

Detecting and Investigating Windows

Management Instrumentation (WMI)

Based Remote Attacks in Windows

Operating Systems

A dissertation submitted for the Degree of Master of

Science in Information Security

K.K. Kulasekera

University of Colombo School of Computing

2017

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or any

other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledge in the text.

Student Name: Kanishka Kulasekera

--------------------------------------- --------------------------------

 Signature Date

This is to certify that this thesis is based on the work of Mr. Kanishka Kulasekera Under my

supervision. The thesis has been prepared according to the format stipulated and is of acceptable

standard.

Certified by

Supervisor Name: Dr. Kasun De Zoysa

--------------------------------------- --------------------------------

 Signature Date

iii

Abstract

The ability to watch the network traffic generated by client – server applications can greatly

assist in both understanding how client – server applications works as well as identifying the

issues related to the technology.

The research focuses the concept for Detecting and Investigating Windows Management

Instrumentation (WMI) Based Remote Attacks in Windows Operating Environment. Windows

Management Instrumentation (WMI) is the main source of management data and functionality

on local and remote computers that run Microsoft Windows Operating Systems. As existing

technologies for packet sniffing and intrusion detection has proven to be inadequate to detect

WMI based remote attacks on Windows Operating Environments, an urge has arrived to find a

mechanism to detect remote attacks which uses WMI.

In this context DCERPC (Distributed Computing Environment / Remote Procedure Calls) stub-

data has used to detect the mentioned attacks. The resulting system is required to capture

packets with DCERPC payloads, decode the captured payload to get DCERPC stub data and

explore the hidden Microsoft COM (Component Object Model) Request.

iv

Acknowledgment

Here and now, I would like to express my sincere thanks to all who have helped me make this

thesis possible and better. Firstly, I am deeply grateful to my honorable supervisor, Dr. Kasun

De Zoysa, who has checked through my thesis with patience and has given me instructive

suggestions.

Then special thanks also goes to the staff University of Colombo School of Computing (UCSC),

especially, Dr. Manju Wickramasinghe & Mr. Charith Madhushanka, who are very kind and

generous in offering advice, as well as to the teachers and professors who have taught me over

the past two years of study UCSC.

Finally, I am very grateful to my lovely wife Dilshani, My Family and friends who have offered

selfless support to me.

v

Table of Contents

Declaration.. ii

Abstract .. iii

Acknowledgment ... iv

List of Figures .. viii

List of Tables ... ix

List of Abbreviations .. x

Chapter 1 - Introduction ... 1

1.1 Windows Management Instrumentation (WMI) ... 1

1.2 Motivation ... 2

1.3 Thesis Contribution ... 2

1.3.1 Goals and Objectives .. 2

1.3.2 Research Question .. 2

1.3.3 Scope and Limitations .. 3

Chapter 2 - Literature Review .. 4

2.1 Component Object Model (COM) .. 4

2.2 Distributed Computing Environment Remote Procedure Calls (DCE/RPC) 4

2.3 TCP ... 4

2.4 UDP .. 5

2.5 Marshalling / Unmarshalling .. 5

2.6 Interacting with WMI ... 5

2.6.1 Powershell .. 6

2.6.2 Wmic.exe.. 6

2.6.3 Winrm.exe .. 7

2.6.4 Remote WMI .. 7

2.7 Remote WMI protocols – DCOM .. 7

2.7.1 Distributed Component Object Model (DCOM) ... 7

2.7.2 Windows Remote Management (WinRM) .. 8

2.8 WMI Attacks ... 9

2.9 Reconnaissance ... 9

2.10 Anti-Virus Detection ... 9

2.11 VM Detection ... 11

2.12 VMware Detection .. 12

2.13 Code Execution and Lateral Movement ... 13

2.14 Event Consumers .. 13

Chapter 3 - Analysis ... 14

3.1 WMI for Detection and Response... 14

3.2 High-Level WMI Architecture ... 14

vi

3.3 WMI Architecture ... 15

3.3.1 Managed Components .. 15

3.3.2 Consuming Data ... 16

3.3.3 Querying Data .. 16

3.3.4 Populating Data .. 16

3.3.5 Structuring Data ... 16

3.3.6 Transmitting Data ... 16

3.4 Performing Actions ... 16

Chapter 4 - Design .. 19

4.1 Querying WMI .. 19

4.1.1 Instance queries .. 19

4.1.2 Event queries .. 19

4.1.3 Meta queries ... 20

4.2 Attacker WMI Detection .. 20

4.2.1 Existing Detection Utilities .. 20

4.2.2 Sysinternals Autoruns .. 20

4.3 Kansa .. 21

4.4 Defensive WMI Event .. 22

4.5 Event Filters .. 22

4.6 Event Consumers .. 23

4.7 Event Types .. 24

4.7.1 Intrinsic Events ... 24

4.7.2 Extrinsic Events.. 25

4.8 Using WMI CLI Commands for Detection And Removal Of Malicious WMI 26

4.8.1 Manual Detection: WMI Command Line Tool .. 26

4.8.2 Manual Removal: WMI Command Line Tool ... 26

4.9 WMI Intrusion Detection Using PowerShell Code Ex ... 26

4.10 Event Logs .. 27

4.11 Additional WMI Mitigation .. 27

4.11.1 WMI Backup & Restore ... 27

4.12 WMI Access Control .. 29

4.13 PowerShell .. 30

4.14 Wmic.exe .. 31

4.15 Wbemtest.exe .. 32

4.16 WMI Explorer ... 33

4.17 CIM Studio ... 34

Chapter 5 - Implementation .. 35

5.1 Problem ... 35

vii

5.2 Steps .. 35

5.3 Methods in RPC Opnum Order .. 37

5.4 Attacker Machine .. 45

5.6 Administrator .. 48

Chapter 6 - Testing & Evaluation ... 50

6.1 Log management ... 50

6.2 Windows Firewall Configuration ... 50

6.3 Execution of Commands from attacker .. 51

6.4 Sorted PCAP log ... 52

6.5 WMI activity log output from the tool .. 53

6.6 Dashboard from the Arcsight logger on WMI activities .. 54

Chapter 7 – Conclusion .. 55

7.1 Further Work ... 55

7.2 Drawbacks / Limitation .. 56

Appendix I .. 58

Appendix II ... 60

Appendix III ... 71

References .. 72

viii

List of Figures

Figure 3. 1 : WMI Architecture Diagram. .. 15

Figure 3. 2 : A high-level overview of the WMI architecture ... 17

Figure 4. 1: Sysinternals Autoruns screenshot with startup items. ... 21

Figure 5. 1 : Event Filters shown with wmimgmt.msc ... 23

Figure 5. 2: Event consumer Listing. ... 23

Figure 5. 3: Showing how Filters and Consumers interact with one another by using a

FilterToConsumerBinding to tie them together.. 24

Figure 5. 4: WMI Management Startup.. 28

Figure 5. 5: wmimgmt.msc main menu. ... 28

Figure 5. 6 : wmimgmt backup/restore window. .. 28

Figure 5. 7: Accessing Root directory to apply access control (security) settings. 29

Figure 5. 8: Screenshot of Security for Root. ... 30

Figure 5. 9: Powershell prompt and list of popular WMI cmdlets. .. 31

Figure 5. 10: Administrators and malicious attackers can use the Wmic.exe terminal to

execute WMI methods. ... 31

Figure 5. 11: Wbemtest.exe dashboard once connected. .. 32

Figure 5. 12 – PCAP Output file .. 36

Figure 5. 13 – Workstations involved in the scenario .. 44

Figure 5. 14 - Attacker Machine .. 45

Figure 5. 15 – Visual C+ cording of the tool .. 48

Figure 5. 16 – Prompt selection of Network Interface .. 49

Figure 5. 17 – Output of available network interfaces ... 49

Figure 5. 18 - Output of the SNORT attack ... 56

Figure 5. 19 -SNORT packet capture output .. 57

Figure 6. 1: Contents of root\CIMV2 directory and WMI Explorer generated WQL language

to select all contents from Win32_Processor object. .. 33

Figure 6. 2: Exploring 5 levels into the root\CIMV2 directory and displaying the contents of

selected object.. 34

Figure 6. 3 – PCAP Log output .. 52

Figure 6. 4 – PCAP Log output .. 52

Figure 6. 5 – WMI Activity Log .. 53

Figure 6. 6 – Arcsight Logger Dashboard .. 54

ix

List of Tables

Table 5. 1WMI Opnum Table .. 37

x

List of Abbreviations

CLI - Command Line Interface

IDS - Intrusion Detection System

VM - Virtual Machine

WMI - Windows Management Instrumentation

WQL - WMI Query Language

PSEXEC - Sysinternals' PS Tools suite

DCOM - Distributed Component Object Model

WBEM - Web-based Enterprise Management

DMTF - Desktop Management Task Force

SMS - System Management Server

COM - Component Object Model

WINRM - Windows Remote Management

1

Chapter 1 - Introduction

Over the past three decades the computer has become the most significant innovation of man due

to rapid growth of Information and Communication Technology. As the world has entered the era

of information, computer has become a need for day to day life of people. Information and Data

has become much more valuable that misuse of it may cause an instant world war or loss of billions

of US Dollars. So, protecting computerized systems from breaching has become a commodity for

any Governmental or Private institutes.

During past 3 decades Microsoft has become a leading giant in the computer industry by producing

Windows, the most favorable operating system environment for computerized systems. Since the

first ever Windows Operating System in 1985 Microsoft has introduced many more features to

Windows and improved the usability and user-experience of computing environment satisfying the

users from any level of computing knowledge to accomplish their day to day tasks using computers.

As, over 86% of computer users prefer Windows, it has become the most selective Operating

System Environment for computer systems and hence it has become the most attacked operating

system environment in world. [1]

While knowing the growing favor of using Windows based operating environment around the

world, the research aims on developing a tool to detect and investigate one of the most significant

attacks on Windows Operating Environments. The attack is based on Windows Management

Instrumentation (WMI) and will be moving forward to investigate the significance of WMI, the

motivation to study on this issue and exploring the scope and limitations of the research.

1.1 Windows Management Instrumentation (WMI)

Windows Management Instrumentation or WMI is a middle Layer Technology that enables

standardize management of Windows based computer systems. It collects computer management

data from wide variety of sources and makes it accessible by using standard interfaces. [2]

WMI is the Microsoft implementation of the Web-based Enterprise Management (WBEM)

standard, which was developed by the Desktop Management Task Force (DMTF). WBEM build

on series of industry-wide initiatives to standardize computer management. Those initiatives

include Simple Network Management Protocol (SNMP) and Desktop Management Interface

Standards. Standardizing Computer Management allows to use multiple tools to address various

computer management needs without requiring a separate infrastructure for each tool. For example,

System Management Server (SMS) and Microsoft Operations Manager (MOM) both use WMI.

SMS use it for centralized inventory collection of all computers whereas MOM to alert critical

changes in servers, but the server does not require two different types of client agents to collect

configuration information. WMI will write scripts to change computer configurations and then

distribute those scripts to the SMS client.

WMI is comprised with powerful set of tools used to manage Windows systems both locally and

remotely. But it does not consolidate the management data in a central location - that is one function

of Systems Management Server (SMS). WMI can be used to set configuration details of a computer

and to detect and respond to changes in the computer configurations using WMI events.

2

Since WMI user’s providers (relatively simple component that the developer of the system makes

available) to work with various hardware types, operating system components and subsystems and

application systems, it can collect and set configuration details for every hardware variance,

operating system component or application system. Any system which has a WMI provider can be

managed with WMI and can therefore be managed by any computer management application (such

as SMS or MOM) which uses WMI. Some well know WMI providers are Active Directory

Provider, Biz Talk Provider etc.

WMI is available for all Microsoft Windows 95 or later operating systems. It is installed with

Microsoft Windows Millennium Edition, Windows 2000, Windows XP, Microsoft Windows

Server 2003 family and available for download for the other supported versions of Windows.

1.2 Motivation

The power that WMI possesses has made it a tool that attackers use in many phases in Attack-

Lifestyle. There is a wealth of WMI objects, methods and events that can be extremely powerful

for performing anything from reconnaissance, AV/VM detection, code execution, lateral

movement, covert data storage, to persistence. It is even possible to build a pure WMI back-door

that does not introduce a single file on disk.

This kind of malicious use of WMI can cause disastrous results as lot of organizations around the

world uses Windows based computer environments and most of the Windows distributions has

WMI by default.

Currently there are no monitoring tools for WMI and it is a well-known threat that attackers could

use WMI to perform serious attacks on Windows based computing environments. The research is

aimed on providing a tool to detect and investigate remote attacks on WMI. [3]

1.3 Thesis Contribution

1.3.1 Goals and Objectives

The goal of this project is to develop a detecting and investigating tool for WMI based remote

attacks. This tool will allow users to detect and investigate remote attacks based on WMI in

Windows computing environments.

1.3.2 Research Question

The research considers answering two question which arises with the above-mentioned goal.

1. How to accurately detect WMI packet across the network?

2. How to define parameters to detect such malicious activities?

3

1.3.3 Scope and Limitations

The research will only consider about the LAN and it will detect the attacks from Internet to the

local intranet. The research will develop a tool to analyze and detect attacks on windows

environment real time.

4

Chapter 2 - Literature Review

This section will cover the related literature for the research.

2.1 Component Object Model (COM)

Microsoft COM (Component Object Model) technology in the Microsoft Windows-family of

Operating Systems enables software components to communicate. COM is used by developers to

create re-usable software components, link components together to build applications, and take

advantage of Windows services. COM objects can be created with a variety of programming

languages. Object-oriented languages, such as C++, provide programming mechanisms that

simplify the implementation of COM objects. The family of COM technologies includes COM+,

Distributed COM (DCOM) and ActiveX® Controls. Microsoft provides COM interfaces for many

Windows application programming interfaces such as Direct Show, Media Foundation, Packaging

API, Windows Animation Manager, Windows Portable Devices, and Microsoft Active Directory

(AD). COM is used in applications such as the Microsoft Office Family of products. For example,

COM OLE technology allows Word documents to dynamically link to data in Excel spreadsheets

and COM Automation allows users to build scripts in their applications to perform repetitive tasks

or control one application from another. [4]

2.2 Distributed Computing Environment Remote Procedure Calls (DCE/RPC)

DCE/RPC, short for "Distributed Computing Environment / Remote Procedure Calls", is the

remote procedure call system developed for the Distributed Computing Environment (DCE). This

system allows programmers to write distributed software as if it were all working on the same

computer, without having to worry about the underlying network code. DCE/RPC is an

implementation of the Remote Procedure Call technology developed by the Open Group as part of

the Distributed Computing Environment. DCE/RPC is most commonly used to interact with

Windows network services.

2.3 TCP

TCP (Transmission Control Protocol) is a standard that defines how to establish and maintain a

network conversation via which application programs can exchange data. TCP works with the

Internet Protocol (IP), which defines how computers send packets of data to each other. Together,

TCP and IP are the basic rules defining the Internet. TCP is defined by the Internet Engineering

Task Force (IETF) in the Request for Comment (RFC) standards document number 793. TCP is a

connection-oriented protocol, which means a connection is established and maintained until the

application programs at each end have finished exchanging messages. It determines how to break

application data into packets that networks can deliver, sends packets to and accepts packets from

the network layer, manages flow control, and because it is meant to provide error-free data

transmission handles retransmission of dropped or garbled packets as well as acknowledgement of

5

all packets that arrive. In the Open Systems Interconnection (OSI) communication model, TCP

covers parts of Layer 4, the Transport Layer, and parts of Layer 5, the Session Layer. [5]

2.4 UDP

UDP (User Datagram Protocol) is an alternative communications protocol to Transmission Control

Protocol (TCP) used primarily for establishing low-latency and loss tolerating connections between

applications on the Internet. Both UDP and TCP run on top of the Internet Protocol (IP) and are

sometimes referred to as UDP/IP or TCP/IP. Both protocols send short packets of data, called

datagrams. UDP provides two services not provided by the IP layer. It provides port numbers to

help distinguish different user requests and, optionally, a checksum capability to verify that the

data arrived intact. TCP has emerged as the dominant protocol used for the bulk of Internet

connectivity owing to services for breaking large data sets into individual packets, checking for

and resending lost packets and reassembling packets into the correct sequence. But these additional

services come at a cost in terms of additional data overhead, and delays called latency. In contrast,

UDP just sends the packets, which means that it has much lower bandwidth overhead and latency.

But packets can be lost or received out of order as a result, owing to the different paths individual

packets traverse between sender and receiver.

2.5 Marshalling / Unmarshalling

Marshalling is the process of gathering data and transforming it into a standard format before it is

transmitted over a network so that the data can transcend network boundaries. In order for an object

to be moved around a network, it must be converted into a data stream that corresponds with the

packet structure of the network transfer protocol. This conversion is known as data marshalling.

Data pieces are collected in a message buffer before they are marshaled. When the data is

transmitted, the receiving computer converts the marshaled data back into an object. Data

marshalling is required when passing the output parameters of a program written in one language

as input to a program written in another language. [6]

Unmarshalling in the other hand is the opposite process of Marshalling. In Unmarshalling the data

stream sent through network is reassemble to the original object.

2.6 Interacting with WMI

There is a whole heap of tools which have been provided by Microsoft and other 3rd party software

developers that enables the capabilities for you to work with WMI. The following are some of the

utilities that can interact with WMI.

6

2.6.1 Powershell

PowerShell is a very powerful scripting language that has a lot of functionality for working with

WMI. With PowerShell version 3, the following commands are available which can be used with

WMI. (These will be another detailed chapter on powershell and its usefulness’s discussed later in

this thesis)

The WMI and CIM commands offer almost equivalent functionality, however the CIM commands

were inbuilt to PowerShell version 3 and offer some additional capabilities over the WMI

commands. The biggest advantage of using the CIM commands is that they work over both WinRM

and DCOM protocols. The WMI commands only work over DCOM. Not all systems will have

PowerShell v3+ installed, even though PowerShell v2 is installed by default on Windows 7 so it is

targeted as the least common version that is looked at by attackers.

From an attacker’s angle, commands required to the creation, modification, and deletion of

WMI/CIM classes are surprisingly absent. Considering there are no majorly likely reason to have

such commands however, it is understood that they do not exist. Nevertheless, WMI classes still

can be easily created using WMI.

The of examples in this thesis will be using PowerShell due to its capabilities efficiencies and

increasingly used by attackers.

2.6.2 Wmic.exe

wmic.exe is a very useful command line utility for working with WMI. It has a very high amount

of useful default usefulness for WMI objects but you can also perform more advanced queries.

wmic.exe can also run WMI methods and is utilized commonly by attackers to perform by calling

the Win32_Process Create method. One of the drawbacks of wmic.exe is that you cannot call

methods that accept embedded WMI objects. If PowerShell is not percent though, it is good enough

for performing reconnaissance and basic method invocation. wmic.exe is still used frequently by

pentesters and attackers. [7]

Get-WmiObject

Get-CimAssociatedInstance

Get-CimClass

Get-CimInstance Get-CimSession Set-WmiInstance Set-CimInstance Invoke-WmiMethod

Invoke-CimMethod New-CimInstance New-CimSession

New-CimSessionOption Register-CimIndicationEvent Register-WmiEvent

Remove-CimInstance Remove-WmiObject Remove-CimSession

7

2.6.3 Winrm.exe

winrm.exe can be utilized to enumerate WMI object instances, enable methods, and create and

remove object instances on local and remote devices running the WinRM service. winrm.exe can

also be used to perform configuration of WinRM settings. The commonly used method of

interacting with WMI over WinRM is PowerShell using the CIM command but this is an alternative

method for doing so that defenders should be aware of.

Depicted below are some example uses of winrm.exe:

2.6.4 Remote WMI

While one can work with WMI locally, the strength of WMI is confirmed when it is used over the

network. There are two protocols used for everything from querying objects, registering events,

and executing WMI class methods. DCOM and WinRM. [8], [9]

Both these protocols may be viewed as beneficial to an attacker since most companies and security

practitioners generally does not check the content of this traffic for patterns of malicious activity.

All an attacker needs to do is remote WMI are valid, privileged user credentials. In the case of the

Linux wmis-pth utility, all that is needed is the hash of the victim user.

2.7 Remote WMI protocols – DCOM

2.7.1 Distributed Component Object Model (DCOM)

DCOM is the default protocol that is being used by WMI since its inception. DCOM establishes

an initial connection over TCP port 135. Eventually data is then exchanged over a randomly

selected TCP port. The port range can be configured either via dcomcnfg.exe which finally

modifies the following registry key. [10]

winrm invoke Create wmicimv2/Win32_Process

@{CommandLine="notepad.exe";CurrentDirectory="C:\"}

winrm enumerate

http://schemas.microsoft.com/wbem/wsman/l/wmi/root/cimv2/Win32_Process

winrm get

http://schemas.microsoft.com/wbem/wsman/l/wmi/root/cimv2/Win32_OperatingSystem

HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\Internet – Ports (REG_MULTI_SZ)

8

All the built-in WMI cmdlets in PowerShell communicate using DCOM.

2.7.2 Windows Remote Management (WinRM)

In the recent past WinRM has superseded DCOM as the recommended remote management

protocol for Windows. WinRM is developed upon the Web Services-Management (WSMan)

specification – a SOAP-based device management protocol. Additionally, PowerShell Remoting

is built upon the WinRM specification and enables for extremely powerful remote management of

a Windows enterprise for using PowerShell. WinRM was also built to support WMI or more

generically, CIM operations over the network.

By default, the WinRM service operates on TCP port 5985 (HTTP) and is encrypted by default.

Certificates may also be configured enabling HTTPS support over TCP port 5986.

WinRM settings are easily configurable using GPO winrm.exe and the PowerShell WSMan

“drive”.

PowerShell enables a convenient command for verifying the WinRM service is listening – Test-

WSMan. If Test-WSMan returns an output, it indicates that the WinRM service is listening on that

system. This command does not need authentication. It is simply a command wrapper for the

WSMan Identify command and Microsoft developed the recommendation of the WSMan

specification to not require authentication for this action.

For connecting with WMI on systems running the WinRM service, the only built-in tools that

supports remote WMI operations is winrm.exe and the PowerShell CIM commands.

PS C:\> Get-WmiObject -Class Win32_Process -ComputerName

192.168.72.134 -Credential 'WIN-B85AAA7ST4U\Administrator'

9

2.8 WMI Attacks

WMI is a highly powerful tool for attackers across various phases of the attack lifecycle. There is

a whole heap of WMI objects, methods, and events that can be highly powerful for performing

anything from reconnaissance, AV/VM detection, code execution, lateral movement, covert data

storage, to persistence. It is even capable enough to build a pure WMI backdoor that doesn’t

introduce a single file to disk.

There are many advantages of using WMI to an attacker:

• It is installed and running by default on all Windows operating systems going back to Windows

 98.

• For code execution, it offers a stealthier alternative to running psexec.

• Permanent WMI event subscriptions run as SYSTEM.

• Defenders are generally unaware of WMI as a multi-purpose attack vector.

• Nearly every operating system action can trigger a WMI event.

• Other than storage in the WMI repository, no payloads touch disk.

2.9 Reconnaissance

One of the initial steps taken by most malware and penetration testers will be reconnaissance. WMI

has many classes that can assist an attacker to get an experience for the environment they’re

targeting. These are few of the commonly used reconnaissance tasks carried out by attackers and

the respective WMI objects that can be queried:

• Host/OS information: Win32_OperatingSystem, Win32_ComputerSystem

• File/directory listing: CIM_DataFile

• Disk volume listing: Win32_Volume

• Registry operations: StdRegProv

• Running processes: Win32_Process

• Service listing: Win32_Service

• Event log: Win32_NtLogEvent

• Logged on accounts: Win32_LoggedOnUser

• Mounted shares: Win32_Share

• Installed patches: Win32_QuickFixEngineering

2.10 Anti-Virus Detection

Installed Anti-Virus products will naturally register themselves in WMI via the AntiVirusProduct

class included within either the root\SecurityCenter or root\SecurityCenter2 namespaces depending

upon the OS version.

10

Example of Antivirus Product Class:

PS C:\> Get-WmiObject -Namespace root\SecurityCenter2 -Class AntivirusProduct

GENUS : 2

CLASS : AntivirusProduct

SUPERCLASS :

DYNASTY : AntivirusProduct

RELPATH : AntivirusProduct.instanceGuid="{B7ECF8CD-0188-

6703-DBA4-AA65C6ACFB0A}"

PROPERTY_COUNT : 5

DERIvATION : {}

SERvER : WIN-B85AAA7ST4U

NAMESPACE : ROOT\SecurityCenter2

PATH \WIN-

B85AAA7ST4U\ROOT\SecurityCenter2:AntivirusProduct.instanceGuid="{B7ECF8CD-

0188-6703-DB

A4-AA65C6ACFB0A}"

displayName : Microsoft Security Essentials

instanceGuid :{B7ECF8CD-0188-6703-DBA4-AA65C6ACFB0A}

pathToSignedProductExe : C:\Program Files\Microsoft Security Client\msseces.exe

pathToSignedReportingExe : C:\Program Files\Microsoft Security Client\MsMpEng.exe

productState : 397328

PSComputerName : WIN-B85AAA7ST4U

PS C:\> Get-WmiObject -Namespace root\SecurityCenter2 -Class AntivirusProduct

GENUS : 2

CLASS : AntivirusProduct

SUPERCLASS :

DYNASTY : AntivirusProduct

RELPATH : AntivirusProduct.instanceGuid="{B7ECF8CD-0188-

6703-DBA4-AA65C6ACFB0A}"

11

Example of Antivirus Product Class Cont:

Sample WQL Query:

2.11 VM Detection

Generic detection of VM and sandboxing environments can be performed. For example, if physical

memory is less than 2GB or if there is only a single processor core it is likely you’re running in a

VM.

Sample WQL Queries:

PROPERTY_COUNT : 5

DERIvATION : {}

SERVER : WIN-B85AAA7ST4U

NAMESPACE : ROOT\SecurityCenter2

PATH :\\WIN-

B85AAA7ST4U\ROOT\SecurityCenter2:AntivirusProduct.instanceGuid="{B7ECF8CD-

0188-6703-DBA4-AA65C6ACFB0A}"

displayName : Microsoft Security Essentials

instanceGuid : {B7ECF8CD-0188-6703-DBA4-AA65C6ACFB0A}

pathToSignedProductExe : C:\Program Files\Microsoft Security Client\msseces.exe

pathToSignedReportingExe : C:\Program Files\Microsoft Security

Client\MsMpEng.exe

productState : 397328

PSComputerName : WIN-B85AAA7ST4U

SELECT * FROM AntiVirusProduct

SELECT * FROM Win32_ComputerSystem WHERE TotalPhysicalMemory < 2147483648

SELECT * FROM Win32_ComputerSystem WHERE NumberOfLogicalProcessors < 2

12

Example:

2.12 VMware Detection

Sample WQL Queries:

Example:

$VMDetected = $False

$Arguments = @{

class = 'win32_computerSystem'

Filter = 'NumberofLogicalprocessors < 2 AND TotalphysicalMemory < 2147483648'

}

if (Get-wmiobject @Arguments) { $VMDetected = $True }

SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer LIKE

"%VMware%"

SELECT * FROM Win32_BIOS WHERE SerialNumber LIKE "%VMware%"

SELECT * FROM Win32_Process WHERE Name="vmtoolsd.exe"

SELECT * FROM Win32_NetworkAdapter WHERE Name LIKE "%VMware%"

$VMwareDetected = $False

$VMAdapter = Get-wmiobject win32_NetworkAdapter -Filter 'Manufacturer LIKE

n%VMware%n oR Name LIKE n%VMware%n'

$VMBios = Get-wmiobject win32_BIoS -Filter 'SerialNumber LIKE n%VMware%n'

$VMToolsRunning = Get-wmiobject win32_process -Filter 'Name=nvmtoolsd.exen'

if ($VMAdapter -or $VMBios -or $VMToolsRunning) { $VMwareDetected = $True }

13

2.13 Code Execution and Lateral Movement

There are two methods of achieving remote arbitrary code execution in WMI: Win32_Process

Create Method. The Win32_Process class contains a static method - Create that can spawn a

process locally or remotely. This is effectively the WMI equivalent of running psexec (Sysinternals'

PsTools suite). The following example demonstrates executing a process on a remote machine.

Attackers will most probably choose to run a malicious, encoded PowerShell command with the

Win32_Process Create method.

2.14 Event Consumers

Another method of gaining arbitrary remote code execution is by creating a permanent WMI event

subscription. Normally, a permanent WMI event subscription is developed to persist and respond

to certain events. If an attacker requires to execute a single payload however, the respective event

consumer would just need to delete its corresponding event filter, consumer, and filter to consumer

binding. The advantage of this technique is that the payload runs as SYSTEM, and it avoids having

a payload be displayed in plaintext in the presence of command line auditing. For example, if a

VBScript ActiveScriptEventConsumer payload was selected, the only process created would WMI

script host process:

As an attacker, the challenge for pursuing this class of attack vector would be selecting an

intelligent event filter. If they just wanted to trigger the payload after a few seconds, an

IntervalTimerInstruction class could be used. An attacker might choose to execute the payload

upon a user locking their screen.

In that case, an extrinsic Win32_ProcessStartTrace event could be used to trigger upon the

LogonUI.exe process being created. An attacker can get creative in their choice of an appropriate

event filter.

%SystemRoot%\system32\wbem\scrcons.exe -Embedding

14

Chapter 3 - Analysis

3.1 WMI for Detection and Response

As technology is introduced and subsequently deprecated over time in the Windows operating

system, one powerful technology that has remained consistent since Windows NT 4.01 and

Windows 95 is Windows Management Instrumentation (WMI). Present on all Windows operating

systems, WMI is comprised of a powerful set of tools used to manage Windows systems both

locally and remotely.

While it has been well known and utilized heavily by system administrators since its inception,

WMI was likely introduced to the mainstream security community when it was discovered that it

was used maliciously as one component in the suite of exploits and implants used by Stuxnet3.

Since then, WMI has been gaining popularity amongst attackers for its ability to perform system

reconnaissance, AV and VM detection, code execution, lateral movement, persistence, and data

theft.

As attackers increasingly utilize WMI, it is important for defenders, incident responders, and

forensic analysts to have knowledge of WMI and to know how they can wield it to their advantage.

This whitepaper will introduce the reader to WMI, actual and proof-of-concept attacks using WMI,

how WMI can be used as a rudimentary intrusion detection system (IDS), and how to perform

forensics on the WMI repository file format. [11]

3.2 High-Level WMI Architecture

WMI represents most data which is related to operating system information and functions in the

form of objects. An object is a member of a class, a class is a member of a namespace, and all

namespaces derive from the “Root” namespace. This thesis will later show and explain examples

of how to list, find, and use namespaces, classes, and objects various multiple tools and methods

such as PowerShell, WQL (WMI Query Language), WMI Code Creator and others.

15

WMI classes can be found on the Microsoft MSDN site

Figure 3. 1 : WMI Architecture Diagram.

3.3 WMI Architecture

WMI is the Microsoft implementation of the Web-Based Enterprise Management (WBEM)4 and

Common Information Model (CIM)5 standards published by the Distributed Management Task

Force (DMTF)6. These two standards aim to provide an industry-agnostic means of collecting and

transmitting information related to any managed component in an enterprise. For an example of a

managed component in WMI would be a running process, registry key, installed service, file

information, etc. These standards communicate the means by which implementers should query,

populate, structure, transmit, perform actions on, and consume data.

Following is a high level, Microsoft’s implementation of these standards which can be summarized

as follows:

3.3.1 Managed Components

Managed components are represented as WMI objects – class instances representing highly

structured operating system data. Microsoft provides a wealth of WMI objects that communicate

information related to the operating system. E.g. Win32_Process, Win32_Service,

AntiVirusProduct, Win32_StartupCommand, etc.

https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

16

3.3.2 Consuming Data

Microsoft provides several means for consuming WMI data and executing WMI methods. For

example, PowerShell provides a very simple means for interacting with PowerShell.

3.3.3 Querying Data

All WMI objects are queried using a SQL like language called WMI Query Language (WQL).

WQL enables fine grained control over which WMI objects are returned to a user.

3.3.4 Populating Data

When a user requests specific WMI objects, the WMI service (Winmgmt) needs to know the means

by which to populate the requested WMI objects. This is accomplished with WMI providers. A

WMI provider is a COM-based DLL that contains an associated GUID that is registered in the

registry. WMI providers do the heavy lifting in populating data – e.g. querying all running

processes, enumerating registry keys, etc. When the WMI service populates WMI objects, there

are two types of class instances: dynamic and persistent objects. Dynamic objects are generated

on the fly when a specific query is performed. For example, Win32_Process objects are generated

on the fly. Persistent objects are stored in the CIM repository located by default in

%SystemRoot%\System32\wbem\Repository\OBJECTS.DATA.

3.3.5 Structuring Data

The structure/schema of the vast majority of WMI object is described in Managed Object Format

(MOF) files. MOF files use a C++ like syntax and provide the schema for a WMI object. So while

WMI providers generate raw data, MOF files provide the schema in which the generated data is

formatted. From a defender’s perspective, it is worth noting that WMI object definitions can be

created without a MOF file. Rather, they can be inserted directly into the CIM repository using

some basic .NET code.

3.3.6 Transmitting Data

Microsoft provides two protocols for transmitting WMI data remotely: DCOM and Windows

Remote Management (WinRM).

3.4 Performing Actions

Some WMI objects include methods that can be executed. For example, a common method

executed by attackers for performing lateral movement is the static Create method in the

17

Win32_Process class. WMI also provides an eventing system whereby users can register event

handlers upon the creation, modification, or deletion of any WMI object instance.

Figure 3.2 provides a high-level overview of the Microsoft implementation of WMI and the

relationship between its implemented components and the standards they implement.

Figure 3. 2 : A high-level overview of the WMI architecture [11]

Remote WMI

The real threat and power of WMI is realized when used over the network. There are two

protocols which enables remote object queries, event registration, WMI class method

execution, and class creation:

• DCOM TCP Port 135

• WinRM TCP Ports 5985 (HTTP) and 5986 (HTTPS).

18

These protocols are viewed as useful to an attacker because most companies and vendors

generally does not check the content of this traffic for signs of malicious activity. All that

an attacker requires to leverage remote WMI is valid, privileged user’s credentials. In the

case of the Linux wmis-pth utility, all that is needed is the hash of the victim user.

19

Chapter 4 - Design

4.1 Querying WMI

WMI provides a straightforward syntax for querying WMI object instances, classes, and

namespaces Windows Query Language (WQL). From a defensive perspective, it is very important

to understand and can adequately use queries. Queries are used often for malicious purposes and

should be used for defensive purposes.

These queries can do everything from attacker reconnaissance to intrusion detection.

The three categories of WQL queries are as follows:

4.1.1 Instance queries

a) These queries are used to query WMI class instances.

b) Primarily are used by attackers for conducting reconnaissance and gathering information about

a targeted system.

4.1.2 Event queries

a). Are used as a WMI event registration mechanism, e.g., WMI object creation, deletion, or

modification.

b). Will be one area of focus later in the paper when discussing WMI defense and mitigation.

20

4.1.3 Meta queries

a). Are used to query WMI class schemas.

Format:

The following query lists all WMI classes that start with the string “Win32.”

Example:

NOTE: When performing any WMI query, the default namespace ROOT\CIMV2 is

implied unless explicitly provided.

4.2 Attacker WMI Detection

4.2.1 Existing Detection Utilities

In addition to using WMI events to alert users to possible attacks, detection utilities are also

available.

4.2.2 Sysinternals Autoruns

Autoruns is a free utility that unveils every startup item on a Windows-based PC. All images are

stored in the startup folders, the Registry, and other areas. Autoruns shows the name and location

of each image. For files, it displays the directory path; for Registry entries, it provides the exact

key. Autoruns also supplies the name of the publisher and a brief description based on the item’s

version data. Double-clicking on an entry guides the user to its directory or Registry key; right

clicking Opens a popup menu with more options, including a Properties command that displays the

Standard File Properties window with full version information.

Users has the ability to check on the digital signature of an entry through the Verify command,

which queries web sites with certificate revocation lists (CRLs) to determine if an image is digitally

signed and whether the signature is valid. Another option to “Hide Signed Microsoft Entries”

excludes entries already signed by Microsoft, allowing the user to focus on third-party images.

21

Figure 4. 1: Sysinternals Autoruns screenshot with startup items.

4.3 Kansa

Kansa is modular. It features a core script, dozens of collector modules, and analysis scripts to help

make sense of the data collected. Kansa takes advantage of Windows Remote Management and

PowerShell remoting by using PowerShell’s default non-delegated Kerberos network logons, not

CredSSP and, therefore, does not expose credentials to harvesting. Kansa is a great tool with many

benefits but particularly useful are its Get-Autorunsc, Get-WMIEvtConsumer, Get-

WMIEvtFilter, and Get-WMIFltConBind PowerShell Scripts. [12]

1. Get-Autorunsc - A great piece of a tool for gathering data from many known ASEP (Auto Start

Extension Point) locations, including the path to the executable or script, command line arguments,

and cryptographic hashes such as MD5.

2. Get-WMIEvt(Consumer/Filter)/Get-WMIFltConBind - Collects data about WMI Event

Consumers/Filters/Consumer – Filter Binding. Kansa provides modules that can query and return

information that an admin would need to detect WMI persistence.

The disadvantages side to these tools is that they only detect WMI persistence artifacts at a certain

snapshot in time. This means that tools like Sysinternals Autoruns and Kansa won’t detect

persistence from clever attackers who clean up their code once they’ve performed their actions.

The solution to this problem is to use WMI eventing.

22

4.4 Defensive WMI Event

The eventing subsystem present in WMI could be thought of as the free host-based IDS from

Microsoft. Because almost all operating system actions fire a WMI event, such as Instance, Class,

Namespace, and Registry Creation and Modification events, WMI is well positioned to catch and

alert admins of attacker actions as they occur. Administrators can decide how to receive alerts on

events they have created. One popular method is to have a user send an email or an alert popup to

notify the admin when an event fires. One of the most powerful features of WMI from an attacker’s

and defender’s perspective is the WMI event, which can be utilized to respond to nearly any

operating system event.

For example, a WMI event may be used to trigger an event upon process creation. This could then

be used as a means to perform command-line auditing on any Windows OS.

There are Two Classes of WMI Events

1. Events that runs locally in the context of a single process. - Local events last for the lifetime

of the host process.

2. Permanent WMI event subscriptions. - Permanent WMI events are stored in the WMI

repository, run as SYSTEM, and persist across reboots.

Three Important Parts of a WMI Event to install a permanent WMI event subscription, and they

are as follows:

1. An event filter the event of interest,

2. An event consumer an action to perform upon triggering an event, and

3. A filter to consumer binding the registration mechanism that binds a filter to a Consumer.

4.5 Event Filters

Once a filter has been configured, it can be used to receive alerts when new events are created.

Event filters are stored in an instance of ROOT\Subscription: __EventFilter object as an example,

event filters might be used to describe some of the following events:

• Creation of a process with a certain name;

• Loading of a DLL into a process,

• Creation of an event log with a specific ID;

• Insertion of removable media;

• User logoff; and

• Creation, modification, or deletion of any file or directory.

23

Figure 5. 1 : Event Filters shown with wmimgmt.msc

4.6 Event Consumers

An event consumer is a class that is derived from the __EventConsumer system class that

represents the action to take on firing an event.

The following useful standard event consumer classes:

• LogFileEventConsumerWrites event data to a specified log file.

• ActiveScriptEventConsumerExecutes an embedded VBScript or JScript script payload.

• NTEventLogEventConsumerCreates an event log entry containing the event data.

• SMTPEventConsumerSends an email containing the event data.

• CommandLineEventConsumerExecutes a command-line program.

Figure 5. 2: Event consumer Listing.

Attackers heavily utilizes the ActiveScriptEventConsumer and CommandLineEventConsumer

classes when responding to their events. Both these event consumers offer a tremendous amount

24

of flexibility for attackers to execute any payload they want all without needing to drop a single

malicious executable or script to disk. [11]

Filter to Consumer Binding Once an event filter and an event consumer have been created, the only

thing left to do is to bind them together so the consumer knows off of which filter to base itself.

This class instance associates the __EventFilter instance with the __EventConsumer instance. It

completes the cycle by relating the class instances with each other. It answers the question, “With

what Windows event (__EventFilter) will I execute my script program (__EventConsumer)?”

__FilterToConsumerBinding is used in registering permanent event consumers to relate the

__EventConsumer instance to the __EventFilter instance.

Figure 5. 3: Showing how Filters and Consumers interact with one another by using a

FilterToConsumerBinding to tie them together.

4.7 Event Types

4.7.1 Intrinsic Events

Intrinsic events are events that use polling and fire upon the creation, modification, and deletion of

any WMI class, object, or namespace. They can also be used to alert to the firing of timers or the

execution of WMI methods. The following intrinsic events take the form of system classes (those

that start with two underscores) and are present in every WMI namespace:

• __NamespaceOperationEvent,

• __NamespaceModificationEvent,

• __NamespaceDeletionEvent,

• __NamespaceCreationEvent,

• __ClassOperationEvent

• __ClassDeletionEvent,

• __ClassModificationEvent,

• __ClassCreationEvent,

• __InstanceOperationEvent,

• __InstanceCreationEvent,

• __MethodInvocationEvent,

25

• __InstanceModificationEvent,

• __InstanceDeletionEvent, and

• __TimerEvent

These events are very highly powerful, because they can be used as triggers for nearly any

conceivable event in the operating system.

Because of the rate at which intrinsic events can fire, a polling interval must be specified in queries

specified with the WQL WITHIN clause.

Because of the polling interval, it is possible on occasion to miss events. For example, if an event

query is formed targeting the creation of a WMI class instance and if that instance is created and

destroyed within the polling interval, that event would be missed.

The following query is translated to firing on the creation of an instance of a Win32_LogonSession

class with a logon type of 2 (Interactive).

4.7.2 Extrinsic Events

Extrinsic events solve the potential polling issues related to intrinsic events because they fire

immediately on an event occurring.

• The downside is not many extrinsic events are present in WMI.

• The events that do exist are highly powerful but the following extrinsic events may also be of

value to an attacker or defender:

- ROOT\CIMV2:Win32_ComputerShutdownEvent

- ROOT\CIMV2:Win32_IP4RouteTableEvent

- ROOT\CIMV2:Win32_ProcessStartTrace

- ROOT\CIMV2:Win32_ModuleLoadTrace

- ROOT\CIMV2:Win32_ThreadStartTrace

- ROOT\CIMV2:Win32_VolumeChangeEvent

- ROOT\CIMV2: Msft_WmiProvider*

- ROOT\DEFAULT:RegistryKeyChangeEvent

- ROOT\DEFAULT:RegistryValueChangeEvent.

This query would capture all executable modules loaded into every process:

26

4.8 Using WMI CLI Commands for Detection And Removal Of Malicious

WMI

4.8.1 Manual Detection: WMI Command Line Tool

To manually detect instances of the threat in a system, the following commands can be used with

the Command line tool:

• wmic/namespace:\\root\subscription PATH __EventConsumer get/format:list

• wmic/namespace:\\root\subscription PATH __EventFilter get/format:list

• wmic/namespace:\\root\subscription PATH __FilterToConsumerBinding get/ format:list

• wmic/namespace:\\root\subscription PATH __TimerInstruction get/format:list.

4.8.2 Manual Removal: WMI Command Line Tool

To manually remove instances of the threat in a system, the following commands can be used with

the Command line tool:

• wmic/namespace:\\root\subscription PATH__EventConsumer delete

• wmic/namespace:\\root\subscription PATH__EventFilter delete

• wmic/namespace:\\root\subscription PATH__FilterToConsumerBinding delete

• wmic/namespace:\\root\subscription PATH__TimerInstruction delete

4.9 WMI Intrusion Detection Using PowerShell Code Ex

The six examples following show how PowerShell syntax can be used for WMI Detection:

Below are three examples of how one could use PowerShell to alert on either EventConsumers,

RegistryKey’s or StartupCommands.

27

4.10 Event Logs

WMI, DCom and WinRM events are the components discussed in the following event logs:

• Microsoft-Windows-WinRM/Operational - Shows failed WinRM connection attempts including

the originating IP address

• Microsoft-Windows-WMIActivity/Operational - Contains failed WMI queries and method

invocations that may contain evidence of attacker activity

• Microsoft-Windows-DistributedCOM. - Shows failed DCOM connection attempts including the

originating IP address.

Many Network level IDS and IPS’s can incorporate logs from WMI events stored in the above

locations and be configured to perform an action such as marking action for review on dashboard,

emailing administrator, preventing an action from performing (ex: file being executed), and more

depending on the system.

4.11 Additional WMI Mitigation

4.11.1 WMI Backup & Restore

Having a WMI baseline for the computer systems within a company is a great first step in

understanding and being able to identify malicious WMI activity and mitigate it. Wmimgmt.msc

as well as the tools listed previously in this thesis can all be used to explore the namespaces and

associated classes and objects with ease. However, with dozens of namespaces and thousands of

classes, it may not be practical to manually gain a close familiarity with WMI and a baseline

thereof.

28

Figure 5. 4: WMI Management Startup.

NOTE: Click more actions or right click on WMI Control (Local) -> actions -> properties to access

the WMI Control (Local) Properties window.

Figure 5. 5: wmimgmt.msc main menu.

An alternative to familiarization and baselining WMI is to back up the WMI repository once an

company has configured the system. Having a backup of the WMI repository allows users the

option to restore from the backup file when users discover evidence of malicious WMI activity or

suspect potential malicious WMI activity from attackers (see Figure 8).

Figure 5. 6 : wmimgmt backup/restore window.

29

4.12 WMI Access Control

The security tab is located in the same properties window as the Backup/Restore tab. The security

tab allows the user to configure user permissions for WMI Repository interaction.

Figure 5. 7: Accessing Root directory to apply access control (security) settings.

Organizations can set the controls to match their preferences. For example, permissions can be set

for the entire root directory or for specific namespaces like CIMV2. Another way is to have a

separate account specifically for WMI management with a unique set of credentials. While some

would argue that simple techniques, such as hash dumping, render this defensive method irrelevant

from a defense-in depth Perspective, granular access control is applicable to WMI management.

30

Figure 5. 8: Screenshot of Security for Root.

4.13 PowerShell

PowerShell is becoming more popular and more widely used for a variety of reasons. One reason

in particular PowerShell has become a popular method of interacting with WMI is the existence of

WMI cmdlets (see Figure).

• Get-WmiObject

• Get-CimAssociatedInstance

• Get-CimClass

• Get-CimInstance

• Get-CimSession

• Set-WmiInstance

• Set-CimInstance

• Invoke-WmiMethod

31

• Invoke-CimMethod

• New-CimInstance

• New-CimSession

• New-CimSessionOption

• Register-CimIndicationEvent

• Register-WmiEvent

• Remove-CimInstance

• Remove-WmiObject

• Remove-CimSession

Following is an example of PowerShell code that detects WMI persistence on the specified

remote system. It shows just how easy it is to use PowerShell to interact with WMI.

Figure 5. 9: Powershell prompt and list of popular WMI cmdlets.

4.14 Wmic.exe

Wmic.exe is a powerful command line utility for interacting with WMI. It has a large amount of

default aliases for WMI objects, and users can perform more complicated queries. Wmic.exe can

execute WMI methods, and attackers can use it to perform lateral movement by using the

Win32_ProcessCreate method.

Figure 5. 10: Administrators and malicious attackers can use the Wmic.exe terminal to execute

WMI methods.

In circumstances where PowerShell is not available, Wmic.exe is a sufficient alternative for

performing reconnaissance and basic method invocation.

32

4.15 Wbemtest.exe

Wbemtest.exe is a powerful GUI WMI diagnostic tool. It isn’t attractive, but it sure is useful. It

allows you to explore deep into the WMI repository to discover what an administrator might be

able to utilize in PowerShell scripts. It can enumerate object instances, class names, get properties

and methods, get property datatypes, perform queries, register events, modify WMI objects and

classes, and invoke methods both locally and remotely.

Namespace Exploration, Query options and Method

Figure 5. 11: Wbemtest.exe dashboard once connected.

33

4.16 WMI Explorer

WMI Explorer is a fabulous WMI class discovery tool. It has a polished GUI that allows the user

to explore the WMI repository in a hierarchical fashion. It is also able to connect to remote WMI

repositories and perform queries.

Figure 6. 1: Contents of root\CIMV2 directory and WMI Explorer generated WQL language to

select all contents from Win32_Processor object.

34

4.17 CIM Studio

CIM Studio is a free, legacy tool from Microsoft that allows the user to easily browse the WMI

repository. Like WMI Explorer, this tool is good for WMI class discovery.

Figure 6. 2: Exploring 5 levels into the root\CIMV2 directory and displaying the contents of

selected object.

35

Chapter 5 - Implementation

Add WINPCAP into the introduction section [13]

5.1 Problem

Why WMI?

Attackers use of WMI to carry out objectives such as system reconnaissance, remote code

execution, persistence, lateral movement, covert data storage, and VM detection.

5.2 Steps

Collect series of packets transmit during wmi query execution. (using tcpdump or wireshark)

Analyze the collected data set (packets or pcap file)

Select and grab the packets contains wmi query. (Wireshark has a functionality to save packet by

packet). Full Raw Cap file attached on Appendix III

4500 108 09a5 40 0 80 6 5ae5 c0a80a0b c0a80a0a c05a c003 b2814fc2 e10459df 5018 3fa8 46aa 0 5 0 0 83 10000000 e000 1000

d4000000 98000000 400 1400 03040200b4040000c1afa4a98a4700b0

050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510

04c00000055736572230000004600000023000000730065006c0065006300740020002a002000660072006f006d002000570069

006e00330032005f004f007000650072006100740069006e006700530079007300740065006d000000100000000000000000000

00000000000 0a 4 8 0 0 0100000095b4f6a3b16ec98601000000 4500 108 09d9 40 0 80 6 5ab1 c0a80a0b c0a80a0a c05a c003

b2815d6c e1049255 5018 3f61 f3ad 0 5 0 0 83 10000000 e000 1000 f0000000 94000000 400 1400

13a00200b4040000e4ce25abbeaf31ad

050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510

04c00000055736572220000004400000022000000730065006c0065006300740020002a002000660072006f006d002000570069

006e00330032005f0043006f006d0070007500740065007200530079007300740065006d0010000000000000000000000000000

00000000000 0a 4 0c 0 0 01000000ad2065acde68391913000000 4500 0.00E+00 0a07 40 0 80 6 5aa3 c0a80a0b c0a80a0a c05a

c003 b2816d80 e104ca41 5018 3f0e bc51 0 5 0 0 83 10000000 c000 1000 0c010000 80000000 400 1400

0e3c0200b4040000e7515d4c480b886b

Structure the hex/binary formatted packets. (Structure: separate the fields (src_ip, dst_ip,..etc))

Doing an analysis on those data. (manually / using neural networks /machine learning techniques)

Above analysis can be used to figure out the relationship between the selected packets (common

pattern).

36

Figure 5. 12 – PCAP Output file

according to the analysis,

version == “0500”

op_num == “1400” | “1500” | .. etc

Describe the Packet Structure of the DCERPC (use tcp, udp, smb) use diagrams

Implementation

Minimum Size of the DCERPC packet (eth(0) + ipheader (20) + tcpheder (20) + .. + stub_data(0)

+ .. + .. = 118)

Explanations of Code parts

while ((res = pcap_next_ex(fp, &header, &pkt_data)) >= 0)

 {

 if (res == 0)

 /* Timeout elapsed */

 continue;

 process(pkt_data, header->caplen);

}

above code snippet is used to capture each and every frame using winpcap library.

37

5.3 Methods in RPC Opnum Order

The IWbemServices interface exposes methods that MUST provide management services to client

processes. The implementation MUST implement all methods and return errors if the semantics of

the operation cannot be completed. IWbemServices defines the execution scope for all methods

implemented on the interface. The initial scope MUST be established by the

IWbemLevel1Login::NTLMLogin call, which returns the interface pointer. [11]

Table 5. 1WMI Opnum Table

Method Description

OpenNamespace Provides the client with an IWbemServices interface

pointer that is scoped to the requested namespace.

Opnum: 3

CancelAsyncCall Cancels a currently pending asynchronous method call

identified by the

IWbemObjectSink pointer passed to the

initial asynchronous method. Opnum: 4

QueryObjectSink Obtains a notification handler that allows the client to

send events directly to the server.

Opnum: 5

GetObject Retrieves a CIM

class or a CIM

instance. Opnum: 6

GetObjectAsync Asynchronous version of the

IWbemServices::GetObject method.

Opnum: 7

PutClass Creates a new class or updates an existing class in the

namespace associated with the current IWbemServices

interface.

Opnum: 8

38

Method Description

PutClassAsync Asynchronous version of the

IWbemServices::PutClass method.

Opnum: 9

DeleteClass Deletes a specified class from the namespace associated

with the current

IWbemS

ervices

interface

Opnum:

10

DeleteClassAsync Asynchronous version of the

IWbemServices::DeleteClass method.

Opnum: 11

CreateClassEnum Creates a

class

enumeratio

n. Opnum:

12

CreateClassEnumAsync Asynchronous version of the

IWbemServices::CreateClassEnum method.

Opnum: 13

PutInstance Creates or updates an instance

of an existing class. Opnum:

14

PutInstanceAsync Asynchronous version of the

PutInstance method. Opnum:

15

DeleteInstance Deletes an instance of an existing class from the

namespace that is pointed to by the IWbemServices

interface object that is used to call the method.

Opnum: 16

39

DeleteInstanceAsync Asynchronous version of the

IWbemServices::DeleteInstance method.

Opnum: 17

CreateInstanceEnum Creates an instance enumeration of all class instances

that satisfy the selection criteria.

Opnum: 18

CreateInstanceEnumAsync Asynchronous version of the

IWbemServices::CreateInstanceEnum method.

Opnum: 19

ExecQuery Returns an enumerable collection of IWbemClassObject

interface objects based on a query.

Opnum: 20

ExecQueryAsync Asynchronous version of the

IWbemServices::ExecQuery method.

Opnum: 21

ExecNotificationQuery Server runs a query to receive events when

called by a client to request subscription to the

events.

Opnum: 22

ExecNotificationQueryAsync Asynchronous version of the

IWbemServices::ExecNotificationQuery method.

Opnum: 23

ExecMethod Executes a CIM method implemented by a CIM class

or a CIM instance retrieved from the IWbemServices

interface.

Opnum: 24

ExecMethodAsync Asynchronous version of the

IWbemServices::ExecMethod method.

Opnum: 25

40

Case 1: section can use to detect BruteForce attacks.

filter the packet by length(minimum length should be 118), Full code attached on Appendix II

 if (iph->tot_len > 118){

filter the packet by DCERPC version. bit or binary x to y should be 0500

if (dce_h->dcerpc_h.version == 5){

filter the packet by pack_type. …

if (dce_h->dcerpc_h.pack_type == 16){

filter the packet by auth type. …

if (dce_auth->auth.auth_type == 10){

if auth_level == 2 that is an attempting to connect.

auth_level == 4 that is an authorization.

below code snippet is check for the auth_level and categorize the packet according to the relevant

section.

Case 2: section can use to detect Authorizations (in this point attacker is able to crack the

password of the host machine).

switch (dce_auth->auth.auth_level){

 case 2:

 memset(id, 0, 4);

 alert(buf, "Attempting to connect");

 process_auth(buf, nbytes, sizeof(struct

dcerpc_pack_auth), nbytes);

 log_auth(buf);

 break;

 case 3:

 memset(id, 0, 4);

 _snprintf(id, 4, "%d", dce_auth-

>auth.auth_context_id);

41

 strncpy((alrt + 37), id, 4);

 alert(buf, alrt);

 process_auth(buf, nbytes, sizeof(struct

dcerpc_pack_auth), nbytes);

 log_auth(buf);

 break;

 }

if op_num == 20 | 21 | … (this is the decimal format of 14, 15, 16, ..), this packet carries the wmi

query. by decoding the stub data field can get the execution type actively.

 else{

 switch (dce_h->dcerpc_h.op_num){

 case 20:

 case 21:

 case 22:

 case 23:

 case 24:

 case 25:

 alert_ex(buf, "Executing : ");

 process_data(buf, nbytes, 118, (nbytes - 24));

 log_ex(buf);

 break;

 }

 }

Decode data by removing non ASCII characters.

void process_data(const u_char *buf, size_t nbytes, int spos, int epos){

 memset(data, 0, sizeof(BUF_SIZE));

 unsigned char ch;

 int j = 0;

 for (int i = spos; i < epos; i++){

42

 ch = buf[i];

 if ((ch < 0x20) || (ch > 0x7E)){

 continue;

 }

Code Descriptions

data[j++] = ch;

 }

 data[j] = '\0';

 std::string text(data);

 std::size_t found = -1;

 if ((found = text.find("object:Win32_")) == std::string::npos){

 if ((found = text.find("Win32_")) == std::string::npos){

 if ((found = text.find("cim_datafile")) == std::string::npos){

 printf("%s\n", data);

 }

 }

 }

 if (found != std::string::npos){

 memset(command, 0, 50);

 int j = 0;

 for (int i = found;; i++){

 if (data[i] > 0x7A || data[i] < 0x30)

 break;

 command[j++] = data[i];

 }

43

Code Descriptions

command[j] = '\0';

 printf("%s", command);

 }

 printf("\n");

}

Logging the results.

void log_ex(const u_char *buf){

 struct dcerpc_pack *dce_h = (struct dcerpc_pack *)buf;

 fprintf(log_fd, "%s,", time_buf); // timestamp

 fprintf(log_fd, "%s,", sour); // source ip address

 fprintf(log_fd, "%s,", dest); // destination ip address

 fprintf(log_fd, "%u,", ntohs(dce_h->tcp.source)); // tcp source address

 fprintf(log_fd, "%u,", ntohs(dce_h->tcp.dest)); // tcp destination address

 fprintf(log_fd, ",");

 fprintf(log_fd, ",");

 fprintf(log_fd, ",");

 fprintf(log_fd, "%d,", dce_h->dcerpc_h.op_num); // dcerpc packet op num

 fprintf(log_fd, "%s,", opnum_methods[dce_h->dcerpc_h.op_num]);// method

 fprintf(log_fd, "%s,", command); // executed command

Code Descriptions

fprintf(log_fd, "%s", data); // raw data

 fprintf(log_fd, "\n");

 fflush(stdout);

 fflush(log_fd);

}

44

Just discuss below functions are use to alert the attacks actively.

void alert_ex(const u_char *buf, char *msg){

void alert(const u_char *buf, char *msg){

The output log file format and the details are attached below details on log goes here.

Initially this scenario was tried with Snort where some limitations were discovered since the

software was not performing consistently in handling WMI packets.

The captures accuracy on capturing WMI queries was less than 75% and it was evident that snort

was not the ideal implementation to detect WMI queries.

Demonstration process of the implementation is described in the below steps with the relevant

functionalities explained in each and every part of the solution.

The environment consists of four workstations which comprises of Windows 7 (attacker) Windows

Server 2008 8 (Victim) Windows 8.1 (Admin) and a Samba Workstation (Arcsight Logger)

In order to carry out this process the attacker will need to carry out some ground work in order to

successfully accomplish the tasks which includes activities in relation to bruteforce or an attack of

that nature to get the authentication credentials and also some means of social engineering to get

the authentication credentials and vulnerability existence details. Below Figure displays all 4

workstations which is involved in the scenario for the solution.

Figure 5. 13 – Workstations involved in the scenario

45

5.4 Attacker Machine

Attacker machine contains powershell which is used to execute the WMI Authentication/Service

commands to initiate the process Once one of the above commands are executed it will prompt

from the victim’s authentication credentials and on successful authentication the required task will

be performed.

Figure 5. 14 - Attacker Machine

46

The status of the executed commands is displayed on the PowerShell window

5.5 Victim machine

Once an authentication is succeeded on the victims machine a desired service can be executed on

the victim’s machines without the knowledge of the victim and also on this case victim does not

see the program running on his or her machine This mechanism can be used to exploit and run a

known vulnerability for Windows

47

Below shows the notepad.exe is being executed by running the required PowerShell commands

with the relevant authentications

48

5.6 Administrator

The relevant visual C program is executed and the network interface is selected where it will

monitor all the activities performed by the attacker’s network interface and monitored and the

output activities are logged in to a txt file. In return the txt file is integrated to the Arcsight log

management system which is installed on the centos machine and log correlation activities are

performed accordingly.

Figure 5. 15 – Visual C+ cording of the tool

49

Figure 5. 16 – Prompt selection of Network Interface

 Figure 5. 17 – Output of available network interfaces

50

Chapter 6 - Testing & Evaluation

6.1 Log management

HPE Security Arcsight provides a range of device-specific Smart Connectors with which to gather

security event information. The connectors send normalized security events to the specified

destination for storage and further processing. Flex Connectors are custom connectors you define

to gather security events from log files, databases, and other software and devices. Flex Connectors

let you create custom connectors that can read and parse information from third-party devices and

map that information to Arcsight’s event schema.

ArcSight FlexConnector Types

• ArcSight FlexConnector File

• ArcSight FlexConnector ID-Based DB

• ArcSight FlexConnector Multiple DB

• ArcSight FlexConnector Regex File

• ArcSight FlexConnector Regex Folder File

• ArcSight FlexConnector Simple Network Management Protocol (SNMP Unified)

• ArcSight FlexConnector Time-Based DB

• ArcSight FlexConnector XML File

Regex File: Choose this type if the source log files have one event per line, but the format of each

line varies based on the type of event information. In this case, each line shares a common section

(for example, the date and hostname), but the number and content of the other fields on the line

varies. The regular expression-based FlexConnectors require a familiarity with Java-compatible

regular expressions. Sample log file attached on Appendix I.

6.2 Windows Firewall Configuration

//add firewall (group) rule and enable it

netsh advfirewall firewall set rule group=“Windows Management Instrumentation (WMI)” new

enable=yes

// add input firewall rule to “svchost.exe” on TCP port 135

netsh advfirewall firewall add rule dir=in name="DCOM"

program=%systemroot%\system32\svchost.exe service=rpcss action=allow protocol=TCP

localport=135

//add input firewall rule to “svchost” on TCP ANY windows management

51

netsh advfirewall firewall add rule dir=in name ="WMI"

program=%systemroot%\system32\svchost.exe service=winmgmt action = allow protocol=TCP

localport=any

Victim (Windows 2008) - 192.168.10.10

Attacker (Windows 7) - 192.168.10.12

6.3 Execution of Commands from attacker

 Invoke-WmiMethod -Class Win32_Process -Name Create -ArgumentList 'notepad.exe' -
ComputerName 192.168.12.129 -Credential %computername%\Administrator

 Get-WmiObject Win32_LoggedOnUser -ComputerName 192.168.12.129 -Credential
%computername%\administrator

 Get-WmiObject Win32_share -ComputerName 192.168.12.129 -Credential
%computername%\administrator

 Get-WmiObject cim_datafile -ComputerName 192.168.12.129 -Credential
%computername%\administrator

52

6.4 Sorted PCAP log

Figure 6. 3 – PCAP Log output

Figure 6. 4 – PCAP Log output

53

6.5 WMI activity log output from the tool

Figure 6. 5 – WMI Activity Log

54

6.6 Dashboard from the Arcsight logger on WMI activities

Figure 6. 6 – Arcsight Logger Dashboard

55

Chapter 7 – Conclusion

Main goal of this thesis was to design and implement a framework capable of capturing WMI data

packets and queries and analyzing them using a tool that has been created.

We tried to implement this with two scenarios which the first one is with an already available

software which is Snort and in this evaluation, it was noticed that the capturing of WMI packets

has a noticeable drop and analyzing the queries also contained limitations.

The second option is to use a custom developed tool which analyses the packets for the type of

query and in this tool, it identifies the success or the failure of the authentication to the victim client

It must be mentioned that in order for this sort of authentication to be successful it has to consider

using other attacking techniques such as brute force attacks and social engineering techniques etc.

This customized method can be easily modified and used in WMI packet analysis and the accuracy

rate of evaluation is at the maximum rate.

The captured results on the log file can be integrated on a log management software solution and

appropriate reports can be generated to specified customizations.

As far as the statistics and the evaluations techniques are concerned it is quite evident that the

customized developed tool is much efficient and accurate in determining the subjected matter rather

than already available tools in the market with its configurable tools.

7.1 Further Work

Although the solution proposed in the thesis proven to be efficient, some further work can be done

to make it more persuasive and precise as listed below

• The tool can be better developed in order to analyze other activities which can be performed

through the utilization of WMI where it can be even further detected for the purpose or the

function the queries are utilized.

• Also, this solution can be better integrated with a fully functional log correlation system

where real-time logging and alerting activities can be performed in a much more

professional manner.

• The tool can also be integrated as a part of a fully Operating system management utility to

perform automated tasks and make the administration functionalities more efficient and

reliable.

56

7.2 Drawbacks / Limitation

The biggest challenging reason being this project was the limitation of information related to the

subject matter even though this has existed since the inception of windows.

However, the subject was only taken for a noticeable amount of magnitude only in 2010 but

subsequently had faded away within the same period.

Even though it was taken up for discussion in 2015 at some of the security forums currently only

there is a noticeable amount of discussion related to the subject and it was a tedious process to

gather knowledge and arrive at solid conclusions relating to theories. [14]

It was also a hampering factor of limitation the currently available tools inability to perform

consistently with the WMI packets and the analysis factor of the project become a more challenging

factor than expected.

The question of Why this cannot be performed with the already available tools was clarified

through evaluated by carrying out POC’s through well know products in order to arrive at the

development of a new tool to fulfil the requirement (SNORT).

Figure 5. 18 - Output of the SNORT attack

57

Figure 5. 19 -SNORT packet capture output

58

Appendix I

Timestamp,Source IP,Dest IP,Source Port,Dest Port,DCERPC Auth Pack Type,DCERPC Auth

Level,Attempt ID,Op Num,Method,Command,Raw Data

Timestamp,Source IP,Dest IP,Source Port,Dest Port,DCERPC Auth Pack Type,DCERPC Auth

Level,Attempt ID,Op Num,Method,Command,Raw Data

2016/08/11

22:21:12,192.168.12.139,192.168.12.138,50429,135,16,2,,,,,%computername%administratorWI

N-JTR7IBEBMEJ*-

0P:+EtI;]1DCDCdcdc+Et000|u?xtonY;q{_s0{q(RPCSS/192.168.12.138|h8qu

2016/08/11

22:21:12,192.168.12.139,192.168.12.138,50430,49154,16,4,0,,,,%computername%administrator

WIN-JTR7IBEBMEJ+o[ya{a{+EtDmUVDCDCdcdc+Et000|u?xtonY;q{_s0{qhost/dc=)n|OR,f\

2016/08/11 22:21:12,192.168.12.139,192.168.12.138,50430,49154,16,4,1,,,,WIN-

JTR7IBEBMEJSathishWIN-JTR7IBEBMEJTY)O:~z`GxGt-

DCDCdcdcxGt000|u?xtonY;q{_s0{qhost/dc$>K

2016/08/11 22:21:12,192.168.12.139,192.168.12.138,50430,49154,16,4,2,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJz=R)_lxGtCrJDCDCdcdcxGt000|u?xtonY;q{_s0{qhost/dcZy

2016/08/11

22:21:12,192.168.12.139,192.168.12.138,50430,49154,,,,20,ExecQuery,Win32_share,`_UserWQ

LUser2select * from Win32_share

2016/08/11 22:21:12,192.168.12.139,192.168.12.138,50430,49154,16,4,3,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJho2^ItdpDCDCdcdcIt000|u?xtonY;q{_s0{qhost/dc7:&J

2016/08/11 22:21:12,192.168.12.139,192.168.12.138,50430,49154,16,4,4,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJ4Uuug:8?ItQkDCDCdcdcIt000|u?xtonY;q{_s0{qhost/dc_^hKBk9

2016/08/11 22:21:13,192.168.12.139,192.168.12.138,50430,49154,16,4,5,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJFY4!dcIt%\DhgDCDCdcdcIt000|u?xtonY;q{_s0{qhost/dc?o-k"

2016/08/11 22:21:13,192.168.12.139,192.168.12.138,50430,49154,16,4,6,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJ?|fF`7*It1c8DCDCdcdcIt000|u?xtonY;q{_s0{qhost/dc;2vK

2016/08/11

22:21:25,192.168.12.139,192.168.12.138,50429,135,16,2,,,,,%computername%administratorWI

N-

JTR7IBEBMEJ,xQ+NgRtK|_''DCDCdcdcRt000|u?xtonY;q{_s0{q(RPCSS/192.168.12.138\QLT

PH]Cv

59

2016/08/11

22:21:36,192.168.12.139,192.168.12.138,50429,135,16,2,,,,,%computername%administratorWI

N-

JTR7IBEBMEJO%COY8(dYV#v1{DCDCdcdcdY000|u?xtonY;q{_s0{q(RPCSS/192.168.12.13

8|Sn0

2016/08/11

22:23:37,192.168.12.139,192.168.12.138,50434,135,16,2,,,,,%computername%administratorWI

N-

JTR7IBEBMEJ.Rwep05Y`+PB02DCDCdcdc5Y000|u?xtonY;q{_s0{q(RPCSS/192.168.12.138P,

N?]C

2016/08/11

22:23:37,192.168.12.139,192.168.12.138,50435,49154,16,4,0,,,,%computername%administrator

WIN-JTR7IBEBMEJXX@^c;^-&5Ydz<[DCDCdcdc5Y000|u?xtonY;q{_s0{qhost/dcspB,

2016/08/11 22:23:37,192.168.12.139,192.168.12.138,50435,49154,16,4,1,,,,WIN-

JTR7IBEBMEJSathishWIN-JTR7IBEBMEJN~@n"2_Y-

viDCDCdcdc_Y000|u?xtonY;q{_s0{qhost/dc<Kd-]

2016/08/11 22:23:37,192.168.12.139,192.168.12.138,50435,49154,16,4,2,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJM#S_YyDCDCdcdc_Y000|u?xtonY;q{_s0{qhost/dc0VKY}

2016/08/11

22:23:37,192.168.12.139,192.168.12.138,50435,49154,,,,20,ExecQuery,cim_datafile,0"UserWQ

LUser4select * from cim_datafile

2016/08/11 22:23:37,192.168.12.139,192.168.12.138,50435,49154,16,4,3,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJFu.[xbp_Ygm76DCDCdcdc_Y000|u?xtonY;q{_s0{qhost/dc).BR!}

2016/08/11 22:23:37,192.168.12.139,192.168.12.138,50435,49154,16,4,4,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJ$}g1liYjw"$*DCDCdcdcY000|u?xtonY;q{_s0{qhost/dc&{?Y

2016/08/11 22:23:38,192.168.12.139,192.168.12.138,50435,49154,16,4,5,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJj0"T+BY6DCDCdcdcY000|u?xtonY;q{_s0{qhost/dc|VUN!h*Nz

2016/08/11 22:23:38,192.168.12.139,192.168.12.138,50435,49154,16,4,6,,,,WIN-

JTR7IBEBMEJSathishWIN-

JTR7IBEBMEJgg4hVFnX"YX~vDCDCdcdcX"Y000|u?xtonY;q{_s0{qhost/dcf?P|W

2016/08/11

22:23:44,192.168.12.139,192.168.12.138,50436,49154,16,4,0,,,,%computername%administrator

WIN-JTR7IBEBMEJ$`oyYmWe~DCDCdcdcyY000|u?xtonY;q{_s0{qhost/dcBs#0B,

60

Appendix II

#ifdef _MSC_VER
/*
* we do not want the warnings about the old deprecated and unsecure CRT functions
* since these examples can be compiled under *nix as well
*/
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <stdlib.h>
#include <signal.h>
#include <tchar.h>
//#include <cstdlib>
#include <cstdio>
//#include <stdio.h>
#include <iostream>

#include <pcap.h>

#pragma comment(lib,"ws2_32.lib") //For winsock

#define LINE_LEN 16
#define ETH_ALEN 6 /* Octets in one ethernet addr */
#define BUF_SIZE 65536
#define TIME_BUF_SIZE 20

char alrt[42]; // holds attempt message
char id[4]; // holds attempt id
char command[50]; // holds excuting commad

char time_buf[TIME_BUF_SIZE]; // holds timestamp

char *sour, *dest; // source and destination ip addresses as strings

struct sockaddr_in addrs; // hold soruce and destination ip address

time_t curtime; // time variables
struct tm *loctime; // time variables

FILE *log_fd; // log file descriptor

// for decrypted data
char *data;

const char *opnum_methods[] = { "", "", "", \
"OpenNamespace", \
"CancelAsyncCall", \
"QueryObjectSink", \
"GetObject", \
"GetObjectAsync", \
"PutClass", \
"PutClassAsync", \
"DeleteClass", \
"DeleteClassAsync", \
"CreateClassEnum", \
"CreateClassEnumAsync", \
"PutInstance", \

61

"PutInstanceAsync", \
"DeleteInstance", \
"DeleteInstanceAsync", \
"CreateInstanceEnum", \
"CreateInstanceEnumAsync", \
"ExecQuery", \
"ExecQueryAsync", \
"ExecNotificationQuery", \
"ExecNotificationQueryAsync", \
"ExecMethod", \
"ExecMethodAsync" };

typedef struct iphdr
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned char ihl : 4;
 unsigned char version : 4;
#elif __BYTE_ORDER == __BIG_ENDIAN
 unsigned int version : 4;
 unsigned int ihl : 4;
#else
error "Please fix <bits/endian.h>"
#endif
 u_int8_t tos;
 u_int16_t tot_len;
 u_int16_t id;
 u_int16_t frag_off;
 u_int8_t ttl;
 u_int8_t protocol;
 u_int16_t check;
 u_int32_t saddr;
 u_int32_t daddr;
 /*The options start here. */
};

typedef u_int32_t tcp_seq;
typedef struct tcphdr
{
 union
 {
 struct
 {
 u_int16_t th_sport; /* source port */
 u_int16_t th_dport; /* destination port */
 tcp_seq th_seq; /* sequence number */
 tcp_seq th_ack; /* acknowledgement
number */
if __BYTE_ORDER == __LITTLE_ENDIAN
 u_int8_t th_x2 : 4; /* (unused) */
 u_int8_t th_off : 4; /* data offset */
elif __BYTE_ORDER == __BIG_ENDIAN
 u_int8_t th_off : 4; /* data offset */
 u_int8_t th_x2 : 4; /* (unused) */
endif
 u_int8_t th_flags;

define TH_FIN 0x01
define TH_SYN 0x02
define TH_RST 0x04
define TH_PUSH 0x08

62

define TH_ACK 0x10
define TH_URG 0x20
 u_int16_t th_win; /* window */
 u_int16_t th_sum; /* checksum */
 u_int16_t th_urp; /* urgent pointer */
 };
 struct
 {
 u_int16_t source;
 u_int16_t dest;
 u_int32_t seq;
 u_int32_t ack_seq;
if __BYTE_ORDER == __LITTLE_ENDIAN
 u_int16_t res1 : 4;
 u_int16_t doff : 4;
 u_int16_t fin : 1;
 u_int16_t syn : 1;
 u_int16_t rst : 1;
 u_int16_t psh : 1;
 u_int16_t ack : 1;
 u_int16_t urg : 1;
 u_int16_t res2 : 2;
elif __BYTE_ORDER == __BIG_ENDIAN
 u_int16_t doff : 4;
 u_int16_t res1 : 4;
 u_int16_t res2 : 2;
 u_int16_t urg : 1;
 u_int16_t ack : 1;
 u_int16_t psh : 1;
 u_int16_t rst : 1;
 u_int16_t syn : 1;
 u_int16_t fin : 1;
else
error "Adjust your <bits/endian.h> defines"
endif
 u_int16_t window;
 u_int16_t check;
 u_int16_t urg_ptr;
 };
 };
};

typedef struct ethhdr {
 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
 unsigned char h_source[ETH_ALEN]; /* source ether addr */
 unsigned short h_proto; /* packet type ID field */
};

struct dcerpc_hdr{
 u_int8_t version;
 u_int8_t version_minor;
 u_int8_t pack_type;
 u_int8_t pack_flag;

 u_int32_t data_rep;

 u_int16_t frag_len;
 u_int16_t auth_len;
 u_int32_t call_id;

63

 u_int32_t alloc_hint;
 u_int16_t context_id;
 u_int16_t op_num;

 unsigned char obj_uuid[16];
};

struct dcerpc_trl{
 u_int8_t auth_type;
 u_int8_t auth_level;
 u_int8_t auth_pad_len;
 u_int8_t auth_rsvrd;
 u_int32_t auth_context_id;

 u_int32_t ntlmssp_ver_num;
 unsigned char ntlmssp_ver_body[12];
};

struct dcerpc_auth{
 u_int8_t version;
 u_int8_t version_minor;
 u_int8_t pack_type;
 u_int8_t pack_flag;

 u_int32_t data_rep;

 u_int16_t frag_len;
 u_int16_t auth_len;
 u_int32_t call_id;

 u_int32_t unknown;

 u_int8_t auth_type;
 u_int8_t auth_level;
 u_int8_t auth_pad_len;
 u_int8_t auth_rsvrd;
 u_int32_t auth_context_id;

};

struct ntlmssp{
 u_int64_t identifier;
 u_int32_t message_type;

 u_int16_t lan_man_res_length;
 u_int16_t lan_man_res_maxlen;
 u_int32_t lan_man_res_offset;

 u_int16_t ntlm_res_length;
 u_int16_t ntlm_res_maxlen;
 u_int32_t ntlm_res_offset;

 u_int16_t domain_name_length;
 u_int16_t domain_name_maxlen;
 u_int32_t domain_name_offset;

 u_int16_t user_name_length;
 u_int16_t user_name_maxlen;
 u_int32_t user_name_offset;

64

 u_int16_t host_name_length;
 u_int16_t host_name_maxlen;
 u_int32_t host_name_offset;

 u_int16_t session_key_length;
 u_int16_t session_key_maxlen;
 u_int32_t session_key_offset;

 u_int32_t negotiate_flags;

 union
 {
 u_int64_t verson;

 struct {
 u_int8_t version_major_version;
 u_int8_t version_minor_version;
 u_int16_t version_build_number;

 unsigned char version_pad[3];
 u_int8_t version_ntlm_cur_rev;
 };
 };

 unsigned char MIC[16];

};

#pragma pack(2)
struct dcerpc_pack{
 struct ethhdr eth;
 struct iphdr ip;
 struct tcphdr tcp;
 struct dcerpc_hdr dcerpc_h;
};

#pragma pack(2)
struct dcerpc_pack_auth{
 struct ethhdr eth;
 struct iphdr ip;
 struct tcphdr tcp;
 struct dcerpc_auth auth;
 struct ntlmssp ntlmssp_h;
};

void process(const u_char *, size_t);
void process_data(const u_char *, size_t, int, int);
void process_auth(const u_char *, size_t, int, int);
void alert(const u_char *, char *);
void alert_ex(const u_char *, char *);
void log_ex(const u_char *);
void log_auth(const u_char *);
void eth_print(const u_char *);
void SignalHandler(int);

int main(int argc, char **argv)
{
 pcap_if_t *alldevs, *d;
 pcap_t *fp;

65

 u_int inum, i = 0;
 char errbuf[PCAP_ERRBUF_SIZE];
 int res;
 struct pcap_pkthdr *header;
 const u_char *pkt_data;

 // create log file or point the log file descriptor to log file
 if (!(log_fd = fopen("wmi.log", "a+"))){
 fprintf(stderr, "Error : Openning Log File : %s\n", errbuf);
 exit(1);
 }

 // checks if log file is empty
 fseek(log_fd, 0, SEEK_END);
 // if log file is empty write the login header
 if (ftell(log_fd) == 0){
 fprintf(log_fd, "Timestamp,Source IP,Dest IP,Source Port,Dest Port,DCERPC
Auth Pack Type,DCERPC Auth Level,Attempt ID,Op Num,Method,Command,Raw Data\n");
 }

 printf("\nDevice list :\n\n");
 /* The user didn't provide a packet source: Retrieve the local device list */
 if (pcap_findalldevs(&alldevs, errbuf) == -1)
 {
 fprintf(stderr, "Error in pcap_findalldevs_ex: %s\n", errbuf);
 exit(1);
 }

 /* Print the list */
 for (d = alldevs; d; d = d->next)
 {
 printf("%d. %s\n ", ++i, d->name);

 if (d->description)
 printf(" (%s)\n", d->description);
 else
 printf(" (No description available)\n");
 }

 if (i == 0)
 {
 printf("\nNo interfaces found! Make sure WinPcap is installed.\n");
 return -1;
 }
 printf("\n");
 printf("Enter the interface number (1-%d) : ", i);
 scanf("%d", &inum);

 if (inum < 1 || inum > i)
 {
 printf("\nInterface number out of range.\n");

 /* Free the device list */
 pcap_freealldevs(alldevs);
 return -1;
 }

 /* Jump to the selected adapter */
 for (d = alldevs, i = 0; i < inum - 1; d = d->next, i++);

66

 /* Open the adapter */
 if ((fp = pcap_open_live(d->name, // name of the device
 65536, // portion of the packet to
capture.
 // 65536 grants that the whole packet will be captured on all the MACs.
 1, // promiscuous mode
(nonzero means promiscuous)
 1000, // read timeout
 errbuf // error buffer
)) == NULL)
 {
 fprintf(stderr, "\nError opening adapter\n");
 return -1;
 }

 data = (char *)malloc(BUF_SIZE);

 if (!data){
 fprintf(stderr, "Error : Allocating Memory for data buffer : %s\n", errbuf);
 exit(1);
 }

 strncpy(alrt, "Attempting to authenticate with id : ", 37);

 typedef void(*SignalHandlerPointer)(int);
 SignalHandlerPointer previousHandler;
 previousHandler = signal(SIGINT, SignalHandler);

 /* Read the packets */
 while ((res = pcap_next_ex(fp, &header, &pkt_data)) >= 0)
 {

 if (res == 0)
 /* Timeout elapsed */
 continue;

 process(pkt_data, header->caplen);
 }

 if (res == -1)
 {
 printf("Error reading the packets: %s\n", pcap_geterr(fp));
 return -1;
 }
 pcap_close(fp);
 return 0;
}

void process(const u_char *buf, size_t nbytes){

 struct iphdr *iph = (struct iphdr *)(buf + 14);

 if (iph->tot_len > 118){

 struct dcerpc_pack *dce_h = (struct dcerpc_pack *)buf;

 if (dce_h->dcerpc_h.version == 5){
 if (dce_h->dcerpc_h.pack_type == 16){
 struct dcerpc_pack_auth *dce_auth = (struct dcerpc_pack_auth
*)buf;

67

 if (dce_auth->auth.auth_type == 10){
 switch (dce_auth->auth.auth_level){
 case 2:
 memset(id, 0, 4);
 alert(buf, "Attempting to connect");
 process_auth(buf, nbytes, sizeof(struct
dcerpc_pack_auth), nbytes);
 log_auth(buf);
 break;
 case 4:
 memset(id, 0, 4);
 _snprintf(id, 4, "%d", dce_auth-
>auth.auth_context_id);
 strncpy((alrt + 37), id, 4);
 alert(buf, alrt);
 process_auth(buf, nbytes, sizeof(struct
dcerpc_pack_auth), nbytes);
 log_auth(buf);
 break;
 }
 }
 }
 else{
 switch (dce_h->dcerpc_h.op_num){
 case 20:
 case 21:
 case 22:
 case 23:
 case 24:
 case 25:
 alert_ex(buf, "Executing : ");
 process_data(buf, nbytes, 118, (nbytes - 24));
 log_ex(buf);
 break;
 }
 }
 }
 }
}

void process_auth(const u_char *buf, size_t nbytes, int spos, int epos){
 memset(data, 0, sizeof(BUF_SIZE));
 unsigned char ch;
 int j = 0;
 for (int i = spos; i < epos; i++){
 ch = buf[i];
 if ((ch < 0x20) || (ch > 0x7E)){
 continue;
 }
 data[j++] = ch;
 }
 data[j] = '\0';
}

void process_data(const u_char *buf, size_t nbytes, int spos, int epos){
 memset(data, 0, sizeof(BUF_SIZE));
 unsigned char ch;
 int j = 0;
 for (int i = spos; i < epos; i++){
 ch = buf[i];

68

 if ((ch < 0x20) || (ch > 0x7E)){
 continue;
 }
 data[j++] = ch;
 }
 data[j] = '\0';

 std::string text(data);
 std::size_t found = -1;
 if ((found = text.find("object:Win32_")) == std::string::npos){
 if ((found = text.find("Win32_")) == std::string::npos){
 if ((found = text.find("cim_datafile")) == std::string::npos){
 printf("%s\n", data);
 }
 }
 }

 if (found != std::string::npos){
 memset(command, 0, 50);
 int j = 0;
 for (int i = found;; i++){
 if (data[i] > 0x7A || data[i] < 0x30)
 break;
 command[j++] = data[i];
 }
 command[j] = '\0';
 printf("%s", command);
 }
 printf("\n");
}

void eth_print(const u_char *buf){
 for (int i = 0; i<ETH_ALEN; i++){
 if (i>0)
 printf(":");
 if (buf[i] != 255)
 printf("%02x", (unsigned char)buf[i]);
 }
 printf("\n");
}

// log execution details
void log_ex(const u_char *buf){
 struct dcerpc_pack *dce_h = (struct dcerpc_pack *)buf;
 fprintf(log_fd, "%s,", time_buf); // timestamp
 fprintf(log_fd, "%s,", sour); // source ip address
 fprintf(log_fd, "%s,", dest); // destination ip address

 fprintf(log_fd, "%u,", ntohs(dce_h->tcp.source)); // tcp source address
 fprintf(log_fd, "%u,", ntohs(dce_h->tcp.dest)); // tcp destination address

 fprintf(log_fd, ",");
 fprintf(log_fd, ",");
 fprintf(log_fd, ",");

 fprintf(log_fd, "%d,", dce_h->dcerpc_h.op_num); // dcerpc packet op num
 fprintf(log_fd, "%s,", opnum_methods[dce_h->dcerpc_h.op_num]); // method relevant to
op num
 fprintf(log_fd, "%s,", command); // executed command

69

 fprintf(log_fd, "%s", data); // raw data
 fprintf(log_fd, "\n");

 fflush(stdout);
 fflush(log_fd);

}

// log authentication attempt details
void log_auth(const u_char *buf){
 struct dcerpc_pack_auth *dce_auth = (struct dcerpc_pack_auth *)buf;
 fprintf(log_fd, "%s,", time_buf); // timestamp
 fprintf(log_fd, "%s,", sour); // source ip address
 fprintf(log_fd, "%s,", dest); // destination ip address

 fprintf(log_fd, "%u,", ntohs(dce_auth->tcp.source)); // tcp source port
 fprintf(log_fd, "%u,", ntohs(dce_auth->tcp.dest)); // tcp destination port

 fprintf(log_fd, "%d,", dce_auth->auth.pack_type); // dcerpc auth packet type
 fprintf(log_fd, "%d,", dce_auth->auth.auth_level); // dcerpc auth packet
authentication level
 fprintf(log_fd, "%s,", id);

 fprintf(log_fd, ",");
 fprintf(log_fd, ",");
 fprintf(log_fd, ",");

 fprintf(log_fd, "%s", data); // raw data
 fprintf(log_fd, "\n");

 fflush(stdout);
 fflush(log_fd);
}

void alert(const u_char *buf, char *msg){
 memset(time_buf, 0, TIME_BUF_SIZE);
 curtime = time(NULL);
 loctime = localtime(&curtime);

 strftime(time_buf, TIME_BUF_SIZE, "%Y/%m/%d %H:%M:%S", loctime);

 struct iphdr *iph = (struct iphdr *)(buf + 14);
 memset(&addrs, 0, sizeof(struct sockaddr_in));
 addrs.sin_addr.s_addr = iph->saddr;
 sour = _strdup(inet_ntoa(addrs.sin_addr));
 addrs.sin_addr.s_addr = iph->daddr;
 dest = _strdup(inet_ntoa(addrs.sin_addr));

 printf("%s : %s -> %s : %s\n", time_buf, sour, dest, msg);
}

void alert_ex(const u_char *buf, char *msg){
 memset(time_buf, 0, TIME_BUF_SIZE);
 curtime = time(NULL);
 loctime = localtime(&curtime);

 strftime(time_buf, TIME_BUF_SIZE, "%Y/%m/%d %H:%M:%S", loctime);

 struct iphdr *iph = (struct iphdr *)(buf + 14);

70

 memset(&addrs, 0, sizeof(struct sockaddr_in));
 addrs.sin_addr.s_addr = iph->saddr;
 sour = _strdup(inet_ntoa(addrs.sin_addr));
 addrs.sin_addr.s_addr = iph->daddr;
 dest = _strdup(inet_ntoa(addrs.sin_addr));
 printf("%s : %s -> %s : %s", time_buf, sour, dest, msg);
}

void SignalHandler(int signal)
{
 if (signal == SIGINT) {
 free(data);
 fclose(log_fd);
 }
}

71

Appendix III

Raw PCAP output file

050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c00000055736572180000003000000018000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f00420049004f0053001000000000000000 0a 4 0 0 0 01000000e72043722428978d25000000 4500 0.00E+00
0a35 40 0 80 6 5a75 c0a80a0b c0a80a0a c05a c003 b2817d74 e104ee3d 5018 4029 2cca 0 5 0 0 83 10000000 c000 1000 29010000
80000000 400 1400 05a80200b40400001a4f0b973ca30297
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c00000055736572180000003000000018000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f00420049004f0053001000000000000000 0a 4 0 0 0 0100000073e44468f6e81b1837000000 4500 00f8 0a6b
40 0 80 6 5a2f c0a80a0b c0a80a0a c05a c003 b2818d68 e1051239 5018 4029 2135 0 5 0 0 83 10000000 d000 1000 45010000
84000000 400 1400 07680200b4040000c76f5de5ff5773f2
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721a000000340000001a000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f0056006f006c0075006d0065001000000000000000000000000000000000000000 0a 4 0c 0 0
01000000d077773e2c79577249000000 4500 00f8 0aa5 40 0 80 6 59f5 c0a80a0b c0a80a0a c05a c003 b2819fac e105a175 5018
4001 1aef 0 5 0 0 83 10000000 d000 1000 68010000 88000000 400 1400 1e940200b40400001a3a4fc0ff122680
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721b000000360000001b000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f00500072006f006300650073007300000010000000000000000000000000000000 0a 4 8 0 0
01000000629aec9acd0962355f000000 4500 00f8 0b1c 40 0 80 6 597e c0a80a0b c0a80a0a c05a c003 b281cc44 e106c52d 5018
3f2e 968f 0 5 0 0 83 10000000 d000 1000 b2010000 88000000 400 1400 23dc0200b4040000b01a66c26f946887
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721b000000360000001b000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f005300650072007600690063006500000010000000000000000000000000000000 0a 4 8 0 0
01000000175864bf9a3bbe4e9d000000 4500 00f8 0c1e 40 0 80 6 587c c0a80a0b c0a80a0a c05a c003 b2822c6a e10b8777 5018
3f61 df97 0 5 0 0 83 10000000 d000 1000 69020000 8c000000 400 1400 205c0200b4040000b330bfee82c2c87d
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721e0000003c0000001e000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f004e0074004c006f0067004500760065006e007400100000000000000000000000 0a 4 4 0 0
010000005e80917beee53b2648010000 4500 118 238a 40 0 80 6 40f0 c0a80a0b c0a80a0a c0a0 c003 821b28b8 b8e398a7 5018
3f22 4813 0 5 0 0 83 10000000 f000 1000 7d130000 b0000000 400 1400 0d8c0300b40400006745df17a62849ae
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365722f0000005e0000002f000000730065006c0065006300740020002a002000660072006f006d0020005700690
06e00330032005f004c006f0067006900630061006c0053006800610072006500530065006300750072006900740079005300650
07400740069006e00670000001000000000000000 0a 4 0 0 0 01000000bf426ab2125e5a07b2000000 4500 00f8 23b5 40 0 80 6
4.00E+06 c0a80a0b c0a80a0a c0a0 c003 821b385c b8e3a453 5018 3f52 2807 0 5 0 0 83 10000000 d000 1000 98130000 8c000000
400 1400 27400200b404000080212615b8285089
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721e0000003c0000001e000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f0057004d004900530065007400740069006e006700100000000000000000000000 0a 4 4 0 0
01000000ef3b4f4164f4d733c3000000 4500 118 23f5 40 0 80 6 4085 c0a80a0b c0a80a0a c0a0 c003 821b4910 b8e4353f 5018
3efe 65dd 0 5 0 0 83 10000000 f000 1000 b7130000 a8000000 400 1400 2d280300b4040000b55feccbf78f718b
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365722b000000560000002b000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f004f0053005200650063006f00760065007200790043006f006e00660069006700750072006100740069006f
006e00000010000000000000000000000000000000 0a 4 8 0 0 01000000bed16a3c8fff5b08d6000000 4500 00f8 2424 40 0 80 6
4076 c0a80a0b c0a80a0a c0a0 c003 821b59f4 b8e45afb 5018 3f0e 561f 0 5 0 0 83 10000000 d000 1000 d4130000 8c000000 400
1400 0e340300b404000027daed576639d89e
050007000000000000000000829e8fad6899f0418e3cb81d0b0ece1200000000557365720300000006000000030000005700510
04c000000557365721e0000003c0000001e000000730065006c0065006300740020002a002000660072006f006d002000570069
006e00330032005f0043004f004d00530065007400740069006e006700100000000000000000000000

72

References

[1] "Desktop Operating System Market Share Worldwide," [Online]. Available:

http://gs.statcounter.com/os-market-share/desktop/worldwide.

[2] "Introduction to WMI," [Online]. Available: https://technet.microsoft.com/en-

us/library/cc181125.aspx.

[3] "WMI: Monitoring for Malicious Activity," [Online]. Available:

https://www.fireeye.com/blog/threat-research/2016/08/wmi_vs_wmi_monitor.html.

[4] L. Galang, 2010. [Online]. Available: http://blog.trendmicro.com/windows-wmi-abused-

formalware-operations.

[5] P. Craig, 2010. [Online]. Available: http://ha.cked.net.

[6] "Shadowserver Foundation," 2010. [Online]. Available:

http://www.nartv.org/mirror/shadows-in-the-cloud.pdf.

[7] "Trand Micro," 2010. [Online]. Available:

http://threatinfo.trendmicro.com/vinfo/virusencyclo/default5..

[8] "Microsoft MSDN LibrRY," [Online]. Available: https://msdn.microsoft.com/en-

us/library/aa389276(v=vs.85).aspx.

[9] "Passing the Hash," [Online]. Available: http://passing-the-

hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html.

[10] 2014. [Online]. Available: http://www.codeproject.com.

[11] "Abusing Windows Management," [Online]. Available: https://www.blackhat.com/docs/us-

15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-

Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf.

[12] "Kansa," [Online]. Available: http://www.powershellmagazine.com/2014/07/18/kansa-a-

powershell-based-incident-response-framework/.

[13] "Win Cap," [Online]. Available: https://www.winpcap.org.

