4j
http://localhost:8080/
http://localhost:9763/
http://localhost:8090/bpmn/
http://localhost:4200/
http://localhost:8090/
http://localhost:8080/
http://localhost:8090/msf4j/

4.5.2 Deployment summary

The summary of the complete deployment is as follows.

Layer / Proxy Server Application Type Hosted Server

UI Angular 2 NodeJS v6.9.1

Business Process BPMN2.0 application WSO2 Business Process Server 3.6.0

Business Services Java (JDK 1.8.0) WSO2 Microservices Framework for Java

2.1.0

Database - MYSQL Server 5.6.33

Proxy server - Nginx 1.4.6

Table 4.3 Deployment summary

The application consists of an Angular 2 application , BPMN Application and a Java

Application interacting together via Nginx while reading and writing data from and to

a MySQL database.

4.6 User Interfaces and User Manual

Appendix A contains the User manual for the developed application.

4.7 Summary

The chapter consisted of implementation details of the solution with relevance to each

layer along with the used third party components and solution specific

implementation details. In each layer, the implementation approach followed is

explained within the context of the used third party component and how

interconnections among layers is implemented. Next the author approaches testing

and evaluation of the implemented solution.

79

Chapter 5 : Evaluation &

Testing

80

5.1 Introduction

In this chapter, the approach followed to test the application is described and the

implemented application is assessed with a set of identified test cases. Issues

identified throughout the process were fixed and the results of the final round of tests

is included in the test results. The application is also subjected to an evaluation

process of which the results are analyzed in order to identify the status and potential

for improvement.

5.2 Testing

5.2.1 Test Approach

A test plan was derived to identify and document the test scope, test requirements and

test approaches. (Appendix B).

Based on the test plan, the following testing technique were involved.

 Black box testing (Functional a security scenarios)

This was identified as the most suitable testing technique to test the application. This

technique tests the application from a user perspective, which is important as majority

of the target audience will be non-technical (general public and pharmaceutical

staff), which makes the accuracy and ease of operation a priority.

 White box testing (Back end service validation)

This was used to validate the back end Micro service (Drug service, Prescription

service , Consumer service and Auth Service) operations.

81

5.2.2 Test Results

Functional Tests

The following test cases were identified to verify application functionality (Appendix

C).

 Generic login/logout functionality

 Consumer UI features for consumer registration, prescription upload and

prescription viewing and status verification

 Pharmacy UI features for prescription listing, prescription creation

 Prescription processing work flow

 ID Test case Status

TC 1 Consumer Registration Passed

TC 2 Login with valid credentials Passed

TC 3 [Negative] Login with invalid credentials Passed

TC 4 Logout from the system Passed

TC 5 Consumer uploads a prescription online Passed

TC 6 Prescription state visibility to consumers Passed

TC 7 Consumer loads a prescriptions in his prescription list Passed

TC 8 Role based authorization Passed

TC 9 Receiver views online prescription Passed

TC 10 Receiver rejects online prescription Passed

TC 11 Receiver adds new prescription in the system Passed

TC 12 Verification of role based prescription list visibility to Pharmacy staff Passed

TC 13 Verification of prescription state promotion Passed

TC 14 [Negative] Verification of prescription state demotion Passed
 Table 5.1 Test Cases

Back-end service Validation

The tests were carried out using a test script developed using open source testing tool,

Apache JMeter 2.13. (Appendix D). The back-end service resources specified under

82

section '4.3.3. Exposed resources' are validated via a JMeter script invoking the back-

end services.

The test summary report generated by JMeter is given in Figure 5.1.

83

Figure 5.1 JMeter summary report

84

5.3 Evaluation

5.3.1 Evaluation approach

The evaluation technique used to evaluate the project are as follows

 Questionnaire /demonstration based interviews targeting pharmaceutical

professionals

 Questionnaire followed by application description targeting 20 potential

consumers

The questionnaires used can be found in Appendix E.

5.3.2 Analysis of evaluation feedback by pharmaceutical professionals

The evaluation was carried out with the feedback of pharmaceutical professionals
running the following pharmacies.

 Sams Pharmacy, Stanley Tilakaratne Mawatha, Nugegoda

 Chemicine Pharmacy, Colombo 10, Sri Lanka

Evaluation of the application was carried out based on the following criteria.

Comprehensiveness

The application was perceived as sufficient or fulfilling minimum requirements of the

process by evaluators. Features such as Stock handling, billing and alerting drug

conflicts (Eg: Allergies) when adding drugs to prescriptions were suggested as

improvements in serving consumers better.

Usefulness

Evaluators rated the application as useful to their business, in the events where there

are many prescriptions to be processed simultaneously. The opinion is also biased

85

based on the evaluator and pharmaceutical staff's familiarity with computerized

applications and computer literacy and pharmacy's workload.

Discrepancy avoidance

As per the feedback, prescriptions with a large number of drug items are more error

prone when handled by several staff members. The application addresses a clear

separation of tasks among various parties involved in the process, there by giving

more focus and attention to a specific stage of the prescription processing task at a

time. The application was perceived as a solution to avoid discrepancies by the

evaluators. The application logs all users involved with various stages of a

prescription. This was identified as useful, to evaluate mistakes and discrepancies

made during the process.

Time saving factor

Evaluators stated that the application saves time by avoiding common discrepancies

such as human errors with handling prescriptions with many items. They also stated

that the application may not save much time, compared to the manual process, as

there will be a learning curve for the staff to mature to a point where the application

can be used efficiently. In addition manual handling of prescriptions with one or two

items, may be more efficient than handling it via the application through a life cycle

process.

It should be noted that the evaluator opinion on this is biased based on the workload

and staff availability at the pharmacy. As the solution targets large scale

pharmaceutical businesses, where a large number of prescriptions are handled

simultaneously, the process needs to be regulated. Therefore even though a step by

step process may not be required for such small prescriptions, the application is a

good solution for simultaneous handling of prescriptions..

Relevance of customer UI

It was revealed that computer literate regular customers with frequent access to the

Internet would make use of the customer UI. Depending on their familiarity and

reliance on computerized applications and preference to share medical details over

86

Internet. Evaluators also stated that most of the customers would prefer manual

submission/process as their reliance on the pharmacy is mostly built based on of face-

to-face interaction.. The evaluators exhibited a certain amount of reluctance to accept

a prescription without seeing the actual physical prescription to start the process.

Despite the reluctance, they mentioned that it may not be an issue for prescriptions

with routine/common, non-addictive or non-abusive drugs.

User friendliness

The application was found user friendly by evaluators, as they already use

computerized applications for billing. It should be noted that the familiarity with

handling the process using a computerized system affects the opinion on user

friendliness.

5.3.3 Analysis of evaluation feedback by potential consumers

Application evaluation by potential consumers was carried out using a questionnaire

distributed among 15 potential consumers belonging to different professions including

medical, IT and other professions.

Evaluators representing consumers provided positive feedback and preference for

consumer related features. Remote accessibility including online prescription upload

and status tracking features was perceived as a solution for high time consumption in

manual process.

The evaluation results were analyzed under the following criteria.

87

Consumer preference to upload prescriptions online

Figure 5.2 Customer preference to upload prescriptions online

Evaluators preferred the online prescription submission feature either always or

depending on the prescribed items. A very small percentage did not seem comfortable

with using the feature stating their preference for direct interaction with the pharmacy.

It should be noted that evaluators who may have queries on prescribed drugs/items

may prefer manual hand over of prescriptions to create opportunity to resolve queries

before prescription processing is started.

Consumer preference to use online prescription submission feature

Figure 5.3 Customer preference to use online prescription submission feature

Evaluators rated that this feature is useful as it eliminates the need to physically be

present at the pharmacy to hand over a prescription. Evaluators who seemed

comfortable with uploading prescriptions online preferred this feature, where as those

who were not comfortable with uploading prescriptions online did not find this feature

88

useful. It should be noted that these preferences are based on the evaluator's

experience and reliance on similar applications.

Consumer preference to use online status tracking feature

Figure 5.4 Customer preference to track status online

All evaluators found the online status tracking feature useful, regardless of their

preference to use online prescription uploading feature. A suggestion was made to add

SMS notifications to notify consumers on the prescription status.

5.4 Summary

The application was subjected to a set of tests verifying UI, features, security aspects

and back end services and conformance of application to expected results were

verified. Deviations from expected outputs were addressed and fixed. The application

was also evaluated by pharmaceutical staff possessing expertise in the domain and

potential consumers. The evaluation revealed that the application possess many useful

features. Additionally, improvements were revealed, which can be incorporated as

future work or extensions of the application. The next chapter discusses the project

conclusion and potential for future work.

89

Chapter 6 : Conclusion &

Future Work

90

6.1 Introduction

This chapter concludes the thesis by summarizing the project in terms of work carried

out, revelations and limitations. The author also reveals potential for future work that

can be carried out by extending and improving the implemented application.

6.2 Work carried out

Through out the project the author carried out following tasks.

 Researched into the pharmaceutical prescription handling process.

 Identified issues, limitations and areas of improvement associated with prevailing

prescription handling processes.

 Identified technology based solutions for the above identified issues and

limitations.

 Designed and implemented a application to handle the prescription management

process associating the identified technology based solutions.

 Evaluated the implemented application based on feedback from pharmaceutical

professionals and potential consumers and identified areas of improvement and

extensions.

6.3 Revelations

Based on the work carried out and the evaluation, the following revelations were

made.

 Pharmaceutical companies and staff are now leaning towards computerized

process handling with the understanding that it makes the process efficient and

reduces room for human errors. Staff is willing to use computerized applications

91

as it will have recorded evidence of each step in the process including employee

involvement and time. In contrast there are certain pharmaceutical companies that

are more comfortable with handling the prescriptions manually.

 Potential consumers are very much biased towards using services of this

application as it saves a lot of time from consumer perspective.

 The author's solution does make its contribution to optimize the prescription

handling process and reduce human errors. It can also be improved with additional

features and integration with an enterprise grade applications addressing the

medical domain.

 Use of tools with dedicated purposes (Business Process Management ,

Microservices Server etc) makes it easy to build a flexible and extensible solution

and it keeps the solution focused and dedicated to the requirements of addressed

problem and its domain.

6.4 Lessons Learnt

The author was able to gather the following lessons learnt at project completion.

 As a result of not having sufficient hands on experience on integration of different

tools used, a lot of time has to be spent and it costed a certain amount of rework to

integrate different tools (Eg: Angular 2 with WSO2 Microservices server etc)

during the implementation phase. Therefore it was realized that a lot of hands on

experience is required when using multiple tools/applications for an application,

before carrying out the actual integration of the output of one tool with the input

of another.

 Incremental development is the most suitable approach in implementing projects

where the requirements keep evolving. Since the requirements kept evolving when

the design phase was started, the design had to be changed repeatedly. Since

certain features were implemented with in depth detail from the very beginning,

changing the application with requirement changes was cumbersome. Therefore it

92

was realized that a detailed, in depth design and implementation during initial

stages is not practical in a project with evolving requirements. Rather the design

should be kept minimal, until requirements are evolved.

6.5 Future Work

 Stock handling and billing related functionality can be incorporated with the

application to complete the work flow related functionality. A stock inventory

should be maintain along with item costs to enable this.

 The application can be improved to display drug conflict alerts and allergy

warnings when conflicting drugs are added in a prescription. For this, drug

conflict information should be maintained in the database, against which each

prescription is checked.

 Customer communication can be improved by integrating a SMS sending feature

apart from online status tracking..

 The application can be integrated with a hospital management system where the

prescriptions can be directly submitted to the pharmacy by the practitioner for

processing. This eliminates the need to carry hard copies of prescriptions and will

make the prescription submission process even more efficient.

 It can also be improved to integrate all pharmacy outlets of a particular chain. The

list of outlets can be made available and the consumers can be given the option to

select a pharmacy outlet to search for drugs or submit prescriptions online. In

order to enable this feature , all stock and prescription records maintained in the

database should be associated with a specific pharmacy outlet.

 The solution can be integrated with a dedicated identity management application

to delegate user and role management and separated them from the main purpose

of the application. This enables a variety of authorization options based on

role/permission.

 The solution can also be integrated with a dedicated API management application

93

which enables securing back end service/resources and applying 'Quality of

Service' features (throttling, cashing etc)

 Caching mechanisms such as data caching and browser caching can be

implemented in order to improve response time. Eg: When staff and a large

number of consumers access the services instead of making the same database

call repeatedly, the data retrieved can be cached in the service layer and returned

to users.

 Finally, usage patterns can be monitored to figure out users of different APIs

exposed in the solution. Eg: If consumers frequently request for a new drug via

prescriptions which the pharmacy does not have, monitoring such data would

allow the pharmacy to be aware of consumer requirements and cater to those

requirements.

6.6 Summary

This chapter summarized the project work carried out, revelations and limitations.

Lessons learnt revealed difficulties faced by the author during project implementation,

which can be avoided in future to help develop applications efficiently by avoiding

rework as much as possible. The future work identified can be carried out to add more

sophisticated features and to integrate the application with enterprise grade

applications to widen its scope.

94

References

Research Articles

[1] K. Leggett, "Trends 2016: The Future Of Customer Service,"

in http://b2b.cbsimg.net/, 2016. [Online]. Available: http://b2b.cbsimg.net/

whitepapers/Forrester_s_ Top_10_Customer_Service_ Trends_for_2016-

_The_Future_of_Customer_Service.pdf. Accessed: Jul. 3, 2016.

[2] S. Priya, R. Sumathy, and D. Anuradha, "HUMAN RESOURCE

MANAGEMENT SYSTEM USING SPRING ’REST’FUL WEB SERVICE,"

2015. [Online]. Available: http://ijoer.in/3.2.15/30-34%20CH.SWATHI.pdf.

Accessed: Jul. 3, 2016.

[3] A. Menkudle, S. Sonawane, and A. Jagtap, "Extracting Application Model

from Restful Web Services for Client Stub Generation,"

in http://www.ijcta.com/, 2014. [Online]. Available:

http://www.ijcta.com/documents/volumes/vol5issue1/ijcta2014050134.pdf.

Accessed: Jul. 3, 2016.

[4] J. Lewis and M. Fowler, "Microservices," in martinfowler.com, Martin Fowler,

2014. [Online]. Available: http://martinfowler.com/articles/microservices.html.

Accessed: Jul. 19, 2016.

Web References

[1] Y.-F. Chen, K. E. Neil, A. J. Avery, M. E. Dewey, and C. Johnson, "Prescribing

errors and other problems reported by community pharmacists," vol. 1, no. 4,

Dec. 2005. [Online]. Available:http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC1661637/. Accessed: Jul. 2, 2016.

[2] AIIM, "What is business process management?," 2016. [Online]. Available:

http://www.aiim.org/What-is-BPM. Accessed: Jul. 2, 2016.

[3] N. Palmer, "What is BPM?," 2015. [Online]. Available: http://bpm.com/what-

is-bpm. Accessed: Jul. 2, 2016.

[4] A. Mar, "6 steps to business process management success," Simplicable, 2011.

95

http://bpm.com/what-
http://www.ncbi.nlm.nih.gov/pmc/articles/

[Online]. Available: http://arch.simplicable.com/arch/new/6-steps-to-business-

process-management-success. Accessed: Jul. 2, 2016.

[5] sandra, "Business process modeling techniques with examples - Creately

Blog," in diagrams, Creately Blog, 2014. [Online]. Available:

http://creately.com /blog/diagrams/business-process-modeling-techniques/.

Accessed: Jul. 2, 2016.

[6] C. M. 4 Inc, "Introduction to data services," InfoQ, 2016. [Online]. Available:

https://www.infoq.com/articles/narayanan-soa-data-services. Accessed: Jul. 2,

2016.

[7] "Collaborative solutions,". [Online]. Available:

https://home.meditech.com/en/d/newmeditech/pages/collaborativesolutions.

htm#epres. Accessed: Jul. 2, 2016.

[8] "HP OpenVMS systems - partners,". [Online]. Available:

http://h71000.www7.hp.com/partners/sms/. Accessed: Jul. 2, 2016.

[9] "Horizon Meds Manager™," 2016. [Online]. Available: http://www.health-

care-it.com/company/559028/products/205076/horizon-meds-manager.

Accessed: Jul. 2, 2016.

[10] 2016, "AngularJS," 2010. [Online]. Available:

https://docs.angularjs.org/tutorial. Accessed: Jul. 2, 2016.

[11] jq. Foundation, "JQuery UI," 2016. [Online]. Available: https://jqueryui.com/.

Accessed: Jul. 2, 2016.

[12] "Apache ODE – Apache ODE™," 2008. [Online]. Available:

http://ode.apache.org/index.html. Accessed: Jul. 2, 2016.

[13] "Activiti,". [Online]. Available: http://activiti.org/. Accessed: Jul. 2, 2016.

[14]W. 2 Inc, "WSO2 Business Process Server Documentation," 2005. [Online].

Available: https://docs.wso2.com/display/BPS351/WSO2+Business+Process+

Server+Documentation. Accessed: Jul. 2, 2016.

[15] Oracle, "REST data services," 2016. [Online]. Available:

http://www.oracle.com/technetwork/developer-tools/rest-data-

96

services/overview/index.html. Accessed: Jul. 2, 2016.

[16] W. 2 Inc, "WSO2 Data Services Server Documentation," 2005. [Online].

Available: https://docs.wso2.com/display/DSS350/WSO2+Data+Services+

Server+Documentation. Accessed: Jul. 2, 2016.

[17] camunda community, "BPMN Tutorial - BPMN 2.0 Tutorial for beginners -

learn BPMN," 2016. [Online]. Available: https://camunda.org/bpmn/tutorial/.

Accessed: Sep. 18, 2016.

[18] T. O. Group, "Business process layer," 1995. [Online]. Available:

https://www.opengroup.org/soa/source-book/soa_refarch/busproc.htm.

Accessed: Sep. 18, 2016.

[19] "What is Microservices architecture?," 2016. [Online]. Available:

https://smartbear.com/learn/api-design/what-are-microservices/. Accessed:

Sep. 20, 2016.

[20] A. Azeez, "Performance advantages WSO2 Microservices framework for java

2.0 brings to spring," in Articles, JAXenter, 2016. [Online]. Available:

https://jaxenter.com/performance-advantages-wso2-microservices-framework-

for-java-2-0-to-spring-128340.html. Accessed: Sep. 20, 2016.

[21] The Angular core team, "ARCHITECTURE OVERVIEW," in angular.io,

2015. [Online]. Available:https://angular.io/docs/ts/latest/guide/

architecture.html. Accessed: Jul. 01, 2016.

[22] M. Mohtashim, "JPA - Criteria API," in tutorialspoint.com. [Online].

Available: https://www.tutorialspoint.com/jpa/jpa_criteria_api.htm. Accessed:

Nov. 16, 2016.

[23] P. Kharkar, "Automatic ID creation using jpa table generator,"

in http://www.thejavageek.com/, 2014. [Online]. Available:

http://www.thejavageek.com/2014/01/14/automatic-id-creation-using-jpa-

table-generator/. Accessed: Nov. 15, 2016.

[24] wso2.com, "Creating a BPMN Process", in docs.wso2.com, 2016. [Online].

Available: https://docs.wso2.com/display/BPS360/Creating+a+

97

BPMN+Process#CreatingaBPMNProcess-Creatingtheprocessandservicetask.

Accessed: Oct. 10, 2016

[25] B. Al-Sarori, "Activiti User Guide," in activiti.org, 2016. [Online]. Available:

https://www.activiti.org/userguide/. Accessed: Nov. 29, 2016.

[26] ObjectDB Software Ltd, "Chapter 3 - Using JPA," in ObjectDB, 2010.

[Online]. Available: http://www.objectdb.com/java/jpa/persistence. Accessed:

Oct. 04, 2016.

[27] A. Bein, "Selecting all JPA entitites as criteria query," in Adam Bein’s Weblog,

2013. [Online]. Available: http://www.adam-bien.com/roller/abien/entry/

selecting_all_jpa_entities_as. Accessed: Oct. 4, 2016.

98

Appendices

99

Appendix A – User Manual

Application landing page

Appendix A : Figure 1 Home Page

User Login

This is the login UI for both pharmaceutical staff and consumers.

1. Click on 'Sign' In' menu item on the landing page and enter log in credentials to

log in to the application.

 - Once logged in, the menu items relevant to the user role is loaded.

Appendix A : Figure 2 Login

100

Home page for consumers is as follows.

Appendix A : Figure 3 Consumer Home page

Home page for pharmaceutical staff is as follows.

Appendix A : Figure 4 Staff Home page

Consumer Registration

The menu item 'Sign-up', is available to allow registering in the application.

1. Click on the menu item 'Sign-up' on the landing page.

2. Specify consumer details and click on 'Sign Up' to register the consumer.

- Once registered, consumers can log in and use the Drug search and Online

101

prescription upload related features.

Appendix A : Figure 5 Sign up

Online Prescriptions

Registered consumers and pharmacy staff can view 'Online prescriptions'. For
consumers this shows a list of prescriptions uploaded by the consumer himself. For
pharmaceutical staff this shows a list of prescriptions submitted by consumers .

Upload Prescription Online

Consumers can uploaded a prescription as follows.

1. Click on menu item 'Online prescriptions'.

- This will show a list of online prescriptions submitted by or relevant to the logged in
user. i.e. For a consumer, this shows only the prescriptions submitted by him. For a
pharmaceutical staff user with the role 'Admin' or 'Receiver', this shows a lost of
online prescriptions submitted by all consumers.

- The status of the prescription in the processing cycle is displayed along with each
prescription.

102

Appendix A : Figure 6 Online prescription list

2. Click on 'Add Prescription'.

- This will load the UI to upload a new prescription.

3. Browse and select a scanned copy of the prescription to be uploaded.

- Specify any comments required to be added

4. Click on 'Submit prescription' to submit it to the pharmacy.

- Once submitted, this prescription will be listed under 'Online prescriptions' list for
the pharmaceutical staff.

103

Appendix A : Figure 7 Online prescription

The Admin or Receiver user should enter the prescriptions submitted online under
'Prescriptions' in order to start processing them.

Once the prescription is added, update the 'Internal Prescription ID' with the
prescription ID generated for the manually added prescription

- This associates the online prescription with the internal prescription added by the
pharmacy to track the prescription state.

If a prescription cannot be accepted for processing it should be rejected using the
'Reject' button.

104

Prescriptions

Prescription that have been added for processing are listed under 'Prescriptions'. Each
prescription here is either related to a prescriptions submitted online or a prescription
manually handed over to the pharmacy by a consumer.

1. Navigate to menu item 'Prescriptions' to view a list of prescriptions depending on

the logged in user's role.

- The state of listed prescriptions depend on the pharmacy staff user role as follows.

Role Prescription state

Admin Prescriptions in any state.

Receiver Prescriptions in state 'New'

Collector Prescriptions in state 'Collect'

Verifier Prescriptions in state 'Verify'

Cashier Prescriptions in state 'Pay'

Issuer Prescriptions in state 'Issue'

Consumer Prescription uploaded by consumer himself

Appendix A : Table 1

- Given above it the view of prescription list to an Admin user.

Appendix A : Figure 8 Prescription List

105

Add Prescriptions

1. Navigate to 'Prescriptions' menu item and click on 'Add Prescription'.

- To start processing a prescription it is necessary to add a prescription.

 Appendix A : Figure 9 Add prescription

2. To add prescription items , click on 'Add item' and specify drug, strength and

dosage details and click on 'Add' .

Appendix A : Figure 10 Add prescription item

106

- Then the added item will be listed in the prescription.

Appendix A : Figure 11 Prescription items

3. Specify other required details and click on 'Save' to save the prescription.

- Once saved, this prescription will be listed with the state 'New' in the Prescription
List.

Appendix A : Figure 12 Prescription in New state

Promoting Prescriptions

A 'New' prescription should be promoted to each state sequentially, in order to
process and complete it.

To promote a prescription

1. Login as a user with 'Receiver' role and click on 'Prescriptions' to view a list of

prescriptions in 'New' state similar to 'Appendix B : Figure 12 Prescription in New
state'

Select the prescription required to be promoted to the next level and load it.

- Note the prescription history at the bottom of the prescription.

Click on 'Promote'.

107

 Appendix A : Figure 13 Promote prescription to collect state

- Once promoted, this prescription will be moved to 'Collect' state, which will make it
only viewable by the Admin or users with 'Collector' role.

2. Login as a user with 'Collector' role and click on 'Prescriptions' to view a list of

prescriptions in 'Collect' state.

Appendix A : Figure 14 Prescription in Collect state

Select the prescription required to be prmoted to the next level and load it.

- Note the prescription history at the bottom of the prescription.

Collect the prescribed items and click on 'Promote'.

108

Appendix A : Figure 15 Promote prescription to verify state

- Once promoted, this prescription will be moved to 'Verify' state, which will make it
only viewable by the Admin or users with Verifier role.

3. Login as a user with 'Verifier' role and click on 'Prescriptions' to view a list of

prescriptions in 'Verify' state.

Appendix A : Figure 16 Prescription in Verify state

Select the prescription required to be prmoted to the next level and load it.

- Note the prescription history at the bottom of the prescription.

Verify the collected items and click on 'Promote'.

109

Appendix A : Figure 17 Promote prescription to pay state

- Once promoted, this prescription will be moved to 'Verify' state, which will make it
only viewable by the Admin or users with 'Cashier' role.

4. Login as a user with 'Cashier' role and click on 'Prescriptions' to view a list of

prescriptions in 'Pay' state.

Appendix A : Figure 18 Prescription in Pay state

Select the prescription required to be prmoted to the next level and load it.

- Note the prescription history at the bottom of the prescription.

Make the payment transaction and click on 'Promote'.

110

Appendix A : Figure 19 Promote prescription to pay state

- Once promoted, this prescription will be moved to 'Issue' state, which will make it
only viewable by the Admin or users with 'Issuer' role.

5. Login as a user with 'Issuer' role and click on 'Prescriptions' to view a list of

prescriptions in 'Issue' state.

Appendix A : Figure 20 Prescription in Issue state

Select the prescription and load it.

- Note the prescription history at the bottom of the prescription.

Issue the prescribed items and click on 'Promote' to mark it as 'Completed'.

111

Appendix A : Figure 21 Promote prescription to complete state

- Once promoted, this prescription will be moved to 'Completed' state, which will
make it only viewable by the Admin.

Appendix A : Figure 22 Completed prescription

- Prescription history will be visible as follows when loaded.

Appendix A : Figure 23 Completed prescription history

112

Demoting Prescriptions

If there is an issue with a prescription, it can be sent back to the previous state to
rectify the issues. i.e. If there is an issue with the collected items, the verifier user may
need to send the prescription back to 'Collect' state.

E.g.:

To demote the prescription

1. Login as a user with 'Verifier' role and click on 'Prescriptions' to view a list of

prescriptions in 'Verify' state.

Select the prescription and load it.

Specify a comment describing why the prescription is demoted and click on
'Demote'.

 Appendix A : Figure 24 Demote prescription to collect state

- Once demoted, this prescription will be moved to 'Collect' state, which will make it
only viewable by the Admin or users with 'Cashier' role.

Appendix A : Figure 25 Prescription demoted to collect state

113

 - Prescription history will appear as below.

Appendix A : Figure 26 Prescription history of demoted prescription

114

Appendix B– Test Plan

Objectives

To identify and document the approach and plan for testing the implemented

application.

The objectives of the test plan is to

 Identify the project deliverables that need to be tested

 Identify test requirements and testing strategy

 Identify Test deliverables

Scope

To conduct a comprehensive test to ensure feasibility of using the implemented

application in production. The test should cover back end service testing and end-to-

end scenario verification of the application from both pharmacy and customer

perspective.

Test Coverage

Functional Testing of features and security scenarios

Features

 Consumer registration

 Prescription processing life cycle

 - For online submitted prescriptions

 - For manually added prescriptions

 Security Scenarios

 User login

 Access restrictions based on user role

Back end service testing

The following REST services should be tested.

115

 Drug service

 Prescription service

 Auth services

 User services

 Consumer service

Test Strategy

The following approaches are followed to test the above identified test

requirements.

 Black box testing : To cover all functional and security requirements specified

above.

 White box testing : Test and validate back end micro services using a test script to

maintain the tests and re-run the them easily.

Deliverables

Deliverables include a tested prescription processing application with bug fixes.

116

Appendix C – Test Cases

Test case ID : TC 1

Test case : Consumer Registration

Pre-conditions : The Prescription Processing Application should be loaded

Steps

1 Load Sign Up UI Consumer registration UI loads

2 Specify all mandatory details required
to register and register.

User registration should conclude successfully.

Test case ID : TC 2

Test case : Consumer Login with valid credentials

Pre-conditions : The consumer should be registered in the application

Steps

1 Select Login UI Login UI loads

2 Specify valid login

credentials and log in.

The consumer should be successfully logged in.

Only the prescription upload and prescription list UI

should be visible to the logged in consumer.

Test case ID : TC 3

Test case : [Negative] Login with invalid credentials

Pre-conditions : The Prescription Processing Application should be loaded

Steps

1 Select Login UI Login UI loads

2 Specify invalid login credentials and

attempt to login.

The login should fail. The user should be

notified that the credentials are invalid.

Test case ID : TC 4

117

Test case : Logout from the system

Pre-conditions : The user should be logged into the application.

Steps

1 Click on 'Sign-out' The user should be logged out of the system. The home page should

be loaded.

Test case ID : TC 5

Test case : Consumer uploads a prescription online

Pre-conditions : The consumer should be logged into the application.

Steps

1 Select Prescription Upload UI Prescription Upload UI loads

2 Browse and add a scanned copy of a

prescription and specify any additional

comments required and save the

uploaded prescription.

The prescription should be successfully

uploaded.

A record for the uploaded prescription should

be visible under the prescription list of the user

with the status 'Pending'

Test case ID : TC 6

Test case : Prescription state visibility to consumers

Description : To ensure that consumers can see the prescription state online, as it traverses

through the prescription life cycle.

Pre-conditions :

The consumer should be logged into the application. The consumer should have uploaded

several prescriptions. The prescriptions should be in statuses, Pending , New, Collect, Verify,

Issue, Pay, Completed and Rejected

Steps:

Log in to the application, load prescription list ensure that prescriptions in all the below

states are visible to consumers.

ID Prescription State

6.1 Pending

6.2 New

118

6.3 Collect

6.4 Verify

6.5 Issue

6.6 Pay

6.7 Completed

6.8 Rejected

Test case ID : TC 7

Test case : Consumer loads a prescription in his prescription list

Pre-conditions :

The consumer should be logged into the application.

The consumer should have uploaded a prescription.

Steps

Select Prescription List UI Prescription List UI loads with a list of available prescriptions

for the logged in consumer.

Click on a prescription Prescription should be loaded. This view should be the same as

Prescription upload view.

Test case ID : TC 8

Test case : Role based authorization

Description : To ensure that a user can only view interfaces that are authorized by the role.

Pre-conditions : The user should have a valid account and should have only the roles

specified below..

Steps:

Log in to the application with a user with only the specified role assigned.

ID Role Accessible interfaces

8.1 admin Consumers / Drug / Prescriptions / Online Prescriptions

8.2 receiver Consumers / Drug / Prescriptions / Online Prescriptions

8.3 collector Consumers / Drug / Prescriptions

8.4 verifier Consumers / Drug / Prescriptions

8.5 cashier Consumers / Drug / Prescriptions

8.6 issuer Consumers / Drug / Prescriptions

119

Test case ID : TC 9

Test case : Receiver views online prescription

Pre-conditions :
The receiver should be logged into the application.
There should be online prescriptions.

Steps

1 Select Online

Prescription List UI

Online Prescription List UI loads with a list of available

prescriptions online prescriptions.

2 Click on a prescription Prescription should be loaded. This view should be the same as

Prescription upload view.

Test case ID : TC 10

Test case : Receiver rejects online prescription

Pre-conditions :

The receiver should be logged into the application.
There should be online prescriptions in state 'Pending'

Steps

1 Select Online

Prescription List UI

Online Prescription List UI loads with a list of available

prescriptions online prescriptions.

2 Click on a prescription

in state 'Pending'

Prescription should be loaded. This view should be the same as

Prescription upload view.

3 Specify a comment and

click on 'Reject'

The prescription state in the online prescription list should be

updated as 'Rejected'

Test case ID : TC 11

Test case : Receiver adds new prescription in the system

Description : To ensure that it is possible for receivers to add a new prescription in the

system

Pre-conditions : The receiver should be logged into the application.

Steps

1 Select Prescriptions → Add New

Prescriptions

UI for adding a new prescriptions should be

displayed.

2 Specify details for the new

prescriptions and save

The prescriptions details should be successfully

saved.

120

The added prescriptions should be available in the

list of prescriptions with the status “New”.

Test case ID : TC 12

Test case : Verification of role based prescription list visibility to Pharmacy staff

Description : To ensure that prescriptions listed are filtered based on the user role.

Pre-conditions : Prescriptions in the following states should existing in the system.

- New / Collect/ Verify/ Pay / Issue/ Completed

Steps

ID Role Visible Prescription States

12.1 admin New / Collect/ Verify/ Pay / Issue/ Completed / Rejected

12.2 receiver New

12.3 collector Collect

12.4 verifier Verify

12.5 cashier Pay

12.6 issuer Issue

Test case ID : TC 13

Test case : Verification of prescription state promotion

Description : To ensure that prescription state can be promoted as required

Pre-conditions :

Prescriptions in the following states should existing in the system.

- New / Collect/ Verify/ Pay / Issue/ Completed

A user with only the specified role should be logged in and the prescriptions in the relevant

state should be listed.

Steps

Log in from the role specified under 'Role1' and promote a prescription in the specified state.

Login from a user with user role specified under 'Role2' and verify that the prescription

state is updated to the state given under 'New state'

ID Role1 Prescription States Role2 New state

13.2 receiver New collector Collect

13.3 collector Collect verifier Verify

13.4 verifier Verify cashier Pay

121

13.5 cashier Pay issuer Issue

13.6 issuer Issue admin Completed

Test case ID : TC 14

Test case : [Negative] Verification of prescription state demotion

Pre-conditions :

Prescriptions in the following states should existing in the system.

- Collect/ Verify/ Pay

A user with only the specified role should be logged in and the prescriptions in the relevant

state should be listed.

Steps

Log in from the role specified under 'Role1' and demote a prescription in the specified state.

Login from a user with user role specified under 'Role2' and verify that the prescription

state is updated to the state given under 'New state'

ID Role1 Prescription States Role2 New state

14.1 collector Collect receiver New

14.2 verifier Verify collector Collect

14.3 cashier Pay admin Payment failure

122

Appendix D – Apache JMeter 2.13 Script

Please note that a collapsed version of the XML script file is given here for

clarity, with only one GET resource and one POST resource invocation

expanded.

Appendix D : Figure 1 JMeter script

123

Appendix E – Evaluation Questionnaire

Questionnaire for Pharmaceutical Professionals

Mark the appropriate answers with a 'X'.

1. How do you rate the comprehensiveness of this application to your pharmacy?

Contains enough

functionality

Contains minimum required

functionality

Need more features

2. How useful do you find this application to your pharmacy?

Very useful Might be useful Not useful

3. Do you think that this application will save time in processing prescriptions?

Saves time Might save time Does not save time

4. Do you think this application will help avoid the discrepancies that sometimes

happen during prescription processing?

Avoids

discrepancies

Might avoid discrepancies Does not avoid any

discrepancies

5. Do you think that customers will find this application useful and make use of

online prescription uploading and status checking features?

Will use Might use Will not use

6. How do you rate the user friendliness of the application? (5 being the most use

friendly)

1 2 3 4 5

7. Any suggestions to improve the application?

8. Please state any other comment you would like to add.

124

Questionnaire for potential consumers

When dealing with pharmacies, it is often experienced that consumers have to wait in

line to handover prescriptions and to collect the items after the prescription is

processed. With this solution, you can register at the pharmacy's website and upload

your prescriptions online.

The pharmacy can validate the prescription submitted online and start to process it.

When the prescription is being processed its status is updated and the updated status

can be viewed by consumers.

125

Consumers can check the prescription status online, and come to the pharmacy, once

the processing is done and the pharmacy is ready to accept payments and issue the

items.

At this point the pharmacy can validate the actual prescription if needed.

126

Mark the appropriate answers with a 'X'.

1. Please state your profession.

2. Will the drug search feature be useful to you.

I am comfortable uploading a prescription online

 It will depend on the prescribed items

I I do not want to make copies of my prescriptions available online

3. How comfortable are you to upload a prescription online so that your pharmacy

can start to process it?

I am comfortable uploading a prescription online

 It will depend on the prescribed items

I I do not want to make copies of my prescriptions available online

4. How often do you think you would use this online prescription submission

feature?

I'm willing to use it always

I might use this feature

I will not use this feature

5. How useful do you find the prescription status tracking feature?

Very useful as I will get to know when exactly to go to the pharmacy to collect the
items

It may be useful, but I'm not willing to keep tracking prescription status always

 I don't find it very useful

6. Any suggestions to improve the application?

127

128

