

Defense In-depth security framework

for Netflix OSS Micro Services

A dissertation submitted for the Degree of Master of

Science in Information Security

P.A Walpita

University of Colombo School of Computing

2017

P a g e | i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Students Name: P.A Walpita

Signature: Date:

This is to certify that this thesis is based on the work of Mr. P.A Walpita under my supervision. The

thesis has been prepared according to the format stipulated and is of acceptable standard.

Certified by:

Supervisor Name: Dr. Kasun De Zoysa

Signature: Date:

P a g e | ii

Abstract

Micro Services architectural pattern has emerged in recent years mainly because of its capabilities to

handle high data volumes in a robust manner. The perceptions like Dev Ops and Domain Driven

Design also helped to develop this architectural pattern in to its current heights. Many enterprise

systems which has large amount of transactional data volumes adopting Microservices architecture

because of many enablers it provides. The Security of Microservices considered as utmost important

feature because of the security threats escalated in recent years. The threats that are targeting

Microservices eco system can be categorised as external and internal threats.

Many industrial level Microservice implementations taken precautions about protecting the

Microservices eco system from external attacks. The security measurements that are taken to protect

a Microservice eco system from internal attacks are also an important aspect if the internally

communicating data are sensitive in nature. Internal threats can be identified as vulnerabilities which

can be exploit by an adversary internal to the organization. Netflix is one of the early adopters of

Microservices architectural pattern and the Netflix OSS emanates as an open source platform with a

practical Micro Services success story. This Paper discusses about hardening the Internal service

calls of the Netflix OSS Microservices and discusses the possibilities of eliminating vulnerabilities

within the internal perimeter. The measurements that are taken to protect internal microservices in

Netflix OSS can be adopted generally in any other Microservice eco system as well.

P a g e | iii

Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Kasun De Zoysa,

for continuous support in mentoring me and for encouraging my research, guidance and

suggestions throughout the research.

I would also like to thank my lecturer panel including Dr. Chamath Keppitiyagama , Dr. Ajantha

Atukorale, and Dr.Gihan Senevirathne for serving as my panel members even at hardship. I

also want to thank you for letting my defence be an enjoyable moment, and for your brilliant

comments and suggestions.

I would thank Mr. Magnus Larsson for hosting the Netflix OSS sample source code in the Git

hub and providing detailed explanations about the Netflix OSS ecosystem in his blog post.

I would especially like to thank my wife (L.P Dilrukshi) for the support she gave me during the

endless nights and countless hours I had to spend doing my research. The sacrifices you have

made, the love and guidance you gave and your prayers have made me who I am today.

http://pgvle.ucsc.cmb.ac.lk/user/view.php?id=10&course=1
http://callistaenterprise.se/om/medarbetare/magnuslarsson/

P a g e | iv

Table of Contents

1 Introduction .. 1

1.1. Research Domain ... 1

1.1.1 Research Problem ... 1

1.1.2 Significance of the Research .. 1

1.1.3 Goals and Objectives .. 2

1.1.4 Limitations and Assumptions ... 2

2 Literature Review .. 3

2.1 Microservices ... 3

2.1.1 Uber Microservices .. 3

2.1.2 eBay Microservices .. 4

2.2 Netflix Micro Services ... 5

2.3 Netflix OSS Internal Micro Service Vulnerabilities .. 6

2.3.1 Eavesdropping .. 6

2.3.2 Confused Deputy Attack .. 7

2.3.3 Man-in The Middle Attack(MiTM) ... 7

2.3.4 Replay attacks .. 7

2.4 Possible Technologies to Secure Netflix OSS Micro Services 7

2.4.1 HTTP Basic Authentication ... 7

2.4.2 Open Id Connect... 8

2.4.3 JSON Web Token (JWT) ... 8

2.4.4 HMAC Over HTTP .. 9

2.4.5 API Keys .. 9

2.4.6 Holder of Key Tokens (HOK) .. 10

3 Design of Netflix OSS Microservices ... 11

3.1 Netflix OSS Architecture and Product Components ... 11

3.2 Netflix OSS Components ... 13

3.2.1 Spring Cloud Framework ... 13

3.2.2 Eureka... 13

3.2.3 Ribbon Load Balancer .. 16

3.2.4 Hystrix Circuit Breaker .. 17

3.2.5 Zuul Edge Service .. 18

3.2.6 Undertow .. 19

3.3 Functionality of Netflix OSS Microservices ... 19

3.3.1 Spawning Microservices .. 19

3.3.2 Edge Service Security .. 19

3.4 Security Issues in the current application .. 22

P a g e | v

3.4.1 Attack 1 : Eavesdropping ... 22

3.4.2 Attack 2 : Confused Deputy Attack ... 25

3.4.3 Attack 3 : Man in the Middle Attack.. 25

4 Design and Implementation of Solution .. 27

4.1 Extending the Edge server’s Authorization OAuth 2 JWT Token to Internal Micro

Services ... 27

4.1.1 Token Relay attack : Directly access internal services using captured token 29

4.2 Design : Securing Microservices using .Net Identity server...................................... 30

4.2.1 Component Diagram .. 31

4.2.2 Overall Solution Layered Architecture Diagram ... 32

4.2.3 Layered Architecture Diagram - .Net Identity Server .. 33

4.2.4 Sequence Diagram.. 35

4.2.5 Deployment Diagram ... 37

4.2.6 Class Diagrams ... 38

4.3 Implementation: Securing Microservices using .Net Identity Server 41

4.3.1 Creating a new Identity user... 41

4.3.2 Generating the Identity Token.. 41

4.3.3 User Claims .. 42

4.3.4 Securing the .Net Identity Server ... 43

4.3.5 Spawning Microservices .. 44

4.3.6 Encryption and Decryption of Microservice payloads ... 44

5 Testing and Evaluation .. 46

5.1 Performance Testing .. 46

5.1.1 Test Results .. 46

5.2 Security Testing ... 49

5.2.1 Attack 1 : Eavesdropping ... 49

5.2.2 Attack 2 : Confused Deputy Attack ... 51

5.2.3 Attack 3: Man in the Middle Attack... 52

5.2.4 Attack 4: Eavesdropping attack against the .Net Identity server to capture

credentials .. 52

5.2.5 Attack 5: Replay attack with captured JWT token .. 52

5.2.6 General Security Test Cases ... 53

5.3 Study of Similar industrial solutions for Microservice security 55

5.3.1 DZone : The Interceptor pattern ... 55

5.3.2 Nordic API : Use JWT Token to secure Microservices ... 56

5.3.3 JHispter UAA for Microservice Security ... 57

6 Conclusion ... 60

6.1 Summary .. 60

6.2 Limitations ... 60

P a g e | vi

6.3 Future Enhancements ... 61

P a g e | vii

List of Figures

Figure 2.1-1 Uber Surge Pricing Microservices[28] .. 4

Figure 2.1-2 eBay Technology stack .. 5

Figure 2.2-1 Netflix OSS Edger Server Security ... 6

Figure 2.2-2 Attack vectors to the Internal Micro Services ... 6

Figure 2.4-1 The Holder Of Key token flow[10] ... 10

Figure 3.1-1 Netflix OSS layered architecture ... 12

Figure 3.2-1 Eureka Discovery Service .. 14

Figure 3.2-2 Eureka Server implementation... 14

Figure 3.2-3 Eureka Discovery Client Implementation ... 15

Figure 3.2-4 Eureka Service Monitor ... 15

Figure 3.2-5 Ribbon Load Balancer Implementation ... 16

Figure 3.2-6 Ribbon Client Side Load Balancing .. 16

Figure 3.2-7 Hystrix Circuit Breaker State Transition ... 17

Figure 3.2-8 Hystrix Dashboard ... 18

Figure 3.2-9 Zuul Edge Server flow ... 18

Figure 3.3-1 Spawned Microservice ... 19

Figure 3.3-2 Edge Server Authentication prompt .. 20

Figure 3.3-3 Edge Server Authentication Consent ... 20

Figure 3.3-4 Netflix OSS Resource Access.. 21

Figure 3.4-1 RAWCap Interface .. 22

Figure 3.4-2 Composite Service Microservice ... 22

Figure 3.4-3 Wireshark Packet capturing ... 23

Figure 3.4-4 Product Composite Request ... 23

Figure 3.4-5 Json Response body in Wireshark ... 24

Figure 3.4-6 Eavesdropping Response content .. 24

Figure 3.4-7 Fiddler Request to Microservice .. 25

Figure 3.4-8 Fiddler Response analysing ... 25

Figure 3.4-9 Man in the Middle attack : Log results .. 26

Figure 3.4-10 Man in The Middle Attack : Resource Results 26

Figure 4.1-1 Extending the Edge Server JWT to Internal Network 27

Figure 4.1-2 Enable the Zuul server with Token Relay ... 28

Figure 4.1-3 Fiddler Request .. 28

Figure 4.1-4 401-Unauthorized Response .. 28

Figure 4.1-5 Token Relay attack : Response analyse ... 29

Figure 4.1-6 Token Relay Attack : Resource response analyse 30

Figure 4.2-1 Component Diagram .. 31

Figure 4.2-2 Component Flow Diagram .. 32

Figure 4.2-3 Overall Solution :Layered Architecture ... 33

Figure 4.2-4 .Net Identity Server : Layered Architecture... 34

Figure 4.2-5 Sequence Diagram ... 36

Figure 4.2-6 Deployment Diagram ... 37

Figure 4.2-7 Infrastructure layer class diagram .. 38

Figure 4.2-8 Provider layer Class Diagram .. 39

Figure 4.2-9 Middleware layer class diagram .. 40

Figure 4.3-1 ASP.Net Users table .. 41

Figure 4.3-2 HTTPS Request to Identity Server .. 42

Figure 4.3-3 HTTPS Request to Claims API ... 43

Figure 5.1-1 Benchmark figures ... 46

Figure 5.1-2 Microservice Performance Analysis .. 49

Figure 5.2-1 Eavesdropping : Wireshark Packet analyse ... 49

https://d.docs.live.net/42603ef0bb491f63/MIS/MIS3104%20-%20Project/Documentation/Final/2014MIS023_Final_Thesis%20-%20Edited.docx#_Toc484905314
https://d.docs.live.net/42603ef0bb491f63/MIS/MIS3104%20-%20Project/Documentation/Final/2014MIS023_Final_Thesis%20-%20Edited.docx#_Toc484905324

P a g e | viii

Figure 5.2-2 Request to the Product Composite service .. 50

Figure 5.2-3 Decoded response : Json content ... 50

Figure 5.2-4 Confused Deputy Attack : Composite Service 404 Error 51

Figure 5.2-5 Confused Deputy Attack : Invalid Token .. 51

Figure 5.2-6 Captured Token.. 52

Figure 5.2-7 Failed Replay Attack ... 53

Figure 5.2-8 Test Case : Spawning Microservice with Invalid Credentials 54

Figure 5.2-9 Test Case : Spawning Microservice with Invalid Credentials to Java Key

store .. 54

Figure 5.2-10 Test Case : Spawn a Microservice with invalid .Net Identity credentials

 .. 55

Figure 5.3-1 The Interceptor Pattern[20] .. 56

Figure 5.3-2 The Interceptor Pattern with Secured Web container[20] 56

Figure 5.3-3 Nordic API : SSO Architecture[21] ... 57

Figure 5.3-4 JHipster OAuth Architecture[22]... 58

P a g e | ix

List of Tables

Table 3.1-1 Netflix OSS Components .. 11

Table 4.3-1 Identity Server Roles and Authorization ... 44

P a g e | x

List of Abbreviations

Acronym Full Name

ADO Advanced Data Object

AES Advanced Encryption Standard

AMQP Advanced Message Queuing Protocol

AOL America On Line

API Application program Interface

AWS Amazon Web Servers

CA Certificate Authority

CORS cross-origin resource sharing

DDD Domain Driven Design

HIPPA Health Insurance Portability and Accountability Act

HMAC hash-based messaging code

HOK Holder of Key

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IIS Internet Information Services

IPC Inter Process Communication

JSON Java Script Object Notation

JWT JSON Web Token

LB Load Balancer

MiTM Attack Man in The Middle Attack

MQ Message Queue

MSA Micro Services Architecture

MVC Model View Controller

Netflix OSS Netflix Open Source Software

ORM Object Relational Mapper

OWIN Open Web Interface for .NET

PC Personal Computer

PKI Public Key Infrastructure

POJO Plain Old Java Objects

POP Point Of Presence

REST Representational State Transfer

SAML Security Assertions Markup Language

SCB Spring Cloud Bus

SOA Service Oriented Architecture

SSL Secure Socket Layer

SSO Single Sign On

SSO Single Sign On

TLS Transport Layer Security

https://www.google.lk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjvs7STu8jSAhWLMo8KHRwfAN4QFggZMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&usg=AFQjCNEl8BGxaQkOvqrVsj9I7PNUiZyIkQ&sig2=WHy9xPY9sCT3-mUK-Rkkjw

P a g e | xi

UAA User Account and Authentication

URI Uniform Resource Identifier

URL Universal Resource Locater

URL Uniform Resource Locator

XSLT Extensible Stylesheet Language

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Locator

P a g e | 1

1 Introduction

With the advancements in internet infrastructure and bandwidth, content streaming over the

Internet has increased during the last decade. Netflix is one of the leading video content

providers who uses streaming technologies to deliver the video content to the end user. End

clients are using wide range of endpoint devices such as Smart TVs, Streaming media players,

Gaming consoles, Set-top boxes, Blu-ray players, Smartphones , tablets,PC and Laptops [1].

Netflix supports over 80 million streaming subscribers worldwide and average of 20 million

access the streaming services simultaneously [2].

Netflix is using the Netflix OSS open source framework to support the streaming services. To

support high demand and high volume of data exchange, Netflix needs more resilient and

robust architecture. Netflix adopted the Microservices architecture pattern in its early stage of

development and formalized a comprehensive standard of industrial usage. Netflix uses the

Amazon Web Services (AWS) to host Micro Services back end and its characteristics of on-

demand provisioning helps to spawn any number of services when the demand is high.

1.1. Research Domain

1.1.1 Research Problem

Many industrial level implementations of the Micro Services architecture focuses only on the

perimeter level security. This is true in the context of Netflix OSS as well. The Netflix OSS

secure the perimeter level Edge servers using a JWT token from unauthorized access. This is

the only programming level secure precaution been made in order to protect the Edge service.

But the internal Micro Services are left unsecured. The internal Micro Services are vulnerable

to internal attacks. This research focuses on how to secure the internal micro services and

implement proper Authentication and Authorization mechanism in order to reduce internal

attack vulnerabilities.

1.1.2 Significance of the Research

The identified problem is the insecure nature of the Netflix OSS internal Micro Services which

can lead into internal attacks and data breaches. The research is concentrated on the REST API

security hardening in the context of Micro Services.

Even though the research is based on Netflix OSS framework, the research outcome can be

applied to any generic MSA which is based on the REST API.

The problem this research attempts to address is “How to secure Netflix OSS Micro Services

REST APIs from internal attacks”. There are plenty of open source Microervices architecture

frameworks in the industry where develpers can adhere to. But most of these frameworks do

not implement any internal security mechanishms to protect Microservices from unauthorized

access. Hence, those frameworks do have vulnerabilities of internal attacks. This is a crucial

factor if the internal microservices are comminicate sensitive information. The reseach is

focusing on finding an optimal method to secure internal Microservice API calls from internal

P a g e | 2

attacks. The Netflix OSS is used to apply selected secure mechanisms and test the outcome of

the reaserch.

1.1.3 Goals and Objectives

The goal of this project is identifying the best suitable methodology and technology to secure

Netflix OSS Micro Services from internal attacks and data breaches. Authentication and

Authorization of Internal Micro Services calls is the main objective and maintaining the

integrity of the service call is also comes as a secondary objective of the project.

Selected security mechanism should not hinder performance and scalability of the existing

Microservices architecture.

1.1.4 Limitations and Assumptions

The research will be carried out to secure Netflix OSS Micro services from internal

vulnerabilities.

Netflix OSS source code is an open source project and the code is available at Git hub[13]. The

Proposed solution will be implemented and tested against the source code available at Netflix

OSS Git repository.

The streaming technology used at Netflix is a propriety technology and hence, it is not available

in the open source Netflix OSS platform. The available code in the Git hub[13] represent

sample textual data which is hard coded in the end point services to demonstrate the behaviour

of the Netflix OSS Micro Services framework. Security implementations and testing will be

using the same sample data shipped with the available source code.

The project assumes the researching security technologies and methodologies are independent

from the payload within the Netflix OSS Micro Services calls.

P a g e | 3

2 Literature Review

This section covers the related literature for this research.

2.1 Microservices

Microservices security is the focused research area in this study where the main objective is

to implement and introduce optimal security mechanism to prevent from internal attacks.

The Micro Services Architecture (MSA) is evolved from the Service Oriented Architecture

(SOA) as a specialization[14]. Concepts such as Domain Driven Design (DDD) and Dev

Ops helped to enable the age of MSA. Time to the market is a crucial factor in nowadays

software and the Dev Ops concepts enable it with continuous delivery. Monolithic system

architecture hinders the flexibility of using concepts such as Dev Ops and DDD. The main

MSA features are as follows[3].

• Domain-driven design.

• Continuous delivery.

• On-demand virtualization.

• Infrastructure automation.

• Small autonomous teams.

• Systems at Scale

In MSA, services and protocols should be lightweight, smaller and different to Monolithic

SOA. Each Micro Service should adhere to the Single Responsibility principle in order to

improve the independency of each Micro Service. This in turn makes it easier to add qualities

and functions to the service systems at any given juncture. It also enables the continuous

independent delivery[4].

The Microservices architectural pattern adopted by many industry leading companies including

Netflix, Amazon, Tyro Payments, eBay and Uber. Most of these organizations moved from a

single Monolith architectural pattern to Microservices[24]. Requirements for architectural

features such as high Resilience, High Availability, Service Oriented Architecture, and Rapid

service provisioning during peak hours are common among services provided by said

organization. The Microservices architectural pattern guarantees the delivery of such features

in a dynamic environment where demand fluctuates rapidly by the client usage.

Following sections illustrate usage of Microservice architectural pattern in the industry in order

to get understand how other Microservice frameworks are operating compared to the selected

Netflix OSS Microservices.

2.1.1 Uber Microservices

Uber moved from an N-tier Monolith architectural pattern to a Microservices architectural

pattern when more clients are joined as Drivers and Passengers[25]. Uber migrated the legacy

Python based back-end technology stack into the Microservices using Tornado which is an

asynchronous framework for Python. This migration helped the Uber to move into the

Microservices based architecture without re-writing the existing business logic but just

modularising and redefining new communication architecture.

P a g e | 4

The Uber Microservices architecture featuring Hyperbahn network multiplexing framework

along with HAProxy as the routing engine within Microservices. Hypebahn also solves the

typical Microservice problems such as Service discovery, Fault tollarence and Real time circuit

breaking.

The Uber Mciroservices are provisioned using Docker containers.

Following picture depicts an example of Uber surge pricing system is operating using sevaral

Microservices[28]

Figure 2.1-1 Uber Surge Pricing Microservices[28]

2.1.2 eBay Microservices

eBay started business 1995 using a Monolith system architecture. This system architecture

contains Perl, C++ and XSLT.

Eventually eBay has evolved to the Microservices architecture using Java platform. eBay is

using Hadoop infrastructure leveraging Storm, Kafka, Spark as the Data-centric back-end of

the application[30]. The eBay Front-end application is developed using HTML5 along with

JQuery Ajax and Java[31].

The middle layer of the eBay application stack is using Raptor.io , Spring Boot , Embedded

Tomcat containers and Java[32].

http://www.infoworld.com/article/2909898/big-data/review-storms-real-time-processing-comes-at-a-price.html
http://www.infoworld.com/article/3023050/open-source-tools/infoworlds-2016-technology-of-the-year-award-winners.html#slide16
http://www.infoworld.com/article/3023050/open-source-tools/infoworlds-2016-technology-of-the-year-award-winners.html#slide8

P a g e | 5

Figure 2.1-2 eBay Technology stack

The figure 2.1-2 depicts the technology stack of eBay along with set of Microservices.

Microservices are modularised based on the functionality.

2.2 Netflix Micro Services

Netflix Microservices are based on Java Spring MVC framework and using numerous other

tools such as Eureka , Hytrix , Ribbon and Zuul edger server I nthe Microservices ecosystem.

The Netflix OSS Microservices’ using perimeter level security using OAuth2 JWT token[5].

OAuth2 tokens are issued using Spring MVC based Authentication Server. The Edge server

communicates with the Spring Authentication server upon receiving of JWT via Rabbit MQ

message queue. Authentication server authenticates the incoming JWT and notifies the Edge

server.

P a g e | 6

Figure 2.2-1 Netflix OSS Edger Server Security

But the internal services are not secured for Authentication and Authorization. Hence it is prone

to internal attacks as depicted in the following picture.

Figure 2.2-2 Attack vectors to the Internal Micro Services

Figure 2.2-2 depicts the graphical view of Internal attack vectors of Netflix OSS

Microservices.

2.3 Netflix OSS Internal Micro Service Vulnerabilities

This section illustrates existing vulnerabilities of the Netflix OSS Microservices in-terms of an

internal attack.

2.3.1 Eavesdropping

Since the Netflix OSS internal micro services do not implement any privacy or security

mechanism, an internal attacker can listen to the communication in between Microservices.

This can be demonstrated using a packet capturing tool as follows.

P a g e | 7

In this attack, the Microservice ‘A’ calls to the Microservice ‘B’ using TCP protocol and the

attacker can see the request from A to B and the response from B to A with its content. Hence

any unauthorized internal attacker can gain access to any messages or content flowing in

between Microservices.

2.3.2 Confused Deputy Attack

The Confused deputy attack is , in the context of internal micro services refers to a situation

where an adversary can trick a calling service (deputy) into making calls to a downstream

service on his behalf that the calling service is not authorized to [3]. This is possible in the

Netflix OSS micro services because the called micro service do not perform any authorization

about calling Microservice[3]. Hence an Adversary can act as a legitimate internal micro

service and perform successful data retrieval upon calling other micro services.

2.3.3 Man-in The Middle Attack(MiTM)

An adversary who has access to the network can spawn in an arbitrary Microservice and

intercept an ongoing Inter-micro service call. The malicious Microservice can forward the

intercepted communication with malicious content or any required modifications to the request.

The Victim Microservice will reply to the Malicious micro service assuming it is a legitimate

Service. The Malicious microservice can alter the request as well and reply to the Service

originator as a legitimate endpoint.

2.3.4 Replay attacks

An adversary can eavesdrop an internal Microservice communication and can perform a

Replay attack later. This is possible because the Netflix OSS Microservices do not perform any

authentication or Authorization in calling Microservice.

2.4 Possible Technologies to Secure Netflix OSS Micro Services

There are few possible ways to provide the solution effectively to secure the Micro Services

from internal attacks. The following section is elaborating these possibilities.

2.4.1 HTTP Basic Authentication

In HTTP basic Authentication, the client is sending credentials using a standard HTTP header

to the server or endpoint service. The Receiver checks the received credentials, perform

authentication and allowed / disallowed access to the service.

The main advantage of this method is, it is a well understood and well supported protocol[3].

But performing the HTTP basic Authentication over HTTP is problematic, because the

credentials are passed to the endpoint server in plain text. The remedy to this problem is using

TLS in the channel. TLS is the standardized method to communicate sensitive data such as

credentials[23]. HTTPS guarantees the integrity and authenticity of the request and the

payload. In order to use TLS, the end point services need to maintain Server certificates. The

Certificate Authority needs to be managed and functionalities such as Certificate Issuing and

P a g e | 8

Revocation are also needed to be managed. This is a problematic scenario in a Microservices

environment because of its characteristics. Microservices characteristics such as rapid

provisioning and ability to shut down services rapidly hinder managing Certificates and related

functionalities.

2.4.2 Open Id Connect

Open Id connect which is a framework built on top of OAuth 2.0 protocol is an identity

framework and it extends the process of authorization of OAuth 2.0 for authentication

mechanism implementation. Open Id Connect can support SSO for any identity provider or

any website. OAuth 2.0 framework of authorization can provide an access resource to the

customer to gain access on behalf of owner resource.

Open Id Connect authorizes many types of customers for example Java customers, Mobile

customers and web based customers in order to verify their user with server based authorization

with OAuth 2.0 as its base. Open Id Connect is accessible on over 50,000 plus websites globally

and over one billion URLs enabled by Open Id Connect are able due to providers such as AOL,

Yahoo, Google and Facebook [9].

The Open Id Connect supports both Authorization and Authentication of the calling service. It

is a light weight protocol and have minimum impact to the Microservice eco system. The

credentials need to be managed and secured in the client or in the calling service. One of the

main disadvantages of using Open Id Connect framework is , it is not a matured technology in

the market yet. Hence there could be unidentified security flaws and vulnerabilities.

2.4.3 JSON Web Token (JWT)

JSON objects are transmitted between two or more parties using JSON Web tokens. JWT is an

open standard defines by RFC7519. The compact and self-contained JWT tokens can be

verified and trusted by the receiver because it is digitally signed[15]. JWT can be signed using

a shared secret key (HMAC) or by Public / Private key pairs using RSA.

Authentication and Information exchange are the main usage of the JWT. The Identity server

generates a JWT upon successful verification of user credentials and returned to the client. The

client needs to store the acquired JWT securely and should send it when the client needs to

access protected route or resource. In HTTP the JWT can be passed using the

Authorization header using the Bearer schema.

Because JWT is a stateless authentication mechanism, the user state is not required to save in

server memory. The server's protected routes or resources will check for a valid JWT in the

Authorization header. If the header contains a valid JWT, the calling client will be allowed to

access protected resources. JWT self-contained all the necessary information required to

perform authentication or authorization. Hence, it is reducing the need to query the database

multiple times [15]. The JWT contains less payload compared to SAML and XML. These two

aspects are few of the main advantage in the context of Microservices in-terms of performance.

JSON parsers are common in modern programming languages and frameworks. Hence, it can

be integrated in to any languages with less effort.

P a g e | 9

The JWT mainly contains Header , Payload and the Signature. The header contains the type of

the Token and the hashing algorithm that used such as HMAC SHA256 or RSA. The Payload

contains claims such as issuer , expiration time and subject. Signature verifies the owner of the

Token who signs it.

The Netflix OSS Edge server is secured using the JWT tokens in the perimeter level.

2.4.4 HMAC Over HTTP

An HMAC is a hash function where applies to the body of a message along with a secret key.

[16]. This approach using a hash-based messaging code (HMAC) to sign the request. The

client sending an identifier for the shared key and HMAC. This operation uses standard HTTP

header. The server then uses its own copy of the shared key and the request body to recreate

the hash. If it matches, it allows the request.

One of the definite advantage in HMAC is , it is hard to do a MiTM attack. If a man in the

middle alters the request, then the hash won’t match and the server knows the request has been

tampered with. And the private key is never sent in the request, so it cannot be compromised

in transit.

The request is easy to cache when using the HMAC authentication because it is using a shared

key. Hence the same request can be persist in the cache.

Both the client and server need a shared secret that needs to be communicated using another

secure protocol. This is hard to perform when requiring rapid provisioning which is one of the

mandatory requirement when it comes to the Microservices. HMAC is still not developed and

recognized as a standard yet. It is still using just as a pattern[3]. Hence, most of the

implementations are not yet standardized. Since the HMAC using the same key, it is

vulnerable to replay attacks if the request content is same.

2.4.5 API Keys

All public APIs from services like Twitter, Google, Flickr, and AWS make use of API keys.

API keys allow a service to identify who is making a call, and place limits on what they can

do. Often the limits go beyond simply giving access to a resource, and can extend to actions

like rate-limiting specific callers to protect quality of service. A more common approach is to

use a public and private key pair and manage the key server centrally.

The API Keys solution is easy to development and easy to perform a deployment and managing

as well. It also supports rapid provisioning and decommissioning of Microservices as well

because of minor footprint to the underlying eco system.

The major disadvantages of this method are , relying on 3rd party tools and centralized key

management. Centralized key management can lead in to central point of failure problem while

relying on 3rd party tools is not an industrial level standard practice.

P a g e | 10

2.4.6 Holder of Key Tokens (HOK)

The Presenter of the JWT could declare as this specification defines a JSON Web Token (JWT)

and processes a (PoP) ‘Proof of Possession key which could be cryptographically confirmed

by the recipients’ proof of possession of the key by the presenter. Presenter being a ‘Holder of

Key’ is described from Proof of possession of a key scenario[10].

Security Assertion Makeup Language 2.0 (SAML 2.0) could be considered as another used

technology as a Holder of Key Token.

There is no commercial implementations of the HOK yet. Hence, it is not a battle tested

method.

Figure 2.4-1 The Holder Of Key token flow[10]

P a g e | 11

3 Design of Netflix OSS Microservices

3.1 Netflix OSS Architecture and Product Components

The Netflix OSS adopted a Micro Services based SOA architecture. The main components and

their responsibilities are as follows

Netflix OSS Component Usage

Netflix Eureka Service Discovery Server

Netflix Ribbon Dynamic Routing and Load Balancer

Netflix Hystrix Circuit Breaker

Netflix Turbine Microservice Monitoring

Netflix Zuul Edge Server

Log Stash Centralized Logging

Security Monkey Monitor and secure Netflix OSS perimeter

network

Scumblr An Intelligence gathering tool about

functionality of Netflix OSS Microservice

eco system
Table 3.1-1 Netflix OSS Components

P a g e | 12

Figure 3.1-1 depicts the Netflix OSS layered architecture

Figure 3.1-1 Netflix OSS layered architecture

The service consumer making a REST API service call to the service layer’s Edge server. The

Edge server is implemented using Java Spring MVC and contains RESTful API interface to

integrate with external requests. The service layer Authenticate the request using the OAuth

Authorization Server in the API Service layer.

The Ribbon load balancer manages the communication in between Microservices along with

Eureka service discovery. The Hystrix circuit breaker is responsible for graceful failover when

there is an error in a functionality of a Microservice.

The Composite service is responsible for amalgamate payloads returned from the Core service.

Core services are considered as the resource end-points where it communicates with the data

P a g e | 13

layer. The Turbine dashboard is using to monitor the Microservice ecosystem using its own

Web interface.

Following section discusses the Netflix OSS components in detail.

3.2 Netflix OSS Components

This section illustrates important components of the Netflix OSS Microservice ecosystem.

3.2.1 Spring Cloud Framework

The Netflix OSS is built on top of the Spring Cloud framework. Spring Cloud framework

delivers tools to quickly build some of the common patterns in distributed systems such as

Circuit breakers, Configuration management , Service discovery , Control bus and leadership

election.

The Spring cloud contains following two main components to support the Distributed

application development

3.2.1.1 Spring Cloud Configuration Server

The Spring Cloud Configuration Server enables to horizontal scalability of the framework with

centralized configuration. The Java properties and YML files are used to represent the

configuration. The Configuration Server merges these files into environment objects. These

Configurations can be accessed as REST APIs and can be queried by any application directly

to obtain configuration data.

3.2.1.2 Spring Cloud Bus

The Spring Cloud Bus handles the technical management aspects of the application instances.

The Advanced Message Queuing Protocol (AMQP) is used for messaging and it is responsible

for client side bindings as well. The pluggable architecture of SCB enables seamless

communication of new Microservices which spawning on-the-fly.

The Netflix OSS components using wrappers for the Spring Cloud components. The Eureka

discovery service, Ribbon load balancer, Hystrix Circuit breaker and The Zuul edge server are

the main Netflix OSS components which are implemented as wrappers to the Spring cloud

components.

3.2.2 Eureka

The Eureka implements the Service Discovery pattern [11]. It is using a service registry which

is updating dynamically upon spawning of a new service.

P a g e | 14

Figure 3.2-1 Eureka Discovery Service

Adding the spring-cloud-starter-eureka-server dependency to the Spring boot application

enables the Eureka Server deployment to the application. The @EnableDiscoveryClient

annotation enables client to probe the Eureka server by adding the server instance to the

Configuration.

Figure 3.2-2 Eureka Server implementation

The clients can participate the service discovery by using the @DiscoveryClient annotation

which includes in the spring-cloud-starter-eureka dependency. The Discovery client provides

IP addresses, ports, and other relevant details about the service instances registered with Eureka

by using the service’s logical identifier.

P a g e | 15

Figure 3.2-3 Eureka Discovery Client Implementation

Upon successful deployment, the Eureka Dashboard provides the health status and other useful

information about the Microservices eco system. The main Dashboard displays registered

instances with Eureka Discovery Service and server details.

Figure 3.2-4 Eureka Service Monitor

The Eureka service monitor is running on a predefined port (8761) and contains a Web

interface. It is capable of displaying all the Microservices instances that are running in the

Netflix Microservices ecosystem. General information such as Memory consumption of all

Microservices, server uptime, Number of CPUs in the hosting environment and available

memory.

User can navigate to the particular Microservice instance’s link in the Eureka monitoring tool

to identify the respective port which that Microservice is running.

P a g e | 16

3.2.3 Ribbon Load Balancer

The Ribbon load balancer is populated with the dynamically spawned server list obtained from

Eureka server. It provides a sophisticated client side IPC library with configurable load

balancing and fault tolerance.

The Netflix OSS integration can be made by adding the spring-cloud-starter-ribbon

dependency to the Spring Boot application. Ribbon is using client side load balancing by using

the LoadBalancerClient in the client application as below.

Figure 3.2-5 Ribbon Load Balancer Implementation

Availability filtering and weighted response time are also featured in the Ribbon LB as

additional load balancing algorithms.

Figure 3.2-6 Ribbon Client Side Load Balancing

P a g e | 17

3.2.4 Hystrix Circuit Breaker

Hystrix implements the fault tolerance design pattern “Circuit Breaker “for distributed systems.

Hystrix placed in-between the service and its remote dependency. Hystrix counts number of

subsequent failed requests within a configurable time period and if the failure threshold is

reached, the circuit is tripped to open. When the circuit status is open, calls are no longer made

to the dependency and customized behaviour (Notification, Exception, returning null data or

calling a different dependency) would take place. Hystrix using RabbitMQ as the distributed

message queue to perform AMQP message passing.

Figure 3.2-7 Hystrix Circuit Breaker State Transition

The state machine will transform into the “half open” state if the dependency is healthy again.

Requests will be passing through to the dependency again and if succeeds , the state would be

transformed to the closed state and the circuit is tripped to close.

The spring-cloud-starter-hystrix dependency contains the Hystrix implementation and

annotating the @EnableCircuitBreaker and @HystrixCommand enables the circuit breaker in

any spring bean method.

 @HystrixCommand(fallbackMethod = "defaultProduct")

 public ResponseEntity<Product> getProduct(int productId) {

 URI uri = util.getServiceUrl("product", "http://localhost:8081/product");
 String url = uri.toString() + "/product/" + productId;
 LOG.debug("GetProduct from URL: {}", url);

}

Request metering, number of failed, successful and short circuited request and response time

histogram are important telemetry that Hystrix provides apart from its main functionality.

P a g e | 18

Figure 3.2-8 Hystrix Dashboard

3.2.5 Zuul Edge Service

Zuul acts a perimeter service in combination with Netfix OSS Ribbon and Hystrix to provide

resilient API services where clients can access. Zuul implements the API gateway design

pattern and it avoid need to manage CORS(cross-origin resource sharing). Authentication is

handled independently for all back end support services.

The Zuul performs following functionality as the Edge service.

1. Dynamic Routing : Request are routed dynamically to back end services as needed.

2. Load Shedding

3. Static Reponses handling : If needed building responses independently without using

of back end services.

4. Authentication and Security: using OAuth 2 tokens to secure edge services using an

Identity server.

5. Monitoring

Figure 3.2-9 Zuul Edge Server flow

P a g e | 19

Zuul is using dynamically allocated ports and avoiding port conflicts to minimize

administration.

3.2.6 Undertow

Undertow is the web server used by Netflix OSS to host its service APIs. Undertow is written

in Java and operated in a very light weight manner.

The undertow.jar file is less than 1MB and with a simple embedded server it uses less than

4MB of memory. Undertow’s composition based architecture allows to build a web server by

combining small single purpose handlers [12]. It can be operated as fully fledged Java EE

servlet container or low level non-blocking handler. Undertow provides support for the Web

sockets as well.

3.3 Functionality of Netflix OSS Microservices

This section illustrates functionality of Netflix OSS Microservices such as spawning of

Microservices and internal communication mechanism.

3.3.1 Spawning Microservices

Each of the Microservices can be spawned with spring bootrun command as follows.

start /D microservices\core\product-service gradlew bootRun

The successful service spawning can be monitored using respective command windows.

Figure 3.3-1 Spawned Microservice

3.3.2 Edge Service Security

Netflix OSS Edge service is secured using OAuth 2.0 access token . Adding dependencies

spring-cloud-security and spring-security-oauth2. Adding @EnableAuthorizationServer

enables the usage of the Auth server in the required application.

Appendix A2 contains the source code for the OAuth Authorization implementation.

The Sample Netflix OSS application using in-memory allowed grant flow, scopes , grant types

and approved clients. This is a simulation of a OAuth Authorization server.

http://cloud.spring.io/spring-cloud-security/
http://projects.spring.io/spring-security-oauth/

P a g e | 20

The Netflix OSS Demo code contains an in-memory authentication server. The user credentials

are persisted in a Configuration file for simplicity.

The Authentication server request credentials in order to generate an OAuth token for the Edge

server.

Figure 3.3-2 Edge Server Authentication prompt

Upon providing valid credentials, the Authentication server generates a consent to confirm by

user.

Figure 3.3-3 Edge Server Authentication Consent

Upon Approving, the Authorization server generates a JWT access token.

access_token=c2df4cd2-ffa6-4e14-a640-

49ac6ce3d231&token_type=bearer&state=48532&expires_in=43199

User can access Netflix OSS resources using the generated an access token. The resource

access is demonstrated using the Chrome Postman tool. The access token is generated with

expiration time, type and token state parameters.

The Netflix OSS resource access is demonstrated here using the Postman tool. The request

requires HTTP headers “Accept” and “Authorization”. The generated bearer token by the

Netflix OSS OAuth Identity server needs to pass-in as the Authorization HTTP header. The

edger server using this bearer token to perform Authentication of the incoming request. The

result is displayed in the Postmen tool’s response section.

P a g e | 21

Figure 3.3-4 Netflix OSS Resource Access

P a g e | 22

3.4 Security Issues in the current application

Even though, Netflix OSS is secured in the perimeter level using a JWT access token, internal

security is not considered in the current implementation. Following section illustrates possible

internal attacks that can be carried out to Netflix OSS Microservices.

The RAWCap, Wireshark and Fiddler are used to conduct these attacks to the internal Netflix

OSS Microservices. Wireshark is not able to capture loopback traffic and hence, RAWCap is

used to capture the loop back tcp port traffic. The generated pcap files are analyzed using the

Wireshark tool.

Figure 3.4-1 RAWCap Interface

3.4.1 Attack 1 : Eavesdropping

The attack is conducted against the Composite service Microservice. The Composite service

Microservice is spawned in the port 42034 during the testing attack phase.

Figure 3.4-2 Composite Service Microservice

The captured packets are analysed using Wireshark as illustrated below.

P a g e | 23

Figure 3.4-3 Wireshark Packet capturing

The Wireshark tool is used to analyse the the captured traffic details in-between Microservices.

The http filter is used in the Wireshark to filter out required HTTP packets. The above diagram

depicts the identification of PUT request by RabbitMQ messaging service.

Figure 3.4-4 Product Composite Request

The request to the Product composite service can be identified as in the figure 3.4-3. The most

important values in this analyse is identification of the IP and the Port that the respective

service is running.

P a g e | 24

Figure 3.4-5 Json Response body in Wireshark

The Json content in the Response body is encoded using Gzip as depeicted in the figure 3.4-5

(in line 3: content encoding). The Wireshark do not have the capabilities to encode the Gzip

encoding. Hence the decoding tool HTTP Gunzip [17] is used to decode the response Json

content.

Figure 3.4-6 Eavesdropping Response content

P a g e | 25

An eavesdropping attacker can listen to the internal Microservice communication using this

method. The figure 3.4-6 illustrates that how can an attacker see the response from the

Composite service Microservice.

3.4.2 Attack 2 : Confused Deputy Attack

The confused deputy attack can be conducted using Fiddler tool. The Attacker can call the

internal Product Composite service directly bypassing the Edge server as illustrated below.

The Product Composite service is running on port 54654.

Figure 3.4-7 Fiddler Request to Microservice

The response from the attacked Microservice can be analysed using Fiddler. As depicts in the

Figure 3.4-7, the called Microservice do not know who made the request to the Microservice

API because it do not contain any Authentication or Authorization mechanism. Hence, the

called Microservice responses the required output to any caller.

Figure 3.4-8 Fiddler Response analysing

3.4.3 Attack 3 : Man in the Middle Attack

An attacker can create a counterfeit Microservice and spawn in to the Microservice

environment. The Adversary can alter the response and perform request / response logging.

This can be achieved because there is no Authentication mechanism for internal Microservice

calls.

P a g e | 26

 The code in Appendix A1 illustrates creation of forged Composite service. The code is to

create a malicious Microservice and send request to Product composite service. The called

Microservice do not have any mechanism to Authenticate this malicious Microservice and the

called service responding as normally.

The malicious Microservice code also depicts how to log the incoming traffic and how to alter

the incoming payload and respond back to the upper level Microservice which calling the

malicious Microservice.

This counterfeit service cab Spawned to the Microservices ecosystem using following

command.

start /D microservices\composite\ CounterfeitCompositeService gradlew bootRun

The log results can be viewed as follows.

+

Figure 3.4-9 Man in the Middle attack : Log results

The Altered result can be viewed as follows

Figure 3.4-10 Man in The Middle Attack : Resource Results

P a g e | 27

4 Design and Implementation of Solution

This chapter illustrates design and implementation of selected methods in-order to protect

Netflix OSS Microservices from internal attacks.

4.1 Extending the Edge server’s Authorization OAuth 2 JWT Token to

Internal Micro Services

The Edge server is Authorized using an OAuth 2 JWT access token. It is possible to secure

internal micro services using the same incoming OAuth 2 token. Token relay pattern is using

to perform this operation[18]. In Token Relay pattern,the OAuth2 consumer acts as a Client

and forwards the incoming token to outgoing resource requests. The Internal Micro Services

are communicating with the OAuth identity server to perform Authorization of the incoming

JWT. The End user would be authorized against each Micro Service call. The edge server

would not terminate the JWT but propagate through the internal service structure using the

token replay pattern.

Figure 4.1-1 Extending the Edge Server JWT to Internal Network

The @EnableZuulProxy and @EnableOAuth2Resource annotation will enable this

functionality in the calling(client) and called(Server) Micro Services respectively.

P a g e | 28

Figure 4.1-2 Enable the Zuul server with Token Relay

The @EnableOAuth2Sso annotation shipped in the spring-cloud-starter-security package. The

spring-cloud-starter-security package triggers some autoconfiguration for a ZuulFilter.

The filter just extracts an access token from the currently authenticated user, and puts it in a

request header for the downstream requests.

The Product API service accepts the incoming relayed token from the Edge server using

following code segment depicted in the appendix A3.

If an Adversary is trying to call the Product API service (running on port 47228), bypassing

the edge server, the API service returns the 401-Unauthorized HTTP message as follows.

The Adversary is trying to access the Product API service using Fiddler.

Figure 4.1-3 Fiddler Request

The response returns the 401- Unauthorized error as in the figure 4.1-4. The Fiddler tool is used

to analyse the response from the Microservice.

Figure 4.1-4 401-Unauthorized Response

https://github.com/spring-cloud/spring-cloud-security/tree/master/src/main/java/org/springframework/cloud/security/oauth2/proxy/OAuth2TokenRelayFilter.java

P a g e | 29

The main advantage of this method is ease of Deployment. It required only to implement the

Authorization mechanism in each service to validate the incoming JWT token. This method

enforces less stress on internal micro services because no need of many external calls and

validations.

The Token relay pattern is vulnerable to many attack vectors as follows.

1. Attacker can capture a token and propagate forward with own payload

2. No mechanism to identify which service is calling the destination service

3. No security of payload , hence can easily eavesdrop the payload

4. Cannot prevent MIM attack

4.1.1 Token Relay attack : Directly access internal services using captured

token

An Adversary can eavesdrop the communication in between the Microservice calls and capture

the relayed token. This is possible because the channel in between service calls are not secured.

The Attacker can use a proxy or use Wireshark to capture the edge server request by the user.

Figure 4.1-5 Token Relay attack : Response analyse

The Attacker can read the plain text HTTP request header along with the bearer token. The

adversary can use the bearer token value and perform an internal service call.

P a g e | 30

Figure 4.1-6 Token Relay Attack : Resource response analyse

As depicted in the figure 4.1-6, the attacker can use the captured bearer token and can use a

tool like Postman[33] to send a request to the corresponding Microservice. If the bearer token

is still valid, the called Microservice do not have the capability to identify who called the

Microservice. As far as the token is valid, the Microservice respond to the request assuming it

is a legitimate request from a legitimate Microservice.

4.2 Design : Securing Microservices using .Net Identity server

The .Net Identity server is implemented using Web API 2.0 and Microsoft Identity framework

which is using the OAuth middleware components. The persistent layer is implemented using

the SQL Server 2014.

Microservice Authorization and Authentication is performed using the Identity server. The

Edge server Authentication and Authorization is performed using the existing Netflix OSS

Identity server.

P a g e | 31

4.2.1 Component Diagram

Figure 4.2-1 Component Diagram

The Component flow design illustrated in following section. Steps 1 to 4 are already

implemented design flows in the Netflix OSS.

The Component Design flow

1. User or the consumer system enters requested credentials by the Netflix OSS Identity

Server.

2. Identity server generates an Access Token.

3. User or the consumer system accessing the Netflix OSS Edge server using the Netflix

OSS Access Token

4. The Netflix OSS Identity server validates the Access Token and performs required

Authentication and Authorization.

5. The Microservice’s user spawning the services using Microservice’s credentials and

credentials for respective Java Keystore.

6. Upon service request calls, the Microservice sends credentials to the .Net Identity server

and the .Net Identity server performs the Authentication of the Microservice.

7. The service call is not propagating forward upon Un-Authenticated service call.

8. Upon successful Authentication, the .Net Identity server generates a Json Web Token

– JWT and returns it back to the respective Microservice.

9. The calling Microservice sending the respective JWT to the inner level Microservice

along with the service API HTTP request.

10. The Inner level Microservice Authorizing the incoming JWT against the .Net Identity

server. This Authorization performs using Identity claims received to the

11. The service call is not propagating forward upon Un-Authorized JWT received.

12. Upon successful Authorization, the Microservice generates its own JWT by presenting

its own credentials to the .Net Identity server.

P a g e | 32

13. The Microservice propagates this to inner level and capture the responses from inner

level Microservices.

14. The Microservice accessing the Secured Java Keystore using the credentials given by

the Spawning user.

15. The Keystore contains shared key for the Calling and Called Microservices.

16. The Called Microservice encrypt the payload and returns the HTTP response to the

calling Microservice.

17. Calling Microservice decrypts the response using the Shared key stored in its own

Secured Keystore.

Figure 4.2-2 Component Flow Diagram

The component flow diagram depicts the fine-grained security process of the implemented

security mechanism. The Microservice’s service API contains the Authorization , Encryption

and Decryption modules to support the security process. The Encryption and Decryption

modules are integrated with the secured Java Keystore. The Java keystore contains the shared

secret key used for the Encryption and Decryption of incoming and outgoing payloads.

The Java Keystore secures the keys using encrypted jck file. It can be decrypted only using the

Keystore credentials passed during the Microservice spawning process. The appendix A10

contains the source code used to implement the secure Java keystore.

4.2.2 Overall Solution Layered Architecture Diagram

The Overall Solution Architecture diagram depicts solution’s main components and their

interactions.

P a g e | 33

Figure 4.2-3 Overall Solution :Layered Architecture

The overall architecture layered diagram depicts how each layer of the application interact each

other. The implemented solution contains 4 layers as the consumer layer, Undertow hosted

Netflix OSS Microservices layer, IIS hosted .Net Identity server and the data persistent layer

implemented using SQL Server 2014.

4.2.3 Layered Architecture Diagram - .Net Identity Server

The .Net Identity server is implemented using Web API 2.0 and Microsoft Identity framework

which is using the OAuth middleware components. The persistent layer is implemented using

the SQL Server 2014. The .Net Identity server is hosted in Internet Information Services (ISS).

P a g e | 34

Figure 4.2-4 .Net Identity Server : Layered Architecture

Authentication filters are used to authenticate an HTTP request in Web API2. It allows to set

an authentication scheme for individual actions or to an ASP.Net MVC Controller [26].

Authorization filters also can be applied to individual actions or to an ASP.Net MVC

Controller.

The OAuth 2.0 middleware for Identity and Resources using OWIN framework and it was

developed under the Katana project by Microsoft [27]. The Authorization code grant using

three methods as Implicit grant, Resource owner password credentials grant and client

credentials grant. This project using the, Resource owner password credentials grant in the

middleware for Authentication and Authorization.

The provider layer defines the JWT format. The Infrastructure layer is using the ADO.Net

along with Entity Framework Object Relational Mapper (ORM) to access SQL Server 2014

database. The Database connection is using a custom system account to access the Database.

P a g e | 35

4.2.4 Sequence Diagram

Sequence diagram depicts the detailed flow of securing Netflix OSS Microservices and how

respective objects are behaving when communicating. The Edge server is using the access

token created by the Netflix OSS Identity server. The Netflix OSS Identity server generates the

access token based on the credentials given by the user.

The user who owns the Microservices are spawning the Microservices with credentials for the

.Net Identity server and respective Java key store.

The .Net Identity server performs the Authentication and issue the OAuth JWT to the

Microservice1. The Microservice2 performs the Authorization of Microservice1 using Claims

issues by the .Net Identity server.

P a g e | 36

Figure 4.2-5 Sequence Diagram

P a g e | 37

4.2.5 Deployment Diagram

Deployment diagram depicts integration in-between deployed project components.

Figure 4.2-6 Deployment Diagram

The Netflix OSS Microservices are deployed using the Undertow containers. The Netflix OSS

Microservices are hosted in the Undertow containers instead of Docker containers due to

hardware limitations in the hosting computer. The hosted Microservice environment in

Undertow contains the Secure Java key store and the Crypto classes are using for the encryption

and decryption process.

P a g e | 38

The .Net Identity server is hosted using IIS and the Identity APIs are secured using a X.509

SSL certificate created using the openssl[34] utility . The Spring MVC packages in the

Microservice environment communicates with the IIS using HTTPS protocol.

4.2.6 Class Diagrams

API Controllers are the main interfaces with the external systems and all external APIs are

inherited from the BaseApiController class.

Figure 4.2-7 Infrastructure layer class diagram

The AccountsController class responsible for managing REST API user related functionality

such as Create , Delete and Read. Assigning Roles and Claims are also managed by the same

class.

The Roles functionality API managed by the RolesController class. The ManageUsersInRole

method is responsible for handle particular user’s role. User can be in more than one Role in a

given time.

Claims are managed by the ClaimsController class. The Getclaims methods returns respective

claims for a given JWT. All API controllers and Actions are authorized using the Authorize

P a g e | 39

annotation in the specific Action method in the API class. All the API classes are inherited

from the BaseApiController class.

Figure 4.2-8 Provider layer Class Diagram

The Provider Layer classes handles internal functionality such as Database migration , Initial

Database creation and binding claims to the users etc. Functional models are also featured in

the Provider layer class diagram. The ModelFactory class is responsible of creation model

objects to use in ORM and API responses.

The provider layer classes contain business logic required by the .Net Identity server.

P a g e | 40

Figure 4.2-9 Middleware layer class diagram

The Middleware layer class diagram contains CustomJwtFormat and CustomOAuthProvider

classes. The CustomJwtFormat inherited form the ISecureDataFormat interface. It is defines

and assigns values to the attributes such as signingKey , issued , expired, token and handler.

The CustomOAuthProvider inherited from the OAuthAuthorizationServerProvider

Class. Validate client authentication and Grant Resource Owner Credentials are the main two

functionalities of this class.

P a g e | 41

4.3 Implementation: Securing Microservices using .Net Identity Server

This section illustrates implementation of the selected design.

4.3.1 Creating a new Identity user

Creating a new Identity user is managed by the Accounts API which is implemented in the

Accounts Controller. The Microsoft Identity framework persist the user details in the

dbo.AspNetUsers table. Password is hashed using the PBKDF2 algorithm and saved in the data

table.

The CreateUser method is responsible for creating a user and it is accepting a

CreateUserBindingModel data model. The CreateUser is a HTTP Post method (decorated with

the HTTPPost annotation. Only the users in the Admin group are authorized to access this

method.

The AccountsController class (Depicts in Appendix A8) handles the user creation API

functionality. Other functionalities such as CRUD operations in user object, assign claims,

roles to the user and password reset functionalities are also handles by the same class.

Figure 4.3-1 ASP.Net Users table

The initial admin role need to be seeded into the database upon creation.

The user should be in the “SuperAdmin” role in order to create a new role. The Authorization

is managed by the Authorize Attribute in the POST method defined to create a user.

The Authorize attribute is validated against the incoming JWT in the request header. This

request mapping functionality is implemented in the Startup class in the Identity server

application. The startup class is depicted in the Appendix A9.

The created user can be assigned to a role which can have different permission sets. The

Roles can be managed using the Roles API which is implemented in the RolesController.

4.3.2 Generating the Identity Token

The identity token generation is handled by the “/oauth/token” API. User need to pass in the

credentials along with the grant type in the POST request body.

P a g e | 42

Figure 4.3-2 HTTPS Request to Identity Server

The token generation accepts only the HTTPS requests because the credentials are passed

through the POST request in clear text by the client. Generated token is valid only for two

seconds. Each of the inter Micro Services call requires a fresh token be generated and short-

lived token guarantees to prevent any misuse of a captured Token by an adversary. This token

can be used only one time. If some Microservice sends a token to the Identity server for

verification, it will be expired from that point onwards.

4.3.3 User Claims

The Microsoft Identity framework uses the Claims to retrieve Token owner’s information such

as Roles. The Identity framework allows to create any customized claims if the application

required. The client needs to pass in the generated token via the request header in order to

retrieve claims. The claims are managed by the “api/claims” API which is implemented in the

Claims controller.

The Appendix A4 contains the code segments of the Claims Controller API.

The Authorize annotation make sure that all the requests to the Claims API service are

Authorized and no anonymous users can make call to the API.

Claims API call result is as follows.

P a g e | 43

Figure 4.3-3 HTTPS Request to Claims API

The Claims API consumer needs to pass in the bearer token in the HTTP request header. Upon

successful authorization of the bearer token (JWT) , the Claims API responses with claims

values. Claim values are including Security stamp , user Role, token validity period , user

name etc..

The Identity Server’s APIs are used to Authorize and Authenticate spring service calls. Each

of the Microservice needs to spawn using credentials. Microservices need to Authenticate

against the Identity server before communicating with deeper level Microservices. Following

sequence diagram depicts the Authentication and Authorization process.

4.3.4 Securing the .Net Identity Server

The .Net Identity server is secured using Authentication and Authorization mechanisms

explained in the previous sections. Apart from this, the IIS server is secured using the Transport

Layer Security (TLS) as well.

The IIS deployment of the .Net identity server is secured using a self-signed X.509 certificate.

P a g e | 44

4.3.5 Spawning Microservices

The Spring Microservices are hosted in Gradle containers using Undertow as the web host.

Microservices need to spawn using credentials for the Identity server.

start /D microservices\api\product-api-service gradlew bootRun -D<username> -

D<password>

The Micro Service trying to Authenticate against the Identity server using these injected

credentials. The code handles the token generation process depicts in the Appendix A5.

The Token class is depicted in the Appendix A6. Token class’s main properties are

access_token, token_type and expire_in. The token type denotes the bearer token and

expires_in property denotes the expiry time in seconds from the time token is generated.

If the token generation process is successful , the Spring Microservice would call inner level

Micro service with the bearer token in the request url’s query string parameter.

Following table depicts Micro Service Role Based Authorization privileges.

 Role

Micro Service

NetflixIdentityRole ProductService CompositeService

Edge Server Approved Deny Deny

Product API Approved Deny Deny

Composite API Deny Approved Deny

Review Core Service Deny Deny Approved

Product Core Service Deny Deny Approved

Recommendation Service Deny Deny Approved
Table 4.3-1 Identity Server Roles and Authorization

The called Micro service acquire the token from the query string and call the .Net Identity

service to verify the Token’s role using claims. The Microservices are Authorized using Role

Based Authorization.

The Role authentication in the called Service is performed using the claims API in the .Net

Identity server. The Claims API source code depicts in the Appendix A5. Appendix A7 depicts

the Java class which handles the incoming claims from the .Net Identity server.

4.3.6 Encryption and Decryption of Microservice payloads

The called Micro Service decrypts the payload using the Crypto Java class. The symmetric

encryption key is stored securely using the Java Keystore and the method GetKeyStoreKey

access the Keystore and returns the shared secret symmetric key. The GetKeyStoreKey method

accepts the Keystore alias Key password and the Keystore password as parameters.

P a g e | 45

The Encrypt and Decrypt methods handles the encryption and decryption methods

respectively. Encryption process using the AES encryption algorithm.

The Appendix A10 depicts the Crypto class implemented using Java. This class is using a key

which is expired in one months period. Hence , it is required to update the jck file once a month

with a new key. A new password needs to pass-in to the Microservice upon spawning,

P a g e | 46

5 Testing and Evaluation

The implemented security mechanisms need to be tested for performance and security. This

chapter elaborates about performance and security testing and evaluation of other Industry

solutions to similar problems.

5.1 Performance Testing

The Performance testing needs to be performed in the securely hardened Netflix OSS

Microservice eco system and needs to compare with the original Netflix OSS Microservices

eco system. The Load Complete [18] tool without any customizations is used to perform the

performance testing.

The performance testing is carried out in following scenarios. Output results from the Load

Complete tool is evaluated to determine the performance impact in the application. The

parameters that are changing for this test are as following.

1. Number of users

2. Plain Microservice API and Security Hardened Microservice API

All the other variables are remains same.

Scenario 1 : Netflix OSS Microservices with 1 user

Scenario 2 : Netflix OSS Microservices with 5 concurrent users

Scenario 3 : Netflix OSS Microservices with 10 concurrent users

Scenario 4 : Security hardened Netflix OSS Microservices with 1 user

Scenario 5 : Security hardened Netflix OSS Microservices with 5 concurrent users

Scenario 6 : Security hardened Netflix OSS Microservices with 10 concurrent users

All the tests are conducted using same hardware benchmark as in figure 5.1-1.

Figure 5.1-1 Benchmark figures

5.1.1 Test Results

5.1.1.1 Scenario 1 : Netflix OSS Microservices with 1 user

Parameter Description :

URL : URL of the Zuul Edger Server. The Edge server is using http protocol in its demo

version.

Netflix Identity Token Value : The Token generated by the Netflix OSS Identity server. This

token is used to Authenticate the Zuul Edger service. (The token is using changed due to

timeouts of the session)

Number of concurrent users : Number of users taken into the account during testing. This is

a parameter set in the Load complete tool.

http://localhost:8765/api/product/1

P a g e | 47

Number of Microservices : Number of Microservices that are spawned per each type

Response time : Response time to execute the request issued to the Edge service

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b

Number of concurrent users : 1

Number of Microservices : One from each service

90% Response time : 340 ms

The Test result reports are referenced in Appendix B1

5.1.1.2 Scenario 2 : Netflix OSS Microservices with 5 users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b

Number of concurrent users : 5

Number of Microservices : One from each service

90% Response time : 403 ms

The Test result reports are referenced in Appendix B2

5.1.1.3 Scenario 3 : Netflix OSS Microservices with 10 users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : 8e24b8d4-63bf-421e-8868-744ede23502b77

Number of concurrent users : 10

Number of Microservices : One from each service

90% Response time : 461 ms

The Test result reports are referenced in Appendix B3

5.1.1.4 Test Result Analysis

According to the outcome results, it is observed that the response time is increasing when

number of concurrent users are increasing. This is due to the increasing resource utilization in

the server side. It is also noticed that proportion of latency is decreasing when number of users

are increasing.

Most of the request and transfer speeds are decreasing against especially when number of users

are increasing. This is due to the response caching capabilities of the Edge server.

5.1.1.5 Scenario 4 : Security hardened Netflix OSS Microservices with 1 user

Testing Parameters

http://localhost:8765/api/product/1
http://localhost:8765/api/product/1
http://localhost:8765/api/product/1

P a g e | 48

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : a169572d-fc61-429d-8b60-6dac8193ba54

Number of concurrent users : 1

Number of Microservices : One from each service

90% Response time : 461 ms

The Test result reports are referenced in Appendix B4

5.1.1.6 Scenario 5 : Security hardened Netflix OSS Microservices with 5 concurrent

users

Testing Parameters

URL : http://localhost:8765/api/product/1

Netflix Identity Token Value : a169572d-fc61-429d-8b60-6dac8193ba54

Number of concurrent users : 5

Number of Microservices : One from each service

90% Response time : 515 ms

The Test result reports are referenced in Appendix B5

5.1.1.7 Scenario 6 : Security hardened Netflix OSS Microservices with 10 concurrent

users

Testing Parameters

URL : http://localhost:8765/api/product/1

Token Value : a169572d-fc61-429d-8b60-6dac8193ba54

Netflix Identity Number of concurrent users : 10

Number of Microservices : One from each service

90% Response time : 945 ms

The Test result reports are referenced in Appendix B6

5.1.1.8 Test Result Analysis

The test results are similar to the section 5.1.1.4 except overall response time been increased

after securing the internal Netflix OSS Microservice.

http://localhost:8765/api/product/1
http://localhost:8765/api/product/1
http://localhost:8765/api/product/1

P a g e | 49

Figure 5.1-2 Microservice Performance Analysis

Figure 5.1-2 depicts analysis of 90% response time against number of concurrent users.

The composite analysis of the performance test results depicts that there is a performance

degradation occurred due to the security hardening of Netflix OSS internal microservice calls.

This is acceptable because of the encryption, decryption and extra authentication service calls

that the Microservices need to perform.

5.2 Security Testing

This section illustrates how implemented security methods are securing internal Netflix OSS

microservice calls from identified vulnerabilities.

5.2.1 Attack 1 : Eavesdropping

The attack is conducted against the Composite service Microservice. The Composite service

Microservice is spawned in the port 53661 during the testing attack phase.

The captured packets are analysed using Wireshark as illustrated below.

Figure 5.2-1 Eavesdropping : Wireshark Packet analyse

.

P a g e | 50

Figure 5.2-2 Request to the Product Composite service

The Wireshark do not have the capabilities to encode the Gzip encoding. Hence the decoding

tool HTTP Gunzip [17] is used to decode the response Json content.

Figure 5.2-3 Decoded response : Json content

The Attacker can visualize only the encrypted payload. Hence the implemented method

successfully mitigates the Eavesdropping attack against Netflix OSS internal microservice

calls.

P a g e | 51

5.2.2 Attack 2 : Confused Deputy Attack

The confused deputy attack can be conducted using Fiddler tool. The Attacker can call the

internal Product Composite service directly bypassing the Edge server as illustrated below.

The Product Composite service is running in port 53661.

Figure 5.2-4 Confused Deputy Attack : Composite Service 404 Error

This is resulted with HTTP 404-Not Found error. Because the secured Product Composite

service required following URI format.

http://localhost:53661/product/{ProductId}/{JWT}

The attacker can enumerate possible URIs and identify the required pattern and send a request

with random JWT value. The Product Composite service returns HTTP 200 -Ok code. But the

Attacker do not pose a valid JWT to authenticate himself against the Product Composite

microservice. The Product Composite microservice returns the error message “Invalid Token”

Figure 5.2-5 Confused Deputy Attack : Invalid Token

http://localhost:53661/product/%7bProductId%7d/%7bJWT%7d

P a g e | 52

Hence the implemented method successfully mitigates the confused deputy attack against

Netflix OSS internal microservice calls.

5.2.3 Attack 3: Man in the Middle Attack

The attacker is not being able to perform a MiTM attack because of following reasons.

1. Attacker do not know the required URI format to call the internal microservices after

introducing the JWT token.

2. Even though attacker find the required URI format, attacker cannot authenticate against

the internal microservice because the attacker do not possessing a valid JWT token

generated by the .Net Identity server.

3. Attacker cannot change the returning payload because the attacker do not poses a valid

key to encrypt the payload. The Secured Netflix OSS microservices can accepts only

encrypted payloads which are encrypted using legitimate key.

Hence the implemented method successfully mitigates the MiTM attack against Netflix OSS

internal microservice calls.

5.2.4 Attack 4: Eavesdropping attack against the .Net Identity server to

capture credentials

Eavesdropping attack against the .Net Identity server is not possible because it is being secured

using the Transport Layer Security (TLS). Hence the communication in between secured

Microservice and the .Net Identity server is encrypted.

5.2.5 Attack 5: Replay attack with captured JWT token

The Request from one Microservice to another is not encrypted or not using TLS. Hence it is

possible to attacker to gain access to the Request header and capture the Authentication Token.

An Attacker can try access inner level Microservice using this captured token.

Capturing the Authentication (JWT) token

Figure 5.2-6 Captured Token

Captured Token by the Attacker :
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJuYW1laWQiOiI5OWE3MjdiNC00YjEwLTRmNTAtOWFkNS0xZjI3NzA3
MjUwNmQiLCJ1bmlxdWVfbmFtZSI6Ik1hcmlvIiwiaHR0cDovL3NjaGVtYXMubWljcm9zb2Z0LmNvbS9hY2Nlc3Njb
250cm9sc2VydmljZS8yMDEwLzA3L2NsYWltcy9pZGVudGl0eXByb3ZpZGVyIjoiQVNQLk5FVCBJZGVudGl0eSIsIkFz
cE5ldC5JZGVudGl0eS5TZWN1cml0eVN0YW1wIjoiZmM4MTk0YWYtMDM4Mi00NjA0LThmZWUtMTdjZTAzOTc5
YzE3Iiwicm9sZSI6IlByb2R1Y3RBcGkiLCJDbGllbnRJZCI6WyIxIiwiMTA1OCJdLCJpc3MiOiJodHRwOi8vTUlTMDIzaW
RlbnRpdHkuYXp1cmV3ZWJzaXRlcy5uZXQiLCJhdWQiOiI0MTRlMTkyN2EzODg0ZjY4YWJjNzlmNzI4MzgzN2ZkMSIs

P a g e | 53

ImV4cCI6MTQ5MTEzNTA3NCwibmJmIjoxNDg4NTQzMDc0fQ.hMzF2v-dCWkTsZ0ho_Io8IGJs-AOl69-
kD7l5Y4pjaQ

Attacker can use a tool like Postman to access internal Microservice directly using this JWT.

Figure 5.2-7 Failed Replay Attack

The attack attempt is a failure because the Token is already consumed by the internal

Microservice (Product Composite Service). Hence, the token is not valid anymore to use by

the Attacker.

5.2.6 General Security Test Cases

Several test cases are executed to validate user scenarios in the secured Netflix OSS

Microservices

TC # Test Case Expected Results Actual Results Pass/Fail

1
Spawning Microservice with
Invalid Credentials

Microservice should be
Unauthorized

“Invalid Credentials”
message Returned with
HTTP-200 Pass

Approach : Spawn a Microservice with invalid .Net Identity credentials

start /D microservices\core\product-service gradlew bootRun -DUserName=invaliduser -

DInvalidPassword -DKeyStoreCredentials-M1so@#123

P a g e | 54

Result :

Figure 5.2-8 Test Case : Spawning Microservice with Invalid Credentials

TC # Test Case Expected Results Actual Results Pass/Fail

2

Spawning Microservice with
Invalid Credentials to Java Key
store Null payload should return Null payload Pass

Approach : Spawn a Microservice with invalid Java Keystore credentials

start /D microservices\core\product-service gradlew bootRun -DUserName=mario -D

SuperMario@123 -DKeyStoreCredentials-gfhgfhgfhgf

Result :

Figure 5.2-9 Test Case : Spawning Microservice with Invalid Credentials to Java Key store

P a g e | 55

TC # Test Case Expected Results Actual Results Pass/Fail

3

Spawning Microservice with
Valid Credentials but invalid
application role

Service call should be
Unauthorized

"Authorization Failed"
message returned with
HTTP -200 Pass

Approach : Spawn a Microservice with invalid .Net Identity credentials

start /D microservices\core\product-service gradlew bootRun -DUserName=priyalw -

DPriyal@123 -DKeyStoreCredentials-M1so@#123

Result :

Figure 5.2-10 Test Case : Spawn a Microservice with invalid .Net Identity credentials

5.3 Study of Similar industrial solutions for Microservice security

This sections elaborates examples of how industrial solutions tried to solve the security issues

in Microservices.

5.3.1 DZone : The Interceptor pattern

The Interceptor pattern capturing inbound and outbound HTTP traffic flow in a Microservice.

The capturing information are HTTP URI, URL, and the credentials provided by the HTTP

agent[20].

Following picture depicts the Interceptor pattern in its general implementation.

P a g e | 56

Figure 5.3-1 The Interceptor Pattern[20]

The interceptor acts as a Security guardian for the Microservice implementation. The

Interceptor can use existing security frameworks such as Apache Shiro, Spring Security, and

Apache WS4J in order to perform the Authentication and Authorization.

The Interceptor pattern being enriched by using the features offered by the Jetty/Netty HTTP

Server by,

1. Enable Secure transmission using TLS between HTTP Agent and the Server

2. Two-way SSL /TSL

3. Restrict Web resource access using SecurityConstraint associated with a user’s role.

4. The Web HTTP container controls the user Authentication.

5. The Interceptor control the Authorization.

Figure 5.3-2 The Interceptor Pattern with Secured Web container[20]

The interceptor pattern is flexible and easy to handle. But, interceptor pattern needs to

implement using custom security coding which is not a standard practice. Management of the

Microservices is a burden using the interceptor pattern because each and every Microservice

need to be managed independently. This is decreasing the quick commissioning and

decommission capabilities of Microservices. Managing certificates with two-way TLS is also

problematic with Microservices architecture.

5.3.2 Nordic API : Use JWT Token to secure Microservices

The Nordic API application framework implements an Identity server to perform

Authentication for each Microservice. A JWT is generated using OpenID Connect

Authorization server. The resource owner creates a session and persist the generated JWT in

the particular user session.

P a g e | 57

Figure 5.3-3 Nordic API : SSO Architecture[21]

The user is authenticated using information contained in the ID token. Creating a user session

in the client side can be considered as an overhead in this approach for an open ended clients

such as Netflix consumers.

The Nordic API Tokens are generated once and flowing through from one service to another.

If an Adversary manage to attack the user’s session and aquire a valid JWT, the Adversary can

access resources from any internal Microservice as well.

5.3.3 JHispter UAA for Microservice Security

JHipster UAA (User Account and Authorization) is an authorizing service for securing

microservices using the OAuth2 authorization protocol.

The JHipster defines 6 important claims to clarify a solid security solution

1. Central Authentication

2. Statelessness : this is to maintain the scalability of the Microservices architecture

3. User/Machine access distinction

4. Fine-grained access control

5. Safe from attacks

6. Scalability

The JHipster using Feign clients to secure inter-service communication within the

Microservices internal calls.

P a g e | 58

Figure 5.3-4 JHipster OAuth Architecture[22]

The main components of the JHipster UAA are as follows.

1. JHipster UAA server

2. At least one other microservice using UAA authentication

3. A JHipster gateway using UAA authentication

The Ribbon load balanced REST clients for endpoints registered in Eureka can be written

using Feign. Feign provides with fallback implementations controlled using Hystrix, using

nothing more than Java interfaces with some annotations.

Feign clients are using to define an interface when one REST service to access another service

or resource. The Interface is defined as follows.

@FeignClient(name = "other-service")
interface OtherServiceClient {
 @RequestMapping(value = "/api/other-resources")
 List<OtherResource> getResourcesFromOtherService();
}
@Service
class SomeService {

P a g e | 59

 private OtherServiceClient otherServiceClient;
 @Inject
 public SomeService(OtherServiceClient otherServiceClient) {
 this.otherServiceClient = otherServiceClient;
 }
}

The @AuthorizedFeignClients annotation enables the Authorization of the calling

Microservice.

@AuthorizedFeignClient(name = "other-service")
interface OtherServiceClient {
 @RequestMapping(value = "/api/other-resources")
 List<OtherResource> getResourcesFromOtherService();
}

The JHipster UAA is a comprehensive framework to secure internal Netflix OSS Microservice

infrastructure because , it is directly supporting Netflix OSS components such as Hystrix,

Ribbon and Eureka . The main drawback of the JHipster UAA is it is still in its beta version. It

is not an idustry best practice to use beta versioned components in a production environment.

P a g e | 60

6 Conclusion

6.1 Summary

The Netflix OSS Microservices inherently contains vulnerabilities inside the perimeter network

where an internal attacker can exploit. The major vulnerabilities are identified as

Eavesdropping internal service to service communication, Confused deputy attack, Man in the

middle attack and Replay attack.

The main objective of this project is to secure Netflix OSS Microservice’s internal service calls

from said vulnerabilities. Preserving the Microservices’ characteristics such as Scalability,

Performance, and Automation while securely hardening the internal service calls was also a

major objective of the project.

During the literature review, various technologies were studied to find the best and optimal

technique to secure Netflix OSS Microservices. The knowledge gained from those studies

helped to finalize the best possible technique which satisfies project objectives.

The Netflix OSS Microservice eco system is being protected from external attacks using an

OAuth Identity server implemented using Java Spring MVC. This Identity server is performing

authentication of external service calls to the Edge server. An attempt was made to secure

Netflix OSS Microservices from internal attacks by relaying the Edge server’s authentication

token into internal Microservices. But this attempt failed and it was proven that it is vulnerable

to a token replay attack. Service to Service authorization also cannot be solved by using the

token relaying technique.

Another attempt was made to secure the Netflix OSS Microservices’ internal service to service

communication by implementing .Net Identity server. The .Net Identity server issues a JWT

upon successful Authentication issued by the Microservice. The same JWT is used by the called

Microservice to Authorize the calling microservice. Requests from one Microservice to another

was performed using HTTP. Difficulty of managing server side and client side HTTPS

certificates in a dynamic environment like Microservices prevented using HTTPS

communication in between service calls. But the JWT was secured by expiring the JWT upon

one Authorize request and providing limited lifespan. It was proven that the token replay

attacks, Man in the middle attacks and Confused deputy attacks can be avoided using the said

JWT security mechanisms.

 The Eavesdropping attack was prevented by encrypting the service responses from one

Microservice to another. AES encryption algorithm was used along with a shared key to

perform the encryption. The shared keys were protected using Java keystore.

It was proven during the testing and evaluation phase, that there were bit of a performance

impact to the Netflix OSS Microservices after introducing discussed security implementations.

This is caused by encryption, decryption and identity verification API calls that needs to

perform because of the security enhancement.

6.2 Limitations

The Defense In-depth security framework for Netflix OSS Micro Services project encountered

following limitations during the research and implementations phases.

P a g e | 61

• The major obstacle of this project was to find academic research papers and other

reference material about the security of internal Microservice communication. The

Microservice architectural pattern is relatively new concept and because of that, it was

hard to find academic research papers about Microservice internal security.

• Failed to host Microservices in an industrial level containers such as Docker.

This limitation occurred due to lack of hardware resources in the testing computer.

Because of this, the Microservices had to host using Undertow containers using

different ports in the localhost environment.

• Use self-signed certificate in the IIS server to secure .Net Identity Server

communication.

Using self-signed certificates is not an industrial level recommended practice. SSL

certificates should be validated using a Certificate Authority according to the industrial

standards. Since this is a research project, a self-signed certificate is used to secure IIS

server.

6.3 Future Enhancements

Based on the conducted testing and evaluation, the Defence In-depth security framework for

Netflix OSS Micro Services project managed to successfully secure Internal Netflix OSS

Microservices. However, following areas are left open to future research and development.

• Access the .Net Identity server through Eureka server using Rabbit MQ message queue.

In the Current implementation, Microservices are accessing the .Net identity server

directly in-order to perform Authentication and Authorizations. It is a good practice to

integrate the .Net identity server to the same Microservice eco system.

• Auto shutdown a Microservice upon invalid credentials provided to the .Net Identity

server or Java Keystore.

This feature makes sure that no unauthorized or malicious Microservices are not being

able to keep alive in the Netflix OSS Microservice eco system.

• Auto shutdown a Microservice upon identification of malicious payload returned from

inner level Microservice.

This feature makes sure that no unauthorized or malicious Microservices are not being

able to keep alive in the Netflix OSS Microservice eco system.

• After security hardening of Netflix OSS internal Microservice calls, a significant

performance decrement was monitored in the Microservices ecosystem. Further

research needs to be performed about increasing the performance while maintaining the

high security implementation of internal Microservice ecosystems.

P a g e | 62

References

[1] Netflix Supported Devices | Watch Netflix on your phone, TV or favorite device.

2016. Netflix Supported Devices | Watch Netflix on your phone, TV or favorite device.

[ONLINE] Available at:https://devices.netflix.com/en/. [Accessed 03 May 2016]

[2] Statista. 2016. • Netflix subscribers, users 2016. [ONLINE] Available

at:https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-

subscribers-worldwide/. [Accessed 07 May 2016]

[3] Sam Newman, 2015. Building Microservices. 1 Edition. O'Reilly Media.

[4] Vinh D. Le, M. M. (2012). Micro service-based Architecture for the NRDC. International

Journal of Open Information Technologies , 45.

[5] Netflix Open Source Software Center. 2016. Netflix Open Source Software Center.

[ONLINE] Available at: https://netflix.github.io/. [Accessed 26 August 2016].

[6] SnapLogic Blog. 2016. Two-way SSL with SnapLogic’s REST Snap | SnapLogic Blog.

[ONLINE] Available at: http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-

snap/. [Accessed 26 August 2016].

[7] The Open Universe: One Way and Two Way SSL and TLS. 2016. The Open Universe: One

Way and Two Way SSL and TLS. [ONLINE] Available

at: http://www.ossmentor.com/2015/03/one-way-and-two-way-ssl-and-tls.html. [Accessed 26

August 2016].

[8] DigitalOcean. 2016. An Introduction to OAuth 2 | DigitalOcean. [ONLINE] Available

at:https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2. [Accessed

30 August 2016].

[9] Thread Safe: The problem with OAuth for Authentication.. 2016. Thread Safe: The problem

with OAuth for Authentication.. [ONLINE] Available at: http://www.thread-

safe.com/2012/01/problem-with-oauth-for-authentication.html. [Accessed 19 July 2016].

[10] draft-ietf-oauth-proof-of-possession-11 - Proof-of-Possession Key Semantics for JSON

Web Tokens (JWTs). 2016. draft-ietf-oauth-proof-of-possession-11 - Proof-of-Possession Key

Semantics for JSON Web Tokens (JWTs). [ONLINE] Available

at: https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-11. [Accessed 27 July 2016

[11] Netflix Open Source Software Center. 2016. Netflix Open Source Software Center.

[ONLINE] Available at: https://netflix.github.io/. [Accessed 27 June 2016]

[12] Stuart Douglas. 2016. Undertow · JBoss Community. [ONLINE] Available

at: http://undertow.io/. [Accessed 27 September 2016].

[13] Netflix, Inc Netflix Open Source Platform. [ONLINE] Available

at: https://github.com/Netflix

 [Accessed 27 September 2016].

https://devices.netflix.com/en/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/
https://netflix.github.io/
http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-snap/
http://www.snaplogic.com/blog/two-way-ssl-with-snaplogics-rest-snap/
http://www.ossmentor.com/2015/03/one-way-and-two-way-ssl-and-tls.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-11
https://netflix.github.io/
http://undertow.io/

P a g e | 63

[14]Richards, M, 2015. Microservices vs. Service- Oriented Architecture. 1st ed. United States

of America: O’Reilly.

[15] auth0.com. 2017. JSON Web Token Introduction - jwt.io. [ONLINE] Available at:

https://jwt.io/introduction/. [Accessed 04 October 2016]

[16] Using HMAC to authenticate Web service requests – rc3.org. 2017. Using HMAC to

authenticate Web service requests – rc3.org. [ONLINE] Available at:

http://rc3.org/2011/12/02/using-hmac-to-authenticate-web-service-requests/. [Accessed 14

October 2016].

[17] GitHub - kizzx2/wireshark-http-gunzip: Make Wireshark's "Follow TCP Stream" support

Content-Encoding: gzip. 2017. GitHub - kizzx2/wireshark-http-gunzip: Make Wireshark's

"Follow TCP Stream" support Content-Encoding: gzip. [ONLINE] Available

at: https://github.com/kizzx2/wireshark-http-gunzip. [Accessed 28 January 2017].

[18] Token relay pattern: service secured with oauth to call another oauth secured service ·

Issue #45 · spring-cloud/spring-cloud-security · GitHub. 2017. Token relay pattern: service

secured with oauth to call another oauth secured service · Issue #45 · spring-cloud/spring-

cloud-security · GitHub. [ONLINE] Available at: https://github.com/spring-cloud/spring-

cloud-security/issues/45. [Accessed 21 January 2017].

[19] SmartBear. 2017. Load Tester. [ONLINE] Available at: https://smartbear.com/lp/loadui-

org/loadcomplete-free-tool/. [Accessed 28 February 2017].

[20] Dzone. 2017. Security enforcement of the microservices - Dzone Integration . [ONLINE]

Available at: https://dzone.com/articles/security-enforcement-of-the-microservices. [Accessed

13 February 2017].

[21] Nordic API. 2017. How to Control User Ids Within Microservices . [ONLINE] Available

at: http://nordicapis.com/how-to-control-user-identity-within-microservices/. [Accessed 15

February 2017].

[22] Jhipster. 2017. Using UAA for Microservice Security . [ONLINE] Available

at: https://jhipster.github.io/using-uaa/. [Accessed 22 February 2017].

[23] RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2. 2017. RFC 5246 -

The Transport Layer Security (TLS) Protocol Version 1.2. [ONLINE] Available

at: https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTxRCKJXm4F2HWdjCh4Jxj1h

RuOCJYqyzGnd9MPhztwQSso2IIm22QlXESwpr2rmXMwttJ33VZo2pBnBHDKnuQ.

[Accessed 04 March 2017]

[24] NGINX. 2017. Introduction to Microservices | NGINX. [ONLINE] Available

at: https://www.nginx.com/blog/introduction-to-microservices/. [Accessed 07 March 2017].

[25] Uber Engineering Blog. 2017. The Uber Engineering Tech Stack, Part I: The Foundation

- Uber Engineering Blog. [ONLINE] Available at: https://eng.uber.com/tech-stack-part-one/.

[Accessed 07 March 2017].

https://github.com/kizzx2/wireshark-http-gunzip
https://github.com/spring-cloud/spring-cloud-security/issues/45
https://github.com/spring-cloud/spring-cloud-security/issues/45
https://smartbear.com/lp/loadui-org/loadcomplete-free-tool/
https://smartbear.com/lp/loadui-org/loadcomplete-free-tool/
https://dzone.com/articles/security-enforcement-of-the-microservices
http://nordicapis.com/how-to-control-user-identity-within-microservices/
https://jhipster.github.io/using-uaa/
https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTxRCKJXm4F2HWdjCh4Jxj1hRuOCJYqyzGnd9MPhztwQSso2IIm22QlXESwpr2rmXMwttJ33VZo2pBnBHDKnuQ
https://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAXTxRCKJXm4F2HWdjCh4Jxj1hRuOCJYqyzGnd9MPhztwQSso2IIm22QlXESwpr2rmXMwttJ33VZo2pBnBHDKnuQ
https://www.nginx.com/blog/introduction-to-microservices/
https://eng.uber.com/tech-stack-part-one/

P a g e | 64

[26] MikeWasson. 2017. Authentication Filters in ASP.NET Web API 2 | Microsoft Docs.

[ONLINE] Available at: https://docs.microsoft.com/en-us/aspnet/web-

api/overview/security/authentication-filters. [Accessed 08 March 2017].

[27] hongyes. 2017. OWIN OAuth 2.0 Authorization Server | Microsoft Docs. [ONLINE]

Available at: https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-

katana/owin-oauth-20-authorization-server. [Accessed 08 March 2017].

[28] Uber's Business Model. 2017. Uber's Business Model. [ONLINE] Available

at: https://www.slideshare.net/funk97/ubers-business-model. [Accessed 08 March 2017].

[29] Ebay history and architecture - High Scalability - . 2017. Ebay history and architecture -

High Scalability - . [ONLINE] Available at: http://highscalability.com/blog/2009/3/31/ebay-

history-and-architecture.html. [Accessed 08 March 2017].

[30] Eric Knorr. 2017. What eBay looks like under the hood. [ONLINE] Available at:

http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-

under-the-hood.html. [Accessed 8 March 2017].

[31] Front-end Renaissance at eBay | eBay Tech Blog. 2017. Front-end Renaissance at eBay |

eBay Tech Blog. [ONLINE] Available at: http://www.ebaytechblog.com/2014/01/13/front-

end-renaissance-at-ebay/. [Accessed 08 March 2017].

[32] Microservices at eBay. 2017. Microservices at eBay. [ONLINE] Available

at: https://de.slideshare.net/kasun04/microservices-at-ebay. [Accessed 08 March 2017]

[33] Postman - Chrome Web Store. 2017. Postman - Chrome Web Store. [ONLINE] Available

at: https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop.

[Accessed 04 June 2017]

[34] OpenSSL Foundation, Inc.. 2017. /index.html . [ONLINE] Available

at: https://www.openssl.org/. [Accessed 04 June 2017].

https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-filters
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-filters
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-oauth-20-authorization-server
https://www.slideshare.net/funk97/ubers-business-model
http://highscalability.com/blog/2009/3/31/ebay-history-and-architecture.html
http://highscalability.com/blog/2009/3/31/ebay-history-and-architecture.html
http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-under-the-hood.html
http://www.infoworld.com/article/3041064/application-development/what-ebay-looks-like-under-the-hood.html
http://www.ebaytechblog.com/2014/01/13/front-end-renaissance-at-ebay/
http://www.ebaytechblog.com/2014/01/13/front-end-renaissance-at-ebay/
https://de.slideshare.net/kasun04/microservices-at-ebay
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://www.openssl.org/

P a g e | 65

Appendix A : Source Code
Appendix A1
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

import se.callista.microservices.composite.product.model.ProductAggregated;

import se.callista.microservises.core.product.model.Product;

import se.callista.microservises.core.recommendation.model.Recommendation;

import se.callista.microservises.core.review.model.Review;

import java.util.Date;

import java.util.List;

/**

 * Created by The Hacker

 */

@RestController

public class CounterfeitCompositeService {

 private static final Logger LOG = LoggerFactory.getLogger(CounterfeitCompositeService.class);

 @Autowired

 ProductCompositeIntegration integration;

 @Autowired

 Util util;

 @RequestMapping("/")

 public String getProduct() {

 return "{\"timestamp\":\"" + new Date() + "\",\"content\":\"I am a legitimate Microservice HA HA ... \"}";

 }

 @RequestMapping("/product/{productId}")

 public ResponseEntity<ProductAggregated> getProduct(@PathVariable int productId) {

P a g e | 66

 //Get the product id from the incoming request and relay to the internal services

 ResponseEntity<Product> productResult = integration.getProduct(productId);

 // 2. Get optional recommendations

 List<Recommendation> recommendations = null;

 try {

 ResponseEntity<List<Recommendation>> recommendationResult =

integration.getRecommendations(productId);

 recommendations = recommendationResult.getBody();

 // I am a bad person and I need to see whats coming to my bad service

 // So I do log the response from internal service

 LOG.debug(recommendations);

 // I need to change the original content and need my content to return

 String myBadRecomendation = "{\"recommendationId\":\"1\" ,\"author\":\"The

Hacker \" ,\"rate\":\"-1 \"}"

 } catch (Throwable t) {

 LOG.error("Somethig wrong here ", t);

 throw t;

 }

 }

// Returning my bad content

 return util.createOkResponse(new ProductAggregated(productResult.getBody(), recommendations,

reviews));

 }

}

Appendix A2

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.authentication.AuthenticationManager;

import org.springframework.security.oauth2.config.annotation.configurers.ClientDetailsServiceConfigurer;

import org.springframework.security.oauth2.config.annotation.web.configuration.AuthorizationServerConfigurerAdapter;

import org.springframework.security.oauth2.config.annotation.web.configuration.EnableAuthorizationServer;

P a g e | 67

import org.springframework.security.oauth2.config.annotation.web.configuration.EnableResourceServer;

import org.springframework.security.oauth2.config.annotation.web.configurers.AuthorizationServerEndpointsConfigurer;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

import java.security.Principal;

@SpringBootApplication

@RestController

@EnableResourceServer

public class AuthserverApplication {

 @RequestMapping("/user")

 public Principal user(Principal user) {

 return user;

 }

 public static void main(String[] args) {

 SpringApplication.run(AuthserverApplication.class, args);

 }

 @Configuration

 @EnableAuthorizationServer

 protected static class OAuth2Config extends AuthorizationServerConfigurerAdapter {

 @Autowired

 private AuthenticationManager authenticationManager;

 @Override

 public void configure(AuthorizationServerEndpointsConfigurer endpoints) throws Exception {

 endpoints.authenticationManager(authenticationManager);

 }

 @Override

 public void configure(ClientDetailsServiceConfigurer clients) throws Exception {

 clients.inMemory()

 .withClient("acme")

 .secret("acmesecret")

P a g e | 68

 .authorizedGrantTypes("authorization_code", "refresh_token", "implicit",

"password", "client_credentials")

 .scopes("webshop");

 }

 }

}

Appendix A3

@Autowired

 private LoadBalancerClient loadBalancer;

 @RequestMapping("/{productId}")

 @HystrixCommand(fallbackMethod = "defaultProductComposite")

 public ResponseEntity<String> getProductComposite(

 @PathVariable int productId,

 @RequestHeader(value="Authorization") String authorizationHeader,

 Principal currentUser) {

 URI uri = loadBalancer.choose("productcomposite").getUri();

 String url = uri.toString() + "/product/" + productId;

 ResponseEntity<String> result = restTemplate.getForEntity(url, String.class);

 return result;

 }

Appendix A4

namespace MIS023.IdentityServer.Controllers
{
 [RoutePrefix("api/claims")]
 public class ClaimsController : BaseApiController
 {
 [Authorize]
 [Route("")]
 public IHttpActionResult GetClaims()
 {
 var identity = User.Identity as ClaimsIdentity;

 var claims = from c in identity.Claims
 select new
 {
 subject = c.Subject.Name,
 type = c.Type,
 value = c.Value
 };

P a g e | 69

 return Ok(claims);
 }

 }
}

Appendix A5

private String Authenticate(String userName, String password)
 {
 try (CloseableHttpClient httpClient = HttpClientBuilder.create().build()) {
 HttpPost request = new HttpPost("http://localhost:55471/oauth/" + "token");
 request.addHeader("content-type", "application/json");
 request.addHeader("Accept", "application/json");

 List < NameValuePair > params = new ArrayList<NameValuePair>(2);
 params.add(new BasicNameValuePair("username", userName));
 params.add(new BasicNameValuePair("password", password));
 params.add(new BasicNameValuePair("grant_type", "password"));
 request.setEntity(new UrlEncodedFormEntity(params, "UTF-8"));

 HttpResponse result = httpClient.execute(request);
 String json = EntityUtils.toString(result.getEntity(), "UTF-8");

 if(json.contains("invalid_grant"))
 return "Access Denied";
 com.google.gson.Gson gson = new com.google.gson.Gson();
 Token token = gson.fromJson(json, Token.class);
 LOG.info(token.getAccess_token());
 return token.getAccess_token
 } catch (Exception ex) {
 LOG.info("exception :" + ex.getMessage());
 return "Token Exception";
 }
 }

Appendix A6

class Token
{
 private String access_token;
 private String token_type;
 private String expires_in;

 public String getAccess_token() {
 return access_token;
 }

P a g e | 70

 public void setAccess_token(String access_token) {
 this.access_token = access_token;
 }

 public String getToken_type() {
 return token_type;
 }
 public void setToken_type(String token_type) {
 this.token_type = token_type;
 }
 public String getExpires_in() {
 return expires_in;
 }
 public void setExpires_in(String expires_in) {
 this.expires_in = expires_in;
 }
}

Appendix A7

public class Claim{
 private String subject;
 private String type;
 private String value;

 public String getSubject() {
 return subject;
 }

 public void setSubject(String subject) {
 this.subject = subject;
 }
 public String getType() {
 return type;
 }
 public void setType(String type) {
 this.type = type;
 }
 public String getValue() {
 return value;
 }
 public void setValue(String value) {
 this.value = value;
 }
 public String getRole(String token){
 String role=null;

P a g e | 71

 try (CloseableHttpClient httpClient = HttpClientBuilder.create().build()) {
 HttpGet claimsRequest = new HttpGet("https://localhost:55471/api/"+"claims");
 claimsRequest.addHeader("Content-Type", "application/json");
 claimsRequest.addHeader("Accept", "application/json");
 claimsRequest.addHeader("Authorization", "Bearer " + token);

 HttpResponse claimsResult = httpClient.execute(claimsRequest);
 String jsonClaims = EntityUtils.toString(claimsResult.getEntity(), "UTF-8");

 com.google.gson.Gson gson = new com.google.gson.Gson();
 if(jsonClaims.equals("{\"message\":\"Authorization has been denied for this
request.\"}"))
 return "403";
 Claim[] claimResponse = gson.fromJson(jsonClaims, Claim[].class);

 for (Claim item : claimResponse) {

if("http://schemas.microsoft.com/ws/2008/06/identity/claims/role".equals(item.type))
 {
 role = item.value; break;
 }
 }
 } catch (Exception ex) {
 return null;
 }
 return role;
 }
}

Appendix A8

namespace MIS023.IdentityServer.Controllers
{
 [RoutePrefix("api/accounts")]
 public class AccountsController : BaseApiController
 {

 [Authorize(Roles= "SuperAdmin")]
 [Route("users")]
 public IHttpActionResult GetUsers()
 {
 //Only SuperAdmin or Admin can delete users (Later when implement roles)
 var identity = User.Identity as System.Security.Claims.ClaimsIdentity;

 return Ok(this.AppUserManager.Users.ToList().Select(u =>
this.TheModelFactory.Create(u)));

P a g e | 72

 }

 [Route("RoleByUser/{id:guid}", Name = "RoleByUser")]
 public async Task<IHttpActionResult> GetRoleForUser(string Id)
 {
 IList<string> roles = this.AppUserManager.GetRolesAsync(Id).Result;

 if (roles.Count > 0)
 {
 return Ok(roles[0]);
 }

 return NotFound();

 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{id:guid}", Name = "GetUserById")]
 public async Task<IHttpActionResult> GetUser(string Id)
 {
 //Only SuperAdmin or Admin can delete users (Later when implement roles)
 var user = await this.AppUserManager.FindByIdAsync(Id);

 if (user != null)
 {
 return Ok(this.TheModelFactory.CreateWithFirstLastName(user));
 }

 return NotFound();

 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{username}")]
 public async Task<IHttpActionResult> GetUserByName(string username)
 {
 //Only SuperAdmin or Admin can delete users (Later when implement roles)
 var user = await this.AppUserManager.FindByNameAsync(username);

 if (user != null)
 {
 return Ok(this.TheModelFactory.Create(user));
 }

 return NotFound();

 }

P a g e | 73

 [AllowAnonymous]
 [HttpPost]
 [Route("users")]
 [Authorize(Roles = "SuperAdmin")]
 public async Task<IHttpActionResult> CreateUser(CreateUserBindingModel
createUserModel)
 {

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var user = new ApplicationUser()
 {
 UserName = createUserModel.Username,
 Email = createUserModel.Email,
 FirstName = createUserModel.FirstName,
 LastName = createUserModel.LastName,
 Level = 3,
 JoinDate = DateTime.Now.Date,
 };

 IdentityResult addUserResult = await this.AppUserManager.CreateAsync(user,
createUserModel.Password);

 if (!addUserResult.Succeeded)
 {
 return GetErrorResult(addUserResult);
 }

 string code = await
this.AppUserManager.GenerateEmailConfirmationTokenAsync(user.Id);

 var callbackUrl = new Uri(Url.Link("ConfirmEmailRoute", new { userId = user.Id, code
= code }));

 await this.AppUserManager.SendEmailAsync(user.Id,
 "Confirm your account",
 "Please confirm your account by clicking <a href=\"" +
callbackUrl + "\">here");

 Uri locationHeader = new Uri(Url.Link("GetUserById", new { id = user.Id }));

P a g e | 74

 return Created(locationHeader, TheModelFactory.Create(user));

 }

 [AllowAnonymous]
 [HttpGet]
 [Route("ConfirmEmail", Name = "ConfirmEmailRoute")]
 public async Task<IHttpActionResult> ConfirmEmail(string userId = "", string code = "")
 {
 if (string.IsNullOrWhiteSpace(userId) || string.IsNullOrWhiteSpace(code))
 {
 ModelState.AddModelError("", "User Id and Code are required");
 return BadRequest(ModelState);
 }

 IdentityResult result = await this.AppUserManager.ConfirmEmailAsync(userId, code);

 if (result.Succeeded)
 {
 return Ok();
 }
 else
 {
 return GetErrorResult(result);
 }
 }

 [Authorize]
 [Route("ChangePassword")]
 public async Task<IHttpActionResult> ChangePassword(ChangePasswordBindingModel
model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 IdentityResult result = await
this.AppUserManager.ChangePasswordAsync(User.Identity.GetUserId(),
model.OldPassword, model.NewPassword);

 if (!result.Succeeded)
 {
 return GetErrorResult(result);
 }

 return Ok();

P a g e | 75

 }

 [AllowAnonymous]
 [Route("resetpasswordmail")]
 public async Task<IHttpActionResult>
ResetPasswordMail(ResetPasswordEmailBindingModel model)
 {
 try
 {
 if (model == null)
 {
 return BadRequest(ModelState);
 }

 string resetPasswdLink =
ConfigurationManager.AppSettings["ResetPasswordLink"];

 ApplicationUser user = await AppUserManager.FindByEmailAsync(model.Email);

 var resetToken =
this.AppUserManager.GeneratePasswordResetToken(user.Id.ToString());

 string callbackUrl = resetPasswdLink + string.Format("?userid={0}&token={1}",
user.Id, resetToken);

 await this.AppUserManager.SendEmailAsync(user.Id,
 "Reset your password",
 "Please reset your password by clicking <a href=\"" + callbackUrl +
"\">here");

 //if (!result.Succeeded)
 //{
 // return GetErrorResult(result);
 //}

 return Ok();
 }
 catch (Exception ex)
 {
 return InternalServerError();
 }
 }

 [AllowAnonymous]
 [Route("resetpassword")]

P a g e | 76

 public async Task<IHttpActionResult> ResetPassword(ResetPasswordBindingModel
model)
 {
 try
 {
 if (model == null)
 {
 return BadRequest(ModelState);
 }

 var result = await this.AppUserManager.ResetPasswordAsync(model.UserId,
model.Token, model.Password);
 if (result.Succeeded)
 return Ok();
 else
 return BadRequest(result.Errors.FirstOrDefault());
 }
 catch (Exception ex)
 {
 return InternalServerError();
 }
 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{id:guid}")]
 public async Task<IHttpActionResult> DeleteUser(string id)
 {

 //Only SuperAdmin or Admin can delete users (Later when implement roles)

 var appUser = await this.AppUserManager.FindByIdAsync(id);

 if (appUser != null)
 {
 IdentityResult result = await this.AppUserManager.DeleteAsync(appUser);

 if (!result.Succeeded)
 {
 return GetErrorResult(result);
 }

 return Ok();

 }

 return NotFound();

P a g e | 77

 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{id:guid}/roles")]
 [HttpPut]
 public async Task<IHttpActionResult> AssignRolesToUser([FromUri] string id,
[FromBody] RolesModel roles)
 {
 string[] rolesToAssign = new string[1];
 rolesToAssign[0] = roles.Roles;
 var appUser = await this.AppUserManager.FindByIdAsync(id);

 if (appUser == null)
 {
 return NotFound();
 }

 var currentRoles = await this.AppUserManager.GetRolesAsync(appUser.Id);

 var rolesNotExists = rolesToAssign.Except(this.AppRoleManager.Roles.Select(x =>
x.Name)).ToArray();

 if (rolesNotExists.Count() > 0)
 {

 ModelState.AddModelError("", string.Format("Roles '{0}' does not exixts in the
system", string.Join(",", rolesNotExists)));
 return BadRequest(ModelState);
 }

 IdentityResult removeResult = await
this.AppUserManager.RemoveFromRolesAsync(appUser.Id, currentRoles.ToArray());

 if (!removeResult.Succeeded)
 {
 ModelState.AddModelError("", "Failed to remove user roles");
 return BadRequest(ModelState);
 }

 IdentityResult addResult = await this.AppUserManager.AddToRolesAsync(appUser.Id,
rolesToAssign);

 if (!addResult.Succeeded)
 {
 ModelState.AddModelError("", "Failed to add user roles");
 return BadRequest(ModelState);
 }

P a g e | 78

 return Ok();

 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{id:guid}/assignclaims")]
 [HttpPut]
 public async Task<IHttpActionResult> AssignClaimsToUser([FromUri] string id,
[FromBody] List<ClaimBindingModel> claimsToAssign)
 {

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var appUser = await this.AppUserManager.FindByIdAsync(id);

 if (appUser == null)
 {
 return NotFound();
 }

 RemoveClientIdClaim(id);

 foreach (ClaimBindingModel claimModel in claimsToAssign)
 {
 if (appUser.Claims.Any(c => c.ClaimType == claimModel.Type))
 {

 await this.AppUserManager.RemoveClaimAsync(id,
ExtendedClaimsProvider.CreateClaim(claimModel.Type, claimModel.Value));
 }

 await this.AppUserManager.AddClaimAsync(id,
ExtendedClaimsProvider.CreateClaim(claimModel.Type, claimModel.Value));
 }

 return Ok();
 }

 [Authorize(Roles = "SuperAdmin")]
 [Route("users/{id:guid}/removeclaims")]
 [HttpPut]
 public async Task<IHttpActionResult> RemoveClaimsFromUser([FromUri] string id,
[FromBody] List<ClaimBindingModel> claimsToRemove)

P a g e | 79

 {

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var appUser = await this.AppUserManager.FindByIdAsync(id);

 if (appUser == null)
 {
 return NotFound();
 }

 foreach (ClaimBindingModel claimModel in claimsToRemove)
 {
 if (appUser.Claims.Any(c => c.ClaimType == claimModel.Type))
 {
 await this.AppUserManager.RemoveClaimAsync(id,
ExtendedClaimsProvider.CreateClaim(claimModel.Type, claimModel.Value));
 }
 }

 return Ok();
 }

 private void RemoveClientIdClaim(string id)
 {
 var appUser = this.AppUserManager.FindById(id);

 foreach (var claim in appUser.Claims.Where(x=> x.ClaimType == "ClientId"))
 {
 this.AppUserManager.RemoveClaimAsync(id,
ExtendedClaimsProvider.CreateClaim(claim.ClaimType, claim.ClaimValue));
 }
 }

 }
}

Appendix A9

[assembly: OwinStartup(typeof(MIS023.IdentityServer.Startup))]
namespace MIS023.IdentityServer
{
 public class Startup
 {

P a g e | 80

 public void Configuration(IAppBuilder app)
 {
 HttpConfiguration httpConfig = new HttpConfiguration();

 ConfigureOAuthTokenGeneration(app);

 ConfigureOAuthTokenConsumption(app);

 ConfigureWebApi(httpConfig);

 app.UseCors(Microsoft.Owin.Cors.CorsOptions.AllowAll);

 app.UseWebApi(httpConfig);

 }

 private void ConfigureOAuthTokenGeneration(IAppBuilder app)
 {
 // Configure the db context and user manager to use a single instance per request
 app.CreatePerOwinContext(ApplicationDbContext.Create);
 app.CreatePerOwinContext<ApplicationUserManager>(ApplicationUserManager.Create);
 app.CreatePerOwinContext<ApplicationRoleManager>(ApplicationRoleManager.Create);

 OAuthAuthorizationServerOptions OAuthServerOptions = new
OAuthAuthorizationServerOptions()
 {
 //For Dev enviroment only (on production should be AllowInsecureHttp = false)
 AllowInsecureHttp = true,
 TokenEndpointPath = new PathString("/oauth/token"),
 AccessTokenExpireTimeSpan = TimeSpan.FromDays(30),
 Provider = new CustomOAuthProvider(),
 AccessTokenFormat = new
CustomJwtFormat(ConfigurationManager.AppSettings["as:AuthServerApi"])
 };

 // OAuth 2.0 Bearer Access Token Generation
 app.UseOAuthAuthorizationServer(OAuthServerOptions);
 }

 private void ConfigureOAuthTokenConsumption(IAppBuilder app)
 {

 var issuer = ConfigurationManager.AppSettings["as:AuthServerApi"];
 string audienceId = ConfigurationManager.AppSettings["as:AudienceId"];
 byte[] audienceSecret =
TextEncodings.Base64Url.Decode(ConfigurationManager.AppSettings["as:AudienceSecret"]);

 // Api controllers with an [Authorize] attribute will be validated with JWT
 app.UseJwtBearerAuthentication(
 new JwtBearerAuthenticationOptions
 {

P a g e | 81

 AuthenticationMode = AuthenticationMode.Active,
 AllowedAudiences = new[] { audienceId },
 IssuerSecurityTokenProviders = new IIssuerSecurityTokenProvider[]
 {
 new SymmetricKeyIssuerSecurityTokenProvider(issuer, audienceSecret)
 }
 });
 }

 private void ConfigureWebApi(HttpConfiguration config)
 {
 config.MapHttpAttributeRoutes();

 var jsonFormatter = config.Formatters.OfType<JsonMediaTypeFormatter>().First();
 jsonFormatter.SerializerSettings.ContractResolver = new
CamelCasePropertyNamesContractResolver();
 }
 }
}

Appendix A10

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.Serializable;
import java.security.Key;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.UnrecoverableKeyException;
import java.security.cert.CertificateException;
import javax.crypto.SealedObject;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import java.util.Base64;
import javax.crypto.Cipher;

public class Crypto {
 public SecretKey GetKey(String encodedKey){

 try{
 byte[] decodedKey = Base64.getDecoder().decode(encodedKey);
 // rebuild key using SecretKeySpec
 SecretKey key = new SecretKeySpec(decodedKey, 0, decodedKey.length, "AES");

P a g e | 82

 return key;
 }catch(Exception ex){return null;}

 }

 public static String Encrypt(String str, SecretKey key) throws Exception {
 byte[] utf8 = str.getBytes("UTF8");
 Cipher ecipher = Cipher.getInstance("AES");
 ecipher.init(Cipher.ENCRYPT_MODE, key);
 byte[] enc = ecipher.doFinal(utf8);
 return new sun.misc.BASE64Encoder().encode(enc);
 }

 public static String Decrypt(String str,SecretKey key) throws Exception {
 byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(str);
 Cipher dcipher = Cipher.getInstance("AES");
 dcipher.init(Cipher.DECRYPT_MODE, key);
 byte[] utf8 = dcipher.doFinal(dec);
 return new String(utf8, "UTF8");
 }

 public SecretKey GetKeyStoreKey(String alias, String keyPass, String keystorePass) throws
FileNotFoundException, IOException, NoSuchAlgorithmException, CertificateException,
KeyStoreException, UnrecoverableKeyException
 {
 Key key = null;

 String location = "C:\\Program Files\\Java\\jre1.8.0_101\\bin\\aes-keystore.jck";
 InputStream keystoreStream = new FileInputStream(location);

 KeyStore keystore = KeyStore.getInstance("JCEKS");
 keystore.load(keystoreStream, keystorePass.toCharArray());

 if (!keystore.containsAlias(alias)) {
 throw new RuntimeException("Alias for key not found");
 }

 key = keystore.getKey(alias, keyPass.toCharArray()); int i=0;

 return (SecretKey) key;
 }
}

P a g e | 83

Appendix B

Appendix B1

Load Complete Test Request

Load Complete Test Response

P a g e | 84

Load Complete Test Response Body

P a g e | 85

Scenario1 Test results report

Scenario 1 Request Transfer Speed

P a g e | 86

Scenario 1 Response Transfer Speed

Appendix B2

P a g e | 87

Scenario2 Test results report

P a g e | 88

Scenario 2 Request Transfer Speed

Scenario 2 Response Transfer Speed

Senario 2 Multiple user test

P a g e | 89

Appendix B3

P a g e | 90

Scenario3 Test results report

Scenario 3 Request Transfer Speed

P a g e | 91

Scenario 3 Response Transfer Speed

Appendix B4

Scenario 4 Request

P a g e | 92

Scenario 4 Response

P a g e | 93

 Scenario4 Test results report

P a g e | 94

Appendix B5

Scenario 5 Test results report

P a g e | 95

Appendix B6

Scenario 6 Test results report

