

Analyze vulnerabilities of source codes

published on open forums

A dissertation submitted for the Degree of Master of

Science in Information Security

S.T.S.T. Desapriya

University of Colombo School of Computing

2017

i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: S.T.S.T. Desapriya

Signature: Date:

This is to certify that this thesis is based on the work of Mr. S.T.S.T. Desapriya under my

supervision. The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Certified by:

Supervisor Name: Dr. Kasun De Zoysa

Signature: Date:

ii

Abstract

Web applications and mobile applications are extremely popular in the society and also became

a part of the human lives. These applications are used by different institutions including gov-

ernments for different purposes allowing them to access sensitive information and perform crit-

ical operations. Software developers are using many development languages to develop these

applications by writing thousands of lines of code, with or without security in mind. Common

practice among software developers is that they use open forums to share, suggest code exam-

ples and also to look for a suggestion for a problem they face or situation they need to address.

Since these open forums are extremely popular among developer community, they tend to use

those source examples, for the development of their applications. Because of that source code

examples in open forums make direct impact on real world software application, for developers,

it is important to have a method of verifying these source code samples and make sure they are

free of security vulnerabilities before using.

Project aims to solve this problem by developing a simple, user friendly tool, which is capable

of analyzing the security vulnerabilities of the source code samples published on open forums.

The methodology used is, download large set of source code samples from an open forum,

perform a static analysis using a reliable commercial tool, extract the results and create a

knowledge-base of vulnerable source snippets, which can be used by the developed tool, to

detect vulnerabilities of a particular source code block. Stackoverflow is selected as the open

forum and five widely used programming languages, CSharp, Java, PHP, Python and JavaScript

were selected for the analysis. Checkmarx is the static analysis tool selected. Over twenty-seven

thousand source code samples used for the analysis and over thousand four hundred vulnera-

bilities detected by Checkmarx.

The Project delivers five main components. Python based crawler used to crawl through Stacko-

verflow and download source code samples. Data importer component, developed using csharp,

used to import the results given by Checkmarx in to the knowledge base. Dashboard with vari-

ous graphs and charts to show the results of the analysis is also developed using csharp. Chrome

browser plugin, which is capable of analyzing a selected source code block, for potential vul-

nerabilities by referring the knowledge base, is developed as the tool. Finally, MS SQL server

used to create the knowledge base which holds all the vulnerability data provided by

Checkmarx.

The solution can influence the developers to write more secure code during the development of

the project and also make them aware about the security vulnerabilities, which will ultimately

make the software rugged. Project would be much more interest for those who involve in soft-

ware development related areas and also for application security analysts who are interested

and very keen on static analysis.

iii

Acknowledgment

First and foremost, I would like to express my sincere thanks to my supervisor Dr. Kasun De

Zoysa, senior lecture at University of Colombo School of Computing, for the enormous support,

guiding and most importantly the encouragement given for the dissertation work.

Also, I would like to thank my panel members for giving me valuable comments and

improvements points to make the dissertation a better one.

Specially, I would like to thank my family for the great support, encouragement, guidance and

love given to me during this research work.

Special thank goes to Aaron Weaver, for spending his valuable time helping me and the support

given with the commercial tool.

Finally, I would like to thank my working place, Pearson Lanka (pvt) Ltd. for all the

opportunities given and making me a strong character in the industry.

iv

Table of Contents

Declaration... i

Abstract ... ii

Acknowledgment ... iii

Table of Contents ... iv

List of Figures ... vii

List of Tables .. x

Chapter 1 : Introduction .. 1

1.1 Motivation .. 1

1.2 Objective ... 4

1.3 Scope .. 5

Chapter 2 : Literature Review .. 6

2.1 Introduction .. 6

2.2 Application Security Vulnerabilities ... 6

2.2.1 OWASP Top 10 .. 7

2.2.2 Cigital Top 20 .. 15

2.2.3 SANS Top 25 ... 18

2.3 Built-In Security ... 20

2.3.1 Microsoft Security Development Life cycle ... 21

2.3.2 Seven Security Touch Points Proposed by Gary McGraw 21

2.4 Static Analysis .. 22

2.4.1 Static Analysis Tools ... 26

2.4.2. Advantages and Disadvantages .. 46

2.5 Vulnerable Programming Languages ... 47

2.5.1. Top 10 Vulnerable Programming Languages ... 48

Chapter 3 : Design .. 51

3.1 Design Overview .. 51

3.2 System Overview .. 52

3.2.1 Web Crawler .. 53

3.2.2 Process Vulnerabilities and Store .. 54

3.2.3 Dashboard .. 55

3.2.4 Code Analysis Tool .. 56

3.2.5 Relational Database ... 57

3.2.6 Static Analysis Tool ... 58

3.2.7 Open Forum ... 58

Chapter 4 : Implementation .. 60

4.1 Implementation Overview .. 60

v

4.2 Source Samples .. 60

4.3 Programming Languages to Select ... 62

4.4 Source Samples Crawler ... 62

4.5 Static Source Analysis Tool .. 66

4.6 Vulnerability Importer .. 70

4.7 Dashboard ... 71

4.8 Code Analysis Tool ... 72

4.9 Vulnerability Database ... 78

Chapter 5 : Results, Testing and Evaluation ... 79

5.1 Introduction .. 79

5.2 Results .. 79

5.2.1 JavaScript .. 80

5.2.2 Python .. 81

5.2.3 PHP .. 82

5.2.4 Java .. 84

5.2.5 C-Sharp .. 86

5.3 Source Code Testing ... 87

5.4 Functional Testing .. 87

5.4.1 Testing Web Crawler ... 87

5.4.2 Vulnerability Exporter ... 88

5.4.3 Testing Dashboard ... 88

5.4.4 Testing Code Analyzer Tool .. 89

5.5 Usability Testing ... 94

Chapter 6 : Conclusions and Future Work .. 97

6.1 Introduction .. 97

6.2 Summary ... 97

6.3 Problems Faced .. 98

6.3.1 Crawling StackOverflow ... 98

6.3.2 Commercial Tool ... 99

6.3.3 False Positives ... 99

6.3.4 Browser Plugin .. 99

6.3.5 Usability Testing .. 99

6.4 Limitations .. 100

6.5 Extensions and Further Work ... 100

6.5.1 Fully Automate .. 100

6.5.2 Expand the Knowledge Base ... 101

vi

6.5.3 Enhancements .. 101

6.5.4 Future Work ... 102

6.6 Critical Appraisal of the System ... 102

6.7 Final Conclusion ... 103

Appendix A : Development and Testing Environment ... 104

A.1 Hardware Requirements .. 104

A.2 Software Requirements .. 104

Appendix B : General Information ... 105

B.1 Execution of Web-Crawler ... 105

B.2 Browser Usage ... 106

B.3 Checkmarx Manual Verification .. 108

B.4 Checkmarx Reports .. 109

B.5 Chrome Extension .. 110

B.6 CodePlex FuzzyString ... 111

B.7 Google Trends .. 112

Appendix C : Project Source Code ... 113

C.1 Project Structures ... 113

C.2 Helpful Comments ... 113

Appendix D : Testing the Application .. 115

Appendix E : Dashboard Options ... 118

References .. 119

vii

List of Figures

Figure 1.1 : Monthly Stack Overflow Visits - Geographically ... 2
Figure 1.2 : Most Popular Technologies - Full Stack ... 3

Figure 1.3 : Age Groups ... 3
Figure 1.4 : Job Titles ... 4
Figure 2.1 : OWASP Top 10 Vulnerabilities ... 8
Figure 2.2 : Sample Attack - Injections .. 9
Figure 2.3 : Sample Attack - Broken authentication & Session management 10

Figure 2.4 : Sample Attack - Cross site scripting (XSS) .. 11
Figure 2.5 : Sample Attack - Insecure direct object reference ... 12
Figure 2.6 : Sample Attack - Missing functional level access control 13

Figure 2.7 : Sample Attack - Cross site request forgery ... 14
Figure 2.8 : OWASP Top 10 Vulnerabilities - Mobile .. 15
Figure 2.9 : Cigital Top 20 Vulnerabilities ... 16
Figure 2.10 : Cigital - Data collection methodology .. 17
Figure 2.11 : Comparison - Cigital Top 20 vs OWASP Top 10 .. 18

Figure 2.12 : Insecure Interaction Between Components - Vulnerabilities 19

Figure 2.13 : Risky Resource Management - Vulnerabilities ... 19
Figure 2.14 : Porous Defenses - Vulnerabilities ... 20
Figure 2.15 : Microsoft Security Development Life cycle ... 21

Figure 2.16 : Software Security Touch points .. 22
Figure 2.17 : Traditional quality assurance model vs Attacker .. 23

Figure 2.18 : Data flow Analysis .. 23
Figure 2.19 : Control flow Graph ... 24

Figure 2.20 : Taint Analysis .. 25
Figure 2.21 : Lexical Analysis .. 25

Figure 2.22 : VisualCodeGrepper V2.1.0 ... 28
Figure 2.23 : YASCA .. 29
Figure 2.24 : OWASP LAPSE+ .. 30

Figure 2.25 : RIPS .. 31
Figure 2.26 : DevBug ... 32

Figure 2.27 : Flawfinder ... 33
Figure 2.28 : CPPCheck ... 34

Figure 2.29 : Brakeman .. 35
Figure 2.30 : Brakeman users ... 35
Figure 2.31 : IBM AppScan source .. 37
Figure 2.32 : Fortify Static Code Analyzer... 38

Figure 2.33 : Veracode application security platform ... 39
Figure 2.34 : Languages supported by Veracode .. 39
Figure 2.35 : WhiteHat Sentinel Source ... 40

Figure 2.36 : WhiteHat Security Customers ... 41
Figure 2.37 : Checkmarx Source Code Analysis Tool .. 42
Figure 2.38 : Checkmarx Supported Programming Languages ... 43
Figure 2.39 : Open Source Components getting in every Angle .. 44
Figure 2.40 : Black Duck Hub .. 45

viii

Figure 2.41 : WhiteSource .. 45
Figure 2.42 : WhiteSource, Managing Policies .. 46

Figure 2.43 : Policy compliance by programming language .. 49
Figure 2.44 : Comparison of critical vulnerability types .. 49
Figure 2.45 : Dynamic vs. static application security testing ... 50

Figure 3.1 : System Overview .. 53
Figure 3.2 : Sample crawler using Scrapy .. 54
Figure 3.3 : Process Vulnerabilities and Store .. 55
Figure 3.4 : Dashboard - Process Vulnerabilities and Display Charts 56
Figure 3.5 : Code Analysis Tool ... 57

Figure 3.6 : Database diagram .. 57
Figure 3.7 : Table used for graphs and charts ... 58
Figure 3.8 : Static code analysis tool .. 58
Figure 3.9 : Crawl Open Forum and store source samples locally ... 59
Figure 4.1 : StackOverflow sample question.. 61

Figure 4.2 : StackOverflow sample answer .. 61
Figure 4.3 : StackOverflow Posted question URL format .. 62

Figure 4.4 : Sample source code file .. 66
Figure 4.5 : Running the web crawler .. 66
Figure 4.6 : Sample source code files are ready to upload ... 67
Figure 4.7 : Checkmarx upload zip file for scan .. 67

Figure 4.8 : Checkmarx scan queue ... 67
Figure 4.9 : Project overview ... 68
Figure 4.10 : Issue viewer... 68

Figure 4.11 : Import vulnerabilities to a report ... 69
Figure 4.12 : Imported vulnerabilities to XML documents .. 69

Figure 4.13 : Vulnerability report importer .. 70
Figure 4.14 : Top 5 Vulnerabilities ... 71

Figure 4.15 : Vulnerabilities by Platform ... 72
Figure 4.16 : Source Analyzer Chrome Plugin ... 73

Figure 4.17 : Source Analyzer tool ... 77
Figure 4.18 : Database implementation .. 78
Figure 5.1 : Risk level indicator of each language ... 80

Figure 5.2 : Vulnerability categories - JavaScript .. 80
Figure 5.3 : Top 5 vulnerability categories – JavaScript .. 81

Figure 5.4 : Vulnerability categories - Python .. 81
Figure 5.5 : Top 5 vulnerability categories - Python .. 82
Figure 5.6 : Vulnerability categories - JavaScript within PHP ... 83

Figure 5.7 : Top 5 vulnerability categories - PHP .. 83
Figure 5.8 : Vulnerability categories - PHP .. 84

Figure 5.9 : Vulnerability categories - Java .. 85

Figure 5.10 : Top 5 vulnerability categories - Java .. 85

Figure 5.11 : Vulnerability categories - CSharp ... 86
Figure 5.12 : Top 5 vulnerability categories - CSharp .. 86
Figure 5.13 : Open vulnerabilities by severity ... 88
Figure 5.14 : SQL query results .. 89
Figure 5.15 : Unit test method 001 ... 90

Figure 5.16 : Unit test method 002 ... 90
Figure 5.17 : CSharp vulnerabilities summery of the Knowledge-base 91

file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690218
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690236

ix

Figure 5.18 : Checkmarx results of new source samples ... 93
Figure 5.19 : Usability feedback form .. 95

Figure 5.20 : Expert feedback on accuracy of source analyzer .. 96
Figure B.1 : Above to run the web crawler .. 105
Figure B.2 : After running the web crawler .. 106

Figure B.3 : Browser Usage 2009 - 2016 ... 107
Figure B.4 : Browser market map - 2015 ... 107
Figure B.5 : Mark vulnerabilities as false positive ... 108
Figure B.6 : Manually set the severity of a vulnerability ... 109
Figure B.7 : Checkmarx imported XML report .. 109

Figure B.8 : Chrome extension files ... 110
Figure B.9 : Source Analyzer Chrome extension ... 110
Figure B.10 : FuzzyString algorithms .. 111
Figure B.11 : FuzzyString compare two strings ... 111
Figure B.12 : Interest over time .. 112

Figure B.13 : Interest by region .. 112
Figure C.1 : Project structures .. 113

Figure C.2 : Project comments ... 114
Figure E.1 : Chart options of the Dashboard .. 118

file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690237
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690239
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690255

x

List of Tables

Table 2.1 : Well-known security research organization .. 7
Table 2.2 : SANS vulnerability categories ... 18
Table 2.3 : Selecting an open-source static analysis tool - Points to Consider 27
Table 2.4 : VisualCodeGrepper - Advantages and Disadvantages ... 27

Table 2.5 : YASCA - Advantages and Disadvantages .. 28
Table 2.6 : OWASP LAPSE+ - Advantages and Disadvantages .. 29
Table 2.7 : RIPS - Advantages and Disadvantages ... 30
Table 2.8 : DevBug - Advantages and Disadvantages .. 31
Table 2.9 : Flawfinder - Advantages and Disadvantages .. 32

Table 2.10 : CPPCheck - Advantages and Disadvantages .. 33
Table 2.11 : Brakeman - Advantages and Disadvantages ... 34

Table 2.12 : Points to consider with open source static analysis tools - Checkmarx 36
Table 2.13 : IBM AppScan Source capabilities .. 37
Table 2.14 : Fortify Static Code Analyzer benefits .. 38
Table 2.15 : Checkmarx static analysis tool benefits .. 42

Table 2.16 : Black Duck Hub capabilities .. 44
Table 3.1 : Components of proposed system .. 52

Table 5.1 : False Positive and Negative Percentages .. 89
Table 5.2 : Expected outcome the Tool should provide .. 91
Table 5.3 : Expected results vs Actual results .. 92

Table 5.4 : Expected outcome vs Actual outcome - CSharp .. 92
Table 5.5 : Results comparison - Unknown source samples .. 93

Table 5.6 : Test results summery .. 94

Table D.1 : Detailed results comparison ... 116

Table D.2 : Ideas to Improve .. 117

1

Chapter 1 : Introduction

1.1 Motivation

Web and mobile applications are part of human lives in the present days which are dealing with

highly sensitive data and operations. Because of the critical and the integrated nature of those

applications, they have become the primary targets of attacks. New security vulnerabilities are

discovered every day in those commonly used applications which creates a huge security threat

on end users. Which makes the point that these applications must be rugged and should be able

to stand against malicious attacks.

Each and every software created using thousands of lines of code, which called as source code,

to make it functional. It is very clear that the source code plays important role in terms of

application security and need to make sure the source code followed security best practices in

order to assure application security.

Industry is extremely focused on S-SDLC (Secure Software Development Life cycle) which is

focusing on building security into the development life cycle which can assure the security of

end product. Analyzing source code which is called static code analysis, commonly referred to,

scanning the source code using a static analysis tool to identify potential security vulnerabilities

is a part of S-SDLC [10]. Static analysis of the source code can identify potential security

vulnerabilities during the development phase of the software, so that the developer can take

necessary actions to eliminate these issues then and there.

Software developers involved in writing these source codes, according to the functional

specifications of the software. During the day to day development, developers tend to surf web

and refer freely available source code examples to solve their problems or to enhance their

source code. These open forums are extremely popular among developer community and

thousands of developers around the world refer these contents and also share their knowledge

and views on published answers. The beauty of these open forums is, anyone can freely join

and start sharing suggestions to a particular problem with their own source code samples.

By analyzing some of the open forum statistics, it's very clear how popular and how actively

developers are using them. According to StackOverflow, one of the most famous open forum

among developers, about 32 million people visit them every month and more than 25 million

are return visitors. And return visitors visits the site 6 times every month. In January 2016, 46

million visited StackOverflow and they believe 16 million of those are professional developers

[15]. Below chart shows the monthly visits of StackOverflow, geographically.

2

Figure 1.1 : Monthly Stack Overflow Visits - Geographically

It is also important to see what are the popular programming languages among the developer

community. This information can greatly help to understand what are the highly demanded

programming languages and also it is critical to make sure that the source code samples under

these highly demanded programming languages are secured or security best practices are

followed. So according to the StackOverflow statistics, JavaScript, CSharp .Net, PHP and Java

has a high demand and all these are famous web development programming languages.

Analyzing the usage based on the job title also very important, since developers or programmers

are the people who actually do code to implement the organization’s product. According to

StackOverflow developers used the site most and it is clear that developers spend more time

looking for source samples to solve the issues or looking for new ideas. Below charts shows the

most popular technologies among the community.

3

Figure 1.2 : Most Popular Technologies - Full Stack

Also, it is important to understand what are age groups which heavily using StackOverflow,

since it is possible to understand, what sort of experienced developers asking questions and

posting answers. Understand the job roles of the people who frequently access the site is also

important, to get a clear understanding on who are really using the resources for what purpose.

Below charts shows the StackOverflow usage statistics by age-groups and the job titles.

Figure 1.3 : Age Groups

4

Figure 1.4 : Job Titles

By looking at these statistics, it is pretty clear that, almost all the developers are using open

forums during their development work. And these open forums provide solutions for almost all

the problems and situations that any developer could face during their developments, they tend

to use these source code samples directly or indirectly for the software that they develop. This

is a critical situation, since the source code samples in open forums can make an impact on

enterprise level software and there is a need to make sure that these source code samples do not

introduce any security vulnerabilities or to make sure these code samples follow recommended

security best practices by the industry.

1.2 Objective

Currently, there is no easy way of verifying whether the source code samples in open forums

are vulnerability free or followed security best practices. This will make the developer use these

samples without verifying and indirectly making the software vulnerable. Manual verification

is a possibility but it is time consuming. The number of developers using these open forums are

increasing day by day and there is an indeed requirement to have an easy solution to quickly

verify these source code examples before using within the software that the developers are

developing.

5

The objective of this project is to provide a solution for this requirement by providing an easy

and convenient solution. With this project source code samples published in open forums will

be gathered using a software crawler, perform a static code analysis using a sophisticated

commercial tool and store the results as a knowledge base. Also, a user friendly and easy to use

tool will be developed for developers to analyze a particular source code block which is

published in an open forum, using the gathered knowledge base. A sophisticated dashboard with

a holistic view of the analysis of open forum source samples, also will be developed, so that the

development community can get a better understanding of what sort of security vulnerabilities

are exists with source codes published in open forums. Also, ultimately the solution of the

project will support to make the developing software more secured.

1.3 Scope

Based on the usage statistics, among professional developers, StackOverflow is the most

famous and highly used open forum among the available forms. This project will be focused on

source code samples published on StackOverflow forum only. Also, project will be only focused

on source code samples written in most famous back end development languages. To perform

the static code analysis, to create the knowledge base, commercial static analysis tool named

Checkmarx will be used. Also, the vulnerabilities will be limited to most critical vulnerabilities

related to web and mobile application. To develop the web crawler to gather the source code

sample, python will be used and a python based web crawling framework will be used. The

planned implementation has two main components, the dashboard and the source analysis tool.

Microsoft CSharp .Net, will be used to develop the dashboard and the back-end of the source

analysis tool. A browser plugin will be developed for a one particular browser to implement the

front-end of the source analysis tool.

6

Chapter 2 : Literature Review

2.1 Introduction

In recent years, web and mobile application become very close to human lives and started

playing important role of their day to day life. Attractiveness and easiness of these application

made them so popular and commercial industries and governments start to leverage those within

their respective areas. At present, there are thousands of web and mobile application used by

almost all commercial industries and governments, maintaining highly sensitive information

including government secrets, trade secrets, and also performing critical operations such as

stock market activities and online money transfer. There is a definite need to make sure that

these applications are fully secured and capable of stand against any malicious activity.

Although that there is a definite need to make sure these software applications are holistically

secured, it is difficult because these applications are, by definition, exposed to the general

public, including malicious users [1]. Every application developed with thousands of lines of

code using one or many available technologies by human developers. To achieve better security

for an application, organizations need to make a considerable investment to make sure the

required level of security is achieved. Due to the highly competitive nature of the business,

organizations are reluctant to invest money and time on security, because most of the time,

security professionals cannot justify the investment or cannot define a clear return on

investment.

Historically, applications security considers as an afterthought, and industries gave priority to

user friendliness and the performance of the application. Over the time this makes a huge and

complicated application with many security vulnerabilities, which make it extremely expensive,

difficult or impossible to address, mainly because the application is already in production and

has a large customer base.

This chapter explain and analyze the top and critical security vulnerabilities identified by the

industry, which are exists in most of the common web applications. And explain the importance

of built in security and available frameworks. Also discuss about the importance of analyzing

the source code for potential security vulnerabilities, what are the available tools and techniques

and common advantages and disadvantages of using the tools.

2.2 Application Security Vulnerabilities

It is the nature that any software contains issues or defects. These can be functional flaws,

architectural defect, performance issues, usability issues and so on. Functional issues can be

verified and easily detectable based on the required use-cases. And most of the time these issues

are identified and fixed without any hassle. Security vulnerabilities on the other hand, very hard

to detect, because none of the functional use cases will cover those scenarios or the steps. Use

cases have become popular for demonstrating, communicating and defining the software

7

requirements. They demonstrate the functional requirements of the application well, but provide

less support for extra-functional requirements, such as security requirements. With the increase

of the usage of e-commerce and m-commerce applications, such requirements are growing in

importance [3].

Web and mobile applications are facing various attacks each and every day. When considering

the top critical web application vulnerabilities, it is clear that, somewhat poor programming

approach which leads to these vulnerabilities [2]. That make the developers are responsible for

these vulnerabilities. There are various web and mobile applications related vulnerabilities

exists in the present. Also new vulnerabilities are discovered by attackers very frequently. New

technologies like cloud infrastructure, new programming languages changes the threat

landscape and create new attack vectors. This situation make security more complicated and

bizarre for the organizations and make it easier to the attackers. Since the situation is getting

worst day by day, it would be nice to have independent body or organization who can invest on

researching on new threats, vulnerabilities, define the severity of the vulnerabilities and define

guidelines and best practices to avoid, address these vulnerabilities. Also, they can suggest

required and best security solutions, providers and necessary tools. Then the organizations can

get a clear idea about the top vulnerabilities exists and take necessary actions like, educate the

engineers, focus on test cases to cover necessary scenarios. This will be a great advantage since

it can save considerable resources for an organization. Couple of well-known independent

foundations or organizations are exists, performing security related researches and doing a great

help for businesses as well as the community. Below are some of them.

Open Web Application Project (OWASP)

Cigital

SANS

Table 2.1 : Well-known security research organization

All the above organizations define their identified top vulnerabilities, root cause of those

vulnerabilities and set of guideline and best practices to fix or avoid those vulnerabilities.

2.2.1 OWASP Top 10

OWASP, the Open Web Application Security Project is an unbiased, independent foundation

came online in December 2001 and also it is a not for profit organization with variety of security

experts from around the world. They perform researches to identify various threats,

vulnerabilities, risks related to web applications and provide state of the art solutions to address

them. They also implement application verification standard which will help for an organization

to understand the security risk level or the compliance level of a web or mobile application.

With application verification standards, OWASP defines three levels under application

verification standard and each level has number of criteria that the application needs to fulfill

in order to achieve a particular level. Each criterion defines certain test or verification scenarios

8

to see whether the application is meeting that criteria. When considering the application

security, OWASP application verification standards can create a considerable impact.

OWASP is doing a great help for the community by providing various learning materials and

implementing security libraries to protect applications from vulnerabilities. Among the tools,

Zed Attack Proxy, a tampering proxy which can analyze security vulnerabilities, is very famous

among security professionals. OWASP doing researches on web applications as well as mobile

application and they came with top 10 most critical issues that the web applications and the

mobile applications are facing by doing an independent research. Many organizations refer the

OWASP recommendations because they give unbiased, practical and cost-effective solutions

for application security. Below are the top ten issues for web applications identified by OWASP

[4].

Figure 2.1 : OWASP Top 10 Vulnerabilities

When analyzing these top ten issues, it is clear that more than six issues are related to poorly

written source code and developers are responsible to those vulnerabilities. Some of the most

critical vulnerabilities related to poorly written source codes are as follows.

A1. Injections

Injection flaws, such as SQL, OS, and LDAP injection occur when malicious user input is taken

as a parameter by the application plug it as part of a command or query. The attacker’s malicious

input can trick the interpreter into executing unwanted commands or providing access to the

9

application without proper authorization [4]. It is clear that this issue exists due to the source

code fails to validate the data sent by the user or attacker.

Figure 2.2 : Sample Attack - Injections

A2. Broken Authentication & Session Management

Authentication and session management is a key and fundamental concept to manager the user

access properly with in the application. Sometimes application fails to manage the

authentication properly and attacker will be able to by-pass the login or impersonate another a

user by hijacking or predicting session tokens. [4]. Once again, source code fails to validate

whether the user is authenticated and has a valid session and also whether the user is allowed

to perform a particular action.

10

Figure 2.3 : Sample Attack - Broken authentication & Session management

A3. Cross Site Scripting (XSS)

XSS attack is all about application fails to validate or properly escape user input data and echoed

the malicious user inputs into the browser. Attacker can enter malicious JavaScript code to get

execute on the victim’s browser to steal some sensitive data or even possible to install a key-

logger to record everything and send back to the attacker [4]. Another example of not validating

or escaping the user supplied content with the source code. This is a classic example of poorly

written source code and a critical also a very common issue.

11

Figure 2.4 : Sample Attack - Cross site scripting (XSS)

A4. Insecure Direct Object References

If the application allows to access any internal resources such as files, objects or data belongs

to other users, usually using an internal reference key, without any authorization check, then

the application is vulnerable for direct object reference attacks [4]. With this issue attacker will

be able to access or even destroy unauthorized data. This a classic example of an extremely

poor coding practices and failed validation in the source code, and the consequences of this

issue is much severe.

12

Figure 2.5 : Sample Attack - Insecure direct object reference

A7. Missing Function Level Access Control

Authorization is critical for any application to make sure the particular user is allowed to

perform the requested action. Most of the time application verifies the access levels during the

start of the application for the main UI, but sometimes misses these necessary access

verifications for some features inside the application. Always the application should make sure

it verifies the required access verification and authorized the user correctly. [4]. Common

mistake that most of the software developers and other related professionals have their mind is,

only the UI validations are enough and those cannot be bypassed. But in reality, attacker can

simply alter and by pass UI validations with a tampering proxy. It is always necessary to have

and in this case, it is failed to implement server side validations within the source code.

13

Figure 2.6 : Sample Attack - Missing functional level access control

A8. Cross-Site Request Forgery (CSRF)

If the victim logged in to a particular application, then the attacker can forcefully send forged

HTTP request to the application, using victim's browser, if that application is vulnerable for

CSRF attacks. The forged request will automatically include session and authentication tokens,

since the victim is already logged in and application will trust the request [4]. With this issue,

the application is failed to validate a particular request made by the user’s browser is legitimate

or not. Bit tricky to launch an attacker using this issue, but if the application is vulnerable for

CSRF, it is a lethal weapon an attacker can used against the application.

14

Figure 2.7 : Sample Attack - Cross site request forgery

According to these OWASP Top vulnerabilities, most of the issues are exits because of the

poorly written source codes. Leveraging these vulnerabilities, an attacker can make severe

damage to the application, which may destroy the organization as well. In order to make sure

the application is secure enough to stand against malicious attacks, it is necessary to make sure

the source code is well written and followed all the required security best practices.

Below are the top ten issues for mobile applications identified by OWASP [19].

15

Figure 2.8 : OWASP Top 10 Vulnerabilities – Mobile

2.2.2 Cigital Top 20

Cigital is one of the largest application security firm in the world and helps to identify the

application related security vulnerabilities. Cigital experts also provide guidelines, best

practices to re-mediate the application security vulnerabilities and most importantly they

provide user training on application security and related areas for developer, quality engineer

and other related positions like business analysts, architects and project managers. They have

identified the top twenty vulnerability list that they think which are more important to pay

attention by the organizations and engineers. Below is the list of top twenty vulnerabilities

identified by Cigital [17].

16

Figure 2.9 : Cigital Top 20 Vulnerabilities

The methodology of identifying the top vulnerabilities used by Cigital also very interesting one.

Below diagram shows the methodology following by Cigital [17].

17

Figure 2.10 : Cigital - Data collection methodology

Below table shows the comparison of OWASP top 10 and the Cigital top 20 vulnerabilities

[17].

18

Figure 2.11 : Comparison - Cigital Top 20 vs OWASP Top 10

2.2.3 SANS Top 25

SANS is a well-known organization for cooperative research and education, which was

established in year 1989. They have range of individuals from each and every job category in

information security industry and also from members from around the globe. Also, SANS is an

award-winning security research firm holding more than 1200 award winning research papers.

On the other hand, SANS is the most trusted information security training and certifications

provider in the world. SANS came up with list of twenty-five security vulnerabilities named as

SANS TOP 25 Most Dangerous Software Errors. SANS identified these list under three

categories as below [18].

Software Error Category: Insecure Interaction Between Components (6 errors)

Software Error Category: Risky Resource Management (8 errors)

Software Error Category: Porous Defenses (11 errors)

Table 2.2 : SANS vulnerability categories

Insecure Interaction Between Components

This category talks about the insecure way of sending data between application components,

modules or systems.

19

Figure 2.12 : Insecure Interaction Between Components - Vulnerabilities

Risky Resource Management

This category covers the vulnerabilities related to, not managing the life cycle of the application

including creation, transfer and destruction.

Figure 2.13 : Risky Resource Management - Vulnerabilities

Porous Defenses

This category covers the vulnerabilities related to the misuse of the protective activities of the

application like encryption or authorization.

20

Figure 2.14 : Porous Defenses - Vulnerabilities

2.3 Built-In Security

Web and mobile applications are in a critical state where attackers are primarily targeting them

mainly due to its nature. Every day the risk is increasing, new attack vectors are identified, new

vulnerabilities are discovered and organizations has to be alert all the time and monitor their

web application for anomalies. Historically, the software development life cycle did not

consider about the security. Everyone believed that the security is something we can add as a

feature, when the application is ready and it is all about tools like firewalls, Intrusion detection

or prevention systems, for example. But because of the growing demand, there is a need of

build the security into the development life cycle, where the necessary controls added and

actions have been taken in every phase of the development life cycle to make sure the end

product is secured and rugged. The new methodology is named as Secure Software

Development Life Cycle - SSDLC. Industry came up with couple of methodologies for secure

software development life cycle. Microsoft Security Development Life cycle [5] and Cigital

Seven Security Touch Points Proposed by Gary McGraw are the most recognized

methodologies within the software industry.

21

2.3.1 Microsoft Security Development Life cycle

Today’s cyber security threats are complex, sophisticated, and ever-changing. They require an

ongoing, multifaceted response from the information technology industry for development

solutions that optimize software security and provide for safer computing experiences for

people around the world. The Microsoft Security Development Life cycle (SDL) is Microsoft’s

security assurance process for software development that introduces security and privacy at

every step of the way. It offers a holistic and practical approach to addressing evolving security

threats and increasingly sophisticated cyber-crime [5].

Figure 2.15 : Microsoft Security Development Life cycle

Model includes seven phases which added two new phases for the classic software development

life cycle. It is interesting to see that the model recognizes the need of core security training to

the people who ever involved with the development life cycle. Also, the model state that during

the implementation phase, where the developers do coding, it is necessary to perform static

analysis. This is to make sure that the developed source code does not contain potential security

vulnerabilities and followed the required security best practices.

2.3.2 Seven Security Touch Points Proposed by Gary McGraw

Most organizations have a well-oiled machine with the sole purpose to create, release, and

maintain functional software. However, the increasing concerns and business risks associated

with insecure software have brought increased attention to the need to integrate security into

the development process. Implementing a proper Secure Software Development Life Cycle

(SSDLC) is important now more than ever [6].

22

Figure 2.16 : Software Security Touch points

Model proposed seven touch points, which are necessary actions should be taken at each and

every phase of the software development life cycle. This model mentioned about the abuse

cases, which helps to understand the mindset of an attacker, which will be a great help to secure

the application. Also in the coding phase, the model has mentioned the needs of code reviews

using tools. This is where it looks for the source code to see whether there is any weakness in

the code which can be leveraged by an attacker. Both these Secure Software Development Life

Cycle models clearly mentioned that the need of reviewing or performing static analysis to the

source code, during the development phase itself. This will greatly help on addressing security

weakness in the code if exists, during the development. For the organization it is great benefit,

because of the final product will be rugged with less issues and the cost of fixing a critical

vulnerability which the application is in production can be eliminated.

2.4 Static Analysis

To implement built in security for the software development life cycle, it is necessary to have

static code analysis performed during the coding phase of the development life cycle. Microsoft

and Cigital models for Secure Software Development Life Cycle are clearly mentioned static

analysis requirement. Static analysis is the process of scanning the source code and identifying

the intended functionality of the source code to predict the potential security vulnerabilities.

This is very useful because the quality-oriented approach to security leaves many opportunities

for attackers [11], especially because only the functional use case is considered.

23

Figure 2.17 : Traditional quality assurance model vs Attacker

It is impossible to perform static analysis manually. Simple because the code base is huge and

possible to have human errors. Modern software products typically contain millions of lines of

code. Precisely locating the source of bugs in that code can be very resource consuming [9].

Because of that, Static Code Analysis usually means running a particular Static Code Analysis

tools which will attempt to discover and highlight possible vulnerabilities within the (non-

running) source code by using techniques such as Taint Analysis and Data Flow Analysis [10].

Development teams commonly turn to third-party software to incorporate particular

functionality, such as communications or graphics, into their applications [12]. This is another

area where the static analysis can help to discover the potentials security vulnerabilities. Also,

because many software security weaknesses are introduced at the implementation phase, using

a source code security analyzer should help reduce the number of security vulnerabilities in

software [8]. There are numerous techniques to perform static analysis to discover potential

vulnerabilities. Most of the time combination of couple of techniques are used. Couple of

popular techniques are as follows [10].

Data Flow Analysis

With this technique, it tries to understand the run-time behavior of the data using the static

source code.

Figure 2.18 : Data flow Analysis

24

Control Flow Graph

This technique tries to represent the software by nodes which represent the blocks of the

software. Normally it has entry block and exist block and arrows are used to represent flows

from one node to another.

Figure 2.19 : Control flow Graph

25

Taint Analysis

Taint analysis is about analyzing the variable used in the source code. It basically attempts to

identify the used variable in the source code that can be changed by the user input and then

analyze to see whether those variables are used for some purpose without proper validation or

sanitization. If the user controllable variables are passed in to some other functionalities directly

without proper neutralization, then it will mark it as a vulnerability.

Figure 2.20 : Taint Analysis

Lexical Analysis

During the lexical analysis, it will convert syntax of the source code into token and after that it

will be easy to understand and identify the source to manipulate and see for the vulnerabilities.

Figure 2.21 : Lexical Analysis

26

The expected outcome of a static analysis tool is to run through the source code and predict the

potential security vulnerabilities. The tool should be fast, accurate, user friendly and should

provide easy to understand meaningful reports. Since most of the top security vulnerabilities

are introduced during the development phase, it is a great advantage to find these vulnerabilities

during the development phase itself and address them immediately, rather than waiting till the

last moment. To fulfill this requirement some tools support integration with Integrated

Development Environment, and these tools are capable of finding the potential vulnerabilities

during the development of the application and highlight them to the developer with suggestions

to fix the issues [10].

2.4.1 Static Analysis Tools

The true power of static analysis tool is, it can analyze the entire source code, without executing

it. Which means the static analysis tool can cover complete application, without missing

anything. This is something difficult to achieve with dynamic testing as humans may miss some

scenarios or because of the way the source code is written, the application may have unknown,

unexpected scenarios that no knows they are exists. It is mandatory to select a dependable static

analysis tool to achieve better or correct results. One common issue is most of the commercial

static analysis tools are highly expensive which is something a small or medium scale

organization may not be able to afford. Because of this reason most of the developers as well

as organization tend to use open source static analysis tools. Obviously, there are limitations

with open source static analysis tools and also can the organizations depend on the results

provided by these tools, is also an important question, which everyone should consider.

2.4.1.1 Open Source Static Code Analysis Tools

There is huge list of open source static analysis tools available in the market, but only few are

dependable and which are capable of performing an accurate static analysis results. Checkmarx,

which is a well-known company who owned one of the most famous static analysis tool, has

done an analysis on available open source static analysis tools and provide some interesting

results and recommendations. Below are some of the points to consider, provided by

Checkmarx, when the organization is selecting an open source tool to perform the static

analysis.

27

Points to consider - Selecting an open-source static code analysis tool

Development language or languages supported by the tool

Types of vulnerabilities and code issues can be found by the tool

Type of IDE supported and time to get the feedback

Required learning curve for the tool

Customization and the support for automation of the tools

Any support provided by the tool for the organization

How much support provided for integration and automation

Other tools should use with the tool to get the maximum output

Table 2.3 : Selecting an open-source static analysis tool - Points to Consider

Also, Checkmarx came up with a list of open source static analysis tools, which are promising

to provide required results and organizations can depend on. Below are the names with few

details [20].

VisualCodeGrepper

Multiple languages, Java, C++, C#, VB and PHP supported by the tool and provide a detailed

report and tool has easy to use, user friendly interface [21].

Advantages

Disadvantages

Tool makes it possible to customize the

configurations as for the requirement.

Though the tool support for multiple

programming languages, it cannot

automatically detect the programming

language and scanner has to select it for the

tool to perform the scan.

Tool indicates the severity levels of the

identified vulnerabilities.

Focuses on OWASP top vulnerabilities and

recommendations.

The vulnerability list that he tools support is

fixed and cannot be modified.

Owner is updating the tool and it is active

software.

Tool is not fully automated.

Table 2.4 : VisualCodeGrepper - Advantages and Disadvantages

28

Figure 2.22 : VisualCodeGrepper V2.1.0

YASCA (Yet Another Source Code Analyzer)

YASCA is a static analysis tool, mainly target Java, C/C++, HTML, JavaScript, ASP,

ColdFusion, PHP, COBOL, .NET and some other programming languages. Interesting feature

it has is, tool made it possible to integrate with other related tools like FindBugs, PMD, JLint,

JavaScript, Lint, PHPLint, CppCheck, ClamAV, RATS, Pixy. Also, the tool provides

commercial support to the users, including custom development, integration and rules [22].

Advantages

Disadvantages

Possible to integrate with other powerful and

related tools.

Capable only for finding straight forward,

low-hanging fruits and Cross-Site scripting

and SQL injections attacks

Possible to integrate with other powerful and

related tools.

Table 2.5 : YASCA - Advantages and Disadvantages

29

Figure 2.23 : YASCA

Above two tools are supporting for multiple programming languages. Most of the open source

tools support for only one programming language and below is the list mentioned by

Checkmarx analysis report [20].

OWASP LAPSE+

The tool is developed by OWASP to detect security vulnerabilities of Java EE applications and

it developed as an eclipse integrated development environment plugin, so it is easy for software

developers to use the tool. LAPSE+ can detect Parameter Tampering, URL Tampering, Header

Manipulation, Cookie Poisoning, SQL Injection, Cross-site Scripting (XSS), HTTP Response

Splitting, Command Injection, Path Traversal, XPath Injection, XML Injection and LDAP

Injection vulnerability categories [23].

Advantages

Disadvantages

Possible to integrate with integrated

development environment and perform the

source validation without compilation.

Only support for eclipse integrated

development environment

Tool handles the testing with three steps,

which are identifying the vulnerability source

in the source code, identifying the

vulnerability sink in the tool and examine to

see whether we can use vulnerability sink to

reach the vulnerability source.

No new versions after 2012

Table 2.6 : OWASP LAPSE+ - Advantages and Disadvantages

30

Figure 2.24 : OWASP LAPSE+

RIPS

Tool developed using PHP to discover security vulnerabilities of PHP applications. The tool

can discover basic vulnerabilities including Cross-Site scripting, Remote code execution and

SQL injection attacks. Tool also provides a framework for further manual analysis [25].

Advantages

Disadvantages

Fast processing and finding range of security

vulnerabilities.

RIPS is abandoned the development and

planning to come up with a re-write, but still

not available.

Informative reports with visualization which

is easy to understand for developers

Table 2.7 : RIPS - Advantages and Disadvantages

31

Figure 2.25 : RIPS

DevBug

DevBug is a free online tool to analyze security vulnerabilities of PHP code, mainly developed

with JavaScript and the tool is getting support from RIPS and few other available tools [26].

Advantages

Disadvantages

Available online and very easy to use. Very simple and very light analysis

Linked OWASP guideline for more

information about the vulnerabilities.

Table 2.8 : DevBug - Advantages and Disadvantages

32

Figure 2.26 : DevBug

Flawfinder

Main purpose of the tool is to be simple and user friendly and it reports security vulnerabilities

that are well known in applications which are written in C programming language. The tool is

written a simple command line execution using a powerful language named python. Also, the

tool is CWE compatible [27].

Advantages

Disadvantages

Tool can detect only the code changes and

quickly verify only the changes to find

security vulnerabilities.

High number of false positives.

Tool has a long history and well maintained

with regular updates.

Require python 1.5 version to run the tool.

Table 2.9 : Flawfinder - Advantages and Disadvantages

33

Figure 2.27 : Flawfinder

CPPCheck

CPPCheck is a tool under GNU license, developed to detect issues in C/C++ applications,

which are normally not detected by the compilers. The tool offers both command line and a

GUI options and also support integration with number of popular integrated development

environments [28].

Advantages

Disadvantages

Supported integration with Eclipse, Hudson,

Jenkins and Visual Studio integrated

development environments.

Tool can detect only very limited issues.

Frequent updates.

Difficult to customize and comparatively

slower than other tools

Table 2.10 : CPPCheck - Advantages and Disadvantages

34

Figure 2.28 : CPPCheck

Brakeman

Purpose of this tool is to find potential security vulnerabilities of an application developed by

ruby on rails, during the development life cycle. Also, the tool is used by some well-known

commercial organization to do their static code assessments including twitter and GitHub [29].

Advantages

Disadvantages

Tool is faster and easy to setup and configure. Only limited for ruby on rails.

Highly effective for ruby on rails. High number of false positive and false

negatives.

Well maintained and regular updates.

Table 2.11 : Brakeman - Advantages and Disadvantages

35

Figure 2.29 : Brakeman

It is very clear that there are many static analysis tools available and some tools are performing

really well, so commercial organization kept faith on those. Brakeman a good example and

according to the Brakeman team [29], many commercial organization are using the tool and

which means the tool must be providing the expected outcome, because after all, the companies

are commercial and they should take everything very seriously.

Figure 2.30 : Brakeman users

36

By considering the analyzing done by Checkmarx on open source static analysis tools, below

are some point that can be extracted.

Tools can support only limited programming languages.

Can discover limited number of security vulnerabilities, mostly the very common ones.

No frequent updates for most of the tools.

Most of the tools are isolated and limited support for integration with other tools.

Limited or no customization and user support.

Table 2.12 : Points to consider with open source static analysis tools - Checkmarx

Commercial organization are highly sensitive environments and accuracy, dependability,

automatability, maintainability, user friendliness and the support provided are the main factors

they consider when they select a tool or software solution for the organization. This is the main

reason why commercial organization would like to consider commercial tools, because they

provide state of the art solutions which can handle all modern technologies, with

customizability and interpretability, most importantly with great support service. Also, some

tools provide the necessary features and can be integrated to with the integrated development

environment, so the developer can get the instant feedback from the tool. So, the organizations

can depend on these tools and focus on whatever the business goals and this is the ultimate goal

of the organization. Like other commercial products, static analysis tools are also a very

competitive product and some of the information technology and software development giants

are building static analysis tools to the market with great features and superb after sales support

for end users and they managed to make huge revenue of out these tools. Below are some

famous and widely used commercial static analysis tools.

IBM Security AppScan Source

AppScan source is the static code analysis solution provided by well-known IT company called

IBM. The plan is to help software development organizations to identify potential security

vulnerabilities of the web and mobile applications, by analyzing the source code of those

applications for lower cost. The tools can be integrated to the software development life cycle

and include support for Java, Objective C, JavaScript, Cordovo and HTML5 [30].

37

Figure 2.31 : IBM AppScan source

IBM AppScan Source also has below capabilities

Cost-effective source code analysis tool.

Great support for integration with other existing tools such as development related tools,

build tools and monitoring tools.

Management of best practices and policies of security.

Support for governance and compliance.

Table 2.13 : IBM AppScan Source capabilities

Fortify Static Code Analyzer

The tool is developed by well know IT company named Hewlett Packard Enterprise and it is

developed by highly skilled groups of security professionals the tool can identify the security

vulnerabilities in the source code with appropriate risks and guidelines to address the

vulnerability. One of the great feature that the tool has is, incremental scans which allows to

perform a scan faster and which directly helps to improve the productivity of the organization

[31].

38

Figure 2.32 : Fortify Static Code Analyzer

Below are some of the major benefits provided by the Fortify Static Code Analyzer

Increase efficient with incremental scanning and providing results faster and reduce the

time to wait for the security review.

Wide variety of programming languages, frameworks and development environments are

supported and also mixed development environment are supported.

Provide accurate results with sophisticated rules engine which is frequently updated by the

research team.

User friendly and easy to use and it is easy to integrate with other tools.

Most of the programming languages are supported and capable of supplying to the growing

demand.

Table 2.14 : Fortify Static Code Analyzer benefits

Veracode

Veracode is also a highly respected static analysis tool among the software development

organizations. This tool is heavily used and one of the best commercial static code analysis tool

in the industry. One of the unique feature with Veracode is, the tool does not need the source

code to analyze the vulnerabilities, instead the debug enabled compiled version of the source is

enough using their own analyzer framework.

Since the Veracode proprietary analyzing framework can assess binaries for security

vulnerabilities, customers can analyze third party components also to determine the security

risks and which is a huge advantage. Also, it supports all kind of applications, including Web,

39

Mobile, Desktop and back-end applications. According to Veracode statistics, the tool has

scanned 1.8 trillion lines of source code of 15 different programming languages belongs to 50

different frameworks. Which means the tool is really mature enough to do a static analysis for

an organization to discover the security vulnerabilities successfully. Since Veracode provide a

SaaS based security platform, organization can reduce the operational overhead. Organizations

does not keep or spend money on in-house hardware or any other additional resources for the

tool [32].

Figure 2.33 : Veracode application security platform

Figure 2.34 : Languages supported by Veracode

Veracode support various type integration. It allows the developer to integrate the tool with the

integrated development environment, so the developer can get the results immediately. Other

than that, tool allows to integrate it with build environments like Jenkins, so the build

environment can initiate scans periodically and get the potential security vulnerabilities. With

this it is possible to fully automate the scanning process where developers submit their changes

and build environment make the build and if the build is successful then, upload the binaries to

Veracode for the security analysis automatically. This will reduce the effort tremendously and

40

improve the productivity of the company. Also, Veracode provide detailed user-friendly reports,

so developers can easily understand the issues and apply the recommended fixes immediately.

WhiteHat Sentinel Source

WhiteHat is a well-recognized and trusted security organization providing vast variety of

security products and solutions and Sentinel Source is the static analysis tool provided by

WhiteHat. Tool can scan the source code written in commonly used programming languages

and can discover common vulnerabilities and provide a vulnerability report. Also, capable of

providing recommended fixes for certain vulnerabilities. Analyzing binary files also possible

for software written in certain programming languages. Possible to integrate with continuous

integration tools and also with integrated development environments, so it is possible to identify

vulnerabilities during the early stage of the development life cycle. Cloud option is available

and also local installation is also possible in-case company have any issues with the intellectual

property rights. Also, it is possible to get a help from WhiteHat technical team [33].

Figure 2.35 : WhiteHat Sentinel Source

Many organizations from almost all the business sectors are getting service from WhiteHat to

make sure that what they developed are secured. The business sectors include financial,

education, healthcare, government, software development, retail and many more. Below list

shows some of the happy customers of WhiteHat.

41

Figure 2.36 : WhiteHat Security Customers

Checkmarx

Checkmarx is one of the best and most reliable tool in the world. The tool is very user friendly

and easy to configure as well as integrate with continuous integration tools and build

environments. They way that the tool shows the vulnerabilities to the users is very interesting

and it is super easy to navigate step by step to the vulnerable point of the source code. Tool

show what are the reasons for the vulnerability and sophisticated guide line to fix the

vulnerability.

Tool can be locally installed and easy to maintain. Admin user of the tool can provide login

accounts to the development and quality engineering teams so that the teams can perform source

scanning and identify the security vulnerabilities. This is one of the major advantage where the

development teams do not need to request reviews from the security team or wait for the

security team to perform the scan and provide the results. Since the tool can remove the

dependency between development teams and the security team, it can increase the productivity

significantly.

Checkmarx can be configured easy to grab source code from almost all the well-known source

code repositories including perforce, git and SVN. Tool provide regular updates to make sure it

handles the latest security vulnerabilities and technologies [34].

42

Figure 2.37 : Checkmarx Source Code Analysis Tool

Below are some of the feature and capabilities of the Checkmarx static analysis tool.

Tool supports 20 programming and scripting languages and the frameworks which covers

the latest technologies.

No configurations needed from language to language.

Covers OWASP Top10, OWASP Mobile Top10, SANS Top 25, PCI DSS, HIPAA and other

security standards.

Incremental code scanning capability which scan only modified or newly added source

codes.

Strong integration capability with build environments and integrated development

environments.

Supports hundreds of vulnerabilities including all the common vulnerabilities like SQL

injections, Cross-Site scripting, Session issues and all.

Engineers can mark a particular vulnerability as false positive and tool has the capability to

remember it between scans.

Tool can point out the beast fix location which can save lots of remediation time.

User friendly vulnerability dashboard which shows the path and the exact location of the

vulnerability.

Tool allows for custom rule creation.

Table 2.15 : Checkmarx static analysis tool benefits

43

Figure 2.38 : Checkmarx Supported Programming Languages

There is another area of source code analysis that most of the organizations does not even aware

of, which is the open source libraries. Most of the software tend to use open source, readymade

software libraries due to many reasons, like cost saving, time saving and all. Open-source

libraries are the foundation of most of the modern software these days. It is necessary to make

sure that these open source components are also secured or follow security best practice and

also well maintained with regular updates. To make sure these things, there are tools available

and below are some of them. Because open source software is freely available and used

everywhere, it can enter into any product, knowingly or without knowingly. Which will create

an additional risk to the product and most probably no one is aware about, especially because

no one is considering these open source software libraries.

44

Figure 2.39 : Open Source Components getting in every Angle

As an organization, it is a must to do a comprehensive analysis and figure out about this open

source software which are used within the product. Below are some of major points that the

organization should consider [36].

● What are the open source components used within the product.

● Does the product use the latest version of those components

● Are those components being vulnerable.

● Are those components are well maintained.

● Are those components adhering to the required security policies and best practices.

Black Duck Hub

Black Duck Hub is providing a solution for the open source components issue state above. The

tool can identify the used open source components with the application and asses the risk of it.

Tool is a lightweight scanner with tracking and monitoring solution, which is also user friendly

and support for integrating with other tools like build and continuous integration. Below are

some of the main capabilities of the tool.

Scan the code base and identifies open source components used or referred in the source

code.

Automatically maps the discovered open source components in use to known open source

security vulnerabilities.

Flags policy violations, triage and tracks remediation progress.

Continuously monitors for newly identified open source vulnerabilities.

Table 2.16 : Black Duck Hub capabilities

45

Figure 2.40 : Black Duck Hub

WhiteSource

WhiteSource is also a tool where it can scan the product source code and identify the used or

referred open source components and capable of mapping relevant vulnerabilities and security

risks. Tool is capable of integrating with build tools and continuous integration tools, also

providing real time alerts on detected vulnerabilities. WhiteSource also has a browser plugin

which can help developers, when they want browse and select some components, by suggesting

better recommendations. Also, the tool provides a comprehensive report on open source

inventory, so that the organization is aware of the current risks of the product [37].

Figure 2.41 : WhiteSource

46

Tool helps to the organization defining a process of approving or rejecting open source

components which are request by engineering teams, on the basis of each component’s license,

vulnerabilities, newer version updates, how well the component is maintained and more.

Figure 2.42 : WhiteSource, Managing Policies

In summary below points can be extracted by analyzing and considering all the facts about

commercial source code analysis tools.

● Commercial tools are highly created and well maintained with frequent updates.

● Capable of providing accurate results.

● Support for almost all the modern programming languages and frameworks.

● User friendly, customizable and easy to integrate with all the other tools.

● End user support and organization can depend on the tool.

● Tool development companies do research and development to identify new

vulnerabilities and root causes for those vulnerabilities.

2.4.2. Advantages and Disadvantages

Every tool irrespective of whether it is a commercial tool or an open-source tool, has issues,

limitations and bottlenecks. Most importantly no tools can be used out of the box as it is, with

default settings and configurations. There is customization, configuration changes,

optimizations need to be done in order to get the better performance of the tool and to cater

specific requirements of the organization. There are two kinds of issues that every tool has and

organizations have to deal with those and put some level of manual effort to rectify those errors.

False Positive

This is a situation where the particular tool, detect and indicate a vulnerability, but in the

vulnerability, is not exists in reality. Basically, it is a false alarming situation. Almost of the

tools suffering from these issues and it is also acceptable. This is where the organization needs

47

to engage their engineers to go through the detected vulnerabilities and verify the issues and get

rid of false positives.

False Negative

False negative is the opposite of false positive, where the tool is unable to detect a potential

issue. Considering the definition, it self, false negative is more severe than the false positive,

since the organization misses the vulnerabilities that are actually exists in the application. Most

of the time the reason for this issue is that the organization is trying to tune the tool to reduce

the false positives. Organization must configure and fine tune the tool before use it and it is

always recommended to have a trial run period. The tool should be fine-tuned to make sure tool

does not provide any false negative scenarios and also to make sure that the tool will generate

lesser number of false positives. Static code analysis adds a great value for an organization,

when it tries to implement secure software development life cycle. But as always, there are pros

and cons with the static analysis. Some of the main important advantages are as follows

● Static analysis tools are faster, easy to use and can cover complete source code

repository to find potential security vulnerabilities.

● Possible to integrated with development life cycle.

● Supported for almost all the development languages and frameworks.

● Engineering teams can perform the static analysis and no need to wait for security

team to do it.

● Improve the productivity by saving lots of time and producing more secure software.

Some common disadvantages are as follows

● Static analysis is not instant, it will take some time. Analyzing every change then and

there is practically impossible.

● Cannot find configuration issues since those are not in the source code.

● Unable to predict issues such as authentication and authorization issues.

● High number of false positives will take considerable effort to remove those.

● Technically, tool cannot detect all the vulnerabilities.

● There can be programming languages not supported by the tool.

● Commercial tools are highly expensive.

2.5 Vulnerable Programming Languages

There are many programming languages and frameworks are available in the present that are

capable of building web and mobile applications. Most of the modern programming languages

are very easy to learn and use, and because of that the beginners also can use these languages

to develop complex state of the art software applications. Some frameworks provide all the

components build in, like front end, middle components and the back-end database, like MEAN

(Mongo, Express, AngularJS, NodeJS), Django (Python, MySQL), which makes the

development of a web or mobile applications even more easier. This is however a good thing,

48

where the technology manages to reduces the learning curve for a particular programming

language, so that the organizations can develop and deploy the applications to the market

quickly.

However, there is a huge risk also attached to this. Because using and learning it very easy, even

a beginner can develop a commercial application and also, since the framework is providing

most of the features, developers are tending to totally rely on the framework. When considering

about the application security, this is a major area that the organizations should focus. Typically,

when selecting a programming language or a framework, organizations are focusing on,

availability of developers or engineers, learning curve of the technology, performance and all.

But the other most important factor is whether the language or the framework provides ways

and means to develop a secured or rugged application. Organization should carefully look in to

the matter and analyzed the matter, before they select a particular technology.

Veracode, the well-known application security firm, which also owns the very famous static

code analysis tool, successfully conducted a research and publish a paper name “State of

Software Security: Focus on Application Development”, by analyzing 200,000 different

software applications from October 1, 2013, through March 31, 2015. Veracode engaged their

best security professionals crawl well known and popular web development and scripting

languages including PHP, Java, JavaScript, Ruby, .NET, C and C++, Microsoft Classic ASP,

Android, iOS, and COBOL, by scanning hundreds of thousands of available applications during

one and half years long. One highly important factor they discovered is that, non-popular

languages like Classic ASP and ColdFusion and modern language, PHP are more vulnerable

and the riskiest programming languages and also the .Net and Java are the safest programming

languages. Flow density per MB is the metric used by Veracode in the report where it indicates

the numbers of security vulnerabilities per one MB of source code [38].

2.5.1. Top 10 Vulnerable Programming Languages

Below is the top programming language list provided in the report by Veracode.

● Classic ASP – 1,686 flaws/MB (1,112 critical)

● ColdFusion – 262 flaws/MB (227 critical)

● PHP – 184 flaws/MB (47 critical)

● Java – 51 flaws/MB (5.2 critical)

● .NET - 32 flaws/MB (9.7 critical)

● C++ – 26 flaws/MB (8.8 critical)

● iOS – 23 flaws/MB (0.9 critical)

● Android – 11 flaws/MB (0.4 critical)

● JavaScript - 8 flaws/MB (0.09 critical)

49

Figure 2.43 : Policy compliance by programming language

Surprisingly PHP language, even though it is a modern and heavily used programming

language, becomes the third most vulnerable application development language. Almost all the

very famous content management applications are written in PHP.

Veracode report provided justifiable, logical reasons for the PHP issues as below.

● 86% of applications written in PHP contained at least one cross-site scripting (XSS)

vulnerability.

● 56% of apps included SQLi (SQL injection), which is one of the dangerous and easy-

to-exploit web application vulnerabilities.

● 67% of apps allowed for directory traversal.

● 61% of apps allowed for code injection.

● 58% of apps had problems with credentials management

● 73% of apps contained cryptographic issues.

● 50% allowed for information leakage.

Figure 2.44 : Comparison of critical vulnerability types

50

Other than these above factors, there is one other important result included in the Veracode

report, which is the vulnerability comparison which can be found with dynamic security testing

and static security testing. This is also highly important for the organizations because they can

understand the difference and what are the risks they have if they do not perform a one type of

test. The difference between these two testing methodologies is that, dynamic application

security testing also called DAST is using the running application and perform a black box test,

whereas static application security testing also called SAST, focuses on the source code and

perform a white box test. It is understandable that these two methodologies can detect different

types of vulnerabilities and for an organization both these methodologies are important to make

sure the product is vulnerability free and secured. One advantage of the static analysis is that,

it can be leveraged during very early stages of software development life cycle.

Figure 2.45 : Dynamic vs. static application security testing

Every day there are new applications coming into market and organizations are start developing

new applications and also new software developing companies also coming in. During the

selection of programming languages, methodologies and frameworks, organizations should

employ security professional to analyze the risks of these technologies and then selected a

proper technology wisely to make sure the product, the organization deploy to the market is

well secured.

51

Chapter 3 : Design

3.1 Design Overview

Ultimate goal of the project is to create a tool which is free and capable of analyzing security

vulnerabilities of the source codes published in open forums. The project selected the

StackOverflow as the open forum, since the stats shows that, StackOverflow is highly famous

among the development community. Even though the project is aiming to create a static analysis

tool, it is actually trying to address a different problem. When considering getting source code

sample from the open source forums scenario, average develop will typically follow below

steps.

● Developer search a solution for a particular problem.

● Refer couple of source code samples, that are available on the open forum like

StackOverflow

● Directly copy the sample or part of it, or get influenced by the sample and follow the

same to develop a solution.

What is missing here is, there is no way to make sure those source code samples are not having

any security vulnerabilities or they followed the required security best practices. Even if the

organization uses a commercial static analysis tool, it is practically not possible to analyze each

and every sources samples to check the vulnerabilities before using them, mainly due to the

time that the scan is taking and also the scans are very costly. If there is a pre-scanned

knowledge base of these source samples and an easy tool to access it, then it will be a great help

for the development community, because it is possible to analyze the security vulnerabilities

quickly and easily, then and there, before they are using or implementing those source code

samples. into their production source code.

This project is trying to address the above described issue by analyzing open forum published

source code samples and create a vulnerability knowledge base. Also create an easy access, user

friendly tool, where the developers will be able to use it to analyze the security vulnerabilities

of a particular source code sample, by accessing the knowledge base created. The proposed

system is to gather source code examples published in open forums and create a vulnerability

knowledge base by analyzing the potential vulnerabilities of those source code examples, using

a professional static analysis tool. Then implement a tool which can be used by the developer

to analyze the security vulnerabilities of a particular source code example. Also, to create a

dashboard to show case all the vulnerabilities exists in open forum source code examples.

Proposed system has six main components state as below.

52

Web Crawler to read and grab source code blocks, published in the open forum.

Professional, commercial static analysis tool.

Vulnerability processor to read the vulnerabilities and store into a database.

Dashboard to showcase the findings and stats.

Tool which can be used by developers to identify the potential vulnerabilities of a selected

source code block in the open forum.

Database management system to store the vulnerability data.

Table 3.1 : Components of proposed system

Other than the commercial static analysis tool and the database management system, all the

other components are planned to develop using an appropriate programming languages.

Primary target is to provide a simple, user friendly solution that can process the user request

and return the results faster.

3.2 System Overview

As mentioned above the system is divided into independent components, so that the

implementation can be done parallelly. More focus and the weight given for designing

Dashboard components and the Developer tool, since those two components are providing a

high value for the end users. Building the vulnerability knowledge base of the analyzed source

codes, is the major part of the proposed system and that is not completely automated process.

Some manual work also exists to continue the workflow of the building vulnerability

knowledge base, such as, after web crawler crawled the source code samples, those need to be

uploaded to the static analysis tool to perform the analysis. Also, when the tool completed the

analysis, need to perform a false positive removal to make the result set accurate. And after that,

result set need to be imported to a report in a particular format, where the database importer

component can read the report and store the vulnerability results into the database. In summary

below activities will be performed manually.

● Upload the crawled source code sample to the static analysis tool

● False positive analysis

● Import the vulnerabilities found by the static analysis tool, to a report

Below is the high-level overview of the complete system. The diagram shows all the

components of the proposed system and how each component is going to integrate with other

components to provide the necessary output of the proposed system.

53

Figure 3.1 : System Overview

3.2.1 Web Crawler

To start the process of the application, it needs collected source codes from the open forum.

Manually browsing the open forum and copying and saving the code sample to the local hard-

disk is time consuming and practically not possible when the required number of source samples

are high. Best way to solve this and automate the process is to create a web crawler. The web

crawler component is used to read the source code samples from the stack exchange and store

into a file in the local hard disk. There is no requirement of writing a web crawler from scratch,

since the readymade crawlers are available and can be used without paying for it. Scrapy is a

python based application framework for crawling web sites and scrapy is the crawling

framework used for the application. The framework is simple and fast, which used for many

purposes including data mining. Main advantage of scrapy is that it sends and processes

requests asynchronously, which means it can do crawling very fast. Also, it allows

customizations such as delaying between requests, limiting request to a particular ip address

and auto throttling [39].

54

Figure 3.2 : Sample crawler using Scrapy

3.2.2 Process Vulnerabilities and Store

Next important step is to read the output report, process the vulnerability data and store the data

into a database. This component should provide couple of features like, it should allow the user

to point the report file generated by the static analysis tool, it should be able read the output

report given by the static analysis tool, process it and also convert the data to a format where

the data can be saved to a relational database and finally save the data into the database to create

the knowledge base. This is a very important part of the project, because creating the knowledge

database is the most important phase of the project and base for end user components as well.

55

Figure 3.3 : Process Vulnerabilities and Store

3.2.3 Dashboard

Dashboard is a graphical component with various graphs, which mainly focuses on senior

engineers, development managers, software architectures and also project managers. This

component will showcase all the security vulnerabilities related to the scanned source code

examples using the created knowledge base. Various graphs and charts will be used to give the

information to the community, so they can take the actual benefit from the system. Couple of

major advantages provided by this component are as follows.

● Developers can use the data to understand what are the common issues with each

technology and what are the things and areas need to be considered to develop a secure

software.

● Senior engineers and software architects can take an advantage of these statistics when

performing manual code reviews and peer reviews. They can be decided which areas

need to more focus and attention.

● Software architects and technical managers can use these data when selecting a

particular technology for a product development.

● Quality engineers can use these data to decide what are the areas that needed more focus

and also to create test cases and misuse cases.

● Project managers and development managers can refer the statistics do get an idea

about how much effort the testing and peer reviews needed.

● The organization can leverage these data to decide what are the training that the

developers and quality engineers needed to deliver secure product.

56

Figure 3.4 : Dashboard - Process Vulnerabilities and Display Charts

3.2.4 Code Analysis Tool

This is the most important component of the project and the interface that the developer can

used to analyze the potential vulnerabilities of a particular piece of source code. This is where

the developer and the community gets the actual advantage of the project and this component

is the solution for the problem that the project trying to address. When a developer wants to use

an entire or part of the source code published in the open forum, there is no easy way of making

sure that the particular source sample is secured or vulnerability free, or if it is vulnerable what

are the vulnerabilities, risks and what are the ways to address those vulnerabilities. The code

analysis tool is the component address this issue. The tool can help during whenever the

developer wants to check whether the source sample published in the open forum is having any

security vulnerabilities or not. Tool can connect to the created knowledge base to analyze the

potential security vulnerabilities of the selected source code sample and give the feedback to

the developer in a user-friendly manner.

57

Figure 3.5 : Code Analysis Tool

3.2.5 Relational Database

This is where the application stores the vulnerability data and also the application itself uses it

as the knowledge base. Because of the data model is relational, during the project design, it is

decided to use a relational database system to store the required data. During the design of the

database, the main considerations were, how easy is to store the processed vulnerability data

and how efficient is to retrieve data during the end user is accessing the data. Also, to make the

dashboard faster, separate table is used with all the vulnerability data.

Figure 3.6 : Database diagram

58

Figure 3.7 : Table used for graphs and charts

3.2.6 Static Analysis Tool

Project required a commercial static analysis tool to perform vulnerability assessment of the

crawled source code samples. Also, it is practically impossible to purchase a commercial tool

for the project because of these tools are very expensive. For example, static analysis tool

named Checkmarx is 1500 US Dollars. During the static analysis tool selection process, mainly

considered the analysis done as a part of the project to understand the features, capabilities and

the differences of the static analysis tools and easiness of use and possibility of getting a sponsor

from an organization. Specially looked for a sponsorship, that someone can allow the source

code samples to be scanned and get the vulnerability results. Open Source analysis tools were

the last option because of the language support is limited and the accuracy level also not that

satisfactory.

Figure 3.8 : Static code analysis tool

3.2.7 Open Forum

Project needs to select an open forum among the available open forums to extract the source

sample to perform the vulnerability assessment. Analysis done on open forms and mainly

considered how popular the open forum among the development community, what are the

programming languages discussed within the open forum, how frequently users post questions

59

and answers, how many users visit the forum during an hour and what the experiences of the

users who visit the forum. Also, the availability of the forum and whether any restrictions

imposed by the open forum for crawling the source samples also considered, because if there is

a restriction of crawling and downloading the source code, project cannot use that particular

open forum

Figure 3.9 : Crawl Open Forum and store source samples locally

60

Chapter 4 : Implementation

4.1 Implementation Overview

After the design of the project is completed, next challenge will be to implement the project

and also make sure implementation will achieve all the project requirements, specially the user

friendliness and the efficiency. Most importantly, Implementation should not limit or

completely restrict the required features of the project and implementation should enhance or

facilitate to enrich the project features. Certain decisions need to be made to achieve the

successful implementation of the project, including underlying technology, frameworks need to

be used and back-end technology which is going to use. Primary focus should be, and it was to

implement the project successfully rather than using the best or cutting-edge technologies in

the industry.

4.2 Source Samples

Project needs an open forum with huge number of source code samples with all the technology

categories. It should be used by developer in all technology categories, in all ages and in all

experience levels. Also, the forum should be heavily used one. By considering all the factors

during the analysis, found that stack overflow is a potential open form which is the site target

for developer community under stack exchange umbrella. According to the static overflow

statistics, 46 million people visited Stack Overflow in 2016 January and 16 million believed to

be professional developers. Also, developer is posting a question in every 8 second, which is

very high usage and indication of stack overflow extremely famous among development

community and heavily used by the development community as well [15]. By considering these

strong reasons, project decided to select the stack overflow as the open forum to crawl source

samples (http://stackoverflow.com). Also decided to crawl the most recent source code samples

to analyze the vulnerabilities to build the knowledge base. Below is how the static overflow

publishing the developer questions and relevant answers.

61

Figure 4.1 : StackOverflow sample question

Every question is tagged with the particular technology, in this case it is c-sharp and with the

area of technology the question is belongs to, it is regex in this case. Which makes it easy for

the developers to find the details.

Figure 4.2 : StackOverflow sample answer

62

4.3 Programming Languages to Select

The programming languages or the technologies that the project needs to focus on is another

important factor to consider. Also, how many sample codes that the project is going to consider

from each programming language is another important factor. Because it is practically

impossible to consider all the available programming languages and all the available samples.

So, it is necessary to set expectations for these two parameters first. By considering the

popularity of the modern web and mobile application development languages and also

considering the top vulnerable programming languages, project decided to consider five

programming languages and consider at least 5000 source code samples from each language to

perform the vulnerability analysis. Below is the list of considered programming languages.

● Python

● Java

● C-Sharp

● PHP

● JavaScript

4.4 Source Samples Crawler

Web crawler is actually the second most important supporting components for the project. There

are many web crawler frameworks available for free and there is no requirement of writing

specific one for the project. Because of that, a python based, well known framework named

Scrapy is used to develop a crawler to read the source samples from StackOverflow sand save

the samples locally. StackOverflow has a URL format for each language to list down the

questions posted by developers, and using that URL to crawl is very easy. URL format is simple

and language can be specified as python, php or java. Also, the page number and the page size

can be specified. Using the page number, it is possible to navigate through the pages and using

the sort parameter, it allows to retrieve the latest posted questions into the first page and so on.

Below is the sample URL format.

Figure 4.3 : StackOverflow Posted question URL format

63

Below is the python code written implement the crawler using Scrapy framework. Script has a

separate section to identify the language and save the source code sample with the correct

extension. And the script crawl the URL assign to start URLs and save the source code samples

to the folder name assigned to code directory variable with the correct file extension.

import os

import scrapy

from scrapy.selector import Selector

class Language():

 def __init__(self, language=None, extension=None, comment=None):

 self.language = language

 self.extension = extension

 self.comment = comment

 def code_type(self, language):

 if language == "python":

 self.language = "python"

 self.extension = ".py"

 self.comment = "#"

 elif language == "java":

 self.language = "java"

 self.extension = ".java"

 self.comment = "//"

 elif language == "node.js":

 self.language = "nodejs"

 self.extension = ".js"

 self.comment = "//"

 elif language == "perl":

 self.language = "perl"

 self.extension = ".pl"

 self.comment = "#"

 elif language == "c++":

 self.language = "c++"

 self.extension = ".cpp"

 self.comment = "//"

 elif language == "c#":

 self.language = "csharp"

64

 self.extension = ".cs"

 self.comment = "//"

 elif language == "php":

 self.language = "php"

 self.extension = ".php"

 self.comment = "//"

 elif language == "javascript":

 self.language = "javascript"

 self.extension = ".js"

 self.comment = "//"

class StackOverflowSpider(scrapy.Spider):

 name = 'stackoverflow'

 code_directory = None

 start_urls =

['http://stackoverflow.com/questions/tagged/javascript?page=93&sort=newest&pagesiz

e=50']

 def __init__(self):

 self.code_directory = "source_code"

 def parse(self, response):

 print "****************\n\n"

 print "Executing\n\n"

 print "****************\n\n"

 #Create the language directory if it doesn't exists

 try:

 os.stat(self.code_directory)

 except:

 os.mkdir(self.code_directory)

 for href in response.css('.question-summary h3 a::attr(href)'):

 #Parse out the URL's to request

 full_url = response.urljoin(href.extract())

 yield scrapy.Request(full_url, callback=self.parse_question)

 def parse_question(self, response):

 rep = response.css('.accepted-answer')

 base_url = response.url

65

 print "***###############"

 print base_url

 print "Parsing"

 #Select the code language for each of the coding samples

 code_sample_lang = response.css('.post-

tag').xpath('text()').extract_first()

 lang = Language()

 lang.code_type(code_sample_lang)

 #Create the language directory if it doesn't exists

 try:

 os.stat(self.code_directory + "/" + lang.language)

 except:

 os.mkdir(self.code_directory + "/" + lang.language)

 answers = 1

 for s in response.css('.answercell pre code'):

 mycode=s.extract()

 mycode=mycode.replace('<code>','')

 mycode=mycode.replace('</code>','')

 mycode=mycode.replace('>','>')

 mycode=mycode.replace('<','<')

 id = base_url.split("/")

 filename = self.code_directory + "/" + lang.language + "/" + id[4] +

"-" + str(answers) + lang.extension

 answers = answers + 1

 with open(filename, 'w') as f:

 #Comment the URL in the code

 f.write(lang.comment + "URL: " + base_url + "\n\n")

 f.write(mycode)

File name is generated using the id of the question and the number of the answer give to that

particular question. Also in each save source sample file, there is a comment line added to with

the full URL of the source sample. Below is a c-sharp code sample file.

66

Figure 4.4 : Sample source code file

This script need to be run in the command line using below command.

Figure 4.5 : Running the web crawler

One practical issue faced was that, after crawling couple of hundred code samples,

StackOverflow blocked the ip of the computer for 10 or 15 minutes. So, had to patiently wait

and slowly crawl the source codes and save to the local hard disk.

4.5 Static Source Analysis Tool

After studying several available commercial static analysis tools, by considering the scenario

of the project it was clear that the project need a tool to analyze the raw source codes. So, due

to that, Veracode is not usable with the project. When consider the features of the available

commercial tools, Checkmarx was a better fit with lots of support, but it was a very expensive

tool. Project managed to find a sponsor for the Checkmarx tool and decided to use that as the

static code analysis tool to perform the static analysis against the downloaded source code

samples. Source codes needed to be compressed to a zip file and uploaded to the Checkmarx

for it to perform the analysis. There is a possibility that the uploading process also can be

automated, but for the project, decided to upload it manually. Separate zip file is created for

each programming language to make it convenient. Below are the zip files created and ready to

upload to the tool.

67

Figure 4.6 : Sample source code files are ready to upload

With Checkmarx, first thing is to create a project for the scan, and then after navigating into the

project, there is an option called full scan. By clicking on that option Checkmarx will allow the

user to upload the created zip file. Below is the screenshot of upload zip file for full scan option.

There is another option called incremental scan, which means the tool will scan only the

changed or newly added files to discover vulnerabilities.

Figure 4.7 : Checkmarx upload zip file for scan

After uploading the zip file, Checkmarx will queue the scan job and perform it based on the

availability of its resources.

Figure 4.8 : Checkmarx scan queue

68

As mentioned above, Checkmarx is a very expensive tool and had to use it very carefully

without interrupting other projects. So, this was a bottleneck for the project, since Checkmarx

gave extremely low priority for the project related scans and also had to divide 5000 samples

into to 200 chunks and perform the scan to reduce the stress to the Checkmarx. Checkmarx has

couple of interesting viewers. Current status of a particular project is very important, where it

showcase all the vulnerabilities discovered within that project. The issues viewer helps to

navigate through all the discovered issues and also it is possible to mark the vulnerability as

false positive after studying about the issue. Also, there is an option available to import the

Checkmarx discovered vulnerabilities to a report and couple of formats are supported including

PDF, csv and xml.

Figure 4.9 : Project overview

Below is the issue viewer component of Checkmarx which can be used to view issues and

issue details.

Figure 4.10 : Issue viewer

69

Below is the report generator component of Checkmarx and it supports couple of report

formats and the user can export the reports to any supported format.

Figure 4.11 : Import vulnerabilities to a report

For the project, Checkmarx vulnerabilities list was imported to a XML report.

Programmatically it is extremely easy to handle or process XML documents and that was the

primary reason to choose XML format. Below is the exported list of Checkmarx xml reports.

Figure 4.12 : Imported vulnerabilities to XML documents

70

4.6 Vulnerability Importer

This component will read the XML report, which is imported from Checkmarx tool and process

it and then save the vulnerability data to the relational database. Another important supporting

component of the project to achieve its goal. To develop this component Microsoft csharp, a

powerful programming language within the .net family is used and a windows forms application

is created. Even though, this is not an external user facing component, developed it with a

simple and easy user interface. Also implemented proper error handling and informational

messages to make it user friendly. Since the component uses entity framework with the

importer, it can roll back the changes, so, there will not be any harm for the data stored in the

database, in case of an error.

Figure 4.13 : Vulnerability report importer

Below is the code block to read the XML report and serialize to relevant CSharp classes.

using System.Xml.Serialization;

using System.Xml;

XmlSerializer serializer = new XmlSerializer(typeof(CxXMLResults));

CxXMLResults resultingMessage = (CxXMLResults)serializer.Deserialize(new

XmlTextReader(filePath));

71

4.7 Dashboard

This component is defined as the second most important component of the project. This is where

the project utilizes the discovered vulnerabilities by reading the knowledge base, to project with

various charts and graphs. Main target is to make the dashboard very informative and user

friendly. Again, a powerful language and easy to user web framework, Asp.Net MVC with

csharp is used to develop the dashboard. Asp.Net MVC is easy to use web framework with less

learning curve, which was ideal to develop and was an ideal framework for the project. For the

charts and graphs, google chart API is used, since it is very convenient, powerful and contains

all the required chart types. Microsoft solution for object relational mapping, name entity

framework is used with Aps.Net MVC application to access the database where the

vulnerabilities are stored. By using the entity framework, managed to cut down the development

time significantly and also managed to develop the dashboard component with clean source

code.

Below are some of the charts included in the dashboard.

Figure 4.14 : Top 5 Vulnerabilities

72

Figure 4.15 : Vulnerabilities by Platform

4.8 Code Analysis Tool

Code analysis tool is the most important component of the project. This component allows the

developer or any other user to verify, whether there are any security vulnerabilities with a

particular source code block in StackOverflow. User should be able to select the particular

source code black and analysis tool should be able to read the user selected source code block,

use the knowledge base to analyze it, and show the potential vulnerabilities to the user. This is

main workflow the component needs to cover. When analyzing the scenario, it was clear that,

StackOverflow is a web site and user has to use a browser to access it and see the sample source

codes published in it. By considering the situation, it is very much clear that best solution is to

develop a browser plugin to capture the user input. After analyzing the situation more and

considering the user friendliness, decide to add a right click menu option, so the user can

highlight a particular source code block and use the right click menu to send it for the analysis.

Also decided to choose a one particular browser and develop a browser plugin only for the

selected browser. Project decided to select the google Chrome as the browser because it is

famous among the development community and even with normal users and also Chrome

provides a great support for developing plugins and it is reasonably easy with the help portal

provided. Initially wanted to automatically get the entire source code block, but chrome plugin

does not have a straightforward way of reading an entire html text inside a particular tag. So,

decided to go with the text highlight and user can highlight the source code block and get the

73

right click menu. In a way, this method has an advantage, where the user can select a portion of

the source sample and perform the analysis.

Figure 4.16 : Source Analyzer Chrome Plugin

There should be a service endpoint listening all the time to accept the user requested, collect

the user selected source code sample and response back to the user with the potential

vulnerabilities exists within the user selected source code block. Again, Asp.Net was used to

develop a service endpoint with entity framework to access the knowledge base. Chrome plugin

is issuing a cross origin XML, http request (XMLHttpRequest) using JavaScript code to send

the user selected source code and retrieve results. Web servers do not allow cross origin calls

by default and project needed to do the necessary changes make it possible. Below is the

JavaScript code written to make the XMLHttpRequest call and process the results, with in the

chrome plugin. http://localhost:49362/Home/Analyze is the endpoint implemented to accept the

call from chrome plugin.

function getIssues(sourceCode)
{
 var xhr = new XMLHttpRequest();
 var url = "http://localhost:49362/Home/Analyze";
 var params = "CodeSelected="+encodeURIComponent(sourceCode);
 xhr.open("POST", url, true);

 xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

 xhr.onreadystatechange = function() {
 if(xhr.readyState == 4 && xhr.status == 200) {
 var resp = JSON.parse(xhr.responseText);
 document.getElementById("testsource").innerHTML =

resp.ResultText;
 }
 }
 xhr.send(params);
}

74

From the Asp.Net side had to implement the below code to inform the web server to allow and

accept cross origin client calls.

public class AllowCrossSiteJsonAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext
filterContext)
 {

filterContext.RequestContext.HttpContext.Response.AddHeader("Access-
Control-Allow-Origin", "*");

 base.OnActionExecuting(filterContext);
 }
}

After reading the user selected source code block to analyze, source analyzer should cross

validate it with the vulnerable code samples is the database. This is sort of a fuzzy string

matching and after searching for available libraries for CSharp, powerful library found with

CodePlex, which can perform approximate string comparison and decided to use with the

application [42]. Below is the implementation, which uses the FuzzyString library from

CodePlex to verify the user selected source code against the database.

public static bool IsCodeEqual(string userInput, string vulnerableCode)
{
 List<FuzzyStringComparisonOptions> options = new

List<FuzzyStringComparisonOptions>();
 options.Add(FuzzyStringComparisonOptions.UseLongestCommonSubstring);
 return userInput.ApproximatelyEquals(vulnerableCode, options,

FuzzyStringComparisonTolerance.Strong);
}

Source analyzer defines a confidence level of a detected potential vulnerability by analyzing

the relevance between selected code block and the actual vulnerable code. For example, actual

vulnerability may need more than one code lines, but the user may select only one line out of

them for analysis. So, the tool should be able to detect it and shows the vulnerability with an

appropriate confidence level. Simple logic has implemented to achieve this capability of the

source analyzer and it is a great benefit for the user.

75

public Result AnalyzeSource(string selectedSource)
{
 List<Vulnerability> lst = new List<Vulnerability>();

 foreach (var issue in analyzeDb.Issues)
 {
 decimal fndCnt = 0;

 foreach (CodeBlock c in issue.CodeBlocks)
 {
 if(UtilitySvc.IsCodeEqual(selectedSource,c.CodeSnippet))
 {
 fndCnt++;
 }
 }

 if (fndCnt > 0)
 {
 Vulnerability v = new Vulnerability();
 v.CodeIssue = issue;
 v.Likehood = Math.Round(((decimal)fndCnt /

(decimal)issue.CodeBlocks.Count) * 100, 2);

 lst.Add(v);
 }
 }

 Result vulnerabilities = new Result();
 vulnerabilities.ResultText = GenerateView(lst);

 return vulnerabilities;
}

After calculating a percentage of likelihood, below logic will decide the confidence level and

assign to the potential vulnerability.

76

public enum ConfidenceLevels
{
 Certain = 0,
 Firm = 1,
 Tentative = 2
}

public class Vulnerability
{
 public Issue CodeIssue { get; set; }
 public decimal Likehood { set; get; }
 public string Confidence
 {
 get
 {
 string conf = string.Empty;

 if (Likehood >= 80)
 conf = ConfidenceLevels.Certain.ToString();
 else if (Likehood >= 40)
 conf = ConfidenceLevels.Firm.ToString();
 else if (Likehood < 40)
 conf = ConfidenceLevels.Tentative.ToString();

 return conf;
 }
 }
}

Primary target was to develop the chrome plugin, user-friendly, convenient and self-

understandable manner. Plugin view include below points with the vulnerability analysis to

make it come convenient.

• Severity of the vulnerability

• Confidence level

• Vulnerable source code snippet

• Risk of the vulnerability

• Reason or the cause of the vulnerability

• General recommendations to fix the vulnerability

Below is the chrome plugin, which actually shows the potential vulnerability to the user with

severity and confidence level above other information.

77

Figure 4.17 : Source Analyzer tool

78

4.9 Vulnerability Database

Project needed a relational database system to store the vulnerability data, which is provided

by the Checkmarx. Considering other technologies used to develop the application, Microsoft

SQL server is the best option and it is supporting with Microsoft technologies seamlessly. Also,

Microsoft provides easy and very user-friendly studio which can used to create and manage the

database.

Figure 4.18 : Database implementation

79

Chapter 5 : Results, Testing and Evaluation

5.1 Introduction

This chapter will describe the results of the project, application features, functionalities and

capabilities to evaluate the project, also possible approaches to test and verify the application

functionality to make sure it provides the expected quality output. Below steps will be used to

test and evaluate the developed application.

● Source code testing to make sure there are no errors and logically it is implemented as

expected.

● Functionality testing.

○ Functionality testing of web crawler.

○ Functionality testing of the vulnerability exporter.

○ Functionality testing of the dashboard.

○ Functionality testing of the code analyzer.

● Usability testing.

○ Functionality testing of the dashboard.

○ Functionality testing of the code analyzer.

5.2 Results

Selected five different programming languages, that are c-sharp, java, php, python and

JavaScript and analyzed 5000+ samples from each language using static code analysis tool,

Checkmarx for this project. And this section is focusing on discussing the findings in couple of

different angels. Altogether, 346131 lines of code had been uploaded to the Checkmarx and

assessed for security vulnerabilities. In total tool managed to discover 1489 vulnerabilities

belongs to various vulnerability categories. According to the Checkmarx, PHP is the language

with highest risk and this is matching with the most vulnerable programming language research

done by Veracode. Below is the risk level summary of each language provided by Checkmarx.

80

Figure 5.1 : Risk level indicator of each language

Below is some more vulnerability information for each programming language, discovered by

the Checkmarx tool. This information directly extracted from Checkmarx.

5.2.1 JavaScript

Figure 5.2 : Vulnerability categories - JavaScript

Above are the vulnerability categories discovered by Checkmarx and grouped by the severity

of those categories. Checkmarx manage to find High, Medium and Low severity issues with

JavaScript. Below diagram shows the top 5 vulnerability categories discovered by Checkmarks.

81

Figure 5.3 : Top 5 vulnerability categories – JavaScript

5.2.2 Python

Figure 5.4 : Vulnerability categories - Python

Checkmarx manage to discover High, Medium and Low severity issues with uploaded python

source code sample as well. Above chart shows the discovered vulnerability categories grouped

by severity. Below diagram shows the top 5 vulnerability categories discovered by Checkmarks.

82

Figure 5.5 : Top 5 vulnerability categories - Python

5.2.3 PHP

According to the source code analysis done for the project, Checkmarx marked PHP as the

highest risk programming language. During the analysis Checkmarx manage to discover some

JavaScript code issues also, which were written inside PHP code. This is another advantage of

Checkmarx because JavaScript are essential ingredient for web development and can be plug

into any development language. With Checkmarx, developer does not need to worry about,

because tool can automatically detect the programming language and perform the vulnerability

assessment for using the appropriate rule set. Below is the summary of the vulnerability

categories, Checkmarx discovered with JavaScript written inside PHP code, grouped by risk

level.

83

Figure 5.6 : Vulnerability categories - JavaScript within PHP

Below are the Top 5 vulnerability categories discovered with PHP.

Figure 5.7 : Top 5 vulnerability categories - PHP

Below are the vulnerabilities found by Checkmarx and grouped by severity. With PHP, also the

tools managed to discover High, Medium and Low severity issues.

84

Figure 5.8 : Vulnerability categories - PHP

5.2.4 Java

Java is also widely used language for web and mobile development and Checkmarx managed

to discover only Medium and Low vulnerability categories. This is sort of a medication to say

that Java language code samples are safe when comparing to JavaScript or PHP samples.

Veracode research report also mentioned that Java is a comparatively safe programming

language. Below are the discovered vulnerability categories grouped by severity levels.

85

Figure 5.9 : Vulnerability categories - Java

Discovered top 5 vulnerability categories are as follows.

Figure 5.10 : Top 5 vulnerability categories - Java

86

5.2.5 C-Sharp

Veracode mentioned that .net languages are safe languages to develop software in their research

report. Checkmarx also able to discover only Medium and Low severity issues with C-Sharp

and comparatively lesser issues than other four languages. Below are the discovered

vulnerability categories grouped by severity levels.

Figure 5.11 : Vulnerability categories - CSharp

Discovered top 5 vulnerability categories are as follows.

Figure 5.12 : Top 5 vulnerability categories - CSharp

According to the source code analysis results, it is clear that all the selected five languages has

security vulnerabilities. Tool manage to detect even High severity vulnerabilities with some

languages. With these findings it is proven that, is it highly important to discover the security

vulnerabilities of these source code samples published in open forums.

87

5.3 Source Code Testing

It is important as well as mandatory to make sure the source code written to develop the software

is logically correct and meet the expected quality without any unexpected error and all. Also, it

is required manually map and verify the logical paths and branching of the source code is

actually achieving what is described in the design phase. All the developed components were

manually verified by going through the source code paths. Also, all the possible paths were

manually verified to see whether it is an expected scenario. Mainly two development language

were used, which is CSharp and python and also application has a SQL server database. Since

both the languages used to develop the project, are compiler based, so, during the compilation

it can detect all the syntax issues. So, during the run time, project will have less surprises. As

the first step iron, out all the syntax error to make sure the application components are compiling

successfully. Then went through code to verify whether the proper error handling is in place to

avoid getting run time errors.

Also, the database is verified manually going through all the field level, verified whether all the

required data is storing to build the knowledge base and datatype of the fields. Couple of sample

records are manually entered into the database to verify whether everything is defined as

expected. Also verified the normalization of the database and keys defined as well as indexes.

Peer reviews are also important and it is a must to implement an application with great quality

and expected behavior, because of an outsider can see potential issues in the code which cannot

be seen by the developer who developed the application. Source code is given to couple of

experience developers and to review and got their feedback. Also made some necessary changes

to improve the source code based on the peer review comments.

5.4 Functional Testing

Functional testing is really important to make sure the application behaves correctly as expected

in a normal scenario as well as another unusual scenario. Both these scenarios application

should not crash or destroy the database. Because, creating as well as maintaining the database

is the key of the project and also specially as discussed, creating the database is very expensive.

For functional testing, followed the actual workflow to verify everything is working as

expected.

5.4.1 Testing Web Crawler

The first component which is required to make sure it is working, is the source code crawler,

which is written in python and it is a command line execution, without any UI. So, ran the

crawler targeting the selected programming language paths and download around 100+ samples

from each language. Two things verified here with the crawler, which are, whether the sample

code files saved to the correct folder and whether it is saving the complete source code sample

88

into the files as it is published in StackOverflow. In Order to make sure the second point decided

to take 25+ files from each programming language and cross verify the code saved in the files

with relevant code published in StackOverflow. Since the source URL is saved as a comment

into the file, this verification is quite easy.

5.4.2 Vulnerability Exporter

To verify the functionality of the vulnerability exporter, ran the exporter against the downloaded

source code files. Expected functionality is to read the vulnerability data from the saved files

and insert into database. So, after import and saving vulnerability data, again selected around

25+ files from each programming language and verified the vulnerability data in those files

against the data inserted to the database.

5.4.3 Testing Dashboard

To verify the dashboard, examined all the statistics showed in the dashboard against the data in

the database. Examined the logic written to retrieve the data for various charts in the dashboard

and verified the same data using SQL queries against the database.

Figure 5.13 : Open vulnerabilities by severity

For example, to verify the above vulnerabilities by severity graph, below SQL queries can be

used. These SQL queries are very simple and can be verifies the actual data against the plotted

graphs.

89

Below is the output result of the above SQL query, which can be verified against the above

chart, Open Vulnerabilities by Severity.

Figure 5.14 : SQL query results

 5.4.4 Testing Code Analyzer Tool

Code analyzer tool is the most important piece of the project and verifying the functionality of

the component is also critical. Most importantly need to make sure it is providing the correct

results, since developers and others are referring the results of it to get an understanding of a

particular source code sample.

5.4.4.1 Manual Verification

First step was to manually verify the correctness of the tool by testing and analyzing false

positive rate and false negative rates. The strategy used is, select around 250+ sample code files

from all the programming languages, analyze the vulnerabilities using the tool and manually

verify whether the tool managed to identify the issues correctly or not. With the initial version

of the tool, below are the received results of the false positive and negatives rates.

False Positive 70.00%

False Negative 0.00%

Table 5.1 : False Positive and Negative Percentages

The results were extremely disappointing, because the false positive rate was way over the

expected level, which was around 70%. On the other hand, tool did not have false negatives

and in a way, this is a great achievement, which means, tool manage to correctly detect available

issues. However, the results clearly indicate that there is a significant loophole in the

90

vulnerability analyzing logic and definitely needs a fine-tune. After performing deep analysis

with more testing, managed to successfully reduce the false positive rate also to zero percent.

Visual studio unit test project supports greatly on achieving this significant improvement.

Figure 5.15 : Unit test method 001

Figure 5.16 : Unit test method 002

During the manual testing, also verified whether the tool manages to identify the severity as

well as the confidence level of these vulnerabilities correctly.

5.4.4.2 Automated Verification

Decided to perform an automated unit test to evaluate the accuracy of the source analyze. With

automation, it is possible to evaluate larger sample of test source codes in a very short time and

possible to refine the accuracy of the source analyzer tool. Below scenarios were considered

during the automated testing.

• Source code samples which are used to build the knowledge-base

◦ Vulnerabilities detected

◦ Vulnerabilities not detected

• Source code samples which are not used to build the knowledge-base

91

Below is the expected outcome of these testing scenarios, assuming the tools is behaving

logically as expected.

Test Scenario

False Positives False Negatives

Known source codes with vulnerabilities 0.00% 0.00%

Known source codes without vulnerabilities 0.00% 0.00%

Unknown source codes > 0.00% > 0.00%

Table 5.2 : Expected outcome the Tool should provide

For the first scenario, project already has the downloaded source code samples and based on

the knowledgebase developed, identify the vulnerable and non-vulnerable code sample files of

each and every programming language, then extracted a sample for the testing. Below SQL

queries were used to extract data from the knowledge-base for the verification and the examples

shows the verification performed against the source code files of CSharp programming

language.

Select s.FileName,d.IssueName,COUNT(d.IssueName) Cnt from dbo.Issues s,
dbo.IssueDetails d, dbo.CodeBlocks c where s.IssueId=d.Id and s.Id=c.IssueId and
s.Language='CSharp' group by s.FileName, d.IssueName order by s.FileName

Select d.IssueName,COUNT(d.IssueName) Cnt from dbo.Issues s, dbo.IssueDetails d,
dbo.CodeBlocks c where s.IssueId=d.Id and s.Id=c.IssueId and s.Language='CSharp'
group by d.IssueName

Figure 5.17 : CSharp vulnerabilities summery of the Knowledge-base

92

Below is the comparison of expected results and the actual outcome of the testing.

Issues Name Expected

Count

Actual

Count

False

Positives

False

Negatives

CGI XSS 4 4 0 0

Hardcoded Absolute Path 17 17 0 0

Heap Inspection 13 11 0 2

Improper Exception Handling 35 34 0 1

Improper Resource Shutdown or

Release

5 7 2 0

Path Traversal 11 11 0 0

Use of Cryptographically Weak PRNG 6 6 0 0

Improper Transaction Handling 0 1 1 0

Table 5.3 : Expected results vs Actual results

After getting the results, specially focused on false negatives and manually verified and found

that the issue count was reduced due to the optimization logic, where when the user selects a

code block with two classes and both the classes have the same issue, then the analyzer

optimized the situation and show an aggregated result to the user. After manually verified the

scenario, false negatives were ruled out. With this testing, project covered True Positive

scenario, where is there is an issue analyzer should detect it correctly, after summarizing all the

results, manage to discover that the analyzer has 6.5% of false positive rate. As the next step

selected a sample of the source code files with zero vulnerabilities detected and ran the

automation test against those sample. Technically the source analyzer should not detect any

issues with this test. Below is the comparison of expected results and the actual outcome of the

testing performed against the source code sample of CSharp language.

Issue Name

Expected Count Actual Count False Positives

Improper Exception Handling 0 3 3

Table 5.4 : Expected outcome vs Actual outcome - CSharp

After completing the True Negative scenario, which means analyzer should correctly reject the

source codes, which does not have vulnerabilities, discovered that the source analyzer can have

a 4% of false positives. To analyze the behavior of the source analyzer tool in a critical manner,

decide to use source code samples, which are not considered for building the knowledge-base

and evaluate the behavior of the source analyzer tool. This way it is possible to get a clear

understanding of what are the enhancements, modifications required for the source analyzer.

The strategy followed was as follows.

93

• Use the crawler to download source code from each programming language, which not

downloaded before.

• User the Checkmarx tool to analyze those source code files and get the results.

• Analyze the source code samples using the Source Analyzer components.

• Compare the Checkmarx results verses Source Analyzer results.

After analyzing the source code sample using Checkmarx, the received results were as follows.

After analyzing the same set of source code samples with source analyzer, below is the

comparison of the results.

Issue Name Checkmarx Source

Analyzer

False

Positives

False

Negatives

Heap Inspection 1 1 0 0

Just One of Equals and Hash Code

Defined

1 0 0 1

Improper Transaction Handling 0 1 1 0

Table 5.5 : Results comparison - Unknown source samples

After analyzing the results of test scenario of unknown source code samples, discovered that

the source analyzer can have 2% of false positives and 2% of false negatives. Below is the

summery of all the automated unit test performed for the project with the sample size used for

the testing. According to the results, source analyzer tool managed to achieve the required level

of accuracy and also the tool can provide a dependable result.

Figure 5.18 : Checkmarx results of new source samples

94

Test Scenario False

Positive %

False

Negative %

Sample Size

Known source samples with vulnerabilities 6.50% 0.00% 500+

Known source samples without

vulnerabilities

4.00% 0.00% 500+

Unknown source samples 2.00% 2.00% 500+

Table 5.6 : Test results summery

Test scenarios automation is implemented using CSharp.Net and it is tied to the source analyzer

components of the project. Below is the source code implemented to read the known source

code samples with vulnerabilities and perform the analysis.

System.Text.StringBuilder sb = new System.Text.StringBuilder();

public void TestKnownCodeWithVulnerabilities()
{
 sb.Clear();

 var lst = analyzeDb.Issues.ToList().FindAll(n =>
 n.Language.Equals("CSharp")).GroupBy(k =>
 k.FileName).Select(lt => new { fname = lt.Key });

 foreach (var s in lst)
 {
 string p = "E:\\Mis Project\\used\\" +
 s.fname.ToString().Replace("/", "");
 if (File.Exists(p))
 {
 string txt = File.ReadAllText(p);
 AnalyzeSource_UnitTest(txt, s.fname.ToString());
 }
 }
 System.IO.StreamWriter file = new System.IO.StreamWriter("E:\\Mis
 Project\\vulstats.txt");
 file.Write(sb.ToString());
 file.Close();
}

5.5 Usability Testing

Usability testing is also important because it can assess how user friendly or how much required

information provided by the developed system or tool. Software systems can be developed

using best or cutting-edge technologies using latest methodologies and best tools can be used

to test those systems, but if the system does not meet the required usability, no one will use

those software applications. Best method to assess the usability of the application is to, provide

the beta version to end users and ask them to use the software for some time and then provide

95

the honest feedback. Web crawler and the vulnerability exporter are not developed for end users

and there is no reason to perform usability testing against those two components. Dashboard

and Code analyzing tool are the two components developed to end user and focus on performing

usability testing only for those two components.

Following above described strategy, testing version of the dashboard and code analyzer

components given to set of developers, quality engineers and technical specialist and ask them

to use these components for some time. Google form is used to collect the feedback and

feedback collected anonymously, because the target is to get genuine feedback from those set

of professionals. Also incorporated some of the important comments into the components to

make them more usable. Below is the feedback form created to set of end users to give their

feedback about the Dashboard and the Code analyzer.

Figure 5.19 : Usability feedback form

Even though, it sounds like a great idea and a definite way of improving the project, it is also

really hard to collect the feedback. This is even harder, when the targeted audience is

96

professionals and totally engaged with day to day work. Had to spend huge effort on collecting

feedback from developers, architects and managers. Planned to collect around 50+ feedback,

but after spending weeks following up those professionals, managed to collect 20+ feedback

and its decent enough for the analysis. Analysis mainly focus on getting feedback on user

friendliness and point to improve the application and also it was focused on getting an accuracy

measure of the source analyzer tool. Below are the results received for the accuracy of the tool.

Figure 5.20 : Expert feedback on accuracy of source analyzer

97

Chapter 6 : Conclusions and Future Work

6.1 Introduction

Static analysis of the source code is an important and essential activity to make sure the

developed is secured and rugged to stand against malicious attacks. Vulnerabilities that can be

discovered during the static analysis will help developers to iron out them during very early

stages of the development life cycle. Also, static code analysis is mandatory for an organization

to implement secure software development life cycle, which has the security built into the

development life cycle. Even though, many static analysis tools are available, including very

expensive commercial tools, technically the developers or the development team does not

analyze each and every code block they write or even before they write. Simply this is because

analysis takes time and the tool is costly, when it comes to commercial tools. Instead of that

they perform weekly or biweekly scans to discover the vulnerabilities. Then the discovered

issues will be added to the detect backlog and will be addressed during same sprint or next

sprint. This is again a problem because developers have to spend time on fixing issues, where

they could have addressed them during the initial development, if they got to know about those

issues.

When it comes to developers referring source code samples from open forums like

StackOverflow, situation is getting worst, because no one assess these source code samples for

security standards and vulnerabilities. Considering all these scenarios, it is required to have a

method to verify these open forum source codes quickly before those are used into the

production source code of the organization’s product. This chapter will summarize the project

work and discuss about the findings, problems, challenges, learning and limitations. Also, this

chapter will discuss about the possible future work of the project.

6.2 Summary

The project aims to address the issue of, developers using source codes samples, published in

open forums, without assessing security vulnerabilities of those source codes. The plan of the

project is to develop a tool which is easy, convenient, efficient and most importantly user

friendly, for developers, which is capable of identifying and visualizing the potential

vulnerabilities of the source code samples published in open forums. Solution also aim to

provide some insight to the developers, architects and managers about the vulnerabilities exists

with the source samples with some other useful statistics like what are the most common

vulnerabilities, which language has the most number of vulnerabilities.

After analyzing the situation, project decided to select one open forum, grab source code

samples published in the selected open forum, under selected programming languages and then

analyze the vulnerabilities using a commercial static analysis tool. After that, import the

vulnerability results from the static analysis tool to create a knowledge base and then develop

98

a tool, which can be used by the developers to assess the vulnerabilities in the open forum by

referring the knowledge base created.

First step was to select an open forum and after doing a study, decided to select StackOverflow

as the open from. Went through all the published user statistics data by StackOverflow, before

selecting it as the open forum. Due to the project time limitation, had to decide what are the

programming languages and the number of source code samples from each programming

language, which are going to select for the vulnerability analysis. Totally five programming

language were selected purely based on the popularity among the development community

which includes, CSharp .Net, Java, PHP, Python and JavaScript. Decided to analyze at least

5000 source code samples from each programming language. To grab the source codes from

the StackOverflow, implemented a web crawler using python programming language. Also,

python based famous web crawling framework names scrapy is used to developed the web

crawler.

After performing a study on commercially available static code analysis tools, to select an

appropriate tool for the project. According to the analysis, Checkmarx was the most suitable

tool for the project. Since the tool is highly expensive, manage to find a sponsorship to use the

tool to perform the analysis. Implemented a software component to read the vulnerability results

from Checkmarx report and save the data to the knowledge base.

Most convenient and user-friendly method of implementing the developer tool to analyze the

source codes is to develop a browser plugin. Because, developer need to use the browser to visit

the open forum to see the source codes. Project decided to stick to one particular browser and

develop a plugin for that browser only. After doing a study and see which browser is the famous

among all, selected the browser as google chrome for the project, since it is famous among the

developer community. Also, to help with the vulnerability statistics, decided to develop a

dashboard with various charts related to vulnerability data. For implementation of vulnerability

imported, dashboard and source code analyzer for developer are developed using CSharp .Net

and for the knowledge base, Microsoft SQL server database is used.

6.3 Problems Faced

Couple of issues were faced during the implementation of the project and had perform

workarounds and sometimes some components got delayed due to these problems. And some

of the issues could not resolve technically, but did not harm the final output of the project.

6.3.1 Crawling StackOverflow

The issue arises when crawling source codes from StackOverflow. After crawling certain

number of source code samples, StackOverflow detect large number of source code request

from the public ip address and block the ip for some time, like 5 to 10 minutes. Had to work

with this issue because there is no way to get rid of the issue. The issue slow down the source

code crawling speed significantly, but manage to achieve the required number of source code

samples by putting an extra effort.

99

6.3.2 Commercial Tool

Project needed a commercial static analysis tool and purchasing a tool is impossible due to the

high cost and find a sponsorship for the tool is really challenging. It took considerable effort

and time to make the tool available. Since the tool is already engaged with the day to day scans

of the organization, it was really challenging to allocate time for the project related source code

scans and also it was not possible to upload huge number of sample codes at once, because it

will make the tool stressed. This was the greatest challenge faced during the project and had to

spend lots of time to manage time and upload small chunks of source codes to analyze them

and get the results from the tool.

6.3.3 False Positives

This was a problem as well as a huge challenge. Like discussed above any tool, irrespective of

whether the tool is a commercial one or not, can provide false alarms. The only way of getting

rid of detected false positives is to manually verify and eliminate them. Had to spend

considerable amount of time and effort, going through all the discovered vulnerabilities and

verify whether those are false positives or not. This process is a must to perform to have an

accurate and quality output.

6.3.4 Browser Plugin

It was easy to implement a browser plugin with chrome browser, but could not find an easy way

to reading the entire source code block, when the user right clicks on it. Technically could not

solve this issue and had to go with select source code block and the right click, so the browser

plugin was able to read the selected text. This is not very convenient and user friendly for the

developer. But in a way, it was an advantage, because there may be cases where the developer

needs only a portion of the source code block to asses. Not so convincing but finally it was an

advantage for the project also.

6.3.5 Usability Testing

Usability testing was not a problem, but it was bit of a challenge, since project needed feedback

from professional developer, architects and managers. Usually these professionals are

extremely busy and it was hard to buy some of their time for evaluation of the project. Also had

to spent considerable time to demonstrate the tool for the developers and managers. Another

problem was, these professionals were bit lazy to fill the feedback form, so had push them little

bit on filling it, and also had to get verbal input and proceed as well.

100

6.4 Limitations

Even though the project aims to provide a fair solution for a specific problem, like any other

project, it has limitations. Some limitations arise due to the time limitation of the project and

some limitations are technical constraints. Since the code analyzer is the most used and the

primary component of the project, limitation of the code analyzer component will be noticeable.

Below are the major limitations of the source analysis component.

● Tool can detect or predict the issues only using the knowledge base which is previously

created by analyzing the source samples.

● Limited only for the source codes published in StackOverflow.

● Tool is doing a text based matching to verify with the knowledge base.

● Only support for CSharp, Java, PHP, Python and JavaScript programming languages.

● Only support for google chrome browser.

● Tool is only indicating the potential vulnerabilities to the user, but it cannot prevent the

user from using the vulnerable code. So, the tool is just a helper only.

● Building knowledge base is not fully automated.

6.5 Extensions and Further Work

After identifying the limitations of the project, it is required to plan for improvements and

enhancements for the project to make it better and serve the users better. Mainly focused on the

limitations of the current implementation and also the original problem which needs to be

solved, during coming up with future work for the project.

6.5.1 Fully Automate

Current implementation of crawling the source codes from the open forum and get it analyzed

using the commercial tool and then build the knowledge base is not fully automated. With the

current implementation, below tasks should be manually performed to successfully build the

knowledge base.

● Execute the web crawler to grab the source code samples.

● Upload the source samples to the commercial tool.

● Download the report of potential vulnerabilities from the commercial tool.

● Execute the vulnerability importer to import data to the database.

101

Plan is to fully automate this process and also handle the StackOverflow restriction by adding

proper time delay when the ip is restricted. Then project can keep on building the knowledge

base automatically, without much of a human interaction.

6.5.2 Expand the Knowledge Base

With the current implementation project is limited to five programming languages, CSharp,

Java, PHP, Python and JavaScript and only limited for source codes published in

StackOverflow. Also, current implementation considered 5000+ samples from each

programming language. Another point is, source samples are analyzed using only one

commercial tool. Need to expand this to other programming languages also and increasing the

number of samples considered also. Consider the source code samples published in other

available open forums also required. Most importantly use other commercial tools to analyze

the code samples and integrated the vulnerability results can make the knowledge base

sophisticated and more accurate.

6.5.3 Enhancements

Application needed to be fine-tuned to make it more efficient, so that the application can handle

user requests fast and accurate. Specially need to optimize the vulnerability analyzing code to

make it efficient. Also, fine tune the UI also important to make the users are comfortable with

the tool, it is user friendly and also to make sure the tool provides necessary information with

its feedback to the user. Optimizing the database also important to make sure the application

can achieve the required level of efficiency. Using a text matching with the vulnerability

identification logic is not so effective and also it is slowing down the process. Also, the tool

cannot identify potential vulnerabilities effectively because some code lines are logically same

but text comparison is different. Required to com-up with symbolic representation of the source

texts and need to perform the validation based on these symbols. With that tool can improve

both efficiency and accuracy.

Currently the implementation is done using CSharp .Net and the database is implemented using

Microsoft SQL server. There is no issue with these technologies, but better to move with a

python framework like DJango and MySQL which is more robust, scalable and with high

maintainability. With MySQL, the application will not be having any license issues as well.

Testing is performed by limited number of known developers and managers, which is not

enough for an open tool, targeted a large audience. Required to host the application in a publicly

accessible production environment and make it available for the development community and

invite them to perform testing and send feedback for fine tune and improve the tool. Also need

to make the source code available for the community using a public repository like GitHub and

get support from the development community to fine tune the source code.

102

6.5.4 Future Work

Most important assets or the output of the project work is the knowledge base, which includes

all the vulnerable source codes and related data. There is a great opportunity to perform a data

mining activity against the knowledge base and identify patterns hidden within the knowledge

base. This can greatly help to the developer and related community. Also, there is an opportunity

where the source analysis tool can be enhanced to use the discovered pattern to identify

potential vulnerabilities in an unknown source code sample.

Another future work will be to assess the impact created by these source code samples published

in open forums, on open source products. To assess this, needs to verify whether the vulnerable

source codes are existing in know open source products by assessing the GitHub source code

of those known open source products. By analyzing the impact created by source code sample

published in open forums, it is possible to alert the community so the community itself will be

more careful when publishing source code sample in future.

6.6 Critical Appraisal of the System

Goal of the project was to create a tool which can help developers to analyze the source codes

published in open-forum, for security vulnerabilities and also give an indication of the

vulnerability statistics of those source code samples to the developers as well as managers.

Implementation of the project manages to successfully meet all the expected requirements with

required quality. So, the project managed to achieve its goal. The project is highly designed and

not tied to a particular technology or a framework. Also, the design is capable of adopting future

enhancements, changes as well as the required expansion to the project.

During the implementation, followed the recommended coding guidelines and best practices to

improve the maintainability. Required and useful comments were added into the source code

and the source code is well tested and reviewed by couple of senior developers. Final

implementation is very easy and convenient for developers to use, since it is a browser plugin.

During the browsing of open forum source samples, developers can easily use the browser

extension to analyze the vulnerabilities of a particular code block in a matter of seconds. Project

implementation is tested and evaluated by developers and managers and they are very much

satisfied with the implementation and the idea behind the project. Also, the evaluators are

confident that the idea and the tools will add great value to the community as well as the

commercial organizations.

103

6.7 Final Conclusion

The author is confident that the project idea is very much valid and the implementation of the

project can greatly help developers to write more secure code and ultimately make the final

product more secured and rugged. Implementation of the project can be used as a vulnerability

assessment tool as well as a learning tool for the developers. Also using the project

implementation an organization can get to know about the vulnerabilities exists with each

programming language and they can define guideline and best practices to avoid those

vulnerabilities. Also, the tool can help to perform the peer review effectively and also it can

help to come up with an effective testing strategy. Since the tool helps to assess and understand

the vulnerabilities of a particular source code block, which is published in an open forum, before

it is used or implemented into the organization's production code, author believes that the

project ultimately helps to have a successful secure software development life cycle within an

organization.

104

Appendix A : Development and Testing Environment

A.1 Hardware Requirements

To perform the development of the application, personal computer is used with below

configurations.

● Intel Core i7 processor with 2.60 GHz.

● 8.00 GB internal RAM.

● 500 GB SSD hard disk.

● Microsoft windows 7, 64-bit operating system.

A.2 Software Requirements

For the development, virtual environment is used to make it more convenient, since the virtual

environment can be managed easily. To develop the main components CSharp .Net is used.

Below mentioned software were used for the project implementation.

● Microsoft Visual Studio 2010 IDE.

● CSharp .Net with MVC 3 framework.

● Microsoft SQL Server 2008.

● Python 2.7.

● Visual Studio Code IDE.

● Google chrome browser.

● Oracle VM VirtualBox - To create and run the VirtualBox.

105

Appendix B : General Information

B.1 Execution of Web-Crawler

Web crawler is a python based script and can be executed as a normal python script. Expected

behavior is, when the crawler ran pointing to a particular URL in StackOverflow, it should read

all the published source code samples, which are user’s answers to the published questions, and

save those samples into a local folder with the correct extension of the related programming

language.

In the below example, crawler is pointed to JavaScript related questions, so the crawler will

grab the published JavaScript code samples.

(http://stackoverflow.com/questions/tagged/javascript?page=1&sort=newest&pagesize=50)

Figure B.1 : Above to run the web crawler

106

Figure B.2 : After running the web crawler

B.2 Browser Usage

To make it easy and convenient, project decided to implement a browser plugin for developers.

After analyzing the easiness to develop a plugin as well as how famous is the browser among

the community, decided to select the browser as google chrome and implement a chrome

extension for the developers. Below is some browser usage information referred for the project,

to select a browser.

107

Figure B.3 : Browser Usage 2009 - 2016

Figure B.4 : Browser market map - 2015

108

B.3 Checkmarx Manual Verification

Checkmarx is the commercial tool used for the project to perform static analysis. After

Checkmarx is completed with the static analysis, it is a must to perform a false positive analysis

to clean up the results and keep only the actual issues. Checkmarx allows to perform a manual

verification against the discovered vulnerabilities and mark and eliminate false positives issues.

Figure B.5 : Mark vulnerabilities as false positive

Also, there can be situation where the Checkmarx marked a vulnerability with a particular

severity, but after the manual verification, it seems the severity should be something else. If

the detected severity of a vulnerability is not the correct figure, Checkmarx allows to set the

correct severity for the vulnerability. Below screenshot show the menu option to set the severity,

manually.

109

Figure B.6 : Manually set the severity of a vulnerability

B.4 Checkmarx Reports

Checkmarx allows and support several report formats to import the vulnerabilities, including

PDF and csv. For the project XML report format is used, since it is really easy to process and

import issues from a XML report to the database.

Figure B.7 : Checkmarx imported XML report

110

B.5 Chrome Extension

Chrome developer center giving a great help and detailed documentation for developers and

chrome extension can be easily created referring the documentation. It has certain set of files

and specific format expected from the developer. Below is the set of files required by chrome.

Figure B.8 : Chrome extension files

Manifest file is the one which defines the chrome extension with the general information, like

extension name, description, permissions and icons of the plugin. Below is the manifest.json

file created for the project.

Figure B.9 : Source Analyzer Chrome extension

111

B.6 CodePlex FuzzyString

FuzzyString is an open source project and a library, developed using CSharp .Net to verify the

equality of two strings approximately. Library includes well known approximation algorithms

and below is the full list of algorithms supported.

Figure B.10 : FuzzyString algorithms

Below is an example of how to compare two strings approximately using the library and it

returns Boolean value indicating whether the two strings are matched or not.

Figure B.11 : FuzzyString compare two strings

112

B.7 Google Trends

CodeProject also an open forum which is very famous among the development community. It

is important to analyze and compare the CodeProject with the StackOverflow to see the current

trend. Below are some trends provided by google.

Figure B.12 : Interest over time

Figure B.13 : Interest by region

113

Appendix C : Project Source Code

C.1 Project Structures

Application has two projects developed with CSharp .Net and other one is the chrome plugin.

To develop both CSharp .Net projects, Visual Studio is used as the integrated development

environment. Below are the project structures of these two projects.

Figure C.1 : Project structures

C.2 Helpful Comments

Appropriate comments were used within the source code, which can describe the source and it

is functionality. Comments can improve the maintainability and greatly help for the future

developments of the project.

114

Figure C.2 : Project comments

115

Appendix D : Testing the Application

During the automated testing, project selected 500+ source samples to verify the accuracy of

the source code analyzer. Results were collected aggregated and compared with the expected

numbers one by one manually. With this project managed to discover the deviations and identify

false positives, negatives to fine-tune the application. Below is the data table used to compare

the CSharp results with data.

File Name Vulnerability Expected Count Actual Count

/39711899-1.cs CGI XSS 4 4

/1716447-3.cs Hardcoded Absolute Path 1 1

/41755542-3.cs Hardcoded Absolute Path 1 1

/41791595-2.cs Hardcoded Absolute Path 2 2

/41804185-6.cs Hardcoded Absolute Path 1 1

/41815058-1.cs Hardcoded Absolute Path 2 2

/41816733-6.cs Hardcoded Absolute Path 1 1

/41819241-1.cs Hardcoded Absolute Path 1 1

/41822147-3.cs Hardcoded Absolute Path 1 1

/41825522-9.cs Hardcoded Absolute Path 1 1

/41834241-3.cs Hardcoded Absolute Path 2 2

/41853886-6.cs Hardcoded Absolute Path 1 1

/41868930-1.cs Hardcoded Absolute Path 1 1

/41870998-5.cs Hardcoded Absolute Path 1 1

/462270-4.cs Hardcoded Absolute Path 1 1

/39730960-1.cs Heap Inspection 1 1

/41764683-1.cs Heap Inspection 1 1

/41764683-5.cs Heap Inspection 1 1

/41783872-1.cs Heap Inspection 3 3

/41793082-2.cs Heap Inspection 2 2

/41846572-4.cs Heap Inspection 1 1

/41883072-1.cs Heap Inspection 2 1

/41907955-4.cs Heap Inspection 2 1

/18757097-10.cs Improper Exception Handling 1 1

/2876616-7.cs Improper Exception Handling 1 1

/39668236-1.cs Improper Exception Handling 1 1

/39749136-2.cs Improper Exception Handling 2 2

/41755542-3.cs Improper Exception Handling 1 1

/41769399-3.cs Improper Exception Handling 3 3

116

/41788661-3.cs Improper Exception Handling 1 1

/41791595-2.cs Improper Exception Handling 3 3

/41793534-3.cs Improper Exception Handling 1 1

/41803707-1.cs Improper Exception Handling 2 1

/41813610-1.cs Improper Exception Handling 1 1

/41816147-1.cs Improper Exception Handling 2 2

/41834241-2.cs Improper Exception Handling 2 2

/41834241-3.cs Improper Exception Handling 2 2

/41840827-2.cs Improper Exception Handling 1 1

/41842148-2.cs Improper Exception Handling 1 1

/41853886-6.cs Improper Exception Handling 1 1

/41854338-5.cs Improper Exception Handling 2 2

/41854338-6.cs Improper Exception Handling 2 2

/41870998-5.cs Improper Exception Handling 1 1

/41894232-1.cs Improper Exception Handling 1 1

/41907955-4.cs Improper Exception Handling 2 2

/41907959-1.cs Improper Exception Handling 1 1

/41755542-3.cs Improper Resource Shutdown or Release 1 1

/41853886-6.cs Improper Resource Shutdown or Release 1 1

/41870998-5.cs Improper Resource Shutdown or Release 1 1

/41890156-2.cs Improper Resource Shutdown or Release 1 1

/41894232-1.cs Improper Resource Shutdown or Release 1 1

/41788661-1.cs Path Traversal 5 5

/41788661-2.cs Path Traversal 3 3

/41788661-3.cs Path Traversal 3 3

/41786555-5.cs Use of Cryptographically Weak PRNG 1 1

/41824277-5.cs Use of Cryptographically Weak PRNG 2 2

/41910525-1.cs Use of Cryptographically Weak PRNG 1 1

/767999-5.cs Use of Cryptographically Weak PRNG 2 2

Table D.1 : Detailed results comparison

117

It is important to check the usability of the application to measure the user-friendliness as well

as the accuracy. Decided to distribute the application among professionals to collect their

feedback. Below is the row feedback data received from those experts regarding the ideas to

improve the application.

Ideas to improve

needs to fine tune

need to analyze more samples

improve please

fine tune, customization charts

should be able to identify issues based on the source

fine tune

consider latest source codes

focus on something important. may be super hero

keep going. Need more surprises

optimize and make it faster

fine tune

automate analyze part also

code project is better option

continue

provide some details of the issues

need to fine tune more

need to enhance it by analyzing more code

need more charts

share the project so all can contribute

allow to enter issues manually to the database

make it open source and fine-tune it

implement using python

Table D.2 : Ideas to Improve

118

Appendix E : Dashboard Options

Dashboard included various graphs, charts to represent the vulnerabilities discovered during

the source code assessment. This component can greatly help for developers and quality

engineers as a learning tool. Also engineering teams can use these data to come up with a solid

test strategy to perform required tests to discover these vulnerabilities. Another important point

is, the dashboard can be used by architects and senior developers to perform peer reviews,

effectively. Below is the available charts of the dashboard.

Figure E.1 : Chart options of the Dashboard

119

References

[1]. Elizabeth Fong, Vadim Okun, "Web Application Scanners: Definitions and Functions," in

Information Technology Laboratory, National Institute of Standards and Technology,

Gaithersburg, MD 20899-8970

[2]. Symantec (Apr, 2006) "Five common Web application vulnerabilities," [Online].

Available:<http://www.symantec.com/connect/articles/five-common-web-application-

vulnerabilities> [Accessed on 17 May 2016]

[3]. Guttorm Sindre, in Dept of Computer and Info. Sci. Norwegian Univ. of Sci. and Tech.,

Andreas L. Opdahl, in Dept of Information Science, University of Bergen, Norway,

"Capturing Security Requirements through Misuse Cases"

[4]. OWASP "2013 Top 10 List", [Online].

Available:<https://www.owasp.org/index.php/Top_10_2013-Top_10> [Accessed on 18 June

2016]

[5]. Microsoft (Feb 2013) "Microsoft Security Development Lifecycle"

[6]. Cigital "What Is the Secure Software Development Life Cycle", [Online].

Available:<https://www.cigital.com/blog/what-is-the-secure-software-development-

lifecycle/> [Accessed on 17 June 2016]

[7]. Cigital "Seven Touchpoints for Software Security", [Online].

Available:<http://www.swsec.com/resources/touchpoints/> [Accessed on 5 July 2016]

[8]. Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, "Source Code Security

Analysis Tool Functional Specification Version 1.1" in NIST Special Publication 500-268

v1.1

[9]. RTI "The Economic Impacts of Inadequate Infrastructure for Software Testing" in NIST,

RTI Project Number 7007.011

[10]. OWASP (Jul 2016) "Static Code Analysis", [Online].

Available:<https://www.owasp.org/index.php/Static_Code_Analysis> [Accessed on 28 July

2016]

[11]. Brian Chess, "Metrics That Matter:Quantifying Software Security Risk" in Fortify

Software,2300 Geng Road, Suite 102 Palo Alto, CA 94303 1-650-213-5600

[12]. Grammatech (Dec 2013), "Eliminating Vulnerabilities in Third-Party Code with Binary

Analysis Eliminating"

[13]. Wikipedia, "List of tools for static code analysis", [Online].

Available:<https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis> [Accessed

on 20 July 2016]

120

[14]. Checkmarx, "Why Choose Us", [Online]. Available:<http://lp.checkmarx.com/new-

brand-general/> [Accessed on 6 August 2016]

[15]. StackOverflow, "Developer Survey Results 2016", [Online].

Available:<http://stackoverflow.com/research/developer-survey-2016> [Accessed on 25

March 2016]

[16]. SANS, “SANS Top 25 Most Dangerous Software Errors”, [Online].

Available:<http://cwe.mitre.org/top25/> [Accessed on 5 December 2016]

[17]. Cigital "Top Web Application Security Vulnerabilities", [Online].

Available:<https://www.cigital.com/blog/top-web-application-security-vulnerabilities/>

[Accessed on 5 December 2016]

[18]. SANS "SANS TOP 25 Most Dangerous Software Errors", [Online].

Available:<https://www.sans.org/top25-software-errors/> [Accessed on 5 December 2016]

[19]. OWASP "Mobile Top 10 2016-Top 10", [Online].

Available:<https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10> [Accessed on 6

December 2016]

[20]. Checkmarx “The Ultimate List of Open Source Static Code Analysis Security Tools”,

[Online].

Available:<https://www.checkmarx.com/2014/11/13/the-ultimate-list-of-open-source-static-

code-analysis-security-tools/> [Accessed on 6 December 2016]

[21]. VisualCodeGrepper “Code security review tool for C/C++, C#, VB, PHP, Java and

PL/SQL.”, [Online].

Available:<https://sourceforge.net/projects/visualcodegrepp/> [Accessed on 8 December

2016]

[22]. YASCA “Michael V. Scovetta”,[Online].

Available:<http://www.scovetta.com/yasca.html/> [Accessed on 8 December 2016]

[23]. OWASP LAPSE+ “OWASP LAPSE Project”, [Online].

Available:<https://www.owasp.org/index.php/OWASP_LAPSE_Project> [Accessed on 8

December 2016]

[24]. RIPS “A static source code analyser for vulnerabilities in PHP scripts”, [Online]

Available:<https://websec.files.wordpress.com/2010/11/rips-slides.pdf> [Accessed on 10

December 2016]

[25]. RIPS “A static source code analyser for vulnerabilities in PHP scripts”, [Online]

Available:<http://rips-scanner.sourceforge.net/> [Accessed on 11 December 2016]

[26]. DevBug “PHP Static Code Analysis (SCA) tool”, [Online]

Available:<http://www.devbug.co.uk/> [Accessed on 22 November 2016]

121

[27]. Flawfinder “Flawfinder”, [Online]

Available:<https://www.dwheeler.com/flawfinder/> [Accessed on 22 November 2016]

[28]. CPPCheck “CPPCheck”, [Online]

Available:<http://linux.softwsp.com/linux-development/miscellaneous-linux-

development/cppcheck/> [Accessed on 22 November 2016]

[29]. Brakeman “Brakeman - Rails Security Scanner”, [Online]

Available:<http://brakemanscanner.org/> [Accessed on 25 November 2016]

[30]. IBM “IBM Security AppScan Source”, [Online]

Available:<http://www-03.ibm.com/software/products/en/appscan-source> [Accessed on 22

December 2016]

[31]. HP Enterprise “Fortify Static Code Analyzer”, [Online]

Available:<http://www8.hp.com/us/en/software-solutions/static-code-analysis-

sast/index.html> [Accessed on 18 November 2016]

[32]. Veracode “Veracode Static Analysis”, [Online]

Available:<http://www.veracode.com/products/binary-static-analysis-sast> [Accessed on 22

December 2016]

[33]. Sentinel Source “WhiteHat Sentinel Source”, [Online]

Available:<https://www.whitehatsec.com/products/static-application-security-testing/>

[Accessed on 27 December 2016]

[34]. Checkmarx “Checkmarx Static Code Analysis (SAST)”, [Online]

Available:<https://www.checkmarx.com/technology/static-code-analysis-sca/> [Accessed on

27 December 2016]

[35]. Security and Quality Software GmBh “Checkmarx STATIC APPLICATION

SECURITY TESTING ”, [Online]

Available:<http://sq-software.com/products/checkmarx/> [Accessed on 23 December 2016]

[36]. Black Duck “Open Source Application Security”, [Online]

Available:<https://www.blackducksoftware.com> [Accessed on 21 December 2016]

[37]. WhiteSource “WhiteSource Secures Your Open Source Usage”, [Online]

Available:<https://marketplace.visualstudio.com/items?itemName=whitesource.whitesource>

[Accessed on 28 December 2016]

[38]. The Hacker News “These Top 10 Programming Languages Have Most Vulnerable Apps

on the Internet”, [Online]

Available:<http://thehackernews.com/2015/12/programming-language-security.html>

[Accessed on 12 December 2016]

[39]. Scrapy “Scrapy at a glance”, [Online]

Available:<https://doc.scrapy.org/en/latest/intro/overview.html> [Accessed on 2 April 2016]

122

[40]. Browser Usage “Usage share of web browsers”, [Online]

Available:<ttps://en.wikipedia.org/wiki/Usage_share_of_web_browsers> [Accessed on 27

February 2017]

[41]. Chrome Extensions “What are extensions”, [Online]

Available:<https://developer.chrome.com/extensions> [Accessed on 22 May 2016]

[42] CodePlex “FuzzyString - Approximate String Comparison in C#”, [Online]

Available: <https://fuzzystring.codeplex.com/> [Accessed on 15 January 2017]

[43] Google Trends “Compare the code project vs stackoverflow”, [Online]

Available:<https://trends.google.com/trends/explore?date=all&q=codeproject,stackoverflow>

[Accessed on 27 February 2017]

