Analyze vulnerabilities of source codes
published on open forums

A dissertation submitted for the Degree of Master of
Science in Information Security

S.T.S.T. Desapriya
University of Colombo School of Computing
2017

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any
other university/institute.

To the best of my knowledge it does not contain any material published or written by another
person, except as acknowledged in the text.

Student Name: S.T.S.T. Desapriya

Signature: Date:

This is to certify that this thesis is based on the work of Mr. S.T.S.T. Desapriya under my
supervision. The thesis has been prepared according to the format stipulated and is of acceptable
standard.

Certified by:

Supervisor Name: Dr. Kasun De Zoysa

Signature: Date:

Abstract

Web applications and mobile applications are extremely popular in the society and also became
a part of the human lives. These applications are used by different institutions including gov-
ernments for different purposes allowing them to access sensitive information and perform crit-
ical operations. Software developers are using many development languages to develop these
applications by writing thousands of lines of code, with or without security in mind. Common
practice among software developers is that they use open forums to share, suggest code exam-
ples and also to look for a suggestion for a problem they face or situation they need to address.
Since these open forums are extremely popular among developer community, they tend to use
those source examples, for the development of their applications. Because of that source code
examples in open forums make direct impact on real world software application, for developers,
it is important to have a method of verifying these source code samples and make sure they are
free of security vulnerabilities before using.

Project aims to solve this problem by developing a simple, user friendly tool, which is capable
of analyzing the security vulnerabilities of the source code samples published on open forums.
The methodology used is, download large set of source code samples from an open forum,
perform a static analysis using a reliable commercial tool, extract the results and create a
knowledge-base of vulnerable source snippets, which can be used by the developed tool, to
detect vulnerabilities of a particular source code block. Stackoverflow is selected as the open
forum and five widely used programming languages, CSharp, Java, PHP, Python and JavaScript
were selected for the analysis. Checkmarx is the static analysis tool selected. Over twenty-seven
thousand source code samples used for the analysis and over thousand four hundred vulnera-
bilities detected by Checkmarx.

The Project delivers five main components. Python based crawler used to crawl through Stacko-
verflow and download source code samples. Data importer component, developed using csharp,
used to import the results given by Checkmarx in to the knowledge base. Dashboard with vari-
ous graphs and charts to show the results of the analysis is also developed using csharp. Chrome
browser plugin, which is capable of analyzing a selected source code block, for potential vul-
nerabilities by referring the knowledge base, is developed as the tool. Finally, MS SQL server
used to create the knowledge base which holds all the vulnerability data provided by
Checkmarx.

The solution can influence the developers to write more secure code during the development of
the project and also make them aware about the security vulnerabilities, which will ultimately
make the software rugged. Project would be much more interest for those who involve in soft-
ware development related areas and also for application security analysts who are interested
and very keen on static analysis.

1

Acknowledgment

First and foremost, I would like to express my sincere thanks to my supervisor Dr. Kasun De
Zoysa, senior lecture at University of Colombo School of Computing, for the enormous support,
guiding and most importantly the encouragement given for the dissertation work.

Also, 1 would like to thank my panel members for giving me valuable comments and
improvements points to make the dissertation a better one.

Specially, I would like to thank my family for the great support, encouragement, guidance and
love given to me during this research work.

Special thank goes to Aaron Weaver, for spending his valuable time helping me and the support
given with the commercial tool.

Finally, I would like to thank my working place, Pearson Lanka (pvt) Ltd. for all the
opportunities given and making me a strong character in the industry.

111

Table of Contents

DIECIATALION. ...t i
W 011 ¢ Tt SRR PR TSR PPR PR i
ACKNOWICAZMENT ...t il
TADIE Of CONTENIS ... e ettt e b r e nne e e n e e neeenne e v
LSt OF FIGUIS ...ttt vii
LSt OF TADLES ... X
Chapter 1 : INtrOAUCLION.........cciiiiiiiiiic e 1
L LY (07521 5 o) o WO OO U R PPR PR 1
1.2 OBJECIIVE ...ttt bbbttt 4
1.3 S COPE it 5
Chapter 2 : Literature REVIEWc.coiiiiiiiiieiiieiie et 6
2.1 TNEEOAUCTION ...ttt b e et nb e b ne s 6
2.2 Application Security VUINErabilities..........ceiiuiiiiiiiiiiiie e 6
2.2.1 OWASP TOP 101 uiiiiiiiiiiiiieii e 7
2.2.2 CigItal TOP 20 .ottt 15
2.2.3 SANS TOP 25 ettt 18

2.3 BUII-IN SECUITLY .ttt nee s 20
2.3.1 Microsoft Security Development Life CYCleccovvviiiiiiiiiiiiiiiec 21
2.3.2 Seven Security Touch Points Proposed by Gary McGrawcccocevviiviieenennnnn. 21

2.4 StAtIC ANALYSIS 1ouviivieiiieii i 22
2.4.1 Static ANalysis TOOLScoiriiiiiiiicee e 26
2.4.2. Advantages and DiSadvantagescccovoveiiirieiniieneeec e 46

2.5 Vulnerable Programming Languagescccueiuieiieiiieniiiiie e 47
2.5.1. Top 10 Vulnerable Programming Languagesccccccevverieiniieriieneeneenee e 48
Chapter 3 1 DESIZI . .vveiiiiieeiee ettt 51
3.1 DESIZN OVEIVIEW ...civieiiiiitieitie ettt ettt she ettt sae e bt esbe e e bt e naeeenbeesbeeebeennne e 51
3.2 SYSIEM OVEIVIEWuiiiiiiiiiesiee ettt s e e e e e e e s e e e 52
3.2.1 WED CIawer ...ccueiiiiiiii ettt 53
3.2.2 Process Vulnerabilities and STOT€ceeiiiiiiiiiiiiieiie e 54
3.2.3 DaShDOArd.......cccviiiiiicce s 55
3.2.4 Code ANAlSIS TOOL......ccuiiiiiiiiiiiiieei e 56
3.2.5 Relational Databasecccoveiiiiiiiciiiiciici e 57
3.2.6 Static ANalysis TOOLcociiiiiiieicc e 58
3.2.7 0pen FOrUML......cccoiiiiiiiiiiiici 58
Chapter 4 : Implementationc.cciiiiiiiiiiii e 60
4.1 Implementation OVETVIEWccciiiirieerriiieesiieniee s nneesnneeneens 60

4.2 SOUTCE SAMPLES ..eeiiiiiiiiiiiiiie ettt et et e e e nsb e e e nnb e e e nnnee e e 60

4.3 Programming Languages to SEIECtccoovviiiiiiiiiiiiiiiiic e 62
4.4 Source SAMPIEs CraWler........coiuiiiiiiiiiie e 62
4.5 Static Source Analysis TOOL......c.uiiiiiiiiiiiiii i 66
4.6 Vulnerability IMPOTLETcoviiiiiiiiiiiiie e 70
4.7 DAShDOAIAcciiiiiiiei e 71
4.8 Code ANALYSIS TOOL....cciuiiiiiiiie ittt 72
4.9 Vulnerability Databasecccciiiiiiiiiiiiiieie e 78
Chapter 5 : Results, Testing and Evaluation..........cccccvviiiiiiiieiiiin e 79
R B 6313 0T Lot 0 s OO UUP PSP TOPPP 79
5.2 RESUILS itttk b et b bt ae e nae e 79
5.2.1 JAVASCTIPL ..ottt 80
5.2 2 PYHROMN ..ottt 81
S.23 PHP oo 82

5. 204 JAVA .ottt 84
5.2.5 CoSRAIP .ttt 86
5.3 S0UICE COAE TESTINEveiveiiieiiiiiesieete et 87
5.4 FUNCHONAL TESTING ...vveeveeiiiieiiie ettt nnne e 87
5.4.1 Testing Web CraWIercoiiiiiiiiiieiiiee e 87
5.4.2 Vulnerability EXPOTterccveiuiiiiiieiiiie et 88
5.4.3 Testing Dashboardcoouiiiiiiiiiiie e 88
5.4.4 Testing Code Analyzer TOOLc.cviiiiiiiiiiiie e 89
5.5 USADIIEY TESTINEeiiuvieieeiiiieiiie e 94
Chapter 6 : Conclusions and Future Work..........c.ccocoiiiiiiiiiiiiii 97
6.1 INIFOAUCLION ... et 97
0.2 SUIMIMATY ..ot e e s 97
6.3 Problems FaCedcccooiiiiiiiiiiic e 98
6.3.1 Crawling StackOVerflowccoooiiiiiiiii e 98
6.3.2 Commercial TOOLccciiiiiiiiii e 99
0.3.3 FalSE POSILIVESviiiiiiiiiiie i 99
6.3.4 Browser PIUGINoooiiiiiii e 99
0.3.5 USability TESTINEGeeivieriiiiiieiti it 99
0.4 LIMIEALIONSeetvieiii ittt ettt et ettt e bt e bt e sae e et e e abe e e beesmneabeearneenneea 100
6.5 Extensions and Further Work ... 100
0.5.1 FUlly AULOMALEcoeviiiiiiiiciccc e 100
6.5.2 Expand the Knowledge Base...........ccoceiiiiiiiiiiiiiic e 101

LSRRI 23 01 0= 4 (ot 0 4 L= 0 L1 101

0.5.4 FULUIE WOTK ...ttt ettt e e e snneenee s 102

6.6 Critical Appraisal 0f the SYStemccoviiiiiiiiiiiiie 102
6.7 FINAl CONCIUSION......cuiiiiiiiiiiiie e nee 103
Appendix A : Development and Testing ENvironmentccocvvveiiiiiiicniniiseseeesee e 104
A.1 Hardware REQUITEIMENTSveiiiviiiiiieiiiie ittt ssne e sine e nnneeen 104
A.2 Software ReQUITEMENTScoviiiiiiieiiiie e 104
Appendix B : General Information............ccocveiiiiiiiiiiiiiice s 105
B.1 Execution 0f Web-Crawler ..o 105
B.2 BrOWSET USAZEeiiiiiiieiiii ittt 106
B.3 Checkmarx Manual VerifiCationcccocueiuieiiiiiiie i 108
B.4 Checkmarx REPOTTS.uiiiuiiiiiiiiiiie ittt sttt e e 109
B.5 Chrome EXTENSION.ccuiiiiiiiieiiiieiiie sttt sttt sttt sttt ettt et nnee e 110
B.6 CodePlex FUzzyStringccooiiiiiiiiiiiiii s 111
B.7 G00ZIE TIeNdSccviiiiiiiiii i 112
Appendix C : Project SOUICE COAE.......oiuiiiiiiiiiiiiiieiiece et 113
C.1 Project StIUCIUIESovveiiiiiiiiiiiicie s 113
C.2 Helpful COMMENEScoviiieiiieiieiiitie et 113
Appendix D : Testing the APPlICALIONoc.viiiieiiiiiiiieiece s 115
Appendix E : Dashboard OPtions..........cceeiiieiiiiiieiie e 118
S (e L 1 Lo PSPPI PPRPR 119

vi

List of Figures

Figure 1.1 : Monthly Stack Overflow Visits - Geographically...........ccccooviviiiiniiiniiieiiee i, 2
Figure 1.2 : Most Popular Technologies - Full Stackcccccooiiiiiiiiiii, 3
FIGUIE 1.3 1 AZE GTOUPS 1vvveiiiiiie ittt sttt sttt sttt st sttt snbe e e snb e e e nnb e e e nnb e e e nnnees 3
Figure 1.4 1 JOD THEIES ...vveiiiiiiiieiiice e 4
Figure 2.1 : OWASP Top 10 VUInerabilities........cccviiviiiiiieiiiie i 8
Figure 2.2 : Sample Attack - INJECTIONS ...couviiviiiiiiiiiiiieice s 9
Figure 2.3 : Sample Attack - Broken authentication & Session management..............c.ccveennee. 10
Figure 2.4 : Sample Attack - Cross site scripting (XSS) ...coveviiiiiiiiiiieiisseeeee e 11
Figure 2.5 : Sample Attack - Insecure direct object referenceccccvvveviiieniiiniie e, 12
Figure 2.6 : Sample Attack - Missing functional level access controlc.ccocveeiiiiiinnnnn 13
Figure 2.7 : Sample Attack - Cross site request fOrgery ... 14
Figure 2.8 : OWASP Top 10 Vulnerabilities - MODbIle..........cccovveiiiiiiiiiieiscec e 15
Figure 2.9 : Cigital Top 20 Vulnerabilitiesccociriiiiiiiiiiiici e 16
Figure 2.10 : Cigital - Data collection methodologyccccvviiiiiiiiiiii 17
Figure 2.11 : Comparison - Cigital Top 20 vs OWASP Top 10......cccvviiiiiiiiiiiicciieiee 18
Figure 2.12 : Insecure Interaction Between Components - Vulnerabilities.............ccooverinnnnne 19
Figure 2.13 : Risky Resource Management - Vulnerabilities............ccovveririiiniienicicnicnecen 19
Figure 2.14 : Porous Defenses - VUINErabilitiesc.cooveiiiiiieiiiiiic e 20
Figure 2.15 : Microsoft Security Development Life cycle.........ccooviiiiiiiniiiiiiiccn 21
Figure 2.16 : Software Security Touch pointsccccoiiiiiiiiiiiiiii 22
Figure 2.17 : Traditional quality assurance model vs Attackerc.ccovvvvvinieenicicniicnennnn 23
Figure 2.18 : Data flow ANALYSIScciviiiiiiiieiiciieesee e 23
Figure 2.19 : Control flow Graphccooiiiiiiiiiii e 24
Figure 2.20 : Taint ANALYSIS....ciiiiiiiiiiieiiiiii i 25
Figure 2.21 : LeXiCal ANALYSISuviiviiiieiriiieeie e 25
Figure 2.22 : VisualCodeGrepper V2.1.0ccceiiiiiiiiiiiiie e 28
Figure 2.23 : YASCA ..ottt 29
Figure 2.24 : OWASP LAPSEF ..o 30
Figure 2.25 1 RIPS ..ot 31
Figure 2.26 : DEVBUEZccoiiiiiiiiicii 32
Figure 2.27 : FIaWINACTooeiiiii e 33
Figure 2.28 : CPPCRECKocuiiiiieiee e 34
Figure 2.29 : BraKemancocviiiiiiiiiicec e 35
Figure 2.30 : Brakeman USETSccuiviiiiiiiiiiiieiieie st 35
Figure 2.31 : IBM APPSCAN SOUICEceeruviirieririeieesireesiee e snee e e e e e nnees 37
Figure 2.32 : Fortify Static Code ANalyZer...........cociiiiiiiiiiiiiiici e 38
Figure 2.33 : Veracode application security platform............cccooviiiiiiiiiinieeee 39
Figure 2.34 : Languages supported by Veracode...........ccccooviiiiiiiiiiiiiiiineccc e 39
Figure 2.35 : WhiteHat Sentinel SOUICEcoiiiiiiiiiiiiicee e 40
Figure 2.36 : WhiteHat Security CUSTOMETS.ccoiviiiiiiiiiiiiiieiec e 41
Figure 2.37 : Checkmarx Source Code Analysis TOOL...........cceviiiiiiiiiicn e 42
Figure 2.38 : Checkmarx Supported Programming Languagescccooveviiieininiciiiniinnnn 43
Figure 2.39 : Open Source Components getting in every Angleccooveveiiiiiiieiiienieninens 44
Figure 2.40 : Black DUCk HUDcooiiiiiiiiii e 45

FIigure 2.41 : WRItESOUITEcouvviiiiiiie ittt 45
Figure 2.42 : WhiteSource, Managing POliCIESccvieiiiiiiiiiiicncee e 46
Figure 2.43 : Policy compliance by programming [anguage..........ccocccvevivveniieeniieeninnesnneesnns 49
Figure 2.44 : Comparison of critical vulnerability types..........cccouvviiiiiiiiiniinicicc e 49
Figure 2.45 : Dynamic vs. static application SeCUrity teStiNg.......cccevvvveeriueerriieesiiieesiieessineesens 50
Figure 3.1 1 SYStEM OVEIVIEWciiuiiiiiiiiiiieiiieie et 53
Figure 3.2 : Sample Crawler USING SCIAPYcivviiiiiiiiiie it iiiie st snnee s 54
Figure 3.3 : Process Vulnerabilities and StOre..........ccocviiiiiiiiiiiiciniecseceee e 55
Figure 3.4 : Dashboard - Process Vulnerabilities and Display Charts...........ccccoveveniinenineennne 56
Figure 3.5 : Code Analysis TOOLcccuiiviiiiiiiiiiieiic e 57
Figure 3.6 : Database diagramccocviiiiiiiiiiiiiiie i 57
Figure 3.7 : Table used for graphs and charts...........ccccooiiiiiiiiiiii 58
Figure 3.8 : Static code analysis t00].......ccuiiiiiiiiiiieiiiie i 58
Figure 3.9 : Crawl Open Forum and store source samples locally............ccocvvvviiiiiiiiiiinnnn. 59
Figure 4.1 : StackOverflow sample qUESHION........c.uiiiiiiiiiiieiiiie e 61
Figure 4.2 : StackOverflow Sample anSWeT............ocviiiiiieiiiiiiniese e 61
Figure 4.3 : StackOverflow Posted question URL format.............cccoceiiiiiiiiiniiciicnn 62
Figure 4.4 : Sample source code filecoiiiiiiiiiiiiiiicc 66
Figure 4.5 : Running the Web Crawler ..o 66
Figure 4.6 : Sample source code files are ready to upload...........ccceevvriiiiniinienicicceee 67
Figure 4.7 : Checkmarx upload zip file for scancccooiiiiiiiiiiii i 67
Figure 4.8 : Checkmarx SCAN QUEUEceeiiriiiieiiiiisee ettt 67
Figure 4.9 : PTOJECT OVETVIEWceoiuiiiiiiiiiiii ettt ne e 68
FIgure 4.10 : ISSUE VIBWETccuiiiiiiiiitietisie sttt ettt n e ne e 68
Figure 4.11 : Import vulnerabilities t0 @ TEPOTt.......ccuiiiuieiiiiiieiie e 69
Figure 4.12 : Imported vulnerabilities to XML dOCUMENLScoovrviriiiiniiinieneceseeseee 69
Figure 4.13 : Vulnerability report IMPOTTETcccveeieiiiieiieiieesie e 70
Figure 4.14 : Top 5 VUINErabilitiesccoiviiiiiiiiiiicc e 71
Figure 4.15 : Vulnerabilities by Platformccccooiiiiiiiiiiii 72
Figure 4.16 : Source Analyzer Chrome Plugin..........c.cocooviiiiiiiiiieee e 73
Figure 4.17 : Source Analyzer t0O]........cccooviiiiiiiiiiiii i 77
Figure 4.18 : Database implementation............ccuoiveireenieriienee e 78
Figure 5.1 : Risk level indicator of each languagecccooeiiiiiiiiiiiini 80
Figure 5.2 : Vulnerability categories - JAVASCIIPtooevviiiieiiiiiiee e 80
Figure 5.3 : Top 5 vulnerability categories — JavaScriptccccovviiiiiiiiiniiiiccc e 81
Figure 5.4 : Vulnerability categories - Python...........cccoooiiiiiii e 81
Figure 5.5 : Top 5 vulnerability categories - Python ... 82
Figure 5.6 : Vulnerability categories - JavaScript within PHPccccooii 83
Figure 5.7 : Top 5 vulnerability categories - PHPccocciiiiiiiii 83
Figure 5.8 : Vulnerability categories - PHP ... 84
Figure 5.9 : Vulnerability categories - JAVAccoueiiiiiiiiiiiiee e 85
Figure 5.10 : Top 5 vulnerability categories - JAVAcccoceiirieriiiiiie i 85
Figure 5.11 : Vulnerability categories - CSharpccccocviiiiiiiiiiiieseee e 86
Figure 5.12 : Top 5 vulnerability categories - CSharp..........cccooviiiiiiiiienee e 86
Figure 5.13 : Open vulnerabilities by SEVETILYcccciiiiiiiiiiiiiiici e 88
Figure 5.14 : SQL QUETY TeSUILS.......civiiiiiiiieie e 89
Figure 5.15 : Unit test method 001coooiiiiiiiiiiiii e 90
Figure 5.16 : Unit test method 002oooiiiiiiiiiiiiiee e 90
Figure 5.17 : CSharp vulnerabilities summery of the Knowledge-base...........ccccoeevrvininnnne. 91

file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690218
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690236

Figure 5.18 : Checkmarx results of new source samplesccoccveviiiiiiiiniiieniiee e 93

Figure 5.19 : Usability feedback form...........ccooiiiiiiiiiiiiii e 95
Figure 5.20 : Expert feedback on accuracy of source analyzer..........ccccoeveviiieiiiiieniiiesnieennnn, 96
Figure B.1 : Above to run the Web Crawlerccooeiiiiiiiiiii 105
Figure B.2 : After running the Web Crawler.........ccccviiiiiiiiiiiiiii e 106
Figure B.3 : Browser Usage 2009 = 2016cccueiiiiiiiiiiiiieiieiesees s 107
Figure B.4 : Browser market map = 2015oooiiiiiiiiiiii i 107
Figure B.5 : Mark vulnerabilities as false POSItIVE.........cccovviririiiiiiiicic e 108
Figure B.6 : Manually set the severity of a vulnerabilityccccceviiiiiiiiiiiiniie e 109
Figure B.7 : Checkmarx imported XML r€POrt........c.ccoviviiiiriiiiiiiiiieiesee s 109
Figure B.8 : Chrome exXtension flleS.........cccuiiiiiiiiniiiii i 110
Figure B.9 : Source Analyzer Chrome eXteNnSIONccccvviveriiriiiienieirisie e 110
Figure B.10 : FuzzyString algorithmscccocviiiiiiiiiii e 111
Figure B.11 : FuzzyString compare tWo StINESc.ccvevirieriiniiiiieseeie e 111
Figure B.12 : INtETeSt OVET TIMC....uvviiiuiiiiiiieesiiieesiiiessitie sttt e et e snbe e e s snbe e s snneeensneeens 112
Figure B.13 : INteTeSt DY T@ZIOMNc.viiiieiiiiiiiieiii e 112
Figure C.1 : Project StIUCLUIESccviiuiiiiiiiiiieiii e 113
Figure C.2 : ProJECt COMMEILSc.viivieiiiiiiiiiesiisee sttt 114
Figure E.1 : Chart options of the Dashboard.............ccccooiiiiiiiiiii 118

X

file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690237
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690239
file:///C:/Users/UDESATH/Desktop/ProjectFinal_Hardbind_Word.docx%23_Toc484690255

List of Tables

Table 2.1 :
Table 2.2 :
Table 2.3 :
Table 2.4 :
Table 2.5 :
Table 2.6 :
Table 2.7 :
Table 2.8 :
Table 2.9 :

Table 2.10 :

Table 2.11
Table 2.12
Table 2.13

Table 2.14 :
Table 2.15 :
Table 2.16 :

Table 3.1 :
Table 5.1 :
Table 5.2 :
Table 5.3 :
Table 5.4 :
Table 5.5 :
Table 5.6 :

Table D.1 :
Table D.2 :

Well-known security research organization............ccecvevireeiieninieseesese e 7
SANS vulnerability CAtEZOTIEScvvviivriiiiiieiiiee it 18
Selecting an open-source static analysis tool - Points to Consider......................... 27
VisualCodeGrepper - Advantages and Disadvantagesccccoovvvviieniiieeniiineninnn, 27
YASCA - Advantages and Disadvantagescccoovevireeniiniininnieecseee e 28
OWASP LAPSE+ - Advantages and Disadvantagesccccoevveeiieeniiiieniiieeniinnenns 29
RIPS - Advantages and Disadvantages...........ccoovveviriiiiniiiieenieescseee e 30
DevBug - Advantages and Disadvantagesccocvveviiiiiiiieniiien e 31
Flawfinder - Advantages and Disadvantages...........c.ccovvrviniieiiiiiiicnieieseeseene 32

CPPCheck - Advantages and Disadvantages.........ccccovvveeiiiieniieeniieessieesnnee s 33
: Brakeman - Advantages and Disadvantages..........c.ccoovvviniiiiiniinicnieie e 34
: Points to consider with open source static analysis tools - Checkmarx 36
: IBM AppScan Source capabilities..........ccovveiiiiiiieniiienieiesee e 37

Fortify Static Code Analyzer benefitscccooeviiiiiiiiii, 38

Checkmarx static analysis t00] Benefits.........ccooveririiiiieiiiiiiicee 42

Black Duck Hub capabiliti€scccveiiiiiiiiiiiiiiie i 44
Components of propoSed SYSTEIMeeiviiriiieiiiieiiene e 52
False Positive and Negative Percentages..........cccovvervienieiiieiie e 89
Expected outcome the Tool should provide...........cccooviiiiiiniiniiiie 91
Expected results vs ACtual TESUILSccvvieiiiiiiiiie e 92
Expected outcome vs Actual outcome - CSharpcccovvieiiiiiniiciicc 92
Results comparison - Unknown source Samplesccccevvereeiieenieenieennesneenene 93
Test TESUILS SUMIMETY ...c.vviuviiiiiieiiie ettt 94
Detailed results COMPATiSON.........ccviiiiiiiiiiiiiic e 116
[deas to IMPrOVEcceiiiiiiiiic s 117

Chapter 1 : Introduction

1.1 Motivation

Web and mobile applications are part of human lives in the present days which are dealing with
highly sensitive data and operations. Because of the critical and the integrated nature of those
applications, they have become the primary targets of attacks. New security vulnerabilities are
discovered every day in those commonly used applications which creates a huge security threat
on end users. Which makes the point that these applications must be rugged and should be able
to stand against malicious attacks.

Each and every software created using thousands of lines of code, which called as source code,
to make it functional. It is very clear that the source code plays important role in terms of
application security and need to make sure the source code followed security best practices in
order to assure application security.

Industry is extremely focused on S-SDLC (Secure Software Development Life cycle) which is
focusing on building security into the development life cycle which can assure the security of
end product. Analyzing source code which is called static code analysis, commonly referred to,
scanning the source code using a static analysis tool to identify potential security vulnerabilities
is a part of S-SDLC [10]. Static analysis of the source code can identify potential security
vulnerabilities during the development phase of the software, so that the developer can take
necessary actions to eliminate these issues then and there.

Software developers involved in writing these source codes, according to the functional
specifications of the software. During the day to day development, developers tend to surf web
and refer freely available source code examples to solve their problems or to enhance their
source code. These open forums are extremely popular among developer community and
thousands of developers around the world refer these contents and also share their knowledge
and views on published answers. The beauty of these open forums is, anyone can freely join
and start sharing suggestions to a particular problem with their own source code samples.

By analyzing some of the open forum statistics, it's very clear how popular and how actively
developers are using them. According to StackOverflow, one of the most famous open forum
among developers, about 32 million people visit them every month and more than 25 million
are return visitors. And return visitors visits the site 6 times every month. In January 2016, 46
million visited StackOverflow and they believe 16 million of those are professional developers
[15]. Below chart shows the monthly visits of StackOverflow, geographically.

Figure 1.1 : Monthly Stack Overflow Visits - Geographically

It is also important to see what are the popular programming languages among the developer
community. This information can greatly help to understand what are the highly demanded
programming languages and also it is critical to make sure that the source code samples under
these highly demanded programming languages are secured or security best practices are
followed. So according to the StackOverflow statistics, JavaScript, CSharp .Net, PHP and Java
has a high demand and all these are famous web development programming languages.

Analyzing the usage based on the job title also very important, since developers or programmers
are the people who actually do code to implement the organization’s product. According to
StackOverflow developers used the site most and it is clear that developers spend more time
looking for source samples to solve the issues or looking for new ideas. Below charts shows the
most popular technologies among the community.

JavaScript 85.3%
saL 58.9%
C# 37.3%

PHP 35.3%

Angular 32.2%
Java 30.7%

SOL Server 28.0%
Mode. js 27 1%
Python 18.2%

LAMP 15.6%

Figure 1.2 : Most Popular Technologies - Full Stack

Also, it is important to understand what are age groups which heavily using StackOverflow,
since it is possible to understand, what sort of experienced developers asking questions and
posting answers. Understand the job roles of the people who frequently access the site is also
important, to get a clear understanding on who are really using the resources for what purpose.
Below charts shows the StackOverflow usage statistics by age-groups and the job titles.

<20 7.1%
20-24 23.6%
25-29 28.4%

30-34 18.1%

>60 [0.8%

Figure 1.3 : Age Groups

Developer 71.6%
Programmer 60.3%
Engineer 41.8%
Sr. Developer 28.3%
Full-Stack Developer 26.8%
Other 12.0%
Hacker 11.4%
Expert 11.2%
Minja 9 8%
Manager 5 2%
Rockstar 7.4%
Guru 5.0%

Full-Stack Owverflow Developer 4 2%

Figure 1.4 : Job Titles

By looking at these statistics, it is pretty clear that, almost all the developers are using open
forums during their development work. And these open forums provide solutions for almost all
the problems and situations that any developer could face during their developments, they tend
to use these source code samples directly or indirectly for the software that they develop. This
is a critical situation, since the source code samples in open forums can make an impact on
enterprise level software and there is a need to make sure that these source code samples do not
introduce any security vulnerabilities or to make sure these code samples follow recommended
security best practices by the industry.

1.2 Objective

Currently, there is no easy way of verifying whether the source code samples in open forums
are vulnerability free or followed security best practices. This will make the developer use these
samples without verifying and indirectly making the software vulnerable. Manual verification
is a possibility but it is time consuming. The number of developers using these open forums are
increasing day by day and there is an indeed requirement to have an easy solution to quickly
verify these source code examples before using within the software that the developers are
developing.

The objective of this project is to provide a solution for this requirement by providing an easy
and convenient solution. With this project source code samples published in open forums will
be gathered using a software crawler, perform a static code analysis using a sophisticated
commercial tool and store the results as a knowledge base. Also, a user friendly and easy to use
tool will be developed for developers to analyze a particular source code block which is
published in an open forum, using the gathered knowledge base. A sophisticated dashboard with
a holistic view of the analysis of open forum source samples, also will be developed, so that the
development community can get a better understanding of what sort of security vulnerabilities
are exists with source codes published in open forums. Also, ultimately the solution of the
project will support to make the developing software more secured.

1.3 Scope

Based on the usage statistics, among professional developers, StackOverflow is the most
famous and highly used open forum among the available forms. This project will be focused on
source code samples published on StackOverflow forum only. Also, project will be only focused
on source code samples written in most famous back end development languages. To perform
the static code analysis, to create the knowledge base, commercial static analysis tool named
Checkmarx will be used. Also, the vulnerabilities will be limited to most critical vulnerabilities
related to web and mobile application. To develop the web crawler to gather the source code
sample, python will be used and a python based web crawling framework will be used. The
planned implementation has two main components, the dashboard and the source analysis tool.
Microsoft CSharp .Net, will be used to develop the dashboard and the back-end of the source
analysis tool. A browser plugin will be developed for a one particular browser to implement the
front-end of the source analysis tool.

Chapter 2 : Literature Review

2.1 Introduction

In recent years, web and mobile application become very close to human lives and started
playing important role of their day to day life. Attractiveness and easiness of these application
made them so popular and commercial industries and governments start to leverage those within
their respective areas. At present, there are thousands of web and mobile application used by
almost all commercial industries and governments, maintaining highly sensitive information
including government secrets, trade secrets, and also performing critical operations such as
stock market activities and online money transfer. There is a definite need to make sure that
these applications are fully secured and capable of stand against any malicious activity.

Although that there is a definite need to make sure these software applications are holistically
secured, it is difficult because these applications are, by definition, exposed to the general
public, including malicious users [1]. Every application developed with thousands of lines of
code using one or many available technologies by human developers. To achieve better security
for an application, organizations need to make a considerable investment to make sure the
required level of security is achieved. Due to the highly competitive nature of the business,
organizations are reluctant to invest money and time on security, because most of the time,
security professionals cannot justify the investment or cannot define a clear return on
investment.

Historically, applications security considers as an afterthought, and industries gave priority to
user friendliness and the performance of the application. Over the time this makes a huge and
complicated application with many security vulnerabilities, which make it extremely expensive,
difficult or impossible to address, mainly because the application is already in production and
has a large customer base.

This chapter explain and analyze the top and critical security vulnerabilities identified by the
industry, which are exists in most of the common web applications. And explain the importance
of built in security and available frameworks. Also discuss about the importance of analyzing
the source code for potential security vulnerabilities, what are the available tools and techniques
and common advantages and disadvantages of using the tools.

2.2 Application Security Vulnerabilities

It is the nature that any software contains issues or defects. These can be functional flaws,
architectural defect, performance issues, usability issues and so on. Functional issues can be
verified and easily detectable based on the required use-cases. And most of the time these issues
are identified and fixed without any hassle. Security vulnerabilities on the other hand, very hard
to detect, because none of the functional use cases will cover those scenarios or the steps. Use
cases have become popular for demonstrating, communicating and defining the software

6

requirements. They demonstrate the functional requirements of the application well, but provide
less support for extra-functional requirements, such as security requirements. With the increase
of the usage of e-commerce and m-commerce applications, such requirements are growing in
importance [3].

Web and mobile applications are facing various attacks each and every day. When considering
the top critical web application vulnerabilities, it is clear that, somewhat poor programming
approach which leads to these vulnerabilities [2]. That make the developers are responsible for
these vulnerabilities. There are various web and mobile applications related vulnerabilities
exists in the present. Also new vulnerabilities are discovered by attackers very frequently. New
technologies like cloud infrastructure, new programming languages changes the threat
landscape and create new attack vectors. This situation make security more complicated and
bizarre for the organizations and make it easier to the attackers. Since the situation is getting
worst day by day, it would be nice to have independent body or organization who can invest on
researching on new threats, vulnerabilities, define the severity of the vulnerabilities and define
guidelines and best practices to avoid, address these vulnerabilities. Also, they can suggest
required and best security solutions, providers and necessary tools. Then the organizations can
get a clear idea about the top vulnerabilities exists and take necessary actions like, educate the
engineers, focus on test cases to cover necessary scenarios. This will be a great advantage since
it can save considerable resources for an organization. Couple of well-known independent
foundations or organizations are exists, performing security related researches and doing a great
help for businesses as well as the community. Below are some of them.

Open Web Application Project (OWASP)

Cigital
SANS

Table 2.1 : Well-known security research organization

All the above organizations define their identified top vulnerabilities, root cause of those
vulnerabilities and set of guideline and best practices to fix or avoid those vulnerabilities.

2.2.1 OWASP Top 10

OWASP, the Open Web Application Security Project is an unbiased, independent foundation
came online in December 2001 and also it is a not for profit organization with variety of security
experts from around the world. They perform researches to identify various threats,
vulnerabilities, risks related to web applications and provide state of the art solutions to address
them. They also implement application verification standard which will help for an organization
to understand the security risk level or the compliance level of a web or mobile application.
With application verification standards, OWASP defines three levels under application
verification standard and each level has number of criteria that the application needs to fulfill
in order to achieve a particular level. Each criterion defines certain test or verification scenarios

to see whether the application is meeting that criteria. When considering the application
security, OWASP application verification standards can create a considerable impact.

OWASP is doing a great help for the community by providing various learning materials and
implementing security libraries to protect applications from vulnerabilities. Among the tools,
Zed Attack Proxy, a tampering proxy which can analyze security vulnerabilities, is very famous
among security professionals. OWASP doing researches on web applications as well as mobile
application and they came with top 10 most critical issues that the web applications and the
mobile applications are facing by doing an independent research. Many organizations refer the
OWASP recommendations because they give unbiased, practical and cost-effective solutions
for application security. Below are the top ten issues for web applications identified by OWASP

[4].

A2-Broken
A1l-Injection Authentication and A3-Cross-Site Scripting
Session Management (X55)
Ad-Insecure Direct AS5-Security A6-Sensitive Data
Object References Misconfiguration Exposure
AS-Using Components
AT7-Missing Function AB-Cross-Site Request with Known
Level Access Control Forgery (CSRF) Vulnerabilities

A10-Unvalidated
Redirects and Forwards

Figure 2.1 : OWASP Top 10 Vulnerabilities

When analyzing these top ten issues, it is clear that more than six issues are related to poorly
written source code and developers are responsible to those vulnerabilities. Some of the most
critical vulnerabilities related to poorly written source codes are as follows.

Al. Injections

Injection flaws, such as SQL, OS, and LDAP injection occur when malicious user input is taken
as a parameter by the application plug it as part of a command or query. The attacker’s malicious
input can trick the interpreter into executing unwanted commands or providing access to the

8

application without proper authorization [4]. It is clear that this issue exists due to the source
code fails to validate the data sent by the user or attacker.

Example Attack Scenarios

Scenario #1: The application uses untrusted data in the construction of the following
vulnerable SQL call:

I1String gquery = "SELECT * FROM accounts WHERE custID='"" +
1

| request.getParameter ("id™) + "'";
Scenario #2: Similarly, an application’s blind trust in frameworks may result in
gueries that are still vulnerable, (e.q.. Hibernate Query Language (HQL)):

1
I Query HOLQuery = session.createfuery(“FROM 1
1 1
——— W% “] R memy 1

1

1custID= + regquest.getParameter("id }:

In both cases, the attacker modifies the ‘'id’ parameter value in her browser to send: '
or '1'="1. For example:

This changes the meaning of both queries to return all the records from the accounts
table. More dangerous attacks could modify data or even invoke stored procedures.

Figure 2.2 : Sample Attack - Injections

A2. Broken Authentication & Session Management

Authentication and session management is a key and fundamental concept to manager the user
access properly with in the application. Sometimes application fails to manage the
authentication properly and attacker will be able to by-pass the login or impersonate another a
user by hijacking or predicting session tokens. [4]. Once again, source code fails to validate
whether the user is authenticated and has a valid session and also whether the user is allowed
to perform a particular action.

Example Attack Scenarios

Scenario #1: Airline reservations application supports URL rewriting, putting session

IDs in the URL:
P~ -~~~ - - - - - - — - — - m s m s s s s s m s m s m - m - — - — - === 1
Vhttp://example. com/=ale/zaleitems? !
I I
| sezsionid=—268534454] edest—Hawaii 1
U U U U U o]

An authenticated user of the site wants to let his friends know about the sale. He e-
mails the above link without knowing he is also giving away his session ID. When his
friends use the link they will use his session and credit card.

Scenario #2: Application's timeouts aren't set properly. User uses a public computer
to access site. Instead of selecting “logout” the user simply closes the browser tab
and walks away. Attacker uses the same browser an hour later, and that browser is
still authenticated.

Scenario #3: Insider or external attacker gains access to the system’'s password
database. User passwords are not properly hashed, exposing every users’ password
to the attacker.

Figure 2.3 : Sample Attack - Broken authentication & Session management

A3. Cross Site Scripting (XSS)

XSS attack is all about application fails to validate or properly escape user input data and echoed
the malicious user inputs into the browser. Attacker can enter malicious JavaScript code to get
execute on the victim’s browser to steal some sensitive data or even possible to install a key-
logger to record everything and send back to the attacker [4]. Another example of not validating
or escaping the user supplied content with the source code. This is a classic example of poorly
written source code and a critical also a very common issue.

10

Example Attack Scenarios

The application uses untrusted data in the construction of the following HTML snippet
without validation or escaping:

(String) page += "<input name='creditecard' type='TEXT'

+ reguest.getParameter("CC™) + "'=";

1
I '><=cript>document. location= 'http://www.attacker.com/cgi- 1
1 1
tbin/cockie.cgi ?foe='+document.cockie</scripts>'. 1

1
This causes the victim's session ID to be sent to the attacker's website, allowing the
attacker to hijack the user's current session.

Mote that attackers can also use XSS to defeat any automated CSRF defense the
application might employ. See A8 for info on CSRF.

Figure 2.4 : Sample Attack - Cross site scripting (XSS)

A4. Insecure Direct Object References

If the application allows to access any internal resources such as files, objects or data belongs
to other users, usually using an internal reference key, without any authorization check, then
the application is vulnerable for direct object reference attacks [4]. With this issue attacker will
be able to access or even destroy unauthorized data. This a classic example of an extremely
poor coding practices and failed validation in the source code, and the consequences of this
issue is much severe.

11

Example Attack Scenarios

The application uses unverified data in a SQL call that is accessing account

information:
1 1
I 5tring query = "SELECT * FROM accts WHERE account = 2"; 1
1 1
:Preparedﬂtatement pstmt = connection.prepareStatement (guery :
1 y - 1
—]
1 r rr 1
1 . . . 1
patmt. 2etString(1, recquest.getParameter("acet™)}; "
1 1
IEesultSet results = pstmt.executeQuery() ; 1
1 1
e om mm mm mm mm Em mm Em Em Em Em Em Em R B R B R B AR EE AR BN R BN R RN R BN R BN Em B Em B AR Em Em -l

The attacker simply modifies the ‘acct’ parameter in their browser to send whatever
account number they want. If not verified, the attacker can access any user's
account, instead of only the intended customer's account.

Figure 2.5 : Sample Attack - Insecure direct object reference

A7. Missing Function Level Access Control

Authorization is critical for any application to make sure the particular user is allowed to
perform the requested action. Most of the time application verifies the access levels during the
start of the application for the main Ul, but sometimes misses these necessary access
verifications for some features inside the application. Always the application should make sure
it verifies the required access verification and authorized the user correctly. [4]. Common
mistake that most of the software developers and other related professionals have their mind is,

only the Ul validations are enough and those cannot be bypassed. But in reality, attacker can

simply alter and by pass Ul validations with a tampering proxy. It is always necessary to have

and 1n this case, it is failed to implement server side validations within the source code.

12

Example Attack Scenarios

Scenario #1: The attacker simply force browses to target URLs. The following URLs
reqguire authentication. Admin rights are also required for access to the
admin_getappinfo page.

Lhttp://example. com/app/getappInfo 1
I
thttp: //example. com/app/admin getappInfo 1

If an unauthenticated user can access either page, that's a flaw. If an authenticated,
non-admin, user is allowed to access the admin_getapplnfo page, this is also a flaw,
and may lead the attacker to more improperly protected admin pages.

Scenario #2: A page provides an 'action’ parameter to specify the function being
invoked, and different actions require different roles. If these roles aren't enforced,
that's a flaw.

Figure 2.6 : Sample Attack - Missing functional level access control

A8. Cross-Site Request Forgery (CSRF)

If the victim logged in to a particular application, then the attacker can forcefully send forged
HTTP request to the application, using victim's browser, if that application is vulnerable for
CSREF attacks. The forged request will automatically include session and authentication tokens,
since the victim is already logged in and application will trust the request [4]. With this issue,
the application is failed to validate a particular request made by the user’s browser is legitimate
or not. Bit tricky to launch an attacker using this issue, but if the application is vulnerable for
CSRE, it is a lethal weapon an attacker can used against the application.

13

Example Attack Scenarios

The application allows a user to submit a state changing request that does not
include anything secret. For example:

Lhittp: /[example. com/app/transferFunds?

1

1 amount=1500&destinationfccount=4673243243
So, the attacker constructs a request that will transfer money from the victim's
account to the attacker's account, and then embeds this attack in an image request
or iframe stored on various sites under the attacker's control:

[. o . : :

(<img src="http://example.com/app/transferFunds?
amoun t=1500gdestinationhccount=attackersicct#” width="0"

height="0" />

If the victim visits any of the attacker's sites while already authenticated to
example.com, these forged requests will automatically include the user's session
info, authorizing the attacker's request.

Figure 2.7 : Sample Attack - Cross site request forgery

According to these OWASP Top vulnerabilities, most of the issues are exits because of the
poorly written source codes. Leveraging these vulnerabilities, an attacker can make severe
damage to the application, which may destroy the organization as well. In order to make sure
the application is secure enough to stand against malicious attacks, it is necessary to make sure
the source code is well written and followed all the required security best practices.

Below are the top ten issues for mobile applications identified by OWASP [19].

14

M1 - Improper Platform M2 - Insecure Data M3 - Insecure

M4 - Insecure M5 - Insufficient ME - Insecure

M7 - Client Code Quality

M2 - Code Tampering M9 - Reverse

M10 - Extraneous

Figure 2.8 : OWASP Top 10 Vulnerabilities — Mobile

2.2.2 Cigital Top 20

Cigital is one of the largest application security firm in the world and helps to identify the
application related security vulnerabilities. Cigital experts also provide guidelines, best
practices to re-mediate the application security vulnerabilities and most importantly they
provide user training on application security and related areas for developer, quality engineer
and other related positions like business analysts, architects and project managers. They have
identified the top twenty vulnerability list that they think which are more important to pay
attention by the organizations and engineers. Below is the list of top twenty vulnerabilities
identified by Cigital [17].

15

1 Verbose server banner 8%
2 Weak SSL ciphers 6%
3 Hidden directory detected 6%
4 Clickjacking (aka Ul Redressing) 5%
5 Weak password policy 5%
6 Secure cookie attribute not set 5%
7 Cacheable S5SL pages 4%
8 SSL/TLS beast information leakage 4%
9 Username enumeration through password reset 3%
10 Reflected cross-site scripting (XSS) 3%
11 HttpOnly cookie attribute not set 3%
12 Verbose error messages 2%
13 Unencrypted viewstate 2%
14 Cross-site request forgery (CSRF) 2%
15 TLS/SSL not enforced 2%
16 Sensitive information leaked via query string parameter 2%
17 TLS/SSL not enabled 2%
18 Application error 2%
19 No account lockout policy 2%
20 Session identifier set prior to authentication 2%

Copyright © 2016, Cigital | g. Cigital

Figure 2.9 : Cigital Top 20 Vulnerabilities

The methodology of identifying the top vulnerabilities used by Cigital also very interesting one.
Below diagram shows the methodology following by Cigital [17].

16

Data collection methodology

vuln 1 350
vuln 2 259
s e s e e
vuln 1' 20
remove duplicates CACWeb ‘exuact vulno.:;:blllty
CAC web and 2015 only for 2015 (MEH, AEH) requancy table Vulnerability
frequency table
vuln 1 350 vuln 1 370 Cigital Top 10
vuln 2 259 vuln 2 259 wial
vuln 1' 20 el 3
merge duplicates extract results
Vulnerability ::"::'mi:bh
frequency table s

Figure 2.10 : Cigital - Data collection methodology

Below table shows the comparison of OWASP top 10 and the Cigital top 20 vulnerabilities
[17].

Comparison to OWASP Top 10

OWASP Top 10 Cigital Top 20 Web Comparable OWASP Ref.

Al-Injection Verbose server banner A5-Security Misconfiguration

A2-Broken Authentication and Session Weak SSL ciphers AB-Sensitive Data Exposure

Management

A3-Cross-Site Scripting (XSS) Hidden directory detected A4 Insecure Direct Object References

Ad-Insecure Direct Object References Clickjacking (aka Ul Redressing) (none)

AS5-Security Misconfiguration Weak password policy A2-Broken Authentication and Session
Management

AB-Sensitive Data Exposure Secure cookie attribute not set A6-Sensitive Data Exposure

A7-Missing Function Level Access Control Cacheable S5L pages A6-Sensitive Data Exposure

A8-Cross-Site Request Forgery (CSRF) SSL/TLS beast information leakage Ab-Sensitive Data Exposure

A9-Using Components with Known Username enumeration through A2-Broken Authentication and Session

Vulnerabilities password reset Management

A10-Unvalidated Redirects and Forwards Reflected cross-site scripting (XS5) A3-Cross-Site Scripting (X55)

Copyright © 2018, Cigital | 'V.' Cigltal

17

The Next 10

HttpOnly cookie attribute not set AB-Sensitive Data Exposure

Verbose error messages AS5-Security Misconfiguration

Unencrypted viewstate A5-Security Misconfiguration

Cross-site request forgery (CSRF) A8-Cross-Site Request Forgery (CSRF)

TLS/SSL not enforced A6-Sensitive Data Exposure

Sensitive information leaked via query string

parameter Ab-Sensitive Data Exposure

TLS/SSL not enabled A6-Sensitive Data Exposure

application error A5-Security Misconfiguration

No account lockout policy A2-Broken Authentication and Session Management
Session identifier set prior to authentication A2-Broken Authentication and Session Management

Copyright © 2018, Cigital | v.CigitaI

Figure 2.11 : Comparison - Cigital Top 20 vs OWASP Top 10

2.2.3 SANS Top 25

SANS is a well-known organization for cooperative research and education, which was
established in year 1989. They have range of individuals from each and every job category in
information security industry and also from members from around the globe. Also, SANS is an
award-winning security research firm holding more than 1200 award winning research papers.
On the other hand, SANS is the most trusted information security training and certifications
provider in the world. SANS came up with list of twenty-five security vulnerabilities named as
SANS TOP 25 Most Dangerous Software Errors. SANS identified these list under three
categories as below [18].

Software Error Category: Insecure Interaction Between Components (6 errors)
Software Error Category: Risky Resource Management (8 errors)
Software Error Category: Porous Defenses (11 errors)

Table 2.2 : SANS vulnerability categories

Insecure Interaction Between Components

This category talks about the insecure way of sending data between application components,
modules or systems.

18

CWE-89

CWE-78

CWE-79

CWE-434

CWE-352

CWE-601

Improper Neutralization of Special Elements used in an SQL Command ('SQAL Injection’)
Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
Unrestricted Upload of File with Dangerous Type

Cross-Site Request Forgery (CSRF)

URL Redirection to Untrusted Site ('Open Redirect')

Figure 2.12 : Insecure Interaction Between Components - Vulnerabilities

Risky Resource Management

This category covers the vulnerabilities related to, not managing the life cycle of the application
including creation, transfer and destruction.

CWE-120

CWE-22

CWE-494

CWE-829

CWE-676

CWE-131

CWE-134

CWE-190

Buffer Copy without Checking Size of Input ('Classic Buffer Qverflow')
Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Download of Code Without Integrity Check

Inclusion of Functionality from Untrusted Control Sphere

Use of Potentially Dangerous Function

Incorrect Calculation of Buffer Size

Uncontrolled Format String

Integer Cwverflow ar Wraparound

Figure 2.13 : Risky Resource Management - Vulnerabilities

Porous Defenses

This category covers the vulnerabilities related to the misuse of the protective activities of the

application like encryption or authorization.

19

CWE-306 Missing Authentication for Critical Function

CWE-862 Missing Authorization

CWE-798 Use of Hard-coded Credentials

CWE-31 Missing Encryption of Sensitive Data

CWE-807 Reliance on Untrusted Inputs in a Security Decision
CWE-250 Execution with Unnecessary Privileges

CWE-863 Incorrect Authorization

CWE-732 Incorrect Permission Assignment for Critical Resource
CWE-327 Use of a Broken or Risky Cryptographic Algorithm
CWE-307 Improper Restriction of Excessive Authentication Attempts
CWE-7329 Use of a One-Way Hash without a Salt

Figure 2.14 : Porous Defenses - Vulnerabilities

2.3 Built-In Security

Web and mobile applications are in a critical state where attackers are primarily targeting them
mainly due to its nature. Every day the risk is increasing, new attack vectors are identified, new
vulnerabilities are discovered and organizations has to be alert all the time and monitor their
web application for anomalies. Historically, the software development life cycle did not
consider about the security. Everyone believed that the security is something we can add as a
feature, when the application is ready and it is all about tools like firewalls, Intrusion detection
or prevention systems, for example. But because of the growing demand, there is a need of
build the security into the development life cycle, where the necessary controls added and
actions have been taken in every phase of the development life cycle to make sure the end
product is secured and rugged. The new methodology is named as Secure Software
Development Life Cycle - SSDLC. Industry came up with couple of methodologies for secure
software development life cycle. Microsoft Security Development Life cycle [5] and Cigital
Seven Security Touch Points Proposed by Gary McGraw are the most recognized
methodologies within the software industry.

20

2.3.1 Microsoft Security Development Life cycle

Today’s cyber security threats are complex, sophisticated, and ever-changing. They require an
ongoing, multifaceted response from the information technology industry for development
solutions that optimize software security and provide for safer computing experiences for
people around the world. The Microsoft Security Development Life cycle (SDL) is Microsoft’s
security assurance process for software development that introduces security and privacy at
every step of the way. It offers a holistic and practical approach to addressing evolving security
threats and increasingly sophisticated cyber-crime [5].

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuxzz Final Security

Training Gates / Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

Figure 2.15 : Microsoft Security Development Life cycle

Model includes seven phases which added two new phases for the classic software development
life cycle. It is interesting to see that the model recognizes the need of core security training to
the people who ever involved with the development life cycle. Also, the model state that during
the implementation phase, where the developers do coding, it is necessary to perform static
analysis. This is to make sure that the developed source code does not contain potential security
vulnerabilities and followed the required security best practices.

2.3.2 Seven Security Touch Points Proposed by Gary McGraw

Most organizations have a well-oiled machine with the sole purpose to create, release, and
maintain functional software. However, the increasing concerns and business risks associated
with insecure software have brought increased attention to the need to integrate security into
the development process. Implementing a proper Secure Software Development Life Cycle
(SSDLC) is important now more than ever [6].

21

Software Security Touchpoints

== P

@ D_Ca) (=

10
EEE

Figure 2.16 : Software Security Touch points

Model proposed seven touch points, which are necessary actions should be taken at each and
every phase of the software development life cycle. This model mentioned about the abuse
cases, which helps to understand the mindset of an attacker, which will be a great help to secure
the application. Also in the coding phase, the model has mentioned the needs of code reviews
using tools. This is where it looks for the source code to see whether there is any weakness in
the code which can be leveraged by an attacker. Both these Secure Software Development Life
Cycle models clearly mentioned that the need of reviewing or performing static analysis to the
source code, during the development phase itself. This will greatly help on addressing security
weakness in the code if exists, during the development. For the organization it is great benefit,
because of the final product will be rugged with less issues and the cost of fixing a critical
vulnerability which the application is in production can be eliminated.

2.4 Static Analysis

To implement built in security for the software development life cycle, it is necessary to have
static code analysis performed during the coding phase of the development life cycle. Microsoft
and Cigital models for Secure Software Development Life Cycle are clearly mentioned static
analysis requirement. Static analysis is the process of scanning the source code and identifying
the intended functionality of the source code to predict the potential security vulnerabilities.
This is very useful because the quality-oriented approach to security leaves many opportunities
for attackers [11], especially because only the functional use case is considered.

22

Traditional quality
assurance models user
behavior as a random
walk over the feature set.

Attackers will
move to the

I COTTIET Cases.

Figure 2.17 : Traditional quality assurance model vs Attacker

It is impossible to perform static analysis manually. Simple because the code base is huge and
possible to have human errors. Modern software products typically contain millions of lines of
code. Precisely locating the source of bugs in that code can be very resource consuming [9].
Because of that, Static Code Analysis usually means running a particular Static Code Analysis
tools which will attempt to discover and highlight possible vulnerabilities within the (non-
running) source code by using techniques such as Taint Analysis and Data Flow Analysis [10].
Development teams commonly turn to third-party software to incorporate particular
functionality, such as communications or graphics, into their applications [12]. This is another
area where the static analysis can help to discover the potentials security vulnerabilities. Also,
because many software security weaknesses are introduced at the implementation phase, using
a source code security analyzer should help reduce the number of security vulnerabilities in
software [8]. There are numerous techniques to perform static analysis to discover potential
vulnerabilities. Most of the time combination of couple of techniques are used. Couple of
popular techniques are as follows [10].

Data Flow Analysis

With this technique, it tries to understand the run-time behavior of the data using the static
source code.

. $a = 8;
. b = 1;
. if ($a == %b)

. { # start of block

echo “a and b are the same™:
. } # end of block

. else

. { # start of block

18. echo “a and b are different™;
11.} # end of block

L« BN e VR W (R - W (N

Figure 2.18 : Data flow Analysis
23

Control Flow Graph

This technique tries to represent the software by nodes which represent the blocks of the
software. Normally it has entry block and exist block and arrows are used to represent flows
from one node to another.

Figure 2.19 : Control flow Graph

24

Taint Analysis

Taint analysis is about analyzing the variable used in the source code. It basically attempts to
identify the used variable in the source code that can be changed by the user input and then
analyze to see whether those variables are used for some purpose without proper validation or
sanitization. If the user controllable variables are passed in to some other functionalities directly
without proper neutralization, then it will mark it as a vulnerability.

™
- L™

void main() { 2 void fooC z) { ¥~< z.g.f
@ a = new A / X = z.9; ===’
b =a.g; *~ ! v

'@ I 7w = source();
b-Fifoo(a); <~ ___‘:' x.f “\ x.f = w; 4——>w

sink(b.f);

b }@ x.f
J'@

Figure 2.20 : Taint Analysis

Lexical Analysis

During the lexical analysis, it will convert syntax of the source code into token and after that it
will be easy to understand and identify the source to manipulate and see for the vulnerabilities.

83 5 2 E | R

@ Character Stream

Lexical
Analyzer
@ Token Stream
KEYWORD BRACKET IDENTIFIER OPERATOR NUMBER
"if" e "x" "> "3.1"

Figure 2.21 : Lexical Analysis
25

The expected outcome of a static analysis tool is to run through the source code and predict the
potential security vulnerabilities. The tool should be fast, accurate, user friendly and should
provide easy to understand meaningful reports. Since most of the top security vulnerabilities
are introduced during the development phase, it is a great advantage to find these vulnerabilities
during the development phase itself and address them immediately, rather than waiting till the
last moment. To fulfill this requirement some tools support integration with Integrated
Development Environment, and these tools are capable of finding the potential vulnerabilities
during the development of the application and highlight them to the developer with suggestions
to fix the issues [10].

2.4.1 Static Analysis Tools

The true power of static analysis tool is, it can analyze the entire source code, without executing
it. Which means the static analysis tool can cover complete application, without missing
anything. This is something difficult to achieve with dynamic testing as humans may miss some
scenarios or because of the way the source code is written, the application may have unknown,
unexpected scenarios that no knows they are exists. It is mandatory to select a dependable static
analysis tool to achieve better or correct results. One common issue is most of the commercial
static analysis tools are highly expensive which is something a small or medium scale
organization may not be able to afford. Because of this reason most of the developers as well
as organization tend to use open source static analysis tools. Obviously, there are limitations
with open source static analysis tools and also can the organizations depend on the results
provided by these tools, is also an important question, which everyone should consider.

2.4.1.1 Open Source Static Code Analysis Tools

There 1s huge list of open source static analysis tools available in the market, but only few are
dependable and which are capable of performing an accurate static analysis results. Checkmarx,
which is a well-known company who owned one of the most famous static analysis tool, has
done an analysis on available open source static analysis tools and provide some interesting
results and recommendations. Below are some of the points to consider, provided by
Checkmarx, when the organization is selecting an open source tool to perform the static
analysis.

26

Points to consider - Selecting an open-source static code analysis tool

Development language or languages supported by the tool

Types of vulnerabilities and code issues can be found by the tool

Type of IDE supported and time to get the feedback

Required learning curve for the tool

Customization and the support for automation of the tools

Any support provided by the tool for the organization

How much support provided for integration and automation

Other tools should use with the tool to get the maximum output

Table 2.3 : Selecting an open-source static analysis tool - Points to Consider

Also, Checkmarx came up with a list of open source static analysis tools, which are promising
to provide required results and organizations can depend on. Below are the names with few

details [20].

VisualCodeGrepper

Multiple languages, Java, C++, C#, VB and PHP supported by the tool and provide a detailed
report and tool has easy to use, user friendly interface [21].

Advantages

Disadvantages

Tool makes it possible to customize the
configurations as for the requirement.

Though the tool support for multiple
programming languages, it cannot
automatically detect the programming
language and scanner has to select it for the
tool to perform the scan.

Tool indicates the severity levels of the
identified vulnerabilities.

Focuses on OWASP top vulnerabilities and
recommendations.

The vulnerability list that he tools support is
fixed and cannot be modified.

Owner is updating the tool and it is active
software.

Tool is not fully automated.

Table 2.4 : VisualCodeGrepper - Advantages and Disadvantages

27

Ele Export

- Oversll code 206 lises)
I Crocrall whitesgoce (27 ines)
Ol comesants (46 commenta]
Probervial by barsharsusfivis harl
- el
Pterinlly dengeeoue cods
W (31 T
Daube dick on an Rem beiow 32 view an indhédual code breakdown,
i Comeees 055
7 Linea of Whilespace ~175%] e ‘ﬂl
Cede zomm

Figure 2.22 : VisualCodeGrepper V2.1.0

YASCA (Yet Another Source Code Analyzer)

YASCA is a static analysis tool, mainly target Java, C/C++, HTML, JavaScript, ASP,
ColdFusion, PHP, COBOL, .NET and some other programming languages. Interesting feature
it has is, tool made it possible to integrate with other related tools like FindBugs, PMD, JLint,
JavaScript, Lint, PHPLint, CppCheck, ClamAV, RATS, Pixy. Also, the tool provides
commercial support to the users, including custom development, integration and rules [22].

Advantages Disadvantages

Possible to integrate with other powerful and | Capable only for finding straight forward,
related tools. low-hanging fruits and Cross-Site scripting
and SQL injections attacks

Possible to integrate with other powerful and
related tools.

Table 2.5 : YASCA - Advantages and Disadvantages

28

g — Michael U. Scovetta

le FILE

regquived
:E

yel LEUEL
plugin DIRIFI
]

E

LE
ATTERNL . PATTERN. . . 1

. ——output FILE

i FILE
wrt HEPORT

ode ava
1t: not

source _code

Figure 2.23 : YASCA

Above two tools are supporting for multiple programming languages. Most of the open source
tools support for only one programming language and below is the list mentioned by

Checkmarx analysis report [20].

OWASP LAPSE+

The tool is developed by OWASP to detect security vulnerabilities of Java EE applications and
it developed as an eclipse integrated development environment plugin, so it is easy for software
developers to use the tool. LAPSE+ can detect Parameter Tampering, URL Tampering, Header
Manipulation, Cookie Poisoning, SQL Injection, Cross-site Scripting (XSS), HTTP Response
Splitting, Command Injection, Path Traversal, XPath Injection, XML Injection and LDAP

Injection vulnerability categories [23].

Advantages

Disadvantages

Possible to integrate with integrated
development environment and perform the
source validation without compilation.

Only support for eclipse
development environment

integrated

Tool handles the testing with three steps,
which are identifying the vulnerability source
in the source code, identifying the
vulnerability sink in the tool and examine to
see whether we can use vulnerability sink to
reach the vulnerability source.

No new versions after 2012

Table 2.6 : OWASP LAPSE+ - Advantages and Disadvantages

29

v H |ioResource

) Test4 java & =5

connection = DriverManager.getConnectioniDatalRL, LOGIN,
PASSWORD) ;

&

} catch [SQUException ¢) {
/7 T0DO Auto.qenerated catch block
e.printstackTracel):

Wom

=

LR L request. getParase ter (" USER™ | TN

String Password = request.getParameter(PASSWORD™): // From HTT)

int iUsertd = -1;
String sLoggeduser = ==

String sel = "SELECT User id, Usernase FROM USERS WHERE Username = *=
+ Username + ' AND Password = *7 + Password + "°7;

Statesent selectStatesent = null;
try {

selectStatesent = [Statesent) conmection.createStatesent();
} catch (SQLException) {

% Provenance Tracker £ . @ Vulnerability Sinks | @ vulnerability Sources % BB B
Created a slice with 5 leaf etement(s) and 5 element(s) located in 1 file(s) with & etement{s) truncated with a maximum depth of 1. Using a flat viewer.
“SELECT User_id, Username FROM USERS WHERE Username ="~ (Testd java:65) [string constant]

= AND Password ="* [Testd.javaz66] [string constant]
request.getParameter("PASSWORD") [Testd javac5s) [call expression)
=" (Testd.java:a6) [string constank]

Figure 2.24 : OWASP LAPSE+

RIPS

Tool developed using PHP to discover security vulnerabilities of PHP applications. The tool
can discover basic vulnerabilities including Cross-Site scripting, Remote code execution and
SQL injection attacks. Tool also provides a framework for further manual analysis [25].

Advantages Disadvantages

Fast processing and finding range of security | RIPS is abandoned the development and
vulnerabilities. planning to come up with a re-write, but still
not available.

Informative reports with visualization which
is easy to understand for developers

Table 2.7 : RIPS - Advantages and Disadvantages

30

path /file: dfeipher3timeclock M subdirs windows

B Cross-Sile Scripling

hide all

File: D:\cipher3timeclock/work.php

B SaL Injection

EE Userinput rea

erid! AND

requires:

Figure 2.25 : RIPS

DevBug

DevBug is a free online tool to analyze security vulnerabilities of PHP code, mainly developed
with JavaScript and the tool is getting support from RIPS and few other available tools [26].

Advantages Disadvantages

Available online and very easy to use. Very simple and very light analysis
Linked OWASP guideline for more
information about the vulnerabilities.

Table 2.8 : DevBug - Advantages and Disadvantages

31

Run Clear Help About

<?php
* DevBug - PHP Static Code Analysis written (mostly) in JavaScript =/
{{ Cross-Site Scripting (XSS)

$name = $ GET['name"]; // tainted by user input
echo('Hello ' . $name); # tainted data reaches sensitiwve sink

ff SQL Injection

£id = $_POST["id'];

mysql_query({"SELECT user FROM users WHERE id = " . $id);
/{ Command Injection

fomd = §_COOKIE['cmd®];

exec({"cat jvar/log/apache2/access.log | grep " . Zcmd);

[/ Deprecated Function
$words = split(™:","split:this"™);

[

wWarning: split{) function deprecated in PHP == 5.3.0. Relying on this feature is highly discouraged.

Line 7: Cross-Site Scripting (XS55) in 'echo’ via "Sname’
Line 11: SQL Injection in 'mysql_guery' via 'Sid'
Line 15: Command Injection in 'exec' via 'Scmd'

Figure 2.26 : DevBug

Flawfinder

Main purpose of the tool is to be simple and user friendly and it reports security vulnerabilities
that are well known in applications which are written in C programming language. The tool is
written a simple command line execution using a powerful language named python. Also, the

tool is CWE compatible [27].

Advantages Disadvantages

Tool can detect only the code changes and | High number of false positives.
quickly verify only the changes to find
security vulnerabilities.

with regular updates.

Tool has a long history and well maintained | Require python 1.5 version to run the tool.

Table 2.9 : Flawfinder - Advantages and Disadvantages

32

Flawfinder version 1.29%, (C) 2801-2014 David A. Wheeler.

Mumber of dangerous functions in C/C++ ruleset:

Examining test.c
Examining test2.c

FINAL RESULTS:

test.c:32: [5] (buffer) gets:

168

Does not check for buffer overflows (CWE-128). Use fgets({) instead.

test.c:96: [5] (buffer) strncat:

Easily used incorrectly (e.g., incorrectly computing the correct maximum
size to add) (CWE-128). Consider strcat_s, strlcat, or automatically
resizing strings. Risk is high; the length parameter appears to be a
constant, instead of computing the number of characters left.

test.c:57: [5] (buffer) _tcsncat:

Easily used incorrectly (e.g., incorrectly computing the correct maximum
size to add) (CWE-128). Consider strcat_s, strlcat, or automatically
resizing strings. Risk is high; the length parameter appears to be a
constant, instead of computing the number of characters left.

test.c:60:

[5] (buffer) MultiByteTclideChar:

Requires maximum length in CHARACTERS, not bytes (CWE-128). Risk is high,
it appears that the size is given as bytes, but the function requires size

as characters.
test.c:b2:

[5] (buffer) MultiByteTollideChar:

Requires maximum length in CHARACTERS, not bytes (CWE-120). Risk is high,
it appears that the size is given as bytes, but the function requires size

as characters.
test.c:i73:

[5] (misc) SetSecurityDescriptorDacl:

Mever create NULL ACLs; an attacker can set it to Everyone (Deny ALl
Access), which would even forbid administrator access (CWE-732).

Figure 2.27 : Flawfinder

CPPCheck

CPPCheck is a tool under GNU license, developed to detect issues in C/C++ applications,
which are normally not detected by the compilers. The tool offers both command line and a
GUI options and also support integration with number of popular integrated development

environments [28].

Advantages

Disadvantages

Supported integration with Eclipse, Hudson,
Jenkins and Visual Studio integrated
development environments.

Tool can detect only very limited issues.

Frequent updates.

Difficult to customize and comparatively
slower than other tools

Table 2.10 : CPPCheck - Advantages and Disadvantages

33

.6 C/C++ - CppCheckTest/src/CppCheckTest.cpp - Eclipse Platform
Crda|m @b Q-8 3-0-Q- @ ¥ | S 15 & Hocicrs >
Civlleto Ovche
A:_,Pro;eclixploreriz | [&Lx weckTe (-.‘\vﬁ =y 3-:023 @m =0
3 o e 4, o, - =
=l PS5 char* test = new char[7];
£ . S
¥ i CppCheckTest 9;1&3 5 ,az W \"’ o ¥ ‘
V@B src g """" Al r:&vrn ".l‘ ’d iostream
> [; 1323.cpp LN.cAL # ARRAY BOUND
- i
. [€ 1328.cpp char c[ARRAY_BOUND]; @ © ARRAY_BOUND_NEW
] CppCheckTest.cpp for (int i=0; i<=ARRAY_BOUND; i++) { B sd
> |5 preprocessor.c 1> QORI - 1\ 00 T8 b ¥ = ® main : int
» |g scanner.c } et @ getText(: string*
P g test.c if (ARRAY_BOUND == ARRAY_BOUND_NEW) { o
’Llﬂ'f“'h cout << "Condition always true”;
» 1 tokenizeaa.h } P
» (= Debu e
gy &out. 55, STARRAY. BOUND_NEWL;.
cout << "!!!Hello World!!!" << endl; print |Hello World!
if (test) =
delete[] test;
return 1;
£ = -
[2/ Problems $3 . 4 Tasks| [E) Console| = Properties| & Progress =M
5 errors, 0 warnings, 0 others
Description A Resource Path
¥ @ Errors (S items)
C{' (cppcheck error) Array 'c[25) index 25 out of bounds CppCheckTest.cpp /CppCheckTest/src
€ (cppcheck error) Buffer access out-of-bounds CppCheckTest.cpp /CppCheckTest/src
C‘_ (cppcheck error) Memory leak: test CppCheckTest.cpp /CppCheckTest/src
Q (cppcheck error) Return of the address of an auto-variable CppCheckTest.cpp J/CppCheckTest/src
@2 (cppcheck error) Uninitialized variable: a CppCheckTest.cpp /CppCheckTest/src
C) <»
h Writable Smart Insert 19:9

Figure 2.28 : CPPCheck

Brakeman

Purpose of this tool is to find potential security vulnerabilities of an application developed by
ruby on rails, during the development life cycle. Also, the tool is used by some well-known
commercial organization to do their static code assessments including twitter and GitHub [29].

Advantages Disadvantages

Tool is faster and easy to setup and configure. | Only limited for ruby on rails.
Highly effective for ruby on rails. High number of false positive and false
negatives.

Well maintained and regular updates.

Table 2.11 : Brakeman - Advantages and Disadvantages

34

== Brakeman Report ==

Warning Types

Figure 2.29 : Brakeman

It is very clear that there are many static analysis tools available and some tools are performing
really well, so commercial organization kept faith on those. Brakeman a good example and
according to the Brakeman team [29], many commercial organization are using the tool and
which means the tool must be providing the expected outcome, because after all, the companies
are commercial and they should take everything very seriously.

Z2BIACKHAWK | Braintree lg@ Carousel Apps @ CODE CLIMATE
MCodeDx = conviso & —@envato ©) GitHub
§ ¢ |ogicalrealitydesign lumosity YNNI

O New Relic. #% semaphore sz) Vinted

WINNOWER

Data

Figure 2.30 : Brakeman users

35

By considering the analyzing done by Checkmarx on open source static analysis tools, below
are some point that can be extracted.

Tools can support only limited programming languages.

Can discover limited number of security vulnerabilities, mostly the very common ones.
No frequent updates for most of the tools.

Most of the tools are isolated and limited support for integration with other tools.
Limited or no customization and user support.

Table 2.12 : Points to consider with open source static analysis tools - Checkmarx

Commercial organization are highly sensitive environments and accuracy, dependability,
automatability, maintainability, user friendliness and the support provided are the main factors
they consider when they select a tool or software solution for the organization. This is the main
reason why commercial organization would like to consider commercial tools, because they
provide state of the art solutions which can handle all modern technologies, with
customizability and interpretability, most importantly with great support service. Also, some
tools provide the necessary features and can be integrated to with the integrated development
environment, so the developer can get the instant feedback from the tool. So, the organizations
can depend on these tools and focus on whatever the business goals and this is the ultimate goal
of the organization. Like other commercial products, static analysis tools are also a very
competitive product and some of the information technology and software development giants
are building static analysis tools to the market with great features and superb after sales support
for end users and they managed to make huge revenue of out these tools. Below are some
famous and widely used commercial static analysis tools.

IBM Security AppScan Source

AppScan source is the static code analysis solution provided by well-known IT company called
IBM. The plan is to help software development organizations to identify potential security
vulnerabilities of the web and mobile applications, by analyzing the source code of those
applications for lower cost. The tools can be integrated to the software development life cycle
and include support for Java, Objective C, JavaScript, Cordovo and HTMLS5 [30].

36

= =
. [Confiquration &g Triaoe B Anaysis | - &% (2) @ W~ Corfiuraion:| defauk v

ﬂ-ﬁndngs B & &- Q@ AT 0¥ rndingpeal 2 i)
= ZF Frdings (19) i Trace | APL ~ Saurce Sink ~ Details i
‘ g & a% Authentication, Erkty (2] = javax.ser vt jsp Jsphr ke prink jovez servlet SenletRegest.geiPa, . javax. servle jso. JspWriter print(ia. .. o
= oY CrossSitescripting (5) ‘ % JavEx,S2r et [Sp, STV B prine s3vay servet hip, HetpSessin . oerg,.. 1avac, servles 150, Jsnititer printa. ., B
[= ® Hoh(5) |22 javav.servit.jsp. ks print jevan senvet SenletRaquesk. s, .. javax servlet 5. JsoWriter printja, ., | Classifizatn: =
“ = 3 Uulf\eratxlh/ﬁ) 3'—.".‘, javax.serviet.jsp. Jepvirker print javas servlet.ServletReguest.getPa,., favax servles s, JspWriter printfia... | Winerabiity Type:
® of BrorhrdlirgReveabotail | %2 jayax,servit,isp. e her o J2vax servet hEro, HEIpSesshn 0eta... lavax, servet 150, JsDiter Brintdla. . s
& % Inection 1) alf pooaLyY
B > R | | "
= - < = — = = Burdle: v
|28 trace 13 % | ISB-AY Y e QA T0|e | >
| = 0 Aterotutuatz_002e!. feedbarksuccess jsp. jepSer. & AltersMutualz_00zeLieedbacksucress kp §|] Remedation Assistance: 5% | - =5
S javax.serviet, ServctRequest gotatbibute

1 1ava.eng strngBulder append _pSerie [zawrta] 2:5iteCoipting Communicationz.HTTR
1] java.lang StrngBuider t-String

o < = >
A javaxsarviet.isp Jsshwber. print v //___4.-— / \ s B

|2 3 _ Mitigation
i L Context javanserdet SovkiRopest ¥ javal . javan: | To cefend against these problems, the

q.;c o ef cenviet Seretien e<t.getArtibute (ST = P || application should apply appropriste validation

tequest . Javay.servet SendetRen est. getctibute petiribur a0p ing T : B

a9 new 1ava g, srrgBulider . ava.ang strngBulder. audfnfum[%cn’;he 5“"—‘9&‘ Trfhvah;ighur;

49 new fava l=ng, SrigBuider . Java.lang StrngBulder.e mechanism should ensure tna 2 string does
| 49 Temp#16@0 . javax,sevket,isp, JsoWirker print { Tem not contain malicious datz and code. HTML

entity encoding should be applied to data
< | > <

2 || that is not intended to be interpreted as
=g | scrints, For more details on validation and

| El tngr.ssn 131 __nosfiogn_sp.java 3] austomize_jsp Jva

g & N encoding, please refer to .\(a.UJd i0n,Requirsd
@4: QUC.pPrinc((regussc.getAttribuce ("rwesssge resdback™) !=null|?", "+request.aeuttnhlf§e["rsessaca_teem and . 20
50 out.write(". They will ke reviewed by our Custower Service staff and given the full sttention tha
is 1ng email = (String) request.getParaneter |"enail adde”|; Example s
i = 1=
hoolean regExNstch = ewail!=null &s email.racches|3ervletUtil.EKAIL_REGEXF); The fallowing 15P pane prints the user
if (email != null £Z ewail.trim|).length() '= 0 ¢§ regExMatch) {
s 3 = | lprovided name in the resulting welcome
54 out.write(" \rim\tit\t Our reply wvill be gent to your email: "|; 3 page
@55 gut.princ(3erviecUtil.ssnivlizeBasic(email.toLoverCase()| /*email.tolowzrCase()*/); =l
56 out.write("rinititT); wel come. Jsp
s7se (chtml> Welcome
5 G 2 <= request.getParameter(” name'')%>
50 out.write("Ycinit)c)tHovever, the emzil yow gave is incorrect ("|; e/hols
@55 ANt.nrint(Amall.EalamerCass) /3Servierlicd] Saninizeileh emall . Talavercase (11540 » i | 4 ¥
< ¥
g ke | nsert a:5¢ & [1 OpenAsssssent-..rolz. L ozasnt ¢

Figure 2.31 : IBM AppScan source

IBM AppScan Source also has below capabilities

Cost-effective source code analysis tool.

Great support for integration with other existing tools such as development related tools,
build tools and monitoring tools.

Management of best practices and policies of security.

Support for governance and compliance.

Table 2.13 : IBM AppScan Source capabilities

Fortify Static Code Analyzer

The tool is developed by well know IT company named Hewlett Packard Enterprise and it is
developed by highly skilled groups of security professionals the tool can identify the security
vulnerabilities in the source code with appropriate risks and guidelines to address the
vulnerability. One of the great feature that the tool has is, incremental scans which allows to

perform a scan faster and which directly helps to improve the productivity of the organization
[31].

37

Figure 2.32 : Fortify Static Code Analyzer

Below are some of the major benefits provided by the Fortify Static Code Analyzer

Increase efficient with incremental scanning and providing results faster and reduce the
time to wait for the security review.

Wide variety of programming languages, frameworks and development environments are
supported and also mixed development environment are supported.

Provide accurate results with sophisticated rules engine which is frequently updated by the
research team.

User friendly and easy to use and it is easy to integrate with other tools.

Most of the programming languages are supported and capable of supplying to the growing
demand.

Table 2.14 : Fortify Static Code Analyzer benefits

Veracode

Veracode is also a highly respected static analysis tool among the software development
organizations. This tool is heavily used and one of the best commercial static code analysis tool
in the industry. One of the unique feature with Veracode is, the tool does not need the source
code to analyze the vulnerabilities, instead the debug enabled compiled version of the source is
enough using their own analyzer framework.

Since the Veracode proprietary analyzing framework can assess binaries for security
vulnerabilities, customers can analyze third party components also to determine the security
risks and which is a huge advantage. Also, it supports all kind of applications, including Web,

38

Mobile, Desktop and back-end applications. According to Veracode statistics, the tool has
scanned 1.8 trillion lines of source code of 15 different programming languages belongs to 50
different frameworks. Which means the tool is really mature enough to do a static analysis for
an organization to discover the security vulnerabilities successfully. Since Veracode provide a
SaaS based security platform, organization can reduce the operational overhead. Organizations
does not keep or spend money on in-house hardware or any other additional resources for the
tool [32].

VERACODE APPLICATION SECURITY PLATFORM

' PROPRIFTARY d
i i VERACODE E
: STATIC AMALYSIS e
| |
SINGLE UPLOAD |
1 M of Unifiad Podlcy
i Vefied Results
PACKAGED ; |§Zi"p§ﬁé:$§ j frn g
APPLICATION ! VERACODE SOFTWARE
: COMPOSITION ANALYSIS o Remediation Advice

«f Portiollo Matrics

€

Figure 2.33 : Veracode application security platform

Veracode Static Analysis supports all widely-used languages for desktop, web and
mobile applications including:

= Java (Java SE, Java EE, JSP)
= .NET (C#, ASP.NET, VBE.NET)

« Web Platforms: JavaScript (including AngularJs, Node.js, and jQuery), TypeSscript,
Python, PHP, Ruby on Rails, ColdFusion, and Classic ASP

« Mobile Platforms: 105 (Objective-C and Swift), Android (Java), PhoneGap, Cordova,
Titanium, Xamarin

« C/C++ (Windows, RedHat Linux, OpenSUSE, Solaris)
« Legacy Business Applications (COBOL, Visual Basic 6, RPG)

Figure 2.34 : Languages supported by Veracode

Veracode support various type integration. It allows the developer to integrate the tool with the
integrated development environment, so the developer can get the results immediately. Other
than that, tool allows to integrate it with build environments like Jenkins, so the build
environment can initiate scans periodically and get the potential security vulnerabilities. With
this it 1s possible to fully automate the scanning process where developers submit their changes
and build environment make the build and if the build is successful then, upload the binaries to
Veracode for the security analysis automatically. This will reduce the effort tremendously and

39

improve the productivity of the company. Also, Veracode provide detailed user-friendly reports,
so developers can easily understand the issues and apply the recommended fixes immediately.

WhiteHat Sentinel Source

WhiteHat is a well-recognized and trusted security organization providing vast variety of
security products and solutions and Sentinel Source is the static analysis tool provided by
WhiteHat. Tool can scan the source code written in commonly used programming languages
and can discover common vulnerabilities and provide a vulnerability report. Also, capable of
providing recommended fixes for certain vulnerabilities. Analyzing binary files also possible
for software written in certain programming languages. Possible to integrate with continuous
integration tools and also with integrated development environments, so it is possible to identify
vulnerabilities during the early stage of the development life cycle. Cloud option is available
and also local installation is also possible in-case company have any issues with the intellectual
property rights. Also, it is possible to get a help from WhiteHat technical team [33].

—_\ WhiteHat tasti@whitehatsae.com | My Profile | Sign Dut | Original Sentinel
T A T SENTIMNEL

Schedules Reports Admin -

ashiboard Aberts Action Thems Updates System Maintenance

Top 10 CVE Alerts @ 10 Most Used Frameworks @ 10 Most Out-Of-Date Frameworks @ Licenses Breakdown g

CVE-20130245 | Apache Commens FileUpload (v

3014-0050 | Apache Commans FilsUpload (@

0050 | Apache Tomoat AP (VI02T) 2

5 | Apseha Asi (.2} 2

| Apache Commans HitpClent (vam)

3 | Apache Commens HilpCient {v3T1)

& | Apache Commons Fisliplosd (v

4 | Bouncy Gastie Provider (v1.46) 1

0| Apkeha Cammens Fiallplasd (v

7 | Apache HitpGhant fwi.3.2)

Page pof 30 kM

lihcarioc @

Figure 2.35 : WhiteHat Sentinel Source

Many organizations from almost all the business sectors are getting service from WhiteHat to
make sure that what they developed are secured. The business sectors include financial,
education, healthcare, government, software development, retail and many more. Below list
shows some of the happy customers of WhiteHat.

40

G 4
ASSETMARK
JA B Lmeﬂi@ jielciy n‘.com

Wistiomirs W Netapp: Pitnevbowes @ REACHLOCAL

. rightmove \J UNITED ONLINE &» wiredrive

Figure 2.36 : WhiteHat Security Customers

Checkmarx

Checkmarx is one of the best and most reliable tool in the world. The tool is very user friendly
and easy to configure as well as integrate with continuous integration tools and build
environments. They way that the tool shows the vulnerabilities to the users is very interesting
and it is super easy to navigate step by step to the vulnerable point of the source code. Tool
show what are the reasons for the vulnerability and sophisticated guide line to fix the
vulnerability.

Tool can be locally installed and easy to maintain. Admin user of the tool can provide login
accounts to the development and quality engineering teams so that the teams can perform source
scanning and identify the security vulnerabilities. This is one of the major advantage where the
development teams do not need to request reviews from the security team or wait for the
security team to perform the scan and provide the results. Since the tool can remove the
dependency between development teams and the security team, it can increase the productivity
significantly.

Checkmarx can be configured easy to grab source code from almost all the well-known source
code repositories including perforce, git and SVN. Tool provide regular updates to make sure it
handles the latest security vulnerabilities and technologies [34].

41

Vulnerahle code line r"\

\

 Ci¥iewe: - BookStore/Apg: Code/ CCUMIty£3 - Eckpre SOK o= 1 (1)
Q- @ Cinewe: | &
joct Expl (e ® CoVarwar Path
QueryStiing Paami...
P
Y
Parem |
orn|Faraxlame) i Y
ol ataen
-l --: * Y
e e = GeParem |
v Attack
Full Graph @ Resilty ® C¥iewer Descripton &, Progress ViewState, SetCoba - | wnfny
A < T vector
TeSarmg |
Quenys.. Y
s | -

'P@'cn[files ; [
T . 3 "' meton Sean
. l‘ = § resulfs

map

(7/7/1’;‘»/4/ mi/iya[ian /mm!

Figure 2.37 : Checkmarx Source Code Analysis Tool

Below are some of the feature and capabilities of the Checkmarx static analysis tool.

Tool supports 20 programming and scripting languages and the frameworks which covers
the latest technologies.

No configurations needed from language to language.

Covers OWASP Top10, OWASP Mobile Top10, SANS Top 25, PCI DSS, HIPAA and other
security standards.

Incremental code scanning capability which scan only modified or newly added source
codes.

Strong integration capability with build environments and integrated development
environments.

Supports hundreds of vulnerabilities including all the common vulnerabilities like SQL
injections, Cross-Site scripting, Session issues and all.

Engineers can mark a particular vulnerability as false positive and tool has the capability to
remember it between scans.

Tool can point out the beast fix location which can save lots of remediation time.

User friendly vulnerability dashboard which shows the path and the exact location of the
vulnerability.

Tool allows for custom rule creation.

Table 2.15 : Checkmarx static analysis tool benefits

42

(1PN

Java JS @ @ python w
aln':'c:; ' E &7 Mobile C+
AR w "-é PL/SQL periYh

akuby C#.net ‘} X m $Scala

Figure 2.38 : Checkmarx Supported Programming Languages

There is another area of source code analysis that most of the organizations does not even aware
of, which is the open source libraries. Most of the software tend to use open source, readymade
software libraries due to many reasons, like cost saving, time saving and all. Open-source
libraries are the foundation of most of the modern software these days. It is necessary to make
sure that these open source components are also secured or follow security best practice and
also well maintained with regular updates. To make sure these things, there are tools available
and below are some of them. Because open source software is freely available and used
everywhere, it can enter into any product, knowingly or without knowingly. Which will create
an additional risk to the product and most probably no one is aware about, especially because
no one is considering these open source software libraries.

43

APPROVED COMPONENTS
&\‘
DEVELOPER DOWNLOADS &
S-®
CODE REUSE &
COMMERCIAL APPS

THIRD PARTY LIBRARIES

OUTSOURCED DEVELOPMENT

Figure 2.39 : Open Source Components getting in every Angle

As an organization, it is a must to do a comprehensive analysis and figure out about this open
source software which are used within the product. Below are some of major points that the
organization should consider [36].

What are the open source components used within the product.

Does the product use the latest version of those components

Are those components being vulnerable.

Are those components are well maintained.

Are those components adhering to the required security policies and best practices.

Black Duck Hub

Black Duck Hub is providing a solution for the open source components issue state above. The
tool can identify the used open source components with the application and asses the risk of it.
Tool is a lightweight scanner with tracking and monitoring solution, which is also user friendly
and support for integrating with other tools like build and continuous integration. Below are
some of the main capabilities of the tool.

Scan the code base and identifies open source components used or referred in the source
code.

Automatically maps the discovered open source components in use to known open source
security vulnerabilities.

Flags policy violations, triage and tracks remediation progress.

Continuously monitors for newly identified open source vulnerabilities.

Table 2.16 : Black Duck Hub capabilities

44

(O BLack

Dashboard

Security Risk

License Risk

Figure 2.40 : Black Duck Hub

WhiteSource

WhiteSource is also a tool where it can scan the product source code and identify the used or
referred open source components and capable of mapping relevant vulnerabilities and security
risks. Tool is capable of integrating with build tools and continuous integration tools, also
providing real time alerts on detected vulnerabilities. WhiteSource also has a browser plugin
which can help developers, when they want browse and select some components, by suggesting
better recommendations. Also, the tool provides a comprehensive report on open source
inventory, so that the organization is aware of the current risks of the product [37].

' License Risks and Campliance a Cpanlity

| : o
- : -
: - =

Figure 2.41 : WhiteSource

45

Tool helps to the organization defining a process of approving or rejecting open source
components which are request by engineering teams, on the basis of each component’s license,
vulnerabilities, newer version updates, how well the component is maintained and more.

Organizational Policies

Policies
Policy name Match Action Creator Creation Date
details
Catalog approval If Exists in Product’s Inventary T Ramisass Jun 11, 14 details
Re-assign BSD-like By License Group Reassign Rami Sass Mar 24, 16 details
Approve Apache By License Group T Remisass Sep 05, 13 details
Reject GPLs By License Group Rami Sass Sep 19, 13 details
Reject high severity security issues By Security Vulnerability Severity m Rami Sass Nov 04, 15 details
- Workflow By Regex on Resource Hame [Conditions [T May 24, 16 details
E a;fgl'fe': Medium Vulnerability to Security By Security Vulnerability Severity Reassign Gal vaffe Jun 27, 16 details
T
a

Figure 2.42 : WhiteSource, Managing Policies

In summary below points can be extracted by analyzing and considering all the facts about
commercial source code analysis tools.

Commercial tools are highly created and well maintained with frequent updates.
Capable of providing accurate results.

Support for almost all the modern programming languages and frameworks.

User friendly, customizable and easy to integrate with all the other tools.

End user support and organization can depend on the tool.

Tool development companies do research and development to identify new
vulnerabilities and root causes for those vulnerabilities.

2.4.2. Advantages and Disadvantages

Every tool irrespective of whether it is a commercial tool or an open-source tool, has issues,
limitations and bottlenecks. Most importantly no tools can be used out of the box as it is, with
default settings and configurations. There is customization, configuration changes,
optimizations need to be done in order to get the better performance of the tool and to cater
specific requirements of the organization. There are two kinds of issues that every tool has and
organizations have to deal with those and put some level of manual effort to rectify those errors.

False Positive

This is a situation where the particular tool, detect and indicate a vulnerability, but in the
vulnerability, is not exists in reality. Basically, it is a false alarming situation. Almost of the
tools suffering from these issues and it is also acceptable. This is where the organization needs

46

to engage their engineers to go through the detected vulnerabilities and verify the issues and get
rid of false positives.

False Negative

False negative is the opposite of false positive, where the tool is unable to detect a potential
issue. Considering the definition, it self, false negative is more severe than the false positive,
since the organization misses the vulnerabilities that are actually exists in the application. Most
of the time the reason for this issue is that the organization is trying to tune the tool to reduce
the false positives. Organization must configure and fine tune the tool before use it and it is
always recommended to have a trial run period. The tool should be fine-tuned to make sure tool
does not provide any false negative scenarios and also to make sure that the tool will generate
lesser number of false positives. Static code analysis adds a great value for an organization,
when it tries to implement secure software development life cycle. But as always, there are pros
and cons with the static analysis. Some of the main important advantages are as follows

e Static analysis tools are faster, easy to use and can cover complete source code
repository to find potential security vulnerabilities.

e Possible to integrated with development life cycle.

e Supported for almost all the development languages and frameworks.

e Engineering teams can perform the static analysis and no need to wait for security
team to do it.

e Improve the productivity by saving lots of time and producing more secure software.

Some common disadvantages are as follows

e Static analysis is not instant, it will take some time. Analyzing every change then and
there is practically impossible.

Cannot find configuration issues since those are not in the source code.

Unable to predict issues such as authentication and authorization issues.

High number of false positives will take considerable effort to remove those.
Technically, tool cannot detect all the vulnerabilities.

There can be programming languages not supported by the tool.

Commercial tools are highly expensive.

2.5 Vulnerable Programming Languages

There are many programming languages and frameworks are available in the present that are
capable of building web and mobile applications. Most of the modern programming languages
are very easy to learn and use, and because of that the beginners also can use these languages
to develop complex state of the art software applications. Some frameworks provide all the
components build in, like front end, middle components and the back-end database, like MEAN
(Mongo, Express, Angular]S, NodelS), Django (Python, MySQL), which makes the
development of a web or mobile applications even more easier. This is however a good thing,

47

where the technology manages to reduces the learning curve for a particular programming
language, so that the organizations can develop and deploy the applications to the market
quickly.

However, there is a huge risk also attached to this. Because using and learning it very easy, even
a beginner can develop a commercial application and also, since the framework is providing
most of the features, developers are tending to totally rely on the framework. When considering
about the application security, this is a major area that the organizations should focus. Typically,
when selecting a programming language or a framework, organizations are focusing on,
availability of developers or engineers, learning curve of the technology, performance and all.
But the other most important factor is whether the language or the framework provides ways
and means to develop a secured or rugged application. Organization should carefully look in to
the matter and analyzed the matter, before they select a particular technology.

Veracode, the well-known application security firm, which also owns the very famous static
code analysis tool, successfully conducted a research and publish a paper name “State of
Software Security: Focus on Application Development”, by analyzing 200,000 different
software applications from October 1, 2013, through March 31, 2015. Veracode engaged their
best security professionals crawl well known and popular web development and scripting
languages including PHP, Java, JavaScript, Ruby, .NET, C and C++, Microsoft Classic ASP,
Android, 10S, and COBOL, by scanning hundreds of thousands of available applications during
one and half years long. One highly important factor they discovered is that, non-popular
languages like Classic ASP and ColdFusion and modern language, PHP are more vulnerable
and the riskiest programming languages and also the .Net and Java are the safest programming
languages. Flow density per MB is the metric used by Veracode in the report where it indicates
the numbers of security vulnerabilities per one MB of source code [38].

2.5.1. Top 10 Vulnerable Programming Languages

Below is the top programming language list provided in the report by Veracode.

Classic ASP — 1,686 flaws/MB (1,112 critical)
ColdFusion — 262 flaws/MB (227 critical)
PHP — 184 flaws/MB (47 critical)

Java — 51 flaws/MB (5.2 critical)

NET - 32 flaws/MB (9.7 critical)

C++— 26 flaws/MB (8.8 critical)

10S — 23 flaws/MB (0.9 critical)

Android — 11 flaws/MB (0.4 critical)
JavaScript - 8 flaws/MB (0.09 critical)

48

@ Passed OWASP @ Did Mot Pass OWASP

C/C++

os

JavaSeript (mobile)
Android

.NET

Java

Classic ASP

PHP

ColdFusion

0% 20% 40% 0% B0% 100%

Figure 2.43 : Policy compliance by programming language

Surprisingly PHP language, even though it is a modern and heavily used programming
language, becomes the third most vulnerable application development language. Almost all the
very famous content management applications are written in PHP.

Veracode report provided justifiable, logical reasons for the PHP issues as below.

e 86% of applications written in PHP contained at least one cross-site scripting (XSS)
vulnerability.

e 56% of apps included SQLi (SQL injection), which is one of the dangerous and easy-

to-exploit web application vulnerabilities.

67% of apps allowed for directory traversal.

61% of apps allowed for code injection.

58% of apps had problems with credentials management

73% of apps contained cryptographic issues.

50% allowed for information leakage.

» Classic ASP PHP & MNET C/C++
@ ColdFusion » Java Android oS

SQL Injection :

Cross-Site Scripting (XS5

Command Injection

Cryptographic |ssues

1 | 1 1]
o 20 40 [=1e) a0 0o

Figure 2.44 : Comparison of critical vulnerability types
49

Other than these above factors, there is one other important result included in the Veracode
report, which is the vulnerability comparison which can be found with dynamic security testing
and static security testing. This is also highly important for the organizations because they can
understand the difference and what are the risks they have if they do not perform a one type of
test. The difference between these two testing methodologies is that, dynamic application
security testing also called DAST is using the running application and perform a black box test,
whereas static application security testing also called SAST, focuses on the source code and
perform a white box test. It is understandable that these two methodologies can detect different
types of vulnerabilities and for an organization both these methodologies are important to make
sure the product is vulnerability free and secured. One advantage of the static analysis is that,
it can be leveraged during very early stages of software development life cycle.

Code Quality n/a 63%
Cryptographic Issues 53% 5B%
Information Leakage 80% 56%
CRLF Injection n/a 49%
Deployment Configuration 55% n/a
Server Configuration 16% n/a
Cross-5Site Scripting (X55) 27% 47 %
S@L Injection 6% 29%
Credentials Management 12% 25%
Code Injection 1% 2%

Time and State n/a 23%
Directory Traversal 2% 47%
Insufficient Input Validation 4% 37%

Figure 2.45 : Dynamic vs. static application security testing

Every day there are new applications coming into market and organizations are start developing
new applications and also new software developing companies also coming in. During the
selection of programming languages, methodologies and frameworks, organizations should
employ security professional to analyze the risks of these technologies and then selected a
proper technology wisely to make sure the product, the organization deploy to the market is
well secured.

50

Chapter 3 : Design

3.1 Design Overview

Ultimate goal of the project is to create a tool which is free and capable of analyzing security
vulnerabilities of the source codes published in open forums. The project selected the
StackOverflow as the open forum, since the stats shows that, StackOverflow is highly famous
among the development community. Even though the project is aiming to create a static analysis
tool, it is actually trying to address a different problem. When considering getting source code
sample from the open source forums scenario, average develop will typically follow below
steps.

e Developer search a solution for a particular problem.

e Refer couple of source code samples, that are available on the open forum like
StackOverflow

e Directly copy the sample or part of it, or get influenced by the sample and follow the
same to develop a solution.

What is missing here is, there is no way to make sure those source code samples are not having
any security vulnerabilities or they followed the required security best practices. Even if the
organization uses a commercial static analysis tool, it is practically not possible to analyze each
and every sources samples to check the vulnerabilities before using them, mainly due to the
time that the scan is taking and also the scans are very costly. If there is a pre-scanned
knowledge base of these source samples and an easy tool to access it, then it will be a great help
for the development community, because it is possible to analyze the security vulnerabilities
quickly and easily, then and there, before they are using or implementing those source code
samples. into their production source code.

This project is trying to address the above described issue by analyzing open forum published
source code samples and create a vulnerability knowledge base. Also create an easy access, user
friendly tool, where the developers will be able to use it to analyze the security vulnerabilities
of a particular source code sample, by accessing the knowledge base created. The proposed
system is to gather source code examples published in open forums and create a vulnerability
knowledge base by analyzing the potential vulnerabilities of those source code examples, using
a professional static analysis tool. Then implement a tool which can be used by the developer
to analyze the security vulnerabilities of a particular source code example. Also, to create a
dashboard to show case all the vulnerabilities exists in open forum source code examples.
Proposed system has six main components state as below.

51

Web Crawler to read and grab source code blocks, published in the open forum.
Professional, commercial static analysis tool.

Vulnerability processor to read the vulnerabilities and store into a database.

Dashboard to showcase the findings and stats.

Tool which can be used by developers to identify the potential vulnerabilities of a selected
source code block in the open forum.

Database management system to store the vulnerability data.

Table 3.1 : Components of proposed system

Other than the commercial static analysis tool and the database management system, all the
other components are planned to develop using an appropriate programming languages.
Primary target is to provide a simple, user friendly solution that can process the user request
and return the results faster.

3.2 System Overview

As mentioned above the system is divided into independent components, so that the
implementation can be done parallelly. More focus and the weight given for designing
Dashboard components and the Developer tool, since those two components are providing a
high value for the end users. Building the vulnerability knowledge base of the analyzed source
codes, is the major part of the proposed system and that is not completely automated process.
Some manual work also exists to continue the workflow of the building vulnerability
knowledge base, such as, after web crawler crawled the source code samples, those need to be
uploaded to the static analysis tool to perform the analysis. Also, when the tool completed the
analysis, need to perform a false positive removal to make the result set accurate. And after that,
result set need to be imported to a report in a particular format, where the database importer
component can read the report and store the vulnerability results into the database. In summary
below activities will be performed manually.

e Upload the crawled source code sample to the static analysis tool
e False positive analysis
e Import the vulnerabilities found by the static analysis tool, to a report

Below is the high-level overview of the complete system. The diagram shows all the

components of the proposed system and how each component is going to integrate with other
components to provide the necessary output of the proposed system.

52

Web Crawler Code Analysis

Tool

Crawl Source Store the
Samples Samples Dashboard
Extracted
StackOverflow Source

Samples

Store the Read

Samples 3

Extract the Database
results
Static Analysis Y Processes
Tool ™ \Vulnerabilities Ebre

Figure 3.1 : System Overview

3.2.1 Web Crawler

To start the process of the application, it needs collected source codes from the open forum.
Manually browsing the open forum and copying and saving the code sample to the local hard-
disk is time consuming and practically not possible when the required number of source samples
are high. Best way to solve this and automate the process is to create a web crawler. The web
crawler component is used to read the source code samples from the stack exchange and store
into a file in the local hard disk. There is no requirement of writing a web crawler from scratch,
since the readymade crawlers are available and can be used without paying for it. Scrapy is a
python based application framework for crawling web sites and scrapy is the crawling
framework used for the application. The framework is simple and fast, which used for many
purposes including data mining. Main advantage of scrapy is that it sends and processes
requests asynchronously, which means it can do crawling very fast. Also, it allows
customizations such as delaying between requests, limiting request to a particular ip address
and auto throttling [39].

53

import scrapy

class Quotesspider(scrapy.Spider):
name = "quotes™
start_urls = [

"hitp://quotes.toscrape.com/tag/humor,/",

def parse(, response):
for quote in response.css(div.quote'):
yvield {
"text': quote.css('span.text::text').extract_first(),

'author': guote.xpath('span/small/text()').extract_first(),

next_page = response.css('li.next a::attr("href") ").extract_first()
if next_page 1s not
next_page = response.urljoini{next_page)

yvield scrapy.Reguesti{next_page, callback= .parse}

Figure 3.2 : Sample crawler using Scrapy

3.2.2 Process Vulnerabilities and Store

Next important step is to read the output report, process the vulnerability data and store the data
into a database. This component should provide couple of features like, it should allow the user
to point the report file generated by the static analysis tool, it should be able read the output
report given by the static analysis tool, process it and also convert the data to a format where
the data can be saved to a relational database and finally save the data into the database to create
the knowledge base. This is a very important part of the project, because creating the knowledge
database is the most important phase of the project and base for end user components as well.

54

Report

Browse the
Report File

[Read and
l Process

=

Convert Data
and Save

Database

Figure 3.3 : Process Vulnerabilities and Store

3.2.3 Dashboard

Dashboard is a graphical component with various graphs, which mainly focuses on senior
engineers, development managers, software architectures and also project managers. This
component will showcase all the security vulnerabilities related to the scanned source code
examples using the created knowledge base. Various graphs and charts will be used to give the
information to the community, so they can take the actual benefit from the system. Couple of
major advantages provided by this component are as follows.

Developers can use the data to understand what are the common issues with each
technology and what are the things and areas need to be considered to develop a secure
software.

Senior engineers and software architects can take an advantage of these statistics when
performing manual code reviews and peer reviews. They can be decided which areas
need to more focus and attention.

Software architects and technical managers can use these data when selecting a
particular technology for a product development.

Quality engineers can use these data to decide what are the areas that needed more focus
and also to create test cases and misuse cases.

Project managers and development managers can refer the statistics do get an idea
about how much effort the testing and peer reviews needed.

The organization can leverage these data to decide what are the training that the
developers and quality engineers needed to deliver secure product.

55

Database

Chart 1

Read and
Process

Figure 3.4 : Dashboard - Process Vulnerabilities and Display Charts

Chart 2

3.2.4 Code Analysis Tool

This is the most important component of the project and the interface that the developer can
used to analyze the potential vulnerabilities of a particular piece of source code. This is where
the developer and the community gets the actual advantage of the project and this component
is the solution for the problem that the project trying to address. When a developer wants to use
an entire or part of the source code published in the open forum, there is no easy way of making
sure that the particular source sample is secured or vulnerability free, or if it is vulnerable what
are the vulnerabilities, risks and what are the ways to address those vulnerabilities. The code
analysis tool is the component address this issue. The tool can help during whenever the
developer wants to check whether the source sample published in the open forum is having any
security vulnerabilities or not. Tool can connect to the created knowledge base to analyze the
potential security vulnerabilities of the selected source code sample and give the feedback to
the developer in a user-friendly manner.

56

Selected Source

Sample Read the Source

Sample
Cross Check with the
Database
Perfarm
Prababilistic
Analysis

Database

Vulnerability
Results

Figure 3.5 : Code Analysis Tool

3.2.5 Relational Database

This is where the application stores the vulnerability data and also the application itself uses it
as the knowledge base. Because of the data model is relational, during the project design, it is
decided to use a relational database system to store the required data. During the design of the
database, the main considerations were, how easy is to store the processed vulnerability data
and how efficient is to retrieve data during the end user is accessing the data. Also, to make the
dashboard faster, separate table is used with all the vulnerability data.

CodeBlocks

kS
_I Issueld

I CodeSnippet

]

IssueDetails

7 Issues
_I IssueCode _'fs'l Id

_I IssueMame _I IssueI-d
_I Risk _I Severity
_I Cause _I Language
| mx | FileName

Figure 3.6 : Database diagram
57

Backlog

9
_I Serverity

_I VulnerabilityType
_I AppPlatform

Figure 3.7 : Table used for graphs and charts

3.2.6 Static Analysis Tool

Project required a commercial static analysis tool to perform vulnerability assessment of the
crawled source code samples. Also, it is practically impossible to purchase a commercial tool
for the project because of these tools are very expensive. For example, static analysis tool
named Checkmarx is 1500 US Dollars. During the static analysis tool selection process, mainly
considered the analysis done as a part of the project to understand the features, capabilities and
the differences of the static analysis tools and easiness of use and possibility of getting a sponsor
from an organization. Specially looked for a sponsorship, that someone can allow the source
code samples to be scanned and get the vulnerability results. Open Source analysis tools were
the last option because of the language support is limited and the accuracy level also not that
satisfactory.

Upload

Static Analysis
Tool

Source Samples

Vulnerability
Report

Perform Analysis

Download Report

False Positive
Remaoval

Figure 3.8 : Static code analysis tool

3.2.7 Open Forum

Project needs to select an open forum among the available open forums to extract the source
sample to perform the vulnerability assessment. Analysis done on open forms and mainly
considered how popular the open forum among the development community, what are the
programming languages discussed within the open forum, how frequently users post questions

58

and answers, how many users visit the forum during an hour and what the experiences of the
users who visit the forum. Also, the availability of the forum and whether any restrictions
imposed by the open forum for crawling the source samples also considered, because if there is
a restriction of crawling and downloading the source code, project cannot use that particular
open forum

Read Open Forum
Open Forum

Save Source Samples
L Weh Crawler l

Source Samples

Figure 3.9 : Crawl Open Forum and store source samples locally

59

Chapter 4 : Implementation

4.1 Implementation Overview

After the design of the project is completed, next challenge will be to implement the project
and also make sure implementation will achieve all the project requirements, specially the user
friendliness and the efficiency. Most importantly, Implementation should not limit or
completely restrict the required features of the project and implementation should enhance or
facilitate to enrich the project features. Certain decisions need to be made to achieve the
successful implementation of the project, including underlying technology, frameworks need to
be used and back-end technology which is going to use. Primary focus should be, and it was to
implement the project successfully rather than using the best or cutting-edge technologies in
the industry.

4.2 Source Samples

Project needs an open forum with huge number of source code samples with all the technology
categories. It should be used by developer in all technology categories, in all ages and in all
experience levels. Also, the forum should be heavily used one. By considering all the factors
during the analysis, found that stack overflow is a potential open form which is the site target
for developer community under stack exchange umbrella. According to the static overflow
statistics, 46 million people visited Stack Overflow in 2016 January and 16 million believed to
be professional developers. Also, developer is posting a question in every 8 second, which is
very high usage and indication of stack overflow extremely famous among development
community and heavily used by the development community as well [15]. By considering these
strong reasons, project decided to select the stack overflow as the open forum to crawl source
samples (http.//stackoverflow.com). Also decided to crawl the most recent source code samples
to analyze the vulnerabilities to build the knowledge base. Below is how the static overflow
publishing the developer questions and relevant answers.

60

C# regex matches example

VN
24

Am trying to get values using following text, any thoughts this can be done with Regex?

Input: Lorem ipsum dolor sit %download%#456 amet, consectetur adipiscing %edownload%#3434 elit.
Duis non nunc nec mauris feugiat porttitor. Sed tincidunt blandit dui a viverra%download%#298.
Aenean dapibus nisl %edownload%#893434 id nibh auctor vel tempor velit blandit.

Output:
456
3434
298
893434

Thanks in advance.

c# regex

Figure 4.1 : StackOverflow sample question

Every question is tagged with the particular technology, in this case it is c-sharp and with the
area of technology the question is belongs to, it is regex in this case. Which makes it easy for
the developers to find the details.

All the other responses | see are fine, but C# has support for named groups!

I'd use the following code:

const string imput = “Lorem ipsum dolor sit ¥downloadX®#456 amet, consectetur adipiscing %dow

static woid Main(string[] args)

{ Regex expression = new Regex(@"%downloadX#(?<Identifier:[@-9]*)");
var results = expression.Matches({input);
foreach (Match match in results)
! Console.WriteLine{match.Groups["Identifier™].Value);
}
I
4 k

The code that reads: (7<Identifier=[0-9]) specifies that [0-9]'s results will be part of a named group that
we index as above: match.Groups["ldentifier] Value

Figure 4.2 : StackOverflow sample answer

61

4.3 Programming Languages to Select

The programming languages or the technologies that the project needs to focus on is another
important factor to consider. Also, how many sample codes that the project is going to consider
from each programming language is another important factor. Because it is practically
impossible to consider all the available programming languages and all the available samples.
So, it is necessary to set expectations for these two parameters first. By considering the
popularity of the modern web and mobile application development languages and also
considering the top vulnerable programming languages, project decided to consider five
programming languages and consider at least 5000 source code samples from each language to
perform the vulnerability analysis. Below is the list of considered programming languages.

Python
Java
C-Sharp
PHP
JavaScript

4.4 Source Samples Crawler

Web crawler is actually the second most important supporting components for the project. There
are many web crawler frameworks available for free and there is no requirement of writing
specific one for the project. Because of that, a python based, well known framework named
Scrapy is used to develop a crawler to read the source samples from StackOverflow sand save
the samples locally. StackOverflow has a URL format for each language to list down the
questions posted by developers, and using that URL to crawl is very easy. URL format is simple
and language can be specified as python, php or java. Also, the page number and the page size
can be specified. Using the page number, it is possible to navigate through the pages and using
the sort parameter, it allows to retrieve the latest posted questions into the first page and so on.
Below is the sample URL format.

Page Size
http://stackoverflow.com/questions/tagged/python?page= &son‘znewesr&pagesizezﬁL

Language Page Mumber

Figure 4.3 : StackOverflow Posted question URL format

62

Below is the python code written implement the crawler using Scrapy framework. Script has a
separate section to identify the language and save the source code sample with the correct
extension. And the script crawl the URL assign to start URLs and save the source code samples
to the folder name assigned to code directory variable with the correct file extension.

import os
import scrapy

from scrapy.selector import Selector

class Language():

def __init__ (self, language=None, extension=None, comment=None):
self.language = language
self.extension = extension

self.comment = comment

def code_type(self, language):

if language == "python":
self.language = "python"
self.extension = ".py"
self.comment = "#"

elif language == "java":
self.language = "java"
self.extension = ".java"
self.comment = "//"

elif language == "node.js":
self.language = "nodejs"
self.extension = ".js"
self.comment = "//"

elif language == "perl":
self.language = "perl"
self.extension = ".pl"
self.comment = "#"

elif language == "c++":
self.language = "c++"
self.extension = ".cpp"
self.comment = "//"

elif language == "c#":
self.language = "csharp"

63

self.extension = ".cs

self.comment = "//"

elif language == "php":
self.language = "php"
self.extension = ".php"
self.comment = "//"

elif language == "javascript":
self.language = "javascript"
self.extension = ".js"

self.comment = "//"

class StackOverflowSpider(scrapy.Spider):

name

= 'stackoverflow'

code_directory = None

start_urls =

["http://stackoverflow.com/questions/tagged/javascript?page=93&sort=newest&pagesiz

e=50"]

def

def

def

init (self):

self.code_directory = "source_code"
parse(self, response):

pr\int “****************\n\n"

print "Executing\n\n"
print ok skokckokskok K okok Rk kok Rk \ n\ "
#Create the language directory if it doesn't exists
try:
os.stat(self.code_directory)
except:
os.mkdir(self.code_directory)
for href in response.css('.question-summary h3 a::attr(href)'):
#Parse out the URL's to request
full url = response.urljoin(href.extract())

yield scrapy.Request(full_url, callback=self.parse_question)

parse_question(self, response):

rep = response.css('.accepted-answer')

base_url = response.url

64

print "F**{HHEHHHEEEREEE
print base_url

print "Parsing"

#Select the code language for each of the coding samples

code_sample_lang = response.css('.post-
tag').xpath('text()"').extract_first()

lang = Language()

lang.code_type(code_sample_lang)

#Create the language directory if it doesn't exists
try:

os.stat(self.code_directory + "/" + lang.language)
except:

os.mkdir(self.code_directory + "/" + lang.language)

answers =1

for s in response.css('.answercell pre code'):
mycode=s.extract()
mycode=mycode.replace('<code>',"'")

mycode=mycode.replace('</code>',"")

mycode=mycode.replace('>"',"'>")

mycode=mycode.replace('<", '<")

id = base_url.split("/")
filename = self.code_directory + "/" + lang.language + "/" + id[4] +
"-" + str(answers) + lang.extension
answers = answers + 1
with open(filename, 'w') as f:
#Comment the URL in the code

f.write(lang.comment + "URL: + base_url + "\n\n")

f.write(mycode)

File name is generated using the id of the question and the number of the answer give to that
particular question. Also in each save source sample file, there is a comment line added to with
the full URL of the source sample. Below is a c-sharp code sample file.

65

24130650-2.c5 X

oid webBrowserControl_DocumentCompleted(object sender, WebBrowserDocumentCompletedEventArgs e)

tion divs = webBrowserControl.Document.GetElementsByTagName("div™);

h (HtmleElement div in divs)

Figure 4.4 : Sample source code file

This script need to be run in the command line using below command.

-

B C\Windows\system32\cmd.exe = | B |t

Figure 4.5 : Running the web crawler

One practical issue faced was that, after crawling couple of hundred code samples,
StackOverflow blocked the ip of the computer for 10 or 15 minutes. So, had to patiently wait
and slowly crawl the source codes and save to the local hard disk.

4.5 Static Source Analysis Tool

After studying several available commercial static analysis tools, by considering the scenario
of the project it was clear that the project need a tool to analyze the raw source codes. So, due
to that, Veracode is not usable with the project. When consider the features of the available
commercial tools, Checkmarx was a better fit with lots of support, but it was a very expensive
tool. Project managed to find a sponsor for the Checkmarx tool and decided to use that as the
static code analysis tool to perform the static analysis against the downloaded source code
samples. Source codes needed to be compressed to a zip file and uploaded to the Checkmarx
for it to perform the analysis. There is a possibility that the uploading process also can be
automated, but for the project, decided to upload it manually. Separate zip file is created for
each programming language to make it convenient. Below are the zip files created and ready to
upload to the tool.

66

LIS | I noooa

csharp java Javascript php python
csharp.zip java.zip javascript.zi php.zip python.zip
p

Figure 4.6 : Sample source code files are ready to upload

With Checkmarx, first thing is to create a project for the scan, and then after navigating into the
project, there is an option called full scan. By clicking on that option Checkmarx will allow the
user to upload the created zip file. Below is the screenshot of upload zip file for full scan option.
There is another option called incremental scan, which means the tool will scan only the
changed or newly added files to discover vulnerabilities.

[> Full Scan . [3> Incremental Scan

x |

Local Select

Open Source Anal

Upload +” | Cancel X
Open!
“ Please

Figure 4.7 : Checkmarx upload zip file for scan

After uploading the zip file, Checkmarx will queue the scan job and perform it based on the
availability of its resources.

fEa 5 Filters 8 Group By
QUEUED DATE « | INITIAT.. ‘ DRIGIN ‘ F’RUJEG...| SERVER... ‘ Lac STATUS ACTIONS

2/21/2017 10:11:57 PM Thushar. WebPo. Test Th. 108676 Queued O]j]'

Figure 4.8 : Checkmarx scan queue

67

As mentioned above, Checkmarx is a very expensive tool and had to use it very carefully
without interrupting other projects. So, this was a bottleneck for the project, since Checkmarx
gave extremely low priority for the project related scans and also had to divide 5000 samples
into to 200 chunks and perform the scan to reduce the stress to the Checkmarx. Checkmarx has
couple of interesting viewers. Current status of a particular project is very important, where it
showcase all the vulnerabilities discovered within that project. The issues viewer helps to
navigate through all the discovered issues and also it is possible to mark the vulnerability as
false positive after studying about the issue. Also, there is an option available to import the
Checkmarx discovered vulnerabilities to a report and couple of formats are supported including

PDF, csv and xml.

SAST Vulnerabilities Status SAST progress status
. High Med Low N Recurrent Previous Solved N Recurrent
’ 440
276
38 Med 107 Low
o 144
16 New 38 New 107 New 107
0 Recurrent 0 Recurrent 0 Recurrent
_ . . 16 38
I
HIGH MED LOW

Figure 4.9 : Project overview

Below is the issue viewer component of Checkmarx which can be used to view issues and

issue details.

\javascript\42292866-1 js

Valt LdULE = UUCUNEN L. BELELEMENLBY LU Laulesouy J;

toDoArray = []s

function buildTable(){

addToStorage(); »
18 var retrievedTaskObject = localStorage.getItem("task");

11 var parsedObject = JSON.parse(retrievedTaskObject);

—

Y
retrievedTaskObject
Y

retrievedTaskObject

12 var addTheTaskName = parsedObject.taskName; Y
13 var addTheTaskDate = parsedObject.taskDate;
14 - parse
JE Lmwfd Av 3 4 +olafoeoee Tomadbe 3,000
J.§ N v
A v
. - a | | Method buildTable at line 8 of \javascript\d2292866-1.js gets data from the database, for the getltem element. This element's value
@ Client_DOM_Code_Injection (3 : FoL then flows through the code without being properly filtered or encoded and is eventually displayed to the user in method addTaskToTal

. - at line 23 of \javascript\42202866-1.js. This may enable a Stored Cross-Site-Scripting attack.
~(® Client DOM Stored Code Injection : . - [t

O] Clieni DOM_Stored XSS (2 - F m Gash | (G3) AppSec Coach

i (S8 Y Result State W Result Severity W Assigntolser W Comments
- (® Client_DOM_XSS (7 : Found) (?) » Result St o/ Result Severity v &

[©] Reflected XSS (1 : Found) () ‘

~(® Security_Misconfiguration (1 : Founc " ‘ d Direst| Status ‘ Souret Soure{ Soure
- (® Stored XSS (1: Found) (?) 1 @ New \ja. 42. 10 ge. \a. 42. 30 inn.
‘ Medium 2 & New \ja. 42. 10 ge. \a. 42. 29 inn.
= Low
d 4 [FHl » » Pane size: | 10 v

Figure 4.10 : Issue viewer

S:-ur:{ Dea"r{ Dea"r{ E-sa"r{ E-ss"r{ FEESUH{ FEESUH{ Assi;r{ Ticket|

| Save Scan Subset

? Filters £ Group By

E-c"n‘{
é

To. Hi.

To.. Hi.

? items in 1 nane

68

Below is the report generator component of Checkmarx and it supports couple of report
formats and the user can export the reports to any supported format.

—{ Report Data Settings I

1 QuenyResult ——————\ ——{_ ResultSeverity J—————— ~——{_ AssigntoUser J———
vE m 7 Al v Al
¥ W(® High ¥ (® High | Application Security (admin@cx)
- W@ Client_DOM_Code_In < /A Medium ¥ Thushara Desapriya
/(@ Client_DOM_Stored _(7 [Low (thushara.desapriya@pearscn.com)

- -

- [l @ Client_DOM_Stored ; . . \. /
- W@ Client_DOM_XSS (7 —| Result State |7 5 - —| Categories |7

B/ (® Reflected XS5 (1)

-

v Al . P
b OWASP 102013
- [l Security_Misconfigur: b | OV op

¥ To Verify j o
! b PCI DSS v3.1
- [W(® Stored_XS5 (1)) o e
- ’ #| Not Exploitable b W Custom
¥ /A Medium

- 7 . .
. Confirmed - “ [l Uncategorized

—(Report Format I

[¢ poF RTF csv B @ xmL

Executive summary only

Figure 4.11 : Import vulnerabilities to a report

For the project, Checkmarx vulnerabilities list was imported to a XML report.
Programmatically it is extremely easy to handle or process XML documents and that was the
primary reason to choose XML format. Below is the exported list of Checkmarx xml reports.

Mame * Date modified | Type | Size |
2| csharp, xmil 322017 3114 FPM ¥ML Document 74KB
2| csharp_init, xmil 12/12/2016 10:07 AM XML Document 10 KB
|| Java.xml 322017 110 FPM XML Document 710 KB
|| JavaScript.xml 322017 12:25 PM ¥ML Document 360 KB
|| phip. 3l 3/2/2017 1:08 PM XML Document 1,808 KB
|| Python,xml 322017 12:27 PM XML Document 173 KB

Figure 4.12 : Imported vulnerabilities to XML documents

69

4.6 Vulnerability Importer

This component will read the XML report, which is imported from Checkmarx tool and process
it and then save the vulnerability data to the relational database. Another important supporting
component of the project to achieve its goal. To develop this component Microsoft csharp, a
powerful programming language within the .net family is used and a windows forms application
is created. Even though, this is not an external user facing component, developed it with a
simple and easy user interface. Also implemented proper error handling and informational
messages to make it user friendly. Since the component uses entity framework with the
importer, it can roll back the changes, so, there will not be any harm for the data stored in the
database, in case of an error.

x

Report Mame EwﬂmﬁmM%mmMWWMwm ”w

Import Data
Completed x|

Figure 4.13 : Vulnerability report importer

Below is the code block to read the XML report and serialize to relevant CSharp classes.

using System.Xml.Serialization;

using System.Xml;

XmlSerializer serializer = new XmlSerializer(typeof(CxXMLResults));
CxXMLResults resultingMessage = (CxXMLResults)serializer.Deserialize(new

XmlTextReader(filePath));

70

4.7 Dashboard

This component is defined as the second most important component of the project. This is where
the project utilizes the discovered vulnerabilities by reading the knowledge base, to project with
various charts and graphs. Main target is to make the dashboard very informative and user
friendly. Again, a powerful language and easy to user web framework, Asp.Net MVC with
csharp is used to develop the dashboard. Asp.Net MVC is easy to use web framework with less
learning curve, which was ideal to develop and was an ideal framework for the project. For the
charts and graphs, google chart API is used, since it is very convenient, powerful and contains
all the required chart types. Microsoft solution for object relational mapping, name entity
framework is used with Aps.Net MVC application to access the database where the
vulnerabilities are stored. By using the entity framework, managed to cut down the development
time significantly and also managed to develop the dashboard component with clean source
code.

Below are some of the charts included in the dashboard.

Top 5 Application Security Vulnerabilities

@ Improper Exception Handling
@ Stored XS5

@ XSRF

@ Reflected XSS All Clients

@ Information Exposure Through an Error
Message

Figure 4.14 : Top 5 Vulnerabilities

71

Application Security - Vulnerabilities by Platform

@® CsSharp
@ PHP

@ Java

@ JavaScript

@ Python

Figure 4.15 : Vulnerabilities by Platform

4.8 Code Analysis Tool

Code analysis tool is the most important component of the project. This component allows the
developer or any other user to verify, whether there are any security vulnerabilities with a
particular source code block in StackOverflow. User should be able to select the particular
source code black and analysis tool should be able to read the user selected source code block,
use the knowledge base to analyze it, and show the potential vulnerabilities to the user. This is
main workflow the component needs to cover. When analyzing the scenario, it was clear that,
StackOverflow is a web site and user has to use a browser to access it and see the sample source
codes published in it. By considering the situation, it is very much clear that best solution is to
develop a browser plugin to capture the user input. After analyzing the situation more and
considering the user friendliness, decide to add a right click menu option, so the user can
highlight a particular source code block and use the right click menu to send it for the analysis.

Also decided to choose a one particular browser and develop a browser plugin only for the
selected browser. Project decided to select the google Chrome as the browser because it is
famous among the development community and even with normal users and also Chrome
provides a great support for developing plugins and it is reasonably easy with the help portal
provided. Initially wanted to automatically get the entire source code block, but chrome plugin
does not have a straightforward way of reading an entire html text inside a particular tag. So,
decided to go with the text highlight and user can highlight the source code block and get the

72

right click menu. In a way, this method has an advantage, where the user can select a portion of
the source sample and perform the analysis.

Console.Write{"Enter numl: "
numl = Console.Readline();

Jf Second Number
Console; .
numz = Copy

Search Google for "Console,Write{ "Enter numi: "); numl =._."

ff The
Console

"Ente
op = (¢ @ Source Analyzer

Print...

if (int Inspect

=
L 1 r

Figure 4.16 : Source Analyzer Chrome Plugin

There should be a service endpoint listening all the time to accept the user requested, collect
the user selected source code sample and response back to the user with the potential
vulnerabilities exists within the user selected source code block. Again, Asp.Net was used to
develop a service endpoint with entity framework to access the knowledge base. Chrome plugin
is issuing a cross origin XML, http request (XMLHttpRequest) using JavaScript code to send
the user selected source code and retrieve results. Web servers do not allow cross origin calls
by default and project needed to do the necessary changes make it possible. Below is the
JavaScript code written to make the XMLHttpRequest call and process the results, with in the
chrome plugin. http://localhost:49362/Home/Analyze is the endpoint implemented to accept the
call from chrome plugin.

function getIssues(sourceCode)

{
var xhr = new XMLHttpRequest();

var url = "http://localhost:49362/Home/Analyze";
var params = "CodeSelected="+encodeURIComponent(sourceCode);
xhr.open("POST", url, true);

xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

xhr.onreadystatechange = function() {
if(xhr.readyState == 4 8&& xhr.status == 200) {
var resp = JSON.parse(xhr.responseText);
document.getElementById("testsource").innerHTML =
resp.ResultText;

}

xhr.send(params);

73

From the Asp.Net side had to implement the below code to inform the web server to allow and
accept cross origin client calls.

public class AllowCrossSiteJsonAttribute : ActionFilterAttribute

{
public override void OnActionExecuting(ActionExecutingContext
filterContext)

{
filterContext.RequestContext.HttpContext.Response.AddHeader("Access-
Control-Allow-Origin", "*");
base.OnActionExecuting(filterContext);

}

After reading the user selected source code block to analyze, source analyzer should cross
validate it with the vulnerable code samples is the database. This is sort of a fuzzy string
matching and after searching for available libraries for CSharp, powerful library found with
CodePlex, which can perform approximate string comparison and decided to use with the
application [42]. Below is the implementation, which uses the FuzzyString library from
CodePlex to verify the user selected source code against the database.

public static bool IsCodeEqual(string userInput, string vulnerableCode)

{

List<FuzzyStringComparisonOptions> options = new
List<FuzzyStringComparisonOptions>();

options.Add(FuzzyStringComparisonOptions.UseLongestCommonSubstring);

return userInput.ApproximatelyEquals(vulnerableCode, options,
FuzzyStringComparisonTolerance.Strong);

Source analyzer defines a confidence level of a detected potential vulnerability by analyzing
the relevance between selected code block and the actual vulnerable code. For example, actual
vulnerability may need more than one code lines, but the user may select only one line out of
them for analysis. So, the tool should be able to detect it and shows the vulnerability with an
appropriate confidence level. Simple logic has implemented to achieve this capability of the
source analyzer and it is a great benefit for the user.

74

public Result AnalyzeSource(string selectedSource)

{
List<Vulnerability> 1st = new List<Vulnerability>();
foreach (var issue in analyzeDb.Issues)
{
decimal fndCnt = ©;
foreach (CodeBlock ¢ in issue.CodeBlocks)
{
if(UtilitySvc.IsCodeEqual(selectedSource,c.CodeSnippet))
{
fndCnt++;
}
}
if (fndCnt > @)
{
Vulnerability v = new Vulnerability();
v.Codelssue = issue;
v.Likehood = Math.Round(((decimal)fndCnt /
(decimal)issue.CodeBlocks.Count) * 100, 2);
Ist.Add(v);
}
}
Result vulnerabilities = new Result();
vulnerabilities.ResultText = GenerateView(lst);
return vulnerabilities;
}

After calculating a percentage of likelihood, below logic will decide the confidence level and
assign to the potential vulnerability.

75

public enum Confidencelevels

{
Certain = 90,
Firm = 1,
Tentative = 2
}
public class Vulnerability
{
public Issue CodeIssue { get; set; }
public decimal Likehood { set; get; }
public string Confidence
{
get
{
string conf = string.Empty;
if (Likehood >= 80)
conf = Confidencelevels.Certain.ToString();
else if (Likehood >= 40)
conf = ConfidencelLevels.Firm.ToString();
else if (Likehood < 40)
conf = Confidencelevels.Tentative.ToString();
return conf;
}
}
}

Primary target was to develop the chrome plugin, user-friendly, convenient and self-
understandable manner. Plugin view include below points with the vulnerability analysis to
make it come convenient.

* Severity of the vulnerability

* Confidence level

* Vulnerable source code snippet

* Risk of the vulnerability

* Reason or the cause of the vulnerability

* General recommendations to fix the vulnerability

Below is the chrome plugin, which actually shows the potential vulnerability to the user with
severity and confidence level above other information.

76

3 Spurce Analyzer V1

Severity Medlum Confidence m

[snip]
numl = Console.ReadLine();

Consocle.WriteLine(numl + is NaM wval set to 8");

[/=nip]

Risk

An attacker could use social engineering to cause a user to send the websits
engineered input, rewriting web pages and inserting malicious scripts. The attacker
can then pretend to be the onginal website, which would enable the attacker to steal
the user's password, request the user's credit card information, provide false
informaticn, or run malware, From the victim’s point of view, this is the criginal
website, and the victim would blame the site for incurred damage.

Cause

The application creates web pages that include data from previous user input. The
user input is embedded directly in the page’s HTML, causing the browser to display it
as part of the web page. If the input includes HTML fragments or JavaScript, these are
displayed too, and the user cannot tell that this is not the intended page. The
vulnerability is the result of embedding arbitrary user input without first enceding it
in a format that would prevent the browser from treating it like HTML instead of plain

fowt

Figure 4.17 : Source Analyzer tool

77

4.9 Vulnerability Database

Project needed a relational database system to store the vulnerability data, which is provided
by the Checkmarx. Considering other technologies used to develop the application, Microsoft
SQL server is the best option and it is supporting with Microsoft technologies seamlessly. Also,
Microsoft provides easy and very user-friendly studio which can used to create and manage the

database.
CodeBlocks
Column Mame I Data Type I Allow Mulls I
_lf;[d int -
_‘ Issueld int -
_‘ CodeSnippet varchar{2000) -
| r
IssueDetails E
Column Name I Data Type I Allow Mulls Issues
_'@l Id int Il A Column Mame I Data Type I Allow Mulls |
J IssueCode varchar{1000) r _?I Id int r
_| IssueMame varchar(1000) Il _I Issueld int r
_I Risk varchar(2000) - J Sewverity varchar(50) -
_I Cause varchar(2000) Il _I Language varchar(50) r
_I Fix varchar(2000) r _I FileName varchar (50) -
N m | =
Backlog
Column MName I Data Type I Allow Mulls I
_{;| Id int r
_| Serverity varchar{50) r
_l VulnerabilityType varchar(255) -
_| AppPlatform varchar{255) r
| r

Figure 4.18 : Database implementation

78

Chapter 5 : Results, Testing and Evaluation

5.1 Introduction

This chapter will describe the results of the project, application features, functionalities and
capabilities to evaluate the project, also possible approaches to test and verify the application
functionality to make sure it provides the expected quality output. Below steps will be used to
test and evaluate the developed application.

e Source code testing to make sure there are no errors and logically it is implemented as
expected.
e Functionality testing.
o Functionality testing of web crawler.
o Functionality testing of the vulnerability exporter.
o Functionality testing of the dashboard.
o Functionality testing of the code analyzer.
e Usability testing.
o Functionality testing of the dashboard.
o Functionality testing of the code analyzer.

5.2 Results

Selected five different programming languages, that are c-sharp, java, php, python and
JavaScript and analyzed 5000+ samples from each language using static code analysis tool,
Checkmarx for this project. And this section is focusing on discussing the findings in couple of
different angels. Altogether, 346131 lines of code had been uploaded to the Checkmarx and
assessed for security vulnerabilities. In total tool managed to discover 1489 vulnerabilities
belongs to various vulnerability categories. According to the Checkmarx, PHP is the language
with highest risk and this is matching with the most vulnerable programming language research
done by Veracode. Below is the risk level summary of each language provided by Checkmarx.

79

RISK LEVEL SCORE LOC

o 00

JavaScript I (88) 108676
Python ' | — (67) 49840
PHP 0 I (100) 55336
Java . 1 M (40) 63994
C-Sharp bt e (38) 68285

L

Figure 5.1 : Risk level indicator of each language

Below is some more vulnerability information for each programming language, discovered by
the Checkmarx tool. This information directly extracted from Checkmarx.

5.2.1 JavaScript

@ g2 Low
(® Client_DOM_Code_Injection (3 : Found) (? oy M_Open_Re + (44 - Foundh (2
® Client I Cox ecti Fol ? ier re Random £ 2
G) Client Stored S und) (? ient JQus Deg tec b 2] 7
® lient XSS Fou ? ient_ Comment | ?
(=) Refl SS Eound) (? Client Server Empty Password (2 - Fou ?
r (t phic ast 1-F ?
~@® Security | qurat Four (? : 2 plograpnu A
jackin 6 F (?
(® Stored XSS Four ?
! P_Header Found) (?
Mediun en_Redi Found) (?
ent DOM XSRF | Found) (? Potential Inerable Found) (?
Jnprotected } nd) (7
ent Pote ode_Injectio 1: Fol) (?
' e_Of_Hard ed | F ?
t Pote (Four ? 3 #
s H ensi Data_E F
Serve S I Foun ?

Figure 5.2 : Vulnerability categories - JavaScript

Above are the vulnerability categories discovered by Checkmarx and grouped by the severity
of those categories. Checkmarx manage to find High, Medium and Low severity issues with
JavaScript. Below diagram shows the top 5 vulnerability categories discovered by Checkmarks.

80

Top 5 Vulnerabilities

I cienoom storeanss
I ereceesss
T

Client DOM Stored Code Injection

T
1 £ 3 4 5 B

1] i
Figure 5.3 : Top 5 vulnerability categories — JavaScript
5.2.2 Python
’ A Medium
(® High | ;
A\ Cross_Site_History_Manipuiation (1 Found) (?)
-® Reflected_XSS_All_Clients (7 : Found) (?) A Hardcoded Password_in_Connection_Sting (2 - Found) (7)
~@ Stored XSS (1 Found) (?) A Header Injection (7 - Found) (7)
,® XPath lnjection (1 - Found) (7) /A Insecure Randomness (31: Found) (?)
B /A Open Redwect (4 Found) (?)
A Path Traversal (10 Found) (?)
Low &\ Prvacy Violaton (2 : Found) (?)

P* Password_In_Comment (4 : Found) (?)
----- " Use_Of Hardcoded_Password (4 - Found) (?)

Figure 5.4 : Vulnerability categories - Python

Checkmarx manage to discover High, Medium and Low severity issues with uploaded python
source code sample as well. Above chart shows the discovered vulnerability categories grouped
by severity. Below diagram shows the top 5 vulnerability categories discovered by Checkmarks.

81

Top 5 Vulnerabilities

Insecure Randomness
Path Traversal
: Reflected X3S All Clients
. “Path Imjection

Stored ®S5

0 6 12 18 24 30

Figure 5.5 : Top 5 vulnerability categories - Python

5.2.3 PHP

According to the source code analysis done for the project, Checkmarx marked PHP as the
highest risk programming language. During the analysis Checkmarx manage to discover some
JavaScript code issues also, which were written inside PHP code. This is another advantage of
Checkmarx because JavaScript are essential ingredient for web development and can be plug
into any development language. With Checkmarx, developer does not need to worry about,
because tool can automatically detect the programming language and perform the vulnerability
assessment for using the appropriate rule set. Below is the summary of the vulnerability
categories, Checkmarx discovered with JavaScript written inside PHP code, grouped by risk
level.

82

v JavaScnpt
*® High

= (® Client DOM_XSS (2: Found) (?)

v P Low

- P Client_Hardcoded Domain (25 : Found) (?)

""" [Client_Potential DOM_Open_Redirect (2 : Found) (?)

----- * Client Remote File Inclusion (6 : Found) (?)

---- P Client_Use Of Iframe_Without Sandbox (1: Found) (?)

Figure 5.6 : Vulnerability categories - JavaScript within PHP
Below are the Top 5 vulnerability categories discovered with PHP.

Top 5 Vulnerabilities

Stored K55

Reflected XSS all Clients

SQL Injection

Command Injection

File Manipulation

0 22 44 (<11 g8 110

Figure 5.7 : Top 5 vulnerability categories - PHP

Below are the vulnerabilities found by Checkmarx and grouped by severity. With PHP, also the
tools managed to discover High, Medium and Low severity issues.

83

'?' File [S Fou (?
| t re F ?
(» File Ma ‘ r 4
= e of j
() Reflected [F ? .
u .\ De ?
2 - vraes_ - ' 4 Broks Risk I iphi hi F ?
*) | on I (? L i a

i\
~3

Figure 5.8 : Vulnerability categories - PHP

5.2.4 Java

Java is also widely used language for web and mobile development and Checkmarx managed
to discover only Medium and Low vulnerability categories. This is sort of a medication to say
that Java language code samples are safe when comparing to JavaScript or PHP samples.
Veracode research report also mentioned that Java is a comparatively safe programming
language. Below are the discovered vulnerability categories grouped by severity levels.

84

& Medum
M\ Absolute Path Traversal (2 ° Found) (?)

-

Low

P Channel_Accessibie_by_NonEndpoirt {10 - Found) (?)
- P Divide By Zero (7 Found) (7)

- P Hardcodad Absolute Path (11 Found) {?)

[Impeoper_Exception_Handing (17 - Found) (7)

CGI_Refiected_XSS_All_Clients (4 - Found) (7}
Download_of Code Without_Integrity Check (8 Found) (?)
Hardz oded_password_in_Connection_String (3 - Found) (?)
Unchecked_Input_for_Loop Condition (19 Found) ()
Unnomalize_Input_String (2 : Found) (7)
Use_of_Cryptographecally_Weak_PRNG (14 Fourd) (?)
Use of Insufficiently Random Valves (14 : Found) (?)
Use_of_System_sxd (4 Found) (?)

- P Impropar_Resource_Access_Authorization {46 - Found) (?)
- P Impropar_Resource_ Shisdawn_or Relaase {19 Found) (7
P Incomect_Parmssion_Assgrenent_For_Critical_Resowces (18 Found) (7)
- " Information_Exposwe Through_an_Emor_Message (46 : Found) (2)
- P Just One of Fouals_and Hash code Defoed (1 Found) (7
P Object_Hpack (3 Found) [?7)
- P Portabiity_Flaw_In_File_Separator (13- Found) (?)
- P Prvate Armray Rotumad From A Pubic Method (5 Found) {?)
P Puslic_Data_Assigned_to_Private_Aray (2 Found) (7)
- P Race_Condtion_Format_Flaw (8 : Found) (?)
- P Relative Path Traversal (2 - Found) (7)
P Urcaugin_Exception {5 Found) (?)
- P Unsynchronized_Access_To_Shared Data (27 - Found) (7)
- P Use OF Hadcoded Password (5 Found) (7)

o e P e e g e .-y iy = = - ———

Figure 5.9 : Vulnerability categories - Java

Discovered top 5 vulnerability categories are as follows.

Top 5 Vulnerabilities

Unchecked Input for Loop Condition

Use of Insufficiently Random Yalues

Use of Cryptographically Weak PRNG

Download of Code Without Integrity Check

CGI Reflected XSS All Clients

T T T T T

o 3) 9 1z 15 18

Figure 5.10 : Top 5 vulnerability categories - Java

85

5.2.5 C-Sharp

Veracode mentioned that .net languages are safe languages to develop software in their research
report. Checkmarx also able to discover only Medium and Low severity issues with C-Sharp
and comparatively lesser issues than other four languages. Below are the discovered
vulnerability categories grouped by severity levels.

o Medium
Heap_Inspection (12 : Found) (?)
""" Path_Traversal (1: Found) (?)

""" Use of Cryptographically Weak PRNG (6 : Found) (?)

Hardcoded_Absolute_Path (17 : Found) (?)
""" mproper_Exception_Handling (32 : Found) (7?)

""" mproper_Resource_Shutdown_or_Release (5: Found) (?)

""" mproper_Transaction_Handling (1 : Found) (?)
Figure 5.11 : Vulnerability categories - CSharp

Discovered top 5 vulnerability categories are as follows.
Top 5 Vulnerabilities

Improper Exception Handling
Hardcoded Absolute Path
Heap Inspection
Use of Cryptographically Weak PRNG
Path Traversal

ul] 12 18 24 30

Figure 5.12 : Top 5 vulnerability categories - CSharp

According to the source code analysis results, it is clear that all the selected five languages has
security vulnerabilities. Tool manage to detect even High severity vulnerabilities with some
languages. With these findings it is proven that, is it highly important to discover the security
vulnerabilities of these source code samples published in open forums.

86

5.3 Source Code Testing

It is important as well as mandatory to make sure the source code written to develop the software
is logically correct and meet the expected quality without any unexpected error and all. Also, it
is required manually map and verify the logical paths and branching of the source code is
actually achieving what is described in the design phase. All the developed components were
manually verified by going through the source code paths. Also, all the possible paths were
manually verified to see whether it is an expected scenario. Mainly two development language
were used, which is CSharp and python and also application has a SQL server database. Since
both the languages used to develop the project, are compiler based, so, during the compilation
it can detect all the syntax issues. So, during the run time, project will have less surprises. As
the first step iron, out all the syntax error to make sure the application components are compiling
successfully. Then went through code to verify whether the proper error handling is in place to
avoid getting run time errors.

Also, the database is verified manually going through all the field level, verified whether all the
required data is storing to build the knowledge base and datatype of the fields. Couple of sample
records are manually entered into the database to verify whether everything is defined as
expected. Also verified the normalization of the database and keys defined as well as indexes.
Peer reviews are also important and it is a must to implement an application with great quality
and expected behavior, because of an outsider can see potential issues in the code which cannot
be seen by the developer who developed the application. Source code is given to couple of
experience developers and to review and got their feedback. Also made some necessary changes
to improve the source code based on the peer review comments.

5.4 Functional Testing

Functional testing is really important to make sure the application behaves correctly as expected
in a normal scenario as well as another unusual scenario. Both these scenarios application
should not crash or destroy the database. Because, creating as well as maintaining the database
is the key of the project and also specially as discussed, creating the database is very expensive.
For functional testing, followed the actual workflow to verify everything is working as
expected.

5.4.1 Testing Web Crawler

The first component which is required to make sure it is working, is the source code crawler,
which is written in python and it is a command line execution, without any Ul So, ran the
crawler targeting the selected programming language paths and download around 100+ samples
from each language. Two things verified here with the crawler, which are, whether the sample
code files saved to the correct folder and whether it is saving the complete source code sample

87

into the files as it is published in StackOverflow. In Order to make sure the second point decided
to take 25+ files from each programming language and cross verify the code saved in the files
with relevant code published in StackOverflow. Since the source URL is saved as a comment
into the file, this verification is quite easy.

5.4.2 Vulnerability Exporter

To verify the functionality of the vulnerability exporter, ran the exporter against the downloaded
source code files. Expected functionality is to read the vulnerability data from the saved files
and insert into database. So, after import and saving vulnerability data, again selected around
25+ files from each programming language and verified the vulnerability data in those files
against the data inserted to the database.

5.4.3 Testing Dashboard

To verify the dashboard, examined all the statistics showed in the dashboard against the data in
the database. Examined the logic written to retrieve the data for various charts in the dashboard
and verified the same data using SQL queries against the database.

All Vulnerabilities by Severity

@ High
® Low
@ Medium

Figure 5.13 : Open vulnerabilities by severity

For example, to verify the above vulnerabilities by severity graph, below SQL queries can be
used. These SQL queries are very simple and can be verifies the actual data against the plotted
graphs.

88

[Select COUNT (Id) TotalCnt from dbo.Izsues;

Select ROUND (CAST(A.Cnt as decimal) *100,/1495,1) from
(Select Sewverity, COUNT (Id) Cnt from dbo.Issues Group By Sewverity) &

Below is the output result of the above SQL query, which can be verified against the above
chart, Open Vulnerabilities by Severity.

Tntallént WulPercertages
1 [1495 1 | 20.100000
2 57.700000
3 22100000

Figure 5.14 : SOL query results

5.4.4 Testing Code Analyzer Tool

Code analyzer tool is the most important piece of the project and verifying the functionality of
the component is also critical. Most importantly need to make sure it is providing the correct
results, since developers and others are referring the results of it to get an understanding of a
particular source code sample.

5.4.4.1 Manual Verification

First step was to manually verify the correctness of the tool by testing and analyzing false
positive rate and false negative rates. The strategy used is, select around 250+ sample code files
from all the programming languages, analyze the vulnerabilities using the tool and manually
verify whether the tool managed to identify the issues correctly or not. With the initial version
of the tool, below are the received results of the false positive and negatives rates.

False Positive 70.00%

False Negative 0.00%

Table 5.1 : False Positive and Negative Percentages

The results were extremely disappointing, because the false positive rate was way over the
expected level, which was around 70%. On the other hand, tool did not have false negatives
and in a way, this is a great achievement, which means, tool manage to correctly detect available
issues. However, the results clearly indicate that there is a significant loophole in the

89

vulnerability analyzing logic and definitely needs a fine-tune. After performing deep analysis
with more testing, managed to successfully reduce the false positive rate also to zero percent.
Visual studio unit test project supports greatly on achieving this significant improvement.

[TestMethod()]
public woid IsCodeEqual_eel()

i

string userInput = "Console.Readline()";

string vulnerableCode = "numl = Console.ReadLine();™;
bool expected = true;

bhool actual;

actual = UtilitySve.IsCodeEqual(userInput, wvulnerableCode);
Assert.AreEqual(expected, actual);

Figure 5.15 : Unit test method 001

[TestMethod()}]
public veid IsCodeEqual_ee2()

{

string userInput = "Writeline";

string vulnerableCode = "numl = Conscle.Readline();";
bool expected = false;

bool actual;

actual = UtilitySwvec.IsCodeEqual{userInput, wvulnerableCode);
Assert.AreEqual(expected, actual);

Figure 5.16 : Unit test method 002

During the manual testing, also verified whether the tool manages to identify the severity as
well as the confidence level of these vulnerabilities correctly.

5.4.4.2 Automated Verification

Decided to perform an automated unit test to evaluate the accuracy of the source analyze. With
automation, it is possible to evaluate larger sample of test source codes in a very short time and
possible to refine the accuracy of the source analyzer tool. Below scenarios were considered
during the automated testing.

* Source code samples which are used to build the knowledge-base
© Vulnerabilities detected
© Vulnerabilities not detected
* Source code samples which are not used to build the knowledge-base

90

Below is the expected outcome of these testing scenarios, assuming the tools is behaving
logically as expected.

Test Scenario False Positives False Negatives
Known source codes with vulnerabilities 0.00% 0.00%

Known source codes without vulnerabilities 0.00% 0.00%
Unknown source codes > 0.00% > 0.00%

Table 5.2 : Expected outcome the Tool should provide

For the first scenario, project already has the downloaded source code samples and based on
the knowledgebase developed, identify the vulnerable and non-vulnerable code sample files of
each and every programming language, then extracted a sample for the testing. Below SQL
queries were used to extract data from the knowledge-base for the verification and the examples
shows the verification performed against the source code files of CSharp programming
language.

Select s.FileName,d.IssueName,COUNT(d.IssueName) Cnt from dbo.Issues s,
dbo.IssueDetails d, dbo.CodeBlocks c where s.Issueld=d.Id and s.Id=c.Issueld and
s.Language="'CSharp' group by s.FileName, d.IssueName order by s.FileName

Select d.IssueName,COUNT(d.IssueName) Cnt from dbo.Issues s, dbo.IssueDetails d,
dbo.CodeBlocks ¢ where s.Issueld=d.Id and s.Id=c.Issueld and s.Language='CSharp'
group by d.IssueName

IssueMame | Cnt |
| CGIXSS 4

Hardcoded Absolute Path 17

Heap Inspection 13

Improper Bxception Handling 35

Improper Resource Shutdown or Release 5
Path Traversal 11
IUse of Cryptographically Weak PRMNG &

= | e | b f o [Ra | —

Figure 5.17 : CSharp vulnerabilities summery of the Knowledge-base

91

Below is the comparison of expected results and the actual outcome of the testing.

Issues Name Expected Actual False False
Count Count Positives Negatives

CGI XSS 4 4 0 0

Hardcoded Absolute Path 17 17 0 0

Heap Inspection 13 11 0 2

Improper Exception Handling 35 34 0 1

Improper Resource Shutdown or 5 7 2 0

Release

Path Traversal 11 11

Use of Cryptographically Weak PRNG |6 6

Improper Transaction Handling 0 1

Table 5.3 : Expected results vs Actual results

After getting the results, specially focused on false negatives and manually verified and found
that the issue count was reduced due to the optimization logic, where when the user selects a
code block with two classes and both the classes have the same issue, then the analyzer
optimized the situation and show an aggregated result to the user. After manually verified the
scenario, false negatives were ruled out. With this testing, project covered True Positive
scenario, where is there is an issue analyzer should detect it correctly, after summarizing all the
results, manage to discover that the analyzer has 6.5% of false positive rate. As the next step
selected a sample of the source code files with zero vulnerabilities detected and ran the
automation test against those sample. Technically the source analyzer should not detect any
issues with this test. Below is the comparison of expected results and the actual outcome of the
testing performed against the source code sample of CSharp language.

Issue Name Expected Count | Actual Count |False Positives

Improper Exception Handling 0 3 3

Table 5.4 : Expected outcome vs Actual outcome - CSharp

After completing the True Negative scenario, which means analyzer should correctly reject the
source codes, which does not have vulnerabilities, discovered that the source analyzer can have
a 4% of false positives. To analyze the behavior of the source analyzer tool in a critical manner,
decide to use source code samples, which are not considered for building the knowledge-base
and evaluate the behavior of the source analyzer tool. This way it is possible to get a clear
understanding of what are the enhancements, modifications required for the source analyzer.
The strategy followed was as follows.

92

* Use the crawler to download source code from each programming language, which not

downloaded before.

* User the Checkmarx tool to analyze those source code files and get the results.

* Analyze the source code samples using the Source Analyzer components.

* Compare the Checkmarx results verses Source Analyzer results.

After analyzing the source code sample using Checkmarx, the received results were as follows.

- CSharp
' Medium
- Heap Inspection (1: Found) (?7)
v P Low
Just One of Equals and Hash code Defined

(1: Found) (?)

Figure 5.18 : Checkmarx results of new source samples

After analyzing the same set of source code samples with source analyzer, below is the

comparison of the results.

Issue Name Checkmarx |Source False False
Analyzer Positives | Negatives

Heap Inspection 1 1 0 0

Just One of Equals and Hash Code 1 0 0 1

Defined

Improper Transaction Handling 0 1 1 0

Table 5.5 : Results comparison - Unknown source samples

After analyzing the results of test scenario of unknown source code samples, discovered that
the source analyzer can have 2% of false positives and 2% of false negatives. Below is the
summery of all the automated unit test performed for the project with the sample size used for
the testing. According to the results, source analyzer tool managed to achieve the required level
of accuracy and also the tool can provide a dependable result.

93

Test Scenario False False Sample Size
Positive % Negative %

Known source samples with vulnerabilities |6.50% 0.00% 500+

Known source samples without 4.00% 0.00% 500+

vulnerabilities

Unknown source samples 2.00% 2.00% 500+

Table 5.6 : Test results summery

Test scenarios automation is implemented using CSharp.Net and it is tied to the source analyzer
components of the project. Below is the source code implemented to read the known source
code samples with vulnerabilities and perform the analysis.

System.Text.StringBuilder sb = new System.Text.StringBuilder();

public void TestKnownCodeWithVulnerabilities()

{
sb.Clear();

var 1lst = analyzeDb.Issues.ToList().FindAll(n =>
n.Language.Equals("CSharp")).GroupBy(k =>
k.FileName).Select(lt => new { fname = 1lt.Key });

foreach (var s in 1st)

{
string p = "E:\\Mis Project\\used\\" +

s.fname.ToString().Replace("/", "");
if (File.Exists(p))

{
string txt = File.ReadAllText(p);

AnalyzeSource_UnitTest(txt, s.fname.ToString());
}
}
System.IO.StreamWriter file = new System.IO.StreamWriter("E:\\Mis
Project\\vulstats.txt");

file.Write(sb.ToString());
file.Close();

5.5 Usability Testing

Usability testing is also important because it can assess how user friendly or how much required
information provided by the developed system or tool. Software systems can be developed
using best or cutting-edge technologies using latest methodologies and best tools can be used
to test those systems, but if the system does not meet the required usability, no one will use
those software applications. Best method to assess the usability of the application is to, provide
the beta version to end users and ask them to use the software for some time and then provide

94

the honest feedback. Web crawler and the vulnerability exporter are not developed for end users
and there is no reason to perform usability testing against those two components. Dashboard
and Code analyzing tool are the two components developed to end user and focus on performing

usability testing only for those two components.

Following above described strategy, testing version of the dashboard and code analyzer
components given to set of developers, quality engineers and technical specialist and ask them
to use these components for some time. Google form is used to collect the feedback and
feedback collected anonymously, because the target is to get genuine feedback from those set
of professionals. Also incorporated some of the important comments into the components to
make them more usable. Below is the feedback form created to set of end users to give their

feedback about the Dashboard and the Code analyzer.

Assessment of Code Analyzer &

Dashboard

Flezse taka some of your valuahble time to fill the form. Please make sure to provide honest

feedoack

What do you think about analyzing source sample published in

cpen forums *

wWhat are the issues/benefits of Dashboard *

What are the issues/benifits with code analyzer *

What do you think about the Accuracy of the code analyzer *

1 -

Foor

Ideas to improve *

Figure 5.19 : Usability feedback form

=

4

(93]

Even though, it sounds like a great idea and a definite way of improving the project, it is also
really hard to collect the feedback. This is even harder, when the targeted audience is

95

professionals and totally engaged with day to day work. Had to spend huge effort on collecting
feedback from developers, architects and managers. Planned to collect around 50+ feedback,
but after spending weeks following up those professionals, managed to collect 20+ feedback
and its decent enough for the analysis. Analysis mainly focus on getting feedback on user
friendliness and point to improve the application and also it was focused on getting an accuracy
measure of the source analyzer tool. Below are the results received for the accuracy of the tool.

What do you think about the Accuracy of the code analyzer (22 responses)

15
10
5
0(0%) 0(0%)
; | |
2

Figure 5.20 : Expert feedback on accuracy of source analyzer

96

Chapter 6 : Conclusions and Future Work

6.1 Introduction

Static analysis of the source code is an important and essential activity to make sure the
developed is secured and rugged to stand against malicious attacks. Vulnerabilities that can be
discovered during the static analysis will help developers to iron out them during very early
stages of the development life cycle. Also, static code analysis is mandatory for an organization
to implement secure software development life cycle, which has the security built into the
development life cycle. Even though, many static analysis tools are available, including very
expensive commercial tools, technically the developers or the development team does not
analyze each and every code block they write or even before they write. Simply this is because
analysis takes time and the tool is costly, when it comes to commercial tools. Instead of that
they perform weekly or biweekly scans to discover the vulnerabilities. Then the discovered
issues will be added to the detect backlog and will be addressed during same sprint or next
sprint. This is again a problem because developers have to spend time on fixing issues, where
they could have addressed them during the initial development, if they got to know about those
issues.

When it comes to developers referring source code samples from open forums like
StackOverflow, situation is getting worst, because no one assess these source code samples for
security standards and vulnerabilities. Considering all these scenarios, it is required to have a
method to verify these open forum source codes quickly before those are used into the
production source code of the organization’s product. This chapter will summarize the project
work and discuss about the findings, problems, challenges, learning and limitations. Also, this
chapter will discuss about the possible future work of the project.

6.2 Summary

The project aims to address the issue of, developers using source codes samples, published in
open forums, without assessing security vulnerabilities of those source codes. The plan of the
project is to develop a tool which is easy, convenient, efficient and most importantly user
friendly, for developers, which is capable of identifying and visualizing the potential
vulnerabilities of the source code samples published in open forums. Solution also aim to
provide some insight to the developers, architects and managers about the vulnerabilities exists
with the source samples with some other useful statistics like what are the most common
vulnerabilities, which language has the most number of vulnerabilities.

After analyzing the situation, project decided to select one open forum, grab source code
samples published in the selected open forum, under selected programming languages and then
analyze the vulnerabilities using a commercial static analysis tool. After that, import the
vulnerability results from the static analysis tool to create a knowledge base and then develop

97

a tool, which can be used by the developers to assess the vulnerabilities in the open forum by
referring the knowledge base created.

First step was to select an open forum and after doing a study, decided to select StackOverflow
as the open from. Went through all the published user statistics data by StackOverflow, before
selecting it as the open forum. Due to the project time limitation, had to decide what are the
programming languages and the number of source code samples from each programming
language, which are going to select for the vulnerability analysis. Totally five programming
language were selected purely based on the popularity among the development community
which includes, CSharp .Net, Java, PHP, Python and JavaScript. Decided to analyze at least
5000 source code samples from each programming language. To grab the source codes from
the StackOverflow, implemented a web crawler using python programming language. Also,
python based famous web crawling framework names scrapy is used to developed the web
crawler.

After performing a study on commercially available static code analysis tools, to select an
appropriate tool for the project. According to the analysis, Checkmarx was the most suitable
tool for the project. Since the tool is highly expensive, manage to find a sponsorship to use the
tool to perform the analysis. Implemented a software component to read the vulnerability results
from Checkmarx report and save the data to the knowledge base.

Most convenient and user-friendly method of implementing the developer tool to analyze the
source codes is to develop a browser plugin. Because, developer need to use the browser to visit
the open forum to see the source codes. Project decided to stick to one particular browser and
develop a plugin for that browser only. After doing a study and see which browser is the famous
among all, selected the browser as google chrome for the project, since it is famous among the
developer community. Also, to help with the vulnerability statistics, decided to develop a
dashboard with various charts related to vulnerability data. For implementation of vulnerability
imported, dashboard and source code analyzer for developer are developed using CSharp .Net
and for the knowledge base, Microsoft SQL server database is used.

6.3 Problems Faced

Couple of issues were faced during the implementation of the project and had perform
workarounds and sometimes some components got delayed due to these problems. And some
of the issues could not resolve technically, but did not harm the final output of the project.

6.3.1 Crawling StackOverflow

The issue arises when crawling source codes from StackOverflow. After crawling certain
number of source code samples, StackOverflow detect large number of source code request
from the public ip address and block the ip for some time, like 5 to 10 minutes. Had to work
with this issue because there is no way to get rid of the issue. The issue slow down the source
code crawling speed significantly, but manage to achieve the required number of source code
samples by putting an extra effort.

98

6.3.2 Commercial Tool

Project needed a commercial static analysis tool and purchasing a tool is impossible due to the
high cost and find a sponsorship for the tool is really challenging. It took considerable effort
and time to make the tool available. Since the tool is already engaged with the day to day scans
of the organization, it was really challenging to allocate time for the project related source code
scans and also it was not possible to upload huge number of sample codes at once, because it
will make the tool stressed. This was the greatest challenge faced during the project and had to
spend lots of time to manage time and upload small chunks of source codes to analyze them
and get the results from the tool.

6.3.3 False Positives

This was a problem as well as a huge challenge. Like discussed above any tool, irrespective of
whether the tool is a commercial one or not, can provide false alarms. The only way of getting
rid of detected false positives is to manually verify and eliminate them. Had to spend
considerable amount of time and effort, going through all the discovered vulnerabilities and
verify whether those are false positives or not. This process is a must to perform to have an
accurate and quality output.

6.3.4 Browser Plugin

It was easy to implement a browser plugin with chrome browser, but could not find an easy way
to reading the entire source code block, when the user right clicks on it. Technically could not
solve this issue and had to go with select source code block and the right click, so the browser
plugin was able to read the selected text. This is not very convenient and user friendly for the
developer. But in a way, it was an advantage, because there may be cases where the developer
needs only a portion of the source code block to asses. Not so convincing but finally it was an
advantage for the project also.

6.3.5 Usability Testing

Usability testing was not a problem, but it was bit of a challenge, since project needed feedback
from professional developer, architects and managers. Usually these professionals are
extremely busy and it was hard to buy some of their time for evaluation of the project. Also had
to spent considerable time to demonstrate the tool for the developers and managers. Another
problem was, these professionals were bit lazy to fill the feedback form, so had push them little
bit on filling it, and also had to get verbal input and proceed as well.

99

6.4 Limitations

Even though the project aims to provide a fair solution for a specific problem, like any other
project, it has limitations. Some limitations arise due to the time limitation of the project and
some limitations are technical constraints. Since the code analyzer is the most used and the
primary component of the project, limitation of the code analyzer component will be noticeable.
Below are the major limitations of the source analysis component.

e Tool can detect or predict the issues only using the knowledge base which is previously
created by analyzing the source samples.

Limited only for the source codes published in StackOverflow.

Tool is doing a text based matching to verify with the knowledge base.

Only support for CSharp, Java, PHP, Python and JavaScript programming languages.
Only support for google chrome browser.

Tool is only indicating the potential vulnerabilities to the user, but it cannot prevent the
user from using the vulnerable code. So, the tool is just a helper only.

e Building knowledge base is not fully automated.

6.5 Extensions and Further Work

After identifying the limitations of the project, it is required to plan for improvements and
enhancements for the project to make it better and serve the users better. Mainly focused on the
limitations of the current implementation and also the original problem which needs to be
solved, during coming up with future work for the project.

6.5.1 Fully Automate

Current implementation of crawling the source codes from the open forum and get it analyzed
using the commercial tool and then build the knowledge base is not fully automated. With the
current implementation, below tasks should be manually performed to successfully build the
knowledge base.

Execute the web crawler to grab the source code samples.

Upload the source samples to the commercial tool.

Download the report of potential vulnerabilities from the commercial tool.
Execute the vulnerability importer to import data to the database.

100

Plan is to fully automate this process and also handle the StackOverflow restriction by adding
proper time delay when the ip is restricted. Then project can keep on building the knowledge
base automatically, without much of a human interaction.

6.5.2 Expand the Knowledge Base

With the current implementation project is limited to five programming languages, CSharp,
Java, PHP, Python and JavaScript and only limited for source codes published in
StackOverflow. Also, current implementation considered 5000+ samples from each
programming language. Another point is, source samples are analyzed using only one
commercial tool. Need to expand this to other programming languages also and increasing the
number of samples considered also. Consider the source code samples published in other
available open forums also required. Most importantly use other commercial tools to analyze
the code samples and integrated the vulnerability results can make the knowledge base
sophisticated and more accurate.

6.5.3 Enhancements

Application needed to be fine-tuned to make it more efficient, so that the application can handle
user requests fast and accurate. Specially need to optimize the vulnerability analyzing code to
make it efficient. Also, fine tune the Ul also important to make the users are comfortable with
the tool, it is user friendly and also to make sure the tool provides necessary information with
its feedback to the user. Optimizing the database also important to make sure the application
can achieve the required level of efficiency. Using a text matching with the vulnerability
identification logic is not so effective and also it is slowing down the process. Also, the tool
cannot identify potential vulnerabilities effectively because some code lines are logically same
but text comparison is different. Required to com-up with symbolic representation of the source
texts and need to perform the validation based on these symbols. With that tool can improve
both efficiency and accuracy.

Currently the implementation is done using CSharp .Net and the database is implemented using
Microsoft SQL server. There is no issue with these technologies, but better to move with a
python framework like DJango and MySQL which is more robust, scalable and with high
maintainability. With MySQL, the application will not be having any license issues as well.
Testing is performed by limited number of known developers and managers, which is not
enough for an open tool, targeted a large audience. Required to host the application in a publicly
accessible production environment and make it available for the development community and
invite them to perform testing and send feedback for fine tune and improve the tool. Also need
to make the source code available for the community using a public repository like GitHub and
get support from the development community to fine tune the source code.

101

6.5.4 Future Work

Most important assets or the output of the project work is the knowledge base, which includes
all the vulnerable source codes and related data. There is a great opportunity to perform a data
mining activity against the knowledge base and identify patterns hidden within the knowledge
base. This can greatly help to the developer and related community. Also, there is an opportunity
where the source analysis tool can be enhanced to use the discovered pattern to identify
potential vulnerabilities in an unknown source code sample.

Another future work will be to assess the impact created by these source code samples published
in open forums, on open source products. To assess this, needs to verify whether the vulnerable
source codes are existing in know open source products by assessing the GitHub source code
of those known open source products. By analyzing the impact created by source code sample
published in open forums, it is possible to alert the community so the community itself will be
more careful when publishing source code sample in future.

6.6 Critical Appraisal of the System

Goal of the project was to create a tool which can help developers to analyze the source codes
published in open-forum, for security vulnerabilities and also give an indication of the
vulnerability statistics of those source code samples to the developers as well as managers.
Implementation of the project manages to successfully meet all the expected requirements with
required quality. So, the project managed to achieve its goal. The project is highly designed and
not tied to a particular technology or a framework. Also, the design is capable of adopting future
enhancements, changes as well as the required expansion to the project.

During the implementation, followed the recommended coding guidelines and best practices to
improve the maintainability. Required and useful comments were added into the source code
and the source code is well tested and reviewed by couple of senior developers. Final
implementation is very easy and convenient for developers to use, since it is a browser plugin.
During the browsing of open forum source samples, developers can easily use the browser
extension to analyze the vulnerabilities of a particular code block in a matter of seconds. Project
implementation is tested and evaluated by developers and managers and they are very much
satisfied with the implementation and the idea behind the project. Also, the evaluators are
confident that the idea and the tools will add great value to the community as well as the
commercial organizations.

102

6.7 Final Conclusion

The author is confident that the project idea is very much valid and the implementation of the
project can greatly help developers to write more secure code and ultimately make the final
product more secured and rugged. Implementation of the project can be used as a vulnerability
assessment tool as well as a learning tool for the developers. Also using the project
implementation an organization can get to know about the vulnerabilities exists with each
programming language and they can define guideline and best practices to avoid those
vulnerabilities. Also, the tool can help to perform the peer review effectively and also it can
help to come up with an effective testing strategy. Since the tool helps to assess and understand
the vulnerabilities of a particular source code block, which is published in an open forum, before
it is used or implemented into the organization's production code, author believes that the
project ultimately helps to have a successful secure software development life cycle within an
organization.

103

Appendix A : Development and Testing Environment

A.1 Hardware Requirements

To perform the development of the application, personal computer is used with below
configurations.

Intel Core 17 processor with 2.60 GHz.

8.00 GB internal RAM.

500 GB SSD hard disk.

Microsoft windows 7, 64-bit operating system.

A.2 Software Requirements

For the development, virtual environment is used to make it more convenient, since the virtual
environment can be managed easily. To develop the main components CSharp .Net is used.
Below mentioned software were used for the project implementation.

Microsoft Visual Studio 2010 IDE.

CSharp .Net with MVC 3 framework.

Microsoft SQL Server 2008.

Python 2.7.

Visual Studio Code IDE.

Google chrome browser.

Oracle VM VirtualBox - To create and run the VirtualBox.

104

Appendix B : General Information

B.1 Execution of Web-Crawler

Web crawler is a python based script and can be executed as a normal python script. Expected
behavior is, when the crawler ran pointing to a particular URL in StackOverflow, it should read
all the published source code samples, which are user’s answers to the published questions, and
save those samples into a local folder with the correct extension of the related programming

language.

In the below example, crawler is pointed to JavaScript related questions, so the crawler will
grab the published JavaScript code samples.

(http://stackoverflow.com/questions/tagged/javascript?page=1 &sort=newest&pagesize=50)

| =2 | C |
-
+ spiders » source_code v l +4 I Search sour Jou
older = v [@
Name Date modified T
This folder is empty
Bl C\Windows\system32icmd.exe = | D) |

Figure B.1 : Above to run the web crawler

105

BN CiWindowsh\system32homd.exe

*downloaderrequest_method_countsGET': 53,
‘downloadersresponse_bhytes’: 18356608,
‘downloader-rezponse_count’: 53,
‘downloader-rezponse_status_count.-2600°
‘downloader-rezponse_status_count-3601°
‘finizh_reazon': *‘finished’.

'finish_time’: datetime.datetimeC2817,. 2, 28, 7. 13. 21. 4880088,

*log_count-DEBUG® = 54,
log_countsINFO = 7.
‘request_depth_max’: 1,
response_received_count’ = 52,
schedulersdequened’ = 52,
schedulersdequened memory’ = 52,
schedulersenguened’ = 52,
schedulersenquened memory’ = 52

r
r
r
r
r

‘start_time’ : datetime.datetime&EEi?, 2. 28, 7. 13, 16. 4978080>>
2017-02-28 12:43:21 [zcrapv.core.enginel INF0O: Spider clozsed <finished>

C:sMHyDrivesMyScrappystutorial~tutorialsspiders>

| o

» spiders » source_code » v|v?|| Search sour... S

folder
Name

javascript

=~ 0 @
Date medified

2/28/2017 12:43 PM

Ty

Fil

Figure B.2 : After running the web crawler

B.2 Browser Usage

To make it easy and convenient, project decided to implement a browser plugin for developers.
After analyzing the easiness to develop a plugin as well as how famous is the browser among
the community, decided to select the browser as google chrome and implement a chrome
extension for the developers. Below is some browser usage information referred for the project,

to select a browser.

106

Browser usage share, 2009-2016, StatCounter

Figure B.4 : Browser market map - 2015

Google Chrome
Firefox

Safari

uc

Iren

Internet Explorer
Opera

Android
Phantom

Mo info

107

B.3 Checkmarx Manual Verification

Checkmarx is the commercial tool used for the project to perform static analysis. After
Checkmarx is completed with the static analysis, it is a must to perform a false positive analysis
to clean up the results and keep only the actual issues. Checkmarx allows to perform a manual
verification against the discovered vulnerabilities and mark and eliminate false positives issues.

Al Scan Results JoETS The application uses a single, hard-coded password pass for authentication purposes, eitt
’ plaintext, and cannot be changed without rebuilding the application.
¥ JavaScript Graph {_Ej AppSec Coach

b@ High IRl o/ ResultSeverity W o/ AssiintolUser W f Commer

(S

b A Medium To Verify

Status Source F-:ulcer{ Source Filena| Source Line

b Low "
New \javascri. 4228678. 20

X Confirmed New \javascri. 4228678. 21
" Urgent New \javascri. 4222451 9
Proposed Not Exploitable New \javascri. 4223967. 4

] & & Client_JO.. MNew ‘\javascri. 4223067. 5
L & & Client_JO.. MNew Vjavascri. 4223067. 6
.= A2 pliant 10 Maw Vimmenri 4979087 7

Figure B.5 : Mark vulnerabilities as false positive

Also, there can be situation where the Checkmarx marked a vulnerability with a particular
severity, but after the manual verification, it seems the severity should be something else. If
the detected severity of a vulnerability is not the correct figure, Checkmarx allows to set the
correct severity for the vulnerability. Below screenshot show the menu option to set the severity,
manually.

108

The application uses a single, hard-coded password pass for auth
plaintext, and cannot be changed without rebuilding the applicatio

¥ JavaScript Graph @ AppSec Coach

® High J ResultState ¥ Result Severiy v VAL ULLS

Severity

‘& Medium (]| 4 | ‘ @ High S-:uurceF-:uIder| |
" - v 1 @ [\ Medium \javascri..
X O 2 ' \javascri. +

" O 3 @ | Mo \javascri_. ¢

Ll 4 @ Client_JQ. New \javascri.

-

Figure B.6 : Manually set the severity of a vulnerability

B.4 Checkmarx Reports

Checkmarx allows and support several report formats to import the vulnerabilities, including
PDF and csv. For the project XML report format is used, since it is really easy to process and
import issues from a XML report to the database.

<Query id="463" categories="PCI DSS§ v3.1;PCI D55 (3.1) - 6.5.7 - Cross-site scripting (XS5),0WASPF Top 10
<Query id="3T772" cweld="244" name="Heap Inspection" group="CSharp Medium Threat" Severity="Medium" Langua
<Query id="443" categories="PCI DSS v3.1;PCI D55 (3.1) - 6.5.5 - Improper error handling" cweId="248" nam
<Result Nodeld="276930002" FileName="/osharp/39749136-2.c0s" Status="New" Line="15" Column="40" Fal=ePos
<Path ResultId="2T7693" PathId="2" SimilarityvId="-2041245357">
<PathMNode>
<FileName>/ocsharp/39749136-2.cs</FileName>
<Line>15</Line>
<Colunn>40</Column>
<NodeId>1</NodeId>
<MName>ReadAllText<,/Hame>
<Type><,/Type>
<Length>»11</Length>
<Snippet>
<Line>
<Number>15<,/Nunber>
<Code> string dataFromRead = File.ReadAllText(filePath) :</Code>
</Line>

Figure B.7 : Checkmarx imported XML report

109

B.5 Chrome Extension

Chrome developer center giving a great help and detailed documentation for developers and
chrome extension can be easily created referring the documentation. It has certain set of files
and specific format expected from the developer. Below is the set of files required by chrome.

background.js
B | glass_icon.png
infa.js

|| manifest.json

|| results.html

a3
| =

styles.css

JScript Script File

PMG image

JScript Script File

JS0N File

Firefox HTML Document
Cascading Style Sheet Document

Figure B.8 : Chrome extension files

Manifest file is the one which defines the chrome extension with the general information, like
extension name, description, permissions and icons of the plugin. Below is the manifest.json

file created for the project.

{
"name"™ : "Sourcelnalyzer™,
"yersion™ : "1.0.1",
"description™ : "Retriewve Potential Vualnerabilities of the Selected Code Sample™,
"background™ : { "scripts": ["background.js"] .,
"permissions™ @ [
"contextMenus™,
"takbs™,
"http: SRS R,
"httpa:/S/ & "
1.
"minimom chrome wverszion™ : "6.0.0.0",
"icons" : {
"le" : "glass_icon.png",
"48" : "glass_icon.png",
mlz2g" "glass_icon.png"
:'ur
"manifest wersion": 2
}

Figure B.9 : Source Analyzer Chrome extension

110

B.6 CodePlex FuzzyString

FuzzyString is an open source project and a library, developed using CSharp .Net to verify the
equality of two strings approximately. Library includes well known approximation algorithms
and below is the full list of algorithms supported.

» Hamming Distance

w Jaccard Distance

» Jaro Distance

» Jaro-Winkler Distance

» Levenshtein Distance

» Longest Common Subsequence
» Longest Common Substring

» Ratcliff-Obershelp Similarity

» Sorensen-Dice Distance

» Tanimoto Coefficient
Figure B.10 : FuzzyString algorithms

Below is an example of how to compare two strings approximately using the library and it
returns Boolean value indicating whether the two strings are matched or not.

string source = “kevin™;
string target = "kewvyn™;

List<FuzzyStringComparisonOptions> options = new List<FuzzyStringComparisonOptionsx>();
{{ Choose which algorithms should weigh in for the comparison
options.Add(FuzzyStringComparisonOptions.UseOverlapCoefficient);
options.Add(Fuzzy5tringComparisonOptions.UselongestCommonSubsequence);
options.Add(Fuzzy5tringComparisonOpticons.UselongestCommonSubstring);

f/ Choose the relative strength of the comparison - is it almost exactly equal? or is it
just close?

FuzzyStringComparisonTolerance tolerance = FuzzyStringTolerance.Strong;

{{ oet a boolean determination of approximate equality

bool result = source.ApproximatelyEquals(target, options, tolerance);

Figure B.11 : FuzzyString compare two strings

111

B.7 Google Trends

CodeProject also an open forum which is very famous among the development community. It
1s important to analyze and compare the CodeProject with the StackOverflow to see the current
trend. Below are some trends provided by google.

Interest over time @

Mar 2017 J

codeproject 10
100

stackoverflow

Figure B.12 : Interest over time

200
Sri Lanka

\', codeproject 0

stackoverflow 88

<~ 3

Figure B.13 : Interest by region

112

Appendix C : Project Source Code

C.1 Project Structures

Application has two projects developed with CSharp .Net and other one is the chrome plugin.
To develop both CSharp .Net projects, Visual Studio is used as the integrated development
environment. Below are the project structures of these two projects.

Solution 'Datalmporter’ (1 project) _3 Solution ‘AppSecStats' (1 project)
= 12 DataImporter = 5% AppSecStats
=d| Properties =d| Properties
«g| References g References
= DAL _} App_Data
& AppSecDb. edmx B | BAL
B[S utility] AnalyzeSve.cs
#] Datalmport.cs] GraphSve.cs
#] Importer.cs [Content
=3 App.Config B [5r Controllers
-E] frmDatalmporter.cs bl EHomeController. cs

#] Program.cs =[Sy DAL
& InfoSecDB.edmx
E [Models
] Codelnalysis.cs

——
B 50 TestAnalyzer] VulnerabilityGraph.cs

=d| Properties

£ Scripts
-3 References = ~ L|ti|ii|'
#] AnalyzeSvcTest.cs = & UtiitySve.cs
*_ .- = '
#] UtiitySvcTest.cs £ Views
4| Global.asax
5% Web.config
Figure C.1 : Project structures
C.2 Helpful Comments

Appropriate comments were used within the source code, which can describe the source and it
is functionality. Comments can improve the maintainability and greatly help for the future
developments of the project.

113

J <summary:

J// enum used to define the vulnerability confidence lewvels
J </ summary

public enum Confidencelewels

{
Certain = 8, //Issues is Certainly exists
Firm = 1, //High confidence, but manual verification needed
Tentative = 2 //Not sure

h

J) <summaryz

/// Import vulnerability data and save it into the database.

H </ summary >

/// «<param name="filePath":Path of the wvulnerability file (.»ml report)</param:
Fif <returns»</returns:

public static becl ImportData(string filePath)

i
try

£ <summaryz

/// Holds the data realated to a perticular wvulnerability
£ </ summary >

public class Vulnerability

d

//Actual issue of the wvulnerability
public Issue CodelIssue { get; set; }

//Likehood of the vulnerability
public decimal Likehood { set; get; }

//Confidence level os the wvulnerability
public string Confidence

1
get

Figure C.2 : Project comments

114

Appendix D : Testing the Application

During the automated testing, project selected 500+ source samples to verify the accuracy of
the source code analyzer. Results were collected aggregated and compared with the expected
numbers one by one manually. With this project managed to discover the deviations and identify
false positives, negatives to fine-tune the application. Below is the data table used to compare
the CSharp results with data.

File Name

Vulnerability

Expected Count

Actual Count

/39711899-1.cs

CGI XSS

/1716447-3.cs

Hardcoded Absolute Path

/41755542-3.cs

Hardcoded Absolute Path

/41791595-2.cs

Hardcoded Absolute Path

/41804185-6.cs

Hardcoded Absolute Path

/41815058-1.cs

Hardcoded Absolute Path

/41816733-6.cs

Hardcoded Absolute Path

/41819241-1.cs

Hardcoded Absolute Path

/41822147-3.cs

Hardcoded Absolute Path

/41825522-9.cs

Hardcoded Absolute Path

/41834241-3.cs

Hardcoded Absolute Path

/41853886-6.cs

Hardcoded Absolute Path

/41868930-1.cs

Hardcoded Absolute Path

/41870998-5.cs

Hardcoded Absolute Path

/462270-4.cs

Hardcoded Absolute Path

/39730960-1.cs

Heap Inspection

/41764683-1.cs

Heap Inspection

/41764683-5.cs

Heap Inspection

/41783872-1.cs

Heap Inspection

/41793082-2.cs

Heap Inspection

/41846572-4.cs

Heap Inspection

/41883072-1.cs

Heap Inspection

/41907955-4.cs

Heap Inspection

/18757097-10.cs

Improper Exception Handling

/2876616-7.cs

Improper Exception Handling

/39668236-1.cs

Improper Exception Handling

/39749136-2.cs

Improper Exception Handling

/41755542-3.cs

Improper Exception Handling

/41769399-3.cs

Improper Exception Handling

W | = [N [= [[= [N DN = [DN | W |t | et | et | ot | ot | et [t [N | bt [et [t [t [N | = [DN | b | = | N

W | (N = === = = N W R mm =m =m N=R=m=m = N =N ==

115

/41788661-3.cs

Improper Exception Handling

/41791595-2.cs

Improper Exception Handling

/41793534-3.cs

Improper Exception Handling

/41803707-1.cs

Improper Exception Handling

/41813610-1.cs

Improper Exception Handling

/41816147-1.cs

Improper Exception Handling

/41834241-2.cs

Improper Exception Handling

/41834241-3.cs

Improper Exception Handling

/41840827-2.cs

Improper Exception Handling

/41842148-2.cs

Improper Exception Handling

/41853886-6.cs

Improper Exception Handling

/41854338-5.cs

Improper Exception Handling

/41854338-6.cs

Improper Exception Handling

/41870998-5.cs

Improper Exception Handling

/41894232-1.cs

Improper Exception Handling

/41907955-4.cs

Improper Exception Handling

/41907959-1.cs

Improper Exception Handling

/41755542-3.cs

Improper Resource Shutdown or Release

/41853886-6.cs

Improper Resource Shutdown or Release

/41870998-5.cs

Improper Resource Shutdown or Release

/41890156-2.cs

Improper Resource Shutdown or Release

/41894232-1.cs

Improper Resource Shutdown or Release

/41788661-1.cs

Path Traversal

/41788661-2.cs

Path Traversal

/41788661-3.cs

Path Traversal

/41786555-5.¢cs

Use of Cryptographically Weak PRNG

/41824277-5.cs

Use of Cryptographically Weak PRNG

/41910525-1.cs

Use of Cryptographically Weak PRNG

/767999-5.cs

Use of Cryptographically Weak PRNG

N | = [N | W[W DN == = = em [m (N = = (NN = = = (NN = DN = | W=

N [= [DN | = W | | N | | et | it | et | ot |t [N [bt [[N [N | [t [= [DN DN DN | bt | et | i | D |

Table D.1 : Detailed results comparison

116

It is important to check the usability of the application to measure the user-friendliness as well
as the accuracy. Decided to distribute the application among professionals to collect their
feedback. Below is the row feedback data received from those experts regarding the ideas to
improve the application.

Ideas to improve

needs to fine tune

need to analyze more samples

improve please

fine tune, customization charts

should be able to identify issues based on the source

fine tune

consider latest source codes

focus on something important. may be super hero

keep going. Need more surprises

optimize and make it faster

fine tune

automate analyze part also

code project is better option

continue

provide some details of the issues

need to fine tune more

need to enhance it by analyzing more code

need more charts

share the project so all can contribute

allow to enter issues manually to the database

make it open source and fine-tune it

implement using python

Table D.2 : Ideas to Improve

117

Appendix E : Dashboard Options

Dashboard included various graphs, charts to represent the vulnerabilities discovered during
the source code assessment. This component can greatly help for developers and quality
engineers as a learning tool. Also engineering teams can use these data to come up with a solid
test strategy to perform required tests to discover these vulnerabilities. Another important point
is, the dashboard can be used by architects and senior developers to perform peer reviews,
effectively. Below is the available charts of the dashboard.

VULNERABILITY SUMMERY

All Vulnerabilitias

Critical
High
Medium

Low

Vulnerabilities by Platform

Top 5 Vulnerabilities
Vulnerabilities by Severity
PROGRAMMING LANGUAGES

C-Sharp
Java
Python
PHP

JavaScript

Figure E.1 : Chart options of the Dashboard

118

References

[1]. Elizabeth Fong, Vadim Okun, "Web Application Scanners: Definitions and Functions," in
Information Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD 20899-8970

[2]. Symantec (Apr, 2006) "Five common Web application vulnerabilities," [Online].
Available:<http://www.symantec.com/connect/articles/five-common-web-application-
vulnerabilities> [Accessed on 17 May 2016]

[3]. Guttorm Sindre, in Dept of Computer and Info. Sci. Norwegian Univ. of Sci. and Tech.,
Andreas L. Opdahl, in Dept of Information Science, University of Bergen, Norway,
"Capturing Security Requirements through Misuse Cases"

[4]. OWASP "2013 Top 10 List", [Online].
Available:<https://www.owasp.org/index.php/Top 10 2013-Top_ 10> [Accessed on 18 June
2016]

[5]. Microsoft (Feb 2013) "Microsoft Security Development Lifecycle"

[6]. Cigital "What Is the Secure Software Development Life Cycle", [Online].
Available:<https://www.cigital.com/blog/what-is-the-secure-software-development-
lifecycle/> [Accessed on 17 June 2016]

[7]. Cigital "Seven Touchpoints for Software Security", [Online].
Available:<http://www.swsec.com/resources/touchpoints/> [Accessed on 5 July 2016]

[8]. Paul E. Black, Michael Kass, Michael Koo, Elizabeth Fong, "Source Code Security
Analysis Tool Functional Specification Version 1.1" in NIST Special Publication 500-268
vl.l

[9]. RTI "The Economic Impacts of Inadequate Infrastructure for Software Testing" in NIST,
RTI Project Number 7007.011

[10]. OWASP (Jul 2016) "Static Code Analysis", [Online].
Available:<https://www.owasp.org/index.php/Static_ Code Analysis> [Accessed on 28 July
2016]

[11]. Brian Chess, "Metrics That Matter:Quantifying Software Security Risk" in Fortify
Software,2300 Geng Road, Suite 102 Palo Alto, CA 94303 1-650-213-5600

[12]. Grammatech (Dec 2013), "Eliminating Vulnerabilities in Third-Party Code with Binary
Analysis Eliminating"

[13]. Wikipedia, "List of tools for static code analysis", [Online].
Available:<https://en.wikipedia.org/wiki/List_of tools for static code analysis> [Accessed
on 20 July 2016]

119

[14]. Checkmarx, "Why Choose Us", [Online]. Available:<http://Ip.checkmarx.com/new-
brand-general/> [Accessed on 6 August 2016]

[15]. StackOverflow, "Developer Survey Results 2016", [Online].
Available:<http://stackoverflow.com/research/developer-survey-2016> [Accessed on 25
March 2016]

[16]. SANS, “SANS Top 25 Most Dangerous Software Errors”, [Online].
Available:<http://cwe.mitre.org/top25/> [Accessed on 5 December 2016]

[17]. Cigital "Top Web Application Security Vulnerabilities", [Online].
Available:<https://www.cigital.com/blog/top-web-application-security-vulnerabilities/>
[Accessed on 5 December 2016]

[18]. SANS "SANS TOP 25 Most Dangerous Software Errors", [Online].
Available:<https://www.sans.org/top25-software-errors/> [Accessed on 5 December 2016]

[19]. OWASP "Mobile Top 10 2016-Top 10", [Online].
Available:<https://www.owasp.org/index.php/Mobile Top 10 2016-Top 10> [Accessed on 6
December 2016]

[20]. Checkmarx “The Ultimate List of Open Source Static Code Analysis Security Tools”,
[Online].
Available:<https://www.checkmarx.com/2014/11/13/the-ultimate-list-of-open-source-static-
code-analysis-security-tools/> [Accessed on 6 December 2016]

[21]. VisualCodeGrepper “Code security review tool for C/C++, C#, VB, PHP, Java and
PL/SQL.”, [Online].

Available:<https://sourceforge.net/projects/visualcodegrepp/> [Accessed on 8 December
2016]

[22]. YASCA “Michael V. Scovetta”,[Online].
Available:<http://www.scovetta.com/yasca.html/> [Accessed on 8 December 2016]

[23]. OWASP LAPSE+ “OWASP LAPSE Project”, [Online].
Available:<https://www.owasp.org/index.php/OWASP_LAPSE Project> [Accessed on 8
December 2016]

[24]. RIPS ““A static source code analyser for vulnerabilities in PHP scripts”, [Online]
Available:<https://websec.files.wordpress.com/2010/11/rips-slides.pdf> [Accessed on 10
December 2016]

[25]. RIPS ““A static source code analyser for vulnerabilities in PHP scripts”, [Online]
Available:<http://rips-scanner.sourceforge.net/> [Accessed on 11 December 2016]

[26]. DevBug “PHP Static Code Analysis (SCA) tool”, [Online]
Available:<http://www.devbug.co.uk/> [Accessed on 22 November 2016]

120

[27]. Flawfinder “Flawfinder”, [Online]
Available:<https://www.dwheeler.com/flawfinder/> [Accessed on 22 November 2016]

[28]. CPPCheck “CPPCheck”, [Online]
Available:<http://linux.softwsp.com/linux-development/miscellaneous-linux-
development/cppcheck/> [Accessed on 22 November 2016]

[29]. Brakeman “Brakeman - Rails Security Scanner”, [Online]
Available:<http://brakemanscanner.org/> [Accessed on 25 November 2016]

[30]. IBM “IBM Security AppScan Source”, [Online]
Available:<http://www-03.ibm.com/software/products/en/appscan-source> [Accessed on 22
December 2016]

[31]. HP Enterprise “Fortify Static Code Analyzer”, [Online]
Available:<http://www8.hp.com/us/en/software-solutions/static-code-analysis-
sast/index.html> [Accessed on 18 November 2016]

[32]. Veracode “Veracode Static Analysis”, [Online]

Available:<http://www.veracode.com/products/binary-static-analysis-sast> [Accessed on 22
December 2016]

[33]. Sentinel Source “WhiteHat Sentinel Source”, [Online]
Available:<https://www.whitehatsec.com/products/static-application-security-testing/>
[Accessed on 27 December 2016]

[34]. Checkmarx “Checkmarx Static Code Analysis (SAST)”, [Online]
Available:<https://www.checkmarx.com/technology/static-code-analysis-sca/> [Accessed on
27 December 2016]

[35]. Security and Quality Software GmBh “Checkmarx STATIC APPLICATION
SECURITY TESTING ”, [Online]
Available:<http://sq-software.com/products/checkmarx/> [Accessed on 23 December 2016]

[36]. Black Duck “Open Source Application Security”, [Online]
Available:<https://www.blackducksoftware.com> [Accessed on 21 December 2016]

[37]. WhiteSource “WhiteSource Secures Your Open Source Usage”, [Online]
Available:<https://marketplace.visualstudio.com/items?itemName=whitesource.whitesource>
[Accessed on 28 December 2016]

[38]. The Hacker News “These Top 10 Programming Languages Have Most Vulnerable Apps
on the Internet”, [Online]
Available:<http://thehackernews.com/2015/12/programming-language-security.html>
[Accessed on 12 December 2016]

[39]. Scrapy “Scrapy at a glance”, [Online]
Available:<https://doc.scrapy.org/en/latest/intro/overview.html> [Accessed on 2 April 2016]

121

[40]. Browser Usage “Usage share of web browsers”, [Online]
Available:<ttps://en.wikipedia.org/wiki/Usage share of web browsers> [Accessed on 27

February 2017]

[41]. Chrome Extensions “What are extensions”, [Online]
Available:<https://developer.chrome.com/extensions> [Accessed on 22 May 2016]

[42] CodePlex “FuzzyString - Approximate String Comparison in C#”, [Online]
Available: <https://fuzzystring.codeplex.com/> [Accessed on 15 January 2017]

[43] Google Trends “Compare the code project vs stackoverflow”, [Online]

Available:<https://trends.google.com/trends/explore?date=all&q=codeproject,stackoverflow>
[Accessed on 27 February 2017]

122

