
i

Public Key and Multi Factor Based

Centralized SSH Authentication

System for a Cloud Based

Environment Using LDAP

A dissertation submitted for the Degree of Master of

Science in Information Security

G.D.D Asanga

University of Colombo School of Computing

2016

ii

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Students Name: G.D.D. Asanga

Signature: Date:

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is

of acceptable standard.

Certified by:

Supervisor Name: Dr. Ajantha Atukorale

Signature: Date:

iii

Acknowledgement

I would like to thank Dr. Ajantha Atukorale for being my supervisor and his guidance, advice

and time throughout the entire project.

Also I wish to thank Dr.Kasun De Soyza, Mr. Kenneth Thilakarathna and Dr. Manjusri

Wickramasinghe of University of Colombo School of Computing for encouraging me and for

the support provided.

Finally I am thankful to my team lead at WSO2 Lanka (Pvt) Ltd, Mr.Chamith Kumarage and

my colleague Ashwin Nallaperuma for their guidance and support.

iv

Abstract

The purpose of this study is to implement a system that provides capability to centrally

manage key based SSH authentication and provide access control system with multi factor

authentication. This provides multiple users to access multiple servers in a cloud based

environment using SSH with enhanced secure access and manageability.

The problem addressed here is to avoid sharing a common private key, password or to avoid

using common accounts for remote SSH login. This system helps to centrally manages users,

identities and related attributes and also shows how secure it is, in comparison to other

systems. This implementation is also focused on a cloud infrastructure which could scale

timely.

This thesis discusses the existing systems and compares the advantage of using the proposed

implementation and design over other systems that are complex and hard to maintain. The real

implementation is focused on a practical scenario for an organization which already has a

remote cloud environment where developers and administrators need to access the servers in

cloud infrastructure for different purposes. The solution suggested here optimizes the access

control mechanism for SSH and also provides easy to manage, centralized, access granting,

revocation and tracking capability. This implementation includes a user interface that can be

used to easily do all the administrative work and that makes system administrators life easier

and avoids repetitive work. This project is mostly based on user management, access control,

multi factor authentication and centralizing the administrative work. This study would be

much useful to system administrators who are in both networking and systems engineering

field.

v

Table of Contents
Declaration .. ii

Acknowledgement .. iii

Abstract .. iv

List of Figures .. viii

List of tables ... viii

Acronyms and Abbreviation .. ix

Chapter 1: Introduction ..1

1.1 Preamble ...1

1.2 Brief Overview of the Project ..2

1.2.1 Approach ..2

1.3 Problem Domain ..2

1.4 Motivation ..3

1.5 Aims and objectives of the Project ...3

1.6 Methodology ..4

1.7 Scope of the project ..4

1.8 Overview of the report ...5

Chapter 2: Literature Survey and Background ...6

2.1 Remote Login mechanisms ..6

2.2 Standard OpenSSH based access ...6

2.2.1 SSH Authentication mechanisms [3] ..6

2.2.2 Public Key Authentication in SSH protocol ..7

2.3 What other authentication protocols available ...7

2.3.1 Kerberos ..7

2.3.2 Why Kerberos is not used ...9

2.3.2 Comparison between Kerberos and Public Key based authentication.10

2.3.3 OpenLDAP as the identity and the user meta data manager. ..10

2.4 Multi-factor authentication ...11

2.5 The Bastion Concept ..11

2.6 Using a cloud based approach ..14

2.7 Background ..15

Chapter 3: Design of Solution ..16

3.1 Functional and Nonfunctional Requirements ...16

3.1.1 Functional Requirements ...16

3.1.2 Non-Functional Requirements ..16

3.2 General Deployment Architecture..17

3.2.1 Use internal corporate LDAP server ...17

vi

3.2.2 Use external cloud LDAP server ...18

3.2.3 Use a read replica of internal corporate LDAP server in cloud ..18

3.2.4 Multifactor integration ..19

3.2.5 User login Flow ...19

3.3 Design patterns for a Cloud ..21

3.3.1 Design for a cloud based environment with a Bastion server. ..21

3.3.2 Initial Proof of Concept ...21

Chapter 4: Implementation ...23

4.1.1 SSH and LDAP integration ...23

4.1.3 Configurations and customizations need to be done in SSH server23

4.1.4 Fetching the Public key and the group of the user form LDAP ..24

4.1.5 What does the script do? ...24

4.1.4 Other SSH server configurations ...25

4.1.5 LDAP Server custom configurations ..26

4.1.6 Google authenticator configurations ...26

4.2 User interface to manage the system operations ..28

4.2.1 User interface ..28

4.2.2 Basic functionality of the interface ...28

Chapter 5: Results & Evaluation. ...29

5.1 Introduction to the chapter ...29

5.1 Test and validation plan ...29

5.1.1 Functional Tests ..29

5.1.2 Test environment ...29

5.2 Test Summary and Validation ..34

5.3 Evaluation ..35

5.3.1 Evaluation criteria ...35

5.3.2 Evaluated systems ...35

5.3.3 Evaluation of each system based on the selected criteria ..35

5.4 SSH login performance evaluation ..37

5.4.1 Test scenario 1 ...39

5.4.2 Test scenario 2 ...40

5.4.3 Test scenario 3 ...43

5.5 Performance evaluation summary ..46

Chapter 6: Conclusion and Future Work ..47

6.1 Problems Faced ..47

6.2 Deviation from original project plan ..47

6.3 Future work ..47

vii

6.4 Conclusion ..48

Appendix ..49

Appendix I: User Management Interface ...49

Appendix II: Output of the LDAP search query ..53

Appendix III: LDAP Entry for the user “anura” ..54

Appendix IV: SSH Client verbose output ..55

Appendix V: LDAP debug Log ...56

Appendix VI: SSH Client Log ...57

Appendix VII: Creating a new RSA key pair...59

Appendix VIII: Adding a user to the LDAP Server ...60

1. LDAP schema of an existing user ..60

2. Importing a new user to LDAP server..60

3. New user is added to the LDAP server ..61

4. New user is in LDAP schema ..61

Appendix IX: Login as a user to the bastion server ...61

1. SSH Client debug output without Private Key provided..61

2. SSH Client debug output with Private key provided ...62

Appendix X: Testing server behavior when LDAP server is down ...63

References ..64

viii

List of Figures

Figure 2.3 Kerberos Authentication………………………………………………...………..8

Figure 2.4.1 A typical cloud deployment with a bastion node……………………..……….12

Figure 2.5.1 VPN between corporate datacenter and the cloud……………………..……...13

Figure 3.2.1 SSH authentication with LDAP on corporate data center………………...…...17

Figure 3.2.2 Bastion and internal servers authenticated via corporate LDAP server…..…...17

Figure 3.2.3 SSH authentication with LDAP hosted in cloud…………………………...…18

Figure 3.2.4 Read replica of internal corporate LDAP server in cloud………………..…...18

Figure 3.2.5 Flow chart for SSH authentication with MFA…………………..……………20

Figure 3.3.1 Standard Cloud setup with a bastion node…………………………….…..…. 21

Figure 3.3.2 Initial PoC……………………………………………………………….……22

Figure 4.1.6 Scanning the QR code…………………………………………………….......37

Figure 4.1.7 Time based token generated……………………………………………….…37

Figure 4.2.1 Password based authentication to the application ………………….Appendix II

Figure 4.2.2 Add new users to the system ………………………………………Appendix II

Figure 4.2.3 Generate QR code for the specific user …………………………….Appendix II

Figure 4.2.4 Add/Remove users to/from groups…………………………...…… Appendix II

Figure 4.2.5 Delete users from system …………………………………………..Appendix II

Figure 4.2.6 View all the users in the system ……………………………………Appendix II

Figure 4.2.7 View users in each group………………………………………….. Appendix II

Figure 5.1.2 Local scaled down setup for testing…………………………………...….….30

Figure 5.1.3 LDAP user store…………………………………………………..….………32

Figure 5.1.4 Creating a new RSA key pair………………………………….…Appendix VII

Figure 5.1.5 Existing user LDAP schema ………………………………..……Appendix VII

Figure 5.1.6 Adding a new user to LDAP……………………….……………Appendix VIII

Figure 5.1.7 New user added to LDAP successfully…………...……..………Appendix VIII

Figure 5.1.8 New user in LDAP user store………………………………........Appendix VIII

Figure 5.1.9 LDAP modify user OU………………..………………………………...…....33

Figure 5.1.10 LDAP modify user OU command line…………………….....……………..33

Figure 5.1.11 Change user’s OU…………………………………………….……………..34

Figure 5.1.12 Auth Failure…………………………………………………….………...…34

Figure 5.4.1 SSH with password, key, LDAP Password, LDAP key……………………...40

Figure 5.4.2.1 SSH with password………………………………………………………....41

Figure 5.4.2.2 SSH with key…………………………………………………………….…41

Figure 5.4.2.3 SSH with Password in LDAP………………………………………….…...42

Figure 5.4.2.4 SSH with key in LDAP…………………………………………………….42

Figure 5.4.3.1 SSH with password…………………………………………………….......43

Figure 5.4.3.2 SSH with key………………………………………………………………44

Figure 5.4.3.3 SSH with Password in LDAP……………………………………………...44

Figure 5.4.3.4 SSH with key in LDAP……………………………………………………45

List of tables

Table 2.1 Comparison between password and key based authentication……………….….7

Table 2.3 Kerberos Notation……………………………………………………………......8

ix

Acronyms and Abbreviation

IAM Identity and Access Management

SSH Secure Shell

LDAP Lightweight Directory Access Protocol

VNC Virtual Network Control

RDP Remote Desktop Protocol

SFTP Secure File Transport Protocol

SCP Secure Copy

Rsync Remote sync

X11 X windows System (11 th version)

AES Advance Encryption Standard

RSA Ron , Shamir and Adleman (Name of a public key cryptosystem)

PKI Public Key Infrastructure

NAT Network Address Translation

MFA Multi Factor Authentication

ACL Access Control List

TCP Transmission Control Protocol

DMZ Demilitarized Zone

VPN Virtual Private Network

AWS Amazon Web Services

IoT Internet of Things

NIS Network Information Service

NSS Name Service Switch

PAM Pluggable Authentication Modules

VM Virtual Machine

OU Organizational Unit

LDIF LDAP Data Interchange Format

QR Quick Response

API Application Program Interface

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

1

Chapter 1: Introduction

1.1 Preamble

Identity and access management (IAM) has become an essential requirement and security

discipline for almost all nowadays information systems. It expects to manage users, groups,

policies, privileges, authentication and authorization within the domain or with deferent

federated domains. IAM is crucial to establish well defined security policies within any

organization or system. It is essential and beneficial in ensuring security of the assets, cost

saving, management control, operational efficiency and business growth. It provides the right

access at the right time to the correct person. Organizations have to manage access to

resources such as information applications, devices, servers across internal and external

platforms. At the same time, providing access and managing number of rapidly growing user

identities efficiently without exposing or uncompromising security information is very

important. To cater these requirements, use of centralized access and identity management

solutions are becoming an immerging trend in most of the organizations. The advantage here

is administrators can easily control access to the systems without having to change many

properties in different entities or different systems and avoid any repetitive work. Also it helps

to track the existing user information, level of access users have and historical information.

In this project the main focus is on centrally governing and managing key based SSH

authentication to a large scale, remote, Linux based servers using a centralized authentication

management system. The need of implementing centralized key based authentication system

emerged because the current, default SSH authentication management methods does not

provide such centralized key based authentication solutions. Hence, another user information

and identity management system has to be integrated with SSH. One of the most common

directory access control systems, LDAP is used in this context to manage users and identities.

Additionally, the proposed system is integrated with multifactor authentication mechanism

which ensures the secure accessibility for authorized users only and prevents any security

breaches due to theft of device or unauthorized access.

2

1.2 Brief Overview of the Project

1.2.1 Approach

This is an implementation project, in which a working system will be the final outcome

compared to a research oriented project. The final outcome of this implementation is not just a

prototype and it also provides an enterprise level solution for a real world problem, discussed

in section 1.3. In this context, we are specifically focused on implementing production

integration for a real world cloud based deployment.

Based on the suggested ideas in the initial project proposal and considering the final

expectations, the very first step was to identify the problem ahead correctly and define the

scope (discussed in chapter 1, section 1.7). To achieve this, how existing systems works and

their limitations were identified at the very beginning. Next step was to follow the available

literature on the defined scope (centralized SSH authentication management mechanisms)

(discussed in chapter 2). Since this project is more towards to an implementation project,

research type literature on the proposed topic was limited. But published papers, articles and

definitive guides on underlying core design principles, specifications and protocols were

followed in order to identify the optimal and most feasible solution for this implementation.

Also suggestions and implementation ideas were mostly found in blog posts and forums. They

were well reviewed and then found certain missing points, broken blocks in the flow and

some were incomplete stories. Thus some tryouts and different attempts were made to

develop the intended solution. Other main objective was to use open source tools to

implement the suggested mechanism. Out of the currently available options, OpenSSH was

identified as the remote server connection protocol (discussed in chapter 2 2.2). Public key

based authentication is used as the authentication mechanism (discussed in chapter 2.2.2).

OpenLDAP was identified as the most scalable and reliable open source user information,

metadata and identity information manager for this use case (discussed in chapter 2.3.3).

Google Authenticator application is also integrated to this system to provide multifactor

authentication which provides additional layer of security (discussed in chapter 2.4).

1.3 Problem Domain

There are couple of ways to authenticate SSH (Secure Shell) in Linux based environments.

They are discussed in chapter 2. But SSH protocol itself does not provide any built in

centralized authentication and management mechanism. Managing large number of users and

their identities, credentials is not an easy task for system administrators with default available

SSH user management mechanisms. The approach of this implementation is to integrate a

centralized authentication and management system which helps to store user credentials and

to authenticate authorized users to other systems. The importance of this kind of integration

system is the manageability and the scalability. It also provides individual access credentials

and avoids sharing common credentials among users. On the other hand a centralized system

allows adding, altering and revocation of permissions easily. To provide a manageable

centralized authentication mechanism in Linux based environment, system administrators

commonly use user stores such as LDAP or ticket granting systems like Kerberos. When we

consider above requirements and different SSH authentication types, the more secure and

recommended method is public key based authentication (further discussed in chapter 2). This

implementation is based on how to develop a workable, scalable, secure, centrally managed

Public key based SSH authentication system for a remote cloud based environment. Even

with key based authentication, if the keys are compromised or in a theft of device situation,

that will create a security issue. That concern is also addressed by providing two factor

3

authentication to access the remote system. There are multiple challenges such as how this

mechanism can be utilized for different cloud based scenarios and how this can be effectively

used in an auto scaled, remote server based environments (discussed in detail in chapter 3).

Also security is very important and how to achieve security by following different approaches

is concerned here.

1.4 Motivation

The main motivation behind this project is to find a solution to a common problem by

integrating existing resources. It also needs new feature development work and research work

for analyzing the feasibility of the integration. After the prototype is successfully tested on a

test environment, it is supposed to be practically implemented. The practically applicable

environment for this project implementation is selected as my current work place, WSO2

Lanka (Pvt) Ltd. Hence there is a good motivation factor where, upon success of the research

and implementation, it will be realistically used for day to day activities as a solution to the

previously mentioned problem domain.

The other major motivation is addressing a problem that is very important for a cloud based

environment. Now the modern trends and design principles of most IT systems takes the

cloud based approach and the concept of on premise data center is getting obsoleted. Due to

many reasons (discussed in chapter 2.6) most of the organizations and institutes tend to use

cloud based systems for their IT related operations and still the security and accessibility has

to be addressed specifically within these types of deployment solutions.

1.5 Aims and objectives of the Project

The primary objective of this project (as stated in the project proposal) is to implement a

secure, manageable and scalable SSH authentication mechanism to remote severs for a cloud

based environment. That includes using a user and key management features where identities

are managed centrally.

The key deliverables of this project are listed below.

 Store and manage all user specific information (user name, public key, group etc.) in a

directory service (In this case, OpenLDAP is used).

 Integrate remote Linux servers to work and use data stored in LDAP server for

authentication.

 Create user home, shell, and other information upon initial login.

 Revoke, edit update user permission as per the requirements.

 Manage and identify the users and their level of access.

 Enable multifactor authentication.

 Design a user interface to easily manage all the administrative tasks.

4

1.6 Methodology

Initial research and readings were done on, how a directory service server can be used as the

public key holder while a remote SSH server checks a specific user’s validity by verifying the

information provided by the user or the client program at the login. It focuses on what

attributes, characteristics and capabilities of OpenSSH and OpenLDAP integration can be

used to accomplish the expected goals. The main approach here is to find out how the SSH

key based authentication can be integrated with a directory service such as OpenLDAP which

can manage users, attributes and public key etc. That gives the capability to build a centrally

managed identity management system. Then during authentication process, remote server can

verify user’s authenticity against the information stored in the directory service. That is the

authentication part.

Next part is the authorization. That can be done by validating other metadata in the directory

service. This will enable different access levels to different resources. This approach provides

a huge advantage that, no user related keys or information need to be pre stored in the remote

server because they are managed within the directory service integrated with SSH. This is a

major requirement in auto scaling environments.

Next is to develop an interface to manage existing users in LDAP to add to the SSH allowed

user groups etc. It should allow all administrative actions such as adding, removing and

editing uses. That interface also makes it easy to track details of users operated within the

system.

1.7 Scope of the project

In this implementation LDAP is used as the centralized directory information service to

manage and store identities. The well-known Kerberos protocol is not selected here due to

many reasons and that is explained in chapter 2.3.2. The addressed scope is related to a real

world industrial problem. Finding an optimized, manageable, and scalable secure solution is

the main objective. That becomes this implementation more related to a practical

implementation than an evaluation prototype. Reviews on manageability and security will be

carried out for the proposed method. Also it will be discussed how secure the suggested

approach, what security vulnerabilities can rise and elaborate how the manageability becomes

easier with the proposed system. Also performance evaluation will be done to compare the

proposed system with other systems. The deployment is designed and aligned towards a cloud

based approach. In this entire project, OpenSSH is used as the SSH protocol. OpenSSH is an

open source protocol which provides encryption for network related operations like remote

login and remote file copying [1]. The defined scope includes enabling multifactor

authentication to enhance the security. OpenLDAP is used as the central user and identity

management service.

5

1.8 Overview of the report

Chapter 2 (Literature Survey and the Background) provides the literature related to the project

and the overall research methodology used in the project. There a compare and contrast of

different technologies and protocols (SSH, LDAP, Kerberos and different authentication

methods) associated with the core implementation of the project is carried out and given facts

in an analytical manner why the proposed solution is suitable and the practical approach of it.

Chapter 3 (Design of Solution) describes the design principles followed for this

implementation and the advantages of them. It specifically focuses on a cloud based approach

and how each component (LDAP and Public Key, Google Authenticator etc) is integrated to

provide the final outcome is explained there.

Chapter 4 (Implementation) is based on the configurations and integrations done for the

project. It shows the customizations, scripts used and basic functional operations and how

they work.

Chapter 5 (Results and Evaluation) show what are the test plans carried out to test and

validate the implemented system and based on the test results, a proper evaluation and a

validation is done. This includes functional tests can performance tests. The evaluation is

based on different criteria and different reference systems have been used for evaluating the

proposed system.

Chapter 6 (Conclusion and Future Work) is a recap of the proposed solution and how it was

achieved. It describes up to which extent the deliverables and outcomes were completed and

what will be done as future work to improve the quality and the security of the project.

6

Chapter 2: Literature Survey and Background

2.1 Remote Login mechanisms

With the origin of networking concepts and networked systems, requirement of remote access

and communication systems became essential to access them remotely and work remotely

with those services. People could work from different geographical locations without being

need to be physically present near the device by using remote login mechanisms. Then, with

the growth of technology, requirement of security too came up. That emerged lots of concerns

regarding identity management and securing assets of any organization. Different protocols

and practices were introduced to cater those requirements. There are some common remote

access protocols widely used by developers and administrators [2].

Remote CLI tools

 Telnet

 rlogin

 SSH

Remote Desktop

 VNC

 Microsoft RDP

 Citrix

In this context the focus is on most commonly used remote login mechanism, SSH which is

highly associated with Linux based environments. The easiest and most efficient way to

access the remote Linux based servers is to use SSH. The protocol SSH (Secure Shell) creates

an end to end encrypted channel for logging into a computer in a network and allows running

commands on a remote computer. More details on SSH is discussed below.

2.2 Standard OpenSSH based access

With the growth of the security awareness, for most operations engineers and developers tend

to use SSH protocol as secure and easy to access mechanism with encryption, for their remote

server communications. SSH protocol can be used to provide encryption through tunneling for

the protocols that do not provide encryption by themselves. SSH is also used in its associated

protocols like SCP, SFTP, rsync etc. Basic introduction to SSH authentication mechanisms

are given below. OpenSSH is selected as the protocol to establish the remote connectivity

since it is completely open source and use strong cryptographic algorithms (AES, RSA etc).

Also it provides X11 forwarding, port forwarding, agent forwarding, strong authentication

mechanisms. Also it can be integrated with additional extension such as Google Authenticator

etc. These features are essential in the requirements of this project.

2.2.1 SSH Authentication mechanisms [3]

 Password based authentication

 Public key based authentication

 Host based authentication

 None (not recommended)

7

Each of them has both advantages and disadvantages. We can differentiate the two most

common authentication methods Password based and Key based authentication as given in the

table 2.1 [4],[5],[6].

Password based authentication Key based authentication

To make the password more secure, it has to

be long and composed of random characters

(upper/lower case), numbers and symbols.

But those types of Passwords are difficult to

be remembered and can be easily forgotten.

Then it has to be written down somewhere,

which is also not secure.

Don’t have to be remembered. But has to be

protected. (This can be done using a

passphrase). Still passphrase has to be either

remembered or write down somewhere. Can

be secured using multifactor authentication

which provides resistance to theft or

compromise of the private key.

Weak passwords can be guessed or cracked

(using dictionary attack or brute-force attack)

SSH keys are generated using RSA algorithm

and highly unlikely to crack since it is a

unique string.

Even SSH sends the password in a secured

channel, can be captured if the remote host is

compromised (fake servers may be providing

bogus logins) [7]

In key based authentication, private key

remains within the client and no sensitive

value is sent to the server. PKI creates a

secure mechanism for session key exchange.

A strong password that can be remembered is

good. Hence a remembered strong password

is highly unlikely to leak.

Key files are stored in client machine and if

not protected by a passphrase compromised

or stolen client machines can be really

vulnerable.

Table 2.1 Comparison between password and key based authentication

Based on above facts it can be concluded that the more secure SSH authentication method is

using keys than using passwords. That is another main reason why Public key based SHH

authentication is selected in this project.

2.2.2 Public Key Authentication in SSH protocol

Public key authentication is based on asymmetric key encryption. The client will generate a

pair of keys known as public and its corresponding private key. The private key is only known

to the client and the public key must be known and authorized by the server. When client

wants to connect a specific user in a remote server, it proves to the server that it has the

corresponding private key that matches the public key authorized and known by the server

[8]. If the verification is success, user will be authenticated.

2.3 What other authentication protocols available

2.3.1 Kerberos

Kerberos is an authentication system implemented by using a ticket granting mechanism for

authenticated users. It was originally developed by MIT for the project of Athena [8][9].

Kerberos follows the symmetric encryption and trusted third-party concept. It is different

from the public key infrastructure model. But the latest version (v5) is improved to work with

asymmetric encryption functions. The main objective of Kerberos is not to send the password

through the network, instead it uses the password hash check from both side of the connection

and password itself is used to encrypt, decrypt (symmetric) the encrypted password hash.

8

Normally this process is called Kerberos ticket granting process. The ticket granting concept

can be explained as follow. Table 2.3 provides notation related to the figure 2.3

Notation

Client Machine

Services Server

Key Distribution Server

Private Key for “ ”

Session Key for the Client
Session key for the Services Server
Client IP

 Table 2.3 Kerberos Notation

Figure 2.3 Kerberos Authentication [10]

The three main things in Kerberos is Kerberos client, Kerberized services and the KDC (Key

Distribution Service). The KDC maintains all the passwords in a single location. When a user

tries to authenticate, it doesn’t send password in clear text.

Kerberos contain principles made of users and services. The KDS stores a secret encryption

key for each principal. The keys are created by system administrators and they are only shared

within the principle and the KDC. If a packet comes encrypted using this key, then principle

can trust that it came from the KDC. KDC’s private key is used to assure the integrity of the

authentication. In the diagram depicted in figure 2.3, blue keys are used for users and red for

9

the services key and KDC’s key is given in green. It is obvious that a packet encrypted by

KDC with user key can be decrypted by the user. The use of this key is to share a session key

which is not permanent within user and KDC. The significant fact that is used here is anything

encrypted that comes from KDC is trusted by the principle. The important thing is, each

principle trusts that anything encrypted with its private key comes from KDC. Any encrypted

packet that comes from user which is encrypted by services private key is accepted as an

authenticated packet since only KDC can send that to user.

When a user logs into a device with user name and password, a packet will be transmitted to

KDC requesting a ticket granting ticket (TGT). You need a valid ticket to access a resource

because it proves your identity. The user principle will then start to use this TGT to receive

tickets for all of the services it wants to access. But to avoid a stolen key being misused, these

tickets do have an expiry time. KDC can check user’s validity by checking him in its user

principle database and then create a TGT. This contains the users name, the KDC name, the

client IP address and the new key called the session key. Then KDC encrypts all these

information with his private key and send to the agent. This cannot be read by the client. The

KDC then sends a packet that contains TGT and another copy of the session key. This is

encrypted with the users’ private key. The client uses his private key (which is the password

typed in when he logged into the machine).

Now client generates an authenticator which contains his user name, IP address and the

timestamp. This authenticator is encrypted by the session key it just received from KDC.

Then the client generates a packet which includes the unopened TGT, the authenticator and

the name of the requested service and sends the packet to the KDC. Then KDC decrypt the

TGT, and that proves it hasn’t been opened. KDC can use the TGT to check the info on the

authenticator. By this time KDC can trust the identity of the user where KDC sends a service

ticket to the client. The service ticket is a time stamped one and it is valid only for a given

period of time and valid only for that specific session only. This ticket contains the user name,

the service name, the IP of the client computer and the new session key. Next KDC uses the

services’ private key and encrypt this ticket. Client cannot open or modify this encrypted

ticket because he doesn’t have the services’ private key. KDC now put this ticket and the new

session key and encrypt that with the previous session key and sends to the client. Client then

decrypts the packet, gets the new session and encrypt a new authenticator and sends it to the

service. Service can use its private key to decrypt the service ticket. Upon successful

decryption the service can confirm that this must have come from the KDC because he is the

only one to have the services’ key. Service can then open the authenticator using the session

key and get the information is the authenticator to verify. Upon successful verification the

service sends back an acknowledgement to the user and the user is authenticated to the

service.

2.3.2 Why Kerberos is not used

As discussed above, Kerberos is based on passwords and it was critically analyzed and shown

in chapter 2.2.1 that the password based authentication is insecure because password can be

guessed and due to other vulnerabilities associated with passwords like dictionary attack or

brute force attacks. In the paper [11] it has discussed in detail that there are known

vulnerabilities and weaknesses in Kerberos. Some of them are as listed below.

 Replay attack

 Secure Time Services needed

 Password guessing attacks

 Spoofing login

 Inter-Session Chosen Plaintext Attacks

10

At the same time if the Kerberos server gets compromised, then that will fail the entire

security infrastructure related to access. To avoid that, Kerberos (as the centralized

authentication server) has to be managed with intensive care, high security and high

availability. So even though Kerberos can be used for this requirement, which provides

authentication and integration with SSH, there are some other disadvantages compared to

LDAP and hence Kerberos is not evaluated in this implementation. Detailed analysis is done

on why LDAP based public key authentication is better than the Kerberos TGT mechanism

correspond to the selected scope.

2.3.2 Comparison between Kerberos and Public Key based authentication.

We have already discussed about the public key infrastructure and how that works. But to

authenticate user to the server, Kerberos protocol can also be used. Kerberos also provides

centralized authentication and manageability features. Also in literature referred [11] it was

found that “Kerberos is not effective against password guessing attacks; if a user chooses a

poor password, then an attacker guessing that password can impersonate the user. Similarly,

Kerberos requires a trusted path through which passwords are entered. If the user enters a

password to a program that has already been modified by an attacker (a Trojan horse), or if

the path between the user and the initial authentication program can be monitored, then an

attacker may obtain sufficient information to impersonate the user. Kerberos can be combined

with other techniques, as described later, to address these limitations”. Some of the other

challenges in using Kerberos are given below.

 Firewall and NAT issues.

 Number of Ports need to be opened to configure Kerberos.

 Configuration issues (many configurations, need special knowledge).

 Dependent on time service.

In summary, it can be concluded that the security of Kerberos depends critically on

synchronized clocks. Also Kerberos protocols mandate mutual trust among the client, server,

authentication server and time server which has to be well secured to assure the reliability of

the Kerberos based authentication.

2.3.3 OpenLDAP as the identity and the user meta data manager.

OpenLDAP is an open source version of lightweight directory access protocol which is

mostly used with Linux based environments. Some of its native features are given below.

 IT can be used to store people and other organizational attributes.

 It helps to manage different resources and in this context it is mainly used as identity

manager.

 It can be integrated with many other programs.

 Since LDAP is a centralized information holder, it’s easy to keep all user data in one

storage than maintaining many.

 It helps to easily add remove edit different users and attributes and also group them,

which provides much more manageability.

 Many other programs contain libraries that can be integrated with OpenLDAP which

makes integration easy.

 It is highly read optimized and that provides efficient read access to other systems to

the LDAP server [12],[13].

11

2.4 Multi-factor authentication

Multifactor authentication (MFA) is a commonly used security best practice related to most of

the modern systems which provides additional layer of security. It could be something user

has with him (authenticator app or security token), something user knows (password or

security question) or something that is uniquely identified for the exact user (fingerprint or

voice). In most IT systems, token based MFA is mostly used with username and password

authentication. When token based multifactor authentication is enabled, an authentication

code is prompted as soon as the user provides the correct username and password. Each

individual user has to have a separate token and they usually generated by a token generator.

These token generators comes in both virtual and hardware format. The well-known RSA

SecureID
®
 [14], RSA SecureID Software token and Google authenticator [15] are couple of

examples. Both hardware and software tokens are used and using software token is much

easier because it comes as a mobile app or desktop application.

In this implementation, Google authenticator app is used as an additional layer of security

other than key based authentication. The main advantage is even though an unauthorized user

gets access to the private key of the user or if the LDAP server gets compromised, still there is

an authentication barrier that the malicious user has to pass. Since this is mostly included in a

mobile device, getting access to the mobile device is again difficult for the attacker. This is

integrated to the system by making the remote bastion server MFA aware. SSH server need to

be configured with libpam-google-authenticator installed [16]. The token can be configured

either time-based or sequential-based. In this context, time-based token method is used and a

random code is generated timely.

2.5 The Bastion Concept

When it comes to providing access to a remote deployment, it is the best practice of any

system administrator not to open the application servers directly to internet for people to

access. He should expose only the ports required and others ports should be closed by default

to avoid security breaches or attempts. One of the best approaches to provide secure SSH

access to remote servers is to use a bastion host. Bastions hosts are setup in the public subnets

and they are typically accessed using SSH or RDP. It can be used as a "jump" server which

allows SSH or RDP to other internal servers. Once this is configured with proper security

standards (listed below), it works as a bridge/gateway to the internal private subnet [17],[18].

 Setup firewall rules and network ACL and open only the required ports and allow only

from the specific hosts (Only from your organization is recommended).

 It is strictly advised not to store SSH private keys in bastion hosts and keep them

securely in user machines only.

 Instead of storing private keys in bastion host use SSH agent forwarding to connect to

nodes in the private subnet by using bastion as a jump box.

 Harden the operating system as required and avoid running any other applications or

services on bastion host to avoid both potential internet and intranet based attacks.

 If there are services run by default or any port open by default and that is not required

for the base functionality of the bastion host, stop them and deactivate from Linux

service level to avoid them starting back upon a server restart. This will help to

minimize any potential attacks from outside and exploiting zero day attacks.

 Setup SSH-Agent forwarding (For Linux) or Remote Desktop Gateway (Windows)

[18]

12

 It is advisable always have more than one bastion host (A high available setup) that is

reliable for possible disruptions because bastion is the only host you have to access the

remote environment.

 The firewall should only accept SSH protocol (TCP port 22) in specific to this case

study and the instances also should only accept SSH and that is only from bastion

host.

Also, if a VPN is not used, we need to have a bastion server to secure the environment.

Otherwise all the applications servers has to have a public IP (assuming the application

servers are setup in a remote cloud) to connect to them remotely. Exposing application servers

to public internet is highly insecure. Hence the easiest way is to use a bastion host which is

deployed in the demilitarized zone (DMZ) and allow users to access the internal application

servers through the bastion host. Thus bastion server concept is mostly used in cloud

environments.

Figure 2.4.1 A typical cloud deployment with a bastion node

Figure 2.4.1 shows generic cloud deployment network architecture. This is the deployment

pattern that is used as the example environment for the implementation in the project. This

deployment pattern uses a bastion server as the intermediate device that connects the user to

any cloud server. Application deployment network is isolated and secured by making it a

private subnet and SSH access (in this context we do not discuss other access requirements) is

provided to the application hosting nodes through a bastion servers [18].

In order to provide additional security, there are many advantages in using a direct VPN

connection to remote cloud servers. A typical VPN connection looks below (figure 2.5.1).

13

Figure 2.5.1 VPN between corporate datacenter and the cloud

A VPN connection provides end to end secure tunnel and normally established between the

organization’s corporate data center and the remote cloud. Since VPN is a secure private

channel, there could be an argument that a bastion host is not required and users can directly

SSH to the remote environment. This has both advantages and disadvantages.

Advantages

 No bastion host is needed and setup and maintenance effort for a bastion host is not

required.

 Users can directly connect and also copy files and create tunnels to remote servers.

 No need to do SSH forward agent.

Disadvantages

 If no bastion is used then remote application server’s SSH port (22) has to be opened

at least to the corporate data center through the VPN and that could lead to potential

try out of attacks.

 It is going to be very difficult to maintain server IP addresses in client side and

everyone has to know the remote sever IP addresses and if they are changed, everyone

who connects to the remote environment has to alter the IP addresses in their

configuration files (usually in the ~/.ssh/config file) each time a new server starts or an

existing server get terminated. But if a bastion server is used, host aliases has to be

maintained only there and that is lot more manageable than changing configurations

within lots of users.

These issues can be easily addresses in an auto scaled environment by using a bastion host in

this context. Because in a fully automated, high available clustered environment, servers are

14

terminated and new servers are started regularly and the new servers usually gets a different

IP address. If a single bastion host is used then it is much easy to automate the host aliases in

bastion to get automatically updated using scripts than they are updated in each client’s

machine. Hence clients (simply referred to the remote user machines) only need to know the

bastion hosts SSH configuration information and, bastion will have all the private subnet

hosted information within its SSH configurations. That is another aspect addressed in this

project. So using a bastion host with a VPN is much more secure and that avoids opening

bastion host directly to the public internet.

2.6 Using a cloud based approach

Even computer and information related technologies grew up rapidly during past few decades,

most of the IT solutions were deployed in-house data centers and they were managed by the

same organization. But with the immerging cloud based technologies, this growth became

exponential and many organizations, institutes moved fully or partially (cloud based extended

data center concept) to cloud based technologies. Not only that instead of their own managed

systems, third party managed solutions became much popular and outsourced projects with

different scales became more manageable and profitable with support of more professional

business IT solution providers.

“Traditionally organizations have looked to the public cloud for cost savings, or to augment

private data center capacity. However, organizations are now primarily looking to the public

cloud for security, realizing that providers can invest more in people and processes to deliver

secure infrastructure.” Google Security Whitepaper [20]

With these new cloud technologies, access and identity management, authentication,

authorization became much more concerned factor and at the same time they needed to be

scalable and manageable too. Because earlier most servers and systems were managed by a

separate person or a role commonly known as systems administrator and others were not

allowed to connect to server back ends. But modern agile development methodologies involve

not only systems administrators, but also developers and some other roles in the development

lifecycle need to have access to the systems and servers to a certain level with control. Early

days physical servers, server racks were used and they had permanent IP address assignment

in operations level. But in modern cloud based systems, the presence of a physical server is

replaced by virtual machines or containers which make an IP address is not distinguished

anymore. It could change at any given moment with the features like auto scaling. The

ultimate requirement is users should seamlessly be able to connect to them at any given

moment for different backend operations.

15

2.7 Background

The initial idea for this project came related to a requirement forth the remote access for the

author’s organization, WSO2 (Pvt) Ltd, which is a middleware company which provides open

source middleware solutions. Currently WSO2 provides a cloud solution for API

management, identity management, integration and device management (IoT). This cloud is

managed by WSO2 Operations team. This public cloud contains more than three hundred

remote servers hosted in Amazon Web Services (AWS). The production environment and its

staging environment is regularly accessed by Developers, Dev-Ops for development work,

debugging, push artifacts, configuration changes, apply patches and upgrades. It’s not just

only connecting over SSH, developers and operation team will be using other associated

protocols such as SSH tunnels, SCP and r-sync for cloud operations. Hence there has to have

a proper access control mechanism for system administrators to grant and revoke SSH access

to the developers time to time. Not only that, it shouldn’t be a difficult process and it should

be scalable at the same time. Because in a cloud based environment scalability is very

important and servers could get terminated and new servers could start at any moment.

Currently system administrators use key pairs and provide users with relevant information and

users use those keys or passwords to authenticate to a remote server. This is the current

scenario used by WSO2 in the public cloud context to authenticate developers to the remote

WSO2 Public Cloud servers. SSH access to the servers in public cloud is only allowed to the

WOS2 employees (Developers, System administrators etc). Systems administrators have to

provide passwords or add user’s public keys to the remote servers and remove them time to

time. This process is cumbersome and managing users (adding new user, changing exiting

user, revocation of permission) is difficult and not tracked properly. Also administrators

sometimes have to create and share common keys among users and that cause the

accountability issues on who access the system and unable to trace. Another issue is, in an

environment where servers auto scale, existing servers may be terminated and new servers get

started. So system administrators have to configure each new server with access information

for each user. This implementation addresses that issue and provide a simplified solution.

16

Chapter 3: Design of Solution

3.1 Functional and Nonfunctional Requirements

In this chapter, the core concept of the implementation is discussed with proper diagrams and

relevant explanations. The principles and concepts used in this chapter were discussed in

detailed in chapter 2. More readings in detail can be found in the relevant reference materials.

The major requirements and good to have features are discussed here.

3.1.1 Functional Requirements

Functional requirements of this project can be identified as below.

 Centrally manage user identities within LDAP server. This is one of the major

requirements as discussed earlier and suggested implementation will use LDAP as the

central identity management service and it will act as the identity and users attributes

storage such as username, home, login shell and public key.

 Use Public key based SSH authentication. This approach use the most secure SSH

authentication mechanism.

 Enable multifactor authentication at user creation to provide an additional security

layer.

 Avoid storing any user specific configuration on remote SSH nodes and create user

attributes etc. upon initial login to support auto scaling capabilities.

 Add, remove, update, and revoke users and corresponding privileges centrally.

3.1.2 Non-Functional Requirements

Non-functional but optional requirements can be identified as below.

 To be able to work with a jump box (bastion) use case and all the authentications

should happen through the key based login.

 User friendly interface to add, remove, update, revoke users and corresponding

privileges.

 Secure connectivity between the server and the LDAP server.

17

3.2 General Deployment Architecture

3.2.1 Use internal corporate LDAP server

 Figure 3.2.1 SSH authentication with LDAP on corporate data center

The setup on figure 3.2.1 shows how the client machine, remote cloud server and LDAP

server can be arranged. In this design pattern, LDAP server is hosted in corporate data center

and this will need remote server to be able to connect to the corporate data center hosted

LDAP device. This has some security issues. Because this design pattern allows cloud

environment initiated connection to be established with the internal data center. If this

happens through public internet directly, that is not a well-accepted security best practice. If

this kind of setup is used, it is always advisable to create an end-to-end VPN with client data

center and the cloud. Also this is not recommended in a setup like in figure 3.2.2 where when

there is a bastion server in the setup. In that kind of setup the purpose of using a bastion host

in DMZ subnet and applications in an internal private subnet is to tighten the security of the

environment. So we have to move the LDAP server into the cloud environment. That is

depicted in figure 3.2.3.

 Figure 3.2.2 Bastion and internal servers authenticated via corporate LDAP server

18

3.2.2 Use external cloud LDAP server

 Figure 3.2.3 SSH authentication with LDAP hosted in cloud

According to this setup the LDAP server is hosted in the remote cloud itself and no need to

open connections from outside other than for SSH protocol communication. The main

concern here is to secure the LDAP server and manage. Normally most organizations keep a

read replica of the directory server in remote cloud if the same directory server is used

internally and externally for identity management. So that setup is depicted in figure 3.2.4.

Since this is a read replica, that assures no one writes to that other than the master.

3.2.3 Use a read replica of internal corporate LDAP server in cloud

Figure 3.2.4 Read replica of internal corporate LDAP server in cloud

The figure 3.2.4 depicts the suggested implementation use case in its simplest form. The main

components are SSH Client, SSH server and the LDAP server. The communication channels

taken place in the login process is listed below.

19

1. OpenSSH client initiate the login request

2. OpenSSH server query the LDAP server for matching users public key

3. LDAP provides the public key to the OpenSSH server

4. Upon validation, login is accepted or rejected

Step 1 and 4 are the standard procedures while this implementation focuses more on step 2

and 3. In the default SSH authentication, once the SSH agent initiate the authentication

request, client and server need to discuss the authentication specifications. First client and

server agree on the SSH protocol versions and algorithms. Then the server presents the

server’s host key (only first time) and if it is for the first time login attempt, client has to

accept the host key and if not, the client verifies the identity of the remote host. Then client

and server agree on the Key exchange protocol. And out of available authentication methods

it selects the public key. Then the SSH RSA key validation happens checking with the

available public keys in the authorized key file. Once this is completed, a session key is

generated. Then the secure channel is established.

Above is the standard SSH key based authentication procedure. But in this implementation we

avoid storing the public key at the remote host’s authorized_key file and the approach is to

query it from the LDAP server. How this can be done is one of the research approaches in this

implementation. The other research aspect is storing the user’s public key associated to a user

attribute in the LDAP server. When a user is trying to SSH, based on the user name the SSH

server is expected to pick the public key from the LDAP server querying the user by his user

id. Then the standard SSH authorization happens.

3.2.4 Multifactor integration

For multifactor authentication, Google authenticator application is used and user needs to

provide the correct token (six digit code) when authenticating to the bastion server. At initial

user creation a quick response code is generated using Google authenticator and user needs to

scan the code from his mobile app and store the token. These token details are then stored in

the LDAP server per each user. Upon user creation, the token information configurations are

written to the user’s configuration file in his home directory. This will ensure user is able to

login to the bastion server with the related token he observed when the account is created.

3.2.5 User login Flow

The diagram given below (Figure 3.2.5) clearly shows the flow of authenticating a user to

bastion and from there to an internal private server.

20

Figure 3.2.5 Flow chart for SSH authentication with MFA

21

3.3 Design patterns for a Cloud

The core implementation is discussed in previous section. But to implementing this in a larger

scaled, enterprise cloud specific environment, it needs to be aligned with a proper design. This

section shows the intended pattern used in this implementation and how it is used in a cloud

based environment.

3.3.1 Design for a cloud based environment with a Bastion server.

This design pattern (Figure 3.3.1) shows the deployment architecture for a cloud with a

bastion host and set of internal private servers. Bastion host is kept in the DMZ or the public

subnet and that is the only entry point to the cloud for SSH access. Then anyone who is an

authorized user to bastion server will then be able to access the internal servers via SSH. In

this deployment LDAP server is deployed in the corporate data center because it needs to be

protected against external attacks.

Figure 3.3.1 Standard Cloud setup with a bastion node

3.3.2 Initial Proof of Concept

An initial proof of concept was carried out to check the feasibility of the implementation since

it is very important to put effort on a project that is potentially beneficial much upon success.

A test environment (depicted in figure 3.3.1) to test the SSH and LDAP integration was setup

22

using two virtual machines. This design has two Linux Ubuntu 14.04 LTS server version

virtual machines running on Oracle Virtual Box. One server hosted the directory service,

LDAP and the other was used to emulate the remote server with SSH server. Local machine

SSH client was used as the local user device. The two virtual machines are able to

communicate within each other via internal network or host only adapter and the host

machine can use the same.

 Figure 3.3.1 Initial PoC Setup

23

Chapter 4: Implementation

The real implementation of the project is discussed in this chapter. That includes how the SSH

and LDAP integration is done in the system and the communication implementation, how

does the LDAP store the user’s public key and how the Google authenticator is used for two

step verification. Also the user interface and features are discussed in this chapter.

4.1.1 SSH and LDAP integration

As per the design, the SSH server needs to get the user’s public key since it does not store it

within authorized key file. To get the users public key from LDAP, SSH should support this

functionality and it should have an inbuilt method for that. But the current OpenSSH protocol

only supports password based LDAP integration, where it can fetch the user password from

the LDAP server. Still fetching public key from another location is not supported as an inbuilt

function. Hence we have to use an alternative method. In this context we discuss how we can

use currently available features of SSH to query LDAP server and what other additional

customizations do we need to do to get the requirement implemented.

4.1.3 Configurations and customizations need to be done in SSH server

The SSH server needs to do LDAP queries and for that ldap-utils package has to be installed,

which allows to do LDAP quarries using ldapsearch command in system level.

SSH has set of authentication techniques available inbuilt to that. These techniques can

control many behaviors of SSH authentication by setting values or enabling or disabling. In

this case SSH AuthorizedKeyComand and AuthorizedKeyCommandUser is used to

integrate with LDAP and run LDAP quarries in system level.

Use of AuthorizedKeysCommand

This feature in OpenSSH allows running a defined command or a script during SSH

authentication. In this implementation, the advantage of the AuthorizedKeysCommand is

used to specify a program to be used for lookup of the user's public keys. The program will be

invoked with its first argument as the name of the user being authorized, and should produce

on standard output AuthorizedKeys lines (see AUTHORIZED_KEYS in sshd(8)). By default

(or when set to the empty string) there is no AuthorizedKeysCommand to run. If the

AuthorizedKeysCommand does not successfully authorize the user, authorization falls

through to the AuthorizedKeysFile. Note that this option has an effect only with

PubkeyAuthentication method turned on [21].

Use of AuthorizedKeysCommandRunAs

Specifies the user under whose account the AuthorizedKeysCommand is run. Empty

string (the default value) means the user being authorized is used.

24

4.1.4 Fetching the Public key and the group of the user form LDAP

This is the customization part that needs to be done. We take the advantage of the

AuthorizedKeysCommand to execute a script which can query the LDAP and retrieve the

specific users’ public key. The script is given below.

#!/bin/bash

cn=$1

server=192.168.57.105 #Put your server IP

basedn=ou=users,dc=ucsc,dc=org #Put your basedn

groupdn=ou=groups,dc=ucsc,dc=org

port=389

google_auth=$(ldapsearch -x -h $server -p $port -o ldif-wrap=no -b

$basedn -s sub "(&(objectClass=posixAccount)(uid=$cn))" | grep

description | cut -d " " -f 2)

[[-d /home/$1]] || mkdir /home/$1

chown -R $1:user /home/$1

chmod 600 /home/$1/.google_authenticator

echo $google_auth | base64 --decode > /home/$1/.google_authenticator

chown -R $1:user /home/$1

userKey=$(ldapsearch -x -h $server -p $port -o ldif-wrap=no -b $basedn -

s sub "(&(objectClass=posixAccount)(uid=$cn))" | sed -n 's/^[

\t]*sshPublicKey:[\t]*\(.*\)/\1/p')

groupUser=$(ldapsearch -x -h 192.168.57.105 -p 389 -o ldif-wrap=no -b

$groupdn -s sub "(&(objectClass=posixGroup)(gidNumber=5000))" | grep -w

"\<$cn\>" | cut -d " " -f 2)

if ["$groupUser" = "$cn"]

 then echo $userKey

 else echo ""

fi

The name of the script can be any and can be placed anywhere. In this context the name of the

script is ssh_ldap_query.sh. That is placed in /usr/bin/ as /usr/bin/ssh_ldap_query.sh

Permission and run user

Make sure this script is only runnable to root user and do not need to be able to access by any

other user. Hence providing only read and execute permission should be sufficient to this

script to root user. Run below Linux commands to secure the script.

chown root:root /usr/bin/ssh_ldap_query.sh

chmod 500 /usr/bin/ssh_ldap_query.sh

Then in the sshd_config file, need to set the below configurations.

AuthorizedKeysCommand /usr/bin/ssh_ldap_query.sh

AuthorizedKeysCommandUser root

4.1.5 What does the script do?

This shell script takes the user id (name) of the user trying to log in to the server as an input

and do a LDAP query (ldapsearch) with the other basedn information. The script then checks

the user group and match with the proper Linux group. Finally if it is for the first the user us

logging in, his initial home is created and the configurations related to Google authenticator is

stored in the user’s home. The data related to these configurations is fetched as a base64

encoded text from the LDAP server. If you execute the search query only, it will return some

25

other attribute values as well (See Appendix I). To authenticate the user, only Public key of

the user is needed. Hence public key can be filtered out of the returned output by piping it to

the shell command given below.

sed -n 's/^[\t]*sshPublicKey:[\t]*\(.*\)/\1/p'

This is for the authentication. For authorization, user’s group is fetched and it is also

compared whether allowed to login to the bastion server. User’s group is queried from LDAP

server and compared with the corresponding servers group.

4.1.4 Other SSH server configurations

Even the user is authenticated; there are other requirements for him to be correctly logged in

to the system. For that the, LDAP utility programs configured in the server has to get the user

home, login shell etc. from LDAP server. This can be done by adding configurations to

nsswitch.conf.

“The Name Service Switch (NSS) configuration file, /etc/nsswitch.conf, is used by the GNU C

Library to determine the sources from which to obtain name-service information in a range of

categories, and in what order. Each category of information is identified by a database

name. The file is plain ASCII text, with columns separated by spaces or tab characters. The

first column specifies the database name. The remaining columns describe the order of

sources to query and a limited set of actions that can be performed by lookup result.”[22]

Following configurations need to be done in the mentioned file.

/etc/nsswitch.conf

Example configuration of GNU Name Service Switch functionality.

If you have the `glibc-doc-reference' and `info' packages installed,

try:

`info libc "Name Service Switch"' for information about this file.

passwd: compat ldap

group: compat ldap

shadow: compat ldap

hosts: files dns

networks: files

protocols: db files

services: db files

ethers: db files

rpc: db files

netgroup: nis

Note : The order of passwd, group, shadow is important because of the order is

“ldap compat”, then in case if the LDAP server is not available to connect at server startup,

the server will go to a hanged state for not being able to get the name-service information.

Next create file “/usr/share/pam-configs/mkhomedir” if not exists and add

below configuration.
Name: activate mkhomedir

Default: yes

Priority 900

Session-Type: Additional

Session:

 required pam_mkhomedir.so umask=0022/etc/skel

26

This is to setup pam module and the pam_mkhomedir PAM module create a specific user

home folder if it does not exists at login. This is mostly used in scenarios like when LDAP,

NIS or Kerberos databases provide user information without using a distributed file system or

pre-creating huge number of folders. The /etc/skel helps to copy default files and the umask

defines the umask for the user home creation. Also note upon logout, the new users home

directory is not removed. Add below configuration to the end of file /etc/pam.d/common-

session.

session required pam_mkhomedir.so skel=/etc/skel umask=0022

After doing the given configurations, restart the NSS service by using the command

service nscd restart

4.1.5 LDAP Server custom configurations

Standard OpenLDAP does not have a public key store capability. Thus we have to import and

create new schemas in that LDAP to store public key as an attribute [23].

sshPublicKey.schema

attributetype (1.3.6.1.4.1.24552.500.1.1.1.13 NAME 'sshPublicKey'

DESC 'MANDATORY: OpenSSH Public key'

EQUALITY octetStringMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)

printableString SYNTAX yes|no

objectclass (1.3.6.1.4.1.24552.500.1.1.2.0 NAME 'ldapPublicKey' SUP top

AUXILIARY

DESC 'MANDATORY: OpenSSH LPK objectclass'

MUST (sshPublicKey $ uid)

)

Command to import the schema to the OpenLDAP server.

root@LDAPServer:/tmp# ldapadd -Q -Y EXTERNAL -H ldapi:/// -f ssh-

ldap.schema

Once this is added to OpenLDAP, you can see there is a new objectClass attribute called

“ldapPublicKey” and new attribute called “sshPublicKey”. Now the system administrator can

add user’s public key as a new attribute to his LDAP. This is the core implementation and this

can be used in cloud based implementation further to provide the required functional

deployment.

4.1.6 Google authenticator configurations

The installation of Google Authenticator is described and clearly provided in step by step in

digitalocean documentation [16]. Only followed the steps provided there. But integrating it

with user interface was a custom code done for this project. This is implemented with the UI

by invoking the google-authenticator command via the interface provided with the user detail.

This will generate a URL which redirects to Google authenticator API service. This simply

provides a QR (Appendix I.3) and that can be scanned using Google Authenticator app in the

mobile device to insert the corresponding user data to the mobile device(Figure 4.1.6). Once

this is added to the app, it will generate a time based token with a pre-defined interval (Figure

4.1.7). This token can be used to login to the SSH server.

27

Figure 4.1.6 Scanning the QR code Figure 4.1.7 Time based token generated

Example:- A URL generated from Google authenticator looks like below
https://www.google.com/chart?chs=200x200&chld=M|0&cht=qr&chl=otpauth://hotp

/root@LDAPServer%3Fsecret%3DIOWCHVV3C5H6PP6R

This also generates a file that contains matching information which is saved in the machine

for a specific user.
root@LDAPServer:~# cat /root/.google_authenticator

5B5MMX2Q6ZIBGE2X

" RATE_LIMIT 3 30

" DISALLOW_REUSE

" TOTP_AUTH

81266940

52428740

96276447

41895268

79052761

When generating the QR code, a base64 encoded string that contains the matching user

information generated in the file /.google_authenticator is stored as meta data for the

corresponding user. When the user initially logs into a server, the script stored in the remote

server (discussed in section 4.1.5) gets these details from the LDAP server and store those

configurations in the remote server. Hence, when the user logs into the system, apart from the

key validation, a token code is prompted related to his Google Authenticator. It is very

important that both the server and the mobile device should be time synced properly to work

this because the token is a time based one and expires within a short interval.

28

4.2 User interface to manage the system operations

4.2.1 User interface

This was one of the defined deliverables of the project and developed using PHP. The User

interface has lot of features including creating users, deleting, adding to groups etc. All the

details related to the user interface are given below. See Appendix II for user interface screen

captures.

4.2.2 Basic functionality of the interface

 Password based authentication to the application itself. (Appendix II : Figure 4.2.1)

 Add new users to the system (Add user metadata through the GUI; name, public key,

login-shell, user home etc) (Appendix II : Figure 4.2.2).

 Generate QR code for the specific user (Appendix II : Figure 4.2.3).

 Add/Remove users to/from groups (Appendix II : Figure 4.2.4).

 Delete users from system (Appendix II : Figure 4.2.5).

 View all the users in the system (Appendix II : Figure 4.2.6).

 View users in each group (Appendix II : Figure 4.2.7).

29

Chapter 5: Results & Evaluation.

5.1 Introduction to the chapter

This is one of the most important phases of this project where the entire effort is tested and to

support that, certain test cases were used and results are validated. The tests are taken

selectively within the suggested project scope and deliverables. To evaluate the effort put for

the implementation, the expected deliverables and end results up to the current stage of the

implementation is compared. On the other hand this implementation has to be tested

effectively and thoroughly because it is supposed to be implemented as a real-world use case

which provides identity management. At the same time this involves essential security

characteristics such as authentication and authorization which helps to control different access

capabilities to different systems for users. The test plan should have been carried out for both

functional and non-functional requirements to assure the best quality of the end result. But for

this stage of project and scope, the test cases are limited only for core functionalities.

5.1 Test and validation plan

The test plan contains set of tests for major functional features of the proposed system. These

are set of selected tests aligned to the scope and that does not contain nonfunctional test

assessments. Each test case is clearly defined and the obtained output is given. The observed

output validates the success or fails state of each test case.

5.1.1 Functional Tests

The test plan covers following functional test cases.

1. Testing the SSH public key picking process from LDAP

2. Testing login with a jump box by enabling SSH forward agent.

3. Testing the LDAP user creation process (adding new user to the system).

4. Testing an altered user privilege and login behavior.

5. Carrying out tests for performance evaluation.

5.1.2 Test environment

To execute above mentioned test cases, an improved version of the setup done for the proof of

concept was used. The diagram in figure 5.1.2 depicts the test environment specifications.

30

Figure 5.1.2 Local scaled down setup for testing

According to this diagram, local host machine’s SSH agent is used as the SSH client and a

key pair is created. The three other virtual machines were used as the bastion host, as the

application server and as the LDAP server. Specifications of the test environment are given

below.

Local Host: Acts as SSH Client

OS version: OS X Version 10.9.5

SSH Client version: OpenSSH_6.2p2

SSH key size: 2028 bit

VM-1 : Acts as LDAP Server Host

OS version: Ubuntu 14.04.5 LTS

SSH Server version: OpenSSH_6.6.1p1

LDAP version: OpenLDAP-2.4.31

VM-2: Acts as the Bastion Node

OS version: Ubuntu 14.04.5 LTS

SSH Server version: OpenSSH_6.6.1p1

VM-3: Acts as the Application Server Node

OS version: Ubuntu 14.04.5 LTS

SSH Server version: OpenSSH_6.6.1p1

5.1.3 Test Execution and results

31

Test Case 01: Testing the SSH public key picking process from LDAP

This is the basic SSH login and here the test is to see whether the SSH server picks the public

key from the LDAP server.

User : anura

SSH Client : 192.168.57.1

SSH Server : 192.168.57.102

LDAP Server : 192.168.57.105

SSH KeyPair : /tmp/id_rsa_anura and /tmp/id_rsa_anura.pub

LDAP Entry for the user “anura” (See Appendix III)

When the user login take place the Linux auth.log was captured and that show the user is

successfully authenticated to the system. SSH server Auth Log (/var/log/auth.log) given

below.

Mar 8 05:53:39 bastion sshd[6253]: Accepted publickey for anura from

192.168.57.1 port 60033 ssh2: RSA

45:3a:e1:32:4c:be:78:90:4e:eb:df:59:e9:03:1e:44

Mar 8 05:53:39 bastion sshd[6253]: pam_unix(sshd:session): session

opened for user anura by (uid=0)

SSH Client verbose output (See Appendix IV) also show that the user was able to SSH to the

remote server and the authentication was successful. LDAP debug Log (See Appendix V)

shows that the SSH server queries for the user data stored for the specific user. This clearly

shows that the user was authenticated by using the data stored in the centralized LDAP server.

This test results provide that the authentication information which shows user anura’s public

key was fetched from LDAP server to authenticate him to the SSH server.

Test case 02: Testing login with a jump box by enabling SSH forward agent

User : anura

SSH Client : 192.168.57.1

SSH Server (Bastion) : 192.168.57.102

SSH Server (Internal Private Node) : 192.168.57.104

LDAP Server : 192.168.57.105

LDAP Entry for the user “anura” (See Appendix III)

Here first the user adds his private key to the SSH agent using “ssh-add” command. Also in

both SSH Client and Bastion we have set “ForwardAgent yes” to forward the key upon

login. Below is the SSH login to “bastion” and after that logging into “sshserver” by using

bastion as a jump box. See Appendix VI for SSH Client Log.

dilan@Dilans-MacBook-Pro:~$ ssh-add /tmp/id_rsa_anura

Identity added: /tmp/id_rsa_anura (/tmp/id_rsa_anura)

32

Bastion auth.Log

Mar 8 17:00:28 bastion sshd[9867]: Accepted publickey for anura from

192.168.57.1 port 63591 ssh2: RSA

45:3a:e1:32:4c:be:78:90:4e:eb:df:59:e9:03:1e:44

Mar 8 17:00:28 bastion sshd[9867]: pam_unix(sshd:session): session

opened for user anura by (uid=0)

SSHServer Log

Mar 8 17:00:54 sshserver sshd[2565]: Accepted publickey for anura from

192.168.57.102 port 44411 ssh2: RSA

45:3a:e1:32:4c:be:78:90:4e:eb:df:59:e9:03:1e:44

Mar 8 17:00:54 sshserver sshd[2565]: pam_unix(sshd:session): session

opened for user anura by (uid=0)

This shows that user was able to login to the SSH server from bastion host by forwarding the

SSH key.

Test case 03: Testing the LDAP user creation process

A new user called “Charith Kangara” is added to the LDAP server. First an existing users

LDAP entry is exported and used as the LDAP template to create the new user. Figure 5.1.3

shows the existing user list.

Figure 5.1.3 LDAP user store

Then we create a new SSH key pair. Figure 5.1.4 (See Appendix VII). After that we export an

existing user LDAP template (Figure 5.1.5) and we import the new user with new user

information Figure 5.1.6 (See Appendix VIII). Finally we login as the new user. SSH Client

debug output given in Appendix IX.1 shows that without Private Key provided, user is not

able to login to the system and the next authentication method is prompted by the SSH client.

SSH Client debug output given in Appendix IX.2 shows that with Private Key provided, user

is successfully able to login to the Bastion server.

33

Bastion auth.log given below shows the user is authenticated to the server.

Mar 8 18:10:15 puppetmaster sshd[10671]: Accepted publickey for charith

from 192.168.57.1 port 64349 ssh2: RSA

6f:5e:c9:a6:8f:47:3f:02:b8:c6:fa:fe:08:df:10:c5

Mar 8 18:10:15 puppetmaster sshd[10671]: pam_unix(sshd:session): session

opened for user charith by (uid=0)

Test case 04: Testing an altered user privilege and login behavior

Here we first modify user Charith’s “OU” and check the access. In the SSH server we allow

only the “users” OU and here we change user Charith’s OU . Figure 5.1.9 shows the LDAP

alter LDIF file and Figure 5.1.10 shows the output upon running this modify query to LDAP

server.

Figure 5.1.9 LDAP modify user OU in LDIF

Figure 5.1.10 LDAP modify user OU command line

Then we can see the user’s “OU” is changed (Figure 5.1.11) And when user tries to login,

authentication fails (Figure 5.1.12) because the user is not in the intended LDAP OU

34

Figure 5.1.11 Change user’s OU Figure 5.1.12 Authentication Failure

Test case 05: Testing network level capabilities and limitations.

Here we test how system behaves when network connectivity between SSH server and LDAP

server is not working properly. If the LDAP service is down, then the SSH server is unable to

get the public key. Hence the login fails (See Appendix X for the output). We can test this just

by shutting down the LDAP server.

5.2 Test Summary and Validation

These test cases address the main deliverables of this project. The first test case validate the

core implementation which is to check whether we can pick the public key stored in an LDAP

server upon login without storing it in the server itself. The test result was successful and

when a new user tries to access the server with his private key, the server got the

corresponding username and queried the LDAP server for the corresponding public key and

accepted the user upon validation.

Second test case checks the cloud based requirement, which is to use a bastion as a jump box

to the instances in internal private subnet. For both login sessions we used the LDAP server

and the public key provider. The agent had to enable SSH forward agent to do the multiple

instance authentication with the same credentials. In this test case user was able to log into the

bastion node first and then from the bastion node without specifically providing any key, he

was able to login to the application server as well with SSH forward agent enabled on both

SSH client machine and bastion.

35

Third test case was to simply create a new user in LDAP with a public key stored as an

attribute. We simply added the user by providing an LDIF input to the LDAP server. Then the

SSH client who is having the correct private key is able to SSH to the remote server. We did

not have to do anything in remote server other than it is pre-configured just to read the LDAP

server. This test indirectly proves and supports the auto scale concept where server doesn’t

have to store any user specific configuration on the server at any time and upon first login if

the user does not already exists, the user home is crated and access is provisioned.

Test case four checks where how we can limit the access to a specific user just by changing

attributes in LDAP level. This proved that, just by changing the OU of the user, we are able to

control access to any user to the system.

Test case 5 show if the SSH server is unable to communicate with the LDAP server, the

authentication fails since the SSH server cannot fetch the Public Key from LDAP. Hence any

outage of LDAP would not create any security issue.

5.3 Evaluation

This project is focused on a cloud based environment where lot of users need to connect to

large number of remote servers in a managed infrastructure and the servers are scaled up and

down timely. Hence the evaluation is done considering these factors.

5.3.1 Evaluation criteria

● Security

● Manageability

● Performance

5.3.2 Evaluated systems

First 3 systems given below are reference systems to the fourth one, which is the main

implementation of this project.

● SSH Password based authentication

● SSH Key Based authentication

● LDAP based centrally managed password based authentication

● LDAP based centrally managed key based authentication

5.3.3 Evaluation of each system based on the selected criteria

 SSH Password based authentication

Security

Since a password is used as the authentication mechanism, it is always vulnerable to both

brute force and dictionary attack [24,25]. The risk can be reduced by using strong passwords

with different characters, number and symbol combinations. But it is still vulnerable to key

loggers, phishing and shoulder surfing attacks. Remembering a strong password is extremely

difficult and since that people use to write down somewhere or store within the system as

plain text. This can then be vulnerable to theft of device or file system attack.

36

Manageability

Managing passwords for large number of servers is difficult (in SSH context). User has to

remember or write down password for each server or use a common password. Using

different passwords for different servers is secure but it is difficult to manage. Using a single

password is efficient, but not secure. Also if user forgets the password, system administrators

have to change the password in each and every server which makes it quite unmanageable. In

a cloud based environment existing servers may get killed while new servers may spin up.

Each time a new server starts, access to all the relevant users has to be granted either

manually or using automated tools.

Performance

In SSH context, passwords are normally typed into the terminal or sometimes stored in a

terminal program. Comparatively the payload of a password is always less than a key. Hence

authentication process could be faster. But with the real world hardware and networks are

more than enough to carry out the authentication in less than milliseconds. But every time the

user logs into the system, if the password has to be typed then that it quite inefficient. Also

even password is stored in a local program when it comes to the bastion concept, logging

from bastion to application server doesn’t support the stored passwords. So this includes

several keyboard interactions when logging into remote servers. Thus it is inefficient.

 SSH Key Based authentication

Security

Key based authentication is more secure than passwords (discussed earlier in chapter 2.2.1)

[26]. When password access is disabled, most of the automated attacks can be avoided. Still

keys are vulnerable to theft of device of compromised file system. Best way is to avoid using

shared keys and use per user key. Also keys can be protected using a passphrase. Also keys

are resistant to key loggers and

Manageability

In the context of SSH and cloud based environment even managing per user keys for large

number of servers for a scaled environment is difficult. Each time a new user is added or

removed, his public key has to be added or removed from the authorize_key file in the remote

server. This makes it difficult to manage just like passwords.

Performance

Once the private and public keys are configured user do not have to provide the key again and

again. With ssh_forward agent enabled, users are able to login to the application servers

from bastion even without copying the key to the bastion server. This reduces the keyboard

interaction compared to password. Key validation is slower than password validation. But this

is negligible and takes less than a second within the same network and few seconds for remote

cloud environments (see test results).

 LDAP based centrally managed password based authentication

Security

All the facts given for SSH password based authentication is still valid for this context from

user side. Also in this case LDAP server by default stores user passwords and as per the

RFC4519 [27,28] specification these passwords are not in encrypted form or hashed format.

37

Also the userPassword attribute is allowed to have more than one entry with different

hash functions. It is highly recommended to store passwords in hashed format and even

hashed, to be protected as if they were stored in clear text. Because even hashed passwords

can be exploited using dictionary and brute force attacks. Still the advantage of a hashed

password is the attacker does not have direct access.

Manageability

Since user and credentials are centrally stored in LDAP server, the manageability increases

and it is a huge advantage for system administrators to manage users. Also user meta data

(home, login shell, uid etc) is stored in LDAP server and that makes managing users in large

scaled server infrastructures and cloud based systems much easier. In an auto scaled, cloud

based environment, user and access management can be done with this kind of centralized

user management system.

Performance

User authentication is validated against LDAP based credentials and this could be an

additional hop. Every time a user logs into the system authentication information has to be

validated with the authentication details available in the LDAP server. But LDAP is a read

optimized system and hence this is negligible and takes less than a second within the same

network and few seconds for remote cloud environments (see test results2).

 LDAP based centrally managed key based authentication

Security

This is the core of this project and instead of password based authentication, key based

authentication is used. The advantage here is user’s public key is stored in the LDAP server

and that is not a huge security risk unless it is modified.

Manageability

Manageability is same as mentioned in “LDAP based centrally managed password based

authentication”.

Performance

Performance is same as mentioned in “LDAP based centrally managed password based

authentication”. Test results are provided.

5.4 SSH login performance evaluation

In this context a critical analysis on SSH login performance for different authentication

mechanisms is carried out to evaluate the efficiency of the proposed system (LDAP public

key based SSH login). Three reference systems are used to compare the proposed system and

they are “SSH Password based authentication”, “SSH Key Based authentication” and “LDAP

based centrally managed password based authentication”. For this, an automated SSH login

and logout script is used with different options and tested for time taken per each session

(measured in milliseconds). Each script authenticates to the system with provided

authentication method and exists itself. This process is repeated and the time taken for each

login was gathered. This test was run in 3 different ways to emulate 3 different real world

scenarios. They are as follow.

38

1. A single user tries to login to Bastion server with given 4 different evaluation

methods.

2. Multiple users connected to Bastion on different terminal sessions try to login to

another server with 4 different evaluation methods.

3. Multiple users from multiple devices trying to login to another server with 4 different

evaluation methods.

Below are the 4 scripts that were used for the performance tests.

● SSH Password based authentication

This test script uses a password to authenticate to the system. To automatically pass the

password to the login prompt, a simple Linux tool named “sshpass” [29] was used so that

there is no need to manually type the password when the test is running.

for i in {1..30}

 do

 START_TIME=`echo $(($(date +%s%N)/1000000))`

 sshpass -p "dilan" ssh -o StrictHostKeyChecking=no

dilan@192.168.57.102 exit 2>&1

 END_TIME=`echo $(($(date +%s%N)/1000000))`

 ELAPSED_TIME=$(($END_TIME - $START_TIME))

 echo $ELAPSED_TIME

 done

● SSH Key Based authentication

RSA key pair was created and public key was added to the remote servers authorized_key

file. This allows user to login without password by using his private key. This is key based

authentication.

for i in {1..30}

 do

 START_TIME=`echo $(($(date +%s%N)/1000000))`

 ssh -i id_rsa dilan@192.168.57.102 exit 2>&1

 END_TIME=`echo $(($(date +%s%N)/1000000))`

 ELAPSED_TIME=$(($END_TIME - $START_TIME))

 echo $ELAPSED_TIME

 done

● LDAP based centrally managed password based authentication

A new user with password stored in the LDAP server was created and this evaluates the

centrally managed password based authentication.

for i in {1..30}

 do

 START_TIME=`echo $(($(date +%s%N)/1000000))`

 sshpass -p "password" ssh -o StrictHostKeyChecking=no

test_password@192.168.57.102 exit 2>&1

 END_TIME=`echo $(($(date +%s%N)/1000000))`

 ELAPSED_TIME=$(($END_TIME - $START_TIME))

 echo $ELAPSED_TIME

 done

39

● LDAP based centrally managed key based authentication

This is the script used to evaluate the proposed system. A test user is created in LDAP and the

local user’s public key is stored in the LDAP server.

 for i in {1..30}

 do

 START_TIME=`echo $(($(date +%s%N)/1000000))`

 ssh -i id_rsa test_key@192.168.57.102 exit 2>&1

 END_TIME=`echo $(($(date +%s%N)/1000000))`

 ELAPSED_TIME=$(($END_TIME - $START_TIME))

 echo $ELAPSED_TIME

 done

5.4.1 Test scenario 1

A single user tries to login from one machine with 4 different evaluation methods.

Both Client and server machines are based on following specifications

● Platform Infrastructure : Oracle VirtualBox VM

● OS : Ubuntu Linux 14.04

● CPU : 1 vCPU

● Memory : 1024Mb

● Client IP : 192.168.57.171

● Server IP : 192.168.57.102

Each automated script perform 30 SSH login attempts and the corresponding time taken was

recorded. Then the time to login was graphed against the number of attempts. All 4 evaluation

methods were tried this way and below are the graph for each evaluation method.

40

Figure 5.4.1- SSH with password, key, LDAP Password, LDAP key

5.4.2 Test scenario 2

Multiple users connected to bastion try to login to another server with 4 different

evaluation methods.

Both Client and server machines are based on following specifications

● Platform Infrastructure : Oracle VirtualBox VM

● OS : Ubuntu Linux 14.04

● CPU : 1 vCPU

● Memory : 1024Mb

● Client IP : 192.168.57.171

● Server IP : 192.168.57.102

● 4 Terminal sessions from the SSH client to test 4 evaluation methods.

1) SSH to another server with password. Time taken for each login attempt on 4 terminal

sessions of a single SSH client machine is graphed below

41

Figure 5.4.2.1 – SSH with password

2) SSH to another server with key. Time taken for each login attempt on 4 terminal

sessions of a single SSH client machine is graphed below

Figure 5.4.2.2 – SSH with key

42

3) SSH to another server with password stored in LDAP. Time taken for each login

attempt on 4 terminal sessions of a single SSH client machine is graphed below

Figure 5.4.2.3

4) SSH to another server with public key stored in LDAP. Time taken for each login

attempt on 4 terminal sessions of a single SSH client machine is graphed below.

Figure 5.4.2.4

43

5.4.3 Test scenario 3

Multiple users from multiple devices trying to login to another server with 4 different

evaluation methods.

1 server and 4 client machine are based on following specifications

● Platform Infrastructure : Oracle VirtualBox VM

● OS : Ubuntu Linux 14.04

● CPU : 1 vCPU

● Memory : 1024Mb

● Client1 IP : 192.168.57.170

● Client2 IP : 192.168.57.172

● Client3 IP : 192.168.57.104

● Client4 IP : 192.168.57.171

● Server IP : 192.168.57.102

● 1 Terminal sessions from each SSH client to test 4 evaluation methods.

1. SSH to another server with password. Time taken for each login attempt on 4 terminal

sessions of 4 different SSH client machines are graphed below

Figure 5.4.3.1

2. SSH to another server with key. Time taken for each login attempt on 4 terminal

sessions of 4 different SSH client machines are graphed below

44

Figure 5.4.3.2

3. SSH to another server with password stored in LDAP server. Time taken for each

login attempt on 4 terminal sessions of 4 different SSH client machines are graphed

below

Figure 5.4.3.3

45

4. SSH to another server with public key stored in LDAP server. Time taken for each

login attempt on 4 terminal sessions of 4 different SSH client machines are graphed

below

Figure 5.4.3.4

46

5.5 Performance evaluation summary

Based on the stats collected on 3 different use case scenarios for LDAP based public key SSH

authentication, it shows that there is no visible performance degradation or improvement. But

based on the graphs it slightly show performance improvement in validating credentials

against LDAP stored passwords or keys rather than the locally stored credentials. Hence

considering the comparison of centrally managed key based authentication with other 3

reference systems, we can come to a conclusion that it is performing well with the LDAP just

as other authentication methods.

The project had couple of goals which is discussed in chapter 1 under sub topic 1.5. Here we

evaluate how successfully they are achieved by comparing the outputs of the test results. The

projects’ main approach was to design a centralized identity and user management mechanism

for public key based SSH authentication and that was aimed for a cloud based environment.

The major challenge was to store user identities in a centralized place and using them without

being need to store at the server level and provisioning on demand access for both new and

already existing users to the system. Also the aim was to manage them from a single location.

These goals have delivered and that was validated in test case one, three and four. So the main

goal is achieved and the test cases were successfully validated using a scaled down version of

the real implementation.

The other goal was to design and implement this in a cloud-ready manner and align the

project with basic requirements of a cloud based environment. In the design specification we

discussed how good the proposed system can cater access and identity management for a

cloud environment with SSH. For that we initially analyzed what major technologies used a

cloud environment to access resources. There we found that especially in Linux based

environments, it is highly recommended to use a bastion instead of directly exposing the

application servers to the outside. The next challenge was to design and implement the

suggested solution with the bastion concept. There we had to assure a user can still use the

same central identity to connect both bastion and then from there to the internal private server

seamlessly without having to do changes or do operational level things. The suggested design

is capable of authenticating user to both bastion and internal server using the same central

identity management mechanism and that was tested and evaluated in test case two and three.

We also faced another challenge specific to a cloud based environment, which is auto scaling.

The challenge was user cannot expect a given server to stay permanently. Also in a high

available type cloud where the system support threshold based auto scaling, new servers will

be started and old might get terminated. If the systems engineer has to configure user public

keys every time a new server starts and creates users, which is not going to be scalable and

efficient. Also when a new user comes to the system, he or she needs to be given access to

each server. But in this proposed system, users and identities are need to be managed in

LDAP only and users who are in correct LDAP OU are allowed to SSH to the environment.

This is a valuable goal that was achieved and is much applicable and useful in a cloud based

environment. We tested this successfully in test case two, three and four. Specially, test case

four proved that a given users access can be controlled centrally at LDAP level and that is an

important goal that was achieved in this project.

47

Chapter 6: Conclusion and Future Work

6.1 Problems Faced

At the initials stages of this implementation project, had to go through existing systems and

had to learn how they work. Also finalizing the project deliverables was difficult at initial

stage since this is an implementation project. Compared with a research project, an

implementation project is supposed to deliver a working system or functionalities at the end,

which was a challenging task.

The next problem was to find research papers and articles focused on the specific

implementation. Even though there were several documentations based on individual core

technologies, there were less related ones to the integrated solution. So the author had to try

out different approaches during the initial proof of concept.

Default OpenLDAP installation did not have an attribute to store a public key. Different

schemas were found when searching in internet, but many of them did not worked out of the

box as suggested in the documentation. After multiple tryouts was able to find the correct

schema.

Even though managed to query and get the users public key upon login attempt, it did not

worked for some reason at the beginning. Later found that the key was not in correct string

format and need to use ldif-wrap=no switch with ldapsearch command.

Some other difficulties were found when integrating the Google Authenticator QR code

generation with the user interface developed for the user management. Later found that this

was due to trying to include HTTPS content within HTTP contents. As a fix, the entire site

was converted to HTTPS based web interface and had to use JavaScript and jQuery for the

user interface development.

6.2 Deviation from original project plan

In the original project proposal that included a suggestion to evaluate secure LDAP to

communicate between LDAP replicas, but was not able to evaluate at this phase of

development work. Also WSO2 Identity server was suggested to evaluate in this project for

identity management. But that was not able to evaluate at this phase. Finally the initial

proposal had a phase to implement a user activity and tracking solution. But that is quite

different from the main scope and was not added as a part of the implementation.

6.3 Future work

What other features and capabilities that can be implemented, integrated is discussed here.

 Implement admin, standard and read-only user management.

This is related to Linux level access control, but need to evaluate how feasible to map

LDAP groups or OUs can be mapped with Linux user groups so that different level of

access can be provided.

 Implement LDAPS (secure LDAP). The cloud based deployment can be secured using the

secure LDAP communication between the cloud LDAP server and the corporate LDAP server.

48

6.4 Conclusion

This implementation project has delivered its suggested core functionalities and goals

successfully and they are implemented and tested successfully using a scaled down version of

the real-world use case. It was very interesting to identify an existing requirement that is

common to most of infrastructure which needs proper identity management and access control

centrally, and attempt to implement a solution that makes systems administrator’s life much

easier. Not only that this concept can be easily integrated to any standard IT infrastructures

which simply need an identity management solution to manage large number of servers,

because the suggested implementation use set of known common technologies to mostly used

in many systems. This implementation was intentionally planed for a cloud based

environment since cloud technologies are evolving and used widely these days. It was very

effective to implement the proposed solution for a cloud based environment since the author

was familiar with cloud based environments and has hands on experience in cloud

technologies. Thus when implementing this solution author critically analyze the cloud

architectures and address the issue related to cloud based environment. Being focus on cloud

does not mean that this is not recommended for an in-house server infrastructure. The

concepts are the same and only the deployment patterns and network level changes there in

both cloud and in house deployment. This project is not just a prototype; it can be used for a

real world deployment and the author used a real world use case (the Cloud deployment with

large number of servers within his current work place) to collect requirement and address the

real problem with a practical approach.

Before starting the implementation work, a good review on available literature and readings

were done to identify the most feasible and practical approach. Before selecting a certain

authentication methods, a thorough compare and contrast was done to ensure the security. The

core implementation items of the proposed scope was covered including the key based SSH

authentication with LDAP stored public key, user interface to manage users and integrate with

the Bastion concept. Not only that as an additional security layer, Google Authenticator is

integrated so that the proposed system is safe even with theft of device.

The testing and evaluation done for the project with statistical data provides very good

analytical information and it has clearly shown that the integration has not made any

performance degradation, instead a slight performance growth can be seen. That is very good

in this kind of system and even with custom implementations, achieving such performance

based results is tremendous.

49

Appendix

Appendix I: User Management Interface

1). Password based authentication to the application itself.

 Figure 4.2.1

50

2). Add new users to the system (Add user metadata through the GUI; name, public key,

login-shell, user home etc)

Figure 4.2.2

3). Generate QR code for the specific user.

Figure 4.2.3

51

4). Add/Remove users to/from groups.

Figure 4.2.4

5). Delete users from system.

Figure 4.2.5

52

6). View all the users in the system.

Figure 4.2.6

53

7). View users in each group.

Figure 4.2.7

Appendix II: Output of the LDAP search query

By running the below command, the whole retailed entry for a given user can be retrieved.

Command.

ldapsearch -x -h $server -p $port -o ldif-wrap=no -b $basedn -s sub

"(&(objectClass=posixAccount)(uid=$cn))"

Output.

extended LDIF

LDAPv3

base <ou=users,dc=ucsc,dc=org> with scope subtree

filter: (&(objectClass=posixAccount)(uid=dilan))

requesting: ALL

dilan asanga, users, ucsc.org

dn: cn=dilan asanga,ou=users,dc=ucsc,dc=org

cn: dilan asanga

givenName: dilan

gidNumber: 500

homeDirectory: /home/users/dilan

sn: asanga

loginShell: /bin/bash

objectClass: inetOrgPerson

54

objectClass: posixAccount

objectClass: top

objectClass: ldapPublicKey

uidNumber: 1000

uid: dilan

sshPublicKey: ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDFmNfqej6H8B1iWXRaKf9qqgp5PxUeKGUcQ/ldeE7bYIQ

z96+mxOGyED9Yz3D93/SEGZU2QynuBssU+mhts/y7NVL2tVR1dBiQtabwbCqtQL7JpgWqAlfCcM

jNbyQVyzxWj53GEh7Hy14qS7eF2KT1+DahrL15v+wm+cUGK0KBPvav0ivO9ePBbG+Md3n6IDoN2

opWm40JI7aqgN7dr3lwnVXODtlY/wOzypCDlozN6dNuYv/zzTVB+FDtURbGi4YJiQsR89HybVRp

uEO2pRctENggW4symZiwtsI6c0kvDoc/XJOWPlp6IW4JOrBJPS+FOTQBjed6e9Ut8/rJekxZ

dilang@wso2.com

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

Appendix III: LDAP Entry for the user “anura”

LDIF Export for cn=anura prera,ou=users,dc=ucsc,dc=org

Server: My LDAP Server (192.168.57.105)

Search Scope: base

Search Filter: (objectClass=*)

Total Entries: 1

Generated by phpLDAPadmin (http://phpldapadmin.sourceforge.net) on March 7, 2017

11:52 pm

Version: 1.2.2

version: 1

Entry 1: cn=anura prera,ou=users,dc=ucsc,dc=org

dn: cn=anura prera,ou=users,dc=ucsc,dc=org

cn: anura prera

gidnumber: 501

givenname: anura

homedirectory: /home/users/anura

loginshell: /bin/bash

objectclass: inetOrgPerson

objectclass: posixAccount

objectclass: top

objectclass: ldapPublicKey

sn: prera

sshpublickey: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCxeYI1Y2w8C+X0ySu5NHNKnN

 CwtInr6EA5VOjL08TrtvC1L6rWHTaN3XJ6bDBHiIpYvAJmDylbKfRmjtyFpSeMvCWAhCcaplbr/

 rhJ3jDfqVd4WagRzz3O0VidXHeZq7BT8NFd+DtnLpOfdQ1kF8jTLuXEU4ctR8U3rQvpdpcT3o1b

 ieAmrx2J0EjTxrzCd9pTnsTFUed4ChjrkUnS+st491d8GPRUIiiz4og1KDO8QSQX5/LzbY8o6oX

 rEdL/YpEKD5g8VfZBgjpEeChy7DDI4t3ccj5Sceg1ujl+EKJxppfxfVdsSJ97o43dyAQ3dDO14J

 lznaEXuWxz/EkWVuJx dilan@Dilans-MacBook-Pro.local

uid: anura

uidnumber: 1003

userpassword: {MD5}5ydD8a9T/b2EDx/dP9jvEA==

55

Appendix IV: SSH Client verbose output

dilan@Dilans-MacBook-Pro:~$ ssh -v anura@192.168.57.102 -i /tmp/id_rsa_anura

OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011

debug1: Reading configuration data /Users/dilan/.ssh/config

debug1: Reading configuration data /etc/ssh_config

debug1: /etc/ssh_config line 20: Applying options for *

debug1: /etc/ssh_config line 102: Applying options for *

debug1: Connecting to 192.168.57.102 [192.168.57.102] port 22.

debug1: Connection established.

debug1: identity file /tmp/id_rsa_anura type 1

debug1: identity file /tmp/id_rsa_anura-cert type -1

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_6.2

debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1

Ubuntu-2ubuntu2.8

debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 pat OpenSSH*

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-ctr hmac-md5-etm@openssh.com none

debug1: kex: client->server aes128-ctr hmac-md5-etm@openssh.com none

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug1: Server host key: RSA a1:53:b1:71:f4:dc:50:51:ed:36:6e:01:ea:93:c3:8c

debug1: Host '192.168.57.102' is known and matches the RSA host key.

debug1: Found key in /Users/dilan/.ssh/known_hosts:72

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: Roaming not allowed by server

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Server accepts key: pkalg ssh-rsa blen 279

debug1: read PEM private key done: type RSA

debug1: Authentication succeeded (publickey).

Authenticated to 192.168.57.102 ([192.168.57.102]:22).

debug1: channel 0: new [client-session]

debug1: Requesting no-more-sessions@openssh.com

debug1: Entering interactive session.

debug1: Requesting authentication agent forwarding.

debug1: Sending environment.

debug1: Sending env LC_ALL = en_US.UTF-8

debug1: Sending env LC_CTYPE = en_US.UTF-8

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.19.0-64-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Wed Mar 8 05:53:39 +0530 2017

 System load: 0.0 Users logged in: 1

 Usage of /: 62.5% of 7.26GB IP address for eth0: 10.0.2.15

 Memory usage: 14% IP address for eth1: 10.10.10.20

 Swap usage: 0% IP address for eth2: 192.168.57.102

 Processes: 96

 Graph this data and manage this system at:

 https://landscape.canonical.com/

WARNING: Security updates for your current Hardware Enablement Stack

ended on 2016-08-04:

 * http://wiki.ubuntu.com/1404_HWE_EOL

To upgrade to a supported (or longer-supported) configuration:

56

* Upgrade from Ubuntu 14.04 LTS to Ubuntu 16.04 LTS by running:

sudo do-release-upgrade

OR

* Switch to the current security-supported stack by running:

sudo apt-get install linux-image-generic-lts-xenial linux-generic-lts-xenial

and reboot your system.

Last login: Wed Mar 8 05:53:39 2017 from 192.168.57.1

anura@bastion:~$

Appendix V: LDAP debug Log

58bf458d => access_allowed: read access to "cn=anura prera,ou=users,dc=ucsc,dc=org"

"userPassword" requested

58bf458d => acl_get: [1] attr userPassword

58bf458d => acl_mask: access to entry "cn=anura prera,ou=users,dc=ucsc,dc=org", attr

"userPassword" requested

58bf458d => acl_mask: to value by "", (=0)

58bf458d <= check a_dn_pat: self

58bf458d <= check a_dn_pat: anonymous

58bf458d <= acl_mask: [2] applying auth(=xd) (stop)

58bf458d <= acl_mask: [2] mask: auth(=xd)

58bf458d => slap_access_allowed: read access denied by auth(=xd)

58bf458d => access_allowed: no more rules

58bf458d send_search_entry: conn 1014 access to attribute userPassword, value #0 not allowed

58bf458d => access_allowed: result not in cache (sshPublicKey)

58bf458d => access_allowed: read access to "cn=anura prera,ou=users,dc=ucsc,dc=org"

"sshPublicKey" requested

58bf458d => dn: [2]

58bf458d => acl_get: [3] attr sshPublicKey

58bf458d => acl_mask: access to entry "cn=anura prera,ou=users,dc=ucsc,dc=org", attr

"sshPublicKey" requested

58bf458d => acl_mask: to value by "", (=0)

58bf458d <= check a_dn_pat: cn=admin,dc=ucsc,dc=org

58bf458d <= check a_dn_pat: *

58bf458d <= acl_mask: [2] applying read(=rscxd) (stop)

58bf458d <= acl_mask: [2] mask: read(=rscxd)

58bf458d => slap_access_allowed: read access granted by read(=rscxd)

58bf458d => access_allowed: read access granted by read(=rscxd)

58bf458d conn=1014 op=1 ENTRY dn="cn=anura prera,ou=users,dc=ucsc,dc=org"

ber_flush2: 738 bytes to sd 18

ldap_write: want=738, written=738

 0000: 30 82 02 de 02 01 02 64 82 02 d7 04 26 63 6e 3d 0......d....&cn=

 0010: 61 6e 75 72 61 20 70 72 65 72 61 2c 6f 75 3d 75 anura prera,ou=u

 0020: 73 65 72 73 2c 64 63 3d 75 63 73 63 2c 64 63 3d sers,dc=ucsc,dc=

 0030: 6f 72 67 30 82 02 ab 30 13 04 02 63 6e 31 0d 04 org0...0...cn1..

 0040: 0b 61 6e 75 72 61 20 70 72 65 72 61 30 12 04 09 .anura prera0...

 0050: 67 69 64 4e 75 6d 62 65 72 31 05 04 03 35 30 31 gidNumber1...501

 0060: 30 14 04 09 67 69 76 65 6e 4e 61 6d 65 31 07 04 0...givenName1..

 0070: 05 61 6e 75 72 61 30 24 04 0d 68 6f 6d 65 44 69 .anura0$..homeDi

 0080: 72 65 63 74 6f 72 79 31 13 04 11 2f 68 6f 6d 65 rectory1.../home

 0090: 2f 75 73 65 72 73 2f 61 6e 75 72 61 30 19 04 0a /users/anura0...

 00a0: 6c 6f 67 69 6e 53 68 65 6c 6c 31 0b 04 09 2f 62 loginShell1.../b

 00b0: 69 6e 2f 62 61 73 68 30 40 04 0b 6f 62 6a 65 63 in/bash0@..objec

 00c0: 74 43 6c 61 73 73 31 31 04 0d 69 6e 65 74 4f 72 tClass11..inetOr

 00d0: 67 50 65 72 73 6f 6e 04 0c 70 6f 73 69 78 41 63 gPerson..posixAc

 00e0: 63 6f 75 6e 74 04 03 74 6f 70 04 0d 6c 64 61 70 count..top..ldap

 00f0: 50 75 62 6c 69 63 4b 65 79 30 0d 04 02 73 6e 31 PublicKey0...sn1

 0100: 07 04 05 70 72 65 72 61 30 0e 04 03 75 69 64 31 ...prera0...uid1

 0110: 07 04 05 61 6e 75 72 61 30 13 04 09 75 69 64 4e ...anura0...uidN

 0120: 75 6d 62 65 72 31 06 04 04 31 30 30 33 30 82 01 umber1...10030..

 0130: b1 04 0c 73 73 68 50 75 62 6c 69 63 4b 65 79 31 ...sshPublicKey1

 0140: 82 01 9f 04 82 01 9b 73 73 68 2d 72 73 61 20 41 ssh-rsa A

 0150: 41 41 41 42 33 4e 7a 61 43 31 79 63 32 45 41 41 AAAB3NzaC1yc2EAA

 0160: 41 41 44 41 51 41 42 41 41 41 42 41 51 43 78 65 AADAQABAAABAQCxe

 02b0: 4a 6c 7a 6e 61 45 58 75 57 78 7a 2f 45 6b 57 56 JlznaEXuWxz/EkWV

 02c0: 75 4a 78 20 64 69 6c 61 6e 40 44 69 6c 61 6e 73 uJx dilan@Dilans

 02d0: 2d 4d 61 63 42 6f 6f 6b 2d 50 72 6f 2e 6c 6f 63 -MacBook-Pro.loc

 02e0: 61 6c al

58bf458d <= send_search_entry: conn 1014 exit.

57

Appendix VI: SSH Client Log

dilan@Dilans-MacBook-Pro:~$ ssh -v anura@192.168.57.102

OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011

debug1: Reading configuration data /Users/dilan/.ssh/config

debug1: Reading configuration data /etc/ssh_config

debug1: /etc/ssh_config line 20: Applying options for *

debug1: /etc/ssh_config line 102: Applying options for *

debug1: Connecting to 192.168.57.102 [192.168.57.102] port 22.

debug1: Connection established.

debug1: identity file /Users/dilan/.ssh/id_rsa type 1

debug1: identity file /Users/dilan/.ssh/id_rsa-cert type -1

debug1: identity file /Users/dilan/.ssh/id_dsa type -1

debug1: identity file /Users/dilan/.ssh/id_dsa-cert type -1

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_6.2

debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1

Ubuntu-2ubuntu2.8

debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 pat OpenSSH*

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-ctr hmac-md5-etm@openssh.com none

debug1: kex: client->server aes128-ctr hmac-md5-etm@openssh.com none

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug1: Server host key: RSA a1:53:b1:71:f4:dc:50:51:ed:36:6e:01:ea:93:c3:8c

debug1: Host '192.168.57.102' is known and matches the RSA host key.

debug1: Found key in /Users/dilan/.ssh/known_hosts:72

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: Roaming not allowed by server

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Server accepts key: pkalg ssh-rsa blen 279

debug1: Authentication succeeded (publickey).

Authenticated to 192.168.57.102 ([192.168.57.102]:22).

debug1: channel 0: new [client-session]

debug1: Requesting no-more-sessions@openssh.com

debug1: Entering interactive session.

debug1: Requesting authentication agent forwarding.

debug1: Sending environment.

debug1: Sending env LC_ALL = en_US.UTF-8

debug1: Sending env LC_CTYPE = en_US.UTF-8

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.19.0-64-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Wed Mar 8 16:49:10 +0530 2017

 System load: 0.0 Users logged in: 1

 Usage of /: 62.5% of 7.26GB IP address for eth0: 10.0.2.15

 Memory usage: 14% IP address for eth1: 10.10.10.20

 Swap usage: 0% IP address for eth2: 192.168.57.102

 Processes: 94

Last login: Wed Mar 8 16:45:04 2017 from 192.168.57.1

anura@bastion:~$

anura@bastion:~$

anura@bastion:~$ ssh -v anura@192.168.57.104

OpenSSH_6.6.1, OpenSSL 1.0.1f 6 Jan 2014

debug1: Reading configuration data /etc/ssh/ssh_config

debug1: /etc/ssh/ssh_config line 19: Applying options for *

debug1: Connecting to 192.168.57.104 [192.168.57.104] port 22.

58

debug1: Connection established.

debug1: identity file /home/users/anura/.ssh/id_rsa type -1

debug1: identity file /home/users/anura/.ssh/id_rsa-cert type -1

debug1: identity file /home/users/anura/.ssh/id_dsa type -1

debug1: identity file /home/users/anura/.ssh/id_dsa-cert type -1

debug1: identity file /home/users/anura/.ssh/id_ecdsa type -1

debug1: identity file /home/users/anura/.ssh/id_ecdsa-cert type -1

debug1: identity file /home/users/anura/.ssh/id_ed25519 type -1

debug1: identity file /home/users/anura/.ssh/id_ed25519-cert type -1

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8

debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1

Ubuntu-2ubuntu2.8

debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 pat OpenSSH_6.6.1* compat

0x04000000

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-ctr hmac-md5-etm@openssh.com none

debug1: kex: client->server aes128-ctr hmac-md5-etm@openssh.com none

debug1: sending SSH2_MSG_KEX_ECDH_INIT

debug1: expecting SSH2_MSG_KEX_ECDH_REPLY

debug1: Server host key: ECDSA d8:a6:97:0d:3e:55:76:53:03:a7:07:45:a1:b7:fa:ff

debug1: Host '192.168.57.104' is known and matches the ECDSA host key.

debug1: Found key in /home/users/anura/.ssh/known_hosts:1

debug1: ssh_ecdsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: client_input_channel_open: ctype auth-agent@openssh.com rchan 2 win 65536

max 16384

debug1: channel 1: new [authentication agent connection]

debug1: confirm auth-agent@openssh.com

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Server accepts key: pkalg ssh-rsa blen 279

debug1: channel 1: FORCE input drain

debug1: Authentication succeeded (publickey).

Authenticated to 192.168.57.104 ([192.168.57.104]:22).

debug1: channel 0: new [client-session]

debug1: Requesting no-more-sessions@openssh.com

debug1: Entering interactive session.

debug1: channel 1: free: authentication agent connection, nchannels 2

debug1: Requesting authentication agent forwarding.

debug1: Sending environment.

debug1: Sending env LC_ALL = en_US.UTF-8

debug1: Sending env LANG = en_US.UTF-8

debug1: Sending env LC_CTYPE = en_US.UTF-8

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.2.0-27-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Wed Mar 8 17:00:54 IST 2017

 System load: 0.0 Users logged in: 1

 Usage of /: 30.0% of 7.75GB IP address for eth0: 10.0.2.15

 Memory usage: 5% IP address for eth1: 10.10.10.4

 Swap usage: 0% IP address for eth2: 192.168.57.104

 Processes: 88

Last login: Wed Mar 8 17:00:54 2017 from 192.168.57.102

anura@sshserver:~$

59

Appendix VII: Creating a new RSA key pair

Figure 5.1.4 Creating a new RSA key pair

60

Appendix VIII: Adding a user to the LDAP Server

1. LDAP schema of an existing user

Figure 5.1.5 Existing user LDAP schema

2. Importing a new user to LDAP server

Figure 5.1.6 Adding a new user to LDAP

61

3. New user is added to the LDAP server

Figure 5.1.7 New user added to LDAP successfully

4. New user is in LDAP schema

Figure 5.1.8 New user in LDAP user store

Appendix IX: Login as a user to the bastion server

1. SSH Client debug output without Private Key provided

dilan@Dilans-MacBook-Pro:~$ ssh -v charith@192.168.57.102

OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011

debug1: Reading configuration data /Users/dilan/.ssh/config

debug1: Reading configuration data /etc/ssh_config

debug1: /etc/ssh_config line 20: Applying options for *

debug1: /etc/ssh_config line 102: Applying options for *

debug1: Connecting to 192.168.57.102 [192.168.57.102] port 22.

debug1: Connection established.

debug1: identity file /Users/dilan/.ssh/id_rsa type 1

debug1: identity file /Users/dilan/.ssh/id_rsa-cert type -1

debug1: identity file /Users/dilan/.ssh/id_dsa type -1

debug1: identity file /Users/dilan/.ssh/id_dsa-cert type -1

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_6.2

debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8

debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 pat OpenSSH*

debug1: SSH2_MSG_KEXINIT sent

62

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-ctr hmac-md5-etm@openssh.com none

debug1: kex: client->server aes128-ctr hmac-md5-etm@openssh.com none

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug1: Server host key: RSA a1:53:b1:71:f4:dc:50:51:ed:36:6e:01:ea:93:c3:8c

debug1: Host '192.168.57.102' is known and matches the RSA host key.

debug1: Found key in /Users/dilan/.ssh/known_hosts:72

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: Roaming not allowed by server

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Authentications that can continue: publickey,password

debug1: Offering RSA public key: /Users/dilan/.ssh/id_rsa

debug1: Authentications that can continue: publickey,password

debug1: Trying private key: /Users/dilan/.ssh/id_dsa

debug1: Next authentication method: password

charith@192.168.57.102's password:

2. SSH Client debug output with Private key provided

dilan@Dilans-MacBook-Pro:~$ ssh -v charith@192.168.57.102 -i /tmp/id_rsa_charith

OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011

debug1: Reading configuration data /Users/dilan/.ssh/config

debug1: Reading configuration data /etc/ssh_config

debug1: /etc/ssh_config line 20: Applying options for *

debug1: /etc/ssh_config line 102: Applying options for *

debug1: Connecting to 192.168.57.102 [192.168.57.102] port 22.

debug1: Connection established.

debug1: identity file /tmp/id_rsa_charith type 1

debug1: identity file /tmp/id_rsa_charith-cert type -1

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_6.2

debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8

debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8 pat OpenSSH*

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-ctr hmac-md5-etm@openssh.com none

debug1: Server host key: RSA a1:53:b1:71:f4:dc:50:51:ed:36:6e:01:ea:93:c3:8c

debug1: Host '192.168.57.102' is known and matches the RSA host key.

debug1: Found key in /Users/dilan/.ssh/known_hosts:72

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: Roaming not allowed by server

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Authentications that can continue: publickey,password

debug1: Offering RSA public key: /tmp/id_rsa_charith

debug1: Server accepts key: pkalg ssh-rsa blen 279

debug1: read PEM private key done: type RSA

debug1: Authentication succeeded (publickey).

Authenticated to 192.168.57.102 ([192.168.57.102]:22).

debug1: channel 0: new [client-session]

debug1: Requesting no-more-sessions@openssh.com

debug1: Entering interactive session.

debug1: Requesting authentication agent forwarding.

debug1: Sending environment.

debug1: Sending env LC_ALL = en_US.UTF-8

debug1: Sending env LC_CTYPE = en_US.UTF-8

Creating directory '/home/users/charith'.

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.19.0-64-generic x86_64)

 * Documentation: https://help.ubuntu.com/

63

 System information as of Wed Mar 8 17:01:47 +0530 2017

 System load: 0.0 Users logged in: 2

 Usage of /: 62.5% of 7.26GB IP address for eth0: 10.0.2.15

 Memory usage: 14% IP address for eth1: 10.10.10.20

 Swap usage: 0% IP address for eth2: 192.168.57.102

 Processes: 99

charith@bastion:~$ pwd

/home/users/charith

3. Bastion Auth Log

Mar 8 18:10:15 puppetmaster sshd[10671]: Accepted publickey for charith from

192.168.57.1 port 64349 ssh2: RSA 6f:5e:c9:a6:8f:47:3f:02:b8:c6:fa:fe:08:df:10:c5

Mar 8 18:10:15 puppetmaster sshd[10671]: pam_unix(sshd:session): session opened

for user charith by (uid=0)

Appendix X: Testing server behavior when LDAP server is down

System output when the SSH server is not able to connect to the LDAP, hence the key based

authentication fails and goes to the next authentication mode; password based authentication

dilan@Dilans-MacBook-Pro:~$ ssh -v charith@192.168.57.102 -i /tmp/id_rsa_charith

OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011

debug1: /etc/ssh_config line 20: Applying options for *

debug1: /etc/ssh_config line 102: Applying options for *

debug1: Connecting to 192.168.57.102 [192.168.57.102] port 22.

debug1: Connection established.

debug1: identity file /tmp/id_rsa_charith type 1

debug1: identity file /tmp/id_rsa_charith-cert type -1

debug1: Server host key: RSA a1:53:b1:71:f4:dc:50:51:ed:36:6e:01:ea:93:c3:8c

debug1: Host '192.168.57.102' is known and matches the RSA host key.

debug1: Found key in /Users/dilan/.ssh/known_hosts:72

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: Roaming not allowed by server

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering RSA public key: /tmp/id_rsa_anura

debug1: Authentications that can continue: publickey,password

debug1: Offering RSA public key: /tmp/id_rsa_charith

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: password

charith@192.168.57.102's password:

64

References

[1] OpenSSH Features (no date) [Online]. Available : https://www.openssh.com/features.html

[2] Tore Torsteinbo. (2011, November). Remote Login. [Online]. Available:

http://www.dietmueller.at/download/07_RemoteLogin.pdf

[3] T. Ylonen and Lonvick. (2006, January). SSH Authentication Protocol.[Online]. Available:

https://tools.ietf.org/html/rfc4252.html

[4] Rajdeep Bhanot and Rahul Hans. (no date). A Review and Comparative Analysis of Various

Encryption Algorithms(Vol. 9, No. 4 (2015)). [Online]. Available :

http://www.sersc.org/journals/IJSIA/vol9_no4_2015/27.pdf

[5] K.Aman and Dr. J.Sudesh and M.Sunil. (2012, July, 7). Vol 2,Issue 7.[Online]. Available:

http://www.ijarcsse.com/docs/papers/July2012/Volume_2_issue_7/V2I700262.pdf

[6] Ankit Gambhir. (2014, April). Vol 3,No4. RSA Algorithm or DES Algorithm. [Online].Available:

http://borjournals.com/a/index.php/jecas/article/viewFile/1643/1038

[7] SSH: The Secure Shell The Definitive Guide. [Online]. Available :

http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch02_04.htm

[8] Dario Berzano.(2012,November,30) SSH AUTHENTICATION USING GRID CREDENTIALS.

[Online]. Available: http://web.infn.it/CCR/images/stories/upload_file/note_ccr/infn-12-20_42.pdf

[9] Bill Bryant.(1988, February). Theodore Ts'o.(1997,February). Designing an Authentication

System: a Dialogue in Four Scenes. Copyright 1988, 1997 Massachusetts Institute of Technology.

[Online]. Available: https://web.mit.edu/kerberos/dialogue.html

[10] Don Jones. (Oct 11, 2012). MicroNugget: How Does Kerberos Work?. [Online]. Available:

https://www.youtube.com/watch?v=kp5d8Yv3-0c

[11] B. Clifford Neuman and Theodore Ts'o . The Kerberos Network Authentication Service.(1994,

September) Volume 32, Number 9, pages 33-38.[Online]. Available:

http://gost.isi.edu/publications/kerberos-neuman-tso.html

[12] OpenLDAP Foundation. Introduction to OpenLDAP Directory Services. [Online]. Available:

http://www.openldap.org/doc/admin24/intro.html

[13] Hynek Schlawack. LDAP: A Gentle Introduction. (13 February 2007). [Online]. Available:

https://hynek.me/articles/ldap-a-gentle-introduction/

[14] EMC Corporation. RSA SECURID® Hardware Tokens. [Online]. Available:

https://www.rsa.com/content/dam/rsa/PDF/h13821-ds-rsa-securid-hardware-tokens.pdf

[15] RSA SecurID Software Token,Google Authenticator. [Online]. Available:

https://play.google.com/store/apps/details?id=com.rsa.securidapp&hl=en,

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en

[16] Michael Holley. (September 29, 2015). How To Set Up Multi-Factor Authentication for SSH on

Ubuntu 14.04. [Online]. Available: https://www.digitalocean.com/community/tutorials/how-to-set-up-

multi-factor-authentication-for-ssh-on-ubuntu-14-04

[17] Kurt Dillard. Collective Technologies, Inc.[Online]. Available : https://www.sans.org/security-

resources/idfaq/what-is-a-bastion-host/2/11

https://www.openssh.com/features.html
http://gost.isi.edu/publications/kerberos-neuman-tso.html
http://www.openldap.org/foundation/
http://www.openldap.org/doc/admin24/intro.html

65

[18] Stuart Scott.(2015, December,1). AWS Security: Bastion Host, NAT instances and VPC Peering

[Online]. Available: http://cloudacademy.com/blog/aws-bastion-host-nat-instances-vpc-peering-

security/

[19] Mike Pope .(21 MAY 2014). Best Practices, Enterprise, How-To Guides, Networking.

[Online].Available: https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-

running-in-a-private-amazon-vpc/

[20] Google Security Whitepaper. (2017, January, 10). [Online]. Available:

https://cloud.google.com/security/whitepaper

[21] sshd_config(5) - Linux man page. [Online]. Available: https://linux.die.net/man/5/sshd_config

[22] Sun Microsystems, Inc. (2017-05-03). NSSWITCH.CONF(5) Linux Programmer's Manual.

[Online]. Available: http://man7.org/linux/man-pages/man5/nsswitch.conf.5.html

[23] Shichro An. (2015,April,17). Setting up OpenLDAP server with OpenSSH-LPK on Ubuntu

14.04. Copyright 2015, Shichao An. [Online]. Available:

https://blog.shichao.io/2015/04/17/setup_openldap_server_with_openssh_lpk_on_ubuntu.html

 [24] New Zealand Government ICT Functional Leader, the Government Chief Information Officer.

(09/05/2014). Password Vulnerabilities and Attacks. [Online]. Available:

https://www.ict.govt.nz/guidance-and-resources/standards-compliance/authentication-

standards/password-standard/5-password-vulnerabilities-and-attacks/

[25] Chwei-Shyong Tsai, Cheng-Chi Lee, Min-Shiang Hwang.(Sept. 2006). Vol.3, No.2, PP.101–11.

Password Authentication Schemes: Current Status and Key Issues. [Online]. Available:

http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf

[26] Dan Boneh, Twenty Years of Attacks on the RSA Cryptosystem [Online]. Available:

http://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

[27] RFC 4519. (June 2006). LDAP: Schema for User Applications.[Online]. Available:

http://www.rfc-editor.org/rfc/rfc4519.txt

[28] OpenLDAP Foundation. Copyright 2011. Security Considerations. [Online]. Available:

https://www.openldap.org/doc/admin24/security.html

[29] sshpass(1) - Linux man page. [Online]. Available: https://linux.die.net/man/1/sshpass

