

Masters Project Final Report

December 2016

Project Title Online Training Program on “Acceptance Test Driven
Development” for Pearson Lanka (Pvt) Ltd

Student Name L S DHARMASENA

Registration No. 2013/MIT/018

& Index No. 13550181

Supervisor’s Ms. K.M.G.B Nishakumari

Name

Please Circle the Masters Program Type

appropriate

MIT-eLearning Research Implementation

For Office Use ONLY

Online Training Program on

“Acceptance Test Driven Development”

for Pearson Lanka (Pvt) Ltd

L. S. DHARMASENA

2016

Online Training Program on

“Acceptance Test Driven Development”

for Pearson Lanka (Pvt) Ltd

A dissertation submitted for the Degree of Master of

Information Technology - eLearning

L. S. DHARMASENA

University of Colombo School of Computing

2016

ABSTRACT

The project course work is designed as an on-the-job training on “Acceptance Test

Driven Development” or ATDD for software engineers in Pearson Lanka. At the designing of

the course work, it is focused on applying e-learning principles, methods and tools in order to

plan, design, develop, implement and evaluate the online training program.

 The project is focused on identifying the performance problem in the client’s

organization. Some of the issues are project delivery time is exceeding than the estimated,

communication gap between key stakeholders, and untestable-unmaintainable codes. In this

project, we are trying to analyze the root-cause for the performance problem and find a

solution to solve the performance problem. It is also focused on learner analysis, content

analysis and work setting analysis, which are essential for designing an effective e-learning

course with appropriate content materials and structured courseware. Course work has been

designed in order to support software engineers to give practical knowledge and enabling

them to apply the learnings on their software development work.

 The other main objective of the e-learning project is to provide a flexible learning

environment where software engineers can follow the training without affecting their day to

day work and other commitments. The course workload is designed to be at minimum level

and encourage the software engineers to have discussions among them to share the experience

and knowledge. The project report also includes details of the course lessons with overview

and detailed storyboards of the course and it also describes the design considerations. Lesson

content pages have been designed according to the multimedia principles in order to have

higher learner engagement.

 Details were included in this project report about course material development process

and tools that have used for developed the course materials, such as Articulate storyline as the

authoring tool, Adobe premiere and Adobe Audition as the audio editing tool and TechSmith

Camtasia as the screen recording. In this report, it is also described the course delivery to the

learner and learner activity management.

 Next, it is described the delivery methods that have used to deliver the course work to

the learners using tools such as Moodle LMS and Managing learner activities and providing

help to learners. Pilot test has been carried out with limited audience in order to find out the

effectiveness of the learning materials and course delivery.

 Finally, it is described the evaluation of the project with the learners’ feedbacks,

learner experience and conclusions that were made based on evaluation findings on future

improvements of the project.

ACKNOWLEDGEMENTS

There are number of people, I would like to thank for helping me to complete the e-learning

project with success.

First, I would like to thank Ms. K.M.G.B Nishakumari for her guidance, encouragement

over the last year. Thank you so much for guiding and supervising me to complete the project

successfully.

I would also like to thank Mr. Nalina Wijesundara and the management for allowing me to

pilot the e-learning project in Pearson Lanka (Pvt) Ltd. Thank you so much for the support

you have provided to me from data gathering to final evaluation.

I would also like to thank Mr. Sachith Deshan and Mr. Laksith Liyanage for providing me

the subject matter expert knowledge in order to design and implement the learning content.

I would also like to thank Mr. Himesh Kahatapitiya for his administrative support in

managing the e-learning environment.

I would also like to thank my fellow colleagues in Pearson Lanka (Pvt) Ltd, who has

participated in the pilot project by giving their valuable time and effort and by providing the

valuable feedback and responses.

I would also like to thank my fellow graduate students of MIT-eLearning in University of

Colombo for your help and guidance to design, develop and implement the e-learning project

successfully.

CONTENTS

CHAPTER 1: INTRODUCTION ..10

1.1. PROBLEM ...11

1.2. SOLUTION ..12

1.3. GOALS AND OBJECTIVES ..13

1.4. SCOPE ...14

1.5. MOTIVATION FOR AN E-LEARNING PROJECT ..14

CHAPTER 2: BACKGROUND ..16

2.1. OVERVIEW ..16

2.2. LITERATURE REVIEW ...18

2.2.1. BEST PRACTICES IN THE TRAINING OF FACULTY TO TEACH ONLINE18

2.2.2. SELF-DIRECTED STUDY THROUGH E-LEARNING ..22

2.2.3. ESTABLISHING A POSITIVE LEARNING ENVIRONMENT (PLE)23

2.2.4. ONLINE TRAINING IN AN ONLINE WORLD ...23

CHAPTER 3: PLANNING AND ANALYSIS ...28

3.1. NEEDS ANALYSIS ..28

3.1.1. TARGET AUDIENCE ...29

3.1.2. DATA COLLECTION METHOD ...29

3.2. LEARNER ANALYSIS ...31

3.2.1. AGE DISTRIBUTION ...31

3.2.2. DISTRIBUTION BY INDUSTRY EXPERIENCE ...32

3.2.3. DISTRIBUTION BY JOB CATEGORY ...33

3.2.4. DISTRIBUTION BY AWARENESS OF ATDD PROCESS ..34

3.2.5. DISTRIBUTION OF UNDERSTANDING THE BENEFITS OF ATDD35

3.3. LEARNER TASK ANALYSIS ...37

3.4. TOPIC ANALYSIS..38

3.4.1. COURSE OUTLINE ..38

3.4.2. COURSE MAP ..42

CHAPTER 4: DESIGN ...46

4.1. COURSE OBJECTIVES ..46

4.2. MODULE OBJECTIVES ..46

4.3. INSTRUCTIONAL STRATEGY ..58

4.3.1. OVERALL STORYBOARDS FOR COURSE: ACCEPTANCE TEST DRIVEN

DEVELOPMENT ..58

4.3.2. DETAILED STORYBOARD FOR COURSE: ACCEPTANCE TEST DRIVEN

DEVELOPMENT ..61

CHAPTER 5: DEVELOPMENT ..69

5.1. CONTENT DEVELOPMENT ...69

5.1.1. STRUCTURE OF LESSONS ..69

5.1.2. INTEGRATING MEDIA ELEMENTS ...72

5.2. COURSEWARE DEVELOPMENT ..77

5.2.1. SELECTING THE AUTHORING TOOL ...77

CHAPTER 6: IMPLEMENTATION ..82

6.1. SYSTEM AND INFRASTRUCTURE ..82

6.1.1. LEARNING MANAGEMENT SYSTEM ...82

6.1.2. MOODLE ...82

6.2. STUDENT ENROLLMENT PROCESS ...84

6.3. MANAGING LEARNERS’ ACTIVITIES ..85

6.3.1. USING COMMUNICATION TOOLS ..85

CHAPTER 7: EVALUATION ..87

7.1. LEARNERS’ REACTIONS AND LEARNINGS ...87

7.2. DATA COLLECTION ...88

7.3. ANALYSIS ..89

7.3.1. PARTICIPANT’S FEEDBACK ..90

CHAPTER 8: CONCLUSION AND FUTURE WORK ...93

8.1. INTRODUCTION ..93

8.2. CONCLUSION ..93

8.3. CHALLENGES AND LIMITATIONS ...94

8.3.1. CULTURAL LIMITATION ..94

8.3.2. INFRASTRUCTURAL LIMITATIONS ...95

8.3.3. TECHNOLOGICAL LIMITATION ..95

8.4. FUTURE IMPROVEMENTS ..95

REFERENCES ...97

APPENDICES ..99

APPENDIX A: OVERALL STORYBOARD ...99

APPENDIX B: DETAIL STORYBOARD ..107

LIST OF FIGURES

Figure 1: Organization chart of Pearson Lanka .. 17

Figure 2: Age distribution percentages ... 32

Figure 3: Percentages of distribution by industry experience .. 33

Figure 4: Distribution percentage by Job category ... 34

Figure 5: Distribution percentage by Level of Awareness of ATDD process.......................... 35

Figure 6: Leaner percentage by knowledge on ATDD values ... 36

Figure 7: Course map ... 45

Figure 8: Storyboard of an introduction content page .. 61

Figure 9: Storyboard of interactive content .. 62

Figure 10: Storyboard of a video content ... 66

Figure 11: Storyboard of a drag and drop activity ... 67

Figure 12: Storyboard of an assignment ... 68

Figure 13: Authoring tool ... 78

Figure 14: Using triggers in storyline ... 79

Figure 15: Adding quizzes .. 79

Figure 16: Publishing SCORM package .. 80

Figure 17: Video editing ... 80

Figure 18: Audio editing .. 81

Figure 19: Moodle LMS ... 83

Figure 20: Lesson in moodle .. 83

Figure 21: SCORM package upload to moodle ... 84

Figure 22: Communication in moodle .. 86

Figure 23: Participant’s satisfaction .. 90

Figure 24: Participant’s feedback on consistency of course materials and assessments 91

Figure 25: participant’s feedback on Audio and video quality .. 91

Figure 26: Participant’s feedback on group discussion .. 92

LIST OF TABLES

Table 1: Questionnaire for leaner analysis ... 31

Table 2: Leaner distribution by age .. 31

Table 3: Leaner distribution by industry experience .. 32

Table 4: Leaner distribution count by job category .. 33

Table 5: Leaner distribution by awareness of ATDD... 34

Table 6: Leaner distribution by knowledge on ATDD values.. 35

Table 7: Current project development tasks ... 37

Table 8: Course outline .. 41

Table 9: Lesson components .. 71

Table 10: Use of multimedia in lessons.. 74

Table 11: Usage of animation ... 75

Table 12: Usage of audio .. 76

Table 13: Usage of video .. 77

Table 14: Questionnaire for analyze leaner experience .. 89

10

CHAPTER 1: INTRODUCTION

Information and communication technology has been rapidly improving and advancing in

various areas such as economy, health, governance, administration during the past few

decades. There is no exception for education and training as well. In fact, education has been

the most influenced by the advancement of the Information and communication technology.

E-learning can be considered as the evolution of education from traditional teacher centric

face-to-face learning.

E-learning provides more interactions between learner-instructor, learner-content than in the

traditional learning. With the advancement of the technology, e-learning content has been

enriched by multimedia resources and interactive content. Interactivity helps to improve the

learner engagement with the learning content. E-learning also empowers the learners to

manage their learning mode and create meaningful learning environment.

Collaborative learning experience can be identified as another advancement of e-learning.

Leaners can learn through others by collaboratively working on activities or tasks with the

help of the communication technology. Social learning is one of emerging e-learning concepts

that learners learn through other learners by sharing their experience and knowledge.

With the help of technology, e-learning has removed the temporal and geographical barriers.

In general, e-learning environment learners are learning from different locations and not

necessarily learnings happens on same time. Learning and communication can be happening

in synchronous and asynchronous with various formats ranging from text, voice and video.

E-learning has been identified as effective way of learning, not only in academic area but also

in corporate technical trainings. Including correct tools and technologies, online web based

training can be the best option to deliver the corporate technical training. In this project we are

trying to design, implement and deliver the e-learning solution for technical training, and

discuss about the success and effectiveness of the project. Here we also take a look into tools

and technology that can be used developing and delivering learning contents.

11

1.1. PROBLEM

The Client, Pearson Lanka (Pvt) Ltd is a software development company and their primary

business is developing education and learning platforms, learning materials and tools for

learners, primarily in North America and largely in other parts of the world. In the past few

years, company has identified that their software delivery time has been increased in terms of

what they have actually estimated and planned. And they need to find out the root cause and

solution to the problem.

In order to finding the root cause, performance analysis has been carried out and at the end of

the performance analysis, it is found that, (1) The estimations they have made were based on

the details in the User story. (2) Most of the time, User stories do not have accurate

information. (3) Testers found mismatches of what is expected versus what is delivered at

very later stage, quite closer to delivery time. (4) Correcting one scenario requires regression

testing across the system. (5) Regression testing currently carried out manually and it is time

consuming. (6) Developers are afraid to perform code refactoring due to lack of test coverage.

By analyzing the problem and root cause, it is found that problem is mainly due to lack of

knowledge and practices of agile development, such as (1) Writing proper User stories with

accurate and sufficient details, which enables accurate estimations. (2) Writing early

acceptance test, which improves clarity on requirements. (3) Get Developers, Testers and

Product Owners into same understanding and expectation of the delivery. (4) Automated tests

to reduce testing time and effort. (5) Promote code refactoring as development practice to

improve maintainability and performance.

By conducting a learner assessment, it is found that 4 categories of employee group involve in

the process of delivery and development in the company. (1) Product owners: people who

represent the end user (Learner, Educator or Institute) and bring the requirement or business

needs. (2) Developers: people who develop the software according to the requirement. (3)

Testers: people who test the software for desired outcomes. (4) Management – people who

facilitate the other groups for seamless operations.

In order to improve the delivery time and the quality, it is suggested to the company, it should

provide training on above mentioned areas, (1) Writing proper User stories. (2) Writing early

acceptance testing. (3) Give clarity and understanding among the Product owners, Testers and

Developers by providing better communication tools. (4) Writing Automated Tests. (5)

Writing Unit test to improve code refactoring opportunities.

12

“Acceptance Test Driven Development” course is designed as a solution to the above

identified training needs and it will be developed as an online e-learning course, so whoever

later joining to the company can easily follow the course and get train themselves with the

relevant knowledge and skills

The main symptoms the client experiencing is the project delivery time is exceeding than

what is estimated. The estimation that the team is providing for a particular project is not

accurate enough to construct a project road map. This exposes project at risk in terms of

revenue as well as the customer satisfaction.

In current development practice in Pearson Lanka, teams follow coding-testing approach,

which means developers start the coding first then testers will execute the test plan at the

testing stage and after that, product owners will carry out the user acceptance test (UAT) at

the final stage. Even though developers write unit-test for the implementation and testers

automated the testing, it doesn’t necessarily mean, the implementation has met the acceptance

criteria. If there is a mismatch between the acceptance criteria and the actual implementation,

it can only be found at very late stage and correcting them will affect the delivery deadline

and budget.

It is visible that root cause lies in the software development practice. Main obstacles team

facing is (1) Unclear requirements. (2) Communication Gap between Developer, Tester and

Product owner. (3) Testing effort is high if the implementation needs to be changed. (4)

Because of lack of test automation

1.2. SOLUTION

There can be two options to solve a performance problem (1) Instructional solution. (2)

Management Solution.

However for this particular problem which is related to knowledge and skills and there aren’t

any cost effective management solution can be found as a solution to the problem. It is not a

feasible solution to recruit people who having the knowledge and skills of agile development

practice. Even though company has provided tools such as JIRA, teams are still experiencing

getting unclear, insufficient information for user stories.

As an Instructional solution for the problem, employees need to be provided proper training

on areas, (1) How to write proper User stories. (2) How to writing early acceptance testing.

13

(3) How to get better clarity and understanding among the Product owners, Testers and

Developers. (4) Writing Automated Tests. (5) Writing Unit test for better refactoring.

“Acceptance Test Driven Development” ATDD training is suggested as an Instructional

solution for the performance problem.

1.3. GOALS AND OBJECTIVES

The primary goal of this e-learning project is improve software development efficiency by

introducing the acceptance test driven development methodologies into the software

development process by educating the software engineers through an online course.

And following objectives has been identified in order to support the primary goal

• Train software engineers and product owners to define clear acceptance criteria for

user stories and reduce misunderstanding about the project requirements among

product owners, testers and developers.

• Guide software developers on how to write testable code with test-driven

development

• Guide software developers on how to write effective Unit Tests to validate the

code implementation

• Promote effective refactoring techniques that can be used to improve to software

code quality.

• Encourage to practice test automation in order to test the applications and for fast

release cycles

• Incorporate knowledge of emerging software development techniques,

methodologies and best practices in software industry into the software

development process of the company

14

1.4. SCOPE

Introducing agile development process into current software development practice is needs to

be done gradually and it also has to be practiced over a period of time in order to fully

integrate as the development process. With the limited time we have pilot project is mainly

focus on first step of agile development process that is focus on defining the clear acceptance

criteria for the software development project requirements. Followings have been identified as

deliverables of the e-learning project.

• Identification of target group for the online ATDD training and their current

knowledge of the Test Driven development

• Design modules and learning outcomes

• Design course modules with pre-test for personalize learning paths

• Design course materials for course content and assessments

• Development of course outline, course module, course content and assessments

• Setting up e-learning environment, configure course structure and integrate course

materials with the e-learning system

Proposed course will contain following learning objectives

• Recognize ATDD concepts, principles and practices

• Write acceptance test with specification steps for user story using gherkin

• Link the steps to step definitions using cucumber and asp.net

• Verify the acceptance criteria of the requirement against the code implementation

• Improve the code quality, system performance and design by practicing code

refactoring

1.5. MOTIVATION FOR AN E-LEARNING PROJECT

There are few options analyzed on delivering the instructions. (1) First option is give

workshop training by industry experts to all teams. This option has advantages as well as

many disadvantages. Main advantage is team is getting hands on experience from SMEs

(Subject Matter Experts). They can raise questions and get clarification then and there. But

there are many disadvantages were found from this workshop training. (a) Time constrains;

not every employee has free time to join with workshop training. (b) Company has to bear the

15

cost of unproductive time that employees spend on the training while away from their actual

work. (c) Company has to facilitate resources for the training. (d) People are joining

frequently to the company as well as leaving frequently, means company has to organize more

and more workshops in order to training the staff. (e) Workshop training has limited amount

of time and not every employee will be able to achieve the best out of the training with that

limited amount of time.

(2) Second solution is to have the training as an online web based training. It has many

advantages such as (a) No limited time frame to achieve learning (b) Employee can have the

training at his own pace. (c) Company doesn’t need to organize or facilitate training as people

are joining to company. (d) Employee productivity not affected with the training as it can be

followed at any preferred time

16

CHAPTER 2: BACKGROUND

2.1. OVERVIEW

Target group for this ATDD online training program is software developers in Pearson Lanka

(pvt) Ltd. Pearson Lanka is part of Pearson PLC, world’s leading learning company and

Pearson Lanka is a leading provider of software development and remote infrastructure

management services to multiple technology groups across Pearson. Its 600 member team

based in Colombo office at Orion city is a core part of Pearson’s global learning technologies

organization, and services technology teams across North America, Europe and Australia.

Pearson Lanka development center delivers online education platforms such as MyLab and

Mastering, Learning Studio, OpenClass, REVEL with the collaboration of North Americas

Product and Development teams. In addition to development work, Pearson Lanka involves in

Global Monitoring, Operations and Technical Support around 24x7.

Pearson Lanka follows agile development process as the main development process and along

with DevOps culture which brings development, quality assurance and operations into more

collaborative, even though the corporate structure has separate reporting hierarchy. In the

current development practice, developers and testers are getting the requirements from

product owners in the form of User stories. User story contains the details of the requirement

and acceptance criteria for the expected implementation. Team discusses the user stories on

the priority order and improves the clarity of acceptance criteria or requirement details. After

having prioritized the User Story, developers start working on the implementation and

validate the functional implementation with the help of unit test. If the implementation

satisfies the requirement, it is given to the testers for manual testing. Once the manual testing

is over, testers begin to write the test automation based on the implementation what coders

have delivered to them. In parallel to test automation, implemented feature is given to the

Product owners for the User Acceptance Testing (UAT). Once the user story passes the UAT,

it will be deployed to the production environment and will be available to the end-user. If user

story failed in the UAT, it is asked to change the implementation, and whole cycle needs to be

followed again.

With the current practice, it is found that delivery time will get impacted when there is unclear

user story or misunderstanding among team members about the requirement. Pearson Lanka

considering changing the current process and doing so, reduce the delivery time and quality

17

assurance process can be reinforced. Figure 1 represents the organization chart of Pearson

Lanka.

Figure 1: Organization chart of Pearson Lanka

18

2.2. LITERATURE REVIEW

This section discusses about researches, similar course work and online training programs that

were carried out and learnings from those works. It is hard to find similar online course works

or online trainings within the corporate world in Sri Lanka. However, we can look into similar

trainings, research and surveys that carried out on web-based training in the other parts of the

globe.

2.2.1. BEST PRACTICES IN THE TRAINING OF FACULTY TO TEACH ONLINE

According to the Wolf [1], Distance education is often used as a cost-efficient way to train

employees. Researches revealed the scarcity of scholarly work in this area. To determine best

practices in training for teaching online, a faculty training program was examined and experts

were interviewed. Both educational organizations and corporations offer online education

programs, and there are enough similarities in the way in which these programs are presented

to generalize the findings of their study to corporate training. The study found that successful

online training programs are led by faculty trained to teach online. Training programs are

successful when faculty have computing skills before enrolling in the training, are trained

using the course delivery system with which they will be teaching, have ongoing institutional

support, and are motivated to work in this environment.

Case study has been carried out on the faculty-training program used at the University of

Maryland University College (UMUC) was examined. Data were collected concerning current

best practices in training using distance education, and recommendations based on that data

were made. UMUC is a nontraditional higher education institution focused on working adults

and active duty military personnel. UMUC invests significantly in "the high-technology

infrastructure essential to emergence as a world leader in the delivery of online learning" [2].

Like many businesses, UMUC must train greater numbers of employees (faculty) each year.

The number of online enrollments at UMUC continues to grow; in 1997, online enrollments

were 3,842, whereas in 2004, online enrollments were 126,341. According to Bonk [3],

training activities are aligned with key functions, or core competencies, of organizations.

Because distance education is a core competency of UMUC, it is appropriate to study how the

organization uses distance education to train its faculty.

19

2.2.1.1. CLASSROOM TEACHING HAS NO CORRELATION ON SUCCESSFUL

ONLINE TEACHING

Successful faculty need not have face-to-face teaching experience before teaching online.

According to Muirhead [4], there is no correlation between "quality teaching in the classroom

and teaching effectiveness online." Muirhead concluded that the best instructors in a face-to-

face setting may do poorly in distance learning if they are not comfortable with the

technology.

2.2.1.2. MINIMUM COMPUTING SKILLS ARE REQUIRED FOR SUCCESSFUL

ONLINE TEACHING

Successful faculty should have a minimum set of computing skills before enrolling in training

to teach online. This minimum set of competencies includes use of the computer, the Internet,

and online applications. Henning [5] argues that prospective participants are screened for

technical skills and that additional training be given where the faculty members need it.

At UMUC, faculty is asked to self-assess their technical skills before beginning the training

Although this tutorial has helped increase the success of faculty who take the training,

because faculty self-assess they sometimes still overestimate their abilities. Burke [6]

described what happens when faculty who do not have the required skills attend the training.

In his experience, although instructors were prescreened to see if they had the appropriate

Internet skills, some instructors were not deterred from taking the class even though the self-

assessment showed that they did not have enough skills to use Internet tools well. These

instructors lagged behind other instructors in the course, creating awkward situations where

one instructor struggled in front of colleagues. Some instructors dropped the course; others

did not, although their lack of skills clearly impeded the progress of others and caused two of

the poorly prepared instructors to fail. Effective programs offer separate training for faculty

who need to improve their computing skills before training to teach online, and assessment of

those skills is conducted by means other than self-assessment.

2.2.1.3. EFFECTIVE TRAINING PROGRAMS USETHE COURSE DELIVERY SYSTEM

Effective training programs are designed so that faculty is trained to teach online using the

course delivery system with which they will be teaching. Effective programs also require

20

faculty to work as learners and access the course delivery system from the learner's

perspective. By forcing the teacher to take the role of student, the teacher finally learns to

understand students' "fears, stress, frustrations, and joys in learning in the Web-based

environment" [7].

At UMUC, faculty participates first as students and learns to use the various features of the

system, such as submitting assignments and working in study groups. They are then placed in

the role of teachers, with other trainees assigned to their "class." For this portion of the

training, instructors learn how to create assignments, manage online conferences, and provide

student feedback.

2.2.1.4. SUCCESSFUL TRAINING ENCOMPASSES PEDAGOGY

Successful training encompasses pedagogy, although methods for introducing pedagogy into

the training differ. Methods advocated include article review and discussion [8] collegial

interaction [9], exploring the various technologies available and discussing the pedagogical

basis for their use [10], working in teams [11], and acting as facilitator for class discussions [12].

Pedagogical topics incorporated into training also vary and included effectively managing

threaded discussion [8]; encouraging interaction [9][10][13] adult learning principles [13];

understanding and developing a learner-centered mindset [10]; modeling [8]; managing and

disseminating disparate views [12]; maintaining contact with learners [7]; evaluating learning at

a distance [7]; developing a careful communication style that does not inadvertently offend [7];

selecting, evaluating, and processing the large quantities of information available online [14];

time management [5]; and developing students' cognitive thinking skills [14].

2.2.1.5. ONGOING FACULTY SUPPORT IS NECESSARY

Effective distance education programs provide ongoing faculty support in the form of

mentoring, shadowing, continuing education workshops, or some combination of all of these.

However, it is not known which of these methods or which content in continuing education

workshops is required for effective online teaching. UMUC provides all of these types of

support to its faculty, whether they are teaching online or face-to-face and regardless of

geographical location. Effective programs survey their faculty to determine what types of

support are most desired.

21

2.2.1.6. MOTIVATION IS PRIMARY FACTOR FOR SUCCESSFUL ONLINE

TEACHING

Motivation is the most important factor when choosing faculty to teach online. Successful

online faculties have been noted to be willing to make the transition to the new environment,

with all the attendant risks and rewards. Kearsley [15] noted that online instructors must spend

one to two hours or more every day at the computer reading and responding to students.

Instructors must like interacting with students on a one-to-one basis. They must like

troubleshooting and problem-solving, because they will do a lot of both. Instructors also need

a lot of patience to deal with glitches in technology on a daily basis. Because most interaction

will be written, instructors have to like to write. Even being able to type fast is a benefit.

Fredericksen [16] note that successful online faculty "have a passion for teaching [and] are

willing to rethink how they teach and assess learning".

Successful distance education programs provide incentives for faculty to move to online

teaching. Palloff & Pratt [17] point out that not all faculties are suited for the online

environment, and academic institutions could make serious mistakes when they make their

decisions about who should teach online. The decision regarding who should teach online is

often based on faculty criteria--usually someone considered a content expert or someone with

a reputation for being popular with students in the face-to-face classroom. Being popular or

entertaining face-to-face does not translate to the online environment, where the instructor's

personality is reduced to text on a screen. Focusing on faculty who are content experts may

present a problem. Knowledge of subject matter alone is inadequate preparation for online

teaching.

Additional incentives may be required when a distance education program is new and

institutions are trying to encourage existing faculty to move online; however, it is unclear

which form of incentive is best. Until spring 2004, UMUC paid faculty teaching online an

additional stipend. Because that incentive is no longer necessary to lure faculty to the online

environment, it has been discontinued, and faculty teaching online are paid the same as those

teaching face-to-face. Successful programs choose incentives that are meaningful to their

faculty.

22

2.2.1.7. FACULTY SHOULD BE INVOLVED IN COURSE DESIGN

Faculty should be involved in course design. If faculty are expected to design courses without

the assistance of an instructional designer, instructional design theory is included as part of

the training to teach online. Olcott [18] noted that course design is often a collaborative effort,

even though individual instructors must assume the major leadership role for the design of

their courses. Distance learning courses require working with instructional designers,

production technicians, evaluation experts, and support service units. Instructors new to

distance teaching often feel that their courses have been taken over by "the experts" and that

autonomy and instructional controls have been compromised. However, efforts by all

stakeholders to place instructors at the center of the teaching process make distance learning a

quality experience for instructors and students. UMUC develops courses using a team, which

includes a faculty member, an administrator, an instructional designer, an editor, and a project

manager.

2.2.2. SELF-DIRECTED STUDY THROUGH E-LEARNING

E-Learning has been touted as a significant trend in which the independent learning activities

of the learner (or organization member) tie in with the goals of the organization, as well as a

major revolution seeking a transformation in the notion of human learning. But conversely,

perhaps the advantages of e-Learning are not to be found on the side receiving the instruction,

but rather on the side that is providing the instruction. To put it more frankly, the alarm has

been sounded that while e-Learning has demonstrated its power as a human resource

management tool, it may not exhibit effectiveness as a personal management tool. It has to

arrange e-Learning once again from the perspective of “self-directed study,” and will examine

it from the viewpoint of being a tool for self-management, rather than a tool for managers.

In his critical analysis of the e-Learning revolution, Wesley [19] sounds the alarm over the

introduction of learning management system (LMS) as a supervisory outcome in the guise of

motivation. To define it as simply as possible, he theorizes that e-Learning has become a

means of broadcasting instructional materials through the Internet, intranets, or extranets. In

modern society, where emphasis is placed on creativity and innovation within the

“Knowledge based Economy,” learning by company employees is stressed. He points out that

while this fact lies in the backdrop to the e-Learning boom; e-Learning is becoming

commercialized at the same time. A style of purchasing commercial software and commercial

23

LMS has become entrenched, and there can be no hope that the learning itself will change,

with concerns to the effect that this will only serve to strengthen the management side.

Wesley introduces readers to the fact that frameworks exist in the form of social and

economic theories on supervision (monitoring) and motivation. LMS has three roles: (1)

supervision (monitoring), (2) the collective development and management of learning

contents, and (3) creating a virtual learning community. The author draws attention to the fact

that the strengthening of supervision from simply introducing LMS must not be allowed to

hinder creative and innovative ideas.

2.2.3. ESTABLISHING A POSITIVE LEARNING ENVIRONMENT (PLE)

Tobin [20] claims that a company as a whole must be made into a “Positive Learning

Environment (PLE)” in order to move forward with self-directed learning. A PLE is defined

as having all employees from the president down to regular staff members adopts an attitude

of constantly learning in order to achieve business objectives. It describes an organization in

which all learning activities are directly tied in with the objectives of the individual, group,

and company as a whole, and every member searches for new ideas, tries new approaches,

and jointly learns by sharing ideas with others.

2.2.4. ONLINE TRAINING IN AN ONLINE WORLD

In 2001, Bonk [21] has conducted a survey targeting online training in work related settings

with 201 respondents. These individuals were asked about their Web-based training practices,

experiences, tool preferences, instructional approaches, assessment methods, obstacles, and

support structures. Among those completing this survey were corporate trainers, instructional

designers, training managers, and Chief Learning Officers. The respondents represented a

range of industry types that included information technology, financial services, education,

manufacturing, government, consulting, military, and healthcare. Nearly all of them were

either users of Web-based training or decision-makers regarding it. In addition, most were

active members of training or online learning organizations.

In his finding Bonk has given 15 recommendations for online training environments. First

recommendation is related to survey itself for future surveys should be more focus on selected

industry or job function. Other recommendations will be useful for building an online training

environment

24

• Longitudinal Reports:

The Web is emerging as one of the preferred methods of employee training.

Longitudinal research might explore these trends over the coming years or

decades. For instance, such research might track attitudes about organizational

support structures as well as employee attitudes and achievement related to these

new forms of delivering training. It might also longitudinally explore differences

between organizational interest and commitment in Web-based learning, as well as

the types of online delivery methods utilized and promoted. Additional research

might reveal where and when blended approaches are preferred to either fully

online approaches or conventional face-to-face training. Other possible

longitudinal variables include the reasons various organizations are interested in

Web-based training, the types of training offered, and the principal reasons behind

outsourcing the development and delivery of Web-based content.

• Evaluation and Assessment:

 Alternative online assessment measures need to be developed that address

employee skills and competencies. Given the findings of this survey, organizations

should evaluate the completion rates of their courses as well as the motivational

characteristics embedded within them. In addition, time to competency measures

might be added to, or in some cases, replace traditional ROI measures. Along with

changes in assessment practices, there is a need for comprehensive documents that

survey the forms of online assessment and evaluation commonly used. Such

documents might also provide case examples of success stories and potential

problems in assessment.

• Use of Learning Objects :

Organizations should consider how the use of learning objects in instruction relates

to their strategic planning, including their knowledge management efforts. Such

planning documents are vital since the use of reusable learning objects in online

instruction will proliferate during the coming decade. Of course, the growth of this

field will depend on the development of effective standards for shareable

courseware. Decisions must be made regarding the size and type of objects shared,

systems and tools used for sharing, and the ownership and use of learning objects.

25

• Online Learning Policies and Procedures :

Most organizations still need to develop strategic plans related to e-learning. They

might develop guidelines as to acceptable levels of student course completion,

skill retention, employee satisfaction, and return on investment. In some instances,

they will need to develop clear policies regarding the ownership of online course

materials and applicable royalties. Organizations with significant training concerns

might adopt policies related to instructors and other employees who provide

freelance online instruction for other institutions or organizations. They might also

attempt to clearly articulate why certain courseware tools, policies, and

expectations have been adopted related to Web-based instruction.

• High Growth Tool Development Efforts:

Few online software tools address the diversity of instructional and learning needs

mentioned by participants of this survey. High growth areas revealed in the survey

included tools for online course evaluation, instructor demonstrations, student task

collaboration as well as storytelling, trainer task collaboration, learner critical and

creative thinking, instructor feedback and annotations, and Web resources specific

to one’s field. As the survey report indicated, there is a dearth of pedagogically

interactive and motivating activities within Web-based learning environments. The

first organization to develop a suite of pedagogical tools or templates addressing

motivation, teamwork, and critical or creative thinking (e.g., tools for debate, role-

play, brainstorming, timeline, etc.) will add significant value to the present state of

learning management systems and instructional courseware. Finally, as online

learning globally extends around the world, tools for language support will be

increasingly requested and required.

• Tool Development Partnerships:

Courseware companies might seek partnerships for tool development and testing

with universities and institutes that have well-established learning technology,

information science, and instructional design departments. In serving as a testbed

for emerging tools, technology centers at those universities and institutes can

research and showcase product innovations. They might also spearhead significant

research grant proposals and help form institutional consortia. With numerous

26

technologies, content, and service providers, partnerships among firms and

universities can bridge knowledge gaps and provide comprehensive as well as

competitive solutions.

• Training the Trainer:

Corporations and other learning organizations need to consider not just the learners

but, if facilitators, mentors, or synchronous instructors are utilized, the trainers of

those learners. It will be difficult to train in the online world without a new skill

set. External supports such as Web resources, online “Train the Trainer” courses

and institutes, asynchronous discussion forums and communities, online

mentoring, and noted experts and consultants can offer instructional assistance.

Internally, intranets can provide rich training resources and alternative avenues of

such support. In effect, instructional design support and guidelines can help reduce

the tension felt by those teaching online for the first time. Of course, adequate time

to learn the new systems and tools is vital. While there are masses of available

training resources, the use of Web-based training courses and resources is a

growing area for e-learning service companies.

• Freelance Instructors and Designers :

The survey respondents predicted fast growth for freelance instruction. How their

instruction, training, and consulting wares are bartered online remains an open

issue, however. Already one can list e-learning needs using “request for proposal”

forms from THINQ as well as hire experts from an array of disciplines listed

online at Hungry Minds University. Other innovative organizations might create

tools or systems that foster instructor exchange programs, trainer-to-trainer online

mentoring, trainer online job-sharing, instructional resource exchanges, and

instructor communities in the area of e-learning. Expert pools and knowledge

exchange programs might be common in the near future not only for corporate

trainers and instructors but instructional designers as well.

• Organizational Promotion:

Employees need to be aware of their online learning options. Marketing new

courses with testimonials and up-to-date information will help convince people to

take the online course. There should also be incentives for trainers, instructors, and

instructional designers for high quality course design and delivery.

27

• Organizational Support:

An organization must support a range of people within its e-learning initiatives.

For instance, online learners need adequate technology access and organizational

policies that help them to complete their online course requirements. Instructional

designers new to e-learning require training, system support, and perhaps even

certification. At the same time, online trainers need new skills as well as access to

examples of best pedagogical practices for synchronous and asynchronous delivery

systems. Finally, training evaluators need access to data from e-learning courses

and events. All these e-learning stakeholders and participants demand attention

and support for e-learning success.

• Information Portals:

The survey uncovered a need for online resources such as newsletters, information

on training institutes, course catalogs, library resources, survey and evaluation

tools, and course design guidelines for online training and instruction. As this area

emerges, there is a pressing need to make sense of the available courses, course

platforms or learner-management systems, Web-based delivery tools, and online

resources. While a number of e-learning information portals and reports are

emerging, there remain many areas for development, including the documentation

of the companies in this area, the sharing of best practices and online documents,

and the generation of online trainer ratings.

• Online Communities :

The survey results also exposed a need for an online community of instructors and

instructional designers. Trainers and instructors want expert advice, answers to

teaching problems, stories of online experiences, and mentoring services. While

primitive forms of such communities exist, none address all these needs.

28

CHAPTER 3: PLANNING AND ANALYSIS

A needs analysis needs be conducted at the start of any development effort to determine

whether:

 training is required to fill a gap in professional knowledge and skills; and

 E-learning is the best solution to deliver the training.

The needs analysis help to identify general, high-level course goals.

Target audience analysis is another important step in analysis. The design and delivery of e-

learning will be influenced by key characteristics of the learners (e.g. their previous

knowledge and skills, learning context and access to technology).

Similarly, an analysis is needed to determine the course content:

 Task analysis identifies the job tasks that learners should learn or improve and the

knowledge and skills that need to be developed or reinforced.

 Topic analysis is carried out to identify and classify the course content.

3.1. NEEDS ANALYSIS

Effective training depends on knowing what is required for the individual, the department and

the organization as a whole. With the limited budgets and the need in cost-effective solutions,

organization needs to ensure that the resources invested in training are targeted at areas where

training and development is needed. Target group for the need analysis is software engineers

including product owners, developers and testers. Target population is 600 employees located

in Sri Lanka office. In order to identify the need of having “Acceptance Test Driven

Development” training, few questions (Table 3.1) given to the selected sample of 50

employees from the target population.

Main purpose of the survey is to identify:

 Any direct relationship between clarity of the user stories with delivery time?

29

 How many teams/employees are impacted from having incomplete details on user

stories?

3.1.1. TARGET AUDIENCE

Primary target audience is software engineers directly involve in software development. The

software engineers are ranging from well experienced to novice or fairly fresh to the software

industry. They are also ranging from different technology backgrounds. Currently, Sri Lanka

office has 600 software engineers and 50 from them is selected as the sample group

Secondary audience is their respective line managers; they are either development managers

or quality assurance managers. The primary target audience learnings will be applied to the

project work and thus project managers also considered as Secondary audience.

Territory audience is Higher Management. Cost-benefit and final Return on investment is

important to the higher management in order to decide the successfulness of the e-learning

project.

3.1.2. DATA COLLECTION METHOD

Closed end questionnaire has been used for primary data collection. This questionnaire

contains questions about the nature of the project they are working and issues they are facing

in terms of process. Employees experience and other work experience details were taken from

already existing resources such as employee records from Human resource department.

Table 1 represents the questionnaire that has been given to the sample group and their

responses.

Question Options Result Percentage

1)

How frequently do you

deploy your software

product into the

production environment?

2 weeks 0 0%

1 month 14 28%

3 months 8 16%

6 months 28 56%

2)

How do you rate your

project in terms of on-time

delivery?

Within planned deadline with original

features

4 8%

Within planned deadline with adjusted 26 52%

30

 features

Adjusted deadline with original features 8 16%

Adjusted deadline with adjusted features 12 24%

3)

How do you rate your

project in terms of quality

during last 2 years?

0 Hot fixes; 0 rollbacks 8 16%

1-5 Hot fixes; 0 rollbacks

13 26%

1 rollback or 5-10 Hotfixes 23 46%

More than 1 rollback or more than 10

Hotfixes

6 12%

4)

Most of the defects are

due to

Logic errors in the implementation 9 18%

Corner cases which are not originally

mentioned in the user story

22 44%

Misunderstanding 10 20%

Other 9 18%

5)

How do you rate majority

of the feature requirements

that is given to you in

terms of clarity

Poor and vague 21 42%

Moderately descriptive 18 36%

Excellent 11 22%

6)

How often do you need to

rework the

implementation

Never 4 8%

 1-2 times 15 30%

 3-5 times 17 34%

 6 or more times 14 28%

7)

Why do you need to

rework the

implementation

Due to defects 16 32%

Due to requirement change 18 36%

Due to performance issue 4 8%

Other 12 24%

8)

How frequently do your

requirements get changed

Never 1 2%

1-5 cases 17 34%

6-10 cases 21 42%

More than 10 cases 11 22%

9)

When do your

requirements mostly get

changed

At backlog grooming 7 14%

At sprint planning 4 8%

During the sprint 22 44%

At UAT testing 17 34%

10)

Do you get sample data

for the requirement

Never 16 32%

 Few occasions 27 54%

 Most occasions 6 12%

 Almost every occasion 1 2%

11)

31

How often do you need to

communicate with the

product owner to get the

clarification

Never 0 0%

1-2 times 16 32%

3-10 times 23 46%

More than 10 times 11 22%

12)

Do your original estimate

of implementation is

different from the actual

Less than the estimated 10 20%

 not much of a difference 11 22%

 more than the estimated 29 58%

Table 1: Questionnaire for leaner analysis

After analyzing the results, it was given conclusion on:

 Delivery time has directly impacted when user stories are vague and unclear

 Many teams/employees are impacted from not having sufficient details on user stories

before starting the implementation.

3.2. LEARNER ANALYSIS

Main target audience is software developers, testers and product owners in Pearson Lanka

(pvt) Ltd. Target population is 600 software engineers and to analyze their characteristics

survey was carried on a sample of 50 employees and following details have been captured.

3.2.1. AGE DISTRIBUTION

Table 2 represents the Age distribution data captured from respondents.

Age Group Count

18-25 10

25-35 22

35-45 14

45+ 4

Table 2: Leaner distribution by age

32

Figure 2: Age distribution percentages

As shown in Figure 2, majority of learners are from age group 25-35.

3.2.2. DISTRIBUTION BY INDUSTRY EXPERIENCE

Table 3 represents the work experience of the respondents in the software development

industry

Table 3: Leaner distribution by industry experience

20%

44%

28%

8%

Age Distribution

18-25 25-35 35-45 45+

Industry Experience Count

< 1 Year 7

1-3 Years 17

3-6 Years 14

> 6 Years 12

33

Figure 3: Percentages of distribution by industry experience

As shown in Figure 3, majority of learners have 1-3 years of experience in software industry

3.2.3. DISTRIBUTION BY JOB CATEGORY

Table 4 represents the respondent’s job category according to their job title

Job category Count

Developer 27

Tester 17

Product owner 6

Table 4: Leaner distribution count by job category

18%

43%

36%

3%

Industry Experience

< 1 Year 1-3 Years 3-6 Years > 6 Years

34

Figure 4: Distribution percentage by Job category

As show in Table 4 and Figure 4, Majority of learner are developers

3.2.4. DISTRIBUTION BY AWARENESS OF ATDD PROCESS

Table 5 represents the respondent’s awareness on ATDD process

Level of Awareness Count

Never Heard 13

Never practiced 27

Practicing 10

Table 5: Leaner distribution by awareness of ATDD

54% 34%

12%

Job Category

Developer Tester Product owner

35

Figure 5: Distribution percentage by Level of Awareness of ATDD process

According to the sample data (Figure 5), majority of learners never practiced ATDD process

previously in their software development process.

3.2.5. DISTRIBUTION OF UNDERSTANDING THE BENEFITS OF ATDD

Table 6 represents the distribution of the employees who thinks ATDD will be beneficial for

them to achieve their performance gap of on-time delivery and better maintainability.

Understanding the benefits of

ATDD

Count

No Impact 11

Will Impact 23

No opinion 16

Table 6: Leaner distribution by knowledge on ATDD values

26%

54%

20%

Level of Awareness

Never Heard Never practiced Practicing

36

Figure 6: Leaner percentage by knowledge on ATDD values

According to Table 6 and Figure 6, it is shown majority of sample believe ATDD will impact

on on-time delivery and maintainability

22%

46%

32%

Understanding of the benefits of ATDD

No Impact Will Impact No opinion

37

3.3. LEARNER TASK ANALYSIS

Task analysis is the process of breaking a skill into smaller, more manageable steps in order to

teach the skill. As the smaller steps are mastered, the learner becomes increasingly

independent in his or her ability to perform the larger skill.

Tasks User/Learner

Group

Importance Difficulty Frequency

Feature requirement

Analysis

PO High High Low

User story writing PO High Moderate Moderate

User story estimation DEV/QA Moderate Moderate Moderate

User story prioritization PO Moderate Low Low

Acceptance criteria

creation

PO High Moderate High

Sample data creation PO/QA High Moderate Moderate

User story

review/Grooming

PO/DEV/QA High Moderate Moderate

Code Implementation DEV High High High

Unit test writing DEV Moderate Moderate Moderate

Feature testing QA High High High

Feature test automation QA Moderate High Moderate

User Acceptance test PO High Moderate High

Integration testing QA High High Moderate

Regression QA High High Moderate

Performance testing DEV/QA Moderate High Low

Security testing/review DEV/QA Moderate High Low

Deployment DEV High Moderate Low

Table 7: Current project development tasks

Legend: PO – Product owner, Dev – Developer, QA – Quality assurance engineer

In Table 7, it is reflected the task that learner group should carried on a project development

work and their importance to the project completion with difficulty of performing those task

and the frequency. According to the findings Code implementation and Feature testing is most

important tasks and those needs to be execute frequently and they are mode difficult task to

execute. Even though Unit testing and Test automation not important as Code implementation

or Feature testing in terms of actual project completion but those are helpful for the frequent

code implementation, Feature testing and Performance testing

38

3.4. TOPIC ANALYSIS

3.4.1. COURSE OUTLINE

In order to construct a syllabus, various contents has been gathered and analyzed. Content and

topic analysis mainly based on resources which were available in the web. Content analyzing

has been conduct with the subject matter experts and course outline was created based on the

findings. Table 8 represents the course outline details.

Course: Acceptance Test Driven Development

Unit and Lesson title Description

Unit 1. Introduction to Software Testing The unit describes overview of software

testing principles, Levels of Testing, Testing

Process in different software development

models and introduction to the agile testing

practice and its benefits

Lesson 1.1 – Introduction to Software

Testing

The lesson introduce to the Software Testing

process of the software development. How it

relates to customer experience and business

Lesson 1.2 – Software Testing

Principles

The lesson describes 7 software testing

principles

Lesson 1.3 – Testing Levels The lesson describes testing levels in

software development process

Lesson 1.4 – Testing Process The lesson describes several software

development models and testing process of

each of them

Lesson 1.5 – Traditional Testing

practice

The lesson outlines Traditional testing

practice and its drawbacks

Lesson 1.6 – Agile Testing practice The lesson outlines Agile testing practice and

its advantages

Unit 2. Transitioning to Agile Software

development process

The Unit describes the features of Agile

software development process and what

needs to be done in order to transition into it

from traditional software development

Lesson 2.1 – Introduction to Agile

Software development principles and

The lesson describes Agile software

development principles and its values.

39

values

Lesson 2.2 – Agile Testing Lifecycle The lesson illustrate Agile Testing Lifecycle

Lesson 2.3 – Test Driven

Development

The lesson describes the features of Test

Driven Development

Lesson 2.4 – Test Automation The lesson describes the importance of test

automation, suitable and not-suitable test

cases for automation and steps in automation

process

Unit 3. Writing User stories The Unit describes concept of User story

which represent the specification in agile

development. How to write User story with

acceptance criteria and definition of done

(DOD)

Lesson 3.1 – Introduction to User

Story

The lesson describes the features of User

story, illustrate the User story card and

samples

Lesson 3.2 – Writing Good User Story The lesson describes how to make good user

stories

Lesson 3.3 –

Acceptance Criteria

The lesson describes the Acceptance Criteria

and its characteristics

Unit 4. Unit Tests The Unit describes Unit Testing Principles,

frameworks, Unit Testing tools and Mocking

tools in C# and .NET environment

Lesson 4.1 – Unit Testing Principles The lesson illustrates the Unit Testing

principles and Its importance regards to code

quality and test automation.

Lesson 4.2 – Unit Testing

Frameworks

The lesson describes Unit test frameworks

and its features

Lesson 4.3 – Testing Tools The lesson describes details into Unit testing

tools. particularly MsTest and NUnit, Unit

testing framework for .Net Projects

Lesson 4.4 – Mocking and Stubbing The lesson describes importance of having

40

mocks and stubs in Unit test. And tools for

mocks, particularly Moq and NSubstitute,

mock tools for .Net Projects

Unit 5. Acceptance Test Driven Development The unit introduces the Acceptance Test

Driven Approach, Difference between Test

First and Test Last, Test Driven Development

rhythm and refactoring phase of it

Lesson 5.1 – Introduction to ATDD The lesson describes what ATDD is and how

it helps to bridge communication gap

Lesson 5.2 – ATDD Cycle Describe ATDD cycle of Discuss, Distill,

Develop and Demo

Lesson 5.3 – Definition of Done This lesson describes in-depth details about

Definition of Done and how to get it define in

Agile setting

Lesson 5.4 - Benefits of ATDD This lesson points out Benefits of practicing

ATDD

Lesson 5.5 - Challenges in ATDD This lesson points out Challenges in

practicing ATDD

Lesson 5.6 - ATDD Tools : Cucumber

and Gherkin

This lesson describes Cucumber tool and

Gherkin language, Gherkin Syntax

Unit 6. Sample ATDD Project The unit demonstrates how to start project

with ATDD approach, setting up the

environment

Lesson 6.1 – Setting up Environment The lesson demonstrates how to setup the

.net environment, visual studio with nUnit

and SourceFlow

Lesson 6.2 – Creating a Project The lesson demonstrates how to create

sample project using visual studio

Lesson 6.3 – Creating Specification

and Feature for the Acceptance Test

The lesson demonstrates how to create step

definition feature file using Gherkin language

with SourceFlow

Lesson 6.4 – Add a Failing Test The lesson demonstrates how to add failing

test into the project for a implementation

which is yet to be developed

41

Lesson 6.5 – Implementation to Pass

the Test

The lesson demonstrates how to implement

the code for the feature which results the Test

to be passed.

Lesson 6.6 – Refactor the Code The lesson demonstrates how to refactor the

code with better design and retest for validity

Unit 7. Dealing with Existing Project The unit demonstrates How ATDD can be

applied to an existing Project

Lesson 7.1 – Add Test to Existing

Project

The lesson demonstrates how to add unit test

for the existing project to test features for it

Lesson 7.2 – Update Test to pass The lesson demonstrates how to update the

test with assertions to pass the test

Lesson 7.3 – Mock the test data The lesson demonstrates how to use mock

object to replace real integration for

simplicity and to reduce test execution time

Table 8: Course outline

42

3.4.2. COURSE MAP

Figure 7 represent the course map created with syllabus. It also indicates the learning path

flow between course modules.

Introduction Welcome

Pre-requisite Knowledge

Software Testing Introduction to Software

Testing

Software Testing Principles

Software Testing Levels

Quiz

Testing Process

Quiz

Traditional Testing Practice

Agile Testing practice

Test

Agile Software

development process

Agile Software development

principles and values

Quiz

Agile Testing Lifecycle

43

Quiz

Test Driven Development

Quiz

Test Automation

Test

User story
Introduction to User Story

Writing the Right User Story

Quiz

Converting User stories into

Acceptance Tests

Test

Quiz

Unit Tests Unit Testing Principles

Quiz

Unit Testing Frameworks

Quiz

Testing Tools

Quiz

Mocking and Stubbing

Test

44

Acceptance Test

Driven Development

Introduction to ATDD

ATDD Cycle

Quiz

Benefits of ATDD

Test

Sample ATDD Project Setting up Environment

Creating a Project

Creating Specification and

Feature for the Acceptance

Test

Add a Failing Test

Implementation to Pass the

Test

Refactor the Code

Test

Quiz

Definition of Done

Challenges in ATDD

Introduction to Cucumber &

Gherkin

Quiz

45

Figure 7: Course map

Congratulation Page

Dealing with Existing

Project
Add Test to Existing Project

Update Test to pass

Quiz

Mock the test data

Test

46

CHAPTER 4: DESIGN

4.1. COURSE OBJECTIVES

Main goal of delivering Acceptance Test Driven Development course is to improve

the quality of the software development and reduce the delivery time by defining clear

acceptance criteria and developing clean and testable code.

And it is expected to have following objectives as well

 Learners will be able to define clear acceptance criteria for user story and reduce

conflicts between product owners, testers and developers

 Learners will be able to write testable code with test-driven development

 Learners will be able to write effective Unit Tests to validate the code

implementation

 Learners will be able to apply mock objects for unit tests

 Learners will be able perform code refactoring effectively

 Learners will be able to create Test Automations.

 Learners will be able to apply new technologies in software development industry

 Learners will be able to reduce code complexity in their projects

4.2. MODULE OBJECTIVES

Unit 1. Introduction to Software Testing

Learning Objective:

At the end of this unit, learners should be able to describe the purpose of software testing,

different testing levels, processes. And should be able to differentiate agile and traditional

practices

Lesson 1.1 – Introduction to Software Testing

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the purpose of software testing

 Evaluate significance of finding defects at early stage in terms of cost of fixing

Main Target Audience:

Product owners, Testers, Developers

47

Guidelines for Author:

This lesson introduces the Software Testing process of the software development. How it

relates to customer experience and business. How the cost of fixing the defect depending on

the stage it was found

Learning Steps Scope notes for author

What is software Testing? Brief description of what software testing is, importance and

purpose of software testing and how quality drives customer

satisfaction and business

What are the Stages that

defect can be found and how

the cost of fixing is

depending on the stage

Illustrate the fixing cost and stage dependency

Lesson 1.2 – Software Testing Principles

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe 7 key principles in software testing

Main Target Audience:

Product owners, Testers, Developers

Guidelines for Author:

The lesson describes 7 software testing principles. Testing shows the presence of bugs,

Exhaustive testing in impossible, Early testing, Defect clustering, The pesticide paradox,

Testing is context dependent, Absence of errors fallacy.

Learning Steps Scope notes for author

Identifying Main scenario

and alternate scenarios of a

test case

Illustrate the main scenario of a test case and alternate

scenarios of it

Examples for each principle Illustrate examples for each test principle

Lesson 1.3 – Testing Levels

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the different Testing Levels

 Identify Objectives of each Testing Level

 Identify execution role of each Testing Level

Main Target Audience:

Testers, Developers

Guide line for Author:

This lesson describes testing levels in software development process. Unit Testing, Integration

Testing, System Testing, Acceptance Testing

Learning Steps Scope notes for author

What are Testing Levels? Illustrate 4 Testing Levels and Objectives

48

Lesson 1.4 – Testing Process

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe different software testing processes with respect to different software

development models

 Identify key features in each software testing process

Main Target Audience:

Testers, Developers

Guide line for Author:

This lesson describes several software development models and testing process of each of

them

Learning Steps Scope notes for author

What are different software

development models which

used in the industry?

Brief Descriptions for each software development models and

its testing process

Identify features of each

testing process

Illustrate key features of each testing process and phases of the

process

Lesson 1.5 – Traditional Testing practice

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the Traditional Testing practice

 Identify the drawbacks of Traditional testing practice

Main Target Audience:

Product owners, Testers, Developers

Guidelines for Author:

This lesson describes Traditional testing practice and its drawbacks

Learning Steps Scope notes for author

What is Traditional Testing? Describe Traditional Testing Approach

What are the drawbacks of the

Traditional testing?

Explain drawbacks of Traditional Testing Approach with

respect to time and cost

Lesson 1.6 – Agile Testing practice

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe Agile Testing practice and features

 Differentiate Agile Testing practice vs Traditional Testing practice

 Evaluate Advantages of Agile Testing practice

Main Target Audience:

Product owners, Testers, Developers

Guide line for Author:

This lesson outlines Agile testing practice and its advantages.

Learning Steps Scope notes for author

What are the features of Agile

Testing practice?

Describe Agile Testing practice and its features

What are the Advantages of

Agile Testing Practice

Illustrate advantages of agile testing practice

49

Unit 2. Transitioning to Agile Software development process

Learning Objective:

At the end of this unit, learners should be able to mapping agile principles and values to

testing, describe agile testing life cycle, identify benefits of TDD

Lesson 2.1 – Introduction to Agile Software development principles and values

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe agile development principles

 Recognize values delivers by agile development

Main Target Audience:

Product owners, Testers, Developers

Guide line for Author:

This lesson describes Agile software development principles and its values

Learning Steps Scope notes for author

What is agile manifesto? Illustrate the agile manifesto and core values

What are agile development

principles?

Illustrate agile development principles

How testing should happen

in agile development model

Describe Agile testing in agile software development model

Lesson 2.2 – Agile Testing Lifecycle

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe Key points in Agile Testing

 Describe 3 Phases in Agile Testing Lifecycle

 Identify output of each phase

 Describe Agile Testing approaches

Main Target Audience:

Product owners, Testers, Developers

Guide line for Author:

This lesson illustrate Key points in Agile Testing, Phases of Agile Testing Lifecycle and

output of each phase

Learning Steps Scope notes for author

What are Key points

in agile Testing

Illustrate key points in agile testing

What are the phases in

Agile Testing

lifecycle and how it’s

different from

Traditional Testing

lifecycle

Illustrate phases in agile testing lifecycle and describe the differences

between traditional testing lifecycle

What are the different

Agile Testing

approaches currently

practicing?

Describe different agile testing approaches. Along with development

approach and Sprint + 1 Approach

50

Lesson 2.3 – Test Driven Development

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the features of Test Driven Development

 Describe the benefits of Test Driven Development

Main Target Audience:

Product owners, Testers, Developers

Guide line for Author:

This lesson describes features of Test Driven Development

Learning Steps Scope notes for author

What is Test Driven

Development?

Describe features of Test Driven Development

Why Test Driven

Development? What

are the benefits?

Illustrate benefits of Test Driven Development

Lesson 2.4 – Test Automation

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the goals of Automation

 Describe why automated testing is important

 Identify suitable test cases for Automation

 Identify non-suitable test cases for Automation

 Describe steps in Automation process

Main Target Audience:

Testers

Guide line for Author:

This lesson describes the importance of test automation, suitable and not-suitable test cases

for automation and steps in automation process

Learning Steps Scope notes for author

Why Test

Automation?

Describe goals of Test automation and why test automation is needed

in software development

What to Automate? Illustrate the criteria of suitable test cases for automation and criteria

of non-suitable test cases

How to Automate? Illustrate steps in automation process

Unit 3. Writing User stories

Learning Objective:

At the end of this unit, learners should be able to describe components of user story,

differentiate bad user story from a good user story, demonstrate how to write proper user story

Lesson 3.1 – Introduction to User Story

Learning Objectives:

At the end of this lesson, learners should be able to:

 Identify components of a user story

 Describe how user story fits into requirement specification

Main Target Audience:

51

Product owners, Testers, Developers

Guide line for Author:

This lesson describes the features of User story, illustrate the User story card and samples

Learning Steps Scope notes for author

What is User story? Illustrate components of a user story

How User story

different form

requirements

Illustrate how and why user story is different from requirement

specification

Lesson 3.2 – Writing Good User Story

Learning Objectives:

At the end of this lesson, learners should be able to:

 Identify characteristics of a good user story

 Demonstrate writing a good user story

Main Target Audience:

Product owners

Guide line for Author:

This lesson reviews the examples of bad user stories and describes how to write good user

stories with clear acceptance criteria

Learning Steps Scope notes for author

What are the

characteristics of a

good user story

Illustrate components of a good user story

How to write a good

user story

Demonstrate examples of writing clear user stories

Lesson 3.3 –Acceptance Criteria

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe structure of acceptance criteria

Main Target Audience:

Product owners, Testers

Guide line for Author:

This lesson describes structure of Acceptance criteria, introduce to the Gherkin language and

describes how to write user stories in feature files using Gherkin language with

Give/When/Then Statements

Learning Steps Scope notes for author

What is Acceptance

Testing?

Describe Acceptance Testing and how to derive acceptance criteria

from a user story

How to write an

Acceptance Criteria?

Illustrate writing sample acceptance criteria using Gherkin language

Unit 4. Unit Tests

Learning Objective:

At the end of this unit, learners should be able to describe unit testing principles, how unit test

improves quality of the software, recognize the unit testing frameworks and tools,

demonstrate writing unit test

52

Lesson 4.1 – Unit Testing Principles

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe Unit Testing principles

 Recognize importance of unit test with respect to code quality

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson illustrates the Unit Testing principles and Its importance regards to code quality

and test automation

Learning Steps Scope notes for author

What is Unit Testing? Describe definition of unit Testing

Why Unit Testing? Describe the importance of writing unit test

What are the Unit

testing principles?

Describe Unit testing principles

Lesson 4.2 – Unit Testing Frameworks

Learning Objectives:

At the end of this lesson, learners should be able to:

 Recognize Unit Testing Frameworks of Visual Studio

Main Target Audience:

Developers

Guide line for Author:

This lesson describes Unit test frameworks and its features

Learning Steps Scope notes for author

What are the features

of Unit test

framework in VS?

Demonstrate Unit test framework using Visual Studio

Lesson 4.3 – Testing Tools

Learning Objectives:

At the end of this lesson, learners should be able to:

 Recognize Unit testing tools for .NET projects and Visual studio

 Demonstrate installing unit testing tools

Main Target Audience:

Developers

Guide line for Author:

This lesson describes details into Unit testing tools. particularly MsTest and NUnit, Unit

testing framework for .Net Projects

Learning Steps Scope notes for author

What are available

Unit testing tools?

Describe Unit testing tools available for .NET environment

How to install the

Unit testing tools

Demonstrate installing NUnit using Visual Studio

53

Lesson 4.4 – Mocking and Stubbing

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe usage of having Mocks and Stubs in Unit Tests

 Demonstrate installing and configuring Mocking tools with .NET environment

Main Target Audience:

Developers

Guide line for Author:

This lesson describes importance of having mocks and stubs in Unit test. And tools for mocks,

particularly Moq and NSubstitute, mock tools for .Net Projects

Learning Steps Scope notes for author

What is Mock and

Stub

Describe the Mocks and Stubs and its role in Unit test

How to install Mock

tools?

Demonstrate installing Moq into Visual Studio

Unit 5. Acceptance Test Driven Development

Learning Objective:

At the end of this unit, learners should be able to describe what are acceptance tests, who

creates acceptance test, when created, where to used, why use them

Lesson 5.1 – Introduction to ATDD

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe how ATDD helps to bridge the communication Gap

 Recognize the value of ATDD

Main Target Audience:

Product owners, Testers, Developers

Guide line for Author:

Learning Steps Scope notes for author

What is ATDD Introduce the ATDD approach

Lesson 5.2 – ATDD Lifecycle

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe ATDD cycle

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson illustrates the Acceptance Test Driven Development cycle

Learning Steps Scope notes for author

ATDD cycle

Discuss, Distill,

Develop, Demo

Describe ATDD cycle of Discuss, Distill, Develop and Demo

54

Lesson 5.3 – Definition of Done

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the purpose of definition of Done

 Apply step of clarify the definition of Done for User story, Iteration and Release

Main Target Audience:

Developers

Guide line for Author:

This lesson describes in-depth details about Definition of Done and how to get it define in

Agile setting

Learning Steps Scope notes for author

What is DoD Describe briefly DoD

What isn’t DoD Describe deference between DoD and Acceptance Criteria

Lesson 5.4 – Benefits of ATDD

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the Benefits of ATDD

Main Target Audience:

Developers

Guide line for Author:

This lesson points out Benefits of practicing ATDD

Lesson 5.5 – Challenges in ATDD

Learning Objectives:

At the end of this lesson, learners should be able to:

 Describe the Challenges in ATDD

Main Target Audience:

Developers

Guide line for Author:

This lesson points out Challenges in practicing ATDD

Lesson 5.6 – ATDD Tools : Cucumber and Gherkin

Learning Objectives:

At the end of this lesson, learners should be able to:

 Identify the Gherkin Syntax

 Write feature files using Gherkin

Main Target Audience:

Developers

Guide line for Author:

This lesson describes Cucumber tool and Gherkin language, Gherkin Syntax

Learning Steps Scope notes for author

Identifying the feature

file structure

Write feature file

using Gherkin for a

given user story

55

Unit 6. Sample ATDD Project

Learning Objective:

At the end of this unit, learners should be able to demonstrate setup a fresh project using

ATDD approach

Lesson 6.1 – Setting up Environment

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate setting up .net environment

Main Target Audience:

Developers

Guide line for Author:

This lesson demonstrates how to setup the .net environment, visual studio with nUnit and

SourceFlow

Learning Steps Scope notes for author

How to install nUnit? Demonstrate how to install nUnit using Visual studio and NuGet

Package Manager

How to Install

SourceFlow

Demonstrate how to install SourceFlow using Visual studio and

NuGet Package Manager

Lesson 6.2 – Creating a Project

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate how to create a fresh Project

Main Target Audience:

Developers

Guide line for Author:

This lesson demonstrates how to create sample project using visual studio

Learning Steps Scope notes for author

How to Create a .net

Project?

Demonstrate the steps to create .NET project using Visual Studio

Lesson 6.3 – Creating Specification and Feature for the Acceptance Test

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate How to create Acceptance Criteria

Main Target Audience:

Product owners, Developers, Testers

Guide line for Author:

This lesson demonstrates how to create step definition feature file using Gherkin language

with SourceFlow

Learning Steps Scope notes for author

What is feature file? Describe feature file in SpecFlow

How to create feature

file?

Demonstrate creating feature file for acceptance test using SpecFlow

How to write

Acceptance Test into

Demonstrate writing Acceptance Test using Gherkin language

56

feature file?

Lesson 6.4 – Add a Failing Test

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate how to create failing test file from feature file

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson demonstrates how to add failing test into the project for a implementation which is

yet to be developed

Learning Steps Scope notes for author

How to create failing

Test file?

Demonstrate how to generate code using acceptance scenarios in

feature files

How to run the Test? Demonstrate test execution which will fail the test initially

Lesson 6.5 – Implementation to Pass the Test

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate steps needed to pass the acceptance test

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson demonstrates how to implement the code for the feature which results the Test to

be passed.

Learning Steps Scope notes for author

How to pass the test? Demonstrate code implementation which will eventually pass the

Acceptance Test

Lesson 6.6 – Refactor the Code

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate code refactoring and retesting the acceptance test

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson demonstrates how to refactor the code with better design and retest for validity

Learning Steps Scope notes for author

How to refactor the

code?

Demonstrate code refactoring, retesting and validating the result

57

Unit 7. Dealing with Existing Project

Learning Objective:

At the end of this unit, learners should be able to demonstrate ATDD implementation to an

existing project

Lesson 7.1 – Add Test to Existing Project

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate how to add test for existing project

Main Target Audience:

Developers, Testers

Guide line for Author:

This lesson demonstrates how to add unit test for the existing project to test features for it

Learning Steps Scope notes for author

How to add Test for

existing project

Demonstrate steps to add test of existing Project

Lesson 7.2 – Update Test to pass

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate Test modification to pass the Test

Main Target Audience: Developers, Testers

Guide line for Author:

This lesson demonstrates how to update the test with assertions to pass the test

Learning Steps Scope notes for author

How to update the test

in order to pass

Demonstrate how to update the test for pass the test execution

Lesson 7.3 – Mock the test data

Learning Objectives:

At the end of this lesson, learners should be able to:

 Demonstrate using mock object to replace real object or service

Main Target Audience: Developers, Testers

Guide line for Author:

This lesson demonstrates how to use mock object to replace real integration for simplicity and

to reduce test execution time

Learning Steps Scope notes for author

How to use mock

object?

Demonstrate using mock object to replace real database integration

58

4.3. INSTRUCTIONAL STRATEGY

4.3.1. OVERALL STORYBOARDS FOR COURSE: ACCEPTANCE TEST DRIVEN

DEVELOPMENT

This section represents the overall storyboard of a selected module of ATDD course.

Complete overall storyboard for the all modules can be found in “Appendix A”. The selected

overall storyboard represent learning content types such as text, multimedia, interactive

content, activities and assessments include in a particular course module.

Visual Explanation

Introduction to ATDD

Objectives:

<Learning objectives of this

module>

Structure of the Module:

<Topic List>

This page describes objectives of this

module, and topics covered by the module

<Topic List>

What is ATDD

Difference between ATDD and TDD

Process of the ATDD

Details of ATDD stages

Benefits and challenges in ATDD

Image: shows ATDD process figure

What is ATDD

Definition of ATDD

This page describes the definition of ATDD.

Image: shows figure of transforming TDD

to ATDD

TDD -> ATDD

ATDD vs TDD

TDD Focus

ATDD Focus

This page describes TDD focus area and

difference between ATDD focus.

Image shows ATDD process and TDD in its

core

Image

Image

Image

59

ATDD Process

This page contains an Animation of ATDD

process stages of

Discuss,

Distill,

Develop,

Demo

When user hover over any stage,

explanation will be provided for that stage.

Activity (Drag & Drop)

This page contains a Drag & Drop Activity

in order to identify learners’ knowledge on

ATDD process.

Collections of Activities given to the user.

User must select correct activities related to

ATDD process and should match into

correct stage

Activities:

Create User case diagrams (not related)

User Story

Unit Test

Coding

Requirement Analysis

Performance Testing (not related)

Architecture reviews (not related)

…

Definition of Done

This page describes What DOD is. And the

importance of having clear DoD

Image: show questions to ask in order to get

clear DoD

How will user use the solution? (examples)

How we can demonstrate it?

How will we test it?

Audio:

Clip will play DoD and each of above

questions to get to the DoD

Benefits of ATDD

For Business Team:

For Developers:

For Testers:

Animation

Image

Image

60

Challenges of ATDD

Cultural Challenge:

Slicing Requirements:

Defining DoD:

Quiz

MCQ

Based on DoD, Benefits of ATDD and

Challenges

Introduction to Gherkin

Gherkin Syntax

Feature: User Registration

Check for home page

See of the registration is working

Also verify if the register user is

displayed

Background:

Given: Clear already created user

before begin

Scenario: Register user with minimal password

combination

Given I’ve opened the website

And I’m in the homepage

When I click the register link

Then I should see the register page

And I fill the form with details

|user name | password | cPassword|

|lahiru | abc@123 | abc@123 |

Few Examples:

Test Test is based on use cases.

Learner will be give use cases in real

software requirements and asked to provide

Acceptance Test scenarios using Gherkin

Syntax

Image

61

4.3.2. DETAILED STORYBOARD FOR COURSE: ACCEPTANCE TEST DRIVEN

DEVELOPMENT

This section includes the limited storyboard from selected course modules of the ATDD

course. Full detailed storyboard of all modules can be found in the Appendix B. Selected

storyboards represent various content format that are ranging from text based content to

multimedia content to interactive content. It is also included the activities and assessments.

Course Name:

Module 1: Software testing

Storyboard File no. 01.01.01.00

Course section: 1.1

Lesson Name: Introduction To Software testing ID’s name:

Objective(s):

SME’s name:

Page Title: Introduction To Software testing Page no.

01.01.01.00

CD’s name:

Date Designed: Date SME contributed: Date verified:

Design

Introduction To Software testing

Lesson Structure

❏ What is Software testing and why it’s

important?

❏ Software testing principles

❏ Software testing levels

❏ Testing processes

❏ Traditional software testing

❏ Agile software testing

Objectives

❏ Describe the purpose of software

testing

❏ describe different testing levels and processes

Special Comment(s):

Figure 8: Storyboard of an introduction content page

62

As shown in the Figure 8, introduction page for a typical module contains text and relevant

graphics to gives a fast impression about the course module. This screens contains

introductory audio narrations to explain the module content and structure

Page Title: Software Testing Principles Page no.

01.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Special Comment(s):

This is an interactive animation

User should be able to click any item to get more details about the principle. Please refer next

screen (01.02.01.01) for detail view

 Hand icon should be flashing to indicate “click” here for more action.

Figure 9: Storyboard of interactive content

63

Figure 9 represents the storyboard of an interactive content where learner can click and get

more details. Learner will see the summary of the content first, then he can have detailed

information of each items.

Page Title: Writing Good User Stories Page no.

03.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Writing Good User Stories

Special Comment(s):

This is a video

“TOP 10 Tips” should be displayed in a “Red” (# FE4040) circle. Until the narration is on this

display should be there. Refer next screen and script (05.03.01.01) afterwards.

Transcript:

“User stories are probably the most popular agile technique to capture product functionality.

Working with user stories is easy.

But telling effective stories can be hard.

TOP

10

Tips

64

The following ten tips help you create good stories.

So, let's look at them individually”

Page Title: Writing Good User Stories Page no.

03.02.01.01

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

As narration goes “Number 1”, #1 should appear in the middle of the Red Circle. And when

narration goes “Users Come First”, world should appear from the bottom of the circle and slowly

come to the bottom of the #1 as narration goes. When the narration goes “Number 2”, all the

remaining text should be cleared and “#2” should appear in the middle of the Red circle and

repeat the same behavior for the rest of the items

Transcript:

Number 1: Users Come First

As its name suggests, a user story describes how a customer or user employs the product; it is

#1
Users Come First

65

written from the user’s perspective. What’s more, user stories are particularly helpful to capture a

specific functionality, such as, searching for a product or making a booking

If you don’t know who the users and customers are and why they would want to use the product,

then you should not write any user stories. Carry out the necessary user research first, for

example, by observing and interviewing users. Otherwise, you take the risk of writing

speculative stories that are based on beliefs and ideas—but not on data and evidence.

Number 2: Use Personas to Discover the Right Stories

A great technique to capture your insights about the users and customers is working with

personas. Personas are fictional characters that are based on first-hand knowledge of the target

group. They usually consist of a name and a picture; relevant characteristics, behaviors, and

attitudes; and a goal. The goal is the benefit the persona wants to achieve, or the problem the

character wants to see solved by using the product.

But there is more to it: The persona goals help you discover the right stories: Ask yourself what

functionality the product should provide to meet the goals of the personas.

Number 3: Create Stories Collaboratively

A user story is not a specification, but a communication and collaboration tool. Stories should

never be handed off to a development team. Instead, they should be embedded in a conversation:

The product owner and the team should discuss the stories together.

You can take this further and write stories collaboratively, for instance, as part of your product

backlog grooming process. This leverages the creativity and the knowledge of the team and

results in better user stories.

Number 4: Keep your Stories Simple and Short

Write your stories so that they are easy to understand. Keep them simple and short. Avoid

confusing and ambiguous terms, and use active voice. Focus on what’s important, and leave out

the rest.

Number 5: Start with Epics

An epic is a big, vague story. It is typically broken into several user stories over time leveraging

the user feedback on early prototypes and product increments. You can think of it as a headline

and placeholder for more detailed stories.

Starting with epics allows you to sketch the product functionality without committing to the

details. This is particularly helpful for describing new products and features: It allows you to

capture the rough scope, and it buys you time to learn more about how to best address the needs

of the users. It also reduces the time and effort required to integrate new insights. If you many

detailed stories in the product backlog, then it’s often tricky and time-consuming to relate

feedback to the appropriate stories and you have to be careful not to introduce inconsistencies.

Number 6: Refine the Stories until They are Ready

Break your epics into smaller, detailed stories until they are ready: clear, feasible, and testable.

All development team members should have a shared understanding of the story’s meaning; the

story should not too big and comfortably fir into a sprint, and there has to be an effective way to

66

determine if the story is done.

Number 7: Add Acceptance Criteria

As you break epics into smaller stories, remember to add acceptance criteria. Acceptance criteria

complement the narrative: They allow you to describe the conditions that have to be fulfilled so

that the story is done. The criteria improve the story, they make it testable, and they ensure that

the story can be demoed or released to the users and other stakeholders. As a rule of thumb, use

three to five acceptance criteria for detailed stories.

Number 8: Use Paper Cards

User stories emerged in Extreme Programming, and the early XP literature talks about story

cards rather than user stories. There is a simple reason: User stories were captured on paper

cards. This approach provides three benefits: First, paper cards are cheap and easy to use.

Second, they facilitate collaboration: Everyone can take a card and write down an idea. Third,

cards can be easily grouped on the table or wall to check for consistency and completeness and

to visualize dependencies. Even if your stories are stored electronically, it is worthwhile to use

paper cards when you write new stories.

Number 9: Keep your Stories Visible and Accessible

Stories want to communicate information. Therefore don’t hide them on a network drive. Make

them visible, for instance, by putting them up on the wall. This collaboration, creates

transparency, and makes it obvious when you add too many stories too quickly, as you quickly

start running out of wall space.

Number 10: Don’t Solely Rely on User Stories

Creating a great user experience requires more than user stories. User stories are helpful to

capture product functionality, but they are not well suited to describe the user journeys and the

visual design. Therefore complement user stories with other techniques, such as, story maps,

workflow diagrams, storyboards, sketches, and mockups.

Additionally, user stories are not good capturing technical requirements. If you need to

communicate what an architectural element like a component or service should do, then write

technical stories or use a modeling language like UML.

Finally, writing user stories is worthwhile when you develop software that’s likely to be reused.

But if you want to quickly create a throwaway prototype or mockup to validate an idea, then

writing stories may not be necessary. Remember: User stories are not about documenting

requirements; they want to enable you to move fast and develop software as quickly as possible

and not to impose any overhead.

Figure 10: Storyboard of a video content

Figure 10 represents a storyboard of a video content. In the storyboard it’s describe about the

features and narration text. Giving the design details will be helpful for content designers to

build the content as intended by the instructional designer.

67

Page Title: Page no.

05.03.01.00

SME’s name:

Date Designed: Date verified:

Design

ATDD Process Cycle

Activity: Map artifacts into correct stage.

You need to drag and drop activities from “Artifacts” Box into correct ATDD

process. If an artifact does not related to ATDD process, place them in “Not

Related to ATDD” Box.

Special Comment(s):

User can select and drag and drop artifacts for “Artifacts” Box into the correct cage to get

marks

Should be able to select “Artifacts” from

Should be able to Drag selected artifacts into chose cage

If the Artifact is not belong the Drop cage, it should go back to the “Artifacts Box” and

Indicate “Incorrect Move” and Should increase the Wrong count by 1

If the Artifact is placed in correct cage, Right count should increase by 1

Figure 11: Storyboard of a drag and drop activity

68

Figure 11 represents a storyboard of a drag and drop activity. In the comment section,

instructional design has given with intendent behavior. These instructions will be helpful for

content developers to have an understanding about the requirement.

Page Title: Page no.

05.08.01.00

SME’s name:

Date Designed: Date verified:

Design

Assignment: (10 Marks)

Due date: 2016-08-10
No submission after: 2016-08-17

Late penalty: 40% will be reduced from the marks for late submissions

Look at the given user story and convert it into .feature file using Gherkin
syntax. Upload the .feature file using “Choose file” button and submit the
assignment.

As a shop visitor I want to collect books in my shopping basket

So that I can purchase multiple books at once.

Books can be added to the shopping basket

Books can be removed from the shopping basket

Shopping basket is initially empty

The same book can be added multiple times to the shopping basket

Special Comment(s):

Figure 12: Storyboard of an assignment

Figure 12 represent the typical assignment which will be given to the learner in order to

evaluate the learning.

69

CHAPTER 5: DEVELOPMENT

5.1. CONTENT DEVELOPMENT

Content Development has been started after finalizing the detailed storyboard with

Stakeholders. Subject matter experts and Instructional designer verified that lesson content is

aligned with learning objectives. Reviews also have been taken to verify assessment tests and

exercises aligned with lesson objectives at every step in the lesson flow. Content of every

lesson has written in simple and clear wording and keeping the sentences short. Bullet points

were used whenever appropriate in order to make the content clearer to the learner. If there’s

an acronyms used in the content, it was read in full the first time. Personal pronounce (e.g.

“you”) has been used to refer to learners in order to personalize the instructions to the learner.

5.1.1. STRUCTURE OF LESSONS

Common lesson structure was used in every lesson in order to maintain the standard in the

lesson flow.

E-lesson structure:

Introduction > Content > Test > Result

Introduction is limited to one screen and it also describes the learning objectives as well. The

Introduction screen is audio narrated. Next screens, typically limited to 20-25 screens are

from lesson topic of the module. Lesson content is mixed with quizzes to give formative

feedback to the learner and keep the learner engaged with the content. At the end of each

lesson learner will get test and learner will be presented with the test results. Summary of the

lessons is displayed at the end of each lesson to summarize what learner has learned through

the lesson.

70

Table 9 represents the major lesson component details. In the current course follows standard

structure through the different course modules in order to have unique look and feel. These

major components can be categories as introduction page or learning objective page, main

content pages, test or quizzes pages and result display page.

Lesson Component Example

1) Learning Objectives

First screen contains

the lesson structure

and clear and

informal description

of learning objectives

2) Content (core of the

lesson)

A set of screens (from

4 to 25) which make up

the core of the lesson.

These combine:

 text

 media elements

 examples

 Practice questions

(quizzes)

71

3) Test

Test is used as

summative assessment to

check the learner’s

knowledge of the

learnings. Test format is

very from each lesson.

Results of the test will be

show at the end of the

test

4) Result

Result page will show the

learner’s pass/fail status

and give review option to

view and compare the

correct responses.

Table 9: Lesson components

72

5.1.2. INTEGRATING MEDIA ELEMENTS

There are a number of different kinds of media elements have been combined to create e-

lessons. Media elements have been used carefully not to overload learner’s working memory.

Media Element: Text

Written text is an important “media” for communicating course content. Great attention has

been given to its graphic display and integration with images.

The following principles were applied when displaying text on a lesson screen:

 Display on-screen text to provide the best readability and clarity.

 Use graphic conventions consistently; for example, italic style has always been used

for the same purpose.

 Use lists or tables used to organize the information.

 Use list points or blank spaces to separate items in a list or focus the attention on them.

 Considered word and row spacing to improve text readability.

Media elements: Graphics

Graphics include illustrations, pictures, diagrams and icons. Graphics has been used for

different communication functions, including the following:

 decorative: to add aesthetic appeal

 representational: to represent an object in a realistic fashion

 mnemonic: to provide retrieval indications for factual information

 organizational: to show qualitative relationships among content

 relational: to show quantitative relationships among two or more variables

 transformational: to show changes in objects over time or space

 Interpretive: to illustrate a theory, principle or cause-and-effect relationships.

Graphics has been used in order to promoting learning. It has not only been used to add visual

interest to a screen. In e-learning, relevant graphics has facilitated learning by:

 drawing attention to a specific content element

 suggesting analogies between new content and familiar knowledge

 supporting the understanding of concepts

 simulating the work environment and real situations

73

 motivating learners by making materials more interesting

Table 10 represents few examples of graphics serve some of the communication functions list.

Example: Graphics with representational function

Graphics used to

illustrate the concepts

Graphics used to

describe the lifecycle

of agile testing

Graphic is used to grab

the attention to the

74

content

Table 10: Use of multimedia in lessons

Media elements: Animations

Animated illustrations and interactions were used for series of procedural steps or

transformations.

Animations were used to

 Allow learners to focus on only one object at a time.

 Use arrows to steer attention to selected details or motion direction.

 Segment long or complex animations and allow learners to access each chunk at their

own pace rather than playing all the steps continuously

 Limit the use of animation effects on text because they do not have any instructional

function and can irritate learners.

75

Examples: use of animation to illustrate more details of the concepts

Display details of a stage in

lifecycle

Display details of software

testing level

Table 11: Usage of animation

Table 11 represents the various content pages that includes the animation in their lesson pages

76

Media elements: Audio

Audio narrations have been used whenever appropriate because it’s greatly increases the

effectiveness of a course. Audio is used in combination with on-screen text to summarize or

expand key points because audio narration is more effective than printed text when providing

comments on animations sequences or a series of static frames showing a transformation.

Option has been given to the learner to silence the audio, because learners’ visual channel can

become overloaded with audio narrations if they have to process graphics and the printed

words that refer to them.

Examples of using audio narrations

Audio narration

has been

embedded into

introduction of

lessons

Audio narrations

embedded into

interactions

Table 12: Usage of audio

Table 12 represents various content pages which use audio and narrations in their content.

77

Media elements: Video

Video is the only media that makes it possible to reproduce behavior, processes or procedures

the way they appear in real life. It has been used for demonstration of installations and

configuration of ATDD related software components and how the software use in real work

setting.

Example of using video in lesson

Demonstration of

creating specFlow

feature file with

Microsoft

VisualStudio

Table 13: Usage of video

Table 13 represents content pages which uses video in their content such as demonstrational

videos.

5.2. COURSEWARE DEVELOPMENT

This chapter provides information on the last step of the development stage, which is the

creation of the final interactive courseware. The chapter will illustrate work done using

Authoring tools for producing e-learning courseware

5.2.1. SELECTING THE AUTHORING TOOL

Even though there is no right and wrong authoring tool for developing the courseware, few

factors were considered selecting correct authoring tool for this project. Those are basically,

78

 Editing/updating capabilities – ability to do rapid editing through a content publisher.

Fast editing and easier updating is time efficient.

 Delivery outputs

o LMS – Course will be deployed on a learning management system. This

requires courseware to comply with SCORM technical standards

o Web browser - interoperability has been considered

 Learning curve –Amount of time needed to learn how to use the tool should be

minimal.

 Training opportunities – Should be able to learn about the tool through online guides,

webinars, online support and forums.

 Integration – Ability to integrates well with leading LMS or/and other software

 Creative freedom –Ability to express and accommodate interactions, navigation

elements, quizzes and other features into course design.

 Industry and community support – room for get support is essential for

troubleshooting, problem solving and getting useful tips. It has to be widely used tools

are better supported by online forums and user groups

By considering above factor Articulate Storyline has been chosen as the primary authoring

tool. For screen demonstration capturing is done by Microsoft Screen Recorder and

video/audio editing is done using Adobe premiere and Adobe Audition.

Example: Articulate Slide

Figure 13: Authoring tool

79

Figure 13 represents the articulate storyline tool which was used as the main authoring tool to

build the lesson content in SCROM format.

Adding Interactions / Triggers

Figure 14: Using triggers in storyline

Figure 14 represents the screenshot of inserting trigger in interactive content.

Adding Quiz/Test

Figure 15: Adding quizzes

Figure 15 represents the screenshot of inserting quizzes to the assignment

80

Publishing SCORM

Figure 16: Publishing SCORM package

Figure 16 represents the screenshot of publishing the designed content as SCORM package.

This SCORM package will be uploaded to the LMS in later stage.

Video Editing Using Adobe Premiere

Figure 17: Video editing

Figure 17 represents a screenshot of adobe premiere software that has used as video editing

tool

81

Audio editing using Adobe Audition

Figure 18: Audio editing

Figure 18 represents of a screenshot of adobe premiere which used as an audio editing tool.

82

CHAPTER 6: IMPLEMENTATION

This chapter discusses the implementation of the course using Learning Management System

(LMS). In section 6.1 it is described about technical information about the system and

infrastructure. In section 6.2 and 6.3 it is described about student enrollment process and

managing learning activities, learner support provided to maintain the services related to

learner support.

6.1. SYSTEM AND INFRASTRUCTURE

6.1.1. LEARNING MANAGEMENT SYSTEM

Learning management system (LMS) is a learning platform which provides interactive

learning services to leaners with access information, tool and support educational delivery and

management through internet. There is verity of learning management system available with

different level of complexity and features such as managing course content, manage learners

and keep track record of their progress and provide support for learning activities and

administrative tasks.

Few factors considered in our course implementation in order to choose the right learning

management system for the purpose.

 Feature support for the course delivery

 Technical knowledge required

 LMS license cost

 Hardware and software cost

 Maintenance and upgrade cost

Considering these factors, it has been decided to use Moodle is the right LMS for the course

delivery

6.1.2. MOODLE

Moodle is free and open-source learning management systems widely use to deliver the

course content and managing learners. Moodle provides collaborative tools such as forum

discussion, chats and instant messaging and wiki based activities in addition to lesson and

assessment delivery features. It also provides announcements and other communication tools

83

to bridge the communication with learner and instructor. Moodle has very large community

who has been using the Moodle for quite some time and the support on technical or feature

wise can be easily found. Moodle also supports SCORM and AICC standard contents

integration and tracking the progress and learner activities. It also has self-enroll and

instructor led enrollment options, which is very easy to managing user access control.

Moodle LMS in Student view

Figure 19: Moodle LMS

Figure 19 represents a screenshot of student view in Moodle LMS. Course module list can be

seen in the first screen.

SCORM Lesson in Moodle

Figure 20: Lesson in moodle

Figure 20 represents the screenshot of a lesson content page in moodle LMS.

84

Moodle: Adding SCORM lesson in Administrator mode

Figure 21: SCORM package upload to moodle

Figure 21 represents the screenshot of moodle lesson creation. In here, it is show where

instructor adding SCORM package into the moodle lesson.

6.2. STUDENT ENROLLMENT PROCESS

Student enrollment process begins with selecting the candidates on voluntary basis.

Awareness emails were distributed throughout the teams to find out potential candidates who

have interested in the e-learning pilot project as learners. We received fair amount of

responses and 24 individuals have been selected to follow the e-learning course.

 Next step after selecting the individuals was providing them with the login details and

Moodle url link in order to access to the learning environment. After successful login, they

were instructed on how to enroll to the “Acceptance Test Driven Development” course

through email. And weekly reminders have been sent to the candidates who have not been

85

enrolled to the course. Weekly emails have been sent for slowly progressing users and remind

them about the progress and encourage them to follow the activities of the course in order to

achieve the learnings.

6.3. MANAGING LEARNERS’ ACTIVITIES

In collaborative online-learning, a group of learners creates interaction around common

learning goals. As an online facilitator, it is our responsibility to ensuring that this process is

organized, stimulating and efficient. The online facilitator has been performed the following

tasks in order to support learners’ activities

 provides information on tasks, deadlines and places to upload or download files

 accompanies participants during their work by checking workflow and individual or

group results, composing working groups

 answers questions concerning tasks, deadlines or use of learning tools

 motivates participants to produce, reflect, exchange ideas and initiate discussions

The facilitator is the person that learners will approach with any questions; therefore, the

facilitator has been allocated. Facilitator was available throughout the course and respond to

questions as quickly as possible so that learners can proceed with their work and remain

motivated.

6.3.1. USING COMMUNICATION TOOLS

E-learning activities have been managed by using range of communication tools, synchronous

and asynchronous. Synchronous tools such as chats and instant messages were used. Emails,

Announcements and Forum discussions were used as asynchronous tools.

86

Moodle: Discussion forum

Figure 22: Communication in moodle

Figure 22 represents a screenshot of Moodle where instructor creating a announcement to

inform learners about upcoming activity. Learners have been informed via emails about the

upcoming learning activities and made them aware and engaged with the learning activities.

87

CHAPTER 7: EVALUATION

Measuring effectiveness and check for achievements for planned objectives are two most

desired topics to get answered through the evaluation. According to Kirkpatrick’s four levels

of learning evaluation, it’s considered (1) learners’ reaction to the course, then (2) learnings

achieved through the course, and then (3) behavioral changes or things have been changed in

day to day work of the learners in the work setting after following the course and finally (4)

Results or the Business Impact happened through the learnings and behavior changes by

following the course. However at the scope of this project we are interested only the reactions

and learnings because usually it takes few years to collect necessary data and understanding

of behavior and results of the course and make a decision on return on investment (ROI)

7.1. LEARNERS’ REACTIONS AND LEARNINGS

Learners’ reaction to the course content and course delivery provide us information about how

effective our content design is? How effective our content arrangement is? And how effective

our learning environment is?

The evaluation also indicates how much learner has engaged with the course. How frequently

leaner has log into the course and interacts with the learning materials, average time leaner

has spent on learning activities and how actively participated in group discussions and

forums. In order to measure the learner’s reaction, two methods were used. (1) Questionnaire

to collect data of learner’s experience of the course and (2) Data collected through LMS of

learner’s behavior and interactivity using system logs.

After following the course for about 4 weeks, learners were given a questionnaire containing

32 questions to get data on their experience with the course. The questionnaire is containing

four major categories. (1) Learning Content (2) Activities, Assessments and Feedbacks (3)

Facilitator Support and (4) Overall experience

Data were also collected from LMS in order to understand the learners’ achievements.

Analysis was mainly focus on (1) course grades, (2) course completion rate (3) how often

LMS was used by the learners and (4) level of collaboration. Under the level of collaboration,

we were particularly interested about level of constructiveness when executing the

88

collaborative learning activities like group discussion. Also have the leaners seek instructor’s

or subject matter expert’s help when they need help.

7.2. DATA COLLECTION

ATDD course was delivered as a pilot project to 24 selected individuals based on (1)

volunteering first-come-first-serve basis. (2) Their role in the development team. It was

considered to have same team composition ratio 1:3:2 in to the pilot sample. 1:3:2 ratio based

on 1 member from product team, 3 members from development and 2 members from testing.

Pilot test was carried for 1 month and after 1 month period; they have given the questionnaire

to collect data for measure the effectiveness of the course as well as measure how satisfy they

are with the course delivery.

Questionnaire containing close-end questions were used to collect data in quantitative format.

Table 7.1 contains questionnaire with closed-end questions. SD – Strongly Disagree, D –

Disagree, A- Agree, SA – Strongly Agree

 Question SD D A SA

Category: Course content

1 A clear statement of course requirements was provided at the

beginning of the course

2 The objectives for the course were clearly stated

3 Audio and Video quality of the learning materials are acceptable

4 The learning materials were clear and understandable

5 The materials were accurate and current

6 The materials were sequenced appropriately

7 The materials were interesting and engaging

Category: Course activities

8 The course activities helped me to learn

9 The course activities were sufficient for me to learn

10 The course activities helped me to examine issues, to evaluate new

ideas, and to apply what I have learned

11 The course activities encouraged me to communicate and exchange

ideas with other learners

12 The activities were realistic and could be performed with the

resources I had available

13 The workload was just right

Category: Course assessments

14 The grading criteria were clear and explicit

15 The assignments helped me to learn the course material.

16 The assignments were challenging

89

17 Assignments and tests were marked and returned promptly

18 The assignments were related to what I have learned

Category: Feedbacks

19 The tutor clearly articulated the standards of performance

20 The tutor provided clear constructive feedback

21 The tutor provided meaningful guidance on my progress

22 The tutor gave me constructive feedback on assignments

23 Feedbacks were helped me to learn the course better

Category: Supportive service

24 The tutors could be contacted easily

25 The tutors provided helpful information and explanations

26 I have never found any disruptions in LMS

27 The technical support information was given clearly

28 The technical support was satisfactory

Category: Overall experience

29 The quality of the course met my expectations

30 The course objectives, content, and assessments were consistent

31 Considering both the limitations and possibilities of the subject

matter and the course I am satisfied with the learnings

32 I would recommend this course to a colleague

Table 14: Questionnaire for analyze leaner experience

Table 14 represents the questionnaire that has been given to the leaners in order to gather the

data on leaner experience after following the pilot course.

7.3. ANALYSIS

For the pilot course, we were reduced some modules from original The ATDD course where

it required 10 weeks to complete the course with 4 hours workload per week. De-scoped

ATDD course is expecting that learners will need 4 weeks to complete the course which

roughly about 20 hours of workload total and 4-5 hours per week. Test run was carried out

during January 9
th

 to February 6
th

 2017 with 24 individuals. Evaluation forms were given to

the participation at the end of the pilot run in electronic medium using Google forms.

Overall, pilot run was successful. 19 participants out of 24 were able to complete the course

on time and 2 out of 5 who were behind the schedule, were able to complete course within

next week of time. Overall 84% completion rate was achieved with the pilot course run.

90

7.3.1. PARTICIPANT’S FEEDBACK

Participant’s feedback was generally positive. Most of them agreed or strongly agree that

course has lived up to their expectation and learnings were useful (Figure 23)

 Figure 23: Participant’s satisfaction

 Consistency in the course material

Majority of participants agreed that they have found consistency in course materials from

one module to other. However some of participants pointed out they found some overlaps

in course modules (Figure 24). However we believed this is because we iterate ATDD

concept in most of the module in order to highlight the concept and it was shown that it is

unnecessary.

0 2 4 6 8 10 12 14

SD

D

A

SA

The quality of the course met my
expectations

0 2 4 6 8 10 12 14 16

SD

D

A

SA

Considering subject matter and the
course I am satisfied with the

learnings

91

Figure 24: Participant’s feedback on consistency of course materials and assessments

 Audio Quality

It is pointed out by the participant’s that audio quality is not exceptional as would they

like. This is mainly because of the narrative voice is not clear and the pace was bit out of

order in some occasions. Actions will be taken to revise the Audio narrations as the

corrective action.

Figure 25: participant’s feedback on Audio and video quality

Figure 25 represents the respondent’s feedback on audio and video quality of the course

content

0 2 4 6 8 10

SD

D

A

SA

The course objectives, content, and
assessments were consistent

0 2 4 6 8 10 12

SD

D

A

SA

Audio and Video quality of materials
are acceptable

92

 Group discussions

Figure 26 represents the respondent’s feedback on group discussion and It is pointed out

by the participants that group discussions were not active as they might expected and this

is mainly because participants are not following the modules at same pace. So in order to

participate in group discussion, they need to follow the modules in synchronized order. As

a result of this finding it is recommended to have a schedule for each module and group

discussion should be schedule accordingly.

Figure 26: Participant’s feedback on group discussion

0 2 4 6 8 10 12

SD

D

A

SA

Group discussions were active and
progressive

93

CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1. INTRODUCTION

With the rapid development of the information technology, E-learning has become effective

learning method to deliver on-the-job training for corporate work setting. With the right

support from the management of the organization and correct instructional design,

implementation and delivery, e-learning deliver major impact compare to traditional learning.

The Acceptance Test Driven Development e-learning course was planned, analyzed,

designed, developed, implemented and evaluated by using e-learning frameworks such as

Khan’s framework and Kirkpatrick model. Developing an e-learning course is neither easy

nor cheap at all. It requires deep thinking and consideration about learners and learnings. A

successfulness of the e-learning project is heavily is relies on pillars of pedagogical,

technological, user interface, evaluation, management, resource support, ethical and

institutional as B.H Khan described in 8 dimensional in his framework. Learner’s behavior,

Context of learning and organization’s readiness are key factors for an e-learning project to

become successful.

8.2. CONCLUSION

This section presents a conclusion of the project as well as the findings from project

evaluation

During the project it is mainly focus on solve the performance problem that company facing

in the software development process. With the breakdown of root cause analysis and needs

assessment it is found that the major problem is due to lack of clarity in requirements,

miscommunication and lack of test automation to cover the implementation. This finding is

major step towards applying correct solution to the problem.

With the learner analysis, it is found that organization already has the technological, cultural

and infrastructural capabilities to deliver the training through distance learning. Learners are

already familiar with the e-learning systems and attitude towards learning the new technology

was high (78%)

94

In the evaluation of course content and delivery, it is indicate that course should be more

focus on course content and instructional design. It is also indicate that learner motivation is

not necessary relies on learning the new technology but how it is rewarding them in return.

Providing clear understanding about the benefits learners get in return is more important to

motivate the learners.

Final conclusion of the project is e-learning is a viable solution for technical training.

However it has various factors to be considered, ranging from management support, cultural

and technological readiness, to the learner attributes instructors experience to technical

support.

8.3. CHALLENGES AND LIMITATIONS

We were able to achieved most of the objectives of the project as we planned with the limited

budget and time frame. Quality of the content was managed with multimedia principles and

also checked against the alignment with learning outcomes. Assessments were also designed

to complement the learning content and align with learning outcomes.

Few modules were taken out from the original course design in-order to accommodate the

time and budget limitations. However in the future, those modules will be developed and

include in the course. It is learnt that evaluating the actual code implementation is time

consuming for the instructors. A new automated evaluating technique would be useful for

assess the code implementation. However reliability of the automated system and feasibility

of such a system needs to be analyzed further.

8.3.1. CULTURAL LIMITATION

In the analysis stage, questionnaire is limited to closed end questions rather than interview or

observation because of the company policies and exposing minimal distractions the

employees. It has been limited the capability of finding the correct work setting analysis and

learner task analysis. Course work was based on the findings gathered through questionnaire

and limited observation. It has impact on designing the course work.

95

8.3.2. INFRASTRUCTURAL LIMITATIONS

In overall, organization had a proper infrastructure for e-learning system with high bandwidth

network. By considering this factor, Course has designed with demonstrational videos with

high definition format. However, it is found that the high definition format is problematic

when students are accessing the system from outside. It is needed to consider different

formats when considering the public network capabilities when designing the content, not

necessary focusing on limited infrastructure in organizational boundary.

8.3.3. TECHNOLOGICAL LIMITATION

 In the course delivery, it could have been better if the learning system can provide simulated

environment to practice the learning which were demonstrated through video content. With

such a simulated environment, leaners behavior can be remotely monitor. However such a

simulated environment for actual code development is not readily available and developing

such a system is financially not feasible.

Similarly, Assessments were needed to evaluate by instructors manually since the complexity

of the assessment and the nature of the assessment. Limitation of having automated evaluate

for such assessments were limited the self-paced learning. However it is also financially not

feasible to develop such an evaluation system.

8.4. FUTURE IMPROVEMENTS

As it was described in evaluation, we couldn’t find the behavioral change and business impact

or Return on Investment (ROI) of the course due to course is in such an early stage and it

would take few years to get visibility from those aspects. However it would be considered to

build a matrix to find those behavioral changes using code complexity and test coverage. It is

needed to capture the successfulness of learning in the work setting. Project delivery time,

defect density and work life balance of the employees can be used as measurement of

successfulness. It is needed to capture those inputs in order to decide the actual impact. So it

is needed to implement system to capture the key success factors in coming years.

SonarQube is identified as a tool to measure code complexity and test coverage and it will be

proposed to use by every development team in the future. By gathering data from SonarQube

96

tool we can monitor the progress of actual application of what they have learnt during the

ATDD course work. In order to capture the code complexity and test coverage, this tool must

be integrated with all project works and it is required considerable of effort.

Course it self needs to be improved with evolving nature of the technology and it needs to

support the customizable learning paths in order to match with the learner experience. By

doing so, learners can skip the course modules that they have already familiar. This is

important since, learner’s previous experience is varying from years of expertise and

technology. It is also recommend a reward system, since it is needed to motivate the learners

to follow the course work. Continuous support is needed from the management and technical

stuff to deliver the course for larger audience of learners.

97

REFERENCES

[1] P. D. Wolf, Best Practices in the Training of Faculty to Teach Online, Journal of

Computing in Higher Education, Faculty and Distance Education Services, University

of Maryland University College, 2006.

[2] G.A. Heeger, President's testimony to the Senate Budget and Taxation Subcommittee

on Education, Business, and Administration of the Maryland General Assembly. 2003

[online] available: http://www.umuc.edu/president/testimony/2003/2003senate.pdf.

[3] C.J. Bonk, Online training in an online world. USDLA Journal, 2002

[online] available: http://www.usdla.org/html/journal/MARO2_Issue/article02.html.

[4] B. Muirhead, Training new online teachers. USDLA Journal, 2002

[online] available: http://www.usdla.org/html/journal/OCT02_Issue/article06.html.

[5] N.L. Henning, A case study: experiences in developing online courses at a community

college. Dissertation Abstracts International, 2000.

[6] N. Burke, Teaching educators to teach in their pajamas: the perils and promises of a

faculty based training program, 1998

[online] available: http://leahi.kcc.hawaii.edu/org/tcon98/paper/burke.html.

[7] M.M. Lynch, The online educator: A guide to creating the virtual classroom.

New York: Routledge Farmer, 2002.

[8] L.P. Hitch, D. Hirsch, Model training. Journal of Academic Librarianship, 2001

[9] B.L. Bower, Distance education: facing the faculty challenge. Online Journal of

Distance Learning Administration. 2001.

[online] available: http://www.westga.edu/-distance/ojdla/summer42/bower42.html.

[10] K. Mantyla, J.R. Gividen, Distance learning: A step-by-step guide for trainers.

Alexandria, VA: American Society for Training and Development, 1997.

[11] T.E. Cyrs, Teaching and learning at a distance: what it takes to effectively design,

deliver, and evaluate programs, San Francisco: Jossey-Bass. 1997.

[12] Mielke, Effective teaching in distance education. ERIC Digest. 1999

[13] T. McCallie, L. McKinzie, Teaching online: a professional development model.

Society for Information Technology & Teacher Education International Conference.

1999.

[14] L. Star, A connected experience: A faculty development model for teaching and

learning. Journal of Instruction Delivery Systems, 2001.

[15] G. Kearsley, Tips for training online instructors. Unpublished article. 2003.

[online] available: http://home.sprynet.com/-gkearsley/Oltips.htm.

98

[16] E. Fredericksen, A. Pickett, P. Shea, Factors influencing faculty satisfaction with

asynchronous teaching and learning in the SUNY learning network. Journal of

Asynchronous Learning Networks, 2000.

[17] R.M. Palloff, K. Pratt, Beyond the looking glass: What faculty and students need to be

successful online. In K.E. Rudestam & J. Schoenholtz-Read (Eds.), In Handbook of

online learning: Innovations in higher education and corporate training. Thousand

Oaks, CA: Sage Publications, 2002

[18] D. Olcott, Instructional technologies--part two. Strategies for instructor success.

Teaching at a distance: A handbook for instructors. Mission Viej0, CA: League for

Innovation in the Community College. 1999.

[19] D. Wesley, A Critical Analysis on the Evolution of E-Learning, International Journal

on E-Learning 1, 2002.

[20] D. R. Tobin, All learning is self-directed. American Society for Instruction and

Development (ASTD), 2000.

99

APPENDICES

APPENDIX A: OVERALL STORYBOARD

MODULE1: SOFTWARE TESTING

Visual Explanation

Introduction To Software testing

Topics of the module

Learning objectives

This page describes objectives of this

module, and topics covered by the module

<topic List>

What is Software testing and why it’s

important?

Software testing principles

Software testing levels

Testing processes

Traditional software testing

Agile software testing

<Objective list>

describe the purpose of software testing

describe different testing levels and

processes

What is software Testing

<description about software

testing>

This page describe the purpose of software

testing

Software Testing Principles

This page contains a video explaining 7

software testing principles. Testing shows

the presence of bugs, Exhaustive testing in

impossible, Early testing, Defect clustering,

The pesticide paradox, Testing is context

dependent, Absence of errors fallacy.

Animation should contain 7 principles. User

click on each principle should bring up more

detail view

Quiz

[Multiple choice question]

Multiple choice questions from software

testing principles.

Testing Levels

This page contains a video which describes

testing levels in software development

process. Unit Testing, Integration Testing,

System Testing, Acceptance Testing

Image

Image

Animation

100

progressing level

Animation should display Testing Levels.

When user clicks on each testing level, it

should display details for the selected level

Quiz

[Multiple choice questions]

Multiple choice questions from software

testing levels

Software Testing processes

Traditional Testing practice

Agile Testing practice

This page should describe the Characteristics

of Traditional testing process and Agile

testing process

Test

MODULE2: AGILE SOFTWARE DEVELOPMENT PROCESS

Visual Explanation

Agile Software development process

Topics of this Module

Learning objectives

This page describes objectives of this

module, and topics covered by the module

<topic list>

Agile software development principles

Agile Testing lifecycle

Test Driven Development

Test Automation

<Objectives>

Describe Agile Values

Understand Agile Testing

Identify Benefits of TDD and Test

Automation

What is Agile?

<Description>

This page describes What Agile Software

Development is

Image

Image

Animation

101

Agile Software development

principles and values

<Description>

This page describes the Agile manifesto

values

Agile Testing Lifecycle

This page contains an Animation showing

stages in Agile Testing Lifecycle. Detail of

each stage will brings upon clicking on a

lifecycle stage

Test Driven Development

<Description>

<Characteristics>

This page describes What Test Driven

Development is and it’s Characteristics

TDD Rhythm

This page contains an Animation showing

TDD Rhythm: red-green-refactor. Detail of

the each item should appear upon clicking

the each cycle stage

Test Automation

<Description>

This page describes the What Test

Automation is and it’s characteristics

MODULE3: WRITING USER STORIES

Visual Explanation

What is User Story?

<Description>

This page describes the What User story is

and it’s characteristics

Structure:

Image

Image

Animation

Image

Animation

Image

102

<User story Structure>

As a … < user who requires this feature>

I want … < do something >

So That … <business justification>

User Story Process

<Description of 3Cs>

This page describes the User Story Process.

Which contains 3Cs (code, conversation,

confirmation)

Steps to Create Good User Story

This page contains a Video to list down tips

for how to make good user story

Acceptance Criteria

<Description>

This page describes What Acceptance

Criteria is and it’s characteristics

Example of Acceptance criteria

This page shows Acceptance criteria taken

from a user story

MODULE 5: ACCEPTANCE TEST DRIVEN DEVELOPMENT

Visual Explanation

Introduction to ATDD

Objectives:

<Learning objectives of this

module>

Structure of the Module:

<Topic List>

This page describes objectives of this

module, and topics covered by the module

<Topic List>

What is ATDD

Difference between ATDD and TDD

Process of the ATDD

Details of ATDD stages

Benefits and challenges in ATDD

Image: shows ATDD process figure

Image

Video

Image

Image

103

What is ATDD

Definition of ATDD

This page describes the definition of ATDD.

Image: shows figure of transforming TDD

to ATDD

TDD -> ATDD

ATDD vs TDD

TDD Focus

ATDD Focus

This page describes TDD focus area and

difference between ATDD focus.

Image shows ATDD process and TDD in its

core

ATDD Process

This page contains an Animation of ATDD

process stages of

Discuss,

Distill,

Develop,

Demo

When user hover over any stage,

explanation will be provided for that stage.

Activity (Drag & Drop)

This page contains a Drag & Drop Activity

in order to identify learners’ knowledge on

ATDD process.

Collections of Activities given to the user.

User must select correct activities related to

ATDD process and should match into

correct stage

Activities:

Create User case diagrams (not related)

User Story

Unit Test

Coding

Requirement Analysis

Performance Testing (not related)

Architecture reviews (not related)

…

Image

Image

Animation

104

Definition of Done

This page describes What DOD is. And the

importance of having clear DoD

Image: show questions to ask in order to get

clear DoD

How will user use the solution? (examples)

How we can demonstrate it?

How will we test it?

Audio:

Clip will play DoD and each of above

questions to get to the DoD

Benefits of ATDD

For Business Team:

For Developers:

For Testers:

Challenges of ATDD

Cultural Challenge:

Slicing Requirements:

Defining DoD:

Quiz

MCQ

Based on DoD, Benefits of ATDD and

Challenges

Introduction to Gherkin

Gherkin Syntax

Feature: User Registration

Check for home page

See of the registration is working

Also verify if the register user is

displayed

Background:

Given: Clear already created user

before begin

Image

Image

Image

105

Scenario: Register user with minimal password

combination

Given I’ve opened the website

And I’m in the homepage

When I click the register link

Then I should see the register page

And I fill the form with details

|user name | password | cPassword|

|lahiru | abc@123 | abc@123 |

Few Examples:

Test Test is based on use cases.

Learner will be give use cases in real

software requirements and asked to provide

Acceptance Test scenarios using Gherkin

Syntax

MODULE6: SAMPLE ATDD PROJECT

Visual Explanation

Setting up Project Environment

This page contains a video which

demonstrates how to setup the .net

environment, visual studio with nUnit and

SpecFlow using NuGet package manager

Creating a Project

This page contains a video which

demonstrates how to create sample project

using visual studio

Creating Specification and Feature for the

Acceptance Test

This page contains a video which

demonstrates how to create step definition

feature file using Gherkin language with

SpecFlow

Video

Video

106

Quiz

[Multiple choice questions]

Add a Failing Test

This page contains a video which

demonstrates how to add failing test into the

project for a implementation which is yet to

be developed

Implementation to Pass the Test

This page contains a video which

demonstrates how to implement the code for

the feature which results the Test to be

passed.

Refactoring the Code

Discussion

Forum discussion on to clarify any issues

occurred while

This page contains a video which

demonstrates how to refactor the code with

better design and retest for validity

Video

Video

Video

Video

107

APPENDIX B: DETAIL STORYBOARD

MODULE 1: SOFTWARE TESTING

Course Name:

Module 1: Software testing

Storyboard File no. 01.01.01.00

Course section: 1.1

Lesson Name: Introduction To Software testing ID’s name:

Objective(s):

SME’s name:

Page Title: Introduction To Software testing Page no.

01.01.01.00

CD’s name:

Date Designed: Date SME contributed: Date verified:

Design

Introduction To Software testing

Lesson Structure

❏ What is Software testing and why it’s

important?

❏ Software testing principles

❏ Software testing levels

❏ Testing processes

❏ Traditional software testing

❏ Agile software testing

Objectives

❏ Describe the purpose of software

testing

❏ describe different testing levels and processes

Special Comment(s):

108

Page Title: What is Testing? Page no.

01.01.02.00

SME’s name:

Date Designed: Date verified:

Design

What is Testing?

Software testing is the process used to identify the

correctness, completeness and quality of developed

computer software.

It is the process of executing a program/application

under positive and negative conditions by manual or

automated means.

It checks for the

❏ Specification

❏ Functionality

❏ Performance

Special Comment(s):

109

Page Title: Software Testing Principles Page no.

01.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Special Comment(s):

This is an interactive animation

User should be able to click any item to get more details about the principle. Please refer next

screen (01.02.01.01) for detail view

 Hand icon should be flashing to indicate “click” here for more action.

110

Page Title: Software Testing Principles Page no.

01.02.01.01

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 1 – Testing shows the presence of defects.

❏ Testing show that defects are present but

cannot make sure that there are no defects.

❏ Testing show that defects are present but

cannot make sure that there are no defects.

❏ Design Test cases is very essential step which

find defects as many as possible.

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

111

Page Title: Software Testing Principles Page no.

01.02.01.02

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 2 – Exhaustive Testing is impossible

❏ It is impossible to test all possible all possible

combinations of input cases, data and scenarios.

❏ Tester should focus on the most critical

priorities and risks; we could say risk analysis

and priorities should be used to focus testing

efforts.

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

112

Page Title: Software Testing Principles Page no.

01.02.01.03

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 3- Early testing

❏ Testing should begin as early as possible in

SDLC and focus on pre-defined objectives.

Errors identified later in the process leads more

expensive to fix in comparison to fix the errors

we find in early stage in process.

❏ Error in a product specification may be much easier to fix. However, if that

error is transferred to the coding, then fixing the mistake could be more costly

and time-consuming will be disadvantage

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

113

Page Title: Software Testing Principles Page no.

01.02.01.04

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 4 – Defect clustered

❏ “Pareto principle” states %80 defects will be

found in approximately %20 of modules. This

means %20 defect causing %80 of problems.

❏ Small no. of modules contains most of defects

during pre-release testing. There are no equal

distribution errors between different modules. If one defect on any module, you

will likely to find more.

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

114

Page Title: Software Testing Principles Page no.

01.02.01.05

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 5- Pesticide Paradox

❏ If using the same set of test over and over again

testers should Revise Existing test cases and

Develop newer ones, which will be able to

uncover more bugs

❏ Use a variety of tests and techniques to find a

range of defects across different areas of the product. Avoid using the same

set of tests over and over on the same product or application, because this will

reduce the range of bugs you will find as same test case is not much affected

now.

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

115

Page Title: Software Testing Principles Page no.

01.02.01.06

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 6- Testing context is dependent

❏ Software testing varies testing efforts

depending on circumstances. Different methods,

techniques and types of testing are related to

the type and application nature.

❏ The same tests should not apply across because

different software products have different requirements, functions and

purposes.

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

116

Page Title: Software Testing Principles Page no.

01.02.01.07

SME’s name:

Date Designed: Date verified:

Design

Software Testing Principles

Principle 7 – Confusing an absence of errors with
product fit is a fallacy

❏ fallacy states that testing might succeed in

locating and correcting all possible defects in

software, software itself might not to be fit for

use by an end- user

❏ Testing main should be matched with user

requirements. Finding and fixing defects does not help if the system built is

unusable and does not fulfill the user’s need and expectations. If the system

built is unusable and does not full fill the user’s needs and expectations then

finding and fixing defects does not help

< Back

Special Comment(s):

User can be click “< back” or “Color Wheel” to get back to 01.02.01.01 screen

117

Page Title: Software Testing Levels Page no.

01.03.01.00

SME’s name:

Date Designed: Date verified:

Design

Software Testing Levels

Click on any Level to get more details about the Level

Special Comment(s):

This is an interactive animation

User can click any Level to see more details about the selected level

Icon should flash and indicate “click” to get more details. Refer next screen

(01.03.01.01) for detailed view

118

Page Title: Software Testing Levels Page no.

01.03.01.01

SME’s name:

Date Designed: Date verified:

Design

Software Testing Levels

Unit Testing

This type of testing is performed by developers before

the setup is handed over to the testing team to formally

execute the test cases.

Unit testing is performed by the respective developers on the individual units of source

code assigned areas. The developers use test data that is different from the test data of

the quality assurance team.

The goal of unit testing is to isolate each part of the program and show that individual

parts are correct in terms of requirements and functionality.

< Back

Special Comment(s):

User can click “< Back” or Pyramid to get back to the first screen (01.03.01.00)

119

Page Title: Software Testing Levels Page no.

01.03.01.02

SME’s name:

Date Designed: Date verified:

Design

Software Testing Levels

Integration testing

Integration testing is defined as the testing of

combined parts of an application to determine if they

function correctly. Integration testing can be done in

two ways: Bottom-up integration testing and Top-down

integration testing.

Bottom-up: begins with unit testing, followed by tests of progressively higher-level

combinations of units called modules or builds

Top-down: highest-level modules are tested first and progressively, lower-level modules

are tested thereafter.

< Back

Special Comment(s):

User can click “< Back” or Pyramid to get back to the first screen (01.03.01.00)

120

Page Title: Software Testing Levels Page no.

01.03.01.03

SME’s name:

Date Designed: Date verified:

Design

Software Testing Levels

System Testing

Tests the system as a whole. Once all the components

are integrated, the application as a whole is tested

rigorously to see that it meets the specified Quality

Standards. This type of testing is performed by a

specialized testing team.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other areas

within the application have been affected by this change. Regression testing is performed

to verify that a fixed bug hasn't resulted in another functionality or business rule

violation. The intent of regression testing is to ensure that a change, such as a bug fix

should not result in another fault being uncovered in the application.

< Back

Special Comment(s):

User can click “< Back” or Pyramid to get back to the first screen (01.03.01.00)

121

Page Title: Software Testing Levels Page no.

01.03.01.04

SME’s name:

Date Designed: Date verified:

Design

Software Testing Levels

Acceptance Testing

This is arguably the most important type of testing, as it

is conducted by the Quality Assurance Team who will

gauge whether the application meets the intended

specifications and satisfies the client’s requirement. The

QA team will have a set of pre-written scenarios and test cases that will be used to test

the application.

By performing acceptance tests on an application, the testing team will deduce how the

application will perform in production. There are also legal and contractual requirements

for acceptance of the system

< Back

Special Comment(s):

User can click “< Back” or Pyramid to get back to the first screen (01.03.01.00)

122

Page Title: Software Testing Processes Page no.

01.04.01.00

SME’s name:

Date Designed: Date verified:

Design

Software Testing Processes

Traditional waterfall development model

❏ Testing is performed by an independent group of testers after the functionality

is developed

❏ often results in the testing phase being used as a project buffer to compensate

for project delays, thereby compromising the time devoted to testing

Agile or Extreme development model

❏ Uses "test-driven software development" model.

❏ Unit tests are written first. Of cause these test fail initially; as they are

expected to.

❏ Code is written it passes incrementally larger portions of the test suites.

❏ The test suites are continuously updated as new failure conditions and corner

cases are discovered

❏ They are integrated with any regression tests that are developed.

❏ Unit tests are maintained along with the rest of the software source code and

integrated into the build process.

❏ The ultimate goal of this test process is to achieve continuous integration where

software updates can be published to the public frequently

Special Comment(s):

123

MODULE 2: AGILE SOFTWARE DEVELOPMENT PROCESS

Course Name:

Module 2: Agile Software development process

Storyboard File no. 02.01.01.00

Course section: 2.1

Lesson Name: Agile Software Development Process ID’s name:

Objective(s):

SME’s name:

Page Title: Agile Software Development Process Page no.

02.01.01.00

CD’s name:

Date Designed: Date SME contributed: Date verified:

Design

Agile Software Development Process

Lesson Structure

❏ Agile Software development principles

❏ Agile Testing Lifecycle

❏ Test Driven Development

❏ Test Automation

Objectives

❏ Describe Agile Values

❏ Understand Agile Testing

❏ Identify Benefits of TDD and Test

Automation

Special Comment(s):

124

Page Title: What is Agile? Page no.

02.01.02.00

SME’s name:

Date Designed: Date verified:

Design

What is Agile?

❏ Agile – A continuous stream of business value

❏ Agile methods in contrast to traditional ones

produce completely developed and tested

features at frequent intervals of 2-4 weeks

❏ Iterative approaches mean we can trade

features for time instead of sacrificing

quality

Special Comment(s):

125

Page Title: Agile Software development
principles

Page no.

02.01.03.00

SME’s name:

Date Designed: Date verified:

Design

Agile Software development principles

Manifesto for Agile is focus on 4 values

❏ Individuals and interactions over

Processes and tools

❏ Working software over

Comprehensive documentation

❏ Customer collaboration over

Contract negotiation

❏ Responding to change over

following a plan.

Special Comment(s):

126

Page Title: Agile Testing Lifecycle Page no.

02.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Agile Testing Lifecycle

Click on any stage to get more details about the stage

Special Comment(s):

This is an interactive animation. User can click on any stage to get more details

Should indicate this is the starting point and “click” get more details. Refer next

screen(02.03.01.01) for more details

127

Page Title: Agile Testing Lifecycle Page no.

02.02.01.01

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

As shown in the sample, when user clicks on 1 (Test Agility Strategy) detail explanation should

appear as shown (2) in a box.

Other areas (3,4,5,6) also should follow the same pattern. Here’s the text for those.

3:Daily Scrums

These daily standups which typically happens at the beginning of the day help catch up on

testing status and set the course for the rest of the day and goals for tomorrow.

4:Agility Review

This is a periodic review meeting that is typically performed once a week where larger group of

stakeholders

meet and asses the progress against milestones

5:Release Readiness

Here we review if our incremental features that have been developed are ready to go live. or else

we go back to previous stage in the cycle

128

6:Impact Assessment

We gather inputs from user and the stake holders. This acts as a feedback for the next

deployment cycle.

129

Page Title: Test Driven Development Page no.

02.03.01.00

SME’s name:

Date Designed: Date verified:

Design

Test Driven Development (TDD)

"Test-driven development" refers to a style of programming in which three activities

are tightly interwoven: coding, testing in the form of writing unit tests and design in

the form of refactoring

❏ TDD is a Test-First Approach. Write the

Test first and then write the code

❏ Think about “How to use a component” first

then about “How to implement”

❏ As much about Design Technique as Testing

Technique

❏ As much about Working Document as Testing

Special Comment(s):

130

Page Title: Red-Green-Refactor Page no.

02.03.02.00

SME’s name:

Date Designed: Date verified:

Design

Red – Green – Refactor

Click on any stage to get more details about the stage

Special Comment(s):

This is an interactive animation

When user clicks “Red” circle, circle should become wider covering all other element and should

display detail view of the stage.

Please refer the next screen

131

Page Title: Red-Green-Refactor Page no.

02.03.02.01

SME’s name:

Date Designed: Date verified:

Design

Red – Green – Refactor

Click on any stage to get more details about the stage

Special Comment(s):

Background color : # FE4040

Font Heading: Impact (size: 16)

Font Bullet-list: Arial (size: 12)

Font Color: White #FFFFFF

Content:

You may not write production code until you have written a failing unit test

Writing Test Code

❏ Guarantees that every functional code is testable

❏ Provides a specification for the functional code

❏ Helps to think about design

❏ Ensure the functional code is tangible

You may not write production code until

you have written a failing unit test

Writing Test Code

❏ Guarantees that every functional code is
testable

❏ Provides a specification for the functional
code

❏ Helps to think about design

❏ Ensure the functional code is tangible

132

---------- End of Content ------------------

Similarly for Green

Background color : # A4AD19

Font Heading: Impact (size: 16)

Font Bullet-list: Arial (size: 12)

Font Color: White #FFFFFF

Content:

write "just enough" code, the simplest possible, to make the test pass

Write Functional Code

❏ Fulfill the requirement

❏ Write the simplest solution that works

❏ Leave improvements for a later step

❏ code written is only designed to pass the test

---------- End of Content ------------------

Similarly for Refactor

Background color : # 4E1B55

Font Heading: Impact (size: 16)

Font Bullet-list: Arial (size: 12)

Font Color: White #FFFFFF

Content

"refactor" the code until it conforms to the simplicity criteria

Refactor

❏ clean-up the code

❏ make sure the code expresses intent

❏ Re-think the design

❏ Delete unnecessary code

---------- End of Content ------------------

133

Page Title: Test Automation Page no.

02.04.01.00

SME’s name:

Date Designed: Date verified:

Design

What is Test Automation

Automatically executed code that verifies an application in a reliable, resilient,

repeatable and fully automated way.

❏ Reliable. Always the same result.

❏ Resilient. Refactoring the

Application does not break the

Tests

❏ Repeatable. Can execute any number

of times.

❏ Automatically Executed. No human

interaction to prepare and start

the Test Automation

❏ It verifies requirements or predefined behaviors.

Test Automation does not ensure that the

requirements improve the application

Special Comment(s):

134

MODULE 3: WRITING USER STORIES

Course Name:

Module 3: Writing User stories

Storyboard File no. 03.01.01.00

Course section: 3.1

Lesson Name: Writing User stories ID’s name:

Objective(s):

SME’s name:

Page Title: Agile Software Development Process Page no.

03.01.01.00

CD’s name:

Date Designed: Date SME contributed: Date verified:

Design

Writing User Stories

Lesson Structure

❏ Introduction to User Story

❏ Writing the Right User Story

❏ Converting User stories into Acceptance

Tests

Objectives

❏ Describe components of user story

❏ Identify What makes a good user story

❏ Able to Write good user story

Special Comment(s):

135

Page Title: User Story Page no.

03.01.02.00

SME’s name:

Date Designed: Date verified:

Design

User Story

User Story is short, simple descriptions of a feature told from the perspective

of the person who desires the new capability, usually a user or customer of the

system. They typically follow a simple template:

As a <type of user>, I want <some goal> so that <some reason>.

User stories are often written on index cards or sticky notes, stored in a shoe

box, and arranged on walls or tables to facilitate planning and discussion. As

such, they strongly shift the focus from writing about features to discussing

them. In fact, these discussions are more important than whatever text is

written

Special Comment(s):

136

Page Title: User Story Process Page no.

03.01.03.00

SME’s name:

Date Designed: Date verified:

Design

User Story Process - 3Cs

Card
❏ For each feature, write it down in an index card.

Conversation
❏ Reconcile what the person writing the

story and the person building it both

understand

❏ discuss to discover different

interpretations

❏ Clarify and refine the story

❏ Discuss to explore solution scenarios

Confirmation
❏ Once it is built, how do you check that it's done?

❏ Check against a list of things (acceptance criteria)

❏ Demonstrate functionality

Special Comment(s):

137

Page Title: Writing Good User Stories Page no.

03.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Writing Good User Stories

Special Comment(s):

This is a video

“TOP 10 Tips” should be displayed in a “Red” (# FE4040) circle. Until the narration is on this

display should be there. Refer next screen and script (05.03.01.01) afterwards.

Transcript:

“User stories are probably the most popular agile technique to capture product functionality.

Working with user stories is easy.

But telling effective stories can be hard.

The following ten tips help you create good stories.

So, let's look at them individually”

TOP

10

Tips

138

Page Title: Writing Good User Stories Page no.

03.02.01.01

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

As narration goes “Number 1”, #1 should appear in the middle of the Red Circle. And when

narration goes “Users Come First”, world should appear from the bottom of the circle and slowly

come to the bottom of the #1 as narration goes. When the narration goes “Number 2”, all the

remaining text should be cleared and “#2” should appear in the middle of the Red circle and

repeat the same behavior for the rest of the items

Transcript:

Number 1: Users Come First

As its name suggests, a user story describes how a customer or user employs the product; it is

written from the user’s perspective. What’s more, user stories are particularly helpful to capture a

specific functionality, such as, searching for a product or making a booking

If you don’t know who the users and customers are and why they would want to use the product,

then you should not write any user stories. Carry out the necessary user research first, for

#1
Users Come First

139

example, by observing and interviewing users. Otherwise, you take the risk of writing

speculative stories that are based on beliefs and ideas—but not on data and evidence.

Number 2: Use Personas to Discover the Right Stories

A great technique to capture your insights about the users and customers is working with

personas. Personas are fictional characters that are based on first-hand knowledge of the target

group. They usually consist of a name and a picture; relevant characteristics, behaviors, and

attitudes; and a goal. The goal is the benefit the persona wants to achieve, or the problem the

character wants to see solved by using the product.

But there is more to it: The persona goals help you discover the right stories: Ask yourself what

functionality the product should provide to meet the goals of the personas.

Number 3: Create Stories Collaboratively

A user story is not a specification, but a communication and collaboration tool. Stories should

never be handed off to a development team. Instead, they should be embedded in a conversation:

The product owner and the team should discuss the stories together.

You can take this further and write stories collaboratively, for instance, as part of your product

backlog grooming process. This leverages the creativity and the knowledge of the team and

results in better user stories.

Number 4: Keep your Stories Simple and Short

Write your stories so that they are easy to understand. Keep them simple and short. Avoid

confusing and ambiguous terms, and use active voice. Focus on what’s important, and leave out

the rest.

Number 5: Start with Epics

An epic is a big, vague story. It is typically broken into several user stories over time leveraging

the user feedback on early prototypes and product increments. You can think of it as a headline

and placeholder for more detailed stories.

Starting with epics allows you to sketch the product functionality without committing to the

details. This is particularly helpful for describing new products and features: It allows you to

capture the rough scope, and it buys you time to learn more about how to best address the needs

of the users. It also reduces the time and effort required to integrate new insights. If you many

detailed stories in the product backlog, then it’s often tricky and time-consuming to relate

feedback to the appropriate stories and you have to be careful not to introduce inconsistencies.

Number 6: Refine the Stories until They are Ready

Break your epics into smaller, detailed stories until they are ready: clear, feasible, and testable.

All development team members should have a shared understanding of the story’s meaning; the

story should not too big and comfortably fir into a sprint, and there has to be an effective way to

determine if the story is done.

Number 7: Add Acceptance Criteria

As you break epics into smaller stories, remember to add acceptance criteria. Acceptance criteria

140

complement the narrative: They allow you to describe the conditions that have to be fulfilled so

that the story is done. The criteria improve the story, they make it testable, and they ensure that

the story can be demoed or released to the users and other stakeholders. As a rule of thumb, use

three to five acceptance criteria for detailed stories.

Number 8: Use Paper Cards

User stories emerged in Extreme Programming, and the early XP literature talks about story

cards rather than user stories. There is a simple reason: User stories were captured on paper

cards. This approach provides three benefits: First, paper cards are cheap and easy to use.

Second, they facilitate collaboration: Everyone can take a card and write down an idea. Third,

cards can be easily grouped on the table or wall to check for consistency and completeness and

to visualize dependencies. Even if your stories are stored electronically, it is worthwhile to use

paper cards when you write new stories.

Number 9: Keep your Stories Visible and Accessible

Stories want to communicate information. Therefore don’t hide them on a network drive. Make

them visible, for instance, by putting them up on the wall. This collaboration, creates

transparency, and makes it obvious when you add too many stories too quickly, as you quickly

start running out of wall space.

Number 10: Don’t Solely Rely on User Stories

Creating a great user experience requires more than user stories. User stories are helpful to

capture product functionality, but they are not well suited to describe the user journeys and the

visual design. Therefore complement user stories with other techniques, such as, story maps,

workflow diagrams, storyboards, sketches, and mockups.

Additionally, user stories are not good capturing technical requirements. If you need to

communicate what an architectural element like a component or service should do, then write

technical stories or use a modeling language like UML.

Finally, writing user stories is worthwhile when you develop software that’s likely to be reused.

But if you want to quickly create a throwaway prototype or mockup to validate an idea, then

writing stories may not be necessary. Remember: User stories are not about documenting

requirements; they want to enable you to move fast and develop software as quickly as possible

and not to impose any overhead.

141

Page Title: Acceptance Criteria Page no.

03.03.01.00

SME’s name:

Date Designed: Date verified:

Design

Acceptance Criteria

Acceptance Criteria are conditions which a software application should satisfy to be

accepted by a user or customer.

❏ Set of statements tells the result is passing or fails

for both functional and non-functional requirements.

❏ In Agile, acceptance criteria make sure the user story

is completed or not.

❏ It is also known as test completion criteria and fit

criteria.

❏ The acceptance conditions and non- acceptance

conditions should be clearly mentioned in the

acceptance criteria.

Special Comment(s):

142

Page Title: Example of an Acceptance Criteria Page no.

03.03.02.00

SME’s name:

Date Designed: Date verified:

Design

Example of an Acceptance Criteria

User Story: As a Shopper I want to Create an orders in online shopping cart, so I can

purchase times

Criteria:

❏ User should be able to selects multiple items and add to shopping cart.

❏ The user should be able to see the items in the shopping cart.

❏ The user should be able to purchase items using their local currency.

❏ The user should be able to see an order number when the payment method is

made.

Other examples of Acceptance Criteria can include:

❏ The user would not be able to submit a form if all the mandatory fields are not

entered.

❏ Modes of payments can be selected, like payment by credit card, debit card.

❏ An automatic email is sent once the payment is made and confirmed.

Special Comment(s):

143

MODULE 5: ACCEPTANCE TEST DRIVEN DEVELOPMENT

Course Name:

Module 5: Acceptance Test Driven Development

Storyboard File no. 05.01.01.00

Course section: 5.1

Lesson Name: Introduction to ATDD ID’s name:

Objective(s):

SME’s name:

Page Title: Introduction to ATDD Page no.

05.01.01.00

CD’s name:

Date Designed: Date SME contributed: Date verified:

Design

Introduction to ATDD

Lesson Structure

❏ What is ATDD
❏ ATDD Process

❏ Definition of Done (DoD)

❏ Benefits of ATDD

❏ Challenges of Practicing ATDD

❏ Gherkin Syntax

❏ Few Examples

Objectives

❏ Describe how ATDD helps to bridge the communication Gap

❏ Use Gherkin syntax to create feature files

❏ Create feature files using Gherkin

Special Comment(s):

144

Page Title: What is ATDD Page no.

05.01.02.00

SME’s name:

Date Designed: Date verified:

Design

What is ATDD?

❏ Stands for Acceptance Test Driven Development

❏ ATDD is a collaborative process where the business

customer, product owner and Agile team members

defines Acceptance Criteria

❏ Focus is on Business Rules

❏ Acceptance Test design begins before start coding

❏ Specification is provided with examples

Special Comment(s):

145

Page Title: ATDD vs TDD Page no.

05.01.03.00

SME’s name:

Date Designed: Date verified:

Design

ATDD vs TDD

TDD

❏ is about building the software right

❏ focus on individual functionality (Unit tests)

❏ implement by the developers

ATDD

❏ is about building the right software

❏ focus on the business rule (Acceptance tests)

❏ implement by the agile team including the developers

Special Comment(s):

146

Page Title: ATDD Process Page no.

05.02.01.00

SME’s name:

Date Designed: Date verified:

Design

Click on any stage to get more detail

Special Comment(s):

icon should flash and indicate it’s clickable and get more details about the stage

147

Page Title: Page no.

05.02.01.01

SME’s name:

Date Designed: Date verified:

Design

Discuss:

Required Artifact: User Story – need a business
requirement to start from. What is needed is a business
value to be delivered.

Format: Meeting with access to a whiteboard

How it works: The Business Analyst has previously developed the user story through
his conversations with the Product owner, he will be able to explain the user story’s
business value. He will also be able to explain the conditions of satisfaction. Shared
understanding of goals will guarantee the real goal is attained and not a consequence of
somebody’s assumption

Outcomes:

#1: Examples – examples cover all the aspects of the
user story plus those aspects that were not covered in
the user story.

#2: The team have a common understanding of the business value of the user story

#3: The discuss activity might highlight that the user story is too big to be delivered, in
this case the activity will produce a list of user stories and the examples for the first one
that is taken into development.

Next >

Special Comment(s):

User can select “Next >” for continue and click “ATDD Cycle” graph to get back to the initial

screen (05.02.01.00)

148

Page Title: Page no.

05.02.01.02

SME’s name:

Date Designed: Date verified:

Design

Distill

Required Artifact: Examples

Format: Pair programming

How it works: Now that we have the examples written down, we can transform them
into tests in a format that works with our test automation framework. There are a
variety of test automation frameworks that support defining the tests in advance of the
implementation including Jbehave and Cucumber.

Tests will be written using the Given When Then format. Tests will cover all the
examples that were identified as result of the Discuss activity. Extra tests could be
added based on the improved understanding of the business goal.

Outcomes

#1: Tests – The Tests cover all the aspects of the
examples plus those aspects that were not covered
in examples that were uncovered while writing the
tests.

#2: The tests will be written in English so that every team member is able to
understand and give feedback. The Tests represent the blueprint (documentation) for
what we will eventually deliver. The tests will be highly visible and easily accessible at
any time.

<Back | Next >

Special Comment(s):

User can select “Next >” for continue or “< Back” to previous screen or click “ATDD Cycle”

graph to get back to the initial screen (05.02.01.00)

149

Page Title: Page no.

05.02.01.03

SME’s name:

Date Designed: Date verified:

Design

Develop

Required Artifact: Tests

Format: Pair programming or Single developer
writing code + Code Review

How it works: When implementing the code, the developers are following a test-first
approach, they execute the tests and watch them fail. They will write the minimum
amount of code required to get the acceptance tests Green. Once the acceptance tests
are green he will manually verify that everything hangs together and will call another
Developer or a Tester to perform Exploratory Testing. Once exploratory testing is
completed and any defects fixed the user story is done and working software is ready
to be delivered. While coding the developer might identify scenarios that were not
identified earlier and add tests for them. Such tests need to be added to the previous
set and shared with the rest of the actors. If the new scenarios identified represent a
large amount of work a decision might be made that pushes the new uncovered
scenarios to a subsequent user story or we could decide to deliver them.

Outcomes: Working software + more comprehensive tests

<Back | Next >

Special Comment(s):

User can select “Next >” for continue or “< Back” to previous screen or click “ATDD Cycle”

graph to get back to the initial screen (05.02.01.00)

150

Page Title: Page no.

05.02.01.04

SME’s name:

Date Designed: Date verified:

Design

Demo

Required Artifact: Working Software

Format: Meeting with large monitor

How it works: Before organizing a Demo the development team needs to be sure the
user story adheres to the definition of done. One very good practice is to create a demo
script in which the demo facilitator writes down the steps to follow in order to
demonstrate the user story business value to the product owner.
The demo should be an occasion for the development team to be proud of what was
delivered.
The product owner will be able to use the Tests to validate all the required
functionality has been delivered. At the end of a successful Demo, the product owner
will accept the original User Story through the business value demonstrated by
running the tests.

Outcomes: Business value

<Back

Special Comment(s):

User can select “Next >” for continue or “< Back” to previous screen or click “ATDD Cycle”

graph to get back to the initial screen (05.02.01.00)

151

ACTIVITY:

Page Title: Page no.

05.03.01.00

SME’s name:

Date Designed: Date verified:

Design

ATDD Process Cycle

Activity: Map artifacts into correct stage.

You need to drag and drop activities from “Artifacts” Box into correct ATDD

process. If an artifact does not related to ATDD process, place them in “Not

Related to ATDD” Box.

Special Comment(s):

User can select and drag and drop artifacts for “Artifacts” Box into the correct cage to get

marks

Should be able to select “Artifacts” from

Should be able to Drag selected artifacts into chose cage

If the Artifact is not belong the Drop cage, it should go back to the “Artifacts Box” and

Indicate “Incorrect Move” and Should increase the Wrong count by 1

152

If the Artifact is placed in correct cage, Right count should increase by 1

Page Title: Page no.

05.04.01.00

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration:

“Definition of Done! Let's look at what's DONE means. For Agile teams that done means,

nothing more needs to be done for a piece of work to be taken into production.”

“Definition of done is, actually a checklist, checklist of activities required to produce complete

software. Activities such as writing code, unit testing, code reviewing, acceptance testing,

performance testing, user manuals, etc.

This check list allows the team to focus on what must be completed in order to build software.

While eliminating wasteful activities that only complicate software development effort. you

can think of the definition of done as an extra set of acceptance criteria

That is rubber stamped onto each and every user story.”

Notes: each check box should appear sequentially while reading the check list items

153

Page Title: Page no.

05.04.01.01

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “Definition of done is unique to the team. One team's DoD can't be applied to

another team. and even team's

Definition of done won't remain the same throughout the lifetime of the project. It will get

evolved with the time.

For an example, team might not be able to do so much automate testing when first starting out.

but, hopefully they

Would add that to their definition of done over time.”

154

Page Title: Page no.

05.04.01.02

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “However it seems Acceptance criteria and Definition of Done are same, actually

they are not!”

155

Page Title: Page no.

05.04.01.03

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “Definition of done is generic and applicable to all stories, while acceptance criteria

is specific and different

For different user stories. but one item in the definition of done can be something like, "Do the

user story meet the acceptance

Criteria?”

156

Page Title: Page no.

05.04.01.04

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “so how we create Definition of done

As a team we should gather and discuss what DONE is mean to us. Team should include

everyone. product owner, business

Analysts, developers, testers. team should discuss in a workshop meeting, usually time-boxed

to 30 minutes or 1 hour, and try to identify and write down

All of the work necessary for a release. Write each item on a separate post-it note. and product

owner needs sign of each

Work item, so it can be considered as an agreement. "Code reviews are done"

”

Note: as speak of each work item, post-it should appear in the screen. first sample is given for

“Code reviews are done”

"Performance tests passed",

"All acceptance tests passed", "Unit tests code coverage is more than 80 percent",

"No more than 5 open defects", "No blocking or critical defects", "Test Automation is

completed" are few examples for work items.”

157

Page Title: Page no.

05.04.01.05

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “Then we need to categories them into 3 groups. One is "Done for a USER

STORY", second one is "Done for an ITERATION", and last one is "Done for a RELEASE".

”

158

Page Title: Page no.

05.04.01.06

SME’s name:

Date Designed: Date verified:

Design

Special Comment(s):

Narration: “"Code reviews are done", "Unit tests are done", "No blocking or critical defects"

can be categorized into "Done for a User story". If these work list items are met for a user

story, we can simply say, this user story is done.

"No more than 5 open defects", "Test Automation is completed", "All Acceptance tests

passed", "Unit test coverage is more than 80 percent"

Can be categorized into "Done for Iteration". So when those work list items completed we can

say we are done with the iteration.

Work items like "Performance tests passed", "security audit completed", "Backups are taken"

can be categorized into "Done for a Release". once those activities completed we can say we

are DONE with the release”

159

Page Title: Page no.

05.05.01.00

SME’s name:

Date Designed: Date verified:

Design

Benefits of ATDD

For the Business and Team

❏ Improves Communication and Collaboration

❏ Better definition of done!

❏ Fast customer feedback

❏ Significantly less bugs

❏ Reliable automation

❏ Accurate documentation

❏ Changes are easy

❏ Happy customers!

Special Comment(s):

160

Page Title: Page no.

05.05.02.00

SME’s name:

Date Designed: Date verified:

Design

Benefits of ATDD

For developers

❏ No more unclear requirements

❏ Clear focus: make the test pass!

❏ Easy to keep the code clean

❏ Less bugs!

❏ Less debugging

Special Comment(s):

161

Page Title: Page no.

05.05.03.00

SME’s name:

Date Designed: Date verified:

Design

Benefits of ATDD

For testers

❏ Big impact on quality!

❏ No tedious test cycles

❏ More time for exploratory testing

❏ No more “it’s work on my machine!” scenarios

Special Comment(s):

162

Page Title: Page no.

05.06.01.0

0

SME’s name:

Date Designed: Date verified:

Design

Challenges in ATDD

❏ Works best in agile environment

❏ Writing good scenarios takes practice

❏ Poorly written tests can lead to

higher test maintenance cost

❏ Treat test automation code like

production code

❏ Requires high business engagement

and collaboration

Special Comment(s):

163

Page Title: Page no.

05.07.01.00

SME’s name:

Date Designed: Date verified:

Design

Cucumber & Gherkin Language

Cucumber is a software tool for testing

other software. It’s one of the least

technical tools, so everyone can use it

without much trouble.

Gherkin is the format for cucumber

specifications. Technically speaking it is

line-based language with a well-defined

syntax, but at the same time it’s so

simple, that you don’t have to know

programming in order to use it

Special Comment(s):

164

Page Title: Page no.

05.07.02.00

SME’s name:

Date Designed: Date verified:

Design

Gherkin Syntax

Gherkin documents are stored in regular text file with .feature file

extension. here’s a sample feature file

Feature: User Registration
Check for home page
See of the registration is working

Also verify if the register user is displayed

Background:
Given: Clear already created user before begin

Scenario: Register user with minimal password combination

Given I’ve opened the website
And I’m in the homepage
When I click the register link

Then I should see the register page
And I fill the form with details
|user name | password | cPassword|
|lahiru | abc@123 | abc@123 |

Special Comment(s):

165

Page Title: Page no.

05.07.03.00

SME’s name:

Date Designed: Date verified:

Design

Gherkin Keywords

❏ Feature

❏ Background

❏ Scenario

❏ Given

❏ When

❏ Then

❏ And

❏ But

❏ *

❏ Scenario Outline

❏ Examples

helper keywords

❏ “”” (doc string)

❏ | (data tables)

❏ @ (tags)

❏ # (comments)

Special Comment(s):

166

Page Title: Page no.

05.07.04.00

SME’s name:

Date Designed: Date verified:

Design

Gherkin Keywords

Feature - Each Gherkin file begins with the Feature keyword. This keyword

doesn’t really affect the behavior of your Cucumber tests at all. It just gives you a
convenient place to put some summary documentation about the group of tests that
follow. In valid Gherkin, a Feature must be followed by one of the following: • Scenario
• Background • Scenario Outline

Scenario - To actually express the behavior we want, each feature contains

several scenarios. Each scenario is a single concrete example of how the system should
behave in a particular situation. If you add together the behavior defined by all of the
scenarios, that’s the expected behavior of the feature itself.

Special Comment(s):

167

Page Title: Page no.

05.07.05.00

SME’s name:

Date Designed: Date verified:

Design

Gherkin Keywords

Given, When, Then - we use Given to set up the context where the

scenario happens, When to interact with the system somehow, and Then to check
that the outcome of that interaction was what we expected

Scenario: Successful withdrawal from an account in credit
Given I have $100 in my account # the context
When I request $20 # the event(s)
Then $20 should be dispensed # the outcome(s)

Special Comment(s):

168

Page Title: Page no.

05.07.06.00

SME’s name:

Date Designed: Date verified:

Design

Gherkin Keywords

And , But - Each of the lines in a scenario is known as a step. We can add

more steps to each Given, When, or Then section of the scenario using the keywords
And But

Scenario: Attempt withdrawal using stolen card
Given I have $100 in my account
But my card is invalid
When I request $50
Then my card should not be returned
And I should be told to contact the bank

Cucumber doesn’t actually care which of these keywords you use. the choice is simply
there to help you create the most readable scenario

Special Comment(s):

169

Page Title: Page no.

05.07.07.00

SME’s name:

Date Designed: Date verified:

Design

Few Examples - #1

(Purchasing from online store)

Feature: Feedback when entering invalid credit card details

 In user testing we've seen a lot of people who made mistakes

 entering their credit card. We need to be as helpful as
possible here to avoid losing users at this crucial stage
Of the transaction.

 Background:

 Given I have chosen some items to buy

 And I am about to enter my credit card details

 Scenario: Credit card number too short

 When I enter a card number that's only 15 digits long

 And all the other details are correct

 And I submit the form

 Then the form should be redisplayed

 And I should see a message advising me of the correct
number of digits

 Scenario: Expiry date invalid

 When I enter a card expiry date that's in the past

 And all the other details are correct

 And I submit the form

 Then the form should be redisplayed

 And I should see a message telling me the expiry date
must be wrong

Special Comment(s):

170

Page Title: Page no.

05.07.08.00

SME’s name:

Date Designed: Date verified:

Design

Few Examples - #2

(Withdrawal from ATM)

Scenario: Successful withdrawal from an account in credit
Given I have $100 in my account # the context
When I request $20 # the event(s)
Then $20 should be dispensed # the outcome(s)

Scenario: Attempt withdrawal using stolen card
Given I have $100 in my account
But my card is invalid
When I request $50
Then my card should not be returned
And I should be told to contact the bank

Special Comment(s):

171

ACTIVITY

Page Title: Page no.

05.08.01.00

SME’s name:

Date Designed: Date verified:

Design

Assignment: (10 Marks)

Due date: 2016-08-10
No submission after: 2016-08-17

Late penalty: 40% will be reduced from the marks for late submissions

Look at the given user story and convert it into .feature file using Gherkin
syntax. Upload the .feature file using “Choose file” button and submit the
assignment.

As a shop visitor I want to collect books in my shopping basket

So that I can purchase multiple books at once.

Books can be added to the shopping basket

Books can be removed from the shopping basket

Shopping basket is initially empty

The same book can be added multiple times to the shopping basket

Special Comment(s):

172

