

Contrast IT Solution System

For

Contrast Trading

S.S. Aloysius

BIT registration number: R100378

Index number: 1003781

Name of Supervisor:

Mr.E.M.D. Ekanayaka

December 2017

This Dissertation is submitted in partial fulfilment of the requirement of the

Degree of Bachelor of Information Technology (external) of the

University of Colombo School of Computing

ii

iii

Abstract

Contrast Trading started their business in early 2014’s by sales garment accessories items.

Initially, they concentrated only on small garment and put them into the garment accessories in

the suburbs area. However with the increase in demand for other garments, they started

distributed accessories other garment as well. For this purpose, the work force also increased

accordingly.

At the beginning, they were used to manual recording system of documents. In fact, all of their

documents related to receive of order accessories, issues to the accessories item, maintaining

of stocks and dispatches were done manually. However, with the growth of their business,

they encountered some difficulties from this present manual system. They observed that it was

difficult to maintain accurate stock records when there are large numbers of Item categories.

This may lead to problems at the accessories received & issued stage and also there by

difficulty in meeting the agreed delivery dates to the customers. Due to this problem some

orders were getting cancelled. Also, they have noticed that reviewing of issued plan according

to the availability of materials affected the entire process.

The proposed system handles purchase order, sales and stock management mainly. The system

was developed to suit for standalone environment. Customer, employee, user, supplier and

stock management are other areas which are managed by the system. Also the system manages

report generating and chart generating. It supports to managers to achieve their business goals

as they can make appropriate decisions.

The automated system follows MVC architecture & and foundation is JAVAFX language with

Object Oriented techniques. OOAD was used for design phase as RUP was the process model

that used to proposed system. This windows based solution is going to be developed using

technologies such as JAVAFX, MYSQL, Hibernate and jasper reports mainly. And it is used

Net Beans 8.0 as the IDE and MySQL Query Browser as the database server.

The project will achieve the client’s functional and non-functional objectives and provide an

efficient and user friendly environment. The system will help to Contrast Trading to improve

the efficient of their functions by reducing the time and human efforts.

iv

Acknowledgements

I owe a great many thanks to many people, who helped and supported me to completing my

project successfully.

First of all I would like to give acknowledgement to BIT Coordinator of the UCSC and to the

Project Examination Board for giving me this valuable opportunity to follow a BIT degree

program. I would like to specially mention my project supervisors, Mr E.M.D.

Ekanayaka(Assistant Director) of Department of Census & statistics for helping and guiding

me along the path to completion of the project.

I must also give my special gratitude to Mr. G.R. Priyankara, the director of Contrast Trading

to give opportunity to develop this system and the staff of Contrast Trading, who gave me the

domain knowledge and providing necessary information and documents regarding the project.

I would like to thank my wife for bearing me all this time and give me her encourage and

support from start till the end.

Last but not least; my heartfelt thanks to Department of Inland revenue , Data Centre staffs

for motivating and support me to complete this project who helped me in many ways.

v

Table of Contents

Abstract ... iii

Acknowledgements ... iv

Table of Contents ... v

List of figures ... ix

List of tables ... xii

Chapter 1 –Introduction .. 1

1.1 Background ... 1

1.2 Problem domain .. 1

1.3 Motivation ... 1

1.4 Objectives and scope... 2

1.4.1 Aims/Objectives ... 2

1.4.2 Scope .. 2

1.5 Outline of the Chapters ... 3

Chapter 02 –Analysis ... 5

2.1 Requirement Analysis ... 5

2.1.1 Requirement Gathering Techniques ... 5

2.2 Existing System .. 6

2.2.1 Weakness of the System .. 7

2.3 Outline of Similar Existing Solutions ... 7

2.3.1 MerchanNet ibuyer .. 7

2.3.2 Inflow Inventory System .. 8

2.4 Functional Requirements of Types ... 8

2.5 Non - Functional Requirements of Types ... 9

2.6 Software Development Process Models ... 10

2.6.1 Methodology for Proposed System .. 11

Chapter 03- Design... 13

3.1 Alternative Solution Evaluation .. 13

3.1.1 Web Based System .. 13

vi

3.1.2 Standalone System ... 13

3.2. Reason to Choose Standalone System ... 14

3.3 Relevant Design Diagrams ... 14

3.3.1. Database normalization ... 15

3.3.2 Database Design Diagrams .. 15

3.4. User Interfaces design .. 27

3.4.1 System Notifications (Design of the messages) ... 29

Chapter 04- Implementation ... 30

4.1 Implemented Environment.. 30

4.2 Implemented Environment.. 31

4.2.1 Netbeans IDE 8.1 ... 31

4.2.2 JavaFX Scene Builder 2.0 .. 32

4.2.3 Java Programming Language ... 32

4.2.4 MySQL 5.5 Database ... 33

4.2.5 MySQL Workbench 6.3 CE ... 34

4.2.6 MySQL Query Browser ... 34

4.2.7 Visual Paradigms ... 34

4.2.8 Hibernate .. 35

4.2.9 Jasper Reports .. 35

4.3 Implementation ... 36

4.3.1 Code Module Structure .. 37

4.4 Data Layer Implementation .. 37

4.4.1 Hibernate Configuration .. 38

4.4.2 Java Entities with Annotations and Named Queries ... 38

4.5 User Interface Layer Implementation .. 40

4.6 Control Layer Implementation .. 45

4.6.1 Hibernate Sessions ... 46

4.6.2 Dao (Data Access Objects) .. 46

4.7 Acknowledgement of Reused Code Modules ... 47

Chapter 5- Evaluation ... 48

5.1 The Objectives of Testing ... 48

5.2 Testing Methods ... 48

5.2.1 Unit Testing ... 49

vii

5.2.2 Integration testing .. 49

5.2.3 System testing .. 49

5.3 Test Plan and Test Cases... 51

5.3.1 Test Plan .. 51

5.3.2 Test Cases .. 51

5.4.1 Summary of the User Evaluation ... 55

Chapter 6 – Conclusion ... 56

6.1 Critical Assessment ... 56

6.2 Problem Encountered .. 57

6.3 Lessons Learnt .. 57

6.4 Future Improvements .. 58

REFERENCES ... 59

APPENDIX-A ... 61

SYSTEM DOCUMENTATION ... 61

A.1 HOW TO SETUP ... 62

A.1.1 Install Java Run Time on Client Machine ... 62

A.1.2 Installing MySQL Server 5.5 ... 64

A.1.3 Installing MySQL Query Browser .. 68

APPENDIX-B ... 71

DESIGN DOCUMENTATION .. 71

B.1 Activity diagram ... 71

Appendix – C .. 83

Appendix - D ... 86

Appendix – E .. 87

Test Results ... 87

E.1 Test Case for Item Module ... 87

APPENDIX – F .. 92

F.1 Code for Get All Objects ... 92

F.2 Codes for fill Table View ... 92

F.3 Code for Fill Combo Box ... 93

F.4 Entity class for Customer module ... 93

viii

F.5 Codes for Customer module Controller .. 95

Appendix - G .. 106

Glossary .. 107

ix

List of figures

FIGURE 2 1 :USE CASE FOR EXISTING SYSTEM 6

FIGURE 2 2 : SIMILAR SYSTEMS MERCHANNET BY IBUYER 7

FIGURE 2 3 : SIMILAR SOLUTIONS INFLOW INVENTORY SYSTEM 8

FIGURE 2 4 : RATIONAL UNIFIED PROCESS MODEL 12

FIGURE 3.1 : ER DIAGRAM OF THE SYSTEM .. 16

FIGURE 3.2 : USE CASE DIAGRAM FOR ADMIN ... 18

FIGURE 3.3 : USE CASE DIAGRAM FOR SYSTEM ... 18

FIGURE 3.4 : USE CASE DIAGRAM FOR CASHIER ... 19

FIGURE 3.5 : USE CASE DIAGRAM FOR STORE KEEPER ... 19

FIGURE 3. 6 : CLASS DIAGRAM FOR PROPOSED SYSTEM ... 21

FIGURE 3. 7 : ACTIVITY DIAGRAM FOR USER LOGIN .. 22

FIGURE 3. 8 : SEQUENCE DIAGRAM FOR CREATE REPORT .. 23

FIGURE 3. 9:SEQUENCE DIAGRAM FOR CHECK PAYMENTS .. 24

FIGURE 3. 10: SEQUENCE DIAGRAM FOR ADD ITEM SUBCATEGORY ... 25

FIGURE 3. 11: SEQUENCE DIAGRAM FOR ADD ITEM SUBCATEGORY ... 26

FIGURE 3. 12 :CUSTOMER MANAGEMENT .. 27

FIGURE 3. 13:: MAIN WINDOW .. 28

FIGURE 3. 14: SUPPLIER WINDOW ... 28

FIGURE 3. 15: INTERFACE DESIGN FOR ERROR NOTIFICATION .. 29

FIGURE 3. 16: INTERFACE DESIGN FOR UPDATE CONFIRM NOTIFICATION .. 29

FIGURE 3. 17: INTERFACE DESIGN FOR UPDATE CONFIRM NOTIFICATION .. 29

FIGURE 4 1: NETBEANS IDE 8.1 ... 31

FIGURE 4 2. JAVAFX SCENE BUILDER ... 32

FIGURE 4 3. VISUAL PARADIGM ... 34

FIGURE 4. 4 : HIBERNATE FRAMEWORK .. 35

FIGURE 4. 5 : MVC ARCHITECTURE ... 36

FIGURE 4. 6 : STRUCTURE OF CODES .. 37

FIGURE 4. 7 : HIBERNATE.CFG.XML ... 38

FIGURE 4. 8 : ENTITY CLASS OF CATEGORY ... 39

FIGURE 4. 9 : UI CLASS FOR CATEGORY ... 40

FIGURE 4. 10 : ITMECATERGORY UI CONTROLLER.JAVA .. 44

FIGURE 4. 11 : CSS CODE FOR STYLE ... 45

FIGURE 4. 12 : HIBERNATEUTIL.JAVA ... 46

FIGURE 4.13:CATERGORYDAO.JAVA ... 47

FIGURE 5 1: BLACK BOX TESTING .. 50

FIGURE 5 2: WHITE BOX TESTING ... 50

FIGURE 5 3: USER EVALUATION FORM ... 54

FIGURE 5 4: USER FEEDBACK ANSWER CHART ... 55

x

FIGURE A 1. INSTALLATION WIZARD OF JRE (STEP 1) ... 62

FIGURE A 2. INSTALLATION WIZARD OF JRE (STEP 2) .. 62

FIGURE A 3. INSTALLATION WIZARD OF JRE (STEP 3) ... 63

FIGURE A 4. INSTALLATION WIZARD OF JRE (STEP 4) ... 63

FIGURE A 5. INSTALLATION WIZARD OF MYSQL SERVER (STEP 1) .. 64

FIGURE A 6. INSTALLATION WIZARD OF MYSQL SERVER (STEP 2) ... 64

FIGURE A 7. INSTALLATION WIZARD OF MYSQL SERVER (STEP 3) ... 65

FIGURE A 8. INSTALLATION WIZARD OF MYSQL SERVER (STEP 4) ... 65

FIGURE A 9. INSTALLATION WIZARD OF MYSQL SERVER (STEP 5) ... 66

FIGURE A 10. INSTALLATION PROGRESS MYSQL SERVER (STEP 6) ... 66

FIGURE A 11. INSTALLATION WIZARD OF MYSQL SERVER (STEP 7) ... 67

FIGURE A 12. INSTALLATION WIZARD OF MYSQL SERVER (STEP 8) ... 67

FIGURE A 13. INSTALLATION WIZARD OF MYSQL QUERY BROWSER (STEP 1) 68

FIGURE A 14. INSTALLATION WIZARD OF MYSQL QUERY BROWSER (STEP 2) 68

FIGURE A 15. INSTALLATION WIZARD OF MYSQL QUERY BROWSER (STEP 4) 69

FIGURE A 16. INSTALLATION WIZARD OF MYSQL QUERY BROWSER (STEP 5) 69

FIGURE A 17. LOGIN SCREEN OF MYSQL QUERY BROWSER (STEP 6) .. 70

FIGURE A 18.SERVER INFORMATION SCREEN OF MYSQL QUERY BROWSER (STEP 7) 70

FIGURE B.1 SHOWS ACTIVITY DIAGRAM FOR USER LOGINFIGURE B 1 .. 71

FIGURE B 2: ACTIVITY DIAGRAM FOR USER LOGIN ... 71

FIGURE B 3 :USE CASE DIAGRAM FOR MANAGER ... 72

FIGURE B 4: SEQUENCE DIAGRAM FOR LOGIN .. 73

FIGURE B 5: BANK TABLE .. 73

FIGURE B 6: CATEGORY TABLE.. 74

 FIGURE B 7 : CHEQUESTATUS TABLE .. 74

FIGURE B 8: CHEQUEPAYMENT TABLE .. 74

FIGURE B 9: CIVILSTATUS TABLE .. 74

FIGURE B 10: CUSTOMERORDERDEATAILS TABLE ... 75

FIGURE B 11: DESIGNATION TABLE .. 75

FIGURE B 12: CUSTOMERSTATUS TABLE ... 75

FIGURE B 13: EMPLOYEESTATUS TABLE ... 75

FIGURE B 14: EMPLOYEE TABLE .. 76

FIGURE B 15: CUSTOMERORDER TABLE .. 76

FIGURE B 16: ITEM TABLE ... 76

FIGURE B 17: CUSTOMERORDERSTATUS TABLE ... 77

FIGURE B.16FIGURE B 18: INVOICESTATUS TABLE ... 77

FIGURE B 19: ITMEUNIT TABLE .. 77

FIGURE B 20: PURCHASEORDER TABLE ... 77

FIGURE B 21: CUSTOMER TABLE .. 78

FIGURE B 22: GENDER TABLE .. 78

FIGURE B 23: ITMECOLOR TABLE .. 78

FIGURE B 24: ROLE TABLE ... 78

FIGURE B 25: POITEM TABLE .. 79

FIGURE B 26: SUBCATEGORY TABLE .. 79

FIGURE B 27: PRIVILAGE TABLE .. 79

xi

FIGURE B 28: USERSTATUS TABLE .. 79

FIGURE B 29: GRNPOITEM TABLE .. 80

FIGURE B 30: USERROLE TABLE ... 80

FIGURE B 31: SUPPLIER TABLE ... 80

FIGURE B 32: GRN TABLE ... 80

FIGURE B 33: POSTATUS TABLE ... 81

FIGURE B 34: ITMESTATUS TABLE .. 81

FIGURE B 35: SUPPLIERSTATUS TABLE .. 81

FIGURE B 36: USER TABLE ... 81

FIGURE B 37: SUPPLY TABLE .. 82

FIGURE B 38: MODULE TABLE .. 82

FIGURE B 39: PAYTYPE TABLE ... 82

FIGURE B 40: INVOICE TABLE ... 82

FIGURE C. 1 : LOGIN PAGE .. 83

FIGURE C. 2 : HOME PAGE ... 84

FIGURE C. 3 : MAIN TABS .. 84

FIGURE C. 4 : ADMINISTRATION TAB ICONS .. 85

FIGURE C. 5 : EMPLOYEE WINDOW .. 85

FIGURE D 1: ITEM REPORT .. 86

FIGURE D 2: PURCHASE ORDER REPORT .. 87

file:///C:/Users/Aloy/Desktop/Deserationk/R100378%20Deseration%20report%202017.10.23.docx%23_Toc499724634
file:///C:/Users/Aloy/Desktop/Deserationk/R100378%20Deseration%20report%202017.10.23.docx%23_Toc499724636

xii

List of tables
TABLE 2.1 : REQUIREMENT GATHERING TECHNIQUE .. 6

TABLE 2.2 : FUNCTIONAL REQUIREMENTS ... 9

TABLE 2.3 : NON-FUNCTIONAL REQUIREMENT ... 9

TABLE 3.1 : USE CASE NARRATIVE FOR USER LOGIN .. 20

TABLE 3.2 : USE CASE NARRATIVE FOR MANGE ORDER ... 20

TABLE 4. 1: IMPLEMENTATION ENVIRONMENT ... 30

TABLE 5. 1 :TEST CASES STRUCTURE ... 51

TABLE 5. 2: TEST CASES FOR CUSTOMER MODULE .. 52

TABLE 5. 3: TEST CASES FOR PURCHASE ORDER .. 53

TABLE 5. 4: USER FEEDBACK ANSWER .. 55

TABLE A. 1 : HARDWARE REQUIREMENTS FOR CLIENT APPLICATION ... 61

TABLE A. 2 : SOFTWARE REQUIREMENTS FOR CLIENT APPLICATION .. 61

TABLE E. 1: TEST CASES AND RESULTS FOR ITEM MODULE .. 89

TABLE E. 2 : TEST CASES FOR SUPPLIER MODULE .. 91

xiii

List of acronyms

BIT - Bachelor of Information Technology

CASE - Computer Aided Software Engineering

CD - Compact Disk

DAO - Data Access Objects

DB - Data Base

DBMS - Database Management System

ER - Entity Relationship

GRN - Good Receive Note

GUI - Graphical User Interface

HQL - Hibernate Query Language

IDE - Integrated Development Environment

IT - Information Technology

JPQL - Java Persistence Query Language

JRE - Java Runtime Environment

JVM - Java Virtual Machine

MB - Mega Byte

MVC - Model View Controller

OOAD -Object Oriented Analysis and Designing

OS - Operating System

ORM - Object Relational Mapping

RAM - Random Access Memory

RDBMS - Relational Database Management System

RUP - Rational Unified Process

SQL - Structured Query Language

UI - User Interface

UML - Unified Modelling Language

URL - Uniform Resource Locator

WWW -World Wide Web

1

Chapter 1 –Introduction

1.1 Background

Contrast Trading is a local business in garments accessories industry located at

Kalubowila, Sri Lanka. It has become a reputed name in garment industry mainly in

Colombo area. The story of successes of Contrast Trading is the customer as well as

employee satisfaction.

Contrast Trading started its journey in the year 2012 as a small garment based

accessories supplier. At present, they are becoming reputed supplier in the garment

accessories field. They have more than 25 employees and large storage to store their

accessories items. They have been maintaining all of their documents manually.

However, they have realized that the productivity could be improved by introducing

computer based software management system.

1.2 Problem domain

The manual paper based system for all transactions is used in this company. So it takes

more time to record and process transactions. Therefore, this manual process is very

inefficient and thereby it involves more human resources. Due to heavy documentary

work, there is a tendency of the documents being misplaced.

Thus, the new system was developed to support the company to handle their main

operations successfully by overcoming the above problems.

1.3 Motivation

Currently Contrast Trading is carrying their operations in a manual way with lot of

heavy paper works. This manual system will be very inefficient and time wasted when

providing good services to their customers. Nowadays most of the organizations

understand the importance of an automated system to gain benefits such as managing

large volume of details, reliability of information, security, speed handling of data to

compete with the other competitors while building business uniqueness & efficiency.

2

 In my scenario, Contrast Trading has more than fifty of transactions to be performed

daily under several sections. There is no computerized system to manage the purchases

and inventory control in Contrast Trading.

1.4 Objectives and scope

1.4.1 Aims/Objectives

Main aim of this project is to develop a system for Contrast Trading to manage

business processes in accurate and efficient way. Efficiency and speediness will be

assured by this newly proposed system. Followings are the main objectives to be

achieved at the end of the project.

 Improve customer, supplier and employee information management.

 Reduce the time and human effort for sales and purchases management

process.

 Improving productivity of the staff.

 Improving collaboration of the employees.

 Improve speed all documents are generated through an automated computer

system.

 Improve Security.

With the new system every transaction data are fully protected. Each system

users has different kind of user levels. Each user has its own user view,

username and password.

 Improve Simplicity.

The system provides user friendly interfaces to handle the system.

1.4.2 Scope

The system covers the scope that Contrast Trading management wanted. According to

them the expected system should be a system that eases their business operations.

 Order details.

The customer place the order of accessories should be able to edit, delete or

update when necessary.

 Manage employee details.

3

The employer should be able to register an employee via the system, and

change or delete the employee information through the system.

 Manage supplier details.

The employer should be able to register a supplier via the system, and change

or delete the supplier information through the system.

 Manage customer details.

The employer should be able to register a customer via the system, and change

or delete the customer information through the system.

 Manage item details.

The item should be able to edit, delete or update when necessary.

 Purchase order management.

 Sales management.

 Stock management.

 Customer invoice management.

 System user management.

 Bank details Management.

 Report generating.

System should provide the employer with reports that convey the current status

of the purchases, sales, employees, products and equipment’s etc.

 Keeping track of items

System should notify the employer of the overdue items so the employer could

notify the customer in a timely manner.

1.5 Outline of the Chapters

This interim report will strive to convey the efforts that went into creating the purchase

and order Management system for Contrast Trading interim report structure is as

follows.

Chapter 02: Analysis

Requirement gathering techniques such as interviews and questionnaires are described

in this chapter. How the current system works and what the requirements are for the

project. Both functional requirements and non-functional requirements are also

4

identified here. UML diagrams such as use case diagrams are drawn and provided to

identify un-clear requirements and obtain better ideas about the system.

Chapter 03: Design

This chapter gives the system architecture, database architecture and user interface

design. Describe the use case diagram for the proposed system. This part also

incorporates UML diagrams such as class diagrams, activity diagrams and sequence

diagrams.

Chapter 04- Implementation

Implementation plays a vital role in a system development process. The specifications

made in the design phases transform to an executable system which satisfy client’s

requirements at this stage. Hence, it is very important that is selecting the most suitable

development tools and techniques for a successful system implementation.

Chapter 05- Evaluation

This chapter describe about the evaluation of the project. Evaluation as a general

endeavour can be characterized by the following features evaluation is a task, which

results in one or more reported outcomes. Evaluation is an aid for planning, and

therefore the outcome is an evaluation of different possible actions. Evaluation is goal

oriented. The primary goal is to check results of actions or interventions, in order to

improve the quality of the actions or to choose the best action alternative.

Chapter 06 – Conclusion

The final chapter of the dissertation brings the evaluation of previous chapters whilst

discussing the possibilities for realization of objectives and how the system could be

further developed. Also the problem beyond the control of the candidate and its effect

on the progress of work are also discussed.

5

Chapter 02 –Analysis

2.1 Requirement Analysis

Requirement analysis is a very important and a critical phase in the Software

Development Life Cycle. Success of requirement analysis phase will impact to the

success of other phases. Therefore attention, effort and time were allocated for this

process. Requirement analysis is the process of understanding the problems and needs

of the user resolve any ambiguity in requirements demanded by the users, avoidance of

feature creep and documentation of all aspects of the project development process.

Requirements are divided as functional and non-functional requirements. Feasibility

analysis consider also by this analysis.

2.1.1 Requirement Gathering Techniques

Gathering of requirements should be properly accomplished before the start of the

analysis stage. We gathered as well as if requirement is unclear or ambiguous then

system may contain more and more errors. This process includes not only collecting

of functional requirement but also non-functional requirements. The following table

2.1 shows the methods used for requirement gathering technique for purpose system.

Technique

Description

Interviews and Discussions

Interviews were conducted with the Director and then with the

internal staff as the main requirement gathering technique.

Contrast Trading Director and other level of staff participated to

the interviews for the requirements gather.

Observation

Another popular requirement gathering technique is observation.

Through observation it could be understood about the overall

process of manual system.

Online Research

An online research for similar systems was done to gain

knowledge on features and new ideas related to Contrast IT

6

Table 2.1 : Requirement Gathering Technique

2.2 Existing System

In the process of current system when the customer makes the order (comes or via

send the mail or telephone) and the clerk takes down the order. After the order is

accepted they start their order preparing. Then, it is planned for the preparation of

accessories. In the process of planning, all the relevant details given by the customer

need to be considered carefully. Once the planning is over, it is scheduled for

supplying accessories process to supply the customer.

The following figure 2.1 shows use case for existing system.

Figure 2 1 :Use case for existing system

solution system.

Reading Company

Documentation.

By referring documents, bills, business process, procedure of

keeping records helps to identified requirements. Contrast

trading has lots of documents, bills (sales, purchase, GRN,

bank slip, employee details etc...)

7

2.2.1 Weakness of the System

The existing system identified below mention weakness.

 Difficult to find customers order details.

 Difficult to change customer order details.

 Difficult to find bank details and cheque details.

 Difficult to find & change the supplier details

 Difficult to find employees’ and members’ details.

 Difficult to change employees’ and members’ details.

 Potential for wrong calculations and write incorrect information.

 All customer/supplier documents are hand written documents.

 All calculations are done manually with calculators.

 Data backups are not available.

 Management cannot monitor current business process when they want.

 Time wasting because of lot of documentations.

 High labour cost.

 Poor communication with customers and suppliers.

2.3 Outline of Similar Existing Solutions

There are so many IT services management systems worldwide. Some of them

are listed below. Those are similar system as like my system.

2.3.1 MerchanNet ibuyer

The following figure 2.2 shows similar systems MerchanNet by ibuyer

Figure 2 2 : Similar Systems MerchanNet by ibuyer

The software Orders, purchasing, inventory, warehouse, Billing & Invoicing.

Standardize all documents. [1]

8

Features

• Order Processing & Sales

• Pre-Production Management

• Process Management

• Billing & Invoicing

• Inventory Management

• Product Development

• Purchasing

• Raw Material Management

2.3.2 Inflow Inventory System

The following figure 2.3 shows similar solution

Figure 2 3 : Similar Solutions Inflow Inventory System

Inflow inventory is an integrated solution that covers the entire process of an inventory

Management of any business unit. [2]

Features

• Sales Management

 Purchase order

• Inventory Management

• Order Processing & Sales

• Various Report generating

2.4 Functional Requirements of Types

The functional requirements are the system functions that the Contrast IT Solution

system should perform.

9

 The following table 2.2 shows Functional Requirements.

Table 2.2 : Functional Requirements

2.5 Non - Functional Requirements of Types

The following table 2.3 shows Non-Functional Requirements.

Requirement Description

Reliability The system should be reliable.

Portability system should want to platform-independent Thereby, the system can be
transferred from one Platform to another

Efficiency System should have high efficiency for process the data. Because

organization has large number of data.

Backup System administrators should able to backup databases.

Interfaces The User Interfaces should be simple as possible.

Usability The system should be easy to use

Table 2.3 : Non-Functional requirement

Requirement

Description

Item Management System should provide facility to add, view, Update and delete

Item details.

Supplier Management System should provide facility to add, view, Update and delete

supplier details.

Employee Management System should provide facility to add, view, Update and delete

employee details.

Customer Management System should provide ability to add customer, View, update and

delete product.

Update and delete product.

Order Management System should facilitate to get orders from the customers and edit,

delete update orders.

Purchases Management System should facilitate for the purchase management

Report Generating System should provide facility to generate necessary reports.

Bank & cheque Details

Management

System should provide facility to add , view,

Update and delete bank & cheque details.

10

2.6 Software Development Process Models

There are many development life cycle models that have been developed in order to

achieve different required objectives. The models specify the various stages of the

process and the order in which they are carried out.

A Process Model describes the sequence of phases for the entire lifetime of a product.

Therefore it is sometimes also called Product Life Cycle. There are various Software

development models. Some of them as follow: [3]

There are various Software development models or methodologies. They are as

follows:

1. Waterfall model

The waterfall model is a sequential development approach, in which

development is seen as flowing steadily downwards (like a waterfall)

through several phases. Such as analyse, design, implementation,

testing, integration, installation and maintenance.

2. Incremental model

A series of mini-Waterfalls are performed, where all phases of the

Waterfall are completed for a small part of a system, before proceeding

to the next increment, or Overall requirements are defined before

proceeding to evolutionary, mini-Waterfall development of individual

increments of a system, or The initial software concept, requirements

analysis, and design of architecture and system core are defined via

Waterfall, followed by incremental implementation, which culminates

in installing the final version, a working system.

3. Prototype Model

A prototype is a version of a system or part of the system that’s

developed quickly to check the customer’s requirements or feasibility of

some design decisions. There are two types of prototyping techniques.

I. Throw-away prototyping

II. Evolutionary prototyping

11

4. RUP Model

RUP is a framework for Object Oriented software engineering using

UML. This is the architecture centric, use-case driven, iterative and

incremental software development model. It encourages on-going

quality control and risk management. Rational Unified Process consists

of four phases. They are inception, elaboration, construction, transition.

5. RAD Rapid Application Development (RAD)

RAD is a development lifecycle designed to give much faster

development and higher-quality results than those achieved with the

traditional lifecycle. RAD model distributes the analysis, design, build,

and test phases into a series of short, iterative development cycles. It is

designed to take the maximum advantage of powerful development

software that has evolved recently.

6. Agile model

The agile methods refers to a group of software development models

based on the incremental and iterative approach, in which the increments

are small and typically, new releases of the system are created and made

available to customers every few weeks.

7. Iterative model

Iterative development model aims to develop a system through building

small portions of all the features, across all components.

8. Spiral model

2.6.1 Methodology for Proposed System

Process Model

Rational Unified Process (RUP) can be used to build up this type of short scheduled

project. This process model contains four phases named Inception, Elaboration,

construction and transition. In this model overall project lifecycle is broken down into

above mentioned phases and iterations.

 Inception – Understanding, discovering problem domain, drawing basic level of use

case can be done during Inception stage.

 Elaboration – Architecture of the project gets its basic form and construction cycles

12

are planned during this life cycle part and good set of requirements can be selected

for next iteration.

 Construction – In this stage we build the system up using selected programming

language, selected data base management system, following best practices and using

relevant helping software tools such as Visual Studio.

 Transition – “The final phase of the RUP is concerned with moving the system from

the development community to the user community and making it works in are

all environments.” [4]

The following figure 2.4 shows relevant diagram for RUP model.

Figure 2 4 : Rational Unified Process Model

13

Chapter 03- Design

“Software design is an iterative process through which requirements are translated into

a “blueprint” for constructing the software. Initially, the blueprint depicts a holistic

view of software. That is, the design is represented at a high level of abstraction a level

that can be directly traced to the specific system objective and more detailed data,

functional, and behavioural requirements” [5].

This chapter describes the technical solutions for the gathered both requirements in

Analysis Phase. UML diagrams are used for this. Such as class diagram, activity

diagram and sequence diagram. The objects that discovered during the Analysis Phase

are refined, and the database is modelled. The database design process consists with

ER diagram and some main interfaces which deal with the system.

3.1 Alternative Solution Evaluation

So many software development process model and design pattern in the world.

Among them we should have to select one for our project. In the same time we

have to choose whether the system may,

I. Standalone system

II. Web based system

3.1.1 Web Based System

Web based system refers to a program that runs with the help of the internet. To

implement a web based system additional resources such as a server, hardware (router,

bridge and network cables) are essentially needed. Web based system most suitable for

large scale business and if there are several branches. The deployment, updating,

maintenance processes are time consuming. In the case of a network failure the system

is unavailable.

3.1.2 Standalone System

It’s more suitable to normal scale business applications. Standalone system can work

offline and does not necessarily require network to function. Also It’s very easy to

deploy and maintaining of the system when some software build in standalone.

14

3.2. Reason to Choose Standalone System

In standalone application, database and all the information are stored on the local

computer and no server is needed. Also below mention further reason to select

standalone system.

 Can perform much faster than web based system.

 As well it isn’t needed to pay additional cost for web hosting.

 Can use it without internet facility.

 Because of the centralized database it is easy to maintain as per

synchronism of database.

 There are no requirement for selecting web based solution

 Client mostly preferred to a standalone system.

 It is easy to develop standalone system other than a web based system.

 There is only one branch and few employees

 Can be implementing Hibernate framework.

 The standalone system will support mail service as well as a web based

system.

 Easy maintenance and easy deployment.

3.3 Relevant Design Diagrams
Database design is the process of producing a detailed data model of a database. This

logical data model contains all the needed logical and physical design choices and

physical storage parameters needed to generate a design in a data definition language,

which can then be used to create a database. A fully attributed data model contains

detailed attributes for each entity [6].

There are few steps in database design process. The proposed system was

created according to these steps.

 Determine the purpose of database

 Determine the tables need

 Determine the fields need

 Determine the relationships

 Refine design

To avoid loss of data and data redundancy the database was normalized up to third

Normal Form

15

3.3.1. Database normalization

 First normal form (1NF) sets the very basic rules for an organized database:

 Eliminate duplicative columns from the same table.

 Create separate tables for each group of related data and identify each row with

a unique column or set of columns (the primary key).

Second normal form (2NF) further addresses the concept of removing duplicative

data:

 Meet all the requirements of the first normal form.

 Remove subsets of data that apply to multiple rows of a table and place them in

separate tables.

Third normal form (3NF) goes one large step further:

 Meet all the requirements of the second normal form.

 Remove columns that are not dependent upon the primary key. [7].

3.3.2 Database Design Diagrams

Database design is the process of producing a detailed data structure of a database.

This consists of three phases:

• Logical design

• Conceptual design

• Physical Design

A fully attributed data model contains detailed attributes for each entity. This logical

data model contains all the needed logical and physical design choices and physical

storage parameters needed to generate a design in a data definition language, which

can then be used to create a database.

The term database design can be used to describe many different parts of the design of

an overall database system. Principally, and most correctly, it can be thought of as the

logical design of the base data structures used to store the data. In the relational model

these are the tables and view. In an object database the entities and relationships map

directly to object classes and named relationships. However, the term database design

could also be used to apply to the overall process of designing, not just the base data

https://www.thoughtco.com/primary-key-definition-1019179
https://www.thoughtco.com/remove-duplicate-rows-of-data-3123436
https://www.thoughtco.com/remove-duplicate-rows-of-data-3123436
https://www.thoughtco.com/database-dependencies-1019727

16

structures, but also the forms and queries used as part of the overall database

application within the database management system.

Entity Relationship Diagram

Entity relationship model, also called an entity-relationship (ER) diagram, is a

graphical representation of entities and their relationships to each other, typically used

in computing in regard to the organization of data within databases or information

systems. An entity is a piece of data-an object or concept about which data is stored.

The main components of ER models are entities (things) and the relationships that can

exist among them. [8]

Following figure 3.1 shows ER Diagram of the new System

Figure 3.1 : ER Diagram of the System

http://www.webopedia.com/TERM/D/data.html
http://www.webopedia.com/TERM/D/database.html
http://www.webopedia.com/TERM/O/object.html

17

3.3.2 Object Oriented Analysis and Design.

Object-oriented analysis and design (OOAD) is a software engineering approach that

models a system as a group of interacting objects. It is a method that uses objects to

develop a system. In OOAD object represents some entity of interest in the system

being modelled, and is characterized by its class, its state (data elements), and its

behaviour. Each object interacts with each other and they have their own states and

operations. Various models can be created to show the static structure, dynamic

behaviour, and run-time deployment of these collaborating objects.

There are a number of different notations for representing these models, such as the

Unified Modelling Language (UML).”Unified Modelling Language is one of the most

popular methods used in order to develop systems with OOD concept. The following

object models were used for the designing process of the system;

 Use case diagram

 Class diagram

 Sequence diagram

 Activity diagram

 Deployment Diagram

 Component Diagram

 Timing Diagram

Use Case Diagram

Analysing was followed by using different kinds of diagrams. It’s easy to analyse

requirements using use case diagrams. Use case diagrams provide information about

main actors of the business process and their functions. Using the use case diagram a

quick idea of the system can be gained.

Critical users in the system

 Manager

 Administration Manager

 Cashier /Clerk

 Other User

18

Following figure 3.2 shows Use Case Diagram for Admin

 Figure 3.2 : Use Case Diagram for Admin

Following figure 3.3 shows use case diagram for system.

Figure 3.3 : Use Case Diagram for System

19

Following figure 3.4 shows Use Case Diagram for cashier

Figure 3.4 : Use Case Diagram for cashier

Following figure 3.5 shows Use Case Diagram for cashier

Figure 3.5 : Use Case Diagram for Store Keeper

20

Use Case Narratives

Following table 3.1 shows use case narrative for user login

Use case Log in

Actor All users.

Description Authorized user is going to log in to the

System.

Pre-Condition I. User should register to the system

II. User name and correct password should be entered.

Flow of event I. User enters user name and password.

II. System validates the information.

III. System checks the existence.

IV. System either allow to log in to system or not.

Post Condition User will be redirected in to log in page or show main

window.

Table 3.1 : Use Case Narrative for User Login

Following table 3.2 shows use case narrative for mange order

Use case Manage Order

Actor Cashier/Clerk

Description Insert a new Order.

Pre-Condition I. Cashier Log in to the system

II. Relevant details should be added.

Flow of event I. Select Order form.

II. Select the items to the order.

III. Enter customer details.

IV. Press submit to make new order.

Post Condition Display Success message to inform that

Order is successfully added.

Table 3.2 : Use Case narrative for Mange Order

21

Class Diagram

Class diagram is the backbone of nearly all Object Oriented methods. It describes the

structure of a system by showing the system’s classes and relationships among the

classes. These classes can be people, things or data.

Following figure 3.6 shows class diagram for proposed system.

Figure 3. 6 : Class Diagram for proposed system

22

Activity Diagram

Activity diagram represent dynamic behaviour of the system. It shows work flow of a

particular activity or entire system in a graphical way and it looks like flow chart. The

notations are used in activity diagram are listed below.

 Rounded rectangle – action

 Diamonds – decision

 Join – join two or more actions together

 Black circle – represent starting point (initial state)

 Fork – split one action in to two or more actions

Following figure 3.7 shows activity diagram for user login.

Figure 3. 7 : Activity Diagram for User Login

23

Sequence diagram

A sequence diagram is a interaction diagram that represents how processes operate

with one another and in what order. It is a construct of a Message Sequence Chart. A

sequence diagram shows object interactions arranged in time sequence. It shows the

objects and classes involved in the scenario and the sequence of messages

exchanged between the objects needed to carry out the functionality of the scenario.

Following figure 3.8 shows sequence diagram for create report

Figure 3. 8 : Sequence diagram for create report

https://en.wikipedia.org/wiki/Message_Sequence_Chart
https://en.wikipedia.org/wiki/Message_Sequence_Chart

24

Following diagram shows sequence diagram for check payment of Invoice control for

system.

Following figure 3.9 shows sequence diagram for check payments

Figure 3. 9: Sequence diagram for Check Payments

25

Following shows sequence diagram for add Item Subcategory control for system.

Following figure 3.10 shows sequence diagram for Add Item Subcategory

Figure 3. 10: Sequence diagram for Add Item Subcategory

26

Following shows sequence diagram of add Customer for system.

Following figure 3.11 shows sequence diagram of add Customer for system

Figure 3. 11: Sequence diagram for Add Item Subcategory

27

3.4. User Interfaces design

User Interface Design focuses on anticipating what users might need to do and

ensuring that interface has elements that are easy to access, understand, and use to

facilitate those actions. The goal of the user interface design is to make the user's

interaction as simple and efficient as smooth possible, in terms of accomplishing user

goals. The purpose of UI design is to clearly convey the intention or message to the

user without distracting the user unnecessarily. Following best practices were

considered when designing user interfaces.

Simple interface - Instead of complex, messy interfaces which mislead the user, the

system was created with simple user interfaces which user can understand clearly.

Below figure 3.12 describes the Customer management of the company. It is used a

simple structure design which user can understand.

Figure 3. 12 :Customer Management

The figure 3.12 shows the user interface which will be used as Main Window. It

provides a tab pane for link with each category of the system & allows users to

navigate through the system easily. According to the user logged into the system main

window control the accessibility of modules by deactivating the unnecessary links.

Also it shows current user, role as well as the notifications.

28

 Following figure 3.13 shows main window.

Figure 3. 13:: Main Window

The figure 3.14 shows the user interface which will be used for entering the product

Supplier details. Supplier form provides the facility to insert, update, delete product details

& it is given to retrieve one or more Suppliers. Following figure 3.11 shows Supplier

form.

Figure 3. 14: Supplier Window

29

3.4.1 System Notifications (Design of the messages)

Before saving, updating, deleting record, system checks authorization from the user.

Following figure 3.15, 3.16, 3.17 shows the confirmation messages and warning

messages which is displaying relevant authorization status.

Following figure 3.15 shows Interface design for Error notification of supplier module

Figure 3. 15: Interface design for Error notification

Following figure 3.16 shows Interface design for update confirm notification of supplier

module

Figure 3. 16: Interface design for update confirm notification

Following figure 3.17 shows Interface design for search clear notification of supplier module.

Figure 3. 17: Interface design for update confirm notification

30

Chapter 04- Implementation

After end of the design phase, implementation phase of the system initiates allowing

to what the design phase was scheduled by using suitable techniques, strategies and

tools.

The major purpose of this chapter is to discover about the implementation

environment, techniques, tools and also the modularized components used to develop

the system. Hardware, software and used technologies, reused existing code,

development tools used platform dependence and also all major code and module

structure.

4.1 Implemented Environment

The environment of the business organization and the functional & non-functional

requirements of the intended system were taken into consideration when the selection

of the set of software tools & other resources. Ensure of the high performance,

technology feasibility, maintainability & the user friendliness was the important

aspects of the selection process.

The environment of the business organization and the functional & non-functional

requirements of the intended system were taken into consideration when the

selection of the set of software tools & other resources. Ensure of the high

performance, technology feasibility, maintainability & the user friendliness was

the important aspects of the selection process.

The hardware and software environment is listed in table 4.1

Hardware Environment Software Environment

Intel(R) Core(TM) i3 – 5005u
@ CPU 2. 0 GHz

 MySQL Server 5.5

 MySQL Workbench 6.3CE

 MySQL Query Browser

 NetBeans IDE 8.1

 JavaFX Scene Builder 2.0

 Adobe Photoshop CS6

 Microsoft Office Package 2010

 Windows 8.1

 Visual Paradigm

4GB RAM

500 GB Hard Disk

Table 4. 1: Implementation Environment

31

4.2 Implemented Environment

4.2.1 Netbeans IDE 8.1

Following figure 4.1: shows Netbeans IDE 8.1

Figure 4 1: Netbeans IDE 8.1

The NetBeans IDE is an award-winning integrated development environment available

for Windows, Mac, Linux, and Solaris. The NetBeans project consists of an open-

source IDE and an application platform that enable developers to rapidly create web,

enterprise, desktop, and mobile applications using the Java platform, as well as PHP,

JavaScript and Ajax, Groovy and Grails, and C/C++. [9]

Here are reasons to use the NetBeans IDE:

 Free and Open Source.

 Connected Developer.

 Powerful GUI Builder.

 Support for Java Standards and Platforms.

 Dynamic Language Support

32

4.2.2 JavaFX Scene Builder 2.0

Following figure 4.2: shows JavaFX Scene Builder

Figure 4 2: JavaFX Scene Builder

JavaFX Scene Builder is a visual layout tool that lets users quickly design JavaFX

application user interfaces, without coding. Users can drag and drop UI components to

a work area, modify their properties, apply style sheets, and the FXML code for the

layout that they are creating is automatically generated in the background. The result is

an FXML file that can then be combined with a Java project by binding the UI to the

application’s logic. Builder is entirely developed with JavaFX 2.0 APIs to

discover and study about JavaFX stuffs.[10]

4.2.3 Java Programming Language

Java is a general-purpose computer programming language that is concurrent, class-

based, object-oriented, and specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once, run

anywhere" (WORA), meaning that compiled Java code can run on all platforms that

support Java without the need for recompilation. Java applications are typically

compiled to byte code that can run on any Java virtual machine (JVM) regardless of

computer architecture. “As of 2016, Java is one of the most popular programming

languages in use, particularly for client-server web applications, with a reported 9

million developers.” Java was originally developed by James Gosling at Sun

33

Microsystems (which has since been acquired by Oracle Corporation) and released in

1995 as a core component of Sun Microsystems' Java platform. The language derives

much of its syntax from C and C++, but it has fewer low-level facilities than either of

them. [11]

Java Version

 JDK 1.0 (January 21, 1996)
 JDK 1.1 (February 19, 1997)
 J2SE 1.2 (December 8, 1998)
 J2SE 1.3 (May 8, 2000)
 J2SE 1.4 (February 6, 2002)
 J2SE 5.0 (September 30, 2004)
 Java SE 6 (December 11, 2006)
 Java SE 7 (July 28, 2011)
 Java SE 8 (March 18, 2014)

4.2.4 MySQL 5.5 Database

MySQL is a fast, easy-to-use RDBMS being used for many small and big businesses.

MySQL is developed, marketed, and supported by MySQL AB, which is a Swedish

company.

Why MySQL is becoming so popular:

 Released under an open-source license. So you have nothing to pay to use it.

 MySQL is a very powerful program in its own right. It handles a large subset of

the functionality of the most expensive and powerful database packages.

 MySQL uses a standard form of the well-known SQL data language.

 MySQL works on many operating systems and with many languages including

PHP, PERL, C, C++, JAVA, etc.

 MySQL works very quickly and works well even with large data sets.

 MySQL is very friendly to PHP, the most appreciated language for web

development.

 MySQL supports large databases, up to 50 million rows or more in a table. The

default file size limit for a table is 4GB, but you can increase this (if your

operating system can handle it) to a theoretical limit of 8 million terabytes

(TB).

34

 MySQL is customizable. The open-source GPL license allows programmers to

modify the MySQL software to fit their own specific environments. [12]

4.2.5 MySQL Workbench 6.3 CE

MySQL Workbench is a visual database design tool that integrates SQL development,

administration, database design, creation and maintenance into a single integrated

development environment for the MySQL database system. [13]

4.2.6 MySQL Query Browser

The MySQL Query Browser is a graphical tool for creating, executing, and optimizing

queries in a graphical environment. The MySQL Query Browser is designed to help

query and analyze data stored within MySQL database.

4.2.7 Visual Paradigms

Figure 4.3: shows Visual Paradigm

Figure 4 3: Visual Paradigm

“Visual Paradigm for UML is a CASE tool with various selections for modelling

with UML2 diagrams as well as supports SysML requirements diagrams and ER

diagrams. The tool has a virtuous working environment, which enables inspecting

and influence of the modelling project. It is a professional tool and also helps

precise changes to source code of several programming languages such as C++ and

Java [14].

35

4.2.8 Hibernate

Hibernate is an object-relational mapping (ORM) library for the Java language,

providing a framework for mapping an object-oriented domain model to a traditional

relational database. Hibernate solves object-relational impedance mismatch problems

by replacing direct persistence-related database accesses with high-level object

handling functions.

HQL is abbreviation of Hibernate Query Language. HQL is SQL inspired language

provided by hibernate. Developer can write SQL like queries to work with data

objects. [15]

Figure 4.1 shows the architecture of Hibernate.

Figure 4. 4 : Hibernate Framework

4.2.9 Jasper Reports

Jasper Reports provides necessary features to generate dynamic reports, including data

retrieval using JDBC (Java Database Connectivity), as well as support for parameters,

expressions, variables, and groups. Jasper Reports also includes advanced features,

such as custom data sources, script lets, and sub reports.

36

4.3 Implementation

The Architecture used to develop the system was MVC model. Model–view–controller

(MVC) is a software architectural pattern for implementing user interfaces. MVC is a most

applying design pattern because of its flexibility & other central usages. It is reusable &

expressive that allows more readable & mobile. The following Figure 4.2 shows MVC

architecture.

Figure 4. 5: MVC Architecture

Model - This is the layer which switches data in the system. It realizes all facts about

data which required being presented. It also controls the rules to entree the data

objects and complete any kind of operation on them. This layer is liberated from

other system layers such as, View and Controller. Model denotes an object or JAVA

POJO carrying data. It can also have logic to modify controller if its data

modifications. [15].

View: This is the layer which uses Model’s data querying methods to obtain the data

for the purpose of presenting. This layer is independent from application logic. A view

must ensure that its appearance reflects the state of the model. Whenever the model’s

data changes, the model notifies views that depend on it.

Controller - Controller acts on both model and view. It controls the data stream into

model object and updates the view whenever data changes. It keeps view and model

separate. [15].

37

4.3.1 Code Module Structure

The following Figure 4.3 shows the main structure of the codes in Net Beans.

Figure 4. 6: Structure of codes

According to that there are main packages as Dao, Entity, UI, Image and Report.

4.4 Data Layer Implementation

In this layer there are tables and relations between them one-to-one, one-to-many,

many-to-many, etc. It allows perform CRUD operations in order to insert data for the

database, retrieve data from them as rows, update the table data, & also delete the

Unnecessary data.

Hibernate is concerned with data persistence as it applies to relational

databases(RDBMS) and it facilities to arrange one-to-one, one-to-many and many-to-

many relationships between classes are provided. In addition to managing associations

between objects, Hibernate can also manage reflexive associations where an object has

a one-to-many relationship with other instances of its own type.

38

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >

< ! D O C T Y P E h i b e r n a t e - c o n f i g u r a t i o n P U B L I C " - / / H i b e r n a t e / H i b e r n a t e C o n f i g u r a t i o n

D T D 3 . 0 / / E N " " h t t p : / / h i b e r n a t e . s o u r c e f o r g e . n e t / h i b e r n a t e - c o n f i g u r a t i o n - 3 . 0 . d t d " >

< h i b e r n a t e - c o n f i g u r a t i o n >

 < s e s s i o n - f a c t o r y >

 < p r o p e r t y

n a m e = " h i b e r n a t e . d i a l e c t " > o r g . h i b e r n a t e . d i a l e c t . M y S Q L D i a l e c t < / p r o p e r t y >

 < p r o p e r t y

n a m e = " h i b e r n a t e . c o n n e c t i o n . d r i v e r _ c l a s s " > c o m . m y s q l . j d b c . D r i v e r < / p r o p e r t y >

 < p r o p e r t y

n a m e = " h i b e r n a t e . c o n n e c t i o n . u r l " > j d b c : m y s q l : / / l o c a l h o s t : 3 3 0 6 / C o n t r a s t ? z e r o D a t e T i m e B

e h a v i o r = c o n v e r t T o N u l l < / p r o p e r t y >

 < p r o p e r t y n a m e = " h i b e r n a t e . c o n n e c t i o n . u s e r n a m e " > r o o t < / p r o p e r t y >

 < p r o p e r t y n a m e = " h i b e r n a t e . c o n n e c t i o n . p a s s w o r d " > 1 2 3 4 < / p r o p e r t y >

 < m a p p i n g c l a s s = " e n t i t y . C i v i l s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . D e s i g n a t i o n " / >

 < m a p p i n g c l a s s = " e n t i t y . E m p l o y e e " / >

 < m a p p i n g c l a s s = " e n t i t y . E m p l o y e e s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . G e n d e r " / >

 < m a p p i n g c l a s s = " e n t i t y . M o d u l e " / >

 < m a p p i n g c l a s s = " e n t i t y . P r i v i l a g e " / >

 < m a p p i n g c l a s s = " e n t i t y . R o l e " / >

 < m a p p i n g c l a s s = " e n t i t y . U s e r " / >

 < m a p p i n g c l a s s = " e n t i t y . U s e r s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . C a t e g o r y " / >

 < m a p p i n g c l a s s = " e n t i t y . I t e m " / >

 < m a p p i n g c l a s s = " e n t i t y . I t m e c o l o r " / >

 < m a p p i n g c l a s s = " e n t i t y . I t m e s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . I t m e u n i t " / >

 < m a p p i n g c l a s s = " e n t i t y . S u b c a t e g o r y " / >

 < m a p p i n g c l a s s = " e n t i t y . C u s t o m e r " / >

 < m a p p i n g c l a s s = " e n t i t y . C u s t o m e r s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . S u p p l i e r " / >

 < m a p p i n g c l a s s = " e n t i t y . S u p p l i e r s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . C u s t o m e r o r d e r " / >

 < m a p p i n g c l a s s = " e n t i t y . C u s t o m e r o r d e r d e a t a i l s " / >

 < m a p p i n g c l a s s = " e n t i t y . C u s t o m e r o r d e r s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . B a n k " / >

 < m a p p i n g c l a s s = " e n t i t y . C h e q u e p a y m e n t " / >

 < m a p p i n g c l a s s = " e n t i t y . I n v o i c e " / >

 < m a p p i n g c l a s s = " e n t i t y . I n v o i c e s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . P a y t y p e " / >

 < m a p p i n g c l a s s = " e n t i t y . C h e q u e s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . P o i t e m " / >

 < m a p p i n g c l a s s = " e n t i t y . P u r c h a s e o r d e r " / >

 < m a p p i n g c l a s s = " e n t i t y . P o s t a t u s " / >

 < m a p p i n g c l a s s = " e n t i t y . S u p p l y " / >

 < m a p p i n g c l a s s = " e n t i t y . G r n " / >

 < m a p p i n g c l a s s = " e n t i t y . G r n p o i t e m " / >

 < / s e s s i o n - f a c t o r y >

< / h i b e r n a t e - c o n f i g u r a t i o n >

4.4.1 Hibernate Configuration

Hibernate requires to identify in advance where to discover the mapping information

that determines how your Java classes transmit to the database tables. Hibernate also

needs a set of configuration settings linked to database and other related

parameters. All such information is typically supplied as usual Java properties

file termed hibernate. Properties or as an XML file named hibernate.cfg.xml.

following Figure 4.7 shows the hibernate.cfg.xml.

Figure 4. 7 : hibernate.cfg.xml

4.4.2 Java Entities with Annotations and Named Queries

Java entities whose objects or instances will be warehoused in database tables

are called persistent classes in Hibernate. Hibernate works best if these entities

follow some simple rules, also known as the Plain Old Java Object (POJO)

39

programming model. An annotation, in the Java computer programming language, is

a form of syntactic metadata that can be added to Java source code. Classes, methods,

variables, parameters and packages may be annotated. Following Figure 4.8 shows the

entity class of Category.

Figure 4. 8: Entity class of Category

40

4.5 User Interface Layer Implementation

User interfaces simplify users to do required operations using forms as well as

loading views. JavaFX Scene Builder designer view was used for the construction

of the user interfaces and to add controls. Adobe Photoshop/Gimp/Illustrator was used

to make and modify necessary images. To enhance controllers to the user interface

designer view offers with the drag and drop functionality and then the component can

be setup as the xml code for that, which reduces the developing time significantly.

When developer adds a new component to the user interface JavaFX Scene Builder

will automatically generates the necessary xml code for that, which saves the

developing time drastically.

Following figure 4.9 shows the auto generated xml codes for creating item category

interface using JavaFX Scene Builder. Following Figure 4.9 shows the entity UI class of

Category.

Figure 4. 9: UI class for Category

41

Below represents the java code segment which use for the controller class. Following

Figure 4.10 shows the java code use for the controller class for ItemCategory classes.

42

43

44

Figure 4. 10 : ItmeCatergory UI Controller.java

45

 Following figure 4.11: shows the CSS code use for the fxml class to decorate.

Figure 4. 11 : CSS code for Style

4.6 Control Layer Implementation

Control layer is the link between data layer & the interface layer. Here logical concept

is, Parse a user request (i.e., "read" it), validate the user request (i.e., assure it on forms

to application's requirements), determine what the user is trying to do (based on form

elements), obtain data from the Model (if necessary) to include in response to user,

select the next View the client should see.

The arrangement of calls to the Model (business-logic layer), and/or the

arrangement of views and an input from the user expresses the application's

46

workflow. Workflow is accordingly defined in the Controller layer of the application.

4.6.1 Hibernate Sessions

The Session Factory is the perception that is a single data collection and thread safe.

Since of this feature, many threads can access this simultaneously and the sessions

are requested, and also the cache that is immutable of compiled mappings for a

specific database. A Session Factory will be constructed only at the time of its start-

up. In order to access it in the application code, it should be enclosed in singleton.

This covering creates the easy approachability to it in an application code.

Following figure 4.12 shows fragment code is for create session factory.

Figure 4. 12 : HibernateUtil.java

4.6.2 Dao (Data Access Objects)

data access object (DAO) is an object that provides an abstract interface to some type

of database or persistence mechanism, providing some specific operations without

exposing details of the database. It provides a mapping from application calls to the

persistence layer. This isolation separates the concerns of what data accesses the

application needs, in terms of domain-specific objects and data types (the public

interface of the DAO), and how these needs can be satisfied with a specific DBMS,

database schema, etc. (the implementation of the DAO).

47

Following figure 4.13 shows the summery for CatergoryDao classes.

Figure 4.13:CatergoryDao.java

4.7 Acknowledgement of Reused Code Modules

Some tutorials were referred from the internet to learn Java, JavaFX and Hibernate.

When developing this system I am using few libraries and classes for Netbeans IDE

because I wanted to add more functionality to the system. Client’s requirement also

driven me to use some external libraries which do not exist as built in libraries in

Netbeans IDE.

My system used Jasper Report API to generate reports of the system. Because of that

system facilitates report generating task for users when they need reports to analyse

their business and achieve goals. Also I have used hibernate ORM to build up database

connection of my system.

48

Chapter 5- Evaluation

This chapter describe about the evaluation of the project. Evaluation as a general

endeavour can be characterized by the following features Evaluation is a task, which

results in one or more reported outcomes. Evaluation is an aid for planning, and

therefore the outcome is an evaluation of different possible actions. Evaluation is goal

oriented. The primary goal is to check results of actions or interventions, in order to

improve the quality of the actions or to choose the best action alternative.

Software testing involves the execution of a software component or system component

to evaluate one or more properties of interest. In general, these properties indicate the

extent to which the component or system under test:

 Meets the requirements that guided its design and development,

 responds correctly to all kinds of inputs,

 performs its functions within an acceptable time,

 is sufficiently usable,

 can be installed and run in its intended environments and

 achieves the general result its stakeholders desire.[16]

5.1 The Objectives of Testing

The main objectives of the testing are that the functions are developed according to the

specification, the identification and reporting of error that occur in the system and

correcting them as needed and improving the performance and efficiency of the

system.

5.2 Testing Methods

There are generally four recognized levels of tests: unit testing, integration testing,

system testing, and acceptance testing. Tests are frequently grouped by where they are

added in the software development process or by the level of specificity of the test.

https://en.wikipedia.org/wiki/Operating_environment

49

5.2.1 Unit Testing

Unit testing is a level of software testing where individual units/ components of

software are tested. The purpose is to validate that each unit of the software performs

as designed. A unit is the smallest testable part of software. It usually has one or a few

inputs and usually a single output. In procedural programming a unit may be an

individual program, function, procedure, etc. In object-oriented programming, the

smallest unit is a method, which may belong to a base/ super class, abstract class or

derived/ child class. (Some treat a module of an application as a unit. This is to be

discouraged as there will probably be many individual units within that module). [17]

Ex: Purchaseorder Module is tested by adding new item, deleting and updating item.

5.2.2 Integration testing

Integration testing tests integration or interfaces between components, interactions to different

parts of the system such as an operating system, file system and hardware or interfaces

between systems. Also after integrating two different components together

we do the integration testing. As displayed in the image when two

different modules ‘Module A’ and ‘Module B’ are integrated then the

integration testing is done. [18]

Ex: Further Testing is done by integrating item, Purchaseorder and GRN modules.

5.2.3 System testing

In system testing the behavior of whole system/product is tested as defined by the

scope of the development project or product. It may include tests based on risks and/or

requirement specifications, business process, use cases, or other high level descriptions

of system behavior, interactions with the operating systems, and system resources.

System testing is most often the final test to verify that the system to be delivered

meets the specification and its purpose.[19]

Example: Integrate all the modules in the system and check whether the whole

procedure is run correctly.

50

There are several techniques of testing used in each testing levels. Black-box testing

and white-box testing are the mostly used testing techniques.

 Black-box testing

Black-box testing treats the software as a "black box", examining functionality without

any knowledge of internal implementation. The testers are only aware of what the

software is supposed to do, not how it does it. Black-box testing methods include:

equivalence partitioning, boundary value analysis, all-pairs testing, state transition

tables, decision table testing, fuzz testing, model-based testing, use case testing,

exploratory testing and specification-based testing. Following Figure 5.1 shows black

box testing

Figure 5 1: Black box testing

 White-box testing

White-box testing (also known as clear box testing, glass box testing, transparent box

testing, and structural testing) is a method of testing software that tests internal

structures or workings of an application, as opposed to its functionality (i.e. black-box

testing). In white-box testing an internal perspective of the system, as well as

programming skills, are used to design test cases. The tester chooses inputs to exercise

paths through the code and determine the appropriate outputs.

Figure 5 2: White box testing

51

5.3 Test Plan and Test Cases

5.3.1 Test Plan

A test specification is called a test plan. The developers are well aware what test plans

will be executed and this information is made available to management and the

developers. The idea is to make them more cautious when developing their code or

making additional changes.

5.3.2 Test Cases

 A test case normally consists of a unique identifier, requirement references from a design

specification, preconditions, events, a series of steps (also known as actions) to follow, input,

Table 5.1: shows Test cases Structure

Table 5. 1 :Test Cases Structure

Test cases table has test no, description, expected result and the actual result generated

by

Test Cases for Customer Registration

Following Table 5.2 shows test cases for Customer.

No Test Cases Expected Output Actual Output Status

1 All fields are

filled.

Show message

"Inserted successful”

when click the “Add”

button and add

the record to the table

Show message

"Inserted successful”

when click the “Add”

button and add

the record to the table

Pass

2 All fields are not

filled.

Show error message Show error message Pass

3 Entering invalid

formats telephone

no and email

Show error messages

when clicking the

“Add” button and red

colour the field

Show error messages

when clicking the

“Add” button and red

colour the field

Pass

NO

Test Cases

Expected Output

Actual Output

Status

52

4 Entering non-

numeric values for

telephone.

Show error messages

when clicking the

“Add” button and red

colour the field

Show error messages

when clicking the

“Add” button and red

colour the field

Pass

5 Clicking the

update button on

table

Load the values to the

text fields relevant to

that field

Load the values to the

text fields relevant to

that field

Pass

6 Clicking the

delete button on

table

Check again whether

it

Will be wanted to

delete from a

message. When click

“Yes” that record

will be deleted

Otherwise not.

Check again whether it

Will be wanted to

delete from a message.

When click “Yes” that

record will be deleted

Otherwise not.

Pass

Table 5. 2: Test Cases for Customer module

Test Cases for Purchase Order

Following Table 5.3 shows test cases for purchase order.

No Test Cases Expected Output Actual Output Status

1 Select Supplier in

supplier combo.

Fill item combo with

that’s supplier item.

Color of the

background green

Fill item combo with

that’s supplier item.

Color of the

background green.

Pass

2 Not fill quantity

field and then

press add button in

inner table

Show error message Show error message Pass

3 Insert invalid

quantity

Text field background

colour changed to red.

Text field background

colour changed to red.

Pass

53

4 Not fill item

combo and then

press add button in

inner table

Show error message Show error message Pass

5 Click delete button

inner table

Remove item row from

the inner table

Remove item row

from the inner table

Pass

6 Click “Add to
Purchaseorder”
without selecting
Supplier combo.

Message box will be
shown as “Please
select the Supplier

Message box will be
shown as “Please
select the Supplier

Pass

7 Click “Add to
Purchaseorder”
without add any
item in inner table

Message box will be
shown as “Please add
item details.

Message box will be
shown as “Please add
item details

Pass

8 Click “Add to
Purchaseorder”
without fill Po
status combo

Show error message Show error message Pass

9 Insert valid
quantity

Text field background
colour changed to
green.

Text field background
colour changed to
green.

Pass

10 Click “Add to
Purchaseorder”
With all details.

Message box will be
shown as “New
Purchase order
added”
And add new row to
the previous
Purchaseorder table.

Message box will be
shown as “New
Purchase order
added”
And add new row to
the previous
Purchaseorder table.

Pass

Table 5. 3: Test Cases for Purchase Order

5.3 Acceptance testing

Contrast IT Solution System was tested by the client the user acceptance testing was

carried out by implementing the system at the real working environment along with the

real test data & available conditions in the actual background.

End user satisfied with systems. Acceptance testing, a testing technique performed to

determine whether or not the software system has met the requirement specifications.

54

The main purpose of this test is to evaluate the system's compliance with the business

requirements and verify if it is has met the required criteria for delivery to end users.

There are various forms of acceptance testing: [20]

User acceptance testing

 Business acceptance Testing

 Alpha Testing

 Beta Testing

Following Figure 5.3 shows User Evaluation Form.

Figure 5 3: User Evaluation Form

55

User Feedback

Very Good

Good

Average

Bad

Very Bad

Table 5. 4: User Feedback answer

5.4.1 Summary of the User Evaluation

According to above mention table (Figure 5.3) some of features like User-friendliness,

stock management, and Employee management are in excellent level. And also

features like Availability & Correctness of the system & User access levels of the are

in good level. Ultimately users satisfy about the system by considering both functional

and non-functional requirements which are provided by the system. From the feedback

forms 93% were in a satisfied situation about the system. Their answers were

evaluated and the result was as follow in Table 5.4 and Figure 5.4.

Figure 5 4: User Feedback answer chart

 User 1 User 2 User 3

Very Good 10/18 12/18 13/18 65%

Good 7/18 6/18 5/18 32%

Average 2/18 0 0 3%

Bad 0 0 0 0

Very Bad 0 0 0 0

56

Chapter 6 – Conclusion

The final chapter of the dissertation brings the evaluation of previous chapters whilst

discussing the possibilities for realization of objectives and how the system could be

further developed. Also the problem beyond the control of the candidate and its effect

on the progress of work are also discussed. It is a pleasure to mention that the project

ended success. What so ever have learnt to complete task in time and to communicate

with people and so on. The simple and user-friendly interfaces have been designed and

developed. It was easy for the staff at any level to learn and follow.

6.1 Critical Assessment

Proposed system was intended to develop to help Order Management activities of

Contrast Trading. For system analysis, different fact gathering methods were used and

interviews, scenarios and observation were used as main techniques. The major

requirement I got from the top management was to improve the employee’s efficiency

through the introduced the System. Firstly, the feasibility study was conducted to

ensure the benefits and deliverables of the project are justifiable before moving into

other phases of development. Higher efficiency level of the employees was a major

need to uplift the productivity of the company. Frequent requirement reviews were

conducted to ensure accuracy of gathered requirements. Considerable amount of

project time period was devoted for system analysis and design phases.

Using some diagrams were drawn at the design phase such as use sequence diagrams,

case diagrams, activity diagrams etc. to cover all major functional areas of Inventory

and sales management system. RUP methodology and Object Oriented modelling

approach along with MVC pattern were selected to design according to third

normalization form and database diagram was drawn to reflect relationships among

tables. Simple and consistent theme was applied to reduce the complexity of interfaces.

Database was developed using MySQL and reports were generated using Jasper

Report. System was developed using java language and security, platform

independency and object oriented support were considered when selecting java

57

language. Those were selected because they have great support to java language.

Hibernate framework were used when developing to simplify the effort.

System testing was started in development phase, although test cases were developed

in design phase. Unit testing was carried out in parallel with the system development

and other test phase such as system testing; acceptance testing etc. were conducted in

evaluation phase. Test cases were documented and expected outcome was compared

with actual outcome to ensure that the system is operating as intended.

6.2 Problem Encountered

Huge problem encountered during the development of the system was the lack of

knowledge regarding the development language and tools. Some books, Online

training tutorials, on javafx were used to get required knowledge. In the requirement

gathering phase, it was difficult to gather clear and accurate information about the

requirement of the client. New requirements can be arisen even in the middle of the

development process when a new system in being introduced to the company.

Main problem encountered is that the lack of a systematic procedure of the existing

system. Most important requirements are presented when clients came across a specific

incident. This situation made the Design of the project really difficult. As well as the

arising of new requirements, clients are changing their requirements even in the

implementation phase. Since it was a completely manual system it was difficult to

convert all the tasks to an automated system. Huge work had to be done in the

designing phase.

6.3 Lessons Learnt

As an undergraduate the knowledge gained throughout the project was really valuable.

A step by step approach was taken in developing the system. Learning a new language was a

lesson experienced in the project which allows getting extensive knowledge of the java

language, JavaFX, XML, Hibernate, MVC, MySQL, NetBeans and many

more languages, tools and technologies. And also it helped to test and implement

most important theories and technologies learnt throughout the BIT degree program.

58

Project planning is another lesson, before the start of the project a feasible project plan was

developed. The experience of the Stressful work load is another example of the lesson, in the

industry a developer always needs to meet various deadliness works according to strict

schedules. Through the development of the project faced many difficulties in managing time

but was able to resolve them as more experience was gained. The experience of writing a

formal Project Dissertation was another lesson leant in this project.

6.4 Future Improvements

In future following features are planned to add to the newly built system as further

improvements the system.

 Web based Contrast IT Solution System will be introduced.

 Allow online customers to get their service through the system and deliver

orders just after when they make online payment.

 System will be expanded in the future to handle attendance and payments of

the online system.

59

REFERENCES

 [1]: 2017. [Online]. Available: http://www.capterra.com/p/101188/MerchanNet/

 [Accessed: 10- 08- 2017].

[2]: 2017.[Online].Available https://www.inflowinventory.com/software-features

 [Accessed: 10- 08-2017]

[3]: 2017.[Online].Available:https://medium.com/omarelgabrys-blog/software-

 engineering-software-process-and-software-process-models-part-2-4a9d06213fdc.

 [Accessed: 10- 08-2017]

[4]: Ian Sommerville, 2007

[5]: Pressman Rogger S,2001

[6]: 2017.[Online].Available: https://en.wikipedia.org/wiki/Database_design

 [Accessed: 11- 08-2017]

[7]: 2017.[Online].Available:https://www.thoughtco.com/database-normalization-

 basics-1019735 [Accessed: 12- 08-2017]

[8]:2017.[Online].Available:https://en.wikipedia.org/wiki/Entity%E2%80%93relations

 hip [Accessed: 12- 08-2017]

[9]: http://freewareupdate.com/download-netbeans-ide/: [Access Date: 12.09.2017]

[10]: http://www.oracle.com/technetwork/java/javase/downloads/

 javafxscenebuilder-info-2157684.html/: [Access Date: 12.09.2017]

[11]: https://en.wikipedia.org/wiki/Java_(programming_language)/:

 [Access Date: 20.09.2017]

[12]: https://www.tutorialspoint.com/mysql/mysql- troduction.htm[AccessDate:01.10.2017]

[13]: 2017. [Online]. Available: https://dev.mysql.com/doc/workbench/en/. [Accessed: 02.10.

 2017].

[14]: https://dev.mysql.com/doc/workbench/en/. [Accessed: 02- 10- 2017].

https://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/workbench/en/

60

[15]:Wikipedia, "Visual Paradigm for UML", 2017. [Online]. Available:

 https://en.wikipedia.org/wiki/Visual_Paradigm_for_UML. [Accessed: 03- 10- 2017].

[16]: https://en.wikipedia.org/wiki/Hibernate_(framework) . [Accessed: 04- 10- 2017].

[17]: https://en.wikipedia.org/wiki/Software_testing/. [Accessed: 04- 10- 2017].

[18] http://softwaretestingfundamentals.com/unit-testing/ [Accessed: 05- 10- 2017].

[19] http://istqbexamcertification.com/what-is-integration-testing/[Accessed: 05- 10- 2017].

[20] https://www.tutorialspoint.com/software testing Dictionary/acceptance testing.htm

[Accessed: 06.10.2017]

[21] https://www.tutorialspoint.com//software testing Dictionary/acceptance testing.htm

 [Accessed: 14.09

https://www.tutorialspoint.com/software
https://www.tutorialspoint.com/software

61

APPENDIX-A

SYSTEM DOCUMENTATION

This segment includes significance information for administrators, users and anyone

who desires to carry on this System. This includes information and steps about

installation, configuration.

The hardware and software environment which is needed to implement the system

in client’s site is listed in table A.1

Following Table A.1 shows hardware requirements for client application.

Hardware Equipment Recommended Requirement level

Processor

Pentium 4 (2.2Ghz) or above

Memory

1 GB or above

Hard Disk

20GB free space

Screen Resolution

1366 x 768

Table A. 1 : Hardware Requirements for client application

Following Table A.2 shows software requirements for client application.

Software Equipment Recommended Requirement level

Operating System

 Windows 7 or above

Java

 jdk1.8.0 or above

DBMS

 MySQL Server 5.5 or above

DBMS Tools

 MySQL Query Browser 5.0 or above

Other Software Microsoft Office Package 2010

Table A. 2 : Software Requirements for client application

62

A.1 HOW TO SETUP

A.1.1 Install Java Run Time on Client Machine

Below are some significant screenshots of installing JAVA runtime on client

machine. In here the installation order is showed as step by step.

A.1 shows java setup welcome screen in the installation wizard of JRE

Figure A 1. Installation Wizard of JRE (step 1)

A.2 shows destination folder changing screen in the installation wizard of JRE.

Click Next button.

Figure A 2. Installation Wizard of JRE (Step 2)

63

A.3 shows installation progress in the installation wizard of JRE

Figure A 3. Installation Wizard of JRE (Step 3)

 A.4 shows completion screen in the installation wizard

Figure A 4. Installation Wizard of JRE (Step 4)

64

A.1.2 Installing MySQL Server 5.5

Step 1: Download MySQL Community Server 5.5 installation file appropriate for the

platform. Open installation files for MySQL Community Server and press “Next”.

A.5 shows the welcome screen in the installation wizard of MySQL Server click

“Next” button.

Figure A 5. Installation Wizard of MySQL Server (Step 1)

A.6 Chose setup type the installation wizard click Typical

Figure A 6. Installation Wizard of MySQL Server (Step 2)

65

Step 3: After installation process is completed, check “Launch the MySQL Instance

 Configuration Wizard” and click “Finish”.

A.7 shows completed the MySQL Server screen in the installation wizard

Figure A 7. Installation Wizard of MySQL Server (Step 3)

Step 4: In “Configuration Wizard” click “Next”.

A.8 shows welcome screen in the installation wizard of MySQL Server Instance

Configuration as

Figure A 8. Installation Wizard of MySQL Server (Step 4)

66

Step 5: Choose “Detailed Configuration” and click “Next”.

A.9 Shows the Instance Configuration Wizard

Figure A 9. Installation Wizard of MySQL Server (Step 5)

Step 6: Check “Install as Windows Service”, select service name “MySQL”. Check

“Launch the MySQL Server automatically” (this feature will run service

automatically after installation), check to “Include Bin Directory in Windows

PATH” and click “Next”.

A.10 shows windows options screen in the installation wizard of MySQL Server

Instance Configuration

Figure A 10. Installation Progress MySQL Server (Step 6)

67

Step 7: Set a password as you like but it is should be very strong. For the “root”

user, check “Enable root access from remote machines” and do not create an

Anonymous account. Click “Next” and then “Execute”.

A.11 shows security options screen in the installation wizard of MySQL Server

Instance Configuration

Figure A 11. Installation Wizard of MySQL Server (Step 7)

Step 8: After configuration process is completed click “Finish”.

 A.12 shows processing configuration screen in the installation wizard of MySQL

Server Instance Configuration

Figure A 12. Installation Wizard of MySQL Server (Step 8)

68

A.1.3 Installing MySQL Query Browser

Some screen shots of installing MySQL Query Browser on client machine. It is

Graphical User Interface based query manipulation application. In here the

installation order is showed as step by step.

A.13 shows welcome screen in the installation wizard of MySQL Query Browser

Figure A 13. Installation Wizard of MySQL Query Browser (Step 1)

A.14 shows license agreement screen in the installation wizard of

MySQL Query Browser as (Step 2)

Figure A 14. Installation Wizard of MySQL Query Browser (Step 2)

69

A.15 shows destination folder changing screen in the installation wizard

Figure A 15. Installation Wizard of MySQL Query Browser (Step 4)

 A.16 shows installation progress in the installation wizard

Figure A 16. Installation Wizard of MySQL Query Browser (Step 5)

70

A.17 shows login screen in the MySQL Query Browser. In here relevant host,

username and password must provide to log to the MySQL Server.

Figure A 17. Login Screen of MySQL Query Browser (Step 6)

A.18 shows Server Information in the MySQL Query Browser. In here view

relevant host, username, server IP, MySQL version.

Figure A 18.Server Information Screen of MySQL Query Browser (Step 7)

A.1.4 Installing Contrast IT Solution System
After setting up the

database, Select from

device

Click Add &

Browse the Contrast IT Solution System file from CD Run

the setup.exe file located in CD.

71

APPENDIX-B

DESIGN DOCUMENTATION

B.1 Activity diagram

Following figure B.1 represents the activity diagram for user login. For

successful login, user has to complete defined activities.

Figure B.1 Shows Activity Diagram for user loginFigure B 1

Figure B 2: Activity diagram for user login

72

B.2 Use case Diagram

Figure B 3 :Use Case diagram for Manager

B.2 Sequence diagrams

A sequence diagram is a kind of interaction diagram that shows how processes operate

with one another and in what order. A sequence diagram shows object interactions

arranged in time sequence. It depicts the objects and classes involved in the scenario

and the sequence of messages exchanged between the objects needed to carry out the

functionality of the scenario.

73

Figure B.3. Shows a sequence diagram for login scenario.

Figure B 4: Sequence Diagram for Login

B.1 Database Design

 Figure B 5: Bank Table

74

Figure B 6: Category table

 Figure B 7 : Chequestatus table

Figure B 8: Chequepayment table

 Figure B 9: Civilstatus table

75

Figure B 10: Customerorderdeatails table

Figure B 11: Designation table

Figure B 12: Customerstatus table

 Figure B 13: Employeestatus table

76

Figure B 14: Employee table

Figure B 15: Customerorder table

 Figure B 16: Item table

77

 Figure B 17: Customerorderstatus table

Figure B.16Figure B 18: Invoicestatus table

Figure B 19: Itmeunit table

Figure B 20: Purchaseorder table

78

Figure B 21: Customer table

Figure B 22: Gender table

Figure B 23: Itmecolor table

 Figure B 24: Role table

79

Figure B 25: Poitem table

Figure B 26: Subcategory table

Figure B 27: Privilage table

Figure B 28: Userstatus table

80

Figure B 29: Grnpoitem table

 Figure B 30: Userrole table

Figure B 32: GRN table

Figure B 31: Supplier table

81

Figure B 34: Itmestatus table

 Figure B 35: Supplierstatus table

Figure B 36: User table

Figure B 33: Postatus table

82

 Figure B 37: Supply table

Figure B 38: Module table

Figure B 39: Paytype table

Figure B 40: Invoice table

83

Appendix – C

User Documentation

Contrast IT Solution System of Contrast Trading has been developed with lots of

functions and features in order to carry out their day to day process in a systematic

way. In order to get the maximum from the developed system, it is very important for a

user to identify all the features of the system and how to use these functions and

features efficiently. User documentation provides initial overview knowledge on using

the Customer Order Processing and Stock Controlling System step by step.

Add a new employee to the system:

The user should provide correct username and password to gain authorized access to the

system by using this login form (Figure C.1). Once logged in, the user is directed to the

home page (Figure C.2).

Figure C. 1 : Login page

84

After given correct user name & password logging on the home page. Home page

shows main tabs, login user name, and notification shown in below (Figure C.2)

Figure C. 2 : Home page

The System divided into six main categories administrator, purchase order, invoice,

and customer order, and report, stock as shown in below (Figure C.3)

Figure C. 3 : Main tabs

85

When click the main administrator tab, then you can have the window like below on left

side in your home window (Figure C.4)

Figure C. 4 : Administration tab icons

If you want to add new employee you can click Employee icon. Now you can see a

window like following (Figure C.5)

Figure C. 5 : Employee Window

Here you have employee form. Fill data and click Add button can to enter a new employee

to the database.

86

Appendix - D
Management Reports

System allows users such as managers, administrators and secretary to generate

various types of reports in order to use for the decision making process of the business.

As system gives daily, monthly & yearly reports after manipulating them management

can use them to analyse & identify the trends, patterns & seasonal variations of the

business & forecast future business situations.

Following figure D.1 shows all stocks details reports.

Figure D 1: Item Report

Following figure D.2 shows all purchase order report from 2016/10/01 to 2016/10/31.

87

 Figure D 2: Purchase Order report

Appendix – E

Test Results

E.1 Test Case for Item Module

Test cases and test results for Item module are listed in table E.1 the table has

test no, description, expected result and the actual result generated by each test

case.

Test

No

Test Description Expected Result Pass/

Fail

01 Image Selection Select Image button and brows file
select image add to interface

pass

02 Select the Category from
category combo box

Combo filed selected category with
background colour change to green.

pass

02 Select a Colour Code type from

Colour code Combo box

Combo box Field selected Colour
type item with background colour
change to green

pass

03 Select a Unit size from Unit

combo box

Combo box Field selected Unit size

with background colour change to

green

pass

04 Auto Generate Code After select the category, colour code,
unit size combo automatically
generate the code

pass

05 Select the Supplier combo in the
of supplier inter table

Combo box Field selected Supplier
with background colour change to
green

Pass

88

06 Enter Text value in the

“Unit Price” field

Enter correct value to Unit price

Text filed background colour changed

green colour

 Enter incorrect value to Unit price Text

field background colour changed to pink.

Pass

07 Enter Text value in the

“ROP” field

Enter correct value to ROP

Text filed background colour changed

green colour

 Enter incorrect value to ROP Text field

background colour changed to pink.

Pass

08 Select a Colour Code type from

Colour code Combo box

Text field background colour changed to

green

Pass

09 All fields are filled. And click ADD

button

 Pass

10 Show success message

when click the “Add” button and

add the record to the table

If success record add the item table.

Pass

89

11 Field empty Show error message

If no

If not filled the all fields the record pop

up error message

Pass

12 Select a row from the item table

and click Delete button

Click delete button. it will be appear

Delete confirmation message. When

click “Yes” that record will be deleted

Otherwise not.

Pass

13 Select a row from the table

and change the Item data and

click Update button

Click delete button. it will be appear

Delete confirmation message. When

click “Yes” that record will be deleted

Otherwise not.

Pass

14 Enter Text value in the

“Search by Code” field

Item table will refresh according

to typed text values

pass

15 Click the Category or colour
code button in the search area.

Item table will appear according to the

selected search button .
Pass

16 Click the Clear Search Button in
Item search Table

Item table will appear clear the entire

search in the search table.
pass

Table E. 1: Test cases and results for Item module

90

E.2 Test Cases for Supplier Module.

No Test Cases Expected Output Actual Output Status

1 All fields are

filled.

Show confirm

message.

Pass

2 All fields are

not filled.

Show error message

Pass

3 Enter incorrect

value any text

field

Text field

background colour

changed to pink.

pass

4 Enter correct

value to any

text field

pass

91

5 Select the Status

Combo box

Combo filed
selected category
with background
colour change to
green.

 pass

6 Clicking on the

table.

Load the values to the

text fields relevant to

that field

Load the values to the

text fields relevant to

that field.

Pass

8 Clicking the

update button

on table.

Check again whether

it

Will be wanted to

update from a

message. When click

“Yes” that record

will be update

Otherwise not.

Pass

9 Clicking the

delete button on

table

Check again whether

it

will be wanted to

delete from a

message. When click

“Yes” that record

will be deleted

otherwise not.

Pass

 Enter Text
value in
the

“Search by

Name” field

Fill the table in to

respect to searching

criteria.

Item table will refresh according

to typed text values

pass

Table E. 2 : Test Cases for Supplier Module

92

APPENDIX – F

CODE LISTING

Code for designation module

F.1 Code for Get All Objects

Following method can be used to get all table records as java objects to given query

using Hibernate Session Factory. Hibernate maps the relations to relevant java

objects.

public static ObservableList select(String nameQuery) {

 ObservableList obList = FXCollections.observableArrayList();

 List list = null;

 Session session = HibernateUtil.getSessionFactory().openSession();

 Transaction transaction = null;

 try {

 transaction = session.beginTransaction();

 Query query = session.getNamedQuery(nameQuery);

 list = (List) query.list();

 for (Object element : list) {

 obList.add(element);

 }

 } catch (HibernateException e) {

 System.out.println(e.getMessage());

 if (transaction != null) {

 transaction.rollback();

 }

 } finally {

 session.close();

 }

 return obList;

 }

F.2 Codes for fill Table View

Following method can be used to fill table in all module. (In JavaFX a table is known

as table view) It gets table records using control layer(Dao) access and sets to each

table column with given data types. Following method can used to fill Customer

93

module

F.3 Code for Fill Combo Box

Following method can be used to filled combo box which is a form control. It

gets all modules u s i n g control layer (Dao) access and sets to the module combo

box. Following

F.4 Entity class for Customer module

Following code can be used to entity class for category module

package entity;

import dao.CatergoryDao;

import java.io.Serializable;

import java.util.List;

import javax.persistence.Basic;

import javax.persistence.Column;

94

import javax.persistence.Entity;

import javax.persistence.FetchType;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.NamedQueries;

import javax.persistence.NamedQuery;

import javax.persistence.OneToMany;

import javax.persistence.Table;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlTransient;

import org.hibernate.annotations.Fetch;

import org.hibernate.annotations.FetchMode;

/**

 *

 * @author Aloysius

 */

@Entity

@Table(name = "category")

@XmlRootElement

@NamedQueries({

 @NamedQuery(name = "Category.findAll", query = "SELECT c FROM Category c"),

 @NamedQuery(name = "Category.findById", query = "SELECT c FROM Category c

WHERE c.id = :id"),

 @NamedQuery(name = "Category.findByName", query = "SELECT c FROM Category c

WHERE c.name = :name")})

public class Category implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Basic(optional = false)

 @Column(name = "id")

 private Integer id;

 @Column(name = "name")

 private String name;

 @OneToMany(mappedBy = "categoryId", fetch = FetchType.LAZY)

 @Fetch(FetchMode.SELECT)

 private List<Subcategory> subcategoryList;

 public Category() {

 }

 public Category(Integer id) {

 this.id = id;

 }

 public Integer getId() {

 return id;

 }

 public void setId(Integer id) {

 this.id = id;

 }

 public String getName() {

 return name;

95

 }

 public boolean setName(String name) {

 boolean validity = !name.isEmpty() && CatergoryDao.getByName(name).isEmpty();

 if (validity) {

 this.name = name;

 } else {

 this.name = null;

 }

 return validity;

 }

 @XmlTransient

 public List<Subcategory> getSubcategoryList() {

 return subcategoryList;

 }

 public void setSubcategoryList(List<Subcategory> subcategoryList) {

 this.subcategoryList = subcategoryList;

 }

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (id != null ? id.hashCode() : 0);

 return hash;

 }

 @Override

 public boolean equals(Object object) {

 // TODO: Warning - this method won't work in the case the id fields are not set

 if (!(object instanceof Category)) {

 return false;

 }

 Category other = (Category) object;

 if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return name;

F.5 Codes for Customer module Controller
package ui;

import dao.CustomerDao;

import dao.CustomerStatusDao;

import dao.DaoException;

import entity.Customer;

import entity.Customerstatus;

import java.net.URL;

import java.util.ResourceBundle;

import javafx.collections.FXCollections;

import javafx.collections.ObservableList;

import javafx.event.ActionEvent;

96

import javafx.fxml.FXML;

import javafx.fxml.Initializable;

import javafx.geometry.Pos;

import javafx.scene.Node;

import javafx.scene.control.Button;

import javafx.scene.control.ComboBox;

import javafx.scene.control.Pagination;

import javafx.scene.control.ScrollPane;

import javafx.scene.control.TableColumn;

import javafx.scene.control.TableView;

import javafx.scene.control.TextArea;

import javafx.scene.control.TextField;

import javafx.scene.control.cell.PropertyValueFactory;

import javafx.scene.input.KeyEvent;

import javafx.scene.input.MouseEvent;

import javafx.util.Callback;

import javafx.util.Duration;

import org.controlsfx.control.Notifications;

import org.controlsfx.control.action.Action;

import org.controlsfx.dialog.Dialogs;

import static ui.LoginController.privilage;

public class CustomerController implements Initializable {

 //<editor-fold defaultstate="collapsed" desc="FXML-Data">
 @FXML
 private TextArea txtAddress;
 @FXML
 private Button btnAdd;
 @FXML
 private Button btnClear;
 @FXML
 private Button btnUpdate;
 @FXML
 private Button btnDelete;
 @FXML
 private TextField txtSearchName;
 @FXML
 private Button btnSearchClear;
 @FXML
 private Pagination pagination;
 @FXML
 private TableView<Customer> tblCustomer;
 @FXML
 private TableColumn<Customer, String> colName;
 @FXML
 private TableColumn<Customer, String> colAddress;
 @FXML
 private TableColumn<Customer, String> colLand;
 @FXML
 private TableColumn<Customer, String> colEmail;
 @FXML
 private TextField txtEmail;
 @FXML

97

 private TextField txtLand;
 @FXML
 private TextField txtMobile;
 @FXML
 private TextField txtName;
 @FXML
 private ComboBox<Customerstatus> cmbStatus;
//</editor-fold>
 //<editor-fold defaultstate="collapsed" desc="Module-Data">
 //Color Indication of Input Controls
 private String valid;
 private String invalid;
 private String updated;
 private String initial;

 //Binding with the Form
 private Customer customer;

 //Update Identification
 private Customer oldCustomer;

 //Table Row, Page Selected
 private int page;
 private int row;
//</editor-fold>
 //<editor-fold defaultstate="collapsed" desc="Initialize-Methods">

 /**
 * Initializes the controller class.
 */
 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // TODO
 loadForm();
 loadTable();
 }

 private void loadForm() {

 initial = Style.initial;
 valid = Style.valid;
 invalid = Style.invalid;
 updated = Style.updated;

 customer = new Customer();
 oldCustomer = null;

 cmbStatus.getItems().clear();
 cmbStatus.setItems(CustomerStatusDao.getAll());
 cmbStatus.getSelectionModel().select(-1);
 txtName.setText("");

98

 txtAddress.setText("");
 txtMobile.setText("");
 txtLand.setText("");
 txtEmail.setText("");
 dissableButtons(false, false, true, true);
 setStyle(initial);
 }
 private void dissableButtons(boolean select, boolean insert, boolean update, boolean
delete) {
 btnAdd.setDisable(insert || !privilage.get("Customer_insert"));
 btnUpdate.setDisable(update || !privilage.get("Customer_update"));
 btnDelete.setDisable(delete || !privilage.get("Customer_delete"));

 txtSearchName.setDisable(select || !privilage.get("Customer_select"));
 btnSearchClear.setDisable(select || !privilage.get("Customer_select"));
 }
 private void setStyle(String style) {
 txtName.setStyle(style);
 txtMobile.setStyle(style);
 txtLand.setStyle(style);
 txtEmail.setStyle(style);
 cmbStatus.setStyle(style);

 if (!txtAddress.getChildrenUnmodifiable().isEmpty()) {
 ((ScrollPane)
txtAddress.getChildrenUnmodifiable().get(0)).getContent().setStyle(style);
 }
 }
 private void loadTable() {

 txtSearchName.setText("");
 colName.setCellValueFactory(new PropertyValueFactory("name"));
 colLand.setCellValueFactory(new PropertyValueFactory("mobile"));
 colEmail.setCellValueFactory(new PropertyValueFactory("email"));
 colAddress.setCellValueFactory(new PropertyValueFactory("address"));
 fillTable(CustomerDao.getAll());
 pagination.setCurrentPageIndex(0);
 }
 private void fillTable(ObservableList<Customer> customers) {
 if (privilage.get("Customer_select") && customers != null && customers.size() != 0) {

 int rowsCount = 4;
 int pageCount = ((customers.size() - 1) / rowsCount) + 1;
 pagination.setPageCount(pageCount);

 pagination.setPageFactory(new Callback<Integer, Node>() {
 @Override
 public Node call(Integer pageIndex) {
 int start = pageIndex * rowsCount;
 int end = pageIndex == pageCount - 1 ? customers.size() : pageIndex * rowsCount
+ rowsCount;

99

 tblCustomer.getItems().clear();
 tblCustomer.setItems(FXCollections.observableArrayList(customers.subList(start,
end)));
 return tblCustomer;
 }
 });
 } else {
 pagination.setPageCount(1);
 tblCustomer.getItems().clear();
 }
 }

//</editor-fold>
 //<editor-fold defaultstate="collapsed" desc="Data-Setting">
 @FXML
 private void txtAddressKR(KeyEvent event) {

 if (customer.setAddress(txtAddress.getText().trim())) {
 if (oldCustomer != null && !customer.getAddress().equals(oldCustomer.getAddress()))
{
 ((ScrollPane)
txtAddress.getChildrenUnmodifiable().get(0)).getContent().setStyle(updated);
 } else {
 ((ScrollPane)
txtAddress.getChildrenUnmodifiable().get(0)).getContent().setStyle(valid);
 }
 } else {
 ((ScrollPane)
txtAddress.getChildrenUnmodifiable().get(0)).getContent().setStyle(invalid);
 }
 }

 @FXML
 private void cmbStatusAP(ActionEvent event) {
 customer.setCustomerstatusId(cmbStatus.getSelectionModel().getSelectedItem());
 if (oldCustomer != null &&
!customer.getCustomerstatusId().equals(oldCustomer.getCustomerstatusId())) {
 cmbStatus.setStyle(updated);
 } else {
 cmbStatus.setStyle(valid);
 }

 }
 @FXML
 private void txtEmailKR(KeyEvent event) {

 if (customer.setEmail(txtEmail.getText().trim())) {
 if (oldCustomer != null && oldCustomer.getEmail() != null && customer.getEmail() !=
null && oldCustomer.getEmail().equals(customer.getEmail())) {
 txtEmail.setStyle(valid);
 } else if (oldCustomer != null && oldCustomer.getEmail() != customer.getEmail()) {

100

 txtEmail.setStyle(updated);
 } else {
 txtEmail.setStyle(valid);
 }

 } else {
 txtEmail.setStyle(invalid);
 }
 }

 @FXML
 private void txtLandKR(KeyEvent event) {

 if (customer.setLand(txtLand.getText())) {
 if (oldCustomer != null && oldCustomer.getLand() != null && customer.getLand() !=
null && oldCustomer.getLand().equals(customer.getLand())) {
 txtLand.setStyle(valid);
 } else if (oldCustomer != null && oldCustomer.getLand() != customer.getLand()) {
 txtLand.setStyle(updated);
 } else {
 txtLand.setStyle(valid);
 }
 } else {
 txtLand.setStyle(invalid);
 }
 }

 @FXML
 private void txtMobileKR(KeyEvent event) {

 if (customer.setMobile(txtMobile.getText().trim())) {
 if (oldCustomer != null && !customer.getMobile().equals(oldCustomer.getMobile())) {
 txtMobile.setStyle(updated);
 } else {
 txtMobile.setStyle(valid);
 }
 } else {
 txtMobile.setStyle(invalid);
 }
 }
 @FXML
 private void txtNameKR(KeyEvent event) {

 if (customer.setName(txtName.getText().trim())) {
 if (oldCustomer != null && !customer.getName().equals(oldCustomer.getName())) {
 txtName.setStyle(updated);
 } else {
 txtName.setStyle(valid);
 }
 } else {
 txtName.setStyle(invalid);
 }

101

 }

private String getErrors() {
 String errors = "";
 if (customer.getName() == null) {
 errors = errors + "Name \t\tis Invalid\n";
 }
 if (customer.getAddress() == null) {
 errors = errors + "Address \t\tis Invalid\n";
 }
 if (customer.getMobile() == null) {
 errors = errors + "Mobile No. \tis Invalid\n";
 }
 if (txtLand.getText() != null && !customer.setLand(txtLand.getText().trim())) {
 errors = errors + "Land No. \t\tis Invalid\n";
 }
 if (txtEmail.getText() != null && !customer.setEmail(txtEmail.getText().trim())) {
 errors = errors + "Email \t\tis Invalid\n";
 }
 if (customer.getCustomerstatusId() == null) {
 errors = errors + "CustomerStatus \tis Invalid\n";
 }
 return errors;

 }
 private String getUpdates() {
 String updates = "";
 if (oldCustomer != null) {
 if (customer.getName() != null &&
!customer.getName().equals(oldCustomer.getName())) {
 updates = updates + oldCustomer.getName() + " chnaged to " + customer.getName()
+ "\n";
 }
 if (customer.getCustomerstatusId() != null &&
!customer.getCustomerstatusId().equals(oldCustomer.getCustomerstatusId())) {
 updates = updates + oldCustomer.getCustomerstatusId() + " chnaged to " +
customer.getCustomerstatusId() + "\n";
 }

 if (!customer.getAddress().equals(oldCustomer.getAddress())) {
 updates = updates + oldCustomer.getAddress() + " chnaged to " +
customer.getAddress() + "\n";
 }

 if (!(oldCustomer.getLand() != null
 && customer.getLand() != null
 && oldCustomer.getLand().equals(customer.getLand()))) {
 if (oldCustomer.getLand() != customer.getLand()) {
 updates = updates + oldCustomer.getLand()
 + " chnaged to " + customer.getLand() + "\n";
 }

102

 }

 if (!(oldCustomer.getEmail() != null && customer.getEmail() != null &&
oldCustomer.getEmail().equals(customer.getEmail()))) {
 if (oldCustomer.getEmail() != customer.getEmail()) {
 updates = updates + oldCustomer.getEmail() + " chnaged to " +
customer.getEmail() + "\n";
 }
 }

 if (!customer.getMobile().equals(oldCustomer.getMobile())) {
 updates = updates + oldCustomer.getMobile() + " chnaged to " +
customer.getMobile() + "\n";
 }

 }

 return updates;
 }

 private void fillForm() {
 if (tblCustomer.getSelectionModel().getSelectedItem() != null) {
 dissableButtons(false, true, false, false);
 setStyle(valid);
 oldCustomer =
CustomerDao.getById(tblCustomer.getSelectionModel().getSelectedItem().getId());
 customer =
CustomerDao.getById(tblCustomer.getSelectionModel().getSelectedItem().getId());

 txtName.setText(customer.getName());
 txtAddress.setText(customer.getAddress());
 txtMobile.setText(customer.getMobile());
 txtLand.setText(customer.getLand());
 txtEmail.setText(customer.getEmail());
 cmbStatus.getSelectionModel().select(customer.getCustomerstatusId());
 page = pagination.getCurrentPageIndex();
 row = tblCustomer.getSelectionModel().getSelectedIndex();
 }
 }

 @FXML
 private void btnAddAP(ActionEvent event) {

 String errors = getErrors();

 if (errors.isEmpty()) {

 String confermation = "Ara you sure you need to add this Customer with following
details\n "
 + "\nName : \t" + customer.getName()
 + "\nAddress : \t" + customer.getAddress()
 + "\nMobile No : \t" + customer.getMobile()

103

 + "\nLand : \t" + (customer.getLand() == null ? "Not Entered" :
customer.getLand())
 + "\nEmail : \t" + (customer.getEmail() == null ? "Not Entered" :
customer.getEmail())
 + "\nStatus : \t" + customer.getCustomerstatusId().getName();

 Action action = Dialogs.create().title("Confirm Message").masthead("Customer
Add").message(confermation).showConfirm();
 if (action.toString().equals("DialogAction.YES")) {

 try {
 CustomerDao.add(customer);
 Notifications.create().title("Successs").text("Customer " + customer.getName() + "
saved.").position(Pos.TOP_RIGHT).hideAfter(Duration.seconds(5.0)).showInformation();
 loadForm();
 loadTable();
 pagination.setCurrentPageIndex(pagination.getPageCount() - 1);
 tblCustomer.getSelectionModel().select(tblCustomer.getItems().size() - 1);

 } catch (DaoException ex) {
 Notifications.create().title("Un-Successs").text("Customer " + customer.getName()
+ " not saved. \n Try
Again.").position(Pos.TOP_RIGHT).hideAfter(Duration.seconds(5.0)).showInformation();

 }
 }

 } else {

 Dialogs.create().title("Error Message").masthead("Customer Detail
Error").message(errors).showError();

 }
 }

 @FXML
 private void btnClearAP(ActionEvent event) {

 Action action = Dialogs.create().styleClass("dlg").title("Confirm
Message").masthead("Clear Form").message("Are you sure you need to clear the
Form?").showConfirm();

 if (action.toString().equals("DialogAction.YES")) {
 loadForm();
 }
 }

 @FXML
 private void btnUpdateAP(ActionEvent event) {

 String errors = getErrors();

104

 if (errors.isEmpty()) {

 String updates = getUpdates();

 if (!updates.isEmpty()) {

 Action action = Dialogs.create().title("Confirm Message").masthead("Customer
Update").message(updates).showConfirm();
 if (action.toString().equals("DialogAction.YES")) {
 CustomerDao.update(customer);
 Notifications.create().title("Successs").text("Customer " + customer.getName() + "
updated.").position(Pos.TOP_RIGHT).hideAfter(Duration.seconds(5.0)).showInformation();
 loadForm();
 loadTable();
 pagination.setCurrentPageIndex(page);
 tblCustomer.getSelectionModel().select(row);
 }
 } else {
 Dialogs.create().title("Information Message").masthead("Customer
Update").message("Nothing Updated").showWarning();
 }
 } else {
 Dialogs.create().title("Error Message").masthead("Customer
Update").message(getErrors()).showError();

 }
 }
 @FXML
 private void btnDeleteAP(ActionEvent event) {

 if (getUpdates().isEmpty() && getErrors().isEmpty()) {

 Action action = Dialogs.create().title("Customer
Delete").masthead(customer.getName() + " Delete ?").message("Do you need to delete this
customer").showConfirm();

 if (action.toString().equals("DialogAction.YES")) {
 if (!cmbStatus.getSelectionModel().getSelectedItem().equals(new
Customerstatus(1))) {
 CustomerDao.delete(customer);
 Notifications.create().title("Successs").text("Customer " + customer.getName() + "
deleted.").position(Pos.TOP_RIGHT).hideAfter(Duration.seconds(5.0)).showInformation();
 loadForm();
 loadTable();
 pagination.setCurrentPageIndex(page);
 tblCustomer.getSelectionModel().select(row);

 }{
 Dialogs.create().title("Error Message").masthead(" You Can't delete
").message("This is onoing Customer").showError();
 }

105

 }
 } else {
 Dialogs.create().title("Customer Delete").masthead(oldCustomer.getName() + " Delete
?").message("You can't delete\nSome of the fields are updated").showInformation();

 }
 }
 @FXML
 private void tblCustomerMC(MouseEvent event) {
 fillForm();
 }
 @FXML
 private void tblCustomerKR(KeyEvent event) {
 fillForm();
 }
private void updateTable() {

 String name = txtSearchName.getText().trim();
 boolean sname = !name.isEmpty();

 if (!sname) {
 fillTable(CustomerDao.getAll());
 }
 if (sname) {
 fillTable(CustomerDao.getAllByName(name));
 }

 }

 @FXML
 private void txtSearchNameKR(KeyEvent event) {

 updateTable();
 }

 @FXML
 private void btnSearchClearAP(ActionEvent event) {
 Action action = Dialogs.create().title("Confirm Message").masthead("Clear
Form").message("Are you sure you need to clear the Table Search and the
Form?").showConfirm();

 if (action.toString().equals("DialogAction.YES")) {
 loadTable();
 }

 }
//</editor-fold>

}

106

Appendix - G
Client Certificate

107

Glossary

Backup – means keeping a copy of information as an external storage where usually

keep in another central computer or in external disks.

Database - is an organized collection of data for one or more purposes, usually in

digital form.

JVM. - A Java virtual machine is a virtual machine that can execute Java byte code. It

is the code execution component of the Java platform.

JavaFX- is a software platform for creating and delivering rich internet applications

(RIAs are) that can run across a wide variety of devices.

MySQL – One of most popular Database management system can handle big

amount of data related to different types.

Object-relational mapping - is a programming technique for converting data between

incompatible type systems in object-oriented programming languages.

OOAD - Object-oriented analysis and design

POJO - Plain Old Java Object

RUP – Stands for Rational Unified Process. RUP is a framework for Object

Oriented software engineering using UML.

RAD - Rapid Application Development. The user is involved throughout the

development process, which increases the likelihood of user acceptance of the final

implementation.

UI – User Interface User have to operate various user interface.

UML – refers to Unified Modelling Language is a standardized general-purpose

modelling language in the field of object-oriented engineering. This includes a set of

graphic notation techniques to create visual models of object-oriented software

intensive systems.

108

Index

A

able, 2

Accessories, iii

Analysis, x, 13

B

background, 28

base, 12, 45

based, 1

Builder, 28, 36

C

concerned, 12

Cycle, 5

D

development, 5

documentation, 24

documents, 6

E

employer, 2

environment, 26, 27, 30, 57

F

faster, 11

fifty, 1

Flexibility, 24

functional, 5, 26

H

holistic, 13

I

include, 45

information, 16, 34, 57, 66

interface, 3, 36

Interviews, 5

J

Java, 27, 28, 29, 30, 34, 55, 58, 103

K

kinds, 17

L

language, 12, 14, 28, 29, 35, 55

M

management, 7, 11, 12, 103

model, 10, 11, 12, 13, 14, 16, 32, 35

N

normal, 15

O

Object, x, 11, 21, 34, 103

operations, 1

Overall, 10

P

process, 12, 13, 14, 26, 45, 61, 63

project, 12, 13, 27, 28, 30, 45

Q

query, 64, 88

R

recording, iii

relevant, 12, 65, 66, 88

runtime, 58

S

sequence, 3, 10, 13, 23

system, iii, 3, 7, 10, 12, 13, 14, 21, 24, 25, 26, 29, 32, 44,

45, 50, 57, 103

T

technical, 13

techniques, 3, 26

testing, 10, 44, 45, 50, 56

109

U

users, 24, 28, 36, 50, 57

V

various, 10, 30, 50, 103

via, 2

Visual, 12, 30, 56

W

waterfall, 10

