

Masters Project Final Report March

2017

Project Title Developer Profiling for Secure Software Development

Student Name Lasith Tharindu Hettiarachchi

Registration No. &

Index No.

2014MIS007

14770072

Supervisor’s Name Dr M.D.J.S. Goonathilaake

Please Circle the

appropriate

Master’s

Program

Type

MIS Research Implementation

For Office Use Only

ii

Developer Profiling for

Secure Software Development

L. T. Hettiarachchi

2016

iii

Developer Profiling for

Secure Software Development

A dissertation submitted for the Degree of Master of

Science in Information Security

L.T. Hettiarachchi

University of Colombo School of Computing

2016

iv

Declaration

―I, Lasith Tharindu Hettiarachchi hereby certify that this report does not incorporate, any

material previously submitted for a degree or diploma in any University or higher educational

institution in Sri Lanka or abroad without acknowledgement. Furthermore, it does not contain

any material previously published or written by another person except where due reference is

made in the text.‖

Candidate: Mr. Lasith T. Hettiarachchi

…………………………….

Signature

…………………………….

Date

Supervisor: Dr M.D.J.S. Goonathilaake

…………………………….

Signature

…………………………….

Date

v

Acknowledgement

I would like to thank,

My parents, for all their support, and advice.

My supervisor, Dr. M.D.J.S. Goonathilaake for her continuous guidance, opinion and time.

All my lecturers at the University Of Colombo School Of Computing.

vi

Abstract

This research is aimed to be a proof of concept for to identifying and predicting software

developers who can be a security threat in a large multinational organization. The idea for this

research was originated from the personal experience of the author.

vii

Table of Contents

Declaration iv

Acknowledgement v

Abstract vi

List of figures xi

Acronyms and Abbreviations xii

Chapter 1: Introduction 1

1.1 Preamble 1

1.2 Brief Overview of Project 3

1.2 Motivation 3

1.3 Scope of the Project 3

1.4 Goals of the Project 3

1.5 Limitation of the Project 4

1.6 Version History 5

1.7.1 Project Proposal Submission 5

1.7.2 Final Report 5

1.7 Overview of Report 6

Chapter 2: Literature Survey and Background 7

2.1 User Profiling for Computer Security [5] 7

2.3 User Modeling: Through Statistical Analysis and an Evolving Classifier. 9

Chapter 3: Requirements Specification 10

3.1 Functional Requirements 10

3.2 Non-functional Requirements 10

3.2.1 Product Requirements 10

Usability Requirements 10

Efficiency, Reliability and Robustness Requirements 10

Portability Requirements (Optional) 10

3.2.2 Organizational Requirements 11

Delivery Requirements 11

Implementation Requirements 11

3.2.3 External Requirements 11

Ethical and Legislative Requirements 11

Chapter 4: Design 12

4.1 Overall Architecture 12

viii

4.1.1 Data extraction 12

4.1.2 Profile Generation 13

4.1.3 Identify vulnerable users 14

4.2 Design decisions 15

4.2.1 Approach 15

4.2.2 Identify sensible baseline 15

4.2.3 Source Code analyzers 16

4.2.4 Identifying suitable data source 16

Chapter 5: Implementation – Code Analyzer 19

5.1 Inject required parameters to the process 20

5.2 Prepare CSV document 20

5.3 Identify vulnerable developers. 21

5.4 Usage 22

5.4.1 Input 22

5.4.2 Output 24

Chapter 6: Implementation – Data Extractor 25

6.1 Extract data from the GitHub 25

6.2 Insert plug-in to a given the project 26

6.3 Executing the maven build 26

Chapter 7: Data Extraction 28

7.1 Hardware specifications 28

7.2 Repository search criteria 28

7.3 Execution and results 29

Chapter 8: Profile Generation 30

8.1 Feature used 30

8.2 Training Phase 30

8.2.1. Pre-processing stage 30

8.2.2. Training the neural network 30

8.2.3. Testing the trained system 30

8.3 Artificial Neural Networks (ANNs) 31

8.3.1. Reasons for adopting Artificial Neural Networks 33

8.3.2. MATLAB 33

8.3.2.1 Reasons for selecting MATLAB 34

8.3.3 Implementing the Neural Network 34

8.3.3.1 Input Layer 35

ix

8.3.3.2 Hidden Layer 35

8.3.3.3 Output Layer 35

8.3.3.4 ANN Architecture 36

8.3.3.5 Categorization of Data Set 37

8.3.4. Network Training 37

8.2 Training Phase 40

Chapter 9: Testing, Evaluation and Validation 41

9.1 The Plan 41

9.1.1 Code Testing 41

9.1.1.1 White-box testing 41

9.1.1.2 Black-box testing 41

9.1.2 Manual validation 41

9.2 Summary of Code Testing 41

9.2.1 Summary of the test process 41

9.2.2 Summary of the test results 42

9.3 Summary of Manual Evaluation of Output 42

Chapter 10: Conclusions and Future Work 43

10.1 Problems Faced 43

10.1.1 Finding data source 43

10.1.2Finding filtering tools 43

10.1.3 Time constrains 43

10.2 Lessons learned 43

10.2.1 Understanding code analyzers 43

10.2.2 Learning new technologies 43

10.2.3 Literature Reviewing 43

10.3 Deviations from original project plan 44

10.3.1 The name of the project 44

10.3.2 Scope of the project 44

10.4 Deficiencies in the final product 44

10.4.1 Platform Dependence 44

10.5 Extensions and Further Work 44

10.5.1 Complete original goals 44

10.5.2Further validation 44

10.5.3 GUI style interfaced application 45

10.6 Final Conclusion 45

x

Appendix A 46

OWASP top 10 security threats 46

Appendix B 48

References 52

xi

List of figures

Figure 1 : Data extraction process .. 12

Figure 2 : Profile generation process .. 13

Figure 3 : Identify vulnerable users .. 14

Figure 4 : GitHub overview .. 18

Figure 5 : Code analyzer process diagram ... 19

Figure 6 : Maven project output location ... 24

Figure 7 : GitHub search results ... 28

Figure 8 : Resource usage when data extractor running ... 29

Figure 9: Features prepared for the analysis ... 31

Figure 10: Biological Neuron Architecture [21] .. 31

Figure 11: Artificial Neuron Architecture .. 32

Figure 12: Typical ANN Architecture [22] .. 33

Figure 13: ANN Input Data Template .. 35

Figure 14: ANN Output Classes Template ... 35

Figure 15: Proposed ANN Architecture ... 37

Figure 16: ANN Training Performance .. 38

Figure 17 : Confusion Matrix for Validation ... 38

Figure 18: Training Confusion Matrix ... 39

Figure 19: Test Confusion Matrix .. 40

xii

Acronyms and Abbreviations

ANN Artificial Neuron Network

RL Rule Learner

1

Chapter 1: Introduction

1.1 Preamble

With the growth of the software industry over past few decades, security has been one of the

key areas that made into the spotlight [1]. Due to software design and operational issues,

governments and industries are losing billions annually [2], [3]. As a result, there has been an

emergence of a practice called ―Secure Software Development‖.

Private companies and government organizations involved in software development that cater

to high stake industries like defense, health-care telecommunication, etc. are following

additional security procedures throughout the software development life cycle. This will

involve techniques like compartmentalization and categorization of all the information and

projects based on the stakes involved and many other steps [12].

In this case, software developers and engineers have to play a major role because

proportionate wise they represent the majority of the team and they are the ones who convert

the business logic into a workable implementation. For an example, when a developer gets

into a technical problem it is the normal practice to ask assistance from a fellow developer, if

it has not been resolved, raise it on an online forum. But if the developer is in a so called

secure software development project, he/she should be careful about the information that is

being disclosed to the outside world or even to the fellow developer. It can be a simple

question like selecting secure hashing algorithm, but the problem is how we can ensure that

he/she is not disclosing any sensitive information to the third parties.

Implementing additional controls like limiting access to Internet or completely cutting down

the access is not a sound solution because what if user discusses this sensitive information

with outside people. We can‘t always rely on code reviews and code analysis of

implementation which is more time consuming and costly most of the time.

The key to the solution for this kind of a problem is selecting a developer, who fulfils the

following two major aspects,

1. Engineering aspects:

The ability to understand, design and address the operational flows

2. Behavioral aspects:

2

The ability to behave on a non-threatening way and withstand the pressure of doing so

(based on the project security requirements there will be boundaries that need to be

practiced. When this boundary becomes tighter, people will tend to succumb).

That is suitable for security level of a security related project.

3

1.2 Brief Overview of Project

With this study, author is trying to arrive at a technique that can be used to identify developers

who can introduce a security vulnerability or security breach to the application which is being

developed.

1.2 Motivation

Several motivational factors have inclined the author to attempt this project:

● Currently in most of the organizations developer behaviors are monitored and

those data being captured/stored but cannot see any export system that takes use of

this data tombs.

● The author has worked/been working in multinational organizations that provides

information security services, protecting its customers' computers, networks and

information assets from malicious activity such as cybercrime.

● Has been a witness to a data leakage that was caused by one of the developers.

1.3 Scope of the Project

● Although there are many forms of data sources that can be used for analysis in the

project, we are only focusing on the coding patterns of the developers that are

extracted from the source code repository.

● Nature of the languages that are used within the analysis will be limited due to time

constrains; therefore, we are trying to focus on most popular programming languages

within this scope.

1.4 Goals of the Project

The primary goal of this project (as stated in the project proposal) is to build a framework

which can predict on developers‘ potentially harmful behaviors for the security integrity of

the project.

1. Identify sensible baseline that dictates the criteria of identifying a developer who is

meant to be security vulnerability.

2. Determining the appropriate data source that can be used within the project

3. Identify, if not, develop tools that can be used to filter out vulnerable developers from

a selected data set

4. Develop a framework that can be used to process selected data set based on the tools

4

identify on the #3

5. With the use of existing data sources build up a profile that can be used to identify a

potentially vulnerable developer.

6. Measuring the accuracy of these profiles.

1.5 Limitation of the Project

1. One of the main difficulties in a computer security related research is getting suitable

data [4].Despite it‘s nearly impossible to convince a software company to grant access

to their internal staff and projects to be used in our research. Therefore, we are

proposing to use an online data source that can be utilized as an alternative.

2. Tools that are being used to analyses might have language dependencies.

5

1.6 Version History

1.7.1 Project Proposal Submission

Project proposal as submitted on the 20th April 2016 she suggested several revisions.

1.7.2 Final Report

This final document is the complete Final Report for the Individual Project (2014/MIS/007).

6

1.7 Overview of Report

Chapter 2: (Literature Survey and Background) reviews the background and existing

literature related to the project. First, we will take a look at existing user profiling research

papers. Then, we will review the existing techniques that we hope to use here

Chapter 3: (Requirements Specification) briefly presents the requirements of this project.

Since this project is a research project, it does not contain a formal requirements specification

that a classic software engineering project would contain. However, to avoid uncertainties, we

present a set of functional and non-functional requirements.

Chapter 4: (Design) describes the design. It looks at architectural aspects of the initial design

and describes the overall architecture as a whole, the design philosophy, the architecture and

the basic design components. It also describes in detail how these design components are

specifically designed.

Chapter 5: (Implementation – Code Analyzer) Chapter 6: (Implementation – Data extractor)

Implementation of the code analyzers that Find Bug based maven plug-in and the Data

extractor that use the Code analyzer we developed

Chapter 7: Data extraction. Use the Code Analyzer and the Data extractor developed and

obtain a sample data set.

Chapter 8: (Testing, Evaluation and Validation) describes the testing and validation process.

After an overview of the testing methods, it describes the validation of components developed

Chapter 9: (Conclusions and Future Work) begins with a summary of the results. It describes

the problems faced during the project, the lessons learnt, deviations from the original project

plan, deficiencies in the final product, extensions to the project and a critical appraisal of the

system.

7

Chapter 2: Literature Survey and Background

2.1 User Profiling for Computer Security [5]

In this paper [5], a proof-of-concept has been validated based on the idea of profiling, queuing

theory, and logistic regression modeling for intrusion and misuse detection in a definitive set

of computer users, like, bank tellers, insurance and credit processing agents who would be

expected to use their computers in a very similar and regular way. Their results were even

though introductory, remained encouraging, suggesting that monitoring even very rough

behavioral features might be effective in detecting intrusions and abuse in these particular

classes of computer users.

Rather than digging deep into the operating system commands, users produce, they simply

look at the busy period assembly of the sample path they spawn, i.e., when they are busy, how

long they are busy, and approximately how active they are while busy. This leads to an agile

and simple implementation, requiring only simple time-stamping and counting. Being mild

and fast, another potential use, outside of user profiling, is for making a quick first pass over

audit data.

Logistic regression is very similar to ANNs, who are sometimes used for IDS-MDS, but is

statistically more rigorous and docile to conduct a comprehensive statistical analysis of model

quality and sensitivity to various features.

The approach they have presented has certain boundaries.

1. Only discovers a partial portion of the space of likely behavior features. So, it is not

designed to be used standalone to detect computer abuse, but as another ―sensor‖ in an

integrated, broad defense-in-depth security system. For example, the behavior of a

bank teller can be correlated with customer arrivals to the bank‘s lobby.

2. The approach does not deliver real-time detection, since it only makes its judgments

when a session ends—although by simple variation one can picture a system that

dynamically comes to a decision as features reveal themselves, e.g., while the length

of the session is not known until it ends, the starting time, day, and interval since the

last session are known immediately at the session start.

3. One of the main open questions to be addressed is to assess the effectiveness of the

methodology in building profiles for groups of users, because the nature of their work

has been predicted to have alike behaviors.

8

2.2 Combining Data Mining and Machine Learning for Effective User Profiling

[6]

The recognition of cellular cloning fraud is an interesting field to study. Fraud behavior

changes frequently as outlaws adapt to detection techniques. To counter act this behavior, a

fraud detection system should be adaptive as well. However, in order to build usage profiles,

it must know which aspects of customers‘ behavior to profile. Traditionally, determining such

aspects has involved a good deal of manual work, conjecturing useful features, building

profilers and testing them. Determining how to combine them involves much trial-and-error

as well.

In here, it combine data mining and constructive induction with more standard machine

learning techniques to design methods for detecting fraudulent usage of cellular telephones

based on profiling customer behavior and using a rule-learning program to uncover indicators

of fraudulent behavior from a large database of cellular calls. These indicators are used to

create profilers, which then serve as features to a system that combines evidence from

multiple profilers to generate high-confidence alarms.

9

2.3 User Modeling: Through Statistical Analysis and an Evolving Classifier.

[7]

They (who are the researches) discussing approach for creating and automatic recognition of

behavior profile of a user is combined with an evolving method to keep up to date profiles.

The behavior of a computer is denoted in this research as the sequence of commands a

specific user types during a period. This sequence is treated using statistical methods in order

to create the matching user profile. Yet, a user profile is not usually fixed but rather it changes

and develops. This paper defines briefly the model creation method and the evolving

classifier, which are related with well-established off-line and on-line classifiers.

Also, this paper presents an approach for forming and identifying spontaneous behavior

profiles of a computer user, and it is combined with an evolving method to keep up to date

profiles. Since a user profile is usually not fixed but rather it changes, they have proposed a

classifier which is able to keep up to date models based on Evolving Systems. This evolving

classifier is one pass, non-iterative, recursive and it has the potential to be used in a

collaborative mode; therefore, it is computationally very effective. Furthermore, an all

important goal in this work is to give a general approach which can symbolize, manage and

evolve contrary behaviors in a comprehensive environment. Hence, the proposed approach

can be generalized to modeling, classifying and updating agent behaviors represented by a

sequence of events.

The experimental results show that, using an appropriate subsequence length, EvCAB is very

effective in both domains and it can perform almost as well as other well established offline

classifiers in terms of correct classification on validation data. However, the proposed

classifier is suitable in environments which it is necessary to cope with huge amounts of data

and process streaming data quickly, because it does not need to store the entire data stream in

the memory, and it is computationally simple and efficient as is

10

Chapter 3: Requirements Specification

3.1 Functional Requirements

As mentioned above, the main goal of this project is to build a framework that can predict on

developers who can introduce a security threat to the company. Based on the goals of this

project following requirements have been identified.

1. Identify sensible baseline criteria that can used to identify a developer who is

vulnerable to security integrity and should be acceptable and reasonable.

2. Determining suitable data source that can be used in the project. Since it is impossible

to acquire a private data source, we should find a data source that almost mirrors the

qualities of source code repository of a software company.

3. Identify, if not develop tools that can be used to filter out security vulnerable

developer from selected source code repository. In here we expect a tool or set of tools

that can analyze source code or byte code and identify security vulnerabilities based

on the baseline we provided.

4. Develop a framework that can be used to process selected data set. To arrive and make

a reasonable judgment we must analyze reasonable amount of data therefore the

developed framework should be memory efficient and process efficient.

3.2 Non-functional Requirements

The following non-functional requirements have been listed to counter certain issues that may

arise.

3.2.1 Product Requirements

Usability Requirements

Human-Computer interfaces (for example, those used for moderation and listening) should

conform to reasonable usability metrics. Since this mostly targeting technical persons

command line interface would be sufficient.

Efficiency, Reliability and Robustness Requirements

Once the system is complete, it must satisfy efficiency, reliability and robustness constraints

imposed by the domain.

Portability Requirements (Optional)

The system is planned to be developed on Ubuntu and expected to work smoothly in any

11

Linux based system mainly using Java.

3.2.2 Organizational Requirements

Delivery Requirements

Deadlines: This Individual Project (2014/MIS/007) needs to be finished before March 2017.

The deadline applies to both the application and associated documentation.

Implementation Requirements

There are no direct requirements with regards to implementation software, hardware, etc. The

selected implementation platform and components are acceptable to the generally acceptable

Standards

The project must conform to generally accepted standards for coding, documentation, etc.

3.2.3 External Requirements

Ethical and Legislative Requirements

Composers have intellectual property rights to their compositions. If any outside material is

used,

The legality of use must be verified. The legality of development and application software

must also be verified.

12

Chapter 4: Design

4.1 Overall Architecture

4.1.1 Data extraction

Figure 1 : Data extraction process

Since there is no already filtered out data set that is suitable for our research we need to filter

out who are the security vulnerable developers from the selected data set.

Thus, for selected repository there can be a number of projects that can be categorized in to

various categories based on different attributes like number of languages used, lines of code,

number of committers etc.

And for the analysis of selected project there should be source code analyzers or static code

analyzers that would be acting according to the specified baseline.

13

4.1.2 Profile Generation

Figure 2 : Profile generation process

We expect to use the RL program (Clearwater & Provost 1990) [16], which is similar to other

Meta-DENDRAL-style rule learners (Buchanan & Mitchell [17]; Segal & Etzioni [18])

searches for rules.

Since we are injecting only the users who originated vulnerability, we try to group them based

on the vulnerability they have caused and certainty factor of a given rule.

14

4.1.3 Identify vulnerable users

Figure 3 : Identify vulnerable users

With the use of the identified profiles in the previous phase, we will try to predict developers

who can be vulnerable in future. Following criteria‘s have been identified for the evaluation.

I. Determining the accuracy of profiles we have generated using training data set.

II. The accuracy of predicting vulnerable developers using generated profile and effect of

this early identification.

15

4.2 Design decisions

4.2.1 Approach

This research‘s main aim is to predict with reasonable probability, which can cause a security

threat.

In this research we tried to identify a security vulnerable developers in simple terms we are

trying to pick the ugly ones since to be in that category we only need to find one mistake.

4.2.2 Identify sensible baseline

One of the other aims in this study is to identify a developer who can be a security threat.

Firstly, when identifying a security vulnerable developer we need to determine what the

baseline criteria that need to be consider.

Since the baseline we do use should be unbiased and acceptable to the considerable length,

thus we have looked in to the OWASP [12] with more than 42,000 volunteers [13] and

considerable community recognition. Because of that reason, we have selected OWASP Top

Ten Projects to determine our baseline where project goal is to raise awareness about

application security by recognizing some of the most serious perils facing organizations.

16

4.2.3 Source Code analyzers

After the baseline was selected, we have looked on source code and byte code analyzers that

can support the selected baseline criteria‘s. [15] Following tools and project have been

identified as potential candidates during the initial analysis.

Tool Language(s) Available Finds or Checks for

CheckmarxCxSAST Java, JavaScript, PHP,

C#, VB.NET, VB6,

ASP.NET, C/C++,

Apex, Ruby, Perl,

Objective-C, Python,

Groovy, HTML5,

Swift, APEX, J2SE,

J2EE

Checkmarx

(Commercial)

All OWASP Top 10 and

SANS 25 vulnerabilities

and compliance with

PCI-DSS, HIPAA, and

MISRA requirements

along with custom

queries, all with a low

rate of false-positives

and easy to integrate

throughout the SDLC.

SPARROW C/C++, Java, JSP,

JavaScript, C#,

ASP(.NET),

Objective-C, PHP,

VB.NET, VBScript,

HTML, SQL, XML

Fasoo

(Commercial)

OWASP Top 10, SANS

25, CWE, CERT

vulnerabilities, MISRA,

efficient and effective

issue management based

on machine learning

technology

Find Security Bugs Java LGPL

(Free and Open

Source)

OWASP TOP 10 and

CWE coverage

Since first two tools are commercial tools, we have requested student license from them but

the requests were rejected. Due to that reason we decided to go ahead with Find Security

Bugs which is publicly available open source tool.

4.2.4 Identifying suitable data source

As mentioned above its nearly impossible to get hands on the source code repository from the

private organizations therefore, we have looked for a public source code repository that can be

accessed easily.

https://www.checkmarx.com/technology/static-code-analysis-sca/
https://www.checkmarx.com/
http://en.fasoo.com/SPARROW-SCE
http://en.fasoo.com/?lang=en

17

After engaging with some thorough analysis we have decided to go ahead with GitHub [14].

Apart from a rich data source, it provides an API that can be used retrieve repository statistics.

It allows us to fetch data that GitHub uses for visualizing different types of repository

activities.

18

Figure 4 : GitHub overview

19

Chapter 5: Implementation – Code Analyzer
After deciding go ahead with the Find Security Bug which is a plug-in developed for the

Find Bugs. Which also have plug-in developed for different IDE‘s Eclipse, IntelliJ IDEA etc.

and build tools like Maven, Gradle.

We have used JGit which is a Java implementation of Git version control system.

Based on the Maven Find Bugs plug-in we have implemented a plug-in which after executing

this plug-in it will generate a CSV file with details that provide details of any developer who

have committed a security vulnerable code retrieved from on any Git like source code system.

Following contains the important code snippets in the plug-in

Figure 5 : Code analyzer process diagram

20

5.1 Inject required parameters to the process

/**

 * File of the Directory containing the source files.

 * injected by the maven start of the execution

 * @required

*/

@Parameter(defaultValue = '${project.build.sourceDirectory}', required = true)

File sourceFilesDirectory

/**

 * File of the Directory where the execution is started

 * @required

*/

@Parameter(defaultValue = '${session.executionRootDirectory}', required = true)

File executionRootDirectory

5.2 Prepare CSV document

File issuesBy = new File("${project.build.directory}/issuesBy.csv")

if (issuesBy.exists()) {

issuesBy.delete()

}

issuesBy.getParentFile().mkdirs()

issuesBy.createNewFile()

xDocsReporter.generateReport(sourceFilesDirectory, executionRootDirectory, issuesBy)

21

5.3 Identify vulnerable developers.

public void generateReport(File sourceFilesDirectory, File executionRootDirectory, File

issuesBy) {

defstreamingMarkupBuilder = new StreamingMarkupBuilder()

streamingMarkupBuilder.encoding = "UTF-8"

defxdoc = {

mkp.xmlDeclaration()

log.debug("generateReportfindbugsResults is ${findbugsResults}")

BugCollection(version: getFindBugsVersion(), threshold:

FindBugsInfo.findbugsThresholds.get(threshold), effort:

FindBugsInfo.findbugsEfforts.get(effort)) {

findbugsResults.FindBugsSummary.PackageStats.ClassStats.each() { classStats ->

defclassStatsValue = classStats.'@class'.text()

defclassStatsBugCount = classStats.'@bugs'.text()

if (classStatsBugCount.toInteger() >0) {

bugClasses<<classStatsValue

 }

 }

 File gitFolder = new File("${executionRootDirectory.absolutePath}/.git")

 Repository repo = new FileRepositoryBuilder().setGitDir(gitFolder).build()

BlameCommand blamer = new BlameCommand(repo)

ObjectIdcommitID = repo.resolve("HEAD")

bugClasses.each() { bugClass ->

log.debug("finish bugClass is ${bugClass}")

 file(classname: bugClass) {

findbugsResults.BugInstance.each() { bugInstance ->

if (bugInstance.Class.@classname.text() == bugClass) {

deftype = bugInstance.@type.text()

defcategory = bugInstance.@category.text()

defmessage = bugInstance.LongMessage.text()

defpriority = evaluateThresholdParameter(bugInstance.@priority.text())

defline = bugInstance.SourceLine.@start[0].text()

defbugPath = bugInstance.SourceLine.@sourcepath[0].text()

BugInstance(type: type, priority: priority, category: category, message: message,

lineNumber: ((line) ? line : "-1"))

if (category == "SECURITY") {

blamer.setStartCommit(commitID)

 String path =

"${executionRootDirectory.toURI().relativize(sourceFilesDirectory.toURI()).getPath()}${bu

gPath}"

blamer.setFilePath(path)

BlameResult blame = blamer.call()

PersonIdentpersonIdent =

blame.getSourceAuthor(Integer.parseInt(bugInstance.SourceLine.@start[0].text()))

issuesBy.append(personIdent.toString() + "\r\n")

 }

 }

 }

 }

 }

 Error() {

findbugsResults.Error.analysisError.each() { analysisError ->

22

AnalysisError(analysisError.message.text())

 }

findbugsResults.Error.MissingClass.each() { missingClass ->

MissingClass(missingClass.text)

 }

 }

 Project() {

if (!compileSourceRoots.isEmpty()) {

compileSourceRoots.each() { srcDir ->

SrcDir(srcDir)

 }

 }

if (!testSourceRoots.isEmpty()) {

testSourceRoots.each() { srcDir ->

SrcDir(srcDir)

 }

 }

 }

 }

 }

outputWriter<<streamingMarkupBuilder.bind(xdoc)

outputWriter.flush()

outputWriter.close()

}

5.4 Usage

After including our plug-in in the plug-in in the pom.xml file it will generate CSV file with

the discovered details.

5.4.1 Input

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.sample.app</groupId>

<artifactId>findBug-sec-sample</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>findBug-maven-sample</name>

<url>http://maven.apache.org</url>

<reporting>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-project-info-reports-plugin</artifactId>

<version>2.9</version>

</plugin>

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>findbuggers-maven-plugin</artifactId>

<version>3.0.5-SNAPSHOT</version>

23

<configuration>

<effort>Max</effort>

<threshold>Low</threshold>

<xmlOutput>true</xmlOutput>

<plugins>

<plugin>

<groupId>com.h3xstream.findsecbugs</groupId>

<artifactId>findsecbugs-plugin</artifactId>

<version>1.5.0</version><!-- Auto-update to the latest stable -->

</plugin>

</plugins>

</configuration>

</plugin>

</plugins>

</reporting>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>

24

5.4.2 Output

Figure 6 : Maven project output location

25

Chapter 6: Implementation – Data Extractor
Since in this project we intend to analyze large amount of row data to come up with a

reasonable test data set following frame work have been developed to facilitate the process.

6.1 Extract data from the GitHub

This module will be responsible for extracting repository based on the given filter criteria‘s

/**

 * Initialze the client with the auth token

 * @paramoauthToken

* @throws IOException

 */

GitClient(String oauthToken) throws IOException {

this.oauthToken= oauthToken;

this.github= getGithub();

}

private GitHub getGithub() throws IOException {

GitHubBuildergitHubBuilder = new GitHubBuilder();

gitHubBuilder.withOAuthToken(oauthToken);

return gitHubBuilder.build();

}

/**

 * Get repository based on the filter criteria

 * @paramsize in Kb

 * @paramstars project ratings

 * @paramlanguage language that the project is developed

 * @return List of repository end points

 */

public List<String>getRepos(String size, String stars, String language) {

return getRepos(github.searchRepositories()

 .size(size)

 .stars(stars)

 .language(language).sort(GHRepositorySearchBuilder.Sort.STARS).list());

}

/**

 * Get repository based on the filter criteria

 * @paramsearchBuilderPagedSearchIterable<GHRepository>

 * @return @return List of repository end points

 */

public List<String>getRepos(PagedSearchIterable<GHRepository>searchBuilder) {

return searchBuilder.asList().stream().map(ghRepository -> {

return ghRepository.gitHttpTransportUrl();

 }).collect(Collectors.toList());

}

26

6.2 Insert plug-in to a given the project

/**

 * Initiated pom modifier

 *

 * @paramplugin Plugin to be inserted

 */

AddToPom(ReportPlugin plugin) {

this.plugin= plugin;

}

public void modifyPom(Model model, String baseDir) throws IOException {

 MavenXpp3Writer writer = new MavenXpp3Writer();

writer.write(new FileOutputStream(new File(baseDir, "/pom.xml")), model);

}

6.3 Executing the maven build

/**

 * This method will execute the project in a given path and return a result

 *

 * @paramprojectPathFile location where the project have been checked out

 * @return the status of the project

 */

public String buildThis(String projectPath) {

 String message = null;

InvocationRequest request = getRequest(projectPath + "/pom.xml");

InvocationResult result = null;

try {

 result = runThis(request);

 } catch (MavenInvocationException e) {

e.printStackTrace();

 }

if (result.getExitCode() != 0) {

if (result.getExecutionException() != null) {

 message = "Failed to build project : " + result.getExecutionException();

//throw new PublishException();

} else {

 message = "Failed to build project : " + result.getExitCode();

//throw new PublishException("Failed to publish site. Exit code: ");}

}

 }

return message;

}

/**

 * Invoke the maven build

 *

 * @paramrequest

* @return

*/

private InvocationResultrunThis(InvocationRequest request) throws

MavenInvocationException {

27

 Invoker invoker = new DefaultInvoker();

//invoker.setMavenHome(new File("C:\\apache-maven-3.3.3"));

invoker.setMavenHome(new File(mavenHome));

InvocationResult result = null;

return invoker.execute(request);

}

/**

 * Prepare command to be executed

 *

 * @paramprojectPathlocation where the project is checked out

 * @return InvocationRequest

 */

private InvocationRequestgetRequest(String projectPath) {

InvocationRequest request = new DefaultInvocationRequest();

request.setPomFile(new File(projectPath + "/pom.xml"));

request.setGoals(Arrays.asList("clean", "compile", "site"));

return request;

}

28

Chapter 7: Data Extraction
For the data extraction using tools we developed in the Chapter 5 and 6 we have used Dell

inspiron 5559 laptop with following specification and search criteria‘s

 7.1 Hardware specifications

Processor 5th Generation Intel® Core™ i7-5500U Processor (4M Cache, 2.50

GHz)

Operating Systems Ubuntu 16.04 LTS

Memory 8 GB DDR3L 1600 MHz

Hard Drive 1000GB SATA

And the laptop was connected to the internet connection which had effective bandwidth of

10mbs.

 7.2 Repository search criteria

Since we have limited resources to use we targeted for relatively small repositories that have

high user involvement. We have used following search criteria‘s for filtering out repositories.

Maximum repository size Less than 30mb

Programming language Java

Stars (user rating) More than 2000

 Based on these search criteria‘s we have got 1020 repositories for the analysis.

Figure 7 : GitHub search results

29

7.3 Execution and results

To analyze 1020 repositories it took around 5 hours and provides a data set of 1747 mistake

from 100 plus developers.

One of the main problems we face is the high resource usage of the extractor when analyzing

large set of data.

Figure 8 : Resource usage when data extractor running

30

Chapter 8: Profile Generation

8.1 Feature used

We have gone for following features for a given user when building up a profile.

 Country

 Number of Public REPOS

 Number of Public GIST

 Number of Followers of the user

 Number of users user following

 Issues that have been reported for the user.

8.2 Training Phase

Data extracted from the GitHub have been used in the Training phase. An artificial neural

network (ANN) is used to profile each developer and their corresponding security

vulnerability. There are three main sub phases under this phase.

1. Pre-processing stage

2. Training the neural network

3. Testing the trained system

8.2.1. Pre-processing stage

The gathered data will be processed in to a format that is in line with the neural network input

format. Pre selected features were taken into the input template.

8.2.2. Training the neural network

Processed data sets were mapped into the corresponding target classes (vulnerable or not) and

trained till the system receives a minimum Mean Squared Error (MSE) and a good correlation

value between system outputs and targets.

8.2.3. Testing the trained system

Separate data set was used to evaluate the system for its accuracy on classifying the features

for their corresponding vulnerability.

31

Figure 9: Features prepared for the analysis

8.3 Artificial Neural Networks (ANNs)

ANNs is one type of networks that see the nodes as ―Artificial Neurons.‖ An artificial neuron

is a computational model inspired by the natural neurons. Natural neurons accept signals

through synapses located on the dendritesor membrane of the neuron. When the received

signals‘ strength is strong enough (surpass a certain threshold), the neuron will be activated

and emits a response signal through the axon (figure 10). This cycle will be continued in order

to activate neurons for signal transmission [20].

Figure 10: Biological Neuron Architecture [21]

The complexity of real neurons is highly abstracted when constructing artificial neurons.

These basically consists of inputs (like synapses), which are multiplied by weights (strengths

of the respective signals), and then computed by a mathematical function which determine the

activation of the neuron (figure 11). Another function computes the output of artificial neuron.

This output sometimes depends on a defined threshold value. Artificial neural networks

combine artificial neurons in order to process information.

32

Figure 11: Artificial Neuron Architecture

When the weight of an artificial neuron is high, the stronger the input which is multiplied by it

weights can also be negative, thus it is said that the signal is inhibited by the negative weight.

The computation complexity of the neuron will be depended on the weights. By adjusting the

weights of an artificial neuron, desired output can be achieved. When there are hundreds or

thousands of neurons, it would be quite complicated to find by hand all the necessary weights.

There are algorithms which can adjust the weight of the ANN in order to obtain the desired

output from the network.

The number of types of ANN and their uses are very high. Since the first neural model by

McCulloch and Pitts in 1943, different types of ANN models have been implemented. The

differences of them may be the functions, accepted values, topology, learning algorithm, etc.

The ANN architecture is clearly illustrated in figure 12.

33

Figure 12: Typical ANN Architecture [22]

8.3.1. Reasons for adopting Artificial Neural Networks

ANN approach suits for the training of the system due to the following reasons [23].

1. Instances are represented by many attribute-value pairs.

The target function to be trained is defined by the instances that can be described by a vector

of predefined features. This study holds the input nodes as a vector comprised with selected

features. Furthermore, these input attributes can be highly correlated or independent from one

another and at the same time these input values can be any real values.

2. The target function output may be discrete-valued, real-valued, or a vector of real or

discrete valued attributes.

Targets of the trained model where the user vulnerable or not where each level is comprised

with 2 digits. The function output was a discrete-valued or real-valued vector.

3. The training attributes may contain errors.

Even though training attributes contain errors, learning methods are quite robust to the noise

in training data set.

4. Fast evaluation of the learned target function is generally required.

Although ANN learning times are relatively long (depends on the data set), evaluating a

subsequent instance is typically very fast.

8.3.2. MATLAB

MATLAB is a high-level language and interactive environment for numerical computation,

visualization, and programming. This tool can be used to analyze data, develop algorithms,

and create models and applications. The language, tools, and built-in math functions enable

34

users to explore multiple approaches and reach a solution faster. MATLAB can be used for a

range of applications, including signal processing and communications, image and video

processing, control systems, test and measurement, computational finance, and computational

biology. More than a million engineers and scientists in industry and academia use MATLAB,

the language of technical computing [24].

8.3.2.1 Reasons for selecting MATLAB

As stated above, MATLAB is an interactive system for conducting numerical computations.

MATLAB is a well-established mathematical package which uses highly respected

computational models which the user can be confident of. As per our research requirement,

MATLAB Neural Network Tool box provides functions and apps for modeling complex

nonlinear systems that are not easily modeled with a closed-form equation [24].

8.3.3 Implementing the Neural Network

Initial creation of ANN consists of few mandatory steps such as,

a) Define input layer.

b) Process hidden layer according to number of input nodes.

c) Define output layer in correspondence with input layer.

MATLAB Neural Network Pattern Recognition (NNPR) tool is used for building up the

ANN. NNPR tool uses two-layered feed-forward architecture in constructing the ANN. The

network will be trained with scaled conjugate gradient back propagation algorithm [25].

According to [86], ―Multilayer perceptions can form arbitrarily complex decision boundaries

and represent any Boolean function. The development of the back-propagation learning

algorithm for determining weights in a multilayer perception has made these networks the

most popular among researchers and users of neural networks.‖ Furthermore, back-

propagation algorithm is a gradient-descent method to minimize the mean squared error

(average squared difference between outputs and targets). The function, ―mapminmax‖ scales

inputs and targets and they fall in the range between –1 to 1. MATLAB script for ANN

implementation is included in the Appendix B.

35

8.3.3.1 Input Layer

Figure 13: ANN Input Data Template

From the data set we have discovered 105 records have been selected as the training data set

and the 21 records have been selected as the evaluation dataset. Figure 13 illustrates the input

data template in the input layer.

8.3.3.2 Hidden Layer

Deciding the number of neurons in the hidden layer is an important stage in constructing the

overall network architecture. Even though these layers do not directly interact with external

environment, they highly influence the final output [26].

Using only a few neurons in the hidden layer will result in under fitting. This occurs when

there are few neurons in the hidden layers to adequately detect the signals in a complicated

data set.

Adapting too many nodes in the hidden layer can result in over fitting. Over fitting occurs

when the neural network has so much information processing capacity, while training set is

not enough to train all the neurons in the hidden layers.

There are many rule-of-thumb methods for determining the correct number of neurons to use

in the hidden layers such as,

a) The number of hidden neurons should be between the size of the input layer and the

size of the output layer.

b) The number of hidden neurons should be 2/3 the size of the input layer, plus the size

of the output layer.

c) The number of hidden neurons should be less than twice the size of the input layer.

With referring to the above facts, we have chosen 5 hidden layer nodes for training. Based on

the results, number of hidden nodes could be increased or decreased in order to achieve an

optimized output. In our scenario, 5 hidden nodes provided the optimum training accuracy.

8.3.3.3 Output Layer

Two output nodes were included in the architecture. Two digits were used to formulate the

corresponding output class as shown in figure 14.

Figure 14: ANN Output Classes Template

36

8.3.3.4 ANN Architecture

The proposed network architecture will be illustrated under figure 15.

37

Figure 15: Proposed ANN Architecture

8.3.3.5 Categorization of Data Set

As mentioned, altogether there are 126 test samples. From those, 21 sample sets were

allocated to be used at evaluation phase. Therefore, 105 sample sets were used for system

training.

That data set is fed in to the neural network with the following proportions.

 Training: 95 samples (90%)

 Validation: 5 samples (5%)

 Testing: 5 samples (5%)

Testing and validation required comprised with 5 samples. We have focused more on the

training data set since the system evaluation will be done through a different data set apart

from the training data set.

8.3.4. Network Training

Network performance is an important factor regarding the efficiency and effectiveness of the

network. The network performance will be discussed as follows.

a) Neural Network Training Performance

The training stopped when the validation set‘s mean square error came across to its lowest

value. According to figure 16, network has a 0.063792 best validation performance at

epoch 32. Validation data set was used to fine tune the network architecture. All the

validation data sets have been correctly classified with 0% of error rate (figure 17).

38

Figure 16: ANN Training Performance

Figure 17 : Confusion Matrix for Validation

39

b) Network Training Confusion Matrix

Overall system training information is included in figure 18. According to the matrix, 87%

(91 samples) of the total training data set (105 samples) is trained accurately. This is the

optimum classification occurred where number of hidden neurons exist at 5.

Figure 18: Training Confusion Matrix

40

8.2 Training Phase

Trained ANN was tested with 21 separate data samples. These 21 unseen data samples were

classified into corresponding output classes with an accuracy level of 69.6%. Figure 19 shows

the confusion matrix of the test data samples. Hence, from the evaluation we can conclude

that the ANN is able to classify the user‘s into that he/she is vulnerable or not with an

accuracy rate of 69.6%.

Figure 19: Test Confusion Matrix

41

Chapter 9: Testing, Evaluation and Validation
Due to the time constrains we were able to fully deliver only up to the #4 goal because of that

the test plan only focus on the #3 and #4 goals were are the technical components

9.1 The Plan

Testing, Evaluation and Validation of the system was carried out as following

 First, the implemented deliverables were tested (Code Testing).

 The systems output will be validated manually for the conformance of the accuracy.

9.1.1 Code Testing

Since this project is not a conventional software development project, a conventional testing

procedure need not be followed. Most of the implemented code follows directly from the

design.

Hence, the likelihood of semantic and logical errors is low. Almost all syntax can be directly

detected by the development IDE (IntelliJ IDEA: Community edition 2016.3.5). Still, we will

be performing the below described tests to verify that the components can be integrated,

functionality is met and non-functional requirements are satisfied.

9.1.1.1 White-box testing

 Test control structures and paths for correct implementation

 Test the interfaces of functions

 Test the dependencies between packages

9.1.1.2 Black-box testing

 Test each generator for functionality (to make sure it produces the required output)

 Test the performance of the procedures (mainly the speed)

9.1.2 Manual validation

To validate the validity of the implementations output sample will be inspected.

9.2 Summary of Code Testing

9.2.1 Summary of the test process

Before get on the actual code testing, the full source code was carefully inspected for errors.

A few errors were discovered. The review also provided the chance to confirm coding

conventions and comments etc. The white box testing process was based on the design of the

code implementation. Path testing, control structure testing was done while running the

42

software in debug mode. To enable testing definite sets of input data, simple test drivers were

executed. Dependencies between packages were tested in a similar manner. Black-box testing

was done incrementally in a bottom-up manner, maintained by drivers.

9.2.2 Summary of the test results

As expected the white-box testing uncovered no serious errors or bugs. Control structures and

pathways were free of error. Interfaces between functions were error-free. There were no

errors emerging from dependencies between packages. The makers performed according to

specification. Similarly, the input options resulted in the expected output results. The speed

and efficiency of the system was good.

9.3 Summary of Manual Evaluation of Output

After inspecting the sample of the out of the system we discovered that there are false positive

and false negative scenarios but not in staid percentage.

43

Chapter 10: Conclusions and Future Work

10.1 Problems Faced

10.1.1 Finding data source

Finding a proper data source was the first obstacle we faced in this research due to the

sensitive nature of the data we interested in this research we were unable to find access to a

private company‘s source code repository because of this reason we have to turn in to a public

data source.

10.1.2Finding filtering tools

Our first two selections for the data filtering were the most suitable but due to licensing issues

we have to drop them and develop our own tool for the filtering of the data using open source

software‘s.

10.1.3 Time constrains

Because of the above two problems we faced from the intended questions we aimed to

address only fist four of them were able to address at the end.

10.2 Lessons learned

10.2.1 Understanding code analyzers

Although the author had previously studied both source and byte code analysers and also he

was practically used such applications this was the first he have got know their internal

architectures and technical make up.

10.2.2 Learning new technologies

The author had the opportunity to work with several new computer technologies and related

concepts. For example, he gained much knowledge about the source code systems and code

analysis tools

10.2.3 Literature Reviewing

The actual design and execution was preceded by a very inclusive literature review that

consisted of reviewing a large body of information. This process enabled the author to acquire

skill set reading through material quickly, classifying data and appropriately documenting

them.

44

10.3 Deviations from original project plan

10.3.1 The name of the project

The name of the project was changed from ―User Behavioral analysis for Computer Security‖

to ―Developer Profiling for Secure Software Development‖. The new name is more

representative of the scope of the project and the name as a whole more commercially

relevant. This is important for an application with potential commercial value.

10.3.2 Scope of the project

Original project was intended to capture various data sources to extract data like network logs,

bug tracking systems, etc. but due to data limitation and the time constrains the scope was cut

down to the current extent.

10.4 Deficiencies in the final product

Although the final product meets the specified requirements satisfactorily, it might be said to

be slightly deficient in a performance and usability

10.4.1 Platform Dependence

This project was written in java which has cross platform capability but since author has used

the Ubuntu for the implementation there are dependencies that tied them Linux based

systems.

10.5 Extensions and Further Work

10.5.1 Complete original goals

Due the problems faced the following goals were unable to achieved

1. With the use of existing data sources build up a profile that can be used to

identify a potentially vulnerable developer.

2. Measuring the accuracy of these profiles.

10.5.2Further validation

Since current study has done on a public data source. If the implementation can be tested on

actual intended target user group and it will help to identify deficiencies.

45

10.5.3 GUI style interfaced application

It can be made more accessible for users by building an application with a graphical user

interface. The complex nature of a potential user interface was one reason why it was not

attempted as part of this project.

10.6 Final Conclusion

The author is confident that the research has achieved reasonable success and produces a

strong foundation to further continuation. It has several interest features and implements many

novel concepts. It can also be considered as an excellent foundation for developing advance

featured source code mining applications in the future. The author hopes that this

implementation will be used for professionals in computer security and data analytic fields as

well.

46

Appendix A

OWASP top 10 security threats

[8]

1. Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when un-trusted data is sent to

an interpreter as part of a command or query. The attacker‘s hostile data can trick the

interpreter into executing unintended commands or accessing data without proper

authorization.

2. Broken authentication and session management

Application functions related to authentication and session management are often not

implemented correctly, allowing attackers to compromise passwords, keys, or session tokens,

or to exploit other implementation flaws to assume other users‘ identities.

3. Cross-site scripting

XSS flaws occur whenever an application takes un-trusted data and sends it to a web browser

without proper validation or escaping. XSS allows attackers to execute scripts in the victim‘s

browser which can hijack user sessions, deface web sites, or redirect the user to malicious

sites.

4. Insecure direct object reference

A direct object reference occurs when a developer exposes a reference to an internal

implementation object, such as a file, directory, or database key. Without an access control

check or other protection, attackers can manipulate these references to access unauthorized

data.

5. Security mis-configuration

Good security requires having a secure configuration defined and deployed for the

application, frameworks, application server, web server, database server, and platform. Secure

settings should be defined, implemented, and maintained, as defaults are often insecure.

Additionally, software should be kept up to date.

6. Sensitive data exposure

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs,

and authentication credentials. Attackers may steal or modify such weakly protected data to

conduct credit card fraud, identity theft, or other crimes. Sensitive data deserves extra

47

protection such as encryption at rest or in transit, as well as special precautions when

exchanged with the browser.

7. Missing function level access control

Most web applications verify function level access rights before making that functionality

visible in the UI. However, applications need to perform the same access control checks on

the server when each function is accessed. If requests are not verified, attackers will be able to

forge requests in order to access functionality without proper authorization.

8. Cross-site request forgery

A CSRF attack forces a logged-on victim‘s browser to send a forged HTTP request, including

the victim‘s session cookie and any other automatically included authentication information,

to a vulnerable web application. This allows the attacker to force the victim‘s browser to

generate requests the vulnerable application thinks are legitimate requests from the victim.

9. Using components with known vulnerabilities: Heart bleed and Shellshock in action

Components, such as libraries, frameworks, and other software modules, almost always run

with full privileges. If a vulnerable component is exploited, such an attack can facilitate

serious data loss or server takeover. Applications using components with known

vulnerabilities may undermine application defenses and enable a range of possible attacks and

impacts.

10. Un-validated redirects and forwards

Web applications frequently redirect and forward users to other pages and websites, and use

un-trusted data to determine the destination pages. Without proper validation, attackers can

redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

48

Appendix B

% Solve a Pattern Recognition Problem with a Neural Network

% Script generated by Neural Pattern Recognition app

% Created 10-Jul-2017 09:41:34

%

% This script assumes these variables are defined:

%

% train_in - input data.

% train_out - target data.

x = train_in;

t = train_out;

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.

% 'trainscg' uses less memory. Suitable in low memory situations.

trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.

% Create a Pattern Recognition Network

hiddenLayerSize = 5;

net = patternnet(hiddenLayerSize, trainFcn);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess

net.input.processFcns = {'removeconstantrows','mapminmax'};

net.output.processFcns = {'removeconstantrows','mapminmax'};

49

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivide

net.divideFcn = 'dividerand'; % Divide data randomly

net.divideMode = 'sample'; % Divide up every sample

net.divideParam.trainRatio = 90/100;

net.divideParam.valRatio = 5/100;

net.divideParam.testRatio = 5/100;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance

net.performFcn = 'crossentropy'; % Cross-Entropy

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...

 'plotconfusion', 'plotroc'};

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)

tind = vec2ind(t);

yind = vec2ind(y);

percentErrors = sum(tind ~= yind)/numel(tind);

50

% Recalculate Training, Validation and Test Performance

trainTargets = t .* tr.trainMask{1};

valTargets = t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,y)

valPerformance = perform(net,valTargets,y)

testPerformance = perform(net,testTargets,y)

% View the Network

view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, ploterrhist(e)

%figure, plotconfusion(t,y)

%figure, plotroc(t,y)

% Deployment

% Change the (false) values to (true) to enable the following code blocks.

% See the help for each generation function for more information.

if (false)

 % Generate MATLAB function for neural network for application

 % deployment in MATLAB scripts or with MATLAB Compiler and Builder

 % tools, or simply to examine the calculations your trained neural

 % network performs.

51

 genFunction(net,'myNeuralNetworkFunction');

 y = myNeuralNetworkFunction(x);

end

if (false)

 % Generate a matrix-only MATLAB function for neural network code

 % generation with MATLAB Coder tools.

 genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');

 y = myNeuralNetworkFunction(x);

end

if (false)

 % Generate a Simulink diagram for simulation or deployment with.

 % Simulink Coder tools.

 gensim(net);

end

52

References

[1] Cybersecurity Ventures. 2016. The Cybersecurity Market Report covers the business of

cybersecurity, including market sizing and industry forecasts, spending, notable M&A and

IPO activity, and more.Cybersecurity Ventures. [ONLINE] Available at:

http://cybersecurityventures.com/cybersecurity-market-report/. [Accessed 19 April 2016].

[2] Design, programming, by iMarc. More info at http://imarc.net. 2016. The Cybersecurity

Act of 2015 Is a Necessary Stake in the Ground | RSA Conference. [ONLINE] Available at:

http://www.rsaconference.com/blogs/the-cybersecurity-act-of-2015-is-a-necessary-stake-in-

the-ground. [Accessed 19 April 2016].

[3] THE INTERNATIONAL INFORMATION SYSTEMS SECURITY CERTIFICATION

CONSORTIUM The 2015 (ISC)2 Global Information Security Workforce Study In-text: (The

International Information Systems Security Certification Consortium) Your Bibliography:

The International Information Systems Security Certification Consortium,. The 2015 (ISC)2

Global Information Security Workforce Study. 2016. Web. 19 Apr. 2016.

[4]R. Clandos, ―Eye on Cybercrime,‖ IEEE Security & Privacy Magazine, Vol. 1, No. 4,

July/August 2003.

[5]D.L. Pepyne, J. Hu, and W. Gong, ―User Profiling for ComputerSecurity,‖ Proc. Am.

Control Conf., pp. 982-987, 2004.

[6] Fawcett, T., & Provost, F. (1996). Combining Data Mining and Machine Learning for

Effective User Profiling. Retrieved September 25, 2016, from aaai,

https://www.aaai.org/Papers/KDD/1996/KDD96-002.pdf

[7] Iglesias J.A., Ledezma A., and Sanchis A.(2007), ‗Sequence Classification Using

Statistical Pattern Recognition‘, Proc. Int‘l Conf. Intelligent Data Analysis (IDA), pp. 207-

218

[8] van der Stock, A., Gonçalves, I.R. and Correa, J. (2015) OWASP top Ten cheat sheet.

Available at: https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet (Accessed:

27 September 2016).

https://www.aaai.org/Papers/KDD/1996/KDD96-002.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-002.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-002.pdf

53

[9] Exchange, S. (2016) Stack exchange API. Available at:

https://api.stackexchange.com/docs (Accessed: 27 September 2016).

[10] Home - find security bugs (no date) Available at: http://find-sec-bugs.github.io

(Accessed: 27 September 2016).

[11] J. Whitehead, ―An Introduction to Logistic Regression,‖

http://personal.ecu.edu/whiteheadj/data/logit/.

[12] http://ijikm.org/Volume5/IJIKMv5p083-099Talib453.pdf

[13] OWASP (no date) Available at: https://www.owasp.org (Accessed: 2 March 2017).

[13] OWASP (2017) in Wikipedia. Available at: https://en.wikipedia.org/wiki/OWASP

(Accessed: 3 March 2017).

[14] Comparison of source code hosting facilities (2017) in Wikipedia. Available at:

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities (Accessed: 5

March 2017)

[15] Source code security Analyzers (2008) Available at:

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html (Accessed: 5 March

2017).

[16] Foster John Provost,Daniel N. Hennessy. 2017. Distributed Machine Learning: Scaling

up with Coarse-grained Parallelism. [ONLINE] Available at:

https://pdfs.semanticscholar.org/0154/40723d8cecab626507138bb6fb7c948ded69.pdf.

[Accessed 15 February 2017].

[17] Quinlan, J. Mach Learn (1986) 1: 81. doi:10.1023/A:1022643204877

[18] Richard Segal , Oren Etzioni. 2017. Learning Decision Lists Using Homogeneous Rules.

[ONLINE] Available at: https://www.aaai.org/Papers/AAAI/1994/AAAI94-094.pdf.

[Accessed 15 February 2017].

[19] D. Abrams, Introduction to Regression, [Online], 2007, Available:

http://dss.princeton.edu/online_help/analysis/regression_intro.htm#slr

[20] C. Gershenson, Artificial Neural Networks for Beginners, [online], n.d.,

http://arxiv.org/ftp/cs/papers/0308/0308031.pdf

http://personal.ecu.edu/whiteheadj/data/logit/

54

[21]E. Y. Li, Artificial neural networks and their business applications, in Information &

Management, vol. 27, no. 5, 1994, pp. 303-313.

[22]W. Christian, L. Robert, R. Brown, J. Darby, Modelling Ranunculus Presence in the

Rivers Test and Itchen Using Artificial Neural Networks, [online], 2000, Available:

http://www.geocomputation.org/2000/GC016/Gc016.htm.

[23] N. Joakim, Machine Learning-Major Approaches, [online], n.d., Uppsala University and

V¨axj¨o University, Sweden, Available:http://stp.lingfil.uu.se/~nivre/gslt/approaches07ho.pdf.

[24] The MathWorks Inc., MATLAB, [online], 2014,

http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

[25] M. F. Møller, A scaled conjugate gradient algorithm for fast supervised learning. Neural

networks, vol. 06, no. 04, 1993, pp. 525-533.

[26]J. Heaton, The Number of Hidden Layers, [online], 2014,

http://www.heatonresearch.com/node/707.

http://www.geocomputation.org/2000/GC016/Gc016.htm
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.heatonresearch.com/node/707

