Defense In-depth security framework
for Netflix OSS Micro Services

A dissertation submitted for the Degree of Master of
Science in Information Security

P.A Walpita
University of Colombo School of Computing
2017

Page |i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any
other university/institute.

To the best of my knowledge it does not contain any material published or written by another
person, except as acknowledged in the text.

Students Name: P.A Walpita

Signature: Date:

This is to certify that this thesis is based on the work of Mr. P.A Walpita under my supervision. The

thesis has been prepared according to the format stipulated and is of acceptable standard.

Certified by:

Supervisor Name: Dr. Kasun De Zoysa

Signature: Date:

Page |ii
Abstract

Micro Services architectural pattern has emerged in recent years mainly because of its capabilities to
handle high data volumes in a robust manner. The perceptions like Dev Ops and Domain Driven
Design also helped to develop this architectural pattern in to its current heights. Many enterprise
systems which has large amount of transactional data volumes adopting Microservices architecture
because of many enablers it provides. The Security of Microservices considered as utmost important
feature because of the security threats escalated in recent years. The threats that are targeting
Microservices eco system can be categorised as external and internal threats.

Many industrial level Microservice implementations taken precautions about protecting the
Microservices eco system from external attacks. The security measurements that are taken to protect
a Microservice eco system from internal attacks are also an important aspect if the internally
communicating data are sensitive in nature. Internal threats can be identified as vulnerabilities which
can be exploit by an adversary internal to the organization. Netflix is one of the early adopters of
Microservices architectural pattern and the Netflix OSS emanates as an open source platform with a
practical Micro Services success story. This Paper discusses about hardening the Internal service
calls of the Netflix OSS Microservices and discusses the possibilities of eliminating vulnerabilities
within the internal perimeter. The measurements that are taken to protect internal microservices in
Netflix OSS can be adopted generally in any other Microservice eco system as well.

Page |iii

Acknowledgement

Firstly, 1 would like to express my sincere gratitude to my supervisor Dr. Kasun De Zoysa,
for continuous supportin mentoring me and for encouraging my research, guidance and
suggestions throughoutthe research.

I would also like to thank my lecturer panel including Dr. Chamath Keppitiyagama , Dr. Ajantha
Atukorale, and Dr.Gihan Senevirathne for serving as my panel members even at hardship. |
also want to thank you for letting my defence be an enjoyable moment, and for your brilliant
comments and suggestions.

I would thank Mr. Magnus Larsson for hosting the Netflix OSS sample source code in the Git
hub and providing detailed explanations about the Netflix OSS ecosystem in his blog post.

I would especially like to thank my wife (L.P Dilrukshi) for the support she gave me during the
endless nights and countless hours | had to spend doing my research. The sacrifices you have
made, the love and guidance you gave and your prayers have made me who | am today.

http://pgvle.ucsc.cmb.ac.lk/user/view.php?id=10&course=1
http://callistaenterprise.se/om/medarbetare/magnuslarsson/

Page |iv

Table of Contents

N | oo L1 T £ o] o ST 1
1.1, RESEACH DOMAINciiiiiiiitiiiesiieee ettt bbb 1
1.1.1 ReSEArch ProDIBMooiiiiiiieieiee e e 1
1.1.2 Significance of the RESEAICNccciiiiiiiiiiiee e 1
1.1.3 G0als and ODJECLIVES.......ccuviieirieie et 2
1.1.4 Limitations and ASSUMPLIONS........cccuiiieiiiiieeieere e et see e nns 2

2 LITErature REVIBWeoiiieie ittt sttt sttt et ebe st e nneenteenee e 3
2.1 IVHCIOSEIVICES ...ttt ettt bbb bbbt bbb et et bbbt b e 3
2.1.1 UDEI IMIICTOSEIVICEScviivieiieiiesieste sttt sttt bbb 3
2.1.2 €BAY MICIOSEIVICESueiuieiieiieieite ittt bbbttt bbbt 4
2.2 NEtFlIX MICIO SEIVICESeiuieiieieiesie ittt 5
2.3 Netflix OSS Internal Micro Service VUINerabilities..........ccocovvieeienene i 6
PR T R =AY =T To [o] o] o] [o T PRSP TP P PP PP 6
2.3.2 Confused DepULtY ALACKcceiiiieiieiicie et 7
2.3.3 Man-in The Middle AttaCK(IMITM)coiiiieiieiecc e 7
2.3.4 REPIAY AIACKSeviieieiieiieieie et 7
2.4 Possible Technologies to Secure Netflix OSS MiCro Services..........ccoocevvvereiiveieennnns 7
2.4.1 HTTP Basic AUthENTICALIONcc.ovviiiiiiiieieiee e 7
2.4.2 OPEN 10 CONNECT.ccuiiiiiiieieie ettt bbb bbb 8
2.4.3 JSON WeD TOKEN ((JWT) oottt 8
2.4.4 HMAC OVEN HTTP .ttt ettt 9
A N o - PP 9
2.4.6 Holder of Key Tokens (HOK).......c.cooiiiiieie et 10

3 Design of NetfliX OSS MICIOSEIVICEScceeiveeieiieiiieieieesieeie ettt 11
3.1 Netflix OSS Architecture and Product COMpPONeNtsccooeveeeeienencnenenenenes 11
3.2 Netflix OSS COMPONENTS......ceeiiieiiiieiie e re e aras 13
3.2.1 Spring Cloud FrameWOIKccviiiiiiie it 13
T U -] < PSS 13
3.2.3 RIbboN Load BalanCer..........cceiieiieieiie ettt 16
3.2.4 HyStrixX CirCUIt BreaKerccvveiiiiiiiciie sttt 17
3.2.5 ZUUI EOQE SEIVICE ...c.eiiiiiiieiieie ettt bbb 18
KT T U o (=1 o PSS 19
3.3 Functionality of Netflix OSS MICIOSEIVICESccceevviiiiiiieiie e 19
3.3.1 SPAWNING MICTOSEIVICES ..ottt bbbttt bbb 19
3.3.2 E0QE SEIVICE SECUILY ..viueeuieieieiteiti sttt sttt bbb 19

3.4 Security Issues in the current apPlCAtIONccocviiiiiiiiiiesee e 22

I 00 AN 1 7= Tod Qi Rl = V=T o [(0] o) o] [o TSSO 22
3.4.2 Attack 2 : Confused Deputy AACKccevviieiieiieie e 25
3.4.3 Attack 3: Man in the Middle AtACK..........cccviiriiiiiiie e 25
4 Design and Implementation of SOIULIONccooiiiiiiiiii 27
4.1 Extending the Edge server’s Authorization OAuth 2 JWT Token to Internal Micro
SBIVICES ..ttt ettt ettt sttt ettt h e bt e st R e E e e R e e Rt e Rt Rt e Rt e R e e bt eRe e Reente Rt e beenteeneenres 27
4.1.1 Token Relay attack : Directly access internal services using captured token........ 29
4.2 Design : Securing Microservices using .Net Identity Server..........cccoceevvvvevvereennnn, 30
4.2.1 COMPONENE DIAGIAM ..ottt 31
4.2.2 Overall Solution Layered Architecture Diagramcccevevveieeiveresieeseesie e 32
4.2.3 Layered Architecture Diagram - .Net Identity Server........c.ccccoocevvveveivieneere s, 33
4.2.4 SEOUENCE DIAGIAM .. .ottt ettt b et 35
4.2.5 Deployment DIAgIaMcccveiieiuiiieie e eie ettt ve e sre e steeae e nnas 37
O R O - B T o -1 1SS 38
4.3 Implementation: Securing Microservices using .Net Identity Server.............cc.c....... 41
4.3.1 Creating @ NEW IdeNtity USEr.........cc.civeiiiiieieeie et 41
4.3.2 Generating the Identity TOKEN..........ccooi i 41
G T O £ g @ =] o 1 PSSR 42
4.3.4 Securing the .Net 1dentity SEIVENccocoeiieieie e 43
4.3.5 SPaWNING IMICTOSEIVICESciveeiiiuieiteeiieeee st esteete et te e ae e steeae e e steeaesneennas 44
4.3.6 Encryption and Decryption of Microservice payloads...........cccccevevererieenieeninneene 44
5 Testing and EValUBLIONccoiiiiiiiiiice s 46
5.1 Performance TESHINGcccvciiiieieee ettt ettt te e ae e enas 46
5.1.1 TESERESUILS ..ottt et st ne e sreenteaneenneenns 46
5.2 SECUIMEY TESTING ..ttt bbbttt e bbbt enes 49
COIVZ5 R AN 1 - Tox [M = V=0 [£0] o) o] [o PSSR 49
5.2.2 Attack 2 : Confused Deputy AACKcoovieiiiiiiiiiis e 51
5.2.3 Attack 3: Man in the Middle AaCK...........cccvrirriieiiee e 52
5.2.4 Attack 4: Eavesdropping attack against the .Net Identity server to capture
(01 £=T0 1= 01 AT PSSR 52
5.2.5 Attack 5: Replay attack with captured JWT token..........ccoevvviiieiieiiic e, 52
5.2.6 General SECUNILY TeSt CaSES.....ccuiiiieiiieiieeitie it ste et e et sae e snees 53
5.3 Study of Similar industrial solutions for MiCroservice SECUritycccccveervvrvrennne. 55
5.3.1 DZone : The INterceptor PAtterN.........cceiieeiieiii e 55
5.3.2 Nordic API : Use JWT Token to secure MiCrOSErVICESccccuerereeneeneneesienens 56
5.3.3 JHispter UAA fOr MICrOSErVICE SECUNILYccververieiiiriiiiiriisieeeeie e 57
GO0 g Tod 131 o] H OSSPSR 60
G T R U1 10 - TV PRSP 60

6.2 (I T2 =LA To] TR PTTRRRRRRRRRR 60

6.3

Future Enhancements

Page |vii

List of Figures
Figure 2.1-1 Uber Surge Pricing MiCroservices[28]ccovrvririniniiienciese e 4
Figure 2.1-2 eBay Technology STACKcccuevuiiiiiieii et 5
Figure 2.2-1 Netflix OSS Edger SErver SECUNLYcccooviirririieniieneesie e seenie e 6
Figure 2.2-2 Attack vectors to the Internal MiCro Servicesccccoevevvevveresiieseennens 6
Figure 2.4-1 The Holder Of Key token fIOW[10]ccooeiiiiiiiiiiiiecce e 10
Figure 3.1-1 Netflix OSS layered architeCturecccccvevevieseeie s 12
Figure 3.2-1 Eureka DiSCOVEIY SEIVICE......c.ciiiiieieiie et 14
Figure 3.2-2 Eureka Server implementation.............cccovveieiienieeic s 14
Figure 3.2-3 Eureka Discovery Client Implementationcccccevviieienieninneeeen 15
Figure 3.2-4 Eureka Service MONITONccoueiveiieiie e 15
Figure 3.2-5 Ribbon Load Balancer Implementation..............c.coovviieieiencienineene 16
Figure 3.2-6 Ribbon Client Side Load BalanCingcccccevveviveveiiieveece e 16
Figure 3.2-7 Hystrix Circuit Breaker State TranSitionccocoovvivieieienciesiseene 17
Figure 3.2-8 Hystrix Dashboardcccooeiiiiiiie e 18
Figure 3.2-9 Zuul Edge Server flOW...........coiiiiiiiiiiee e 18
Figure 3.3-1 Spawned MICIOSEIVICE..........ccuiiieieeieceesie et 19
Figure 3.3-2 Edge Server Authentication Promptcccooeverinininieneiescse s 20
Figure 3.3-3 Edge Server Authentication CONSeNt...........cccccevveveiiievecve e 20
Figure 3.3-4 Netflix OSS RESOUICE ACCESS.......cccvrerieieieniesie st 21
Figure 3.4-1 RAWCAP INtErfaceccccvveiiiieceee e 22
Figure 3.4-2 Composite Service MICIOSEIVICEccueiverierieiiiisesieee e 22
Figure 3.4-3 Wireshark Packet Capturing.........cccecviveeieeieiicse e 23
Figure 3.4-4 Product COmpOSIte REQUEST..........ccvieeieiiieriesie e 23
Figure 3.4-5 Json Response body in Wiresharkccccceoveveeiiiiic v 24
Figure 3.4-6 Eavesdropping ReSPONSE CONTENTcvvverierieiiriinesieiee e 24
Figure 3.4-7 Fiddler Request t0 MICIOSEIVICE........ccvveiveiieiieseee e 25
Figure 3.4-8 Fiddler Response analySingccoceveiiieniieieiisieeeeee e 25
Figure 3.4-9 Man in the Middle attack : LOg resultS..........ccoevveveiiiiiecieiicce e 26
Figure 3.4-10 Man in The Middle Attack : Resource Results............ccccocecrircinennen. 26
Figure 4.1-1 Extending the Edge Server JWT to Internal Networkc..ccceveeneeee. 27
Figure 4.1-2 Enable the Zuul server with Token Relaycccooviiiiiininiiiiie 28
Figure 4.1-3 FIiddIer REQUESTccuiiieiecc et 28
Figure 4.1-4 401-Unauthorized RESPONSEcoviiiieiieieniesie e 28
Figure 4.1-5 Token Relay attack : Response analyse...........cccovveveiieeiecieiieseesie s 29
Figure 4.1-6 Token Relay Attack : Resource response analyseccccocevvnenvnnnnne 30
Figure 4.2-1 Component DIagraM...........cocueiieieeiieiee e 31
Figure 4.2-2 Component FIOW Diagramccoceeeiriineneneieseseseee e 32
Figure 4.2-3 Overall Solution :Layered ArchiteCture...........cccoocvevieiiieiie v 33
Figure 4.2-4 .Net Identity Server : Layered ArchiteCture..........ccccoovvvviiinniennnnnnnne 34
Figure 4.2-5 Sequence Diagramccccveiieiieeiie st 36
Figure 4.2-6 Deployment DIagram........cccooeiiiirirenieieie et 37
Figure 4.2-7 Infrastructure layer class diagram.........cccccoovevieiiiiiie i 38
Figure 4.2-8 Provider layer Class DIiagramcccoeerereienenesesieeieese e 39
Figure 4.2-9 Middleware layer class diagramccccevveeiieiiievie e 40
Figure 4.3-1 ASP.NEt USErs tablecooiiiiiiiiiiieee e 41
Figure 4.3-2 HTTPS Request to Identity SErVercccccveiieiiievie e 42
Figure 4.3-3 HTTPS Request t0 Claims APcovoiiiiieeriieee e 43
Figure 5.1-1 Benchmark fIQUIeS.........cooiiiieiii e 46
Figure 5.1-2 Microservice Performance ANalySiS..........cccovviiiiriiniinienenene e 49

Figure 5.2-1 Eavesdropping : Wireshark Packet analyse.........ccccccooeviiiiinncnnnnnnnn. 49

https://d.docs.live.net/42603ef0bb491f63/MIS/MIS3104%20-%20Project/Documentation/Final/2014MIS023_Final_Thesis%20-%20Edited.docx#_Toc484905314
https://d.docs.live.net/42603ef0bb491f63/MIS/MIS3104%20-%20Project/Documentation/Final/2014MIS023_Final_Thesis%20-%20Edited.docx#_Toc484905324

Page | vii

Figure 5.2-2 Request to the Product COmMPOSIte SEIVICEccceeverierieiiesieieeie e 50
Figure 5.2-3 Decoded response : JSON CONEENEccevvevieiieieeie e 50
Figure 5.2-4 Confused Deputy Attack : Composite Service 404 Error..........cc.cocvueee. 51
Figure 5.2-5 Confused Deputy Attack : Invalid Token........c.cccceovviivviieiiciecic s, 51
Figure 5.2-6 Captured TOKEN........ccooiiiiiieeiere e 52
Figure 5.2-7 Failed Replay AMACKcccovviiiiiee e 53
Figure 5.2-8 Test Case : Spawning Microservice with Invalid Credentials................. 54
Figure 5.2-9 Test Case : Spawning Microservice with Invalid Credentials to Java Key
] (0] TP PUPR PRI o4
Figure 5.2-10 Test Case : Spawn a Microservice with invalid .Net Identity credentials

.. 55
Figure 5.3-1 The Interceptor Pattern[20]........ccccoveiiiieiiieiecieseee e 56
Figure 5.3-2 The Interceptor Pattern with Secured Web container[20] 56
Figure 5.3-3 Nordic API : SSO Architecture[21]......cccccevvriieiieeieiicieee e 57

Figure 5.3-4 JHipster OAUth ArchiteCture[22].......ccoeverereniiiriiieiee e 58

Page |ix

List of Tables

Table 3.1-1 Netflix OSS COMPONENLS.....cccvciiiiiiiiieiiiie e 11
Table 4.3-1 Identity Server Roles and Authorization............ccccocevieiiie s, 44

List of Abbreviations

Page |x

Acronym Full Name

ADO Advanced Data Object

AES Advanced Encryption Standard
AMQP Advanced Message Queuing Protocol
AOL America On Line

API Application program Interface
AWS Amazon Web Servers

CA Certificate Authority

CORS cross-origin resource sharing
DDD Domain Driven Design

HIPPA Health Insurance Portability and Accountability Act
HMAC hash-based messaging code
HOK Holder of Key

HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol

1S Internet Information Services
IPC Inter Process Communication
JSON Java Script Object Notation
JWT JSON Web Token

LB Load Balancer

MiTM Attack | Man in The Middle Attack

MQ Message Queue

MSA Micro Services Architecture
MVC Model View Controller

Netflix OSS Netflix Open Source Software
ORM Object Relational Mapper
OWIN Open Web Interface for .NET
PC Personal Computer

PKI Public Key Infrastructure

POJO Plain Old Java Objects

POP Point Of Presence

REST Representational State Transfer
SAML Security Assertions Markup Language
SCB Spring Cloud Bus

SOA Service Oriented Architecture
SSL Secure Socket Layer

SSO Single Sign On

SSO Single Sign On

TLS Transport Layer Security

https://www.google.lk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjvs7STu8jSAhWLMo8KHRwfAN4QFggZMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&usg=AFQjCNEl8BGxaQkOvqrVsj9I7PNUiZyIkQ&sig2=WHy9xPY9sCT3-mUK-Rkkjw

Page |xi

UAA User Account and Authentication
URI Uniform Resource Identifier

URL Universal Resource Locater

URL Uniform Resource Locator

XSLT Extensible Stylesheet Language

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Locator

Page |1

1 Introduction

With the advancements in internet infrastructure and bandwidth, content streaming over the
Internet has increased during the last decade. Netflix is one of the leading video content
providers who uses streaming technologies to deliver the video content to the end user. End
clients are using wide range of endpoint devices such as Smart TVs, Streaming media players,
Gaming consoles, Set-top boxes, Blu-ray players, Smartphones , tablets,PC and Laptops [1].
Netflix supports over 80 million streaming subscribers worldwide and average of 20 million
access the streaming services simultaneously [2].

Netflix is using the Netflix OSS open source framework to support the streaming services. To
support high demand and high volume of data exchange, Netflix needs more resilient and
robust architecture. Netflix adopted the Microservices architecture pattern in its early stage of
development and formalized a comprehensive standard of industrial usage. Netflix uses the
Amazon Web Services (AWS) to host Micro Services back end and its characteristics of on-
demand provisioning helps to spawn any number of services when the demand is high.

1.1. Research Domain

1.1.1 Research Problem

Many industrial level implementations of the Micro Services architecture focuses only on the
perimeter level security. This is true in the context of Netflix OSS as well. The Netflix OSS
secure the perimeter level Edge servers using a JWT token from unauthorized access. This is
the only programming level secure precaution been made in order to protect the Edge service.
But the internal Micro Services are left unsecured. The internal Micro Services are vulnerable
to internal attacks. This research focuses on how to secure the internal micro services and
implement proper Authentication and Authorization mechanism in order to reduce internal
attack vulnerabilities.

1.1.2 Significance of the Research

The identified problem is the insecure nature of the Netflix OSS internal Micro Services which
can lead into internal attacks and data breaches. The research is concentrated on the REST API
security hardening in the context of Micro Services.

Even though the research is based on Netflix OSS framework, the research outcome can be
applied to any generic MSA which is based on the REST API.

The problem this research attempts to address is “How to secure Netflix OSS Micro Services
REST APIs from internal attacks”. There are plenty of open source Microervices architecture
frameworks in the industry where develpers can adhere to. But most of these frameworks do
not implement any internal security mechanishms to protect Microservices from unauthorized
access. Hence, those frameworks do have vulnerabilities of internal attacks. This is a crucial
factor if the internal microservices are comminicate sensitive information. The reseach is
focusing on finding an optimal method to secure internal Microservice API calls from internal

Page |2

attacks. The Netflix OSS is used to apply selected secure mechanisms and test the outcome of
the reaserch.

1.1.3 Goals and Objectives

The goal of this project is identifying the best suitable methodology and technology to secure
Netflix OSS Micro Services from internal attacks and data breaches. Authentication and
Authorization of Internal Micro Services calls is the main objective and maintaining the
integrity of the service call is also comes as a secondary objective of the project.

Selected security mechanism should not hinder performance and scalability of the existing
Microservices architecture.

1.1.4 Limitations and Assumptions

The research will be carried out to secure Netflix OSS Micro services from internal
vulnerabilities.

Netflix OSS source code is an open source project and the code is available at Git hub[13]. The
Proposed solution will be implemented and tested against the source code available at Netflix
OSS Git repository.

The streaming technology used at Netflix is a propriety technology and hence, it is not available
in the open source Netflix OSS platform. The available code in the Git hub[13] represent
sample textual data which is hard coded in the end point services to demonstrate the behaviour
of the Netflix OSS Micro Services framework. Security implementations and testing will be
using the same sample data shipped with the available source code.

The project assumes the researching security technologies and methodologies are independent
from the payload within the Netflix OSS Micro Services calls.

Page |3

2 Literature Review

This section covers the related literature for this research.

2.1 Microservices

Microservices security is the focused research area in this study where the main objective is
to implement and introduce optimal security mechanism to prevent from internal attacks.

The Micro Services Architecture (MSA) is evolved from the Service Oriented Architecture
(SOA) as a specialization[14]. Concepts such as Domain Driven Design (DDD) and Dev
Ops helped to enable the age of MSA. Time to the market is a crucial factor in nowadays
software and the Dev Ops concepts enable it with continuous delivery. Monolithic system
architecture hinders the flexibility of using concepts such as Dev Ops and DDD. The main
MSA features are as follows][3].

Domain-driven design.
Continuous delivery.
On-demand virtualization.
Infrastructure automation.
Small autonomous teams.
Systems at Scale

In MSA, services and protocols should be lightweight, smaller and different to Monolithic
SOA. Each Micro Service should adhere to the Single Responsibility principle in order to
improve the independency of each Micro Service. This in turn makes it easier to add qualities
and functions to the service systems at any given juncture. It also enables the continuous
independent delivery[4].

The Microservices architectural pattern adopted by many industry leading companies including
Netflix, Amazon, Tyro Payments, eBay and Uber. Most of these organizations moved from a
single Monolith architectural pattern to Microservices[24]. Requirements for architectural
features such as high Resilience, High Availability, Service Oriented Architecture, and Rapid
service provisioning during peak hours are common among services provided by said
organization. The Microservices architectural pattern guarantees the delivery of such features
in a dynamic environment where demand fluctuates rapidly by the client usage.

Following sections illustrate usage of Microservice architectural pattern in the industry in order
to get understand how other Microservice frameworks are operating compared to the selected
Netflix OSS Microservices.

2.1.1 Uber Microservices

Uber moved from an N-tier Monolith architectural pattern to a Microservices architectural
pattern when more clients are joined as Drivers and Passengers[25]. Uber migrated the legacy
Python based back-end technology stack into the Microservices using Tornado which is an
asynchronous framework for Python. This migration helped the Uber to move into the
Microservices based architecture without re-writing the existing business logic but just
modularising and redefining new communication architecture.

Page |4

The Uber Microservices architecture featuring Hyperbahn network multiplexing framework
along with HAProxy as the routing engine within Microservices. Hypebahn also solves the
typical Microservice problems such as Service discovery, Fault tollarence and Real time circuit
breaking.

The Uber Mciroservices are provisioned using Docker containers.

Following picture depicts an example of Uber surge pricing system is operating using sevaral
Microservices[28]

Network

Requester Provider 1 Device 163 Transactior
Management Manager

Requester, Provide
Data Parsed
m.n Data

143
Systen Pricing Rules

Databases

Historical Data
140 141

Figure 2.1-1 Uber Surge Pricing Microservices[28]

2.1.2 eBay Microservices

eBay started business 1995 using a Monolith system architecture. This system architecture
contains Perl, C++ and XSLT.

Eventually eBay has evolved to the Microservices architecture using Java platform. eBay is
using Hadoop infrastructure leveraging Storm, Kafka, Spark as the Data-centric back-end of
the application[30]. The eBay Front-end application is developed using HTML5 along with
JQuery Ajax and Java[31].

The middle layer of the eBay application stack is using Raptor.io , Spring Boot , Embedded
Tomcat containers and Java[32].

http://www.infoworld.com/article/2909898/big-data/review-storms-real-time-processing-comes-at-a-price.html
http://www.infoworld.com/article/3023050/open-source-tools/infoworlds-2016-technology-of-the-year-award-winners.html#slide16
http://www.infoworld.com/article/3023050/open-source-tools/infoworlds-2016-technology-of-the-year-award-winners.html#slide8

Page |5

Application Code

Spring Boot

Embedded Container (Tomcat)

Java 7, Java 8

Figure 2.1-2 eBay Technology stack

The figure 2.1-2 depicts the technology stack of eBay along with set of Microservices.
Microservices are modularised based on the functionality.

2.2 Netflix Micro Services

Netflix Microservices are based on Java Spring MVC framework and using numerous other
tools such as Eureka , Hytrix , Ribbon and Zuul edger server | nthe Microservices ecosystem.

The Netflix OSS Microservices’ using perimeter level security using OAuth2 JWT token[5].
OAuth2 tokens are issued using Spring MVC based Authentication Server. The Edge server
communicates with the Spring Authentication server upon receiving of JWT via Rabbit MQ
message queue. Authentication server authenticates the incoming JWT and notifies the Edge
server.

Page |6

Legend

+ CB = Circuit Breaker (Hystrix)
+ LB = Load Balancer (Ribbon)

Edge server OAuth Token Relay

(Zuul) Load Balancer
(Ribbon)

- - API Services - i ' '
OAuth Monitor Dashboard
Authorization OAuth Resource Server
Server (Hystrix dashboard

(spring-cloud-security) + i
CB/LB Turbine)

Figure 2.2-1 Netflix OSS Edger Server Security

But the internal services are not secured for Authentication and Authorization. Hence it is prone

to internal attacks as depicted in the following picture.
~O—
- —) —

— Composite
Service
SL /W .é-) Care
Q@ service
Consumer Edge Servers |

< L
_’ Composite
Applications {Zuul) Service
. A Core
> API > senice
Ser\dte

mpnslte
Serwne

Lonmsed Deputy Ntark—

n
— = —
Secw Non Secured
Connection Connection Attack Eavesdropping Attacker
p.

Figure 2.2-2 Attack vectors to the Internal Micro Services

Figure 2.2-2 depicts the graphical view of Internal attack vectors of Netflix OSS
Microservices.

2.3 Netflix OSS Internal Micro Service Vulnerabilities

This section illustrates existing vulnerabilities of the Netflix OSS Microservices in-terms of an
internal attack.

2.3.1 Eavesdropping

Since the Netflix OSS internal micro services do not implement any privacy or security
mechanism, an internal attacker can listen to the communication in between Microservices.
This can be demonstrated using a packet capturing tool as follows.

Page |7

In this attack, the Microservice ‘A’ calls to the Microservice ‘B’ using TCP protocol and the
attacker can see the request from A to B and the response from B to A with its content. Hence
any unauthorized internal attacker can gain access to any messages or content flowing in
between Microservices.

2.3.2 Confused Deputy Attack

The Confused deputy attack is , in the context of internal micro services refers to a situation
where an adversary can trick a calling service (deputy) into making calls to a downstream
service on his behalf that the calling service is not authorized to [3]. This is possible in the
Netflix OSS micro services because the called micro service do not perform any authorization
about calling Microservice[3]. Hence an Adversary can act as a legitimate internal micro
service and perform successful data retrieval upon calling other micro services.

2.3.3 Man-in The Middle Attack(MiTM)

An adversary who has access to the network can spawn in an arbitrary Microservice and
intercept an ongoing Inter-micro service call. The malicious Microservice can forward the
intercepted communication with malicious content or any required modifications to the request.
The Victim Microservice will reply to the Malicious micro service assuming it is a legitimate
Service. The Malicious microservice can alter the request as well and reply to the Service
originator as a legitimate endpoint.

2.3.4 Replay attacks

An adversary can eavesdrop an internal Microservice communication and can perform a
Replay attack later. This is possible because the Netflix OSS Microservices do not perform any
authentication or Authorization in calling Microservice.

2.4 Possible Technologies to Secure Netflix OSS Micro Services

There are few possible ways to provide the solution effectively to secure the Micro Services
from internal attacks. The following section is elaborating these possibilities.

2.4.1 HTTP Basic Authentication

In HTTP basic Authentication, the client is sending credentials using a standard HTTP header
to the server or endpoint service. The Receiver checks the received credentials, perform
authentication and allowed / disallowed access to the service.

The main advantage of this method is, it is a well understood and well supported protocol[3].
But performing the HTTP basic Authentication over HTTP is problematic, because the
credentials are passed to the endpoint server in plain text. The remedy to this problem is using
TLS in the channel. TLS is the standardized method to communicate sensitive data such as
credentials[23]. HTTPS guarantees the integrity and authenticity of the request and the
payload. In order to use TLS, the end point services need to maintain Server certificates. The
Certificate Authority needs to be managed and functionalities such as Certificate Issuing and

Page |8

Revocation are also needed to be managed. This is a problematic scenario in a Microservices
environment because of its characteristics. Microservices characteristics such as rapid
provisioning and ability to shut down services rapidly hinder managing Certificates and related
functionalities.

2.4.2 Open Id Connect

Open Id connect which is a framework built on top of OAuth 2.0 protocol is an identity
framework and it extends the process of authorization of OAuth 2.0 for authentication
mechanism implementation. Open Id Connect can support SSO for any identity provider or
any website. OAuth 2.0 framework of authorization can provide an access resource to the
customer to gain access on behalf of owner resource.

Open Id Connect authorizes many types of customers for example Java customers, Mobile
customers and web based customers in order to verify their user with server based authorization
with OAuth 2.0 as its base. Open Id Connect is accessible on over 50,000 plus websites globally
and over one billion URLs enabled by Open Id Connect are able due to providers such as AOL,
Yahoo, Google and Facebook [9].

The Open Id Connect supports both Authorization and Authentication of the calling service. It
is a light weight protocol and have minimum impact to the Microservice eco system. The
credentials need to be managed and secured in the client or in the calling service. One of the
main disadvantages of using Open Id Connect framework is , it is not a matured technology in
the market yet. Hence there could be unidentified security flaws and vulnerabilities.

2.4.3 JSON Web Token (JWT)

JSON objects are transmitted between two or more parties using JSON Web tokens. JWT is an
open standard defines by RFC7519. The compact and self-contained JWT tokens can be
verified and trusted by the receiver because it is digitally signed[15]. JWT can be signed using
a shared secret key (HMAC) or by Public / Private key pairs using RSA.

Authentication and Information exchange are the main usage of the JWT. The Identity server
generates a JWT upon successful verification of user credentials and returned to the client. The
client needs to store the acquired JWT securely and should send it when the client needs to
access protected route or resource. In HTTP the JWT can be passed using the
Authorization header using the Bearer schema.

Because JWT is a stateless authentication mechanism, the user state is not required to save in
server memory. The server's protected routes or resources will check for a valid JWT in the
Authorization header. If the header contains a valid JWT, the calling client will be allowed to
access protected resources. JWT self-contained all the necessary information required to
perform authentication or authorization. Hence, it is reducing the need to query the database
multiple times [15]. The JWT contains less payload compared to SAML and XML. These two
aspects are few of the main advantage in the context of Microservices in-terms of performance.

JSON parsers are common in modern programming languages and frameworks. Hence, it can
be integrated in to any languages with less effort.

Page |9

The JWT mainly contains Header , Payload and the Signature. The header contains the type of
the Token and the hashing algorithm that used such as HMAC SHA256 or RSA. The Payload
contains claims such as issuer , expiration time and subject. Signature verifies the owner of the
Token who signs it.

The Netflix OSS Edge server is secured using the JWT tokens in the perimeter level.

244 HMAC Over HTTP

An HMAC is a hash function where applies to the body of a message along with a secret key.
[16]. This approach using a hash-based messaging code (HMAC) to sign the request. The
client sending an identifier for the shared key and HMAC. This operation uses standard HTTP
header. The server then uses its own copy of the shared key and the request body to recreate
the hash. If it matches, it allows the request.

One of the definite advantage in HMAC is , it is hard to do a MiTM attack. If a man in the
middle alters the request, then the hash won’t match and the server knows the request has been
tampered with. And the private key is never sent in the request, so it cannot be compromised
in transit.

The request is easy to cache when using the HMAC authentication because it is using a shared
key. Hence the same request can be persist in the cache.

Both the client and server need a shared secret that needs to be communicated using another
secure protocol. This is hard to perform when requiring rapid provisioning which is one of the
mandatory requirement when it comes to the Microservices. HMAC is still not developed and
recognized as a standard yet. It is still using just as a pattern[3]. Hence, most of the
implementations are not yet standardized. Since the HMAC using the same key, it is
vulnerable to replay attacks if the request content is same.

2.45 API Keys

All public APIs from services like Twitter, Google, Flickr, and AWS make use of API keys.
API keys allow a service to identify who is making a call, and place limits on what they can
do. Often the limits go beyond simply giving access to a resource, and can extend to actions
like rate-limiting specific callers to protect quality of service. A more common approach is to
use a public and private key pair and manage the key server centrally.

The API Keys solution is easy to development and easy to perform a deployment and managing
as well. It also supports rapid provisioning and decommissioning of Microservices as well
because of minor footprint to the underlying eco system.

The major disadvantages of this method are , relying on 3" party tools and centralized key
management. Centralized key management can lead in to central point of failure problem while
relying on 3" party tools is not an industrial level standard practice.

Page |10

2.46 Holder of Key Tokens (HOK)

The Presenter of the JWT could declare as this specification defines a JSON Web Token (JWT)
and processes a (PoP) ‘Proof of Possession key which could be cryptographically confirmed
by the recipients’ proof of possession of the key by the presenter. Presenter being a ‘Holder of
Key’ is described from Proof of possession of a key scenario[10].

\ | tommmm e +
\ |--(3) Presentation of -->|
| | JWT w/ Encrypted |
| Presenter | PoP Key |
\ | |
| |<-(4) Communication ---->|
\ | Authenticated by
- + PoP Key

|
|
|
(1) Sym. (2) JWT w/ | Recipient
| PoP | Encrypted [
| Key | PoP Key |
v | |
- + |
| | |
| | |
| |<-(0) Key Exchange for ->|
\ Issuer | Key Encryption Key |
| | |
| | |
\ | F +
o +

Figure 2.4-1 The Holder Of Key token flow[10]

Security Assertion Makeup Language 2.0 (SAML 2.0) could be considered as another used
technology as a Holder of Key Token.

There is no commercial implementations of the HOK yet. Hence, it is not a battle tested
method.

Page |11

3 Design of Netflix OSS Microservices

3.1 Netflix OSS Architecture and Product Components

The Netflix OSS adopted a Micro Services based SOA architecture. The main components and
their responsibilities are as follows

Netflix OSS Component Usage

Netflix Eureka Service Discovery Server

Netflix Ribbon Dynamic Routing and Load Balancer

Netflix Hystrix Circuit Breaker

Netflix Turbine Microservice Monitoring

Netflix Zuul Edge Server

Log Stash Centralized Logging

Security Monkey Monitor and secure Netflix OSS perimeter
network

Scumblr An Intelligence gathering tool about
functionality of Netflix OSS Microservice
eco system

Table 3.1-1 Netflix OSS Components

Page |12

Figure 3.1-1 depicts the Netflix OSS layered architecture

- Service Layer — Edge Server (Zuul) “

API Services

Product APls

Circuit Breaker (Hystrix)

Composite Services

Product Composite

Circuit Breaker {Hystrix)

/
~

Core Services

8%1 8%2 80&3 DB n

Figure 3.1-1 Netflix 0SS Iayered architecture

The service consumer making a REST API service call to the service layer’s Edge server. The
Edge server is implemented using Java Spring MVC and contains RESTful API interface to
integrate with external requests. The service layer Authenticate the request using the OAuth
Authorization Server in the API Service layer.

The Ribbon load balancer manages the communication in between Microservices along with
Eureka service discovery. The Hystrix circuit breaker is responsible for graceful failover when
there is an error in a functionality of a Microservice.

The Composite service is responsible for amalgamate payloads returned from the Core service.
Core services are considered as the resource end-points where it communicates with the data

Page |13

layer. The Turbine dashboard is using to monitor the Microservice ecosystem using its own
Web interface.

Following section discusses the Netflix OSS components in detail.

3.2 Netflix OSS Components

This section illustrates important components of the Netflix OSS Microservice ecosystem.

3.2.1 Spring Cloud Framework

The Netflix OSS is built on top of the Spring Cloud framework. Spring Cloud framework
delivers tools to quickly build some of the common patterns in distributed systems such as
Circuit breakers, Configuration management , Service discovery , Control bus and leadership
election.

The Spring cloud contains following two main components to support the Distributed
application development

3.2.1.1 Spring Cloud Configuration Server

The Spring Cloud Configuration Server enables to horizontal scalability of the framework with
centralized configuration. The Java properties and YML files are used to represent the
configuration. The Configuration Server merges these files into environment objects. These
Configurations can be accessed as REST APIs and can be queried by any application directly
to obtain configuration data.

3.2.1.2 Spring Cloud Bus

The Spring Cloud Bus handles the technical management aspects of the application instances.
The Advanced Message Queuing Protocol (AMQP) is used for messaging and it is responsible
for client side bindings as well. The pluggable architecture of SCB enables seamless
communication of new Microservices which spawning on-the-fly.

The Netflix OSS components using wrappers for the Spring Cloud components. The Eureka
discovery service, Ribbon load balancer, Hystrix Circuit breaker and The Zuul edge server are
the main Netflix OSS components which are implemented as wrappers to the Spring cloud
components.

3.2.2 Eureka

The Eureka implements the Service Discovery pattern [11]. It is using a service registry which
is updating dynamically upon spawning of a new service.

Page |14

3. Connect
Consumer = Producer

A
1. Register

2. Discover [
I Service Reqistry

Figure 3.2-1 Eureka Discovery Service

Adding the spring-cloud-starter-eureka-server dependency to the Spring boot application
enables the Eureka Server deployment to the application. The @EnableDiscoveryClient
annotation enables client to probe the Eureka server by adding the server instance to the
Configuration.

import org.springframework.boot.SpringfApplication;

import org.springframework.boot.autoconfigure. SpringBootiApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

BSpringBoothpplication
EEnableEurekaServer
@EnableDiscoveryClient

Jpublic class Eurekalpplication {

] public static wvolid main({String[] args) {
SpringApplication.run(Eurekafpplication.class, args);

: }

Figure 3.2-2 Eureka Server implementation

The clients can participate the service discovery by using the @DiscoveryClient annotation
which includes in the spring-cloud-starter-eureka dependency. The Discovery client provides
IP addresses, ports, and other relevant details about the service instances registered with Eureka
by using the service’s logical identifier.

Page |15

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;

@SpringBoothpplication
EEnableDiscoveryClient
pukblic class RecommendationServicefpplication {

public static void main(String[] args) {
SpringiApplication. run(RecommendationServicefApplication.class, args);

}

Figure 3.2-3 Eureka Discovery Client Implementation

Upon successful deployment, the Eureka Dashboard provides the health status and other useful
information about the Microservices eco system. The main Dashboard displays registered
instances with Eureka Discovery Service and server details.

Eureka »
&l O localhost:3761 * B ® @ = i @ FE = H @ PR S

ii Apps Ml MaLeams I Projects Related il MiS [} CSGI- il Musik—J§-ASP.NET-Forums | Th- @ Eurcka @ Hystrix Monitor & Information Security » |l Other bookmarks

Instances currently registered with Eureka

Application AMIs Avallability Zones Status

EDGESERVER n/a(1) (1) UP(1)- Co

PRODUCT n/fa(1) (1) UP(1)-Co

PRODUCTAPI n/a(1) (1) UP (1)

PRODUCTCOMPOSITE n/fa(1) (1) UP(1)-Co

RECOMMENDATION n/a(1) (1) UP(1)- Co

REVIEW n/fa(1) (1) UP (1) - CodeRed-Dev:review:f4a8740fb726f7ea3a3fe3af32c1fcad

General Info

Name Value

total-avail-memory 445mb

environment

num-of-cpus 8

Current-memory-usage 203mb (45%)

server-uptime 00:08

registered-replicas http:/flocalhost:8761/eureka/
unavailable-replicas http:/flocalhost8761/eurekal,

available-replicas

Figure 3.2-4 Eureka Service Monitor

The Eureka service monitor is running on a predefined port (8761) and contains a Web
interface. It is capable of displaying all the Microservices instances that are running in the
Netflix Microservices ecosystem. General information such as Memory consumption of all
Microservices, server uptime, Number of CPUs in the hosting environment and available
memory.

User can navigate to the particular Microservice instance’s link in the Eureka monitoring tool
to identify the respective port which that Microservice is running.

Page |16

3.2.3 Ribbon Load Balancer

The Ribbon load balancer is populated with the dynamically spawned server list obtained from
Eureka server. It provides a sophisticated client side IPC library with configurable load
balancing and fault tolerance.

The Netflix OSS integration can be made by adding the spring-cloud-starter-ribbon
dependency to the Spring Boot application. Ribbon is using client side load balancing by using
the LoadBalancerClient in the client application as below.

ERestController

Jpuklic clas= ProducthApiService {
private static final Logger LOG = LoggerFactory.getlogger (ProductipiService.class) !
private RestTemplate restTemplate = new RestTemplate ()

BAutowired
private LoadBalancerClient loadBalancer;

@RequestMapping ("/ {productIdl ™)

@HystrixCommand (fallbackMethod = "defaultProductComposice™)

pukblic ResponseEntity<5String> getProductComposite(
@PathVariable int productld,

@RequestHeader (value="Luthorization”) String authorizationHeader,
] Principal currentUser) {
LOG.info {("Producthpi: User={}, i with productId={}", ecurrentUser.getName (), authoriz:
URI uri = loadBalancer.chaooze (' ite™).getUri() !
String url = uri.toString() + ' /" + productId;

LOG.debug{"GetProductComposite from URL: {}", url):

ResponscEntity<String> result = restTemplate.getForEntity(url, String.class) !
LOG.info ("GetProductCompo tatus: {}", result.getStatusCode());
LOG.debug {"GetProductComp (7, result.getBody()):

retuorn result;

Figure 3.2-5 Ribbon Load Balancer Implementation

Availability filtering and weighted response time are also featured in the Ribbon LB as
additional load balancing algorithms.

3. Load balanace connections
Consumer |Load Balancer | r----------------------—---------—- > Producer

1. Reqister ‘ ‘

2 Obtain Server list |

Service Reqgistry

Figure 3.2-6 Ribbon Client Side Load Balancing

Page |17

3.2.4 Hystrix Circuit Breaker

Hystrix implements the fault tolerance design pattern “Circuit Breaker “for distributed systems.
Hystrix placed in-between the service and its remote dependency. Hystrix counts number of
subsequent failed requests within a configurable time period and if the failure threshold is
reached, the circuit is tripped to open. When the circuit status is open, calls are no longer made
to the dependency and customized behaviour (Notification, Exception, returning null data or
calling a different dependency) would take place. Hystrix using RabbitMQ as the distributed
message queue to perform AMQP message passing.

Closed Open
on calll pass through)
1/ fail
» call succeeds / reset count Trip breake: on ca ,
O call fails / count failure on timeout/ attempt reset
threshold reached / trip breaker
ry

Trip breaker Attempt Reset

Half-Open

on call / pass through
Fesel call succeeds / reset
call fails / trip breaker

Figure 3.2-7 Hystrix Circuit Breaker State Transition

The state machine will transform into the “half open” state if the dependency is healthy again.
Requests will be passing through to the dependency again and if succeeds , the state would be
transformed to the closed state and the circuit is tripped to close.

The spring-cloud-starter-hystrix dependency contains the Hystrix implementation and
annotating the @EnableCircuitBreaker and @HystrixCommand enables the circuit breaker in
any spring bean method.

@HystrixCommand(fallbackMethod = "defaultProduct")
public ResponseEntity<Product> getProduct(int productld) {
URI uri = util.getServiceUrl("product", "http://localhost:8081/product");

String url = uri.toString() + "/product/" + productlid;
LOG.debug("GetProduct from URL: {}", url);

}

Request metering, number of failed, successful and short circuited request and response time
histogram are important telemetry that Hystrix provides apart from its main functionality.

Hystrix Stream: APIl Gateway Circuit Breakers

Page |18

Circuit Sort: Error then Volume | Alphabetical | Volume | Error | Mean | Median | 90 | 99 | 99.5
getMovie reviewsFor getRecommendations
0 01100.0 % 69| 0/0.0 % o 89 0(0.0%
86 0 ’ ~m 00 =~ 00
2 o o
Host: B.8/8 Host: B.5/8 Haost: 6.5/
ster: 6.8/8 cluster: 6.5/8 Cluster: §.5/8
Circuit Oper Circum (Circuit :
Hosts Bk Oms Hosts 1 Blrh 15mas Hosts 1 B0eh Ivmia
bWadian Gt s Wadan 12ms jFir Ay Ims Mocan Hims. et Bl
Kdgan 8.5k oms Kdosan 13ms 595 41ms hosan Mms 9.5 B0ms
Thread Pools sort: Alphabetical | Volume |
ReviewsintegrationService CatalogintegrationService Reco...nsintegrationService
Hest: 0.0/ Hest: 0.0/8 Host: 0.0/8
star: 0.0/ ciuster: 0.0/8 cluster: 0.0/8
Active 1] Max At o Active 1] Max Actia o Activi Q Wax Actwa 1]
s 1] Exmcutions o s (1] Expcufions o Chnund 1] Expoytors [+]
Pool Sieg 10 st Sing B Pocd Sizg 10 O Sing B Pl Sizg 10 O Sien B

Figure 3.2-8 Hystrix Dashboard

3.2.5 Zuul Edge Service

Zuul acts a perimeter service in combination with Netfix OSS Ribbon and Hystrix to provide
resilient API services where clients can access. Zuul implements the API gateway design
pattern and it avoid need to manage CORS(cross-origin resource sharing). Authentication is
handled independently for all back end support services.

The Zuul performs following functionality as the Edge service.

1.
2.
3.

Dynamic Routing : Request are routed dynamically to back end services as needed.
Load Shedding

Static Reponses handling : If needed building responses independently without using
of back end services.

Authentication and Security: using OAuth 2 tokens to secure edge services using an
Identity server.

Monitoring

Service
Registry

calalog IIIIIIIII
. Service H
Py '
i H
L .
E " '
API 1 > snuu?ws _________ '
Gateway Load N ervice H
Balancer H
.
'
Recommendations H

Service

Figure 3.2-9 Zuul Edge Server flow

Page |19

Zuul is using dynamically allocated ports and avoiding port conflicts to minimize
administration.

3.2.6 Undertow

Undertow is the web server used by Netflix OSS to host its service APIs. Undertow is written
in Java and operated in a very light weight manner.
The undertow.jar file is less than 1MB and with a simple embedded server it uses less than
4MB of memory. Undertow’s composition based architecture allows to build a web server by
combining small single purpose handlers [12]. It can be operated as fully fledged Java EE

servlet container or low level non-blocking handler. Undertow provides support for the Web
sockets as well.

3.3 Functionality of Netflix OSS Microservices

This section illustrates functionality of Netflix OSS Microservices such as spawning of
Microservices and internal communication mechanism.

3.3.1 Spawning Microservices

Each of the Microservices can be spawned with spring bootrun command as follows.

start /D microservices\core\product-service gradlew bootRun

The successful service spawning can be monitored using respective command windows.

Figure 3.3-1 Spawned Microservice

3.3.2 Edge Service Security

Netflix OSS Edge service is secured using OAuth 2.0 access token . Adding dependencies
spring-cloud-security and spring-security-oauth2. Adding @EnableAuthorizationServer
enables the usage of the Auth server in the required application.

Appendix A2 contains the source code for the OAuth Authorization implementation.

The Sample Netflix OSS application using in-memory allowed grant flow, scopes , grant types
and approved clients. This is a simulation of a OAuth Authorization server.

http://cloud.spring.io/spring-cloud-security/
http://projects.spring.io/spring-security-oauth/

Page |20

The Netflix OSS Demo code contains an in-memory authentication server. The user credentials
are persisted in a Configuration file for simplicity.

The Authentication server request credentials in order to generate an OAuth token for the Edge
server.

x
Authentication Required |

http:/flocalhost:9999 requires a username and password.

User Mame: ||

Password:
Log In Cancel
Figure 3.3-2 Edge Server Authentication prompt

Upon providing valid credentials, the Authentication server generates a consent to confirm by
user.

&« (&8 (i) localhost 9995 /uaa;

it Apps [} Maleams [ProjectsRelated [} Mi1s [} CsGI

OAuth Approval

Do you authorize 'acme’ to access vour protected resources?

pauth/authorize?respo

B Musik

* scope webshop: ' Approve '® Deny

Authorize

Figure 3.3-3 Edge Server Authentication Consent

Upon Approving, the Authorization server generates a JWT access token.

access_token=c2df4cd2-ffa6-4e14-a640-
49ac6ce3d231&token_type=bearer&state=48532&expires_in=43199

User can access Netflix OSS resources using the generated an access token. The resource
access is demonstrated using the Chrome Postman tool. The access token is generated with
expiration time, type and token state parameters.

The Netflix OSS resource access is demonstrated here using the Postman tool. The request
requires HTTP headers “Accept” and “Authorization”. The generated bearer token by the
Netflix OSS OAuth Identity server needs to pass-in as the Authorization HTTP header. The
edger server using this bearer token to perform Authentication of the incoming request. The
result is displayed in the Postmen tool’s response section.

httpiiflocalhostE7esd X +

GET v

Authorization Headers (2)

Accept
Autharization

key

Body Cookies Headers (11) Tests
Pretty Raw Preview JSON
1~ {
2 "productId™: 1,
3 "name": "name",
4 "weight™: 123,
5 "recommendations®: [
&~ {
7 "recommendationId”: 1,
8 "author”: "Author 1",
9 "rate": 1
18 Is
11~ {
12 "recommendationId”: 2,
13 "author": "Author 2",
14 "rate": 2
15 Is
16 ~ {
17 "recommendationId”: 3,
18 "author": "Author 3",
19 "rate": 3
28 }
21 1s
22~ "reviews": [
23~ {
24 "reviewId": 1,
25 "guthor”: "Author 1,
26 "subject™: "Subject 1"
27 }s
28 ~ {
29 "reviewId": 2,
3@ "author”: "Author 2",
31 "subject™: "Subject 2"
32 }s
33~ {
34 "reviewId": 3,
35 "author”: "Author 3,
36 "subject™: "Subject 3"
37 }
38]
33 Y

http:/flocalhost:8765/api/product/1

Pre-request Script Tests

applicationfjson

bearer c2dfdcd2-ffab-de14-ab40-LETdiTa

dl

Figure 3.3-4 Netflix OSS Resource Access

Page |21

Mo Environm

Params

m
X

1]
X

Page |22

3.4 Security Issues in the current application

Even though, Netflix OSS is secured in the perimeter level using a JWT access token, internal
security is not considered in the current implementation. Following section illustrates possible
internal attacks that can be carried out to Netflix OSS Microservices.

The RAWCap, Wireshark and Fiddler are used to conduct these attacks to the internal Netflix
OSS Microservices. Wireshark is not able to capture loopback traffic and hence, RAWCap is
used to capture the loop back tcp port traffic. The generated pcap files are analyzed using the
Wireshark tool.

B Ch\Users\priya\Documents'\Projects\MIS-Git\ Tools\RawCap.exe

Figure 3.4-1 RAWCap Interface

3.4.1 Attack 1 : Eavesdropping

The attack is conducted against the Composite service Microservice. The Composite service
Microservice is spawned in the port 42034 during the testing attack phase.

) codered-dev:42034/info x

<_ G @' codered-dev:42034/info

is Apps | Maleams [} Projects Related [MIS

Figure 3.4-2 Composite Service Microservice

The captured packets are analysed using Wireshark as illustrated below.

Page |23

‘ NetflixAttack.pcap
File Edit View Ge Capture Analyze Statistics Telephony Wireless Tools Help

amse ResZFISEEQRQAQH

[]htp
MNo. Time Source Destination Protocol Length Info
i 331 3.482831 127.8.0.1 127.9.8.1 HTTP 287 HTTP/1.1 28@ OK (application/json)
i 391 4.389964 127.0.0.1 127.0.8.1 HTTP 411 PUT /eureka/apps/REVIEW/CodeRed-Dev:review: 2dc611bdbebl8261a72e6f4fcBdebsbb?st
392 4.389964 127.0.0.1 127.9.9.1 HTTP 431 PUT /eureka/apps/PRODUCTCOMPOSITE/CodeRed-Dev:productcomposite:69a782ef925fces
396 4.39@964 127.8.0.1 127.8.8.1 HTTP 184 HTTP/1.1 280 OK
! 399 4.39@964 127.8.0.1 127.8.8.1 HTTP 184 HTTP/1.1 280 OK

Figure 3.4-3 Wireshark Packet capturing

The Wireshark tool is used to analyse the the captured traffic details in-between Microservices.
The http filter is used in the Wireshark to filter out required HTTP packets. The above diagram
depicts the identification of PUT request by RabbitMQ messaging service.

61/eureka/apps/PRODUCTCOMPOSITE/CodeRed-Deviproductcompo 2 ~ & || @ localhost

fi ~ B ~ = @ v Pagev Safety~ Tooks~ g~ & I Y h & F

& http://localhost:

<?xml version="1.0"?>
- <instance>
<hostMame=>CodeRed-Dev</hostName=>
<app>=PRODUCTCOMPOSITE</app=>
<ipAddr>=10.0.75.1</ipAddr=>
<status=UP</status>
<overriddenstatus>UNKNOWN < /overriddenstatus>
<port enabled="true">54654 </port>
<securePort enabled="false">443</securePort>
<countryld=>1</countryld=
<dataCenterInfo class="com.netflix.appinfo.InstanceInfo$DefaultDataCenterInfo"=
<name>MyOwn</name>
</dataCenterinfoz:
- <leaselnfo>
<renewallntervallnSecs=10</renewallntervallnSecs>
<durationInSecs>90</durationInSecs>
<registrationTimestamp> 1488257067416 </registrationTimestamp=
<lastRenewalTimestamp>1488257647286 </lastRenewalTimestamp>
<evictionTimestamp>0</evictionTimestamp>
<serviceUpTimestamp:> 1488257037028 </serviceUpTimestamp>
<fleaselnfo>
<metadata>
<instanceld > productcomposite:320bd80af70cdad84efa7de3b314724d < /instanceld>
</metadataz
<homePageUrl=http:/ fCodeRed-Dev:54654/ </homePageUrl>
<statusPageUrl=http:/fCodeRed-Dev:54654/info</statusPageUrl>
<healthCheckUrl=http://CodeRed-Dev:54654 /health</healthCheckUrl=
<vipAddress>productcomposite < /vipAddress>
<isCoordinatingDiscoveryServer>false</isCoordinatingDiscoveryServer>
<lastUpdatedTimestamp:>1488257067416</lastUpdatedTimestamp=>
<lastDirtyTimestamp>1488257066974 </lastDirtyTimestamp=>
<actionType>ADDED</actionType=>
<finstance>

Figure 3.4-4 Product Composite Request

The request to the Product composite service can be identified as in the figure 3.4-3. The most
important values in this analyse is identification of the IP and the Port that the respective
service is running.

Page |24

o —————— = ————y = =

¥ Hypertext Transfer Protocol
HTTP/1.1 288 OK\rkn
Content-Encoding: gzip\rin
Connection: keep-alivel\r\n
Content-Length: 77%r\n
Content-Type: application/json;charset=UTF-8\r\n
Date: Tue, 28 Feb 2817 @@8:42:82 GMT\r\n
Wrhn
[HTTP response 2/2]
[Time since request: ©.888988888 seconds]
[Prev request dn frame: 533]
[Prev response in frame: 535]
[Request in frame: 537]
Content-encoded entity bedy (gzip): 77 bytes -> 63 bytes

Figure 3.4-5 Json Response body in Wireshark

The Json content in the Response body is encoded using Gzip as depeicted in the figure 3.4-5
(in line 3: content encoding). The Wireshark do not have the capabilities to encode the Gzip

encoding. Hence the decoding tool HTTP Gunzip [17] is used to decode the response Json
content.

Figure 3.4-6 Eavesdropping Response content

Page |25

An eavesdropping attacker can listen to the internal Microservice communication using this
method. The figure 3.4-6 illustrates that how can an attacker see the response from the
Composite service Microservice.

3.4.2 Attack 2 : Confused Deputy Attack

The confused deputy attack can be conducted using Fiddler tool. The Attacker can call the
internal Product Composite service directly bypassing the Edge server as illustrated below.

The Product Composite service is running on port 54654.

Usethis page to compose a Reguest. You can dlone a prior request by dragging and dropping a session fram the Web Sessions list. Execute

Parsed Raw Soratchpad Options

[eeT | ttp: facelhost: 54654/praduct/1 | [rrTRrLa ~| [LegRequests
History
localhost: 54654 /prod. ..

User-Agent: Fiddler
Host: localhost: 54654

Figure 3.4-7 Fiddler Request to Microservice

The response from the attacked Microservice can be analysed using Fiddler. As depicts in the
Figure 3.4-7, the called Microservice do not know who made the request to the Microservice
API because it do not contain any Authentication or Authorization mechanism. Hence, the
called Microservice responses the required output to any caller.

(&) statistics Lk Inspectors # AutcResponder [Composer gy FidderSaript (] Log [Filters = Timeline [} APITest
Headers | Textview | Syntaxview | WebForms | HexView | Auth | Cookies | Raw | JSON | XML

|GET sproduct/1 HTTP/1.1
Client
User-Agent: Fiddler
Transport
Host: locahost: 54654

Transformer | Headers | TextView | Syntaxview | ImageView | HexView | WebView | Auth Caching | Cookies | Raw ISON | XML

=1+ JSOM
- name—name

productld=1
F1-recommendations
=243
i author =Author 1
rate=1
recommendationId=1

author =Author 2
rate=2
mmendationld=2

author=Author 3
borate=3
. recommendationld=>3

author=Author 1
reviewld=1
subject=Subject 1

{1 author=Author 2

.. author =Author 3

L reviewld=3

L. subject=Subject 3
weight=123

Figure 3.4-8 Fiddler Response analysing

3.4.3 Attack 3 : Man in the Middle Attack

An attacker can create a counterfeit Microservice and spawn in to the Microservice
environment. The Adversary can alter the response and perform request / response logging.
This can be achieved because there is no Authentication mechanism for internal Microservice
calls.

Page | 26

The code in Appendix Al illustrates creation of forged Composite service. The code is to
create a malicious Microservice and send request to Product composite service. The called
Microservice do not have any mechanism to Authenticate this malicious Microservice and the
called service responding as normally.

The malicious Microservice code also depicts how to log the incoming traffic and how to alter
the incoming payload and respond back to the upper level Microservice which calling the
malicious Microservice.

This counterfeit service cab Spawned to the Microservices ecosystem using following
command.

start /D microservices\composite\ CounterfeitCompositeService gradlew bootRun

The log results can be viewed as follows.

+

Figure 3.4-9 Man in the Middle attack : Log results

The Altered result can be viewed as follows

(<] <]

Pretty

Figure 3.4-10 Man in The Middle Attack : Resource Results

Page |27

4 Design and Implementation of Solution

This chapter illustrates design and implementation of selected methods in-order to protect
Netflix OSS Microservices from internal attacks.

4.1 Extending the Edge server’s Authorization OAuth 2 JWT Token to
Internal Micro Services

The Edge server is Authorized using an OAuth 2 JWT access token. It is possible to secure
internal micro services using the same incoming OAuth 2 token. Token relay pattern is using
to perform this operation[18]. In Token Relay pattern,the OAuth2 consumer acts as a Client
and forwards the incoming token to outgoing resource requests. The Internal Micro Services
are communicating with the OAuth identity server to perform Authorization of the incoming
JWT. The End user would be authorized against each Micro Service call. The edge server
would not terminate the JWT but propagate through the internal service structure using the
token replay pattern.

I:IE . W
—
/ Core
&
J o N L SEM
0 >) W |

-

\-\'._ Service £
L ' 4
A — ---/‘ » comuosulu
Sprul(n

- I . .
S5L ;" TWT. .@)]_ET’ % \ Core
I El:ljm B senice
. \ Servu:e o _:l:l

Consumer Edge Servers
Applications {Zuul) Senﬂcu y

fr—

& %
W Service £ f
./ \

X 4 v
A y 'Cumpmlte

\ Service ." \/\/
........... N J—
[~

d
5
_ecr — —
Secure Mon Secured " Senver
Connection Cannection Attacl Eavesdropping Attacker

Figure 4.1-1 Extending the Edge Server JWT to Internal Network

The @EnableZuulProxy and @EnableOAuth2Resource annotation will enable this
functionality in the calling(client) and called(Server) Micro Services respectively.

Page |28

@SpringBoothpplication
@Controller

EEnableZuul Proxy
EEnablefAuth2Sso

Jpublic class Zuulhpplication {

] puklic static woid main(String[] args) {
new SpringApplicationBuilder (Zuulipplication.class).web(true).run(args)

}

Figure 4.1-2 Enable the Zuul server with Token Relay

The @EnableOAuth2Sso annotation shipped in the spring-cloud-starter-security package. The
spring-cloud-starter-security package triggers some autoconfiguration for a ZuulFilter.
The filter just extracts an access token from the currently authenticated user, and puts it in a
request header for the downstream requests.

The Product API service accepts the incoming relayed token from the Edge server using
following code segment depicted in the appendix A3.

If an Adversary is trying to call the Product API service (running on port 47228), bypassing
the edge server, the API service returns the 401-Unauthorized HTTP message as follows.

The Adversary is trying to access the Product API service using Fiddler.

Use this page to compose a Request. You can done a prior request by dragging and dropping a session from the Web Execute
sgions list
Parsed Raw Scoatchpad Options
|GI:‘I' v” V| |H'|'|'pl|r1|1 v| LogReguests
" ~
User-Agent: Fiddler History
Host: localhost: 47228 localhost: 472281

Figure 4.1-3 Fiddler Request

The response returns the 401- Unauthorized error as in the figure 4.1-4. The Fiddler tool is used
to analyse the response from the Microservice.

GET A1HTTPA A
Client

User-Agent: Fiddler
Transport

Host: localhost: 47228

Transformer ||Headers | Textview | SyntaxView | Image\View | HexView | Wwebview | Auth | Caching | Cookies | Raw | JSOM | XML |

Response Headers
HTTP/1.1 401 Unauthorized
Cache
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Cache-Control: no-store
Date: Tue, 28 Feb 2017 12:55:03 GMT
Expires: 0
Pragma: no-cache
Pragma: no-cache
Cookies [Login
WWW-Authenticate: Bearer realm="null", error ="unauthorized”, error_description="Full authentication is required to access this resource”™
Entity
Content-Length: 102
Content-Type: applicationjson;charset=UTF-8

Figure 4.1-4 401-Unauthorized Response

https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/java/org/springframework/cloud/security/oauth2/proxy/OAuth2TokenRelayFilter.java

Page |29

The main advantage of this method is ease of Deployment. It required only to implement the
Authorization mechanism in each service to validate the incoming JWT token. This method
enforces less stress on internal micro services because no need of many external calls and
validations.

The Token relay pattern is vulnerable to many attack vectors as follows.

Attacker can capture a token and propagate forward with own payload

No mechanism to identify which service is calling the destination service

No security of payload , hence can easily eavesdrop the payload

Cannot prevent MIM attack

el N =

4.1.1 Token Relay attack : Directly access internal services using captured
token

An Adversary can eavesdrop the communication in between the Microservice calls and capture
the relayed token. This is possible because the channel in between service calls are not secured.
The Attacker can use a proxy or use Wireshark to capture the edge server request by the user.

GET /api/product/1 HTTP/1.1

Cache-Control: no-cache
Client

Accept: applicationfjson

Accept-Encoding: gzip, deflate, sdch, br

Accept-Language: en-US,en;q=0.8

User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; x64) AppleWebkit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36
Miscellaneous

Postman-Token: d3f580f9-1710-ab65-b5b1-c709efefege2
Security

Authorization: bearer 296ac264-ad 1e-4439-a3a5-fce 77475af46
Transport

Connection: keep-alive

Haost: localhost: 8765

Figure 4.1-5 Token Relay attack : Response analyse

The Attacker can read the plain text HTTP request header along with the bearer token. The
adversary can use the bearer token value and perform an internal service call.

Page |30

GET http:/flocalhost:47228/1 Params Send e

Accept
Authorization bearer 296ac2

1e-4439-a355-fce?74

Body (12 O
Pretty >
"productId”: 1,
"name": “name",
"weight™: 123,
5~ "recommendations”: [
"recommendationId”: 1,
"author": "The Hacker ",
"rate": -1
T
-
"recommendationId”: 2,
"author™: "Auther 2",
"rate": 2
T
- {
"recommendationId”: 3,
"author": "Author 3",
"rate": 3
1.
- "rev !
- {
viewId": 1,
"author”: "Author 1",
"subject": "Subject 1"
T
2 {
"reviewld”: 2,
"author™: "Auther 2",
"subject": "Subject 2"
T
- {
"reviewId": 3,
"author": "Author 3",
"subject": "Subject 3"
1
T

Figure 4.1-6 Token Relay Attack : Resource response analyse

As depicted in the figure 4.1-6, the attacker can use the captured bearer token and can use a
tool like Postman[33] to send a request to the corresponding Microservice. If the bearer token
is still valid, the called Microservice do not have the capability to identify who called the
Microservice. As far as the token is valid, the Microservice respond to the request assuming it
is a legitimate request from a legitimate Microservice.

4.2 Design : Securing Microservices using .Net Identity server

The .Net Identity server is implemented using Web API 2.0 and Microsoft Identity framework
which is using the OAuth middleware components. The persistent layer is implemented using
the SQL Server 2014.

Microservice Authorization and Authentication is performed using the Identity server. The
Edge server Authentication and Authorization is performed using the existing Netflix OSS
Identity server.

Page |31

4.2.1 Component Diagram

Credentials - +
. JWT
JWT = “

ASP.MNet|ldgntity Server

Credentials Verify
Credentials Verify

M —Access Token— L JWT- - JWT -
A «+— Payload—— Payload Payload

APl Services Composite Senvices Core Services
Zuul Edge Server

RabbitMQ ysterix Monitoring

—Credentils ——————*

Access Token

Metilix 0SS Legend

ldentity Server
' o =
Encrypted HTTP HTTPS ADO Met

Figure 4.2-1 Component Diagram

The Component flow design illustrated in following section. Steps 1 to 4 are already
implemented design flows in the Netflix OSS.
The Component Design flow
1. User or the consumer system enters requested credentials by the Netflix OSS Identity
Server.
2. ldentity server generates an Access Token.
3. User or the consumer system accessing the Netflix OSS Edge server using the Netflix
OSS Access Token
4. The Netflix OSS Identity server validates the Access Token and performs required
Authentication and Authorization.
5. The Microservice’s user spawning the services using Microservice’s credentials and
credentials for respective Java Keystore.
6. Upon service request calls, the Microservice sends credentials to the .Net Identity server
and the .Net Identity server performs the Authentication of the Microservice.
7. The service call is not propagating forward upon Un-Authenticated service call.
8. Upon successful Authentication, the .Net Identity server generates a Json Web Token
—JWT and returns it back to the respective Microservice.
9. The calling Microservice sending the respective JWT to the inner level Microservice
along with the service API HTTP request.
10. The Inner level Microservice Authorizing the incoming JWT against the .Net Identity
server. This Authorization performs using Identity claims received to the
11. The service call is not propagating forward upon Un-Authorized JWT received.
12. Upon successful Authorization, the Microservice generates its own JWT by presenting
its own credentials to the .Net Identity server.

Page |32

13. The Microservice propagates this to inner level and capture the responses from inner
level Microservices.

14. The Microservice accessing the Secured Java Keystore using the credentials given by
the Spawning user.

15. The Keystore contains shared key for the Calling and Called Microservices.

16. The Called Microservice encrypt the payload and returns the HTTP response to the
calling Microservice.

17. Calling Microservice decrypts the response using the Shared key stored in its own
Secured Keystore.

'3

e

: o Net fientity Server
Microservice Owner Credentials ‘

I | Keystore Credentials

JWT

Identity Server Credentials l

/ Microservice - \

Claims
Roguackemwn | 141 Service API
> Request + JWT
4
<—Encrypted payload‘ LAumorizationJ{ Encryption JL Decryption de——E“CWD‘ed Payload=
Microservice A l Microservice
X
Key
I
Java Keystore
Shared Key

J

Figure 4.2-2 Component Flow Diagram

\L

The component flow diagram depicts the fine-grained security process of the implemented
security mechanism. The Microservice’s service API contains the Authorization , Encryption
and Decryption modules to support the security process. The Encryption and Decryption
modules are integrated with the secured Java Keystore. The Java keystore contains the shared
secret key used for the Encryption and Decryption of incoming and outgoing payloads.

The Java Keystore secures the keys using encrypted jck file. It can be decrypted only using the
Keystore credentials passed during the Microservice spawning process. The appendix A10
contains the source code used to implement the secure Java keystore.

4.2.2 Overall Solution Layered Architecture Diagram

The Overall Solution Architecture diagram depicts solution’s main components and their
interactions.

Page |33

[
Consumer “
J’ Adfin

\
Undertow
Microservice
SEriw MVC
4

RabbitMQ | = Hystix | FEureka | Ribbon

e

'

Internet Information Sever
Net Identity Services

— Gr—

SOL Server 2014
Figure 4.2-3 Overall Solution :Layered Architecture

The overall architecture layered diagram depicts how each layer of the application interact each
other. The implemented solution contains 4 layers as the consumer layer, Undertow hosted
Netflix OSS Microservices layer, 11S hosted .Net Identity server and the data persistent layer
implemented using SQL Server 2014,

4.2.3 Layered Architecture Diagram - .Net Identity Server

The .Net Identity server is implemented using Web API 2.0 and Microsoft Identity framework
which is using the OAuth middleware components. The persistent layer is implemented using
the SQL Server 2014. The .Net Identity server is hosted in Internet Information Services (ISS).

Page |34

'Y

e

Resource owner

Credentials

{ Microservice Client J
Credentials Bearer Token Bearer Token Resources
4 - ™
Internet Information Server
i v T e
{ REST AFI J
Authorization server services ‘ Authentication Filter ‘ Authorization Filter
s N ™\
QAuth Middle ware for [dentity CAuth Middle ware for Resources o il =
= =] =
= 2 =
3 = 2
= § =
Providers
i« ™
Infrastructure
DE Context App User App Roles Claims l l l
< >

ADO Net

Legend

> >
L User HTTPS ADO.Net

Input

SQOL Server 2014
Figure 4.2-4 .Net Identity Server : Layered Architecture

Authentication filters are used to authenticate an HTTP request in Web API2. It allows to set
an authentication scheme for individual actions or to an ASP.Net MVC Controller [26].
Authorization filters also can be applied to individual actions or to an ASP.Net MVC
Controller.

The OAuth 2.0 middleware for Identity and Resources using OWIN framework and it was
developed under the Katana project by Microsoft [27]. The Authorization code grant using
three methods as Implicit grant, Resource owner password credentials grant and client
credentials grant. This project using the, Resource owner password credentials grant in the
middleware for Authentication and Authorization.

The provider layer defines the JWT format. The Infrastructure layer is using the ADO.Net
along with Entity Framework Object Relational Mapper (ORM) to access SQL Server 2014
database. The Database connection is using a custom system account to access the Database.

Page |35

4.2.4 Sequence Diagram

Sequence diagram depicts the detailed flow of securing Netflix OSS Microservices and how
respective objects are behaving when communicating. The Edge server is using the access
token created by the Netflix OSS Identity server. The Netflix OSS Identity server generates the
access token based on the credentials given by the user.

The user who owns the Microservices are spawning the Microservices with credentials for the
.Net Identity server and respective Java key store.

The .Net Identity server performs the Authentication and issue the OAuth JWT to the
Microservicel. The Microservice2 performs the Authorization of Microservicel using Claims
issues by the .Net Identity server.

‘Edge Server mg:'svel ‘Mroservice 1] |:Microservice 2 IS Koty
L) L) Ll L} T
sdentiak 1 1 ' 1
- —r L o '] 1
F I —— ¥ R A ' ' 1
Access Token '] 1
' [1 '
Resource URI 1 1 ' [
Consumer 4 Credentials _ =] Validate ' ' !
EE— 1 ' '
—> 1 ' '
eturn 1) 1
<-! ------- 14 1 ' '
¥ Cretenions | e : :
' & ' '
' ' '
' ' 1
Microsarvice 1 Recm'xce URI > : :
Owner ' Credentials
' T >
1)
J
: Rz oo
edentialé ' 1
o T > '
' |
| |
X g ' !
Microservice 2 ~ ————» | | Crecentaks .
Owner 5 Resource URH |[———¥
2 uthentic ate
: JWT N oo s
'
’ JWT
—_—
; —
) Aythorize
1 -
Claims
1 " PRz .
[T
1 ‘ 1
: IAum«ize s
| |
' 1
' Retrieve !
' enc Key 1
1 |
; Encrypt |
' paylead |
' '
: jrtioms |
, . Poybed__ .
' T '
1 ' 1
' Retrieve ! !
1 ' 1
| e ' |
)] 1
1 ' 1
' Decrypt s '
payload 1 1
<.------_.i’°_y,l3?‘_’ ' 1
Payload ' T ' '
e = ng j ' ' ' '
Consumer ' 1 ' 1

Figure 4.2-5 Sequence Diagram

Page |36

Page |37

4.2.5 Deployment Diagram
Deployment diagram depicts integration in-between deployed project components.

Eureka Discovery

Rabbit MQ

H

Undertow

Hysterix
Spring MVC

— :

Crypto

Java Key Stor j

€‘"'"'—-----.

Internet Information Server

|dentity
-1 Server

X 509 55L
Certificate

Figure 4.2-6 Deployment Diagram

The Netflix OSS Microservices are deployed using the Undertow containers. The Netflix OSS
Microservices are hosted in the Undertow containers instead of Docker containers due to
hardware limitations in the hosting computer. The hosted Microservice environment in
Undertow contains the Secure Java key store and the Crypto classes are using for the encryption

and decryption process.

Page |38

The .Net Identity server is hosted using IS and the Identity APIs are secured using a X.509
SSL certificate created using the openssl[34] utility . The Spring MVC packages in the
Microservice environment communicates with the 11S using HTTPS protocol.

4.2.6 Class Diagrams

API Controllers are the main interfaces with the external systems and all external APIs are
inherited from the BaseApiController class.

[BaseApiController #A |
Class
= ApiController

= Fields

@ _AppRoleMana...
@ AppUserMana..
@ _modelFactory

| AccountsContro... # | RolesController A

= Properties
Class . ‘,. AppRoleManag... Class _
- BaseApiController ¥ ApoUserManag.. =P BaseApiController
, App g

=l Methods ¥, TheModelFactory |- =l Methods
@ AssignClaimsTo... | = Methods @ Create
@ AssignRolesToU...) @ BaseApiControl... @ DeleteRole
@ ChangePassword . @, GetErrorResult @ GetAllRoles
@ ConfirmEmail @ GetRole
@ CreateUser @ ManageUsersin...
@ DeleteUser '
@ GetRoleForUser
@ GetUser
@ GetUserByName
@ GetUsers N
© RemoveClaimsF... | [ClaimsController | A
@, RemoveClientld... Il ,

- = BaseApiController
@ ResetPassword "
@ ResetPassword... = Methods
b @ GetClaims

Figure 4.2-7 Infrastructure layer class diagram

The AccountsController class responsible for managing REST API user related functionality
such as Create , Delete and Read. Assigning Roles and Claims are also managed by the same
class.

The Roles functionality APl managed by the RolesController class. The ManageUsersinRole
method is responsible for handle particular user’s role. User can be in more than one Role in a
given time.

Claims are managed by the ClaimsController class. The Getclaims methods returns respective
claims for a given JWT. All API controllers and Actions are authorized using the Authorize

Page |39

annotation in the specific Action method in the API class. All the API classes are inherited
from the BaseApiController class.

r N\ ™
ApplicationDbC... A ModelFactory A IntialDBCreate v Configuration ¥
Class Class Sealed Class Sealed Class
= IdentityDbContext<A... =+ DbMigration = DbMigrationsConfigu...

=l Fields - s~ 4
= Methods
& _AppUserMana...
@ ApplicationDbC... ™
o Cpp @, _UrlHelper ApplicationUser... A ClaimsAuthoriza... A
| reate = Methods Class Class

h
; @ Create (+ 1 ove =+ UserManager <Applic... =+ AuthorizationFilteratt ...

T ™ & CreateWithFirst... = Methods S properties
ApplicationUser A ® ModelFactory
Class \ @ ApplicationUse... K ClaimType
= IdentityUser @ Create & (ClaimValue

P i - - - : = Methods
= Properties il)
. RolesModel A @ OnAuthorizatio...
K& FirstName Class) \ y.
: UsersinRoleModel # - =
JoinDate
Class
& LastName = Properties _ -
& Level % Roles S properties | ClaimBindingM... 4
- . Class
SELILE & EnrolledUsers
(] GenerateUserId.../ (" ApplicationRole.... Al F i = properties
i Class & RemovedUsers
- RoleManager <Identit... < & Type
K Value
Methods [RolesFromClaims A |
@ ApplicationRole... Class
@ Create
~ = Methods
@ CreateRolesBas...

Figure 4.2-8 Provider layer Class Diagram

The Provider Layer classes handles internal functionality such as Database migration , Initial
Database creation and binding claims to the users etc. Functional models are also featured in
the Provider layer class diagram. The ModelFactory class is responsible of creation model
objects to use in ORM and API responses.

The provider layer classes contain business logic required by the .Net Identity server.

Page | 40

() ISecureDataFormat<AuthenticationTicket>

' CustomJwtFormat 2 | | CustomOAuthPr... A |
Class Class
=+ O AuthAuthorizations...

= Fields
. = Methods
. _issuer
S —) GrantResource...
ethods ©@ ValidateClientA...
@ CustomlwtFor...
@ Protect

@ Unprotect

Figure 4.2-9 Middleware layer class diagram

The Middleware layer class diagram contains CustomJwtFormat and CustomOAuthProvider
classes. The CustomJwtFormat inherited form the 1SecureDataFormat interface. It is defines
and assigns values to the attributes such as signingKey , issued , expired, token and handler.

The CustomOAuthProvider inherited from the OAuthAuthorizationServerProvider
Class. Validate client authentication and Grant Resource Owner Credentials are the main two
functionalities of this class.

Page |41

4.3 Implementation: Securing Microservices using .Net Identity Server

This section illustrates implementation of the selected design.

4.3.1 Creating a new ldentity user

Creating a new Identity user is managed by the Accounts API which is implemented in the
Accounts Controller. The Microsoft Identity framework persist the user details in the
dbo.AspNetUsers table. Password is hashed using the PBKDF2 algorithm and saved in the data
table.

The CreateUser method is responsible for creating a user and it is accepting a
CreateUserBindingModel data model. The CreateUser is a HTTP Post method (decorated with
the HTTPPost annotation. Only the users in the Admin group are authorized to access this
method.

The AccountsController class (Depicts in Appendix A8) handles the user creation API
functionality. Other functionalities such as CRUD operations in user object, assign claims,
roles to the user and password reset functionalities are also handles by the same class.

CODERED-DEV\PWS...dbo AspMetlsers & X

JoinDate Email E.. PasswordHash SecurityStamp Phone...

2016-12-17 00:0... aruna.79007@g... True AKIHfcyu5KeW+UjlwA/KubUuo2Zi8NHgaV6RVesUosqERZP... 41446794-0918-4408-be37-a%dbb00f3cce MNULL

2016-12-03 000, priyal.arunawal.. True AKIIHfclyuSKeW+UjlwA/KubUuo2Zi8NHqaVeRVesUosqEKZP.., 6feb7dal-468d-41c2-91fc-397a7b4aelof NULL

2016-12-28 00:0... amila@rocklan.. True AGTzqTlhbBm2IBOTndFMIePva+ dKBqo5dx058d19cheeoWBQT... b3dbTala-b5ef-4alc-bele-4f81eeadaf7d MNULL
Figure 4.3-1 ASP.Net Users table

The initial admin role need to be seeded into the database upon creation.

The user should be in the “SuperAdmin” role in order to create a new role. The Authorization
is managed by the Authorize Attribute in the POST method defined to create a user.

The Authorize attribute is validated against the incoming JWT in the request header. This

request mapping functionality is implemented in the Startup class in the Identity server
application. The startup class is depicted in the Appendix A9.

The created user can be assigned to a role which can have different permission sets. The
Roles can be managed using the Roles API which is implemented in the RolesController.

4.3.2 Generating the Identity Token

The identity token generation is handled by the “/oauth/token” API. User need to pass in the
credentials along with the grant type in the POST request bodly.

Page |42

No Environment

h ered-dev/h
POST htrps://codered-dev/MIS023-Identity/oauth/token Params Send v Save
(2) Body @
orm-data ® -www-form-urlencoded raw binary
username mario Bulk E
password SuperMario@123
grant_type password
Body (11 200 O e 48
Pretty S =

Figure 4.3-2 HTTPS Request to Identity Server

The token generation accepts only the HTTPS requests because the credentials are passed
through the POST request in clear text by the client. Generated token is valid only for two
seconds. Each of the inter Micro Services call requires a fresh token be generated and short-
lived token guarantees to prevent any misuse of a captured Token by an adversary. This token
can be used only one time. If some Microservice sends a token to the Identity server for
verification, it will be expired from that point onwards.

4.3.3 User Claims

The Microsoft Identity framework uses the Claims to retrieve Token owner’s information such
as Roles. The Identity framework allows to create any customized claims if the application
required. The client needs to pass in the generated token via the request header in order to
retrieve claims. The claims are managed by the “api/claims” API which is implemented in the
Claims controller.

The Appendix A4 contains the code segments of the Claims Controller API.

The Authorize annotation make sure that all the requests to the Claims API service are
Authorized and no anonymous users can make call to the API.

Claims API call result is as follows.

Page |43

No Environment
https:/fcodered-devih

GET https://codered-dew/MIS023-ldentity/api/caims Params Send v Save

Headers (3)

Accept application/json Bulk Edit Presets
Content-Type application/json
Authorization Bearer ey]0eXAiOiKV1QiLLhbGaOillUzl1
Body (7 2000 887
Pretty S(=
1~
2 {

"subject":

3 o,
a Srypets

‘schemas . xmlsoap . org, fidentity/claims/nameidentifier”,

5 "walue": =] -4b1@-4F5@-9ad5-1Ff277@72506d"

B Fs

- {

"subject™: "Mario”,

g "type": ’ entity/claims/name”,
1@ "walue": "M
11 s
12+ {
1 "subject™: "Maric"
14 "type": sC rolservice/2010/87/claims/identityprovider”,
15 "walue": "ASP.NET Identity”
17~ {
1 "subject™: "Mario”,
1 "type™: " i ntity.SecurityStamp”,
2 "walue": "fcB8l9%laf-8382-4604-8fee-17ce@3979c17"
21 s
2+ {
23 "subject N
24 "type": t hemas.microsoft. com/ws/2888/86/identity/claims/role"”,
25 "value": "ProductApi”
26 Fs
17 - I

Figure 4.3-3 HTTPS Request to Claims API

The Claims API consumer needs to pass in the bearer token in the HTTP request header. Upon
successful authorization of the bearer token (JWT) , the Claims API responses with claims
values. Claim values are including Security stamp , user Role, token validity period , user
name etc..

The Identity Server’s APIs are used to Authorize and Authenticate spring service calls. Each
of the Microservice needs to spawn using credentials. Microservices need to Authenticate
against the Identity server before communicating with deeper level Microservices. Following
sequence diagram depicts the Authentication and Authorization process.

4.3.4 Securing the .Net Identity Server

The .Net Identity server is secured using Authentication and Authorization mechanisms
explained in the previous sections. Apart from this, the IIS server is secured using the Transport
Layer Security (TLS) as well.

The 11S deployment of the .Net identity server is secured using a self-signed X.509 certificate.

Page |44

4.3.5 Spawning Microservices

The Spring Microservices are hosted in Gradle containers using Undertow as the web host.
Microservices need to spawn using credentials for the Identity server.

start /D microservices\api\product-api-service gradlew bootRun -D<username> -
D<password>

The Micro Service trying to Authenticate against the lIdentity server using these injected
credentials. The code handles the token generation process depicts in the Appendix A5.

The Token class is depicted in the Appendix A6. Token class’s main properties are
access_token, token_type and expire_in. The token type denotes the bearer token and
expires_in property denotes the expiry time in seconds from the time token is generated.

If the token generation process is successful , the Spring Microservice would call inner level
Micro service with the bearer token in the request url’s query string parameter.

Following table depicts Micro Service Role Based Authorization privileges.

Role
Micro Service
NetflixldentityRole ProductService CompositeService

Edge Server Approved Deny Deny

Product API Approved Deny Deny

Composite API Deny Approved Deny

Review Core Service Deny Deny Approved
Product Core Service Deny Deny Approved
Recommendation Service Deny Deny Approved

Table 4.3-1 Identity Server Roles and Authorization

The called Micro service acquire the token from the query string and call the .Net Identity
service to verify the Token’s role using claims. The Microservices are Authorized using Role
Based Authorization.

The Role authentication in the called Service is performed using the claims API in the .Net
Identity server. The Claims API source code depicts in the Appendix A5. Appendix A7 depicts
the Java class which handles the incoming claims from the .Net Identity server.

4.3.6 Encryption and Decryption of Microservice payloads

The called Micro Service decrypts the payload using the Crypto Java class. The symmetric
encryption key is stored securely using the Java Keystore and the method GetKeyStoreKey
access the Keystore and returns the shared secret symmetric key. The GetKeyStoreKey method
accepts the Keystore alias Key password and the Keystore password as parameters.

Page |45

The Encrypt and Decrypt methods handles the encryption and decryption methods
respectively. Encryption process using the AES encryption algorithm.

The Appendix A10 depicts the Crypto class implemented using Java. This class is using a key
which is expired in one months period. Hence , it is required to update the jck file once a month
with a new key. A new password needs to pass-in to the Microservice upon spawning,

Page |46

5 Testing and Evaluation

The implemented security mechanisms need to be tested for performance and security. This
chapter elaborates about performance and security testing and evaluation of other Industry
solutions to similar problems.

5.1 Performance Testing

The Performance testing needs to be performed in the securely hardened Netflix OSS
Microservice eco system and needs to compare with the original Netflix OSS Microservices
eco system. The Load Complete [18] tool without any customizations is used to perform the
performance testing.

The performance testing is carried out in following scenarios. Output results from the Load
Complete tool is evaluated to determine the performance impact in the application. The
parameters that are changing for this test are as following.

1. Number of users
2. Plain Microservice APl and Security Hardened Microservice API

All the other variables are remains same.

Scenario 1 : Netflix OSS Microservices with 1 user

Scenario 2 : Netflix OSS Microservices with 5 concurrent users

Scenario 3 : Netflix OSS Microservices with 10 concurrent users

Scenario 4 : Security hardened Netflix OSS Microservices with 1 user

Scenario 5 : Security hardened Netflix OSS Microservices with 5 concurrent users
Scenario 6 : Security hardened Netflix OSS Microservices with 10 concurrent users

All the tests are conducted using same hardware benchmark as in figure 5.1-1.

9% 7 41% 0% 0%
CPuU Memory Disk Metwork
Figure 5.1-1 Benchmark figures

5.1.1 Test Results

5.1.1.1 Scenario 1 : Netflix OSS Microservices with 1 user
Parameter Description :

URL : URL of the Zuul Edger Server. The Edge server is using http protocol in its demo
version.

Netflix Identity Token Value : The Token generated by the Netflix OSS Identity server. This
token is used to Authenticate the Zuul Edger service. (The token is using changed due to
timeouts of the session)

Number of concurrent users : Number of users taken into the account during testing. This is
a parameter set in the Load complete tool.

http://localhost:8765/api/product/1

Page |47

Number of Microservices : Number of Microservices that are spawned per each type
Response time : Response time to execute the request issued to the Edge service

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b
Number of concurrent users : 1

Number of Microservices : One from each service

90% Response time : 340 ms

The Test result reports are referenced in Appendix B1

5.1.1.2 Scenario 2 : Netflix OSS Microservices with 5 users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b
Number of concurrent users : 5

Number of Microservices : One from each service

90% Response time : 403 ms

The Test result reports are referenced in Appendix B2

5.1.1.3 Scenario 3 : Netflix OSS Microservices with 10 users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b77
Number of concurrent users : 10

Number of Microservices : One from each service

90% Response time : 461 ms

The Test result reports are referenced in Appendix B3

5.1.1.4 Test Result Analysis

According to the outcome results, it is observed that the response time is increasing when
number of concurrent users are increasing. This is due to the increasing resource utilization in
the server side. It is also noticed that proportion of latency is decreasing when number of users
are increasing.

Most of the request and transfer speeds are decreasing against especially when number of users

are increasing. This is due to the response caching capabilities of the Edge server.

5.1.1.5 Scenario 4 : Security hardened Netflix OSS Microservices with 1 user

Testing Parameters

http://localhost:8765/api/product/1
http://localhost:8765/api/product/1
http://localhost:8765/api/product/1

Page | 48

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : a169572d-fc61-429d-8b60-6dac8193ba54
Number of concurrent users : 1

Number of Microservices : One from each service

90% Response time : 461 ms

The Test result reports are referenced in Appendix B4

5.1.1.6 Scenario5: Security hardened Netflix OSS Microservices with 5 concurrent
users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : a169572d-fc61-429d-8b60-6dac8193ba54
Number of concurrent users : 5

Number of Microservices : One from each service

90% Response time : 515 ms

The Test result reports are referenced in Appendix B5

5.1.1.7 Scenario 6 : Security hardened Netflix OSS Microservices with 10 concurrent
users

Testing Parameters

URL : http://localhost:8765/api/product/1

Token Value : a169572d-fc61-429d-8b60-6dac8193ba54
Netflix Identity Number of concurrent users : 10
Number of Microservices : One from each service

90% Response time : 945 ms

The Test result reports are referenced in Appendix B6

5.1.1.8 Test Result Analysis

The test results are similar to the section 5.1.1.4 except overall response time been increased
after securing the internal Netflix OSS Microservice.

http://localhost:8765/api/product/1
http://localhost:8765/api/product/1
http://localhost:8765/api/product/1

Page |49

Microservice Performence Analysis
Response Time
ms

1000

945

800

600

400

200

1 2 5
Mumber of Users
B Unsecured Microservices W Secured Microservices

Figure 5.1-2 Microservice Performance Analysis

Figure 5.1-2 depicts analysis of 90% response time against number of concurrent users.

The composite analysis of the performance test results depicts that there is a performance
degradation occurred due to the security hardening of Netflix OSS internal microservice calls.
This is acceptable because of the encryption, decryption and extra authentication service calls
that the Microservices need to perform.

5.2 Security Testing

This section illustrates how implemented security methods are securing internal Netflix OSS
microservice calls from identified vulnerabilities.

5.2.1 Attack 1 : Eavesdropping

The attack is conducted against the Composite service Microservice. The Composite service
Microservice is spawned in the port 53661 during the testing attack phase.

The captured packets are analysed using Wireshark as illustrated below.

‘ SecuredMetflixQ55Attack.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Ama® RE ses=FTaEEacanH
L
MNo. Time Source Destination Protocol Length Info
i 375 3.438708 127.9.8.1 127.9.9.1 HTTP 287 HTTP/1.1 200 OK (application/json)
441 3.969646 127.8.9.1 127.9.8.1 HTTP 322 GET feureka/apps/delta HTTP/1.1
445 3.97@8646 127.8.8.1 127.8.8.1 HTTP 287 HTTP/1.1 288 OK (application/json)
491 4,313555 127.9.0.1 127.0.8.1 HTTP 431 PUT /eureka/apps/PRODUCTCOMPOSITE/CodeRed-Dev:productcomposite:e@5d5065567
i 493 4.314588 127.8.9.1 127.9.8.1 HTTP 184 HTTP/1.1 288 0K
539 4.691695 127.8.8.1 127.8.8.1 HTTP 473 PUT feureka/apps/PRODUCTCOMPOSITE/CodeRed-Dev:productcomposite :e@5d5@65587
543 4.692635 127.8.0.1 127.9.6.1 HTTP 185 HTTP/1.1 268 0K
545 4.923670 127.9.9.1 127.9.8.1 HTTP 411 PUT feureka/apps/REVIEW/CodeRed-Dev:review:a@lc@33fs8fa7b87657b6218Fc25¢c4a

547 4.924712 127.8.8.1 127.8.8.1 HTTP 184 HTTP/1.1 288 OK

Fiét_/re-5:2-1 Eavesd?c;pping-:- Wireshark Packet dr;J_/y-sé

Page |50

<?xml version="1.0"?>
- <instancex
<hostMame>CodeRed-Dev</hostName=>
<app>PRODUCTCOMPOSITE</app=>
<ipAddr>10.0.75.1</ipAddr=
<status=UP < /status>
<overriddenstatus=UNKNOWN < /overriddenstatus=
<port enabled="true">=53661</port>
<securePort enabled="false">443</securePort=
<countryld>1</countryld=>
- <dataCenterInfo class="com.netflix.appinfo.InstanceInfo$DefaultDataCenterInfo"=>
<name>=MyOwn</name=>
</dataCenterInfo=
- «leaselnfo>
<renewallntervallnSecs=10</renewallntervallnSecs>
<durationInSecs>90</durationInSecs>
<registrationTimestamp>1488481014576</registrationTimestamp>
<lastRenewalTimestamp> 1488482145272 </lastRenewalTimestamp>
<evictionTimestamp=0</evictionTimestamp=>
<gservicelpTimestamp>1488480984351 </serviceUpTimestamp>
<fleaselnfo=
- «metadata>
<instanceld>productcomposite:e05d5065507ddd4e84687f0ecab68lae</instanceld>
</metadata>
<homePageUrl=http://CodeRed-Dev:53661/ </homePageUrl>
<statusPageUrl=http:/ /CodeRed-Dev:53661 finfo</statusPageUrl>
<healthCheckUrl>http:/ /CodeRed-Dev:53661/health</healthCheckUrl=
<vipAddress:>productcomposite</vipAddress>
<isCoordinatingDiscoveryServer>false</isCoordinatingDiscoveryServer=>
<lastUpdatedTimestamp:>1488481014576 < /lastUpdatedTimestamp >
<lastDirtyTimestamp>=1488481014152 < /lastDirtyTimestamp>
<actionType>ADDED < /actionType:
<finstance=

Figure 5.2-2 Request to the Product Composite service

The Wireshark do not have the capabilities to encode the Gzip encoding. Hence the decoding
tool HTTP Gunzip [17] is used to decode the response Json content.

B RabbitMQ Command Prempt (sbin dir) - ruby http-gunzip.rb SecuredDump - [m| X

Figure 5.2-3 Decoded response : Json content

The Attacker can visualize only the encrypted payload. Hence the implemented method
successfully mitigates the Eavesdropping attack against Netflix OSS internal microservice
calls.

Page |51

5.2.2 Attack 2 : Confused Deputy Attack

The confused deputy attack can be conducted using Fiddler tool. The Attacker can call the
internal Product Composite service directly bypassing the Edge server as illustrated below.
The Product Composite service is running in port 53661.

Use this page to compose a Request. You can done a prior request by dragging and dropping a session from the Web Execute

|
Sessions list

Parsed Raw Scratchpad Options

|GeT M|ktto: focalhost: 5366 Lproduct /1 v||HTRar | [LegRequests
User-Agent: Fiddler History
Host: localhost: 53651 localhost: 53661 /prod...
2 200 HTTP Tunrel to d.docs.live.net: 443 a
& 25 200 HTTP Tunnel to d.docs live.net: 443 [i]
A7 404 HTTP localhost: 53661 fproduct/1 113 application fison;charset=UTF-8
& 28 200 HTTP

Tunnel to ssl.gstatic.com: 443 1] chrome...

Fig&re 524 ' Confuéed Déb_uty Attack : Con%posite Service 404 Error

This is resulted with HTTP 404-Not Found error. Because the secured Product Composite
service required following URI format.

http://localhost:53661/product/{Productid}/{JWT}

The attacker can enumerate possible URIs and identify the required pattern and send a request
with random JWT value. The Product Composite service returns HTTP 200 -Ok code. But the
Attacker do not pose a valid JWT to authenticate himself against the Product Composite
microservice. The Product Composite microservice returns the error message “Invalid Token”

] Filters = Timeline @' APITest
(%) Statistics hk Inspectors 4 AutoResponder # Compaser 35 FiddierScript [El Log
Im| TextView | SyntaxView | WebForms | HexView | Auth | Cookies | Raw | JSON | ¥ML |

Request Headers [Raw] [Header Definitions]
GET /product/1/ihefhwbe 787ihkbd 38 HTTF/1.1
Client

User-Agent; Fiddler
Transport

Host: localhost: 53661

Transformer | Headers | TextView | SyntaxView ImageView HexView WebView | Auth | Caching Cookies

[Raw | 3son | x|

HTTP/1.1 200 DK

Connection: keep-alive

Content-Type: text/plain;charset=uTF-8
Content-Length: 13
x-Application-Context: productcomposite:o
Date: Thu, 02 Mar 2017 19:52:31 GMT

Invalid Token|

Figure 5.2-5 Confused Deputy Attack : Invalid Token

http://localhost:53661/product/%7bProductId%7d/%7bJWT%7d

Page |52

Hence the implemented method successfully mitigates the confused deputy attack against
Netflix OSS internal microservice calls.

5.2.3 Attack 3: Man in the Middle Attack

The attacker is not being able to perform a MiTM attack because of following reasons.

1. Attacker do not know the required URI format to call the internal microservices after
introducing the JWT token.

2. Even though attacker find the required URI format, attacker cannot authenticate against
the internal microservice because the attacker do not possessing a valid JWT token
generated by the .Net Identity server.

3. Attacker cannot change the returning payload because the attacker do not poses a valid
key to encrypt the payload. The Secured Netflix OSS microservices can accepts only
encrypted payloads which are encrypted using legitimate key.

Hence the implemented method successfully mitigates the MiTM attack against Netflix OSS
internal microservice calls.

5.2.4 Attack 4: Eavesdropping attack against the .Net Identity server to
capture credentials

Eavesdropping attack against the .Net Identity server is not possible because it is being secured

using the Transport Layer Security (TLS). Hence the communication in between secured
Microservice and the .Net Identity server is encrypted.

5.2.5 Attack 5: Replay attack with captured JWT token

The Request from one Microservice to another is not encrypted or not using TLS. Hence it is
possible to attacker to gain access to the Request header and capture the Authentication Token.
An Attacker can try access inner level Microservice using this captured token.

Capturing the Authentication (JWT) token

Figure 5.2-6 Captured Token

Captured Token by the Attacker :

eyJ0eXAiOiJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJuYW1laWQiOil5SOWE3MjdiNCOOY;EWLTRMNTAtOWFkKNSOxZjI3NzA3
MjUwNmMQILCJ1bmIxdWVfbmFtZSI6lkl1hcmlvliiwiaHROcDovL3NjaGVtYXMubWIjcm9zb2ZOLmNvbSShY2NIc3Njb
250cm9sc2VydmljZS8yMDEwLzA3L2NsYWItcy9pZGVudGl0eXByb3ZpZGVyljoiQVNQLK5FVCBIZGVudGlOeSIslkFz
cE5IdC5JZGVudGl0eS5TZWN1cmI0eVNOYW1wljoiZmMAMTkOYWYtMDMA4MIOONjAOLThmZWUtMTdjZTAzOTc5
YzE3liwicm9sZSI611Byb2R1Y3RBcGkiLCIDbGIIbnRIZCI6WYIxliwiMTA10CIdLClpc3MiOiJodHRwOI8vTUITMDIzaW
RIbnRpdHkuYXplcmV3ZWJzaXRlcy5uZXQiLCIhdWQiOilOMTRIMTkyN2EzODgO0ZjY4YWJjNzImNzI4MzgzN2ZkMSls

Page |53

IMV4cCI6MTQ5MTEZNTA3NCwibmJmljoxNDg4NTQzMDc0fQ,hMzF2v-dCWkTsZ0ho_l08IGJs-AOI69-
kD7I5Y4pjaQ

Attacker can use a tool like Postman to access internal Microservice directly using this JWT.

No Environment

httpc!/CodeRed-Dev:4
GET htp//CodeRed-Devi4B836/product/ 1/ey]0eXAi0i KV1 QiLOhb GO IUz11 N 9.eyuYW Params Send g
Headers (1)
Accept application/jso Bulk E
Body (5) 2000
Rawr
Invalid Toke

Figure 5.2-7 Failed Replay Attack

The attack attempt is a failure because the Token is already consumed by the internal
Microservice (Product Composite Service). Hence, the token is not valid anymore to use by
the Attacker.

5.2.6 General Security Test Cases

Several test cases are executed to validate user scenarios in the secured Netflix OSS
Microservices

TC# | Test Case Expected Results Actual Results Pass/Fail

“Invalid Credentials”
Spawning Microservice with Microservice should be message Returned with
1 | Invalid Credentials Unauthorized HTTP-200 Pass

Approach : Spawn a Microservice with invalid .Net Identity credentials
start /D microservices\core\product-service gradlew bootRun -DUserName=invaliduser -
DinvalidPassword -DKeyStoreCredentials-M1so@#123

Page |54

Result :

. R Mo Environment
httpef/localhost8765/

GET http:/flocalhost8765/api/product/1 Params Send b

Headers (2)

Accept application/jsen Bulk Edit

Authaorization bearer 3fd07f98-4fd5-4bb7-B86d7-fbcboe

Body (11) Status: 200 OK
Rawr

Invalid Credentials

Figure 5.2-8 Test Case : Spawning Microservice with Invalid Credentials

Test Case Expected Results Actual Results Pass/Fail

Spawning Microservice with
Invalid Credentials to Java Key
2 | store Null payload should return Null payload Pass

Approach : Spawn a Microservice with invalid Java Keystore credentials

start /D microservices\core\product-service gradlew bootRun -DUserName=mario -D
SuperMario@123 -DKeyStoreCredentials-gfhgfhgfhgf

Result :

No Environment

hittpefilocalhosta765/

GET http://localhost:8765/apifproduct/1 Params Send v
Headers (2)
Accept application/json Bulk Edit
Authorization bearer 17b24700-e08f-478e-bf27-c3705f:
Body (10) Status: 200 OK
Raw

Figure 5.2-9 Test Case : Spawning Microservice with Invalid Credentials to Java Key store

Page |55

Expected Results Actual Results Pass/Fail
Spawning Microservice with "Authorization Failed"
Valid Credentials but invalid Service call should be message returned with
3 | application role Unauthorized HTTP -200 Pass

Approach : Spawn a Microservice with invalid .Net Identity credentials
start /D microservices\core\product-service gradlew bootRun -DUserName=priyalw -
DPriyal@123 -DKeyStoreCredentials-M1so@#123

Result :
BN

Authorization Failed

Figure 5.2-10 Test Case : Spawn a Microservice with invalid .Net Identity credentials

5.3 Study of Similar industrial solutions for Microservice security

This sections elaborates examples of how industrial solutions tried to solve the security issues
in Microservices.

5.3.1 DZone : The Interceptor pattern

The Interceptor pattern capturing inbound and outbound HTTP traffic flow in a Microservice.
The capturing information are HTTP URI, URL, and the credentials provided by the HTTP
agent[20].

Following picture depicts the Interceptor pattern in its general implementation.

Page |56

Consumer |

\\M______,_,./,

Processor t

Interceptor

Figure 5.3-1 The Interceptor Pattern[20]

The interceptor acts as a Security guardian for the Microservice implementation. The
Interceptor can use existing security frameworks such as Apache Shiro, Spring Security, and
Apache WS4J in order to perform the Authentication and Authorization.

The Interceptor pattern being enriched by using the features offered by the Jetty/Netty HTTP
Server by,
1. Enable Secure transmission using TLS between HTTP Agent and the Server
2. Two-way SSL /TSL
3. Restrict Web resource access using SecurityConstraint associated with a user’s role.
4. The Web HTTP container controls the user Authentication.
5. The Interceptor control the Authorization.

Web Secured Authorize

Container
I

HTTP HTTPS REST Customer
Agent ‘_Q_‘ Jetty Intercept Endpoint Service

Figure 5.3-2 The Interceptor Pattern with Secured Web container[20]

The interceptor pattern is flexible and easy to handle. But, interceptor pattern needs to
implement using custom security coding which is not a standard practice. Management of the
Microservices is a burden using the interceptor pattern because each and every Microservice
need to be managed independently. This is decreasing the quick commissioning and
decommission capabilities of Microservices. Managing certificates with two-way TLS is also
problematic with Microservices architecture.

5.3.2 Nordic API : Use JWT Token to secure Microservices

The Nordic API application framework implements an Identity server to perform
Authentication for each Microservice. A JWT is generated using OpenID Connect
Authorization server. The resource owner creates a session and persist the generated JWT in
the particular user session.

Page |57

Sessions can be created (SSO)

> <

Resource Owner (RO)

Authorization Server (AS)

&5

MyMail.com @

n Client Resource Server (RS)
/6\ Sessions

Figure 5.3-3 Nordic API : SSO Architecture[21]

The user is authenticated using information contained in the ID token. Creating a user session
in the client side can be considered as an overhead in this approach for an open ended clients
such as Netflix consumers.

The Nordic API Tokens are generated once and flowing through from one service to another.
If an Adversary manage to attack the user’s session and aquire a valid JWT, the Adversary can
access resources from any internal Microservice as well.

5.3.3 JHispter UAA for Microservice Security

JHipster UAA (User Account and Authorization) is an authorizing service for securing
microservices using the OAuth2 authorization protocol.

The JHipster defines 6 important claims to clarify a solid security solution

Central Authentication

Statelessness : this is to maintain the scalability of the Microservices architecture
User/Machine access distinction

Fine-grained access control

Safe from attacks

. Scalability

The JHipster using Feign clients to secure inter-service communication within the
Microservices internal calls.

oakrwdE

Page |58

JHipster OAuth2 communication flows

JHipster Gateway

angular $http client

Microservice 1

REST client resource endpoint

Microservice 2

resource endpoint REST client

Microservice 3

resource endpoint REST client
|
|
|
i JHipster|UAA
v A Y
oauth endpoint user / account resource

! legen di
|
|)
] authorized request i
! Oauth client resource server |
|]
|]
! authentication |
I Oauth client —— » authorization server !
| 1
I]

Figure 5.3-4 JHipster OAuth Architecture[22]

The main components of the JHipster UAA are as follows.
1. JHipster UAA server
2. At least one other microservice using UAA authentication
3. A JHipster gateway using UAA authentication

The Ribbon load balanced REST clients for endpoints registered in Eureka can be written
using Feign. Feign provides with fallback implementations controlled using Hystrix, using
nothing more than Java interfaces with some annotations.

Feign clients are using to define an interface when one REST service to access another service
or resource. The Interface is defined as follows.

@FeignClient(name = "other-service")
interface OtherServiceClient {
@RequestMapping(value = "/api/other-resources")
List<OtherResource> getResourcesFromOtherService();
}
@Service
class SomeService {

Page |59

The @AuthorizedFeignClients annotation enables the Authorization of the calling
Microservice.

The JHipster UAA is a comprehensive framework to secure internal Netflix OSS Microservice
infrastructure because , it is directly supporting Netflix OSS components such as Hystrix,
Ribbon and Eureka . The main drawback of the JHipster UAA is it is still in its beta version. It
is not an idustry best practice to use beta versioned components in a production environment.

Page | 60

6 Conclusion

6.1 Summary

The Netflix OSS Microservices inherently contains vulnerabilities inside the perimeter network
where an internal attacker can exploit. The major vulnerabilities are identified as
Eavesdropping internal service to service communication, Confused deputy attack, Man in the
middle attack and Replay attack.

The main objective of this project is to secure Netflix OSS Microservice’s internal service calls
from said vulnerabilities. Preserving the Microservices’ characteristics such as Scalability,
Performance, and Automation while securely hardening the internal service calls was also a
major objective of the project.

During the literature review, various technologies were studied to find the best and optimal
technique to secure Netflix OSS Microservices. The knowledge gained from those studies
helped to finalize the best possible technique which satisfies project objectives.

The Netflix OSS Microservice eco system is being protected from external attacks using an
OAuth Identity server implemented using Java Spring MV C. This Identity server is performing
authentication of external service calls to the Edge server. An attempt was made to secure
Netflix OSS Microservices from internal attacks by relaying the Edge server’s authentication
token into internal Microservices. But this attempt failed and it was proven that it is vulnerable
to a token replay attack. Service to Service authorization also cannot be solved by using the
token relaying technique.

Another attempt was made to secure the Netflix OSS Microservices’ internal service to service
communication by implementing .Net Identity server. The .Net Identity server issues a JWT
upon successful Authentication issued by the Microservice. The same JWT is used by the called
Microservice to Authorize the calling microservice. Requests from one Microservice to another
was performed using HTTP. Difficulty of managing server side and client side HTTPS
certificates in a dynamic environment like Microservices prevented using HTTPS
communication in between service calls. But the JWT was secured by expiring the JWT upon
one Authorize request and providing limited lifespan. It was proven that the token replay
attacks, Man in the middle attacks and Confused deputy attacks can be avoided using the said
JWT security mechanisms.

The Eavesdropping attack was prevented by encrypting the service responses from one
Microservice to another. AES encryption algorithm was used along with a shared key to
perform the encryption. The shared keys were protected using Java keystore.

It was proven during the testing and evaluation phase, that there were bit of a performance
impact to the Netflix OSS Microservices after introducing discussed security implementations.
This is caused by encryption, decryption and identity verification API calls that needs to
perform because of the security enhancement.

6.2 Limitations

The Defense In-depth security framework for Netflix OSS Micro Services project encountered
following limitations during the research and implementations phases.

Page |61

The major obstacle of this project was to find academic research papers and other
reference material about the security of internal Microservice communication. The
Microservice architectural pattern is relatively new concept and because of that, it was
hard to find academic research papers about Microservice internal security.

Failed to host Microservices in an industrial level containers such as Docker.

This limitation occurred due to lack of hardware resources in the testing computer.
Because of this, the Microservices had to host using Undertow containers using
different ports in the localhost environment.

Use self-signed certificate in the 1IS server to secure .Net ldentity Server
communication.

Using self-signed certificates is not an industrial level recommended practice. SSL
certificates should be validated using a Certificate Authority according to the industrial
standards. Since this is a research project, a self-signed certificate is used to secure 11S
server.

6.3 Future Enhancements

Based on the conducted testing and evaluation, the Defence In-depth security framework for
Netflix OSS Micro Services project managed to successfully secure Internal Netflix OSS
Microservices. However, following areas are left open to future research and development.

Access the .Net Identity server through Eureka server using Rabbit MQ message queue.
In the Current implementation, Microservices are accessing the .Net identity server
directly in-order to perform Authentication and Authorizations. It is a good practice to
integrate the .Net identity server to the same Microservice eco system.

Auto shutdown a Microservice upon invalid credentials provided to the .Net Identity
server or Java Keystore.

This feature makes sure that no unauthorized or malicious Microservices are not being
able to keep alive in the Netflix OSS Microservice eco system.

Auto shutdown a Microservice upon identification of malicious payload returned from
inner level Microservice.

This feature makes sure that no unauthorized or malicious Microservices are not being
able to keep alive in the Netflix OSS Microservice eco system.

After security hardening of Netflix OSS internal Microservice calls, a significant
performance decrement was monitored in the Microservices ecosystem. Further
research needs to be performed about increasing the performance while maintaining the
high security implementation of internal Microservice ecosystems.

Page | 62

References

[1] Netflix Supported Devices | Watch Netflix on your phone, TV or favorite device.
2016. Netflix Supported Devices | Watch Netflix on your phone, TV or favorite device.
[ONLINE] Available at:https://devices.netflix.com/en/. [Accessed 03 May 2016]

[2] Statista. 2016.¢ Netflix subscribers, wusers 2016. [ONLINE] Available
at:https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-
subscribers-worldwide/. [Accessed 07 May 2016]

[3] Sam Newman, 2015. Building Microservices. 1 Edition. O'Reilly Media.

[4] Vinh D. Le, M. M. (2012). Micro service-based Architecture for the NRDC. International
Journal of Open Information Technologies , 45.

[5] Netflix Open Source Software Center. 2016. Netflix Open Source Software Center.
[ONLINE] Available at: https://netflix.github.io/. [Accessed 26 August 2016].

[6] SnapLogic Blog. 2016. Two-way SSL with SnapLogic’s REST Snap | SnapLogic Blog.
[ONLINE] Available at: http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-
snap/. [Accessed 26 August 2016].

[7] The Open Universe: One Way and Two Way SSL and TLS. 2016. The Open Universe: One
Way and Two Way SSL and TLS. [ONLINE] Available
at: http://www.ossmentor.com/2015/03/one-way-and-two-way-ssl-and-tls.html. [Accessed 26
August 2016].

[8] DigitalOcean. 2016. An Introduction to OAuth 2 | DigitalOcean. [ONLINE] Available
at:https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2. [Accessed
30 August 2016].

[9] Thread Safe: The problem with OAuth for Authentication.. 2016. Thread Safe: The problem
with OAuth for Authentication.. [ONLINE] Available at: http://www.thread-
safe.com/2012/01/problem-with-oauth-for-authentication.html. [Accessed 19 July 2016].

[10] draft-ietf-oauth-proof-of-possession-11 - Proof-of-Possession Key Semantics for JSON
Web Tokens (JWTSs). 2016. draft-ietf-oauth-proof-of-possession-11 - Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs). [ONLINE] Available
at: https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-11. [Accessed 27 July 2016

[11] Netflix Open Source Software Center. 2016. Netflix Open Source Software Center.
[ONLINE] Available at: https://netflix.github.io/. [Accessed 27 June 2016]

[12] Stuart Douglas. 2016. Undertow - JBoss Community. [ONLINE] Available
at: http://undertow.io/. [Accessed 27 September 2016].

[13] Netflix, Inc Netflix Open Source Platform. [ONLINE] Available
at: https://github.com/Netflix
[Accessed 27 September 2016].

https://devices.netflix.com/en/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/
https://netflix.github.io/
http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-snap/
http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-snap/
http://www.ossmentor.com/2015/03/one-way-and-two-way-ssl-and-tls.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-11
https://netflix.github.io/
http://undertow.io/

Page |63

[14]Richards, M, 2015. Microservices vs. Service- Oriented Architecture. 1st ed. United States
of America: O’Reilly.

[15] authO.com. 2017. JSSON Web Token Introduction - jwt.io. [ONLINE] Available at:
https://jwt.io/introduction/. [Accessed 04 October 2016]

[16] Using HMAC to authenticate Web service requests — rc3.org. 2017. Using HMAC to
authenticate Web service requests — rc3.org. [ONLINE] Available at:
http://rc3.0rg/2011/12/02/using-hmac-to-authenticate-web-service-requests/. [Accessed 14
October 2016].

[17] GitHub - kizzx2/wireshark-http-gunzip: Make Wireshark's "Follow TCP Stream" support
Content-Encoding: gzip. 2017. GitHub - kizzx2/wireshark-http-gunzip: Make Wireshark's
"Follow TCP Stream™ support Content-Encoding: gzip. [ONLINE] Available
at: https://github.com/kizzx2/wireshark-http-gunzip. [Accessed 28 January 2017].

[18] Token relay pattern: service secured with oauth to call another oauth secured service -
Issue #45 - spring-cloud/spring-cloud-security - GitHub. 2017. Token relay pattern: service
secured with oauth to call another oauth secured service - Issue #45 - spring-cloud/spring-
cloud-security - GitHub. [ONLINE] Available at: https://github.com/spring-cloud/spring-
cloud-security/issues/45. [Accessed 21 January 2017].

[19] SmartBear. 2017. Load Tester. [ONLINE] Available at: https://smartbear.com/Ip/loadui-
org/loadcomplete-free-tool/. [Accessed 28 February 2017].

[20] Dzone. 2017. Security enforcement of the microservices - Dzone Integration . [ONLINE]
Available at: https://dzone.com/articles/security-enforcement-of-the-microservices. [Accessed
13 February 2017].

[21] Nordic API. 2017. How to Control User Ids Within Microservices . [ONLINE] Available
at: http://nordicapis.com/how-to-control-user-identity-within-microservices/. [Accessed 15
February 2017].

[22] Jhipster. 2017.Using UAA for Microservice Security. [ONLINE] Available
at: https://jhipster.github.io/using-uaa/. [Accessed 22 February 2017].

[23] RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2. 2017. RFC 5246 -
The Transport Layer Security (TLS) Protocol Version 1.2. [ONLINE] Available
at: https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTXRCKIXm4F2HWdjCh4Jxjlh
RuOCJYqyzGnd9IMPhztwQSso21Im22QIXESwpr2rmXMwtti33VZo2pBnBHDKNuQ.
[Accessed 04 March 2017]

[24] NGINX. 2017. Introduction to Microservices | NGINX. [ONLINE] Available
at: https://www.nginx.com/blog/introduction-to-microservices/. [Accessed 07 March 2017].

[25] Uber Engineering Blog. 2017. The Uber Engineering Tech Stack, Part I: The Foundation
- Uber Engineering Blog. [ONLINE] Available at: https://eng.uber.com/tech-stack-part-one/.
[Accessed 07 March 2017].

https://github.com/kizzx2/wireshark-http-gunzip
https://github.com/spring-cloud/spring-cloud-security/issues/45
https://github.com/spring-cloud/spring-cloud-security/issues/45
https://smartbear.com/lp/loadui-org/loadcomplete-free-tool/
https://smartbear.com/lp/loadui-org/loadcomplete-free-tool/
https://dzone.com/articles/security-enforcement-of-the-microservices
http://nordicapis.com/how-to-control-user-identity-within-microservices/
https://jhipster.github.io/using-uaa/
https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTxRCKJXm4F2HWdjCh4Jxj1hRuOCJYqyzGnd9MPhztwQSso2IIm22QlXESwpr2rmXMwttJ33VZo2pBnBHDKnuQ
https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTxRCKJXm4F2HWdjCh4Jxj1hRuOCJYqyzGnd9MPhztwQSso2IIm22QlXESwpr2rmXMwttJ33VZo2pBnBHDKnuQ
https://www.nginx.com/blog/introduction-to-microservices/
https://eng.uber.com/tech-stack-part-one/

Page | 64

[26] MikeWasson. 2017. Authentication Filters in ASP.NET Web API 2 | Microsoft Docs.
[ONLINE] Available at: https://docs.microsoft.com/en-us/aspnet/web-
api/overview/security/authentication-filters. [Accessed 08 March 2017].

[27] hongyes. 2017. OWIN OAuth 2.0 Authorization Server | Microsoft Docs. [ONLINE]
Available at: https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-
katana/owin-oauth-20-authorization-server. [Accessed 08 March 2017].

[28] Uber's Business Model. 2017. Uber's Business Model. [ONLINE] Available
at: https://www.slideshare.net/funk97/ubers-business-model. [Accessed 08 March 2017].

[29] Ebay history and architecture - High Scalability - . 2017. Ebay history and architecture -
High Scalability - . [ONLINE] Available at: http://highscalability.com/blog/2009/3/31/ebay-
history-and-architecture.html. [Accessed 08 March 2017].

[30] Eric Knorr. 2017. What eBay looks like under the hood. [ONLINE] Available at:
http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-
under-the-hood.html. [Accessed 8 March 2017].

[31] Front-end Renaissance at eBay | eBay Tech Blog. 2017. Front-end Renaissance at eBay |
eBay Tech Blog. [ONLINE] Available at: http://www.ebaytechblog.com/2014/01/13/front-
end-renaissance-at-ebay/. [Accessed 08 March 2017].

[32] Microservices at eBay. 2017. Microservices at eBay. [ONLINE] Available
at: https://de.slideshare.net/kasun04/microservices-at-ebay. [Accessed 08 March 2017]

[33] Postman - Chrome Web Store. 2017. Postman - Chrome Web Store. [ONLINE] Available
at: https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop.
[Accessed 04 June 2017]

[34] OpenSSL Foundation, Inc.. 2017./index.html. [ONLINE] Available
at: https://www.openssl.org/. [Accessed 04 June 2017].

https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-filters
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-filters
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server
https://www.slideshare.net/funk97/ubers-business-model
http://highscalability.com/blog/2009/3/31/ebay-history-and-architecture.html
http://highscalability.com/blog/2009/3/31/ebay-history-and-architecture.html
http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-under-the-hood.html
http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-under-the-hood.html
http://www.ebaytechblog.com/2014/01/13/front-end-renaissance-at-ebay/
http://www.ebaytechblog.com/2014/01/13/front-end-renaissance-at-ebay/
https://de.slideshare.net/kasun04/microservices-at-ebay
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://www.openssl.org/

Page | 65

Appendix A : Source Code
Appendix Al

Appendix A2

Page | 67

Appendix A3

Appendix A4

Appendix A5

Appendix A6

Appendix A7

Appendix A8

Page |72

Page |73

Page |74

Page |75

Page |76

Page |77

Page |78

Appendix A9

Page | 80

Appendix A10

Page | 82

Page |83

Appendix B

Appendix B1

0002 (1 -
Gy REMestO002(1) 7 sy e[0/

Request Response ¢SUI'I1ITIEFY

= Request Header

Field Value
-S4 Request GET /apifproduct{1 HTTR/1.1
Q Host localhost
Q Proxy-Connection keep-alive
| =2 Accept applicationfison
Q Cache-Control no-cache
E User-Agent Mozillaf5.0 (Windows NT 10.0; Wing4; x64) AppleVWebkit/!
=7 Authorization
E> Method bearer
Q Data 8e24b3d4-63bf-42 1e-8868-744ede23502h
Q Postman-Token 94423cd 5-9f43-a3a5-0d89-b0cca0c3bb 79
@ Accept-Encoding azip, deflate, sdch, br
f Accept-Language en-J5,en;q=0.8

Load Complete Test Request

g e e aar

o o ramen | L Tnkone:[03

@ An HTTP r= I Think tme:| 0 +|ms.
Reguest Response @Summary

‘7 Response Header

Field Value
[+]- 3 Response HTTPf1.1 200 OK
Expires 0
Q Cache-Control no-cache, no-store, max-age =0, must-revalidate
B X-SS-Protection 1; mode=black
E:) Pragma no-cache
Q X-Frame-Options DEMNY
Date Wed, 08 Mar 2017 18:19:20 GMT
- @ Connection keep-alive
Q X-Content-Type-Options nosniff
% Transfer-Encoding chunked
~|=5| Content-Type applicationfjson;charset=LTF-&
E:) ¥-Application-Context edgeserver:87565
B3 x-Application-Context productapi:0
@) %-Application-Context productcomposite:0

Load Complete Test Response

Page | 84

%] Response Body il
E|E B X
Parameter Type Value Wariable Path Lo
& fil urnamed] Object {1}
[productld Foamber 1 [1] fproductid
£ name sting e [1]fname
i} weight umber 123 []fwesght
1 7] recommendations Array [1]frecommendations
& i remio] Object (1] recommendasons [1]
[} recomenendat... Mumber 1 [1]jrecommandatona 1] frecoes, ..
B suthor Sting Awthor 1 [1]frecommendatcns,T 1] fauthor
B rate Humber i [1]irecommendations [1] rate
& i mee[1) Object [1] frecommendatens[2]
[0 recommendadt... Mumber 2 [1]jrecommendatons 2] freccem, ..
B suthor Sting Author 2 [1]irecommendatcns 2] fauthor
[rate Mumber 2 [1]/recommendations 2] frate
- i Ttaen[7) Ohjact [1] frecommendations[3]
[} recomenendat... Mumber 3 [1] frecommandatons]3] frecomm, .
B suthor Sting Author 3 [1]irecommendatcns, T3] fauthor
Il rate Fumbser - [1l/recommendations|T2] rate

Load Complete Test Response Body

Test: Scenariol

. Project: MetflixOS5-PerformenceTesting-2014M15023
Result: Success

Date / Time
Date 08/03/2017
Start Time of the Test 23:49:59
End Time of the Test 23:50:01
Initialization Time 1.8913

Errors / Warnings

Total Warnings 0 (view)
Total Errors 0 (view)

Load Profile (Steady load)

Maximum Mumber of Virtual Users 1
Kinimum Number of Virtueal Users 1
Test Duration 1.77 s
Requests 4
Pages 2
Scenarios 1

90 Percent Response Time 340 ms

Page | 85

Scenario Completion Time

Average 1.77s
Maximum 1.77 s
Minimum 1.77 s
Page Load Time

Average 886 ms
Maxinmum 1.51s
Minimum 262 ms

Time to First Byte

Average 224 ms
Maximum 393 ms
Minimum 50 m=

Scenariol Test results report

With Virtual Users Scroll Chart

2.3 kBis 5
1.9 kBis 4
k-
S 14kBis 3
=3
w
e
[:1]
"ﬁ w
£ 954Bis 25
= 3
-
wn
S ur7Ess 1
o
@
© \
0Bis 0
] 1s 2s
Time

-~ RequestTransfer Speed - Users

Scenario 1 Request Transfer Speed

Page | 86

Response Transfer Speed

With Virtual Users Scroll Chart

5.9 kBfs 5
4.7 kBfs 4
k-]
@
2 35kB/s 3
w
=
&
(] w
S 23kBls 2 &
F 3
@
w
c
2 12kB/s 1
w
@
'3
0B/is 0
0 18 25
Time
-2~ Response Transfer Speed @i Max Response Transfer Speed -~ Users

Scenario 1 Response Transfer Speed

Appendix B2

Result: Success

Project: MetflixO55-PerformenceTesting-2014MI15023
Test: Metflix OS5 Microservices with 5 users

Date / Time
Date 09S03/2017
Start Time of the Test 00:31:36
End Time of the Test (0:31:42
Initialization Time 1.80s
Errors / Warnings
Total Warnings 0 (view)
Total Errors 0 (view)
Load Profile (Steady load)
Maximum Number of Virtual Users 5
Minimum Number of Virtual Users L
Test Duration R.31s
Requests 15
Pages 10
Scenarios 5
90 Percent Response Time 403 ms
Scenario Completion Time
Average 5.28s
Maximum F.31s
Minimum .27 s
Page Load Time
Average 1.865
Maccmum 2.70s
Minimum 1.03 s
Time to First Byte
Average 417 ms
Maxinmum 763 ms
Minimum 93 ms

Scenario2 Test results report

Page | 87

With Virtual Users

Page | 88

Scroll Chart

120 kB/s 5
96 kB/s 4
k-]
3 T2kBis 3
o
w
B
a
b n
- 48 kB/s 2 5
E 3
-
[}
S 248 1
=S s
aQ
'
0 Bls 0
0 1s 25 3s 45 s
Time
<~ RequestTransfer Speed -~ Users
Scenario 2 Request Transfer Speed
With Virtual Users Scroll Chart
293 kB/s 5
23.4 kBls 4
=
o
8 176kBIs 3
w
™3
2
g 11.7 kB/s 2
H A
=
o
w
£
2 59kBis /\ 1
n
1}
'3
0Bl ——— 0
0 1s 25 3s 45 5s
Time
-~ Response Transfer Speed @d Max. Response Transfer Speed -~ Users
Scenario 2 Response Transfer Speed
Pages Q Connections | a o Q | <All connections> ~ | | B @ Exportin XML tree format... |
Details £ Status || Item Status Status Code Duration Start £ Finish
B § Master @ ||= |2L| Scenario2 #0001 2 5225 00:21:45:505 00:21:50:730
E‘E virtual user group @ +-[@2]
SCE”E”"Z} Page 0002 (1) @ 2656 00:21:48:074 00:21:50:730
E| Userl:.')o:m a @%- Request 0002 (1) a 200 455 00:21:48:075 00:21:43:530
P’ #oaaolon ﬂ Request 0003 (goe) a 204 101 00:21:50:629 00:21:50:730
8 Userzonooz [
% User 200003 (@
8 User xo0004 (@
B8 User 200005 [~

Senario 2 Multiple user test

Users

Page | 89

Appendix B3

Project: Netflix0S5-PerformenceTesting-2014MIS023
Test: Metflix 0SS Microservices with 10 users
Result: Success

Date / Time
[Date 0905/ 2017
Start Time of the Test 00:30:02
End Time of the Test 00:30:06
Initialization Time 1.97 s

Errors / Warnings

Total Warnings 0 (view)
Total Errors 0 (view)

Load Profile (Steady load)

Maximum Mumber of Virtual Users 10
Minimum Number of Virtual Users 1
Test Duration 3.37s
Requests 20
Pages 10
Scenarios 10

90 Percent Response Time 461 ms

Page |90

Scenario Completion Time

Average 2.24%

Maximum 337 s

Minimum 2.06 5
Page Load Time

Average 2.24 35

Maximum 3.37s

Minimum 2065

Time to First Byte

Average 704 ms
Maximum 1.60 s
Minimum 289 ms

Scenario3 Test results report

With Virtual Users Scroll Chart

15 kBls 10
12 KBls 8
B
9 kB/s 6
8
w
B
& 0
< 6 kB/s 4 §
= =]
]
o
§_ 3 kBis 2
©
0 Bis 0
0 18 2s 3s 48
Time

-~ RequestTransfer Speed -~ Users

Scenario 3 Request Transfer Speed

Page |91

Response Transfer Speed lﬁ

With Virtual Users Scroll Chart

19.5 kB/s 10
15.6 kBis &
k-l
@
2 11.7kBis 6
wy
e
(1
® w
S 78kBis 4 5
= 3
1]
w
&
2 39kBis 2
w
L)
[
08Bls 0
0 1s 2s 3s 45
Time
-~ Response Transfer Speed @d Max. Response Transfer Speed -o- Users

Scenario 3 Response Transfer Speed

Appendix B4

Request Response @Summary

H

Field Value
= N = /<5 T
Q Host localhost
Q Proxy-Connection keep-alive
Accept application fjson
Q Cache-Control no-cache
User-Agent Mozilla/5.0 (Windows MT 10.0; Wing4; x64) AppleWebKit/537.3
=) Authorization
% Method bearer
& Data 3169572d-fc61-429d-8b60-6dacs 193ba54
% Postman-Token F4e27T03-91dfcdof-c316-65f02bafe 341
@ Accept-Encoding gzip, deflate, sdch, br
f Accept-Language en-U5,en;q=0.8

Scenario 4 Request

Page |92

= Reguest 0001 (1) -
% a0 HTTP re . Think time:

Request Response ¢5urnn1ar1fI

‘7 Response Header

@ Expected Codes

Field Value Response Code Treat as
[#- 42 Response HTTR/1.1 200 OK
Expires a
Q) Cache-Control no-cache, no-store, max-age=0, must-revalidate
B X-X5S-Pratection 1; mode=hlock
Q Pragma no-cache
- ¥-Frame-Options DENY
Date Wed, 08 Mar 2017 19:27:39 GMT
- @ Connection keep-alive
- X-Content-Type-Options nosniff
Q Transfer-Encoding chunked
- =5 Content-Type application/json; charset=UTF-8
Q X-ppplication-Context edgeserver:3765
- X-Application-Context productapi:0
@ Response Body
s B X
Parameter Type Value Variable Path
EI-- [Unnamed] Object [1
- [1] productId MNumber 1 [1]/productid
“ [4 name String name [1]/name
- 1] weight Mumber 123 [1] fweight
E—} recommendations Array [1]/recommendations
EI Ttem[0] Object [1] frecommendations,[1]
 [1] recommendat... Number 1 [1]/frecommendations/[1] frecomm..
[author String Author 1 [1]/recommendations, 1] fauthor
- [1] rate Mumber 1 [1] frecommendations,[1] frate
E—Jﬁ Item[1] Object [1]/recommendations,[2]
-~ [1] recommendat... Number 2 [1] frecommendations,[2] frecomm..
[author String Author 2 [1]/recommendations,/[2] fauthor
= [1] rate MNumber 2 [1]/recommendations/[2] frate
9-- Ttem[2] Chbject [1] frecommendations,[3]
~ [1] recommendat... Number 3 [1]frecommendations,/[3] frecomm..
o T anihae Cirina Py T T11 frarnmmandatione T3 i dhar

Scenario 4 Response

Result: Success

Project: MetflixOS5-PerformenceTesting-2014MIS023
Test: Security hardened MNetflix 055 Microservices with 1 user

Date / Time
Date 09/03,/2017
Start Time of the Test (0:57:50
End Time of the Test 00:57:50
Initialization Time 1.87 s
Errors / Warnings
Total Warnings 0 (view)
Total Errors 0 (view)
Load Profile (Steady load)
Maimum Mumber of Virtual Users 1
Minimum Number of Virtual Users 1
Test Duration 3% ms
Requests 1
Pages 1
Scenarios 1
90 Percent Response Time 388 ms
Scenario Completion Time
Average 394 ms
Mazimum 394 ms
Minimum 394 ms
Page Load Time
Average 394 ms
Maximum 394 ms
Minimum 3% ms
Time to First Byte
Average 387 ms
Maximum 387 ms
Minimum 387 ms

Scenario4 Test results report

Page |93

Page |94

Appendix B5

Test: Security hardened Netflix OS5 Microservices with 5 concurrent u

. Project: MetflixOS5-PerformenceTesting-2014MIS023
Result: Success

Date / Time
Date 09/03/2017
Start Time of the Test 01:10:56
End Time of the Test 01:10:56
Initialization Time 1915

Errors / Warnings

Total Warnings 0 (view)
Total Errors 0 (view)

Load Profile (Steady load)

Maximum Humber of Virtual Users 5
Minimum Number of Virtual Users 5
Test Duration 598 ms
Requests h
Pages 5
Scenarios 5
90 Percent Response Time 515 ms

Scenario Completion Time

Average 525 ms
Maximum 598 ms
Minimum 452 ms
Page Load Time

Average 525 ms
Maximum R98 ms
Minimum 452 ms

Time to First Byte

Average 514 ms
Macimum REE ms
Minimum 441 ms

Scenario 5 Test results report

Page |95

Appendix B6

Test: Security hardened Metflix OS5 Microservices with 10 concurrent u:

. Project: Metflix055-PerformenceTesting-2014MIS023
Result: Success

Date / Time
Date 09/03/2017
Start Time of the Test 01:12:30
End Time of the Test 01:12:31
Initialization Time 1.90s

Errors / Warnings

Total Warnings 0 (view)
Total Errors 0 (wiew)

Load Profile (Steady load)

Maximum Mumber of Virtual Users 10
Minimum Mumber of Virtual Users 10
Test Duration 1.12=
Requests 10
Pages 10
Scenarios 10
90 Percent Response Time 945 ms

Scenario Completion Time

Average 953 ms
Maximum 1.12 5
Minimum 601 ms
Page Load Time

Average 953 ms
Maximum 1.12 5
Minimum 601 ms

Time to First Byte

Average 944 ms
Maximum 1.11s
Minimum 593 ms

Scenario 6 Test results report

