
8

Masters Project Final Report

March 2017

Project Title

Enabling an Authentication Mechanism for Docker
Remote API

Student Name

A. I. D. K. Seneviratne

Registration
No. & Index
No.

2014MIS020
14770201

Supervisor’s
Name

Dr. D. A. S. Atukorale

Please Circle
the
appropriate

Masters
Program

Type

MIS Research Implementation

For Office Use Only

9

Enabling an Authentication

Mechanism for Docker Remote API

A. I. D. K. Seneviratne

2017

10

Enabling an Authentication

Mechanism for Docker Remote API

A dissertation submitted for the Degree of Master of

Science in Information Security

A. I. D. K. Seneviratne

University of Colombo School of Computing

2017

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Students Name: A. I. D. K. Seneviratne

Signature: Date:

This is to certify that this thesis is based on the work of

Mr. A. I. D. K. Seneviratne

under my supervision. The thesis has been prepared according to the format stipulated

and is of acceptable standard.

Certified by:

Supervisor Name: Dr. D. A. S. Atukorale

Signature: Date:

iii

Abstract
Docker is an operating system level virtualization mechanism on Linux which allows deploy

and run applications inside software containers. Software containers provides lightweight and

faster delivery of applications by separating applications from the infrastructure. Furthermore

it helps to provide better hardware utilization than virtual machines. Docker has now became

one of the fast growing industry practices in the field of software virtualization. Docker

architecture allows users to interact with the Docker daemon and other Docker components via

three different types of mechanisms, which allows developers and system administrators

manage dockerized resources effective and efficient way. One approach is making the Docker

daemon listening on a TCP port and allows users to make requests through an API. This API is

known as Docker Remote API.

One of the major drawbacks of above mentioned mechanism is Docker hasn’t implement a

flexible request authentication mechanism for the requests which are pointed to Remote API

which makes it problematic in accessing Docker via the Remote API. This project has focused

on introducing and implementing a token based request authentication mechanism to the

Docker Remote API when the Docker daemon listening on a TCP port. The new

implementation makes Docker Remote API accessible only via a proxy server. The proxy server

act as a reverse proxy for the user requests which are directed to Docker Remote API. An

authentication server also been in place with the new implementation to issue and validate the

access tokens, which are required to access the Docker Remote API via the proxy server.

With the new implementation, users and applications which are eligible to perform Docker

operations via Remote API should have proper secret credentials. The access tokens can be

obtained by submitting those credentials to the authentication server. Every request which is

made to the Docker Remote API should have a valid access token. The proxy server validates

the access token of the request with the authentication server and pass the request to the Docker

Remote API or reject the request. The final evaluation shows that, though the new

implementation has introduced some latency to the request-response routing, it has achieved

the aspects of request authentication without deviating the responses.

iv

Acknowledgments
First of all I greatly thankful to my supervisor, Dr. Ajantha Atukorale, Senior Lecture and

Deputy Director of University of Colombo School of Computing for his tireless support,

guidance, patience, advices and prompt feedback on every step of the project.

Secondly I like to thank the academic staff of University of Colombo School of Computing for

their much valued feedbacks and suggestions which they provided me on the presentations.

The management of thinkcube Systems Pvt. Ltd. deserves special thanking for their support

that they gave to me within the project timeline to balance the academic works with my

professional duties.

Then I like to thank, my fellow colleagues and other postgraduates of my batch in the Master

of Science in Information Security degree program for their suggestions and feedbacks which

they provided in the project.

I also like to thank the people who carried out previous researches which were regarded to the

project.

Last but not least, I like to thank Dr. Manjusri Wickramasinghe, the coordinator of the

Individual Project course module, for the support, encouragement and for making sure I worked

on the project throughout the year.

v

Table of Contents
Declaration.. ii

Abstract .. iii

Acknowledgments ... iv

Table of Contents ... v

List of Figures .. viii

List of Tables ... ix

List of Abbreviations .. x

CHAPTER 01 – Introduction ... 12

Introduction to Docker .. 12

Docker Architecture (Problem Domain) ... 12

Docker Host... 13

Docker Client .. 13

Docker Registries .. 13

Docker Images Vs Docker Containers .. 13

Problem ... 13

Importance of the Problem and the Security .. 14

Scope ... 14

CHAPTER 02 - Literature Review ... 16

Accessing Docker remotely .. 16

Introduction ... 16

API endpoints .. 16

API authentication mechanisms .. 17

Introduction ... 17

Kerberos .. 18

OAuth .. 19

Research on similar works .. 20

Docker Registry 2 Authentication Server (github - cesanta/docker_auth) 20

Improving Docker ... 21

Introduction ... 21

Basic Contribution... 21

Advanced Contribution ... 22

Conclusion .. 24

CHAPTER 03 – Design .. 26

Introduction ... 26

Authentication Server ... 26

Components and Technologies used ... 26

vi

Approaches Considered .. 29

Changing Docker Source .. 29

Run Docker with a proxy server ... 29

Conclusion .. 30

CHAPTER 04 – Implementation .. 32

Introduction ... 32

User Store ... 32

Authentication Server ... 32

Overview ... 32

Authentication Server Initiation .. 33

Authentication Server Functionality ... 34

Proxy Server ... 41

Overview ... 41

Proxy Server Initiation .. 42

Proxy Server Functionality.. 42

Self-Signed Certificate Generation ... 46

Conclusion .. 46

CHAPTER 05 – Evaluation .. 48

Introduction ... 48

Test Environment .. 48

Evaluation procedure .. 48

Evaluation Results .. 49

GET /info... 49

GET /contianers/json ... 50

GET /version ... 51

GET /images/json .. 52

GET /images/search?term=#keyword ... 53

GET /containers/{id}/json ... 54

POST containers/create ... 55

POST /containers/{id}/start .. 56

POST containers/{id}/stop .. 57

DELETE containers/{id} .. 58

Security Evaluation ... 59

Evaluation Conclusions .. 62

CHAPTER 06 – Conclusions ... 64

Challenges Faced .. 64

vii

Future Works .. 64

Summary ... 64

Appendixes ... 65

Appendix 1 – Other test results regards to the evaluation .. 65

References .. 67

viii

List of Figures
Figure 1: Docker Architecture [1] .. 12

Figure 2: Default user request response flow ... 13

Figure 3: Kerberos authentication [10] ... 19

Figure 4: Docker Registry Authentication [13] ... 20

Figure 5: Docker Basic Contribution Workflow [17] ... 22

Figure 6: Advanced Contribution Workflow [19] .. 23

Figure 7: Access token generation workflow ... 27

Figure 8: Access token verification workflow ... 28

Figure 9: Request flow after changing Docker source for request authentication 29

Figure 10: Request flow when running Docker with a proxy server.. 30

Figure 11: MySQL table for user credentials ... 32

Figure 12: File and directory structure of the authentication server... 33

Figure 13: Access token generation and Granting.. 36

Figure 14: Issuing cURL request to obtain access token.. 40

Figure 15: Access token validation flow .. 40

Figure 16: Issuing cURL command to validate an access token .. 40

Figure 17: File and directory structure of doc-proxy ... 41

Figure 18: A request made to the /info endpoint directly by using Postman REST client 49

Figure 19: A request made to the /info endpoint via proxy server by using Postman REST

client ... 49

Figure 20: A request made to the /containers/json endpoint directly by using Postman REST

client ... 50

Figure 21: A request made to the /contianers/json endpoint via proxy server by using Postman

REST client .. 51

Figure 22: A request made to the /version endpoint directly by using Postman REST client . 51

Figure 23: A sample request made to the /version endpoint via proxy server by using Postman

REST client .. 52

Figure 24: A request made to the /images/json endpoint directly by using Postman REST

client ... 52

Figure 25: A request made to the /images/json endpoint via proxy server by using Postman

REST client .. 53

Figure 26: A request made to the /images/search endpoint directly by using Postman REST

client ... 53

Figure 27: A request made to the /images/search endpoint via proxy server by using Postman

REST client .. 54

Figure 28: A sample request made to the /contains/{id}/json endpoint directly by using

Postman REST client .. 55

Figure 29: A request made to /containers/{id}/json endpoint via proxy server by using

Postman REST client .. 55

Figure 30: A request made to the /containers/create endpoint directly by using Postman REST

client ... 56

Figure 31: A request made to /containers/create endpoint via proxy server by using Postman

REST client .. 56

Figure 32: A request made to the /containers/{id}/start endpoint directly by using Postman

REST client .. 57

Figure 33: A request to /containers/{id}/stop endpoint via proxy server by using Postman

REST client .. 57

file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989203
file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989204
file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989209
file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989210
file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989211
file:///F:/Academic/MIS/Project/Final%20Report_v8.docx%23_Toc484989212

ix

Figure 34: A sample request made to the /containers/{id}/stop endpoint directly by using

Postman REST client .. 58

Figure 35: A sample request to /containers/{id}/stop endpoint via proxy server by using

Postman REST client .. 58

Figure 36: A request made to the /containers/{id} endpoint directly by using Postman REST

client ... 58

Figure 37: A sample to /containers/{id} endpoint via proxy server by using Postman REST

client ... 59

Figure 38: Obtaining of access token by submitting valid credentials 65

Figure 39: Checking access token validity with a valid access token 65

Figure 40:: Checking an access token's validity with an invalid access token 65

Figure 41: Request sent to the proxy server with an invalid access token 65

Figure 42: Sending request to an invalid endpoint of Docker Remote API 65

Figure 43: Tagging an image .. 65

Figure 44: Creating an Image by pulling .. 66

Figure 45: Creating an image by pulling .. 66

Figure 46: Attach an image .. 66

List of Tables
Table 1: Important Docker Remote API endpoints .. 17

Table 2: Analysis of the authentication server's compliance with OAuth2 61

x

List of Abbreviations
 API – Application Programming Interface.

 TCP – Transmission Control Protocol.

 IP – Internet Protocol.

 SSL – Secure Socket Layer.

 REST – Representational State Transfer.

 URL – Uniform Resource Locator.

 URI - Uniform Resource Identifier.

 HTTP – Hyper Text Transport Protocol.

 RFC – Request for Comment.

 JSON – JavaScript Object Notation.

 LTS – Long Term Support.

 FQDN – Fully Qualified Domain Name.

11

CHAPTER 01 – Introduction

12

CHAPTER 01 – Introduction
Introduction to Docker
Docker is an open source project which enables virtualization of resources. It allows

deployment of applications inside software containers. It provides additional layer of

abstraction and automation of operating-system-level virtualization on Linux. Docker

containers facilitate to wrap up a piece of software in complete file system which contains

everything it needs to run including code, system tools, libraries and other components[1].

When consider about the Docker architecture, its major intentions can be listed as follow [1],

1. Deliver the user applications faster. Docker helps users to write, test and deploy the code

faster. Hence it allows to minimize the time gap between the writing code and running

code.

2. Separate applications from the infrastructure and treat infrastructure as a managed

application.

3. Provides a way to isolate and run different applications in different containers which

allows run many containers in the same host at the same time.

4. Maximize the hardware utilization by providing lightweight nature to the containers.

There are two major components of Docker system [1].

1. Docker Platform - An open source platform for containerization of applications

2. Docker Hub - Software as a Service cloud which facilitate sharing and managing of

docker containers.

Docker Architecture (Problem Domain)
Docker operates in a client-server architecture. As illustrated in the Figure 1, main components

of the Docker architecture are Docker Client and the Docker Host. Apart from those there are

Docker Registries which facilitate to this architecture. The Docker registries hold the Docker

images to be pulled. The Docker Client and the Docker Host can be run either same machine

or the Docker client can be connected to a remote Docker Host. The Docker Client and the

Docker Host can interact with each other via a socket connection or through a RESTful API

[1].

Figure 1: Docker Architecture [1]

13

Docker Host
Docker host is the core of the Docker architecture. Docker host holds all the user contains and

pulled imaged from the Docker registry. Docker Daemon runs inside every Docker host which

does the all the major tasks such as building, running and distributing the Docker containers

[1].

Docker Client
Docker Client can be considered as the user interface of the Docker architecture. User cannot

directly interact with the Docker Daemon. Only through Docker Client that can be achieved.

Docker Client accept valid commands from the user and interact with the Docker Daemon

accordingly [1].

Docker Registries
Docker Registries hold the images. These images can be either public or private which users

can pull and push images. Docker Hub is a public Docker registry which holds a vast collection

of images [1].

Docker Images Vs Docker Containers
A Docker image can be considered as a sample structure for create Docker containers. As an

example a Docker image can contain a Unix-like operating system. A user can pull that image

from a registry and create containers from it. Any changes can be done to the containers but

cannot be changed the original image. The simplest way to build a Docker image is create a

Dockerfile and make it read by Docker. A Dockerfile is simple text document that contain all

the commands that necessary to build a Docker image. The other way to build an image is to

commit container changes as a new image [1].

A Docker container can be considered as a directory structure which holds everything that needs

by an application to be ran. All the Docker containers are created by using a particular Docker

image. Each container can be started, run, hold and moved independently [1]. Furthermore

Docker containers can be exported to create new Docker images. These new Docker images

can be pushed to Docker hub with a different tab.

Problem
In the previous section, it has described the Docker architecture. In that section it has mentioned

that the user can interact with Docker Daemon through a RESTFUL API. As illustrated in

Figure 2 illustrates Docker daemon can listen for Docker Remote API requests via three

different types of sockets. One way to achieve this is making Docker listen on a TCP port. In

this scenario user calls to the Docker Remote API over a TCP/IP network, then Docker Remote

API pass request to the Docker daemon. This is useful when accessing Docker daemon remotely

[2].

Docker Daemon

 Docker Remote API

Docker Host

Figure 2: Default user request response flow

14

One of the major security shortages of this scenario is Docker still hasn’t introduced a

mechanism to authenticate user request from the Docker Remote API. Because of that once you

make Docker daemon listen on a TCP port, anyone can make request to the Docker daemon via

Docker Remote API [2].

Importance of the Problem and the Security
Since Docker is one of the major emerging technologies for virtualization of resource, it is

important to fill all the security loopholes and security gaps. Docker Remote API is one of the

main mechanism to interact with Docker. It contains a lot of API endpoints to interact with the

Docker daemon. It facilitates to accomplish almost all the functionalities which users can

perform via other types interaction mechanisms. These functionalities includes run, start, create,

stop, pause, restart and delete containers; list, build, push, inspect and remove images; and many

more [3].

When consider about the real world situation developers, system administrators and network

administrators need to access and modify dockerized resources and services remotely. That

makes using Docker Remote API more and more essential. But without proper authentication

of requests at the Docker Remote API will cause to severe security problems such as

unauthorized disclosure of information, information theft and denial of service. As an example

if someone got know about Docker Remote API can be accessed via port 4243 at host which

has 46.101.37.211 IP address, it can be issued a simple cURL request like mentioned below [4]

to get the information about running containers at the host.

curl -i -H "Content-Type: application/json" -X GET http://
46.101.37.211:4243/containers/json?all=1

It will output information such as container id, name, size, opened ports etc. of each Docker

container as a JSON object. These are very important information which can be used to perform

unauthorized action at the Docker host. As an example user can issue another request with a

container id he obtained in the previous step to stop a container which will make users accessing

critical service. So it is clear that it is needed to introduce proper authentication mechanism to

authenticate each and every request which receive to the Docker remote API before making it

available to access over the public internet. Otherwise it will be not practical to do that.

Scope
This project’s main focus is to introduce a token based authentication mechanism to

authenticate requests which are made to the Docker Remote API when Docker daemon listening

via a TCP port. Hence the project has not focused in introducing authentication mechanisms for

other forms of Docker interactions. At the same time this project is taken into account well

defined token based request authentication protocols but won’t be considered other type of

authentication protocols. The project also taken in to account mechanisms to reduce the latency

and other consequences to a minimum level. Furthermore this project is solely focused request

authentication and won’t be taken into account other security aspects.

http://192.168.10.35:4243/containers/json
http://192.168.10.35:4243/containers/json

15

CHAPTER 02 – Literature Review

16

CHAPTER 02 - Literature Review
Accessing Docker remotely
This section describes how to make the Docker can be access remotely. Further it describes

different endpoints which are available in the Docker Remote API. Further it describes how

they should be accessed and importance of them. Furthermore it describes how to make Docker

daemon listening on a TCP port.

Introduction
In the previous chapter, it has mentioned that it is needed to make Docker Daemon listening

on a TCP port or enable a TCP socket, if it is needed to be accessed remotely over a TCP/IP

network. To accomplish that, first it is needed to stop the Docker service and then run the

Docker with needed options. The following two command should be issued as the root [5].

service docker stop

docker daemon -H tcp://0.0.0.0:2375

In the above mentioned second command, particular IP address can be used instead of 0.0.0.0

if it is needed is need to listen from a single interface. After running docker daemon with above

setup, Docker commands can be issued as an http requests or cURL request. It is important to

remember that this setup provides unencrypted direct access to the Docker daemon. So it should

be secure either by putting a secure web proxy in front of it or using the built in HTTPS

encrypted socket. [5].

API endpoints

Docker Remote API contains endpoints to accomplish almost all the functionalities just as users

performed via default Docker Client. There are a vast number of API endpoints related to

container operations, image operations and miscellaneous operations. The latest API version is

v1.24. Docker has provided complete API reference to its remote API. The Table 1 has

mentioned details about some of those endpoints, which will be used to testing and evaluation

of the system [7].

Endpoint Request Method Description Other notes

containers/json GET Lists containers By default only lists

the running

containers. Set

parameter all=1 will

lists all the

containers

containers/create POST Creates a container

containers/{id}/json GET Returns low level

information about the

container

Set size=1 to get size

information.

containers/{id}/start POST Starts a container

containers/{id}/stop POST Stops a container

containers/{id} DELETE Removes a container Url parameter f=1

17

will kill and remove

container forcefully.

images/json GET Lists images

images/build POST Builds an image from

a Dockerfile

images/{name} DELETE Removes an image

images/search GET Searches for an Image Url parameter term

can be used to give

the keyword for

searching.

/info GET Displays system wide

information

/version GET Displays docker

version information

/_ping GET Ping the docker

server.

/containers/{id} DELETE Deletes a given

container by container

id

Table 1: Important Docker Remote API endpoints

API authentication mechanisms
This section is focused on different API authentication techniques. Most of them are token

based authentication techniques. Further this section is focusing on identifying strengths and

weaknesses of each and every technique that has taken into account. Because it is essential in

producing a quality outcome. Furthermore the proposed solution is a token based approach the

learnings of this section will be used to streamline the proposed architecture and to produce

good outcome.

Introduction
Application programming interfaces allows users to interact with a particular service to perform

certain operations. As an example, a simple PHP application can be developed to perform

insert, select, update and delete operations in a remote MySQL database by using cURL

requests. So the users don’t need to have a MySQL client but using API they will be able to

perform the database operations as they do by using a MySQL client. In this type of scenario

all the background operations are performed by the API side and the results will be output to

the user. Hence users are no longer required to bother about the system or its architecture in

performing any operation.

Authentication of user requests is one of the most concerned security aspect of API based

interaction mechanism. Because requests are coming from the outside, so it is needed to verify

who issued the request. Further it is needed clarify the originator of the request has proper the

access level to issue a given request. This will help to provide proper secrecy for the end systems

18

and the non-repudiation. Next few sections are focused some well-defined authentication

mechanisms and protocols which can be used for the API authentication.

Kerberos
Kerberos is a network authentications protocol developed by Massachusetts Institute of

Technology in the mid-1980s [4]. It is available as an open source protocol as well commercial

protocol. Kerberos helps to prevent usage of user credentials with each and every request which

user made to the server. Over thirty years Kerberos has evolved as one of the stable and secure

authentication protocol. Kerberos architecture is composed of three major components. They

are [8],

1. Client

2. Server

3. Authentication Server or Key distribution server

And there are three main exchanges. They are [8] [9],

1. Authentication Service (AS) exchange

2. Ticket Granting Service (TGS) exchange

3. Client Server (CS) exchange

Authentication Service (AS) exchange

 This is the exchange between the Client and the Authentication Server.

 Client sends Kerberos Authentication request to the authentication server specifying

credentials it wants.

 Authentication Server replies with a Kerberos Authentication response containing a ticket

and a session key.

 The session key encrypted with client’s secret key.

 The ticket is encrypted with server’s secret key.

 DES is the default encryption algorithm.

Ticket Granting Service (TGS) exchange

 This exchange is used to obtain additional tickets for the servers.

 This doesn’t need client secret key for the encryption.

 Ticket Granting Service exchange is transparent to the user.

 Ticket Granting Server must have the access to the all secret keys.

 It encrypts the tickets using server’s secret key.

 The Client sends Kerberos Ticket Granting Service request to the TGS server.

 The Server replies with Kerberos Ticket Granting Service reply to the client with a ticket.

Client Server (CS) exchange

 Client contacts with the server that provides the relevant service.

 Client sends KRB_AP request to the server specifying the service.

 Application server validates client by decrypting ticket with server’s secret key and

decrypting authenticator with session contained in the ticket.

 Service optionally replies with KRB_AP reply.

The Figure 3 illustrates the authentication procedure of the Kerberos. Kerberos is now well

established and globally accepted authentication protocol. It has developed and maintained

through several iterations to get into the current level. But implementation or integration

Kerberos to a service requires good expertise and knowledge. Furthermore sometimes proper

integration may be time consuming. Hence it is needed to consider very well whether it is

needed to go for Kerberos or looking for some other solution.

19

 Figure 3: Kerberos authentication [10]

OAuth
OAuth stands for Open Authorization which is an open standard protocol that provides simple

and secure authorization for different types of applications. It allows providers to give access

to the users without any exchange of credentials. OAuth designed for use only with HTTP

protocol [12]. There are many reasons for using OAuth. Flexibility, compatibility and platform

independence are some of them. Furthermore it provides a method for users to grant third-party

access to their resources without sharing their credentials. Mostly used version of OAuth is

OAuth2. In OAuth2 there are four parties. They are, [11] [12].

1. Resource owner - The user

2. Resource server - The API

3. Authorization server - Same as the API server.

4. Client - The third party which needs authorization.
There are four granting methods or grant types. They are,

1. Authorization Code Grant – This method is associating with generation of a login link.

By Clicking on that user visits the authorization page. On success, user is redirected back

to the site with an authorization code. On error user is redirected back to the site with an

error code. Server exchanges authorization code for an access token [11].

2. Implicit Grant - This method is associating with generation of a login link. By clicking on

that user visits the authorization page. On success user is redirected back to the site with an

access token in the fragment. On error user is redirected back to the site with an error code

[11].

3. Resource Owner Password Credentials Grant - A trusted client (usually a first party

application) submits a username and a password. Additionally it is required to mentioned

grant_type parameter of the request. Client receives an access token in the response body

[11].

Client Service

KDC

3. Send Request

5. Send Response

4. Validate Ticket

20

4. Client’s Credential Grant - Every third party application receives a clientId and a

clientSecret when they were created (sometimes clientId is called as appId and clientSecret

is called as appSecret). Client submits client credentials and receives an access token in the

response body [11][12].
The access token which is obtain through any type of granting method is used to make requests.

Every access token has an expiration time. Hence it makes exposing of an access token to an

outside is only useful to a certain time. The expiration time generally set less than one hour.

After the expiration time it is needed obtain new access token making a request using refresh

token.

Research on similar works
This section is focused on the similar works on Docker which are related to the research.

Basically this section is focused on previous researches and projects. The knowledge obtained

from that those researches and projects is used model the proposed solution.

Docker Registry 2 Authentication Server (github - cesanta/docker_auth)
The focus of this project is to ensure the authenticity and the authorization of Docker clients’

requests which are made via Docker daemon to the Docker registries. This project basically

focuses on providing authenticity for the docker image “push” and “pull’ operations which are

obviously make interactions with a Docker registry [13]. The original Docker Registry server

(v1) did not provide any support for authentication or authorization. Access control had to be

performed externally, typically by deploying Nginx in the reverse proxy mode with basic or

other type of authentication. While performing simple user authentication is pretty

straightforward, performing more fine-grained access control was cumbersome [13][14].

Docker Registry 2.0 introduced a new, token-based authentication and authorization protocol,

but the server to generate them was not released. Thus, most guides found on the Internet still

describe a set up with a reverse proxy performing access control [13][14]. Docker registry 2.0

authentication work is illustrated in Figure 4 [13].

Figure 4: Docker Registry Authentication [13]

21

1. Attempt to begin a push/pull operation with the registry.

2. If the registry requires authorization it will return a 401 Unauthorized HTTP response with

information on how to authenticate.

3. The registry client makes a request to the authorization service for a Bearer token.

4. The authorization service returns an opaque Bearer token representing the client's

authorized access.

5. The client retries the original request with the Bearer token embedded in the request's

Authorization header.

6. The Registry authorizes the client by validating the Bearer token and the claim set

embedded within it and begins the push/pull session as usual.

Once the token server has determined what access the client has to the resources requested in

the scope parameter, it will take the intersection of the set of requested actions on each resource

and the set of actions that the client has in fact been granted. If the client only has a subset of

the requested access it must not be considered an error as it is not the responsibility of the token

server to indicate authorization errors as part of this workflow [13].

Improving Docker
In this section, it has focused on how the developers or other third parties can contribute to

Docker. As well as in any other open source project, the main intentions of taking contributions

from the third parties to ensure continuous improvement, reduce the amount of bugs associated

with the source code, improve the security and increase the performance. Docker keeps its code

in a GitHub repository which makes it easy for contributors to improve the code. There are

several ways to contribute to the Docker. Some of them which are relevant to the project has

been discussed in the next few subsections.

Introduction
In Docker there are six ways to contribute. They are [15] [16].

1. Improve the documentation - explain how thing works in docker in the documentation.

2. Improve the code - add new feature or upgrade existing one.

3. Support users - support docker users through community channels.

4. Help to grove community - help to grove community by making the project welcoming

and easy to use.

5. Testing - help for functional testing, usability testing or spotting problems.

6. Issues - help by organizing issues or reporting spotted ones.

Since this project is focused on adding new feature or upgrading existing one the next

subsection will be focused on how to improve the Docker code.

Basic Contribution
Docker allows developers to contribute for the source code it in two ways. The first way is basic

contribution. It is required to follow a predefined workflow for the basic contribution. This

workflow allows developers to take the ownership of issues in Docker which are identified and

listed by Docker developer team and fix them. All the Docker repositories are on GitHub

therefore all the issues are also listed in the GitHub. Developers are need to have a basic

knowledge in Git version control system to deal with the issues. Furthermore developers should

have configured their development environment by installing and configuring Git, make and

Docker [17]. The Figure 5 illustrates the basic contribution workflow of Docker.

22

Figure 5: Docker Basic Contribution Workflow [17]

Contributors can take ownership of any open issue which they like to work on. In the process

of finding issues contributors can filter issues by author, labels, milestones, and assignee or

sort by time such as newest and oldest[17]. Docker maintainers assign labels to issues to make

it easier for contributors identify the different types of issues. The labels are color-coded and

help contributors categorize and filter issues. There are four labels categories; kind, area,

experience, and priority. A contributor can filter using one or more labels. The kind and

experience labels are useful for new contributors [18].

Advanced Contribution
The other way to contribute to Docker source code is advanced contribution. As well as in basic

contribution advanced contribution also has a workflow but it is more complex and time

consuming than the basic workflow. Furthermore advanced contribution needed greater

programing experience. The workflow starts with a new idea which is focused on solves a

problem or adds a new feature to docker. This process requires two pull requests, one for the

design and one for the implementation. Developers are need to have a good knowledge in Git

version control system to deal with the issues. Furthermore developers should have configured

their development environment by installing and configuring Git, make and docker [19]. The

Figure 6 illustrates the advanced contribution workflow.

23

 Figure 6: Advanced Contribution Workflow [19]

1. Come up with an idea - Usually an idea comes for the limitation or absence of a feature

of the product [19].

2. Review existing issues/proposals for duplicates - It is important to make sure that the

same idea is not proposed by someone else. The design proposals are all online in docker

GitHub pull requests [19].

3. Talk to the community about the idea - There are several online communities discuss

and get feedback about the idea [19].

4. Fork docker/docker and clone the repo to the local host - This will be the working space.

5. Create a new text file in the area you wish to change - This will be created in the

directory where the changes are going to make happen. It should be a markdown file.

6. Write a proposal for the change into the file - This will describe the idea and it may

contains information like [19].

a. Why is this change needed or what are the use cases?

b. What are the requirements this change should meet?

c. What are some ways to design/implement this feature?

d. Which design/implementation does developer think is best and why?

e. What are the risks or limitations of the proposal?

7. Submit the proposal in a pull request to docker/docker.

a. The title should have the format:

b. Proposal: short title

c. The body of the pull request should include a brief summary of your change and

then say something like “See the file for a complete description”.

8. Refine the proposal through review - The maintainers and the community review the

proposal. Developer will need to answer questions and sometimes explain or defend the

approach. This is chance for everyone to both teach and learn.

24

9. Pull request accepted - This can be either accepted or rejected. If it’s accepted the

following steps will have to be followed [19].

10. Implement your idea - implementation uses all the standard practices of any

contribution.

a. fork docker/docker.

b. create a feature branch.

c. sync frequently back to master.

d. test as you go and full test before a pull request.

11. Submit a pull request - When developer has a complete implementation, submit a pull

request back to docker/docker.

12. Review and iterate on the code.

13. Acceptance and merge.

Conclusion
Providing proper authentication for the requests which receives to the Docker daemon via

Docker Remote API when the Docker daemon listening on a TCP port, requires the assistance

of an authentication service which is independent from Docker. Furthermore Docker Host needs

to interact with the authentication service to complete the authentication process.If the

authentication of requests which are pointed to the Docker Remote API needs to be

implemented as integrated solution it has to follow the advanced contribution workflow. The

advanced contribution workflow of Docker is the standard method which has be followed to

introduce new feature to the Docker source code. But it is a lengthy, complex and time

consuming procedure. Hence it is need to be focused on some other way of introducing

authentication service in the authentication process.

25

CHAPTER 03 – Design

26

CHAPTER 03 – Design
Introduction
The new design introduces token requesting and token validation steps to the Docker API

request flow. In that type of setup, every user who wishes to interact with the Docker Remote

API will have secret credentials to an authentication server. Credentials of all the users will be

stored at a data store which is independent form the authentication server. When a user wants

to access the Docker Remote API, first he has to issue token request to the authentication server

by submitting his user credentials. At the authentication server, it validates user request and

issue a token response with a valid access token. Here onward user will have to submit this

token until it expires to access the Docker Remote API. In each every request to the Docker

Remote API, he submits this token in the request’s Authorization header as in the example

mentioned below.

curl -i -H "Content-Type: application/json" -H “Authorization: Bearer 111
d2b76f6f11648b46ad6bf490e93b27552aef7a62” -X GET
https://192.168.10.35:4243/containers/json

At the Docker Host side, when it receives the request, it will examine the Authorization header

of the request and extract the given user id and the access token. If user hasn’t provided the

access token or the user id the request will be rejected. If the user has provided the access token

and the user id, a token validation request will be issued to the authentication server. When the

authentication server receives a token validation request, it will check the validity of the access

token against the user id and response according to the status of token. Finally Docker Host will

receive the token validation response from the authentication server based on that either it will

pass the user request to the Docker daemon or reject it.

Authentication Server
The Authentication Server is the core part of the proposed design. It is responsible for the

following operations.

1. Access Token Issuing - After a user successfully submits a user credentials, the

authentication server should generate and issue a valid access token for the user to make

API requests to the Docker Remote API.

2. Access Token Maintenance - Authentication server should store generated access

tokens with in the server and expire them when the validity period escaped. If the user

requests an access token and valid access still available the authentication server should

return that token instead of generating a new one.

3. Access Token Validation - When the authentication server receives an access token

validation request it should assess its existence and the validity and respond accordingly.

Components and Technologies used

Server Programing and Endpoints

The Authentication Server’s programming has been done by using Node.Js. The reasons for

using Node.Js for the server programming are [20],

 It provides the ability to concurrent request handling through asynchronous event

driven input/output operations.

 Lightweightness allows better utilization of resources.

 Vast range of Node Package Modules allows to interact with different other services.

 Short learning curve because of the usage of JavaScript.

 Active and skilled community with lots of publicly accessible code bases.

https://192.168.10.35:4243/containers/json

27

Communication between users and the authentication server have been protected by using

secure socket layer certificates. The authentication server contains with two primary endpoints.

They are

1. /getAccessToken - This the endpoint which users can submit their user credentials and

obtain an access token from the authentication server. The request type will be http

POST and the user id and the password should be included in the request body. The

structure of the cURL command that can be used to call this endpoint has mentioned

below.
curl -H "Content-Type: application/json" -X POST -d '{"id": 111,
"password":"abc123"}' https://<server-host>:<server-port>/getAccessToken -
cacert <path-to-SSL-cetificate>

The response from the authentication server will be looked like below if the user

credentials are valid.

HTTP/1.1 200 OK
Content-Type: application/json
{"accessToken":"6b5930e436243dcda0ead985c6233915ef25f606","expiresIn":1025}

The Figure 7 illustrates the workflow of access token generation and return when a user

sends a proper request to /getAccessToken endpoint of the authentication server.

2. /checkValidity - This the endpoint which is used for assess the validity of the access

tokens. When a user submits a request to the Docker Remote API with an access token

inside Authorization header, from the Docker Host side an http POST request will be

issued to this endpoint to check the validity of the given access token. The structure of

the cURL command that can be used to call this endpoint has mentioned below.

curl -H "Content-Type: application/json" -X POST -d '{"id": 111,
"access_token": "6b5930e436243dcda0ead985c6233915ef25f606"}' https://<server-
host>:<server-port>/checkValidity -cacert <path-to-SSL-cetificate>

The response from the authentication server will be looked like below if the user

credentials are valid.

 HTTP/1.1 204 NO CONTENT

Authentication

Server

Redis Cache

User Credential

Store

 4. Token generation &

Saving in Redis

1. Token Request

2. Check User

Credentials

3. Result from

User store 5. Token Response

Figure 7: Access token generation workflow

28

The Figure 8 shows how a given access token being verified from the authentication

server.

Access Token and User Credential Management

Access token storing and removing will be done by using Redis. Redis is a data structure store

which keeps stored data in memory. It supports different types of data structures such as strings,

hashes, sets, lists etc. It stores values as key value pairs. Values can be obtained by using the

keys. The reasons for selecting Redis as the access token storage are [21],

 Can be easily integrated with Node.Js.

 Provide maximum flexibility in handling access tokens.

 Increase the overall performance of the authentication server because Redis keep

data in the memory.

 Each access token can be stored separately as key value pairs.

 Redis provides ability to set timeout for the keys which is useful to expire access

tokens.

Redis server will run within the host machine of the authentication server. The authentication

server will interact with the Redis when it store access tokens and checking a validity of a given

access token. Usage of Redis will be able to improve the performance of the authentications

server. Hence it will help to reduce request-response routing latency. There are several Node.Js

Redis client modules which can be used to interact with the Redis server in storing and obtaining

access token.

User credential management is independent from the authentication server. Which means

administrator can manage their user credential storage within or outside of the authentication

server machine. The authentication server can be implemented to support different types

database management systems such as MySQL, PostgreSQL, Redis or MongoDB. That will

require a special configuration. Currently the authentication server only works with MySQL.

Authentication

Server

Redis Cache

 2. Check Existence of

Token

1. Token Verification Request

3. Token Verification Response

Figure 8: Access token verification workflow

29

Approaches Considered
The other main design consideration in the new architecture was Docker host and the

authentication server communication. Docker host needs to communicate with the

authentication server in order to verify the validity of the access tokens which is included in the

request's Authorization header. For that two main approaches are taken into account. The first

approach was changing the Docker source code. The other approach was run Docker with a

proxy server.

Changing Docker Source

The first approach that was considered is changing the Docker Remote API source code to

support new design. In that approach it is was planned to clone the source code from the GitHub

and make necessary changes in the code level to support the new design. After those changes

Docker Remote API will extract the access token from the user request, directly interact with

the authentication server to verify the validity of the access tokens and respond the to the user

requests. This can be seen as more integrated approach. But there are several issues related to

this approach.

The first issue is changing the source code and running it on the local machine is inflexible.

Because when it needs to distribute the change, it is needed to change the source code of every

machine. The second issue is making the changes publically available. In Docker, developers

can not directly push their changes to Docker repository. To make changes publically available

it is need to follow Advanced Contribution procedure which was mentioned in the previous

chapter. But it is a time consuming approach. As the Docker mentioned, sometimes it will take

more than a year to complete the whole process and accept the changes by Docker. Sometime

getting approval for the proposal will solely take 6 months.

Run Docker with a proxy server
In this approach none of code level changes has not been done to the Docker. At the same time

Docker Remote API won’t be opened to the public. A Proxy servers stand between the client

and the Docker Remote API, hence the client request passes through the proxy server to the

Docker Remote API. In this approach there won’t be any direct communication between the

Docker Remote API and the authentication server. Client requests will be received to the proxy

Authentication Server

Docker Remote

API

Docker Daemon

2. Token Response

6
. C

all D
ae

m
o

n

1. Token Request

7
. R

esp
o

n
se

Docker Host

Figure 9: Request flow after changing Docker source for request authentication

30

server. Then it extracts the access token from the Authorization header and checks the validity

of it with the authentication server. Based in the response from the authentication server proxy

server will either pass the request to the Docker Remote API or it will return access token error

to the client.

Communication between the client and the proxy server is being protected by using secure

socket layer and communication between proxy server and the Docker Remote API is happen

over Hypertext Transfer Protocol. Proxy server appears to the client as the service endpoint and

give the responses to the client request as it produce by itself. Hence this proxy server can be

considered as a reverse proxy. The main advantages of this approach is, it provides more

flexibility in providing authentication because of the usage of the proxy server and If any change

happens to the Docker it will easy to make changes to the proxy server and the authentication

server because total control of them is exist with the developer.

Conclusion
The first approach, changing Docker source code to handle token verification can be considered

as a more integrated solution than the second approach. But it has above mentioned limitations.

Because of the flexibility of the second approach the second approach is selected to the

implementation. Therefore for a proxy server application was written by using NodeJS a part

of the implementation. The proxy server application is opened to the outside and listing on

configured TCP port. Hence the proxy server application runs inside the Docker Host machine,

it can pass the user request to the Docker Remote API.

Docker Host

Authentication Server

Docker Remote API

Docker Daemon

2. Token Response

7
. C

all D
ae

m
o

n

1. Token Request

8
. R

esp
o

n
se

Proxy Server

6 9

Figure 10: Request flow when running Docker with a proxy server

31

CHAPTER 04 – Implementation

32

CHAPTER 04 – Implementation
Introduction
This chapter describes how the proposed system’s components has been implemented. Further

it describes how the system components are interconnected with each other in order to achieve

objectives of the project in technical and operational perspective. At the same time it has

included algorithms and source code of each component. Further it has included file and folder

structure of the components. Furthermore it has focused on how different predefined software

packages are being used for the purpose of the implementation.

User Store
The user store is the place where the credentials of the users who are eligible to access the

Docker Remote API are been stored. A MySQL database has been used as the user store. Inside

this database, there is a table called doc-user where the user credentials are kept. The doc-user

table stores the first_name, last_name and the password of the users. The id is an auto increment

which use as the user unique identifier. The password is the SHA1 string of the actual password.

The Figure 11 illustrates the structure of the doc-user table.

Figure 11: MySQL table for user credentials

Authentication Server
Overview
The Authentication server is operates as a REST API service which runs on Ubuntu 14.04 LTS

operating system and written by using NodeJS. It contains with two endpoints. One for issue

access tokens and the other one for check the validity of the access tokens. Its main running

script is index.js, which starts the authentication server by invoking server start function. The

authentication server’s resource files are organized according to standard NodeJS server

development directory structure as mentioned in the Figure 12.

33

Figure 12: File and directory structure of the authentication server

All the files which are regarded to the functionalities of the authentication server are kept under

the lib directory. Inside the lib directory there is a file called auth-server.js which contains the

logic related to server initiation and listening. There is another directory named as model which

is rests inside the lib directory contains two resource files. The mysql-model.js handles the

interactions with the MySQL database which contains user’s login credentials and the redis-

model.js handles the interactions with Redis server, which is used to store and retrieve access

tokens.

There are several node package modules has been installed under the node_modules directory

to accomplish the operations of the authentication server. They are,

1. npm-https - to establish secure connections between the users and the Docker host

2. npm-crypto - to perform cryptographic operations.

3. npm-mysql - to interact with MySQL database.

4. npm-redis - to interact with Redis to store and obtain access tokens.

5. npm-fs - to perform file system operations.

All the authentication server configurations are being kept in the config.json file and the other

supportive resource files are being kept under the util directory.

Authentication Server Initiation
Authentication server will be started by running the main script index.js by issuing the

command node index.js. It invokes start function in the auth-server.js. Below mentioned code

lines indicate the contents of the index.js and start function of the auth-server.js respectively.

'use strict';

var authServer = require('./lib/auth-server');

authServer.start(function (err) {

 if (err) {

 console.dir(err);

 console.log("Unable to start Auth Server.")

 }

});

34

exports.start = function (callback) {

 try {

 server.listen(conf.serverPort, conf.serverAddress);

 console.log(className + "Server " + conf.serverPort + " : " + conf.serverAddress + " started

... ");

 callback();

 } catch (e) {

 console.log(e);

 }

};

In the above mentioned start function, server is an instance of npm-https createServer class.

It invokes the listen function of that instance. Authentication server’s listening address and the

listening port is configure in the config.json as the serverAddress and the serverPort

respectively. Both of them should be passed to the listen function.

Authentication Server Functionality
Authentication functionality is implemented mainly in the auth-server.js, model/redis-

model.js and model/mysql-model.js. In the auth-server.js, it creates an instance of npm-https

createServer class which is capable of responding to the requests which are designated to the

/getAcccessToken endpoint which issues access tokens for the successful user credential

submission and /checkValidity endpoint which validates the access tokens. The below

mentioned code lines related to the auth-server.js, which are importing of the required node

package modules which are npm-https and npm-fs, system configurations and

utilities. Furthermore it creates two instances of the mysql-model and the redis-model.

'use-strict';

var https = require('https');

var conf = require('../config.json');

var fs = require('fs');

var messages = require('../util/message.json');

var dbModel = require('./model/mysql-model').createMySQL();

var redisModel = require('./model/redis-model').createRedis();

The responses from the authentication server are served as JSON format. Hence within the auth-

server.js content type header has been set to application/json as mentioned in the next code

block. The npm-https createServer requires NodeJS object which contains the server's SSL

private key, SSL certificate and the passphrase of the private key to create createServer

object. The paths to the SSL private key and the SSL certificate and the passphrase of the SSL

private key are being configured in the config.json.

var className = "Auth-Server";

var default_header = {

 'Content-Type' : 'application/json'

};

var privateKey = fs.readFileSync(conf.sslPrivateKeyPath);

var certificate = fs.readFileSync(conf.sslCertificatePath);

var credentials = {

 key: privateKey,

 cert: certificate,

 passphrase: conf.certificatePasspharse

};

In the auth-server.js, it creates npm-https server instance as mentioned in the next code lines.

The credential object which is previously created should be passed and in the callback function

35

it gives the request (req) and the response (res). Inside server instance all functionalities of the

authentication server has being handled.Inside the createServer instance, when it receives a

request from the user first it checks the request method. If the request is not an http POST

request, it will reject the request. If the request method is POST then it obtains request body

(reqBody) of the request to a NodeJS object. After that it checks the request URL (req.url)

whether it is /getAccessToken, /checkValidity or something else. If the request URL is not

either /getAccessToken or /checkValidity it will returns an error.

The _sendResponse function, which rest inside the server is used to send the response back to

the user request. It should be passed three parameters to the _sendResponse function. The

httpStatusCode should be a valid status code which is defined in RFC 2616, the header is a

NodeJS object which contains all the response headers and the resBody is a NodeJS object

which contains the response body to be sent.

var server = https.createServer(credentials, function(req, res) {

 var chunk = '';

 if (req.method !== 'POST') {

 var error = messages.request_type_error;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody);

 }

 req.on('data', function(dataChunk){

 chunk += dataChunk;

 });

 req.on('end', function (){

 try {

 var reqBody = JSON.parse(chunk);

 switch (req.url) {

 case '/getAccessToken':

 // code related to access token generation and granting

 break;

 case '/checkValidity':

 // code related to access token validity checking

 break;

 default:

 var error = messages.resourse_not_found;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody);

 break;

 } catch(e) {

 console.log(e);

 var error = messages.internal_server_error;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody);

 }

 });

 function _sendResponse(httpStatusCode, header, resBody) {

 console.log("send response");

 res.writeHead(httpStatusCode, header);

 res.end(JSON.stringify(resBody));

 }

});

36

Access token generation and granting

Access token generation and granting happens when a user sends an http POST request with

his user id and the password inside the request body to the request URL /getAccessToken. The

Figure 13 is related to the auth-server.js which illustrates the access token generation and

granting of authentication server.

Figure 13: Access token generation and Granting

When an http POST request receives to the authentication server with URL /getAcceesToken,

first it validates the user credentials which are user id and the password by calling validateUser

function of the redisModel which is an instance of redis-model.js.The next code lines are

related to the validateUser function in the redis-model.js. The user id and the user password

should be submitted to the function for the user validation. Within this function first it creates

a key and a hashKey. The key is created by concating userPrefix and the user id. The hashKey

is generated by concating the hashKeyPrefix and the user id. Both userPrefix and the

hashKeyPrefix are kept in the config.json file.

It checks whether user record exists in redis server by calling redisClient.hget function by

passing the key and the hashKey. The redisClient is an instance of npm-redis. The key is used

find the relevant user record and the hashKey is used to decrypt the encrypted user object. If

the hget returns a user record from the redis server, this function will generate the SHA-1 hash

of the received password and compare the hashed passwords. If the passwords are matched user

validation is complete and will returns user object.

If the hget returns an error, it cannot find a user record in the redis server or passwords are mis-

matched it will call the mysql.validateUser function that is inside the mysql-model.js which

validates user with the MySQL database.

RedisModel.prototype.validateUser = function (userId, password, callback) {

 var key = conf.userPrefix + userId.toString();

 var hashKey = conf.hashKeyPrefix + userId.toString();

 this.redisClient.hget(key, hashKey, function (err, reply) {

 if (err || reply === null) {

 mysql.validateUser(userId, password, function (mysqlError, dbData) {

37

 callback(mysqlError, dbData);

 });

 } else {

 var shasum = crypto.createHash('sha1');

 shasum.update(password);

 password = shasum.digest('hex');

 reply = JSON.parse(reply);

 if (reply.password === password) {

 callback(null, reply);

 } else {

 mysql.validateUser(userId, password, function (mysqlError, dbData) {

 callback(mysqlError, dbData);

 });

 }

 }

 });

}

The validateUser function of mysql-model creates a connection with MySQL database where

the user credentials has been kept by using this.pool.getConnection method. Then it issues an

SELECT query to find user recode. If there is a user record for the given user credentials, it

fires the callback function with a user object. If there is no user recode, it fires the callback

function with an error object. Below mentioned code block related to validateUser function.

MySQLModel.prototype.validateUser = function(userId, password, callback) {

 var fnName = "validateUser";

 console.log(className + " " + fnName + " " + "function called");

 var shasum = crypto.createHash('sha1');

 shasum.update(password);

 password = shasum.digest('hex');

 var query = "SELECT * FROM doc_user WHERE id=" + userId + " AND password='" +

password + "'";

 this.pool.getConnection(function(conError, connection) {

 if (!conError) {

 connection.query(query, function(queryError, rows){

 if (!queryError) {

 if (rows.length === 1) {

 callback(null, {

 id: rows[0].id,

 first_name: rows[0].first_name,

 last_name: rows[0].last_name,

 password: rows[0].password

 });

 } else {

 console.log(queryError);

 callback(true, messages.invalid_credetials);

 }

 } else {

 callback(true, messages.sql_query_error);

 }

 });

 } else {

38

 callback(true, messages.database_connection_error);

 }

 });

 }

If the user validation was failed user will be received an error message and if the user validation

was succeeded it will save or overwrite user record in the Redis server with received user object

by calling redisModel.setUserObject function. The next code lines illustrate the operation of

the saving or overwriting the user recode in the Redis server. As well as in validateUser function

of the redis-model.js, this function also create the key and the hashKey to save the user record

in the redis server by using npm-redis hset function.

RedisModel.prototype.setUserObject = function (userObject, callback) {

 var key = conf.userPrefix + userObject.id.toString();

 var hashKey = conf.hashKeyPrefix + userObject.id.toString();

 this.redisClient.hset(key, hashKey, JSON.stringify(userObject), function(err, result){

 if (err) {

 callback(true, messages.redis_set_error);

 }

 callback(null, null);

 });

}

After saving the user record in the Redis server, the access token generation process then checks

whether there is a previously created access token available in the Redis server. If there is an

access token is available in the Redis server for the user then that access token will be sent to

the user. Otherwise new access token will be created, store in the Redis server and sent to the

user. The getAccessToken function in the redis-model is used to query and find the previously

created access token for a given user. The next code lines are related to the functionality of

getAcceesToken function of redis-model.js

RedisModel.prototype.getAccessToken = function (userId, callback) {

 var key = conf.tokenPrefix + userId.toString();

 var that = this;

 var hashKey = conf.tokenHashKey + userId.toString();

 this.redisClient.hget(key, hashKey, function (err, reply) {

 if (err) {

 console.log(className + "GetAccessToken: " + "Error " + err);

 callback(true, messages.redis_set_error);

 }

 if (reply === null) {

 callback(null, reply);

 } else {

 that.redisClient.ttl(key, function (err, ttl) {

 if (err) {

 callback(true, messages.redis_set_error);

 }

 var accessTokenObj = {

 accessToken : reply,

 expiresIn: ttl

 };

 callback(null, accessTokenObj);

 });

 }

39

 });

}

The getAccessToken function of the redis-model will creates a key and a hashKey. The key

will be created by concating tokenPrefix which is configured in the config.json and user id

which is passed to the function. The hashKey will be created by concating tokenHashKey and

the user id. The key is used as the redis key which is used to store access token for the given

user. The access tokens in the redis server is encrypted so the tokenHashKey is used to decrypt

them. The npm-redis hget function is used find the stored access token in the redis server by

passing key and the hashKey. The validity period of the access token is obtained by passing

key to the ttl function of npm-redis.

The new access token will be created by calling createAccessToken function of the redis-

model.js. The next code lines are related to the createAcceessToken function.

RedisModel.prototype.createAccessToken = function (callback) {

 var accessTokenObj = {

 accessToken: crypto.randomBytes(20).toString('hex'),

 expiresIn: conf.expireTimeInSeconds

 };

 callback(accessTokenObj);

};

The createAccessToken function of redis-model generates access tokens by using npm-crypto’s

randomBytes function. The default expiration time for the access token is configured in the

config.json file. Before sending new access token to the user, it should be stored in the redis

server. The setAccessToken function of the redis-model.js is used for that purpose. The user id

and the access token object received from the createAccessToken function should be passed to

this function. As well as in getAccessToken function key and hashKey will be generated. The

npm-redis hset function is used to store access token in the redis server. The key, the hashKey

and the access token should be passed to the hset function.

Every access token has a timeout. Hence after storing the access token within the redis server

timeout should be set. The expire function of the npm-redis is used for that purpose. The key

and the expiration time which is configured in the config.json should be passed to this function.

Following code lines are related to the setAccessToken function of redis-model.js.

RedisModel.prototype.setAccessToken =function (userId, accessTokenObj, callback) {

 var that = this;

 var hashKey = conf.tokenHashKey + userId.toString();

 var key = conf.tokenPrefix + userId.toString();

 this.redisClient.hset(key, hashKey, accessTokenObj.accessToken, function (err1) {

 if (err1) {

 console.log(className + "SetAccessToken: " + "Error " + err1);

 callback(true, messages.redis_set_error);

 }

 that.redisClient.expire(key, conf.expireTimeInSeconds.toString(), function(err, result) {

 if (err) {

 callback(true, messages.redis_set_error);

 }

 callback(null, null);

 });

 });

};

40

The Figure 14 shows how cURL command has been used on Linux terminal to obtain an access

token from the authentication server by submitting valid user credentials.

Figure 14: Issuing cURL request to obtain access token

Access Token Validation

Access token validation required to the Docker Host to verify a given access token is valid and

coupled only with a given user. The access token validation happens when the authentication

server receives an http POST request to /checkValidity URL with a user id and an access token.

The user id and the access token should be included in the request body. If the request in the

proper format the authentication server will validate the access token. The Figure 15 shows the

access token validation process in the auth-server.js.

Figure 15: Access token validation flow

First the access token validation flow will find whether or not an access token is coupled with

the given user id (reqBody.id) by calling the method getAccessToken in the redis-model.js. If

that function returns an error, response with a particular error will be sent back. If an access

token is not coupled with the given user id or access token in the redis server and the received

access token mismatched between each other response with an invalid access token error will

be sent back. Otherwise success response without any content will be sent. The Figure 16 shows

how cURL command has been used on Linux terminal to validate an access token from the

authentication server.

Figure 16: Issuing cURL command to validate an access token

41

Proxy Server

Overview
Proxy server operates as a REST API service which runs on Ubuntu 14.04 LTS operating

system and written by using NodeJS. It acts a reverse proxy for the Docker Remote API. It

operates in the same host where the Docker Remote API is running and it listens to the request

from the users, verify the access tokens in the request header and pass the request to the Docker

Remote API. Its main running script is index.js, which starts the proxy server by invoking

server start function.The proxy server’s resource files are organized according to standard

NodeJS server development directory structure as mentioned in the Figure 17.

Figure 17: File and directory structure of doc-proxy

All the files which regard to the functionalities of the proxy server are kept under the lib

directory. Inside the lib directory there is a file called doc-proxy.js which contains the logic

related to server initiation and listening. There is another directory named model which rests

inside the lib directory which contains another resource files. The connect.js which handles the

interactions with the authentication server and the file system. All the proxy server

configurations are being kept in the config.json file and the other supportive resource file are

being kept under the util directory. There are several node package modules has been installed

under the node_modules directory to accomplish the operations of the proxy server. They are,

1. npm-https – which is used create server which supports https.

2. npm-request - which is used to interact with the authority server and send requests to it.

3. npm-fs – which is used to perform file system operations.

4. npm-path – which is used to handle the resource files, relative and absolute path

operations.

42

Proxy Server Initiation
Proxy server will be started by running the main script, index.js by issuing the command node

index.js. It invokes start function in the doc-proxy.js. Below mentioned code lines indicates the

contents of the index.js and start function of the doc-proxy.js respectively.

'use strict';

var docProxy = require('./lib/doc-proxy');

docProxy.start(function(error){

 if (error) {

 console.log("Unable to start doc-proxy");

 }

}

exports.start = function(callback) {

 server.listen(conf.serverPort, conf.serverUrl);

 console.log("Doc-Proxy listening at " + conf.serverUrl + ":" + conf.serverPort);

 callback();

}

The above mentioned start function, the server is an instance of npm-https createServer class.

It invokes the listen function of that instance. The proxy server listening address and the

listening port is configure in the config.json as the serverAddress and the serverPort. Both of

them should be passed to the listen function.

Proxy Server Functionality
Proxy server functionality is implemented mainly in the doc-proxy.js, and model/connect.js.

In the doc-proxy.js, it creates an instance of npm-https createServer class which is capable of

responding to the requests which is designated to the Docker Remote API. The next few code

lines are related to the doc-proxy.js, which are importing of the required node package modules,

npm-https and npm-fs, system configurations and utilities. Furthermore it creates an instance

of model/connect.js.

'use-strict';

var https = require('https');

var conf = require('../config.json');

var connector = require('./model/connect').connect();

var messages = require('../util/message.json');

var fs = require('fs');

The error responses from the proxy server sent as JSON format. Hence within the doc-proxy.js

‘Content-Type’ header has been set to application/json by default. The npm-https createServer

requires a NodeJS object which contains the server's SSL private key, SSL certificate and the

passphrase of the key to create createServer object. The paths to the SSL private key and the

SSL certificate and the passphrase of the SSL private key are being configured in the

config.json. The below mentioned code block is related to those operations.

var default_header = {'Content-Type': 'application/json'};

var privateKey = fs.readFileSync(conf.sslPrivateKeyPath);

var certificate = fs.readFileSync(conf.sslCertificatePath);

var credentials = {

 key: privateKey,

43

 cert: certificate,

 passphrase: conf.certificatePasspharse

};

In the doc-proxy.js, it creates npm-https server instance as mentioned in the next code lines. The

credentials object which is previously created should be passed, in the callback function it gives

the request (req) and the response (res). Inside server instance all functionalities of the proxy

server has being handled. Inside the createServer instance, when it receives a request from the

user first extract the request body from the request. Then checks the request method and the

request body contents. If the request method (reqMethod) not equals to http GET and request

body (chunk) is not empty it will create a NodeJS object by using JSON.parse() method. After

that it checks the request headers (reqHeaders) for the authorization header. Finally it validates

the access token in the authorization header, bases on response from the authentication server,

either pass the request to the Docker Remote API or reject the request.

The _sendResponse function, which rests inside the server is used to send the response back

to the user request. It should be passed three parameters to the _sendResponse function. They

are httpStatusCode, header and resBody. The httpStatusCode should be a valid status code

which is defined in RFC 2616. The header is a NodeJS object which contains all the response

headers. The resBody is a NodeJS object which contains the response body to be sent.

var server = https.createServer(credentials, function(req, res){

 var reqMethod = req.method;

 var reqHeaders = req.headers;

 var chunk = "";

 req.on('data', function (tempChunk) {

 chunk += tempChunk;

 });

 try {

 var reqBody = {}

 if (reqMethod != 'GET' && chunk != '') {

 reqBody = JSON.parse(chunk);

 }

 req.on('end', function(){

 // Authorization header validation

 // Passing the request to the Docker Remote API

 });

 } catch (e) {

 var error = messages.proxy_server_error;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody)

 }

 function _sendResponse(httpStatusCode, header, resBody) {

 res.writeHead(httpStatusCode, header);

 res.end(JSON.stringify(resBody));

 }

});

Authorization header validation

Proxy server validates the authorization header, in order verify that the authorization header is

in the proper format. The authorization header should composed of a valid user id and a valid

access token. If the validation of the authorization header succeeded, proxy server will validate

the access token. If the validation of the authorization header failed, error will be output. The

below mentioned code lines are related to the functionality of authorization header validation.

44

if (!reqHeaders.authorization) {

 var error = messages.authorization_header_not_set;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody);

 return;

}

var authorization = reqHeaders.authorization.split(' ');

if (authorization.length !== 3) {

 var error = messages.invalid_authorization_header;

 _sendResponse(error.httpStatusCode, default_header, error.messageBody);

 return;

}

If the authorization header not set in the request it aborts the operation and response with an

error, and also if authorization header is not in proper format it aborts the operation and returns

an error. If the validation header proper format reqHeaders.authorization.split(' ') will return

an array similar to below.

var authorization = [‘Bearer’, ‘101’, ‘bf9661defa3daecacfde5bde0214c4a439351d4d’]

Access Token Verification and Passing Request to Docker

After validating the authorization header, access token which is extracted should be validated

against the user id. Hence http POST request will be made to the authentication server’s

/checkValidity endpoint. If the access token is valid request will be passed to the Docker

Remote API. Otherwise response will be returned with an error. The following code lines

related to the access token verification and passing the request to the Docker Remote API.

var authOptData = {

 id: authorization[1],

 accessToken: authorization[2]

};

var authOpt = {

 url: conf.authServerHost + ":" + conf.authServerPort + conf.validationUrl,

 method: 'post',

 json: true,

 body: authOptData,

 cert: fs.readFileSync(conf.authServerCert),

 rejectUnauthorized: false,

 timeout:conf.requestTimeout

};

connector.makeCall(authOpt, function(authErr, authStatusCode, authResHeader, authData){

 if (authErr) {

 _sendResponse(authStatusCode, default_header, authData);

 } else {

 var options = {

 url: conf.dockerHost + ':' +conf.dockerPort + req.url,

 method: req.method,

 headers: reqHeaders,

 json: true,

 body: reqBody,

 timeout: conf.requestTimeout

 };

 connector.makeCall(options, function(docErr, statusCode, resHeader, docData) {

 if (docErr) {

 _sendResponse(statusCode, default_header, docData);

45

 }

 if (resHeader['content-length'] != '') {

 delete resHeader['content-length'];

 }

 if (conf.logging) {

 connector.writeLog(authorization[1], req.url, function(err) {

 _sendResponse(statusCode, resHeader, docData);

 });

 } else {

 _sendResponse(statusCode, resHeader, docData);

 }

 });

 }

});

The above mentioned code lines are related to the request object’s end event, req.on(end,

function() { }). The authOpt object is created to call to the authentication server to validate the

received access token. It includes the URL which is authentication server’s /checkValidity

endpoint, request method which is http POST, request body which is another object contains

user id and the access token to be validated and SSL client certificate of the authentication

server. In order to make requests to the remote resources makeCall function of

model/connect.js is used. The connector.makeCall function uses npm-request node module

make request to the remote resources. The makeCall function has mentioned in next few code

lines.

Connector.prototype.makeCall = function(options, callback) {

 request(options, function(err, res, body) {

 if (err) {

 console.log(err);

 var error = messages.request_failed;

 callback(true, error.httpStatusCode, {}, error.messageBody);

 } else if (res.statusCode > 300) {

 callback(true, res.statusCode, res.headers, body);

 } else {

 callback(null, res.statusCode, res.headers, body)

 }

 });

}

The options variable is the NodeJS object that is need to make the request to the remote server.

The authOpt object should be passed to the makeCall function in validating the access token. If

access token validation succeeded, Docker Remote API will be called base on the user request

by using the connector.makeCall function. In this occasion different set of options will be

passed to the makeCall function which are relevant to the accessing of Docker Remote API.

The response from the Docker Remote API will be passed to the user.

There are is special configuration available in the config.json which by default disabled, to

enable and disable the logging of the user activities. If the logging is enabled before sending

the response to the user proxy server will create a recode for the user activity by using

connector.writeLog function. The code lines related to the writeLog function has mentioned

below.

46

Connector.prototype.writeLog = function (userId, endPoint, callback) {

 var logfile = path.join(__dirname, '..', '..', 'log', conf.userPrefix + userId + ".log");

 if (!fs.existsSync(logfile)) {

 fs.closeSync(fs.openSync(logfile, 'w'));

 }

 var entry = "Operation = " + endPoint + " on " + new Date() + '\n';

 fs.appendFile(logfile, entry, function(err) {

 if (err) {

 console.log(err);

 }

 callback(null);

 });

}

There are two variables that should be passed to the writeLog function, user id which is relevant

to the user who try to make the request to the Docker Remote API and the requested endpoint

of the Docker Remote API. Every user has a unique log file in the log directory. This log file

will be created when a user make request for the first time. After that every record will be

entered to the same file.

Self-Signed Certificate Generation
Connections between the authentication server and the user, the proxy server and the user and

the proxy server and the authentication server must be protected from the third party

interventions. In order to achieve that all the connections are implemented with Secure Socket

Layer (SSL). Self-signed certificates has been used for the SSL and npm-https package has

been used for the server implementation instead of npm-http. The self-signed certificate are

generated as follows by using openssl command. Two key certificate pairs are generated for

the authentication server and the proxy server.

openssl genrsa -des3 -out authserver.key 2048
This command will generate the key for the Certificate Signing Request.

openssl req -new -key authserver.key -out authserver.csr
This command will create Certificate Signing Request

openssl x509 -req -days 365 -in authserver.csr -signkey authserver.key -out authserver.crt
This command will generate self-signed certificate.

Similar to creating self-signed certificate for the authentication server which is authserver.crt,

a self-signed certificate is generated for the proxy server named proxyserver.crt

Conclusion
The implementation of the authentication server and the proxy server is done to achieve main

objectives of the project. But when selecting programming languages, selecting data storages

and developing algorithms the usability, the performance and the interoperability constraints

were taken into account. The main reason select the NodeJS for server programming is to take

the advantage from its asymmetric event handling procedure. Redis server is selected because

of its nature of keeping data in memory rather than disk. Both of these selections helped to

prevent introduction of large amount of latency to the request-response circle.

47

CHAPTER 05 – Evaluation

48

CHAPTER 05 – Evaluation
Introduction
This chapter has described how the proposed system’s components has been operated in the

test environment. Further this chapter includes test results obtained under the test environment.

Further it includes comparisons between expected results and the actual results. Furthermore it

includes limitations of the systems usage. Finally it includes the final conclusions about the

evaluation.

Test Environment
The test environment is composed with two Ubuntu 14.04 LTS virtual machines where one

virtual machine has configured to run authentication server with MySQL user database and

Redis while the other virtual machine act as the user’s workstation which needs to interact with

the Docker Remote API. The Docker is installed on the host machine of the virtual machines

with required Docker images and containers along with the proxy server. The ‘sudo docker

daemon -H tcp://127.0.0.1:8888’ command is used to make the Docker daemon listen on

TCP port 8888 from the requests originated from the localhost. The ‘node index.js’ command

is used to start the proxy server which made proxy server listening on tcp port 9000 on the host

machine.

The virtual machine is used to run the authentication server is setup with NodeJS and npm

modules, Redis server and MySQL. The ‘node index.js’ command is used to start the

authentication server which made authentication server listening on TCP port 9999. The other

virtual machine which is used as the user workstation is composed with the Postman REST

client and cURL application which are used to make request to the authentication server and

the proxy server.

There were two self-signed certificates were generated for the proxy server and the

authentication server. In generating those certificates it had to enter the FQDN parameter for

both certificates. The auth.testcom.org is used as the authentication server certificate FQDN

and the api.dockerhost.org is used as the proxy server certificate FQDN. Equal values were

set for other parameters. The authentication server’s self-signed placed inside its virtual

machine and the proxy server’s self-signed placed in the host machine of virtual machines.

Evaluation procedure
The evaluation procedure done basically in two steps. In the first step selected set of API calls

are made to the Docker Remote API without using authentication server and the proxy server.

In this step, API calls are made directly to the Docker Remote API without going through the

proxy server. The ‘sudo docker daemon -H tcp://0.0.0.0:8888’ command is used to make the

Docker daemon listen on TCP port 8888 from the requests originated from any host. In the

second step, the ‘sudo docker daemon -H tcp://127.0.0.1:8888’ command is used to make the

Docker daemon listen on TCP port 8888 for the requests originated only from the localhost.

The same set of API requests which were used in the first step will be made to the Docker

Remote API.

The main reason behind conducting the evaluation in two steps is to identify whether any

irregularities has been introduced by the authentication procedure when a user accessing Docker

Remote API. Other than that, it was needed to measure to what extent the introduction of new

authentication mechanism has affected to the effectiveness in accessing Docker Remote API.

The requests were sent by using cURL commands and the Postman which is a REST client

application provided by the Google Chrome web browser as an extension and a desktop

application. The sample set of requests to be made to the Docker Remote API was chosen in

manner that covers all the operational areas of Docker operations which are controllers, images

and miscellaneous.

49

Evaluation Results
This sub section includes some of the results relevant to the requests which are made to Docker

Remote API directly and via the proxy server with authentication server separately for a

selected set of requests.

GET /info
The successful http GET request to this endpoint gives the system wide information of the

Docker Host. The Figure 18 mentioned below is relevant to a response which receives for a

successful request made to the Docker Remote API when it is open to the outside without

authentication. The Figure 19 mentioned below is relevant to a response which receives for

successful request made to the Docker Remote API via Proxy server after validating access

token, which is embedded in the Authorization header with the authentication server. The

general response time when Docker Remote API is opened to outside without authentication

was fluctuated from 150 milliseconds to 160 milliseconds while the general response time when

Docker Remote API only accessible via proxy server with authentication was fluctuated from

160 milliseconds to 170 milliseconds. In both scenarios the structure of the response body

remain exactly the same.

Figure 18: A request made to the /info endpoint directly by using Postman REST client

Figure 19: A request made to the /info endpoint via proxy server by using Postman REST client

50

GET /contianers/json
The successful http GET request to this endpoint lists the available containers of the Docker

Host. The Figure 20 mentioned below is relevant to a response which receives for a successful

request made to the Docker Remote API when it is open to the outside without authentication.

The Figure 21 mentioned below is relevant to a response which receives for successful request

made to the Docker Remote API via Proxy server after validating access token, which is

embedded in the Authorization header with the authentication server. The general response time

when Docker Remote API is opened to outside without authentication was fluctuated from 30

milliseconds to 40 milliseconds while the general response time when Docker Remote API only

accessible via proxy server with authentication was fluctuated from 40 milliseconds to 50

milliseconds. In both scenarios the structure of the response body remain exactly the same.

Figure 20: A request made to the /containers/json endpoint directly by using Postman REST client

51

Figure 21: A request made to the /contianers/json endpoint via proxy server by using Postman REST client

GET /version
The successful http GET request to this endpoint returns the Docker version information. The

Figure 22 mentioned below is relevant to a response which receives for a successful request

made to the Docker Remote API when it is open to the outside without authentication. The

Figure 23 mentioned below is relevant to a response which receives for successful request made

to the Docker Remote API via Proxy server after validating access token, which is embedded

in the Authorization header with the authentication server. The general response time when

Docker Remote API is opened to outside without authentication was fluctuated from 30

milliseconds to 40 milliseconds while the general response time when Docker Remote API only

accessible via proxy server with authentication was fluctuated from 40 milliseconds to 50

milliseconds. In both scenarios the structure of the response body remain exactly the same.

Figure 22: A request made to the /version endpoint directly by using Postman REST client

52

Figure 23: A sample request made to the /version endpoint via proxy server by using Postman REST client

GET /images/json
The successful http GET request to this endpoint lists the Docker images available at the Docker

Host. The Figure 24 mentioned below is relevant to a response which receives for a successful

request made to the Docker Remote API when it is open to the outside without authentication.

The Figure 25 mentioned below is relevant to a response which receives for successful request

made to the Docker Remote API via Proxy server after validating access token which is

embedded in the Authorization header with the authentication server. The general response time

when Docker Remote API is opened to outside without authentication was fluctuated from 30

milliseconds to 40 milliseconds while the general response time when Docker Remote API only

accessible via proxy server with authentication was fluctuated from 40 milliseconds to 50

milliseconds. In both scenarios the structure of the response body remain exactly the same.

Figure 24: A request made to the /images/json endpoint directly by using Postman REST client

53

Figure 25: A request made to the /images/json endpoint via proxy server by using Postman REST client

GET /images/search?term=#keyword
The successful http GET request to this endpoint will searches the Docker Hub for Docker

Images with a given keyword and display the high level information of relevant images. The

Figure 26 mentioned below is relevant to a response which receives for a successful request

made to the Docker Remote API when it is open to the outside without authentication. The

Figure 27 mentioned below is relevant to a response which receives for successful request made

to the Docker Remote API via Proxy server after validating access token which is embedded in

the Authorization header with the authentication server. The general response time when

Docker Remote API is opened to outside without authentication was fluctuated from 1400

milliseconds to 1500 milliseconds while the general response time when Docker Remote API

only accessible via proxy server with authentication was fluctuated from 1500 milliseconds to

1600 milliseconds. In both scenarios the structure of the response body remain exactly the same.

Figure 26: A request made to the /images/search endpoint directly by using Postman REST client

54

Figure 27: A request made to the /images/search endpoint via proxy server by using Postman REST client

GET /containers/{id}/json
The successful http GET requests to this endpoint will returns the low level information about

the given container. The Figure 28 mentioned below is relevant to a response which receives

for a successful request made to the Docker Remote API when it is open to the outside without

authentication. The Figure 29 mentioned below is relevant to a response which receives for

successful request made to the Docker Remote API via Proxy server after validating access

token which is embedded in the Authorization header with the authentication server. The

general response time when Docker Remote API is opened to outside without authentication

was fluctuated from 40 milliseconds to 50 milliseconds while the general response time when

Docker Remote API only accessible via proxy server with authentication was fluctuated from

50 milliseconds to 60 milliseconds. In both scenarios the structure of the response body remain

exactly the same.

55

Figure 28: A sample request made to the /contains/{id}/json endpoint directly by using Postman REST client

Figure 29: A request made to /containers/{id}/json endpoint via proxy server by using Postman REST client

POST containers/create

The successful http POST request to this endpoint will creates a new Docker container from the

given Docker image. The id of the Docker image which is needed to create container should be

passed in the body as a JSON object. The Figure 30 mentioned below is relevant to a response

which receives for a successful request made to the Docker Remote API when it is open to the

outside without authentication. The Figure 31 mentioned below is relevant to a response which

receives for successful request made to the Docker Remote API via Proxy server after validating

access token, which is embedded in the Authorization header with the authentication server.

The general response time when Docker Remote API is opened to outside without

authentication was fluctuated from 180 milliseconds to 200 milliseconds while the general

response time when Docker Remote API only accessible via proxy server with authentication

was fluctuated from 200 milliseconds to 220 milliseconds. In both scenarios the structure of the

response body remain exactly the same.

56

Figure 30: A request made to the /containers/create endpoint directly by using Postman REST client

Figure 31: A request made to /containers/create endpoint via proxy server by using Postman REST client

POST /containers/{id}/start
The successful http POST request to this endpoint will start Docker container which belongs to

given container id. The id of the Docker container which needs to be started should be included

in the request URL. The Figure 32 mentioned below is relevant to a response which receives

for a successful request made to the Docker Remote API when it is open to the outside without

authentication. The Figure 33 mentioned below is relevant to a response which receives for

successful request made to the Docker Remote API via Proxy server after validating access

token, which is embedded in the Authorization header with the authentication server. The

general response time when Docker Remote API is opened to outside without authentication

was fluctuated from 400 milliseconds to 500 milliseconds while the general response time when

Docker Remote API only accessible via proxy server with authentication was fluctuated from
500 milliseconds to 600 milliseconds. In both scenarios the structure of the response body

remain exactly the same.

57

Figure 32: A request made to the /containers/{id}/start endpoint directly by using Postman REST client

Figure 33: A request to /containers/{id}/stop endpoint via proxy server by using Postman REST client

POST containers/{id}/stop
The successful http POST request to this endpoint will stop running Docker container which

belongs to given container id. The id of the Docker container which needs to be stopped should

be included in the request URL. The Figure 34 mentioned below is relevant to a response which

receives for a successful request made to the Docker Remote API when it is open to the outside

without authentication. The Figure 35 mentioned below is relevant to a response which receives

for successful request made to the Docker Remote API via Proxy server after validating access

token, which is embedded in the Authorization header with the authentication server. The

general response time when Docker Remote API is opened to outside without authentication

was fluctuated from 500 milliseconds to 600 milliseconds while the general response time when

Docker Remote API only accessible via proxy server with authentication was fluctuated from

600 milliseconds to 700 milliseconds. In both scenarios the structure of the response body

remain exactly the same.

58

Figure 34: A sample request made to the /containers/{id}/stop endpoint directly by using Postman REST client

Figure 35: A sample request to /containers/{id}/stop endpoint via proxy server by using Postman REST client

DELETE containers/{id}
The successful http DELETE request to this endpoint will deletes Docker container which

belongs to given container id. The id of the Docker container which is needed to be deleted

should be included in the request URL. The Figure 36 mentioned below is relevant to a response

which receives for a successful request made to the Docker Remote API when it is open to the

outside without authentication. The Figure 37 mentioned below is relevant to a response which

receives for successful request made to the Docker Remote API via Proxy server after validating

access token, which is embedded in the Authorization header with the authentication server.

The general response time when Docker Remote API is opened to outside without

authentication was fluctuated from 150 milliseconds to 160 milliseconds while the general

response time when Docker Remote API only accessible via proxy server with authentication

was fluctuated from 180 milliseconds to 200 milliseconds. In both scenarios the structure of the

response body remain exactly the same.

Figure 36: A request made to the /containers/{id} endpoint directly by using Postman REST client

59

Figure 37: A sample to /containers/{id} endpoint via proxy server by using Postman REST client

Security Evaluation
The implemented system is a token based authentication mechanism for Docker Remote API

when Docker Daemon listening on a TCP port. The authentication server which is the main

component of the implemented system, responsible for the access token generation, issuing and

maintenance. The authentication server implemented with focusing on OAuth2’s Resource

Owner Password Credentials Grant mode. The Table 2 illustrates to what extent the

authentication server compliant to the OAuth2’s Owner Password Credentials Grant mode [11].

Property OAuth2 RFC Implemented

Authentication Server

Authentication Flow The resource owner provides

the client with its username

and password.

The client requests an access

token from the authorization

server's token endpoint by

including the credentials

received from the resource

owner. When making the

request, the client

authenticates with the

authorization server.

The authorization server

authenticates the client and

validates the resource owner

credentials, and if valid,

issues an access token.

Every user client who

authorized to access Docker

Remote API have an id and a

password.

The client requests an access

token from the authorization

server's token

/getAccessToken endpoint by

including the credentials

received from the Docker

Administrator.

The authentication server

authenticates the client and

validates the user credentials,

and if valid, issues an access

token.

60

Authentication Server

Functions

Require client authentication

for confidential clients or for

any client that was issued

client credentials.

Authenticate the client if

client authentication is

included.

Validate the resource owner

password credentials using its

existing password validation

algorithm.

Issues access tokens for the

legitimate requests.

Access the validity of issued

access tokens.

Maintain access tokens until

the expiration.

Validate the user credentials

against the database.

Access tokens Access tokens must be kept

confidential in transit and

storage, and only shared

among the authorization

server, the resource servers

the

access token is valid for, and

the client to whom the access

token is issued.

The authorization server must

ensure that access tokens

cannot be generated,

modified, or guessed to

produce valid access tokens

by unauthorized parties

All the access tokens are

stored in authentications

server using Redis after

encrypting the tokens.

Different encryption keys has

been used for different users.

NodeJs random number

generation function is used to

generate access tokens.

All the connections are

secured with SSL.

Refresh Tokens Authorization servers may

issue refresh tokens to web

application clients and native

application clients.

The authorization server must

maintain the binding between

a refresh token and the client

to whom it was issued.

Not implemented.

61

Authentication Request

Parameters

grant_type - Required. Must

be set to “password”

username - Required.

password - Required.

scope - Optional.

id - Required.

password - Required.

Authentication Example

Request

POST /token HTTP/1.1

Host: server.example.com

Authorization:Basic

czZCaGRSa3F0MzpnWDFm

QmF0M2JW

Content-Type:application/x-

www-form-urlencoded

grant_type=password&userna

me=johndoe&password=A3d

dj3w

POST /token HTTP/1.1

Host: auth.testcom.org

Content-

Type:application/json

{

 “Id” : 111,

 “password” : “ys2b7”

}

Access token example

response

HTTP/1.1 200 OK

Content-

Type:application/json;charset

=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token":"2YotnFZFEj

r1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF

0XG5Qx2TlKWIA",

"example_parameter":"examp

le_value"

 }

HTTP/1.1 200 OK

Content-Type:

application/json

Date: Mon, 27 Mar 2017

07:44:19 GMT

Connection: keep-alive

Transfer-Encoding: chunked

{

"accessToken":"eab922015aa

a63fd6a170d1761ab3b28db5

75929",

"expiresIn":3600

}

Table 2: Analysis of the authentication server's compliance with OAuth2

62

Evaluation Conclusions
The intention of making Docker Remote API only accessible via a proxy server, is to ensure

that it can be only accessible for parties which are authorized. Based on the evaluation results,

the implementation of the proxy server and the authentication server has not introduced

deviations to the responses which are originated from the Docker Remote API. Furthermore

after the comparison of the response bodies between two occasions it can be clearly seen they

are identical in structure. It is obvious that the operation of the proxy server and the

authentication consume some computational resources. Hence the general response time for a

request which passed via the proxy server to the Docker Remote API is greater than the general

response time for a request which comes directly to the Docker Remote API. Based on the

evaluation results, it can be mentioned that the implementation of proxy server and the

authentication server haven’t caused to increase the response in large scale.

The proxy server and the authentication server were able to work in different operational areas

in Docker with different type of requests. The Figure 44 and the Figure 45 in Appendix 1 belong

to creating a Docker image my pulling it from a registry. This request involves in streaming of

data packets. There are several other results relevant various Docker operations are included in

the Appendix 1. This indicates that new implementation works well with different type of

requests.

63

CHAPTER 06 – Conclusions

64

CHAPTER 06 – Conclusions
Challenges Faced
The main challenge that was faced in this project was lack of previous researches that had been

carried out regarding to the Docker. Because of that reason, there were very little amount of

research papers and other research materials found regarding to the project. In the early stages

of the project it was planned to enable the authentication by editing the source code. Therefore

it had to been followed Docker Advanced Contribution workflow which is more complex and

time consuming. Hence it was needed focused on other alternative ways of implementing

authentication of user requests. The next challenge was setting up a proper test environment.

The current results were obtained by simulating the system on Linux virtual machine based

environment as mentioned in the previous sections. The results which were obtained from that

was satisfactory. But it would be better if the test environment similar to the practical situation.

Future Works
There are several future researches would be carried out based on the accessing remotely

Docker Remote API when it’s listening on TCP port. The first one is changing Docker source

code support the token based request authentication. This research will require more expertise,

especially in ‘Go’ programming language and will consume little bit of time. But it will be able

to provide the request authentication in more integrated manner. One of other researches is

replacing the authentication server with other kind of well-established authentication

mechanism such as Kerberos. Furthermore authorization server can be streamlined to make it

more aligned with an authentication protocol like OAuth2.

Summary
The project is focused on developing and demonstrating a token based authentication

mechanism for the user requests receives to the Docker Remote API when the Docker Daemon

listening on a TCP port. In this scenario there is a listening IP address and a listening TCP port.

The listening IP address cannot be any and has to be something that cannot be accessed outside.

The expected authentication has been achieved in this project by introducing an authentication

server and a proxy server. Since the requests cannot be made to the Docker Remote API

directly, the request has to go through the proxy server. The proxy server validates the access

token which should be included in the Authorization header, issued by the authentication server.

The request will or will not be passed to the Docker Remote API based on the response from

the proxy server.

Evaluation results indicates that introduction of the proxy server has not introduce deviations

to the expected results. But it has introduced some latency to the overall request response

routing. This implementation will be very much helpful when the other applications need to

perform operations with Docker. The users who are authorized to make requests and the user

applications can be made requests to the Docker Remote API via proxy server as REST API

calls and all the required parameters can be stored with the application.

65

Appendixes
Appendix 1 – Other test results regards to the evaluation
This section includes some of the images regarding to the results obtained during the evaluation

phase of the project by using cURL command from the Linux terminal. All the request send via

the proxy server to Docker Remote API.

Figure 38: Obtaining of access token by submitting valid credentials

Figure 39: Checking access token validity with a valid access token

Figure 40:: Checking an access token's validity with an invalid access token

Figure 41: Request sent to the proxy server with an invalid access token

Figure 42: Sending request to an invalid endpoint of Docker Remote API

Figure 43: Tagging an image

66

Figure 44: Creating an Image by pulling

Figure 45: Creating an image by pulling

Figure 46: Attach an image

67

References
[1]"Understand the architecture", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/engine/understanding-docker/. [Accessed: 02- Apr- 2016].

[2]"daemon", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/engine/reference/commandline/daemon/. [Accessed: 02- Apr- 2016].

[3]"Remote API", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/engine/reference/api/docker_remote_api/. [Accessed: 04- Apr- 2016].

[4]"Remote API v1.18", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/engine/reference/api/docker_remote_api_v1.18/. [Accessed: 04- Apr-

2016].

[5]"daemon", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/v1.10/engine/reference/commandline/daemon/. [Accessed: 10- May-

2016].

[6]"Protect the Docker daemon socket", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/v1.10/engine/security/https/. [Accessed: 10- May- 2016].

[7]"Remote API v1.22", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/v1.10/engine/reference/api/docker_remote_api_v1.22/. [Accessed:

10- May- 2016].

[8]J. Steiner, C. Neuman and J. Schiller, Kerberos: An Authentication Service for Open

Network Systems, 1st ed. 2011, pp. 5-9.

[9]B. Subedi, "Kerberos Authentication Protocol", Slideshare.net, 2013. [Online]. Available:

http://www.slideshare.net/BibekNam/kerberos-authentication-protocol. [Accessed: 14- May-

2016].

[10]"Implementing Message Layer Security with Kerberos in WSE 3.0", Msdn.microsoft.com,

2016. [Online]. Available: https://msdn.microsoft.com/en-us/library/ff650265.aspx.

[Accessed: 14- Jun- 2016].

[11]"RFC 6749 - The OAuth 2.0 Authorization Framework", Tools.ietf.org, 2016. [Online].

Available: https://tools.ietf.org/html/rfc6749.html. [Accessed: 14- May- 2016].

[12]"An Introduction to OAuth2", Slideshare.net, 2016. [Online]. Available:

http://www.slideshare.net/aaronpk/an-introduction-to-oauth-2/. [Accessed: 20- May- 2016].

[13]"docker/distribution", GitHub, 2016. [Online]. Available:

https://github.com/docker/distribution/blob/master/docs/spec/auth/token.md. [Accessed: 20-

May- 2016].

[14]"Token Authentication Specification", Docs.docker.com, 2016. [Online]. Available:

https://docs.docker.com/registry/spec/auth/token/. [Accessed: 20- May- 2016].

[15]"Quickstart contribution", Docker, 2016. [Online]. Available:

https://docs.docker.com/opensource/code/. [Accessed: 04- Jun- 2016].

[16]"Contribute", Docker, 2015. [Online]. Available: https://www.docker.com/contribute.

[Accessed: 04- Jun- 2016].

https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/engine/reference/commandline/daemon/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.18/
https://docs.docker.com/v1.10/engine/reference/commandline/daemon/
https://docs.docker.com/v1.10/engine/security/https/
https://docs.docker.com/v1.10/engine/reference/api/docker_remote_api_v1.22/
http://www.slideshare.net/BibekNam/kerberos-authentication-protocol
https://msdn.microsoft.com/en-us/library/ff650265.aspx
https://tools.ietf.org/html/rfc6749.html
http://www.slideshare.net/aaronpk/an-introduction-to-oauth-2/
https://github.com/docker/distribution/blob/master/docs/spec/auth/token.md
https://docs.docker.com/registry/spec/auth/token/
https://docs.docker.com/opensource/code/
https://www.docker.com/contribute

68

[17]"Understand how to contribute", Docker, 2016. [Online]. Available:

https://docs.docker.com/opensource/workflow/make-a-contribution/. [Accessed: 04- Jun-

2016].

[18]"Find and claim an issue", Docker, 2016. [Online]. Available:

https://docs.docker.com/opensource/workflow/find-an-issue/. [Accessed: 04- Jun- 2016].

[19]"Advanced contributing", Docker, 2016. [Online]. Available:

https://docs.docker.com/opensource/workflow/advanced-contributing/. [Accessed: 04- Jun-

2016].

[20] P. Teixeira, Professional Node.JS, 1st ed. Google Inc, 2012, pp. 15-17.

[21]"Introduction to Redis – Redis", Redis.io, 2014. [Online]. Available:

https://redis.io/topics/introduction. [Accessed: 11- Jun- 2016].

https://docs.docker.com/opensource/workflow/make-a-contribution/
https://docs.docker.com/opensource/workflow/find-an-issue/
https://docs.docker.com/opensource/workflow/advanced-contributing/

