
RESTAURANT MANAGEMENT SYSTEM FOR

NIMANSALA RESTAURANT

T.H.L.C CHANDRATHILAKE

November 2017

i

RESTAURANT MANAGEMENT SYSTEM FOR

NIMANSALA RESTAURANT

T.H.L.C CHANDRATHILAKE

R091541

0915416

Name of the supervisor: Mr. H.J.K.S.C Wijerama

November 2017

This dissertation is submitted in partial fulfillment of the requirement of the Degree of

Bachelor of Information Technology of the University of Colombo School of

Computing

BIT

ii

DECLARATION

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text. I

also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Signature of Candidate: .

Date: 11/08/2017

Name of Candidate: T. H. L. C Chadrathilake

Countersigned by:

Signature of Supervisor(s)/Advisor(s): .

Date: 11/08/2017

Name(s) of Supervisor: H. J. K. C Wijerama

iii

ABSTRACT

Information and Communication Technology is being improved daily to ensure the

quality of Information which has turned out to be one of the most crucial aspects of

nowadays businesses. Nowadays computing devices are equipped with greater

processing power, memory capacity and many other technical capabilities.

Information Systems have been positively affecting many areas of businesses such as

customer service, employee management, accounting and financial control, stock

control and project management etc.

Nimansala Restaurant has been in the business for decades serving the people who live

or travel around the Godagama, Homagama area. Apart from its main business as a

food supplier, this organization provides some other amenities such as reception hall,

liquor bar and it is decided to guest room services be started in near future.

Though the quality of the foods, beverages and other facilities provided by this

company has been in an outstanding level, it has been a great challenge to provide

quicker service for the customers with the current manual processes. It has also

become a challenge to the management when it is needed to access the business

information. With the daily increasing demand, it has become almost impossible to

keep better control of finance and stocks, marketing, customer satisfaction and

business growth while keeping employees not been unwantedly pressurized and

preventing currently available human resources not been expanded superfluously.

Author was asked to analyze, design and develop a web based restaurant management

system to unravel these identified problems and ameliorate the capabilities of the

business. As discussed the implementation been done in few phases. In first phase, the

crucial problems are solved and in following phases, new features are being added to

the system to ameliorate the capabilities, availability and performance.

With the proposed system, it is expected 25% growth of revenue in next financial year

while limiting the customer waiting time to maximum limit of 10 minutes and gain 8:2

ratio of positive and negative customer feedbacks.

iv

ACKNOWLEDGEMENT

This will be considered as my opportunity to thank all the persons who have given a

support to bring this project to this level. Starting from the parents, I would be

privileged to have a mother and a father like them. Without their support, this system

couldn’t have been taken to this level.

I have to give my sincere thanks to my supervisor, Mr. Sahan Wijerama who have

supported me a lot in all the time I require. I should also be thankful to my Sisters for

encouraging me and making my difficult times easier.

I would like to thank my best friends Mr. Sahan Wijerama and Mr. Shanuka Dilshan,

who are also BIT graduates, for helping, guiding, and leading me through the project

and whenever I had difficulties they are the people who gave me a relief and tracked

me back in.

A special thank goes to the current staff members with whom I worked during the

project for their support, and the many questions that they patiently answered while I

went through the manual records. They were always ready and forthcoming with their

suggestions.

v

TABLE OF CONTENTS
DECLARATION .. II

ABSTRACT .. III

ACKNOWLEDGEMENT .. IV

TABLE OF CONTENTS .. V

LIST OF TABLES .. IX

CHAPTER 1 - INTRODUCTION ... 1

1.3 Motivation for the Project ... 2
1.4 Objectives of the Project ... 2
1.5 Scope of the Project .. 3

1.5.1 Scope of The Phase 1 .. 3
1.5.2 Scope of The Phase 2 .. 3

1.6 Outline of the Chapters ... 4
1.6.1 Analysis ... 4
1.6.2 Design ... 4
1.6.3 Implementation ... 4
1.6.4 Testing and Evaluation.. 5
1.6.5 Conclusion .. 5

CHAPTER 2 - ANALYSIS .. 6

2.1 Fact Gathering Techniques ... 6
2.2 Analyzing the current manual system ... 6

2.2.1 Restaurant Operations ... 6
2.2.2 Kitchen Operations ... 7
2.2.3 Stores Management and Procuring ... 7
2.2.4 Reception Hall Management ... 7
2.2.5 Finance and Accounting.. 8
2.2.6 Bar Management ... 8

2.3 Existing similar systems .. 8
2.3.1 Floreant POS - Open source Point Of Sale For Restaurant 8
2.3.2 Samba POS - Restaurant POS Software ... 9

2.4 Functional Requirements .. 11
2.4.1 Managing Common Information .. 11
2.4.2 Stock Management .. 11
2.4.3 Sales and Order Management ... 11

2.5 Non-Functional Requirements .. 12
2.6 Use case diagram for entire system. .. 13

CHAPTER 3 - DESIGN ... 14

3.1 Design Strategy ... 14
3.1.1 Software Development Methodology ... 14
3.1.2 Development Platform .. 16

3.2 Engineering Strategy ... 17
3.2.1 Software Architectural Pattern .. 17
3.2.2 Development Strategy ... 19

vi

3.3 Class Diagram ... 20
3.4 Entity Relationship Diagram ... 21
3.5 User Interface Designing .. 22

3.5.1 Login form .. 22
3.5.2 Simple Master File .. 22
3.5.3 Semi Complex Master File ... 22
3.5.4 Complex Transaction Form .. 23
3.5.5 Master File with Tree Structure .. 23
3.5.6 Mobile Responsiveness ... 23
3.5.7 Report Viewer ... 24

CHAPTER 4 - IMPLEMENTATION .. 25

4.1 Introduction ... 25
4.2 Implementation Environment.. 25
4.3 Technologies and Tools Used ... 26
4.4 Major Code Segments ... 28

4.4.1 Front End Programming.. 28
4.4.2 Server Side Programming ... 31
4.4.3 DB Programming .. 34

CHAPTER 5 – EVALUATION ... 36

5.1 Introduction ... 36
5.1.2 White box Testing ... 36
5.1.3 Black box Testing ... 36

5.2 System Test Cases ... 37
5.2.1 Login Form Test Cases ... 37
5.2.2 User Groups Test Cases .. 38
5.2.3 User Management Test Cases ... 39

CHAPTER 6 - CONCLUSION .. 40

6.1 Introduction ... 40
6.2 Lessons Learnt .. 40
6.3 Critical Assessment of the Project .. 41
6.4 Future Enhancements (Phase 2) .. 42

REFERENCES .. 43

APPENDIX A - SYSTEM DOCUMENTATION .. 44

APPENDIX B - DESIGN DOCUMENTATION .. 56

APPENDIX C - USER DOCUMENTATION .. 61

APPENDIX D - MANAGEMENT REPORTS ... 69

APPENDIX E – TEST RESULTS ... 74

APPENDIX F - CODE LISTING .. 77

APPENDIX G - CLIENT CERTIFICATE .. 90

vii

LIST OF FIGURES
Figure 2-1: Floreant POS .. 8

Figure 2-2: Main Screen of Floreant POS .. 9

Figure 2-3: Samba POS Main Screen ... 10

Figure 2-4: Order Placement and Payment Screens of SambaPOS 10

Figure 2-5: Custom Table Layout of Samba POS .. 11

Figure 2-6: Use case diagram for entire system .. 13

Figure 3-1: Waterfall Model ... 14

Figure 3-2: Agile Development - Scrum .. 15

Figure 3-3: Rapid Application Development .. 15

Figure 3-4: Client Server Architecture ... 17

Figure 3-5: Multilayered Architecture .. 18

Figure 3-6: MVC Architecture .. 18

Figure 3-7: Class Diagram .. 20

Figure 3-8: EER Diagram ... 21

Figure 3-9: Login Form UI ... 22

Figure 3-10: Simple Master File UI .. 22

Figure 3-11:Semi Complex Master File UI .. 22

Figure 3-12: Complex Transaction Form UI .. 23

Figure 3-13: Master File with Tree Structure UI .. 23

Figure 3-14: Responsive UI .. 23

Figure 3-15: Report Viewer UI ... 24

Figure 4-1: Graphics Created .. 27

Figure 4-2: Preview of the Received JSON .. 30

Figure 4-3: Service Response Class Definition .. 30

Figure 4-4: Model Classes .. 31

Figure 4-5: DB Programming Scripts ... 34

Figure A-1: JDK Download .. 44

Figure A-2: JDK Installation .. 45

Figure A-3: JRE download ... 45

Figure A-4 JRE Installation .. 46

Figure A-5: Setting up Environment Variables .. 46

Figure A-6: Path Variable ... 47

Figure A-7: Class path variable .. 48

Figure A-8: Download My SQL ... 48

Figure A-9: MySQL Welcome ... 49

Figure A-10: MySQL Agreement ... 49

Figure A-11: MySQL Setup Screen .. 50

Figure A-12: My SQL Installing ... 50

Figure A-13: MySQL Instance Setup ... 51

Figure A-14: MySQL Configuration Screen .. 51

Figure A-15: My SQL Service Configuration .. 52

Figure A-16: My SQL root account setup .. 52

Figure A-17: MySQL Setup Finalization Screen .. 53

Figure A-18: Download MySQL Work Bench ... 53

Figure A-19: Download Tomcat ... 54

file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573440
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573441
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573442
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573443
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573444
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573459
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573461
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573464
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573465
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573466
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573467
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573468

viii

Figure A-20: Hosting Database File ... 54

Figure B-1: activity diagram for order management module 59

Figure B-2: sequence diagram for order management module 60

Figure C-1: login page .. 61

Figure C-2: Home Page .. 61

Figure C-3: System Configuration Menu ... 62

Figure C-4: User Management Grid ... 62

Figure C-5: New User Form ... 63

Figure C-6: User Configuration Page ... 63

Figure C-7: User Email ... 63

Figure C-8: Location Structure Screen ... 64

Figure C-9: Location Structure Types .. 64

Figure C-10: Location Structure Context Menu ... 64

Figure C-11: Stores Menu ... 65

Figure C-12: Item Batch Form .. 65

Figure C-13: Purchase Order Form ... 66

Figure C-14: Good Receive Note Form .. 66

Figure C-15: Form to Add Item to GRN .. 67

Figure C-16: Direct Purchase Order Screens .. 67

Figure C-17: Manual Stock Adjustment Form ... 68

 Figure C-18: Stock Transfer Form ... 68

Figure D-1: List of Suppliers Report .. 69

Figure D-2: Item List with Total Available Stock .. 69

Figure D-3: Daily Income Report ... 70

Figure D-4: Customer Order Analysis Report .. 71

Figure D-5: Invoice Print .. 71

Figure D-6: Purchase Order Print ... 72

Figure D-7: Goods Receive Note Print ... 72

Figure D-8: Customer Order Analysis Report –Day of the month 72

Figure D-9: Customer Order Analysis Report - Total .. 73

file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573490
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573497
file:///D:/Bachelor%20of%20Technology%20-%20UCSC/BIT%20Project%202017/Important%20Files/BIT%20Documents/Dissertation/0915416%20Restaurant%20Management%20System%20for%20Nimansala%20Restaurant.docx%23_Toc506573498

ix

LIST OF TABLES
Table 5:1 - Login Form Test Cases ... 37

Table 5:2 - User Groups Test Cases ... 38

Table 5:3- User Management Test Case ... 39

1

Chapter 1 - Introduction

1.1 The Client

Nimansala is mainly a Restaurant which provides foods, beverages and liquor. Further,

this business has been providing reception hall facilities and they are planning to

expand the business to provide guest room facilities as well.

1.2 Problem Domain

This business has gained a good customer reputation as they have been maintaining the

quality of their products at an outstanding level. Customer base has grown very fast

during the past decades. As well as the quality, the customers are expecting quicker

service and especially customers are more concerned about First Come First Served

(FCFS) policy.

“First-come, first-served (FCFS) – sometimes first-in, first-served and first-come, first

choice – is a service policy whereby the requests of customers or clients are attended to

in the order that they arrived, without other biases or preferences.” [1]

In order to achieve this, the company need to keep an accurate track of the customer

orders, effectively communicate them to kitchen or bar and as soon the order is ready it

should be delivered to the customer instantly.

When the reception hall operations are managed, the main task is handed over to

kitchen. Kitchen staff should be able to deliver the required number of food portions

(plates) on time.

While these processes should be efficient and accurate, management has to be aware of

the business information timely and efficiently. While the sales are done, it is

necessary to keep track on currently available stocks, their re-order levels, expiry dates

to ensure smooth and proper business flow. In other way, management has to consider

daily income, sales analysis and customer feedbacks for management decisions and

short term/long term business planning.

2

1.3 Motivation for the Project

Nimansala Restaurant is currently operated by a manual system which completely

depends on the capabilities of the staff. Sometimes it takes too long to serve a

customer due to human errors or efficiency issues. Many customers were disappointed

due to violation of FCFS policy.

As author has been informed during the analysis phase, management of this restaurant

faced many difficulties due to lack of information. Cashier balance shortages,

unavailability of ingredients and beverages due to expirations and stock consumptions,

and day end conflicts have been frequent problems of this company.

If this company is aided by a proper Restaurant order management system, it will help

the employees to minimize the human errors and efficiency issues and have an

accurate track of the daily operations. This will help the management to retrieve real-

time information accurately. With the great flexibility that the Information Systems

can offer, it will be a great opportunity to management to find new ways of

understanding the business related information.

1.4 Objectives of the Project

This Information System (IS) project is expected to immediately solve the critical

business problems as the first priority. Eventually, it needs to be improved for new

business capabilities and functionalities with the growth of the company.

Immediate goal of this project was to increase the revenue from 25% by the next

financial year. Also it was expected to achieve 8:2 ratios among the positive and

negative customer feedbacks by reducing the maximum waiting time for a typical

order for maximum of 10 minutes.

Further, it was expected to reduce the employee stress and make any pre-defined

information is available for the management within maximum of 5 minutes.

3

1.5 Scope of the Project

1.5.1 Scope of The Phase 1

This phase will mainly be focused on business problems that need to be resolved

immediately.

1. Managing Common Information

a. Designations

b. Job Categories

c. Staff Information

d. Users and User Permissions

2. Stock Management

a. Units

b. Items

c. Locations

d. Item Batch

e. Suppliers

f. Stock Transfer Notes

g. Direct GRNs

h. Purchase Orders

i. Goods Receive Notes

j. Automated stock reduction records (on sales)

3. Sales and Order Management

a. Restaurant/ Bar Order

b. Reception Hall Reservation and Catering

c. Issue Invoices

d. FCFS Policy Control

e. Customer Information Management

4. Kitchen Management

a. Recipe Maintenance

b. Kitchen Order Processing

c. Kitchen Instructions

1.5.2 Scope of The Phase 2

This phase will be started after the successful implementation of the phase 1. This area

mainly focused on immediate improvements that can be done to existing system and to

the company.

1. Reception Hall and Room Reservations

a. Room Reservation

b. Hall Reservation

c. Room Reservation related order processing

4

d. Online Reservation

2. Sales and Order Management

a. Mobile Application for Waiters

b. Online Orders for take away (home delivery feature will be added in

following phases)

3. Finance Management

a. Accounts

b. Inter Account Transfers

c. Miscellanies Invoices

d. Cash Vouchers

e. Cash Drawer Management

4. Common Functionalities

a. SMS Alerts

b. Advanced Security

c. Mobile Accessibility

1.6 Outline of the Chapters

1.6.1 Analysis

Under this chapter it is discussed how the system analysis have been carried out and

the techniques used. And in this chapter the identified functional and non-functional

requirements are discussed with relevant diagrams.

Further, current manual system and few existing software systems are explained and

advantages and disadvantages will be reviewed.

Selected software development methodologies, technologies and other constraints will

also be discussed in this chapter.

1.6.2 Design

The design of the software system will be comprehensively discussed in this chapter

with the relevant diagrams which illustrate the system functionalities. Also, Identifying

classes, relationships and object lifecycles will be discussed in design chapter.

1.6.3 Implementation

In this chapter, it will be discussed how the actual software system developed and

techniques and technologies used.

5

Further in this chapter it will be discussed how the system is deployed on customer

site, the configurations made and how the system transition has taken place. Required

resources will also be discussed under this chapter. This chapter will have relevant

diagrams to further explain the content.

1.6.4 Testing and Evaluation

In order to make sure the accuracy of the information processed in the system, the

system need to be tested for different combination ions of cases. In this chapter, the

testing techniques, test cases and their results will be discussed.

1.6.5 Conclusion

In this chapter, the actual effect of the proposed system to the business will be

discussed and further, the project will be reviewed in project management view.

Further, a list of lessons learned will be discussed by understanding what went wrong

and what went good. Suggestions will be made and decisions will be discussed to

improve the future phases of same project as well as the other projects.

6

Chapter 2 - Analysis

2.1 Fact Gathering Techniques

This project was started with a meeting between the author and owner of Nimansala

Restaurant. The domain area and the main business requirements have been discussed

in this meeting.

Later, several analysis meetings were held with the client, author and the project

supervisor. Most of the requirements have been identified and prioritized and planned

in these set of meetings.

Further analysis has been done by analyzing the existing document formats, observing

the day to day operations and discussing with users. Most of the non-functional

requirements and some of the functional requirements have been raised by the users.

2.2 Analyzing the current manual system

When the operations of Nimansala Restaurant are analyzed, it was identified that these

operations can be categorized into few areas.

2.2.1 Restaurant Operations

Nimansala Restaurant has the capacity of serving more than 100 people at a time. After

5:00 PM, the bar is also opened and more than 60% of this capacity is occupied on any

given day. On Fridays, Saturdays and proceeding days of a holidays, this restaurant

becomes more busy.

Taking orders and get them delivered to the customer should be done as much as

quickly and following FCFS policy is vital in order to ensure the customer is delighted.

Waiter has to visit the kitchen time to time to check the status of the order. If the waiter

engaged in any other operation, there is no way of communicating which order is ready

and which is not. Due to this communication gap, customer may have to wait

unwantedly even their order is ready and there is a possibility of delivering the order to

a new customer who requested same dish later.

7

2.2.2 Kitchen Operations

When a Kitchen Order is received from the restaurant or the reception hall, kitchen

staff is responsible for delivering the order as quickly as possible while maintaining

the quality of the product in highest level. Since the business is about food, nothing

can be compromised.

Managing orders is an interesting and challenging task. Rather than struggling to

deliver a time consuming order, it is clever to process and complete the quickly

deliverable orders in higher priority even it breaks the FCFS policy. This has to be

decided by overlooking all the orders available, the time estimations and the situational

priorities.

Recording the ingredient consumptions and understanding the available stocks is also

essential in this context.

2.2.3 Stores Management and Procuring

Stocks are the key of this business. Without a proper management of stocks, it is

almost impossible to ensure the smooth run of the business.

When the stocks are consumed, the remaining balances of the stocks should be

recorded and when those balances reach the reorder level, stores manager should place

Purchase Orders to the suppliers. Or buy directly through the DGRN which is a hybrid

version of PO and GRN. If a PO is placed, Goods should be received through

concomitant GRNs.

2.2.4 Reception Hall Management

Reception Hall is Mostly provided free of charge (FOC) with the catering package.

Package will be selected according to the number of plates which is going to serve and

the menu wanted. Apart from that, there are some additional facilities which can be

added to the reservation order. These can be FOC or Chargeable.

On the reserved day, an order should be made to the kitchen according to required

number of plates and the menu. These orders should be ready on time and any delay

will make the customer uncomfortable as it affects the whole agenda.

8

2.2.5 Finance and Accounting

At the end of day, cashier should balance the drawer with the invoice records and add

the drawer collection to the relevant account.

Payments for Procurements should be made and remaining amounts should be banked.

Finance and Account matters are currently handled by the owner of the company, and

it is required to prepare financial and revenue reports monthly, quarterly, bi-annually

and yearly for different purposes such as taxation. These should be highly accurate as

it effects directly to management decisions and inaccurate data may generate deceitful

information which plows the company into unwanted legal problem.

2.2.6 Bar Management

During the bar open hours the orders received from the bar and reception hall should

be delivered and due to nature of this domain, strict customer care is essential to avoid

unwanted warm situations.

Liquor is purchased in different sized bottles and in bulk. Usually liquor is ordered by

bottle size or number of milliliters. These different conditions of same item have

different selling conditions. This nature of business has been challenging always when

keeping an accurate track of stocks.

2.3 Existing similar systems

2.3.1 Floreant POS - Open source Point Of Sale For Restaurant

Figure 2-1: Floreant POS

9

“Floreant POS offers an ideal computer system for dining, restaurant management and

franchise food service. Complete with detailed sales reporting, food cost and labor cost

analysis, it provides intuitive touch screen ordering software for table-service, delivery,

take-out and catering. This software has been released under” [2]

This is a free and open source Standalone System and Runs in Windows, Linux, Mac

and Java supported Tablets. This has mainly focused on restaurant operations such as

table order management, cooking instruction management, and daily sales and cash

management. Shift based pricing can be considered as a valuable feature to manage

happy hours concept.

This system doesn’t have stock management facility and reception hall management

facility. In order to manage those particular areas, this system should be customized

and improved.

2.3.2 Samba POS - Restaurant POS Software

This software also has mostly same features as in Floreant POS. This software is also

windows based and version 4 of this is freely available and this software is open

source. [3]

Figure 2-2: Main Screen of Floreant POS

10

Figure 2-3: Samba POS Main Screen

This software comprehensively manage the restaurant and kitchen operations and the

attractive user interfaces are sleek, modern and user friendly therefore User experience

with this software is in excellent level.

Restaurant table layouts can be customized graphically and it is possible to track the

occupied tables, seats and the orders made by each table separately.

Figure 2-4: Order Placement and Payment Screens of SambaPOS

11

2.4 Functional Requirements

2.4.1 Managing Common Information

1. Designations

2. Job Categories

3. Staff Information

4. Users and User Permissions

2.4.2 Stock Management

1. Units

2. Suppliers

3. Configure Items

a. Item Locations

b. Item Units and Conversions

c. Suppliers

d. Re-Order Level Setups

4. Item Batch

a. Manually Create Item Batch

b. Merge two Item Batches

c. Manual Reconciliations

5. Stock Transfer Notes

6. Purchase Orders (PO)

7. Goods Receive Notes (GRN)

8. Direct Goods Receive Notes (DGRN)

9. Automated stock reduction records (on sales)

2.4.3 Sales and Order Management

1. Restaurant/ Bar Order

2. Reception Hall Reservation and Catering

3. Issue Invoices

4. FCFS Policy Control

5. Kitchen Order Ticket (KOT) Processing

Figure 2-5: Custom Table Layout of Samba POS

12

6. Bar Order Ticket (BOT) Processing

7. Customer Information Management

2.5 Non-Functional Requirements

Online Availability and Real-time accessibility

This system should be accessible through the internet so that the management can view

the business information remotely.

Quality of Information

The information provided by this system should be accurate, flexible, relevant, and

reliable. Complete Information should be retrieved timely in economical way and

should be represented as simply as possible allowing users to verify the reliability.

High security and workflow restrictions

User friendliness and higher performances

13

2.6 Use case diagram for entire system.

Waiter

Take/Deliver
Customer Orders

Placing Kitchen
Order

<<extend>>

Placing Bar
Order

<<extend>>

Stores
Manager

Purchase Stock
Items

Issue Stocks for Other
Departments

Request and Recieve
Stocks Bar Staff

Kitchen Staff

Prepare the Bar Order

Depends On

Update Stock
Records

<<include>>

Manual Stock
Reconcillation

<<include>>

<<include>>

<<include>>

Recieve Goods

Depends On

Depends On

Manager

Make Payments for
Purchasings

Depends On

Prepare Financial
Reports

Prepare the Kitchen
Order

<<include>>

Depends On

Reception Hall
 Coordinator

Manage
Reservations

Coordinate the
Event

Depends On

<<include>>

CashierProcess Payments

Issue Invoice

<<include>>

Figure 2-6: Use case diagram for entire system

14

Chapter 3 - Design

3.1 Design Strategy

3.1.1 Software Development Methodology

When developing a system, a selection of proper development methodology is

essential to ensure the quality of the product and to effectively use the resources.

There are several development methodologies

Waterfall Development Model

Figure 3-1: Waterfall Model

This methodology can be considered as the most basic software development

methodologies. In this the whole software development project is divided in to

typically six phases which are Requirement Analysis, Design, Development, Testing,

Deployment and Maintenance. This methodology Emphasis on documents, time

planning and budget planning.

In this methodology, it is not possible to deliver a tangible product to the customer

until end of the project as this methodology does not allow customer to interact after

the requirement analysis phase. Tight control over the tasks has to be maintained as

this methodology may easily lead the project to fail.

15

Agile Development Methodologies

Figure 3-2: Agile Development - Scrum

Agile development is a software development methodology in which, requirements

and the software solutions progress through sprints.

There are several agile development methodologies such as Kanban, Dynamic systems

Development Method (DSDM) and Scrum which is the mostly used methodology.

Agile teams are adaptive planning and evolutionary development. It encourages rapid

and flexible response to change. This methodology assures the early delivery of

product and continuous improvements are encouraged.

To make this methodology successful, collaborative work of several cross-functional

teams is obligatory.

Rapid application development

Figure 3-3: Rapid Application Development

16

Rapid Application Development also known as James Martin's approach to rapid

development, is widely used among the smaller and mid-scale software development

projects as this methodology facilitates high quality developments to be delivered fast

and cost effectively.

This methodology depends on iterative development concept where involvement of

users is offered in analyze and test the each iteration. Therefore this methodology does

not require highly experienced development staff like in waterfall methodology to well

understand the user requirements.

For this project RAD have been chosen as the best suitable development methodology

by considering the capacity of development, project scope and nature of requirements.

3.1.2 Development Platform

When developing software, it is essential to identify the development platform, before

defining the architecture and the development technologies. Depending on

development platform, the capabilities of the system may fluctuate.

Standalone PC Application

This type of software applications have been from the beginning of the software era

before any other application type. Rather than the resident computer hardware,

software and configurations, mostly no any other dependency effected for this kind of

applications. Higher control over the hardware is core advantage in scenarios like

manufacturing equipment handling.

These applications are been abandoned presently due to lack of mobility and difficulty

of maintenance. But in some cases, these applications are yet more suitable.

Mobile Applications

Mobile technologies have been evolving rapidly from a device which only facilitate for

making calls, to a device which powered by higher computing capabilities and other

modern technologies such as super-fast internet, interactive maps, Global Positioning

System (GPS) and High resolution camera.

Mobile applications developers may use one or more of these capabilities and

conglomerate them creatively to deliver new level of services. There are several

17

mobile platforms popularly used and Apple IOS, Android and Windows Mobile are

some of them.

In order to implement a multi user application on mobile platform, it is needed to host

a web server as the central communication point.

Web Based Applications

Web based applications have been in the industry for few decades now and the

technologies have been evolving rapidly to ensure security, user friendliness, ease of

development and higher performances of the system.

With all the capabilities of standalone applications, these application support mobility

in highest level. Same web application can be accessed from almost all devices such as

computers, mobile tabs and mobile phones because of Responsive user interface

design technology. These applications are compatible with most PC and Mobile

operating systems which is identified as a challenge in both mobile applications and

standalone applications.

According to requirement of Nimansala Restaurant, Web Based Application have been

selected as most suitable approach as both other approaches are either incompetent or

time consuming and costly.

3.2 Engineering Strategy

3.2.1 Software Architectural Pattern

Client–Server model

Figure 3-4: Client Server Architecture

This architecture isolates the software system into two portions client and server, in

which the client makes requests to the server. Databases and Business logic resides in

18

server in most scenarios while the presentation logic and other data manipulations are

accommodated in client application.

Multilayered architecture

Figure 3-5: Multilayered Architecture

In Multilayered architecture, related functionalities are grouped and identified as

distinct layers. Interactions among the layers are clear and loosely coupled. This

layering benefits a great level of flexibility and maintainability.

Model-View-Controller (MVC)

Figure 3-6: MVC Architecture

This architecture is widely used in modern software systems as this supports object

oriented concepts well. This can be considered as inherited from both above

architectures. Most of modern technologies such as software development frameworks

are based on this. This architecture supports enhancement of any component without

affecting the rest.

19

This architecture has been selected for this project as it is simple architecture which

supports object oriented development as well.

3.2.2 Development Strategy

As the architecture, platform and architectural pattern have been selected, it was

decided to develop the software system from the scratch as open source software’s

may not comply all these aspects.

20

3.3 Class Diagram

Staff

BarStaff

StoresCleark

KitchenStaff

Waiter

ReceptionHallCoordina
tor

Manager

UserGroup

User

Invoice

KitchenOrderTicket

BarOrderTicket

InvoiceItem

BarOrderItem

RestaurantOrderItem

Reservation

ItemSale

Customer

Location

Unit

ItemBatch

UnitConversion

Recepe

Item

ServiceItem

SalesItem

IngrediantItem

RecepeItem

Stock

Supplier

StockTransferNote

DirectGRN

PurchaseOrder

GoodsReceiveNote

Cashier

Figure 3-7: Class Diagram

21

3.4 Entity Relationship Diagram

Figure 3-8: EER Diagram

22

3.5 User Interface Designing

3.5.1 Login form

Figure 3-9: Login Form UI

3.5.2 Simple Master File

Figure 3-10: Simple Master File UI

3.5.3 Semi Complex Master File

Figure 3-11:Semi Complex Master File UI

23

3.5.4 Complex Transaction Form

Figure 3-12: Complex Transaction Form UI

3.5.5 Master File with Tree Structure

Figure 3-13: Master File with Tree Structure UI

3.5.6 Mobile Responsiveness

Figure 3-14: Responsive UI

24

3.5.7 Report Viewer

Figure 3-15: Report Viewer UI

25

s

Chapter 4 - Implementation

4.1 Introduction

As the system has been developed using prototypes, implementation stage has

been started before completing the analysis phase. After the completion of design

stage, implementation has been accelerated and most of the back-end programming has

been done this duration.

 In order to make the system look attractive and user friendly, some re-usable

front end libraries have been used including bootstrap and JQuery. This has

significantly reduced the development time of the system. as it was decided to base

this system on MVC architecture, JSON technology have been used in order to bring

the MVC touch to the front end as well. Most of functionalities are based on AJAX,

which allowed the system to minimize the amount of data transferred back and forth.

4.2 Implementation Environment

The implementation environment has to be powerful enough to quickly

compile the source code in order to speed up the development process. The

environment used for this project had following configurations.

Hardware Specification

Processor : Intel Core i3 2.30 GHz

RAM : 8GB

Hard Disk : 500GB

Software Specification

Operating System : Microsoft Windows 8.0

 Virtual Machines : JAVA 1.8 VM

 Database Servers : MySQL 5.6

 Web Servers : Apache Tomcat 7.0

26

4.3 Technologies and Tools Used

JAVA

 Java is a very powerful matured programming language which has the ability to

run in different platforms such as web, standalone, embedded and mobile. Java is a

lightweight programming language which encourages the object oriented

programming.

JAVA EE

 Java EE is an implementation of JAVA, specially designed to have HTTP and

web system capabilities.

My SQL

 My SQL is the most popular free and open source database management

system available in the industry. Though MySQL is equipped with the basic features of

a typical database management system, still is capable enough for many general

business solutions.

STS (Spring Tool Suite) IDE

 This is a modern IDE which has many build in language capabilities. This IDE

is based on eclipse platform and can be considered as a much user friendly

environment to develop JAVA based systems.

My SQL Work Bench

 My SQL workbench is the official GUI tool to manage MY SQL databases. It

consists of the diagraming capabilities as well. The table structure has been designed

by using this feature and ability to reverse and forward engineer the design, is the

major advantage of this tool.

JAVA Script

 Java Scripts client side is a web programming language which plays a major

role in modern systems to make them look better and perform efficiently. As java

scripts are amazingly light weight and runs on web browser, JavaScript are used to

perform most of the calculations in order to reduce the server load.

27

JQuery

 JQuery is a java script based framework which made java script capabilities

easy to access. There are many pre written methods and components which can be

used to minimized the programming effort while extending the capabilities of the

developed software.

Bootstrap

 Bootstrap is a CSS and Java Script based front end framework mainly focused

on User interface and user experience management. Like in JQuery, there are many

bootstrap based components available freely so that they can be used to improve the

user experience of the system.

AJAX

 AJAX stands for asynchronous java script and xml. It enables the web pages to

communicate with the servers in background and make the necessary changed in the

interfaces depending on the data received. This makes the information secure and

emphasizes the efficiency by reducing the data transferred.

JSON and GSON

 JSON is a data transfer standard and used to transfer data from backend to front

end in an organized manner. GSON is a java library developed by Google which has

the capability of converting the Java Objects in to JSON Strings as it is. This enables

the front end java script to access the Objects, same way like in Java End.

Microsoft Power Point and Picture Manager

 Though these are not much capable graphic designing tools, capable enough for

some decent graphics be created. Following are some graphics created using these two

tools.

Figure 4-1: Graphics Created

28

4.4 Major Code Segments

Almost all the types of programming have been used in this system. These can

be categorized mainly as Front end, Server Side and DB programming.

4.4.1 Front End Programming

Most of the functionalities have been handled in client end to reduce the load of

the Server. For an Example Data Table Generation have been developed as a re-

useable java script method which add all the capabilities in to all grids in the system.

All data grids of the system have pagination, and real time search facilities.

// Data table

function addColumns(colList,dataTableId) {
 refLoaded = false;
 var columns = '<thead><tr>';
 for (var i = 0; i < colList.length; i++) {
 columns += '<th style="width:auto;padding: 0px;margin:
0px">'
 + colList[i] + '</th>';
 }
 columns += '</tr><tr>';
 for (var i = 0; i < colList.length; i++) {
 columns += '<td style="width:auto;padding: 0px;margin:
0px">'
 + colList[i] + '</td>';
 }
 columns += '</tr></thead><tbody></tbody>';
 $(dataTableId).html(columns);
}

function loadTable(PageDetails) {
 var dataId = PageDetails[0];
 var dataTableId = '#' + dataId;
 var sAjaxSource = PageDetails[1];
 var colList = PageDetails[2];
 refLoaded = false;
 addColumns(colList,dataTableId);
 var DataTable = $(dataTableId).dataTable({
 bSort : true,
 "sPaginationType" : "full_numbers",
 "bProcessing" : true,
 "bAutoWidth" : false,
 "bServerSide" : true,
 "sAjaxSource" : sAjaxSource
 });
 // Setup - add a text input to each footer cell
 $(dataTableId + ' thead th')
 .each(
 function() {
 var title = $(dataTableId + ' thead
th').eq(

29

 $(this).index()).text();
 if (title === "Image" || title ===
"Photo"
 || title === "Photos" || title
=== "Icon"|| title === "Images"|| title === "File" || title === "Related"||
title === "") {
 $(this).html("");
 } else if (title === "Actions") {
 $(this).html('<a type="button"
class="btn btn-warning btn-sm" style="float:right"
onclick="reloadTable('+dataId+')"><i class="fa fa-refresh"></i>
Refresh');
 } else {
 $(this)
 .html(
 '<input type="text" class="form-
control" placeholder="Search by '+ title'" id ='+ dataId+ $(this).index()
 + ' onkeyup="tableSearch(event,\''+ dataTableId+
$(this).index() + '\','+ $(this).index() + ','+dataId+')" />');
 }
 });

var html = '';
 $(dataTableId + '_filter').html(html);
 return DataTable;
}

function tableSearch(event, id, index,DataTable) {
 refLoaded = false;
 DataTable.fnFilter($(id).val(), index);
}

function reloadTable(DataTable) {
 refLoaded = false;
 DataTable.fnDraw(true);
 // DataTable.fnStandingRedraw();
}

In order to validate and submit forms, flowing code segment have been re used.

 function validateAndSubmit(form, url, successFunction, failedFunction) {
 $(form).data('bootstrapValidator').validate();
 var isValid = $(form).data('bootstrapValidator').isValid();
 if (isValid) {
 $.post(url,$(form).serializeArray()).done(function(data) {
 console.log(data);
 successFunction(data);
 });
 }
}

All responses have been unified by wrapping the requested information inside a

common object called server response.

30

The JSON generated from this, carries Meta information about the request. Any error

messages, status and the requested data are inside this object.

Figure 4-2: Preview of the Received JSON

Figure 4-3: Service Response Class Definition

31

This response is interpreted in java script

function nodeSelected(node){
 resetForm();
 $.post("/Gimanhala/Location", {
 action : "single",
 id : companyDiv_cleanId(node.id)
 }).done(function(serverResponse) {
 if(!serverResponse.success){

 showMessage(serverResponse.messageType,serverResponse.messageHeading,
serverResponse.message);
 }else{

 $("#locationType").val(serverResponse.object.locationType.id);
 $("#category").val($('option:selected',
$("#locationType")).attr("category"));

 $("#locationType").val(serverResponse.object.locationType.id);
 $("#action").val("edit");
 $("#parent").val(serverResponse.object.parent);
 $("#key").val(serverResponse.object.id);
 $("#name").val(serverResponse.object.name);

 }
 });
}

4.4.2 Server Side Programming

At Server Side, Object Oriented Programming have been Implemented.

In order to process Jasper Reports, a Common Platform have been created

protected void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 Map parameters = HTMLUtils.getAllParams(request);

Figure 4-4: Model Classes

32

 String userName= "unauth";
 boolean authFailed = true;
 try {
 User user = (User)
request.getSession().getAttribute("user");
 if (user != null) {
 authFailed = false;
 userName= user.getUserName();

 }
 } catch (Exception ex) {
 ex.printStackTrace();
 authFailed = false;
 }

 if (authFailed) {
 String nextJSP = "/error.jsp?number=401";
 RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(nextJSP);
 dispatcher.forward(request, response);
 return;
 }
 parameters.put("userName",userName);
 System.out.println(userName);
 fileName = parameters.get("fileName")+" "+userName+"
"+Format.TimetoText(new Date());
 try {
 String path =
getServletContext().getRealPath("/reportfiles/" +
parameters.get("reportName"));
 System.out.println(path);

 JasperPrint jasperPrint =
ReportService.getJasperPrint(parameters, path);

 String outPut = "" + parameters.get("outPut");

 if (outPut.equals("PDFV")) {
 givePDFOutPut(parameters.get("displayName"),
response, jasperPrint);
 }else if (outPut.equals("PDFD")) {
 givePDFDOutPut(parameters.get("displayName"),
response, jasperPrint);
 }else if (outPut.equals("EXCELXD")) {
 giveExcelXOutPut(parameters.get("displayName"),
response, jasperPrint);
 }else if (outPut.equals("EXCELD")) {
 giveExcelOutPut(parameters.get("displayName"),
response, jasperPrint);
 }else if (outPut.equals("TEXT")) {
 giveTextOutPut(parameters.get("displayName"),
response, jasperPrint);
 }else if (outPut.equals("WORD")) {
 giveWordOutPut(parameters.get("displayName"),
response, jasperPrint);
 }

 // response.setHeader("Content-Disposition","inline;
filename=Here

33

 // is the Amazing PDF");

 } catch (Exception e) {
 e.printStackTrace();
 String nextJSP = "/error.jsp?number=505";
 RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(nextJSP);
 dispatcher.forward(request, response);
 }

 }

HTML form for Report parameters

<div class="row">
 <div class="col-md-12">
 <form id="form" action="/Gimanhala/Reports" class="form-
horizontal" target="reportViewer" method="post" onended="iframeLoaded()">

 <input id="reportName" type="hidden"
name="reportName" value="SupplierList.jrxml">
 <input id="fileName" type="hidden"
name="fileName" value="Supplier List">

 <div class="col-md-12" >
 <div class="col-md-6" ></div>
 <div class="col-md-3" >
 <div class="form-group" style="float:
right;">
 <select id="outPut" name
="outPut" class="form-control" placeholder="Select Type" >
 <optgroup label="PDF">
 <option
value="PDFV" selected><i class="fa fa-file-pdf"></i> View as PDF</option>
 <option
value="PDFD" ><i class="fa fa-file-pdf"></i> Download PDF </option>
 </optgroup>
 <optgroup
label="Excel">
 <option
value="EXCELXD"><i class="fa fa-file-excel"></i> Download Excel
2007</option>
 <option
value="EXCELD"><i class="fa fa-file-excel"></i> Download Excel</option>
 </optgroup>
 <optgroup label="Word"
class="fa fa-file-pdf-o">
 <option
value="WORD"><i class="fa fa-file-pdf-o"></i> Download Word 2007</option>
 <option
value="TEXT"><i class="fa fa-file-pdf"></i> Download Text</option>
 </optgroup>

 </select>

34

 </div>
 </div>
 <div class="col-md-3" >
 <button id="btnReset" class="btn btn-
success" type="reset" onclick="resetForm()" style="float: right;
display:none;"><i class="fa fa-refresh"></i></button>
 <button id="btnShowReport" class="btn
btn-info" type="submit" onclick="submitForm()" style="float:
right;">Generate Report</button>
 </div>

 </div>
 </form>

 </div>

Whatever the input boxes mentioned in this form will be directly mapped in to

jasper report as a parameter. So that reports can be hosted by considering only the

jasper report and the html form. No middle codes are needed.

4.4.3 DB Programming

DB Program scripts have the capability of accessing the database quickly and

manipulate quickly before sent to the application. This has also been used to reduce

un-wanted effort of application.

 Figure 4-5: DB Programming Scripts

35

36

Chapter 5 – Evaluation

5.1 Introduction

 After developing a software system, it is needed to test that software system to

make sure it is working as expected. Simply this is the definition of software system

testing. But it covers a wider area in practical situations. System Testing can be

classified under two different types. Those are Black box Testing and White box

Testing.

5.1.2 White box Testing

In this mode of testing, the system tester is totally aware of the internal

functionality and behavior of the system. In this kind of a testing it can be assured that

the expected aspects of the system are fully working.

5.1.3 Black box Testing

In Black box testing, the tester should be or should pretend to be totally unaware of the

internal functionality of the system. All possible inputs are tested on the system to

make sure the system is not doing following things

 Accepting Invalid/Wrong/Erroneous Inputs from user.

 Reacting for unknown commands

 Produce wrong information

 Damage/ delete old data

When discussing about testing, there are some things which needs to be taken in to

consideration.

Test Cases

Test cases are written to make sure all aspects of a system are tested. Usually in these

cases it is included way of testing and expected result for each activity of a system

37

Unit Testing

When a system is loosely coupled and highly cohesive, components can be tested

individually to make sure that they are working as expected. This enables the tester to

focus on each component and test.

Integration Testing

When the Unit testing is completed, the inter connection of modules are tested under

integration testing. This can clearly identify the confliction between modules and make

sure the modules are communicating properly.

System Testing

Finally Whole system is considered as one unit and tested for overall functionality.

This assures that the system is well inter-connected and working fine.

5.2 System Test Cases

5.2.1 Login Form Test Cases

Table 5-1: Login Form Test Cases

Login Form

Condition Expected Result Tested Ok

Login with an Empty Username Relevant Message and Return Yes Yes

Empty Password Relevant Message and Return Yes Yes

Wrong Username Relevant Message and Return Yes Yes

SQL Injection Try Relevant Message and Return Yes Yes

Wrong Password Relevant Message and Return Yes Yes

Unknown Errors Relevant Message and Return Yes Yes

Correct Credentials and Inactive User Relevant Message and Return Yes Yes

Correct Credentials and Active User

Relevant Message Successful

Login Yes Yes

Hit Enter Key in User Name Focus to Password Yes Yes

Hit Enter Key in Password Login Yes Yes

Click Login Button Login Yes Yes

Successful Login Enable Relevant Links Yes Yes

38

5.2.2 User Groups Test Cases

User Groups

Condition Expected Result Tested Ok

Insert/Update Action Without Group Name

Relevant Message and

Return Yes Yes

Insert/Update Action With a Valid Group Name Continue Action Yes Yes

Insert/Update Action With an Existing Group

Name

Relevant Message and

Return Yes Yes

Insert/Update DB Error

Relevant Message and

Return Yes Yes

User Groups - Links to Other Forms

Condition Expected Result Tested Ok

Not Having View Rights of Access Control Form

Disable Access Control

Button Yes Yes

Having View Rights of Access Control Form Enable Access Control Button Yes Yes

 Table 5-2 : User Groups Test Cases

39

5.2.3 User Management Test Cases

User Management

Condition Expected Result Tested Ok

Insert/Update Action Without User Name Relevant Message and Return yes yes

Insert/Update Action With a Valid User Name Continue Action yes yes

Insert/Update Action With An Existing User

Name Relevant Message and Return yes yes

Insert/Update DB Error Relevant Message and Return yes yes

Insert without Typing Password Relevant Message and Return yes yes

Insert without Retyping Password Relevant Message and Return yes yes

Password and Retyped Password Not Matching Relevant Message and Return yes yes

Entering User Details Successfully Continue Saving Action yes yes

Update Without entering Password Update only the other details yes yes

Update with Password Validate Password and Save yes yes

Attempting to Activate/Deactivate Without

Selecting User Relevant Message and Return yes yes

Attempting to Activate/Deactivate After

Selecting User

Continue

Activating/Deactivation Process yes yes

Attempting to View Personal Details Without

Selecting User Relevant Message and Return yes yes

Attempting to View Personal Details After

Selecting User

Continue

Activating/Deactivation Process yes yes

Attempting to Control Access Without Selecting

User Relevant Message and Return yes yes

Attempting to Control Access After Selecting

User

Continue

Activating/Deactivation Process yes yes

Showing Details Password Fields Empty yes yes

Showing Details Show Data in Relevant Fields yes yes

Showing Details Select User Group in Combo yes yes

Attempting to Insert/Update without selecting

user group Relevant Message and Return yes yes

Attempting to Insert/Update with a Valid user

group Continue Saving Action yes yes

Click on Refresh Group Button Reload User Groups Combo yes yes

User Management - Special Activities

Condition Expected Result Tested Ok

Not Having Rights to Activate User Disable Activation Button Yes Yes

Having Rights to Activate User Enable Activation Button Yes Yes

Table 5-3: User Management Test Case

40

Chapter 6 - Conclusion
6.1 Introduction

This project has been a great opportunity to gain the live experience of

developing a software system to an actual client with requirements of solutions for real

business problems. In this chapter it is expected to discuss the experience of the

completed phase, the plan for future enhancements and developments and the lessons

learned.

 Restaurant and Inventory management systems are two types of systems that

have been IT industry for decades. These systems have powered many food and

hospitality suppliers and especially most of the organizations are equipped with an

inventory control system. It is observed that most systems available in the market are

either highly expensive or are not having the flexibility of incorporating these two

main functionalities with various other functionalities such as accounts, human capital

management etc.

 As the first phase, the mission critical functionalities of Nimansala Restaurant

have been addressed and the second phase which include the enhancements and

functionalities that have less priority, have been started. During the second phase,

reception hall management, room reservation functionality and accounts functionalities

are expected to be addressed. Further, many none functional requirements are expected

to be incorporated with the system within the second phase.

6.2 Lessons Learnt

As the Software systems are intangible, it is not easy to make the client

imagine the actual system and suggest the needed changes. In this project, prototype

based development approach has been incorporated, and it helped the customer to

visualize the system and map it in to own business requirement. There have been some

tiny points that turned the whole system design around by 360 degrees. The

relationships between the classes have been redefined by some requirement changes.

 It was identified as more effective to build the basic data structure and

relationships first and add the additional features later. So that the flow of data is much

clear and the enhancements have specific scope and goals.

41

It is important to identify the whole requirement and separate into phases depending on

the priority so that each phase has a usable delivery. This helps to control the project

and smoothly build the solution.

The system requirement identification can be simplified by using correct OOAD

(object oriented analysis and designing) techniques, standard conventions and by

making the modules highly cohesive and loosely coupled.

6.3 Critical Assessment of the Project

This system has been built more tailor made for the customer requirement while

maintaining the usability for general scenarios as well. Initially two existing similar

systems, Floreant POS and Samba POS have been identified to compete with this

solution.

This system has been built with more capabilities than these systems, though it has

been identified that there should be much improvements user experience wise when

compared to these two commercial systems. Samba POS provided more graphical

table arrangement and though the backend, data structure and UI of Gimanhala has

way more capability of handling scenarios, it can be better presented to the user so that

users get more understanding about the location arrangement.

Location wise stock management was a key feature of Gimanhala system which was

not been addressed in other two systems. The reports of the Gimanhala came out to be

eye catching and easy to understand and that can be considered as a definite advantage

of this system from the management users point of view.

Though there are no P0 and P1 level bugs found in Gimanhala System, It need to be

improved quality wise. Especially, the scope of validation should be improved

compared to two other systems.

42

6.4 Future Enhancements (Phase 2)

 Reception Hall and Room Reservations

o Room Reservation

o Hall Reservation

o Room Reservation related order processing

o Online Reservation

 Sales and Order Management

o Mobile Application for Waiters/Stuarts

o Online Orders for take away (home delivery feature will be added in

following phases)

 Finance Management

o Accounts

o Inter Account Transfers

o Miscellanies Invoices

o Cash Vouchers

o Cash Drawer Management

 Common Functionalities

o SMS Alerts

o Advanced Security

o Mobile Accessibility

43

References

[1] Wikipedia, "First-come, first-served," [Online]. Available:

https://en.wikipedia.org/wiki/First-come,_first-served.

[2] Floreant POS, "Floreant POS - Screen Shots," [Online]. Available:

http://www.floreantpos.org/screenshots/.

[3] SambaPOS, "Free Restaurant POS Software - SambaPOS," SambaPOS, [Online].

Available: https://sambapos.com/.

44

Figure A-1: JDK Download

Appendix A - System Documentation

In this chapter, the technical information about the system is discussed. The procedures

to Set-Up the Development Environment and Production Environment are explained.

This project is mainly based on Java EE technologies and other popular front end web

technologies like CSS, JQuery and Boostrap etc. STS IDE has been used as the

development environment. In order to modify the source, the development

environment needs to be set up properly.

Development Environment Specification

Processor: Intel Core i3 2.30 GHz

RAM: 8GB

Hard Disk: 500GB

Operating System: Microsoft Windows 8.0

Setting up the Development Environment

In order to modify and compile the code, Java development kit (JDK) has to be

installed and configured. For running the system in production environment, it is

sufficient to install Java run time environment (JRE) and it is advised to avoid

installing JDK on production environment to avoid any security issues.

1. Download and Install JDK and/or JRE.

45

Figure A-2: JDK Installation

Figure A-3: JRE download

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html

After completing the JDK installation, JRE setup will be started automatically. Java

RE need to be downloaded from Java website for those who wish avoid JDK

installation for production environments.

http://www.java.com/en/download/win8.jsp

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.java.com/en/download/win8.jsp

46

Figure A-4 JRE Installation

Create the JAVA_HOME, Path and CLASSPATH Environment Variables in Windows

Figure A-5: Setting up Environment Variables

Now it is needed to setup windows environmental variables to work Java properly.

Right click on the “My Computer” icon. Then select properties on the left side

menu click “Advanced system settings”.

47

System Properties window will be opened. Select “Advanced” tab and click

“Environment Variables” button situated on the right bottom corner. (Figure A.7)

Figure A-6: Path Variable

Find the “Path” variable from the System variables table and press edit button.

Afterwards it will be opened a dialog box with two inputs called “Edit System

variable”

48

Click on the text in “variable value” input field and press key board “End” button to go

end of the text. Now you should put semicolon (;) to end of the text.

Then go to the installation folder of java and copy path of the bin folder in the JDK

1.7.0 folder. Put this path to after the semicolon and add another semicolon to end of

the path. Now click “Ok” button to set the path. (Figure A.8)

Figure A-7: Class path variable

Next click the “New” button and put the variable name as “CLASPATH”. Insert the

path of “java\jre7\lib” as variable value and put semicolon and full stop to end of the

path and click “Ok” and “Ok” to completing configuration of java. (Figure A.9)

1. Install MySQL

Download MySQL Server from oracle web site.

Figure A-8: Download My SQL

 The welcome screen as follows.

49

Figure A-9: MySQL Welcome

Select I accept and click next button

Figure A-10: MySQL Agreement

Select “Complete” button and click Next button for custom setting.

50

 Figure A-11: MySQL Setup Screen

 Click “Install” button on the next window and you will see installing MySQL

server on the server computer. After installation completed, click “Finish” button

Figure A-12: My SQL Installing

Afterwards MySQL configuration setup will be loaded for configure install MySQL

server.

51

Figure A-13: MySQL Instance Setup

Select “Standard configuration” from next window and click “Next” for proceed

configuration.

Figure A-14: MySQL Configuration Screen

You must tick all of option in the “Windows Option” window and click “Next” button

52

Figure A-15: My SQL Service Configuration

Enter root user password two times and click “Next”

Figure A-16: My SQL root account setup

Step 8

Click “Execute” button. You will see MySQL setup is processing your configuration.

53

Then click “Finish” to complete.

Figure A-17: MySQL Setup Finalization Screen

2. Install MySQL Workbench

Download and install MySQL workbench from oracle website.

Figure A-18: Download MySQL Work Bench

3. Install Tomcat server

Download apache tomcat files from apache website and unzip it.

Go to unzipped folder and run startup.bat file in bin folder.

54

Figure A-19: Download Tomcat

4. Host DB in MySQL Server

Restore the given backup to gimanhala database of MySQL Server using

MySQL Workbench.

Figure A-20: Hosting Database File

5. Host Application in Tomcat Server

Copy the given .War file to webapps folder of tomcat directory. And restart the

tomcat server

55

Minimum Hardware and software Requirements

Hardware requirements – For Server

 2.8 Dual Core GHz processor or higher

 1GB RAM

 50GB free HDD space

 General Key board and Mouse

 Internet Modem/Router with Internet Connection

Hardware requirements – For Client PC

 2.0 GHz processor or higher

 512MB RAM

 General Key board and Mouse

 Internet Modem/Router with Internet Connection

 Printer

Software requirements – For Server

 MS Window Server or Linux Server OS.

 Java Runtime Environment 1.7 or higher

 MySQL 5.5 or higher

 Apache Tomcat Server

Software requirements – For Client PC

1. MS Window, Mac or Linux PC OS.

2. Google Chrome Web Browser

56

Appendix B - Design Documentation

USE CASE Narratives

 Login

User

Login

Gimanhala System

Validate UserAllow/Deny Access

Detect Securuty Threat

Identify User

<<include>><<include>>

Use Case Name Login

Objective Initialize login process of user

Pre-Condition User Enters Username and Password

Condition On Success Redirect to Home Page

Condition On Failure Show Relevant Error Message

Main Scenario User clicks on login button. Then the system will get the

user credentials and send it for verification

Use Case Name Detect Security Threat

Objective Identify security attacks and prevent the system from

security threats

Pre-Condition User try Brute force or SQL Injection Attack

Condition On Success Show Message and Block access

Condition On Failure Reload the page

Main Scenario System identify above attacks separately and takes

necessary actions

Use Case Name Identify User

Objective Recognize User and Allow /Deny Access

Pre-Condition User try to login

Condition On Success Grant Access to user

Condition On Failure Deny Access for user

Main Scenario Check the validity of username and password

Check the availability of user

Match the password

57

Check the privileges

Allow /Deny System Functionalities

Showing Relevant Messages

Process Login

Use Case Name Allow/Deny Access

Objective Allow users to perform actions which are assigned and

deny user from other activities

Pre-Condition User attempts to login

Condition On Success Enable Functionality

Condition On Failure Disable Functionality

Main Scenario Read User Privileges from Database

Enable/Disable Links

Allow/Deny in user activities

Use Case Name Validate User

Objective Make sure the Validity of the user

Pre-Condition User attempts to login

Condition On Success Login User

Condition On Failure Redirect to login

Main Scenario Check username and password

Encrypt Username and Password

Check User Availability

Check password

Check User Status

Check User Group Status

58

User

Create User Groups

Create Users

View User Groups

View Users

Delete User Groups

Edit User Groups

Access Control

Delete Users

Edit Users

View Privileges

Grant / Deny Privileges

<<extend>>

<<extend>>

View User Activity History

Use Case Name User management

Objective Identify the correct user

Pre-Condition System access given

Condition On Success login

Condition On Failure Login blocked

Main Scenario Checking the authorization

Waiter

Take/Deliver
Customer Orders

Placing Kitchen
Order

<<extend>>

Placing Bar
Order

<<extend>>

Stores
Manager

Purchase
Stock Items

Issue Stocks for Other
Departments

Request and
Recieve Stocks Bar Staff

Kitchen Staff

Prepare the Bar
Order

Depends On

Update Stock
Records

<<include>>

Manual Stock
Reconcillation

<<include>>

<<include>>

<<include>>

Recieve Goods

Depends On

Depends On

Manager

Make Payments
for Purchasings

Depends On

Prepare Financial
Reports

Prepare the Kitchen
Order

<<include>>

Depends On

Reception Hall
 Coordinator

Manage
Reservations

Coordinate the
Event

Depends On

<<include>>

CashierProcess Payments

Issue Invoice
<<include>>

Use Case Name Order management

Objective Identify / verify each business process

Pre-Condition User rights given

59

Condition On Success Next activity loaded

Condition On Failure Error message shown

Main Scenario Processing order

Activity Diagram for Order Management Module

Figure B.1 below depicts the activity diagram for order management module for

Gimanhala.

Figure B-1: activity diagram for order management module

60

Sequence Diagram for Order Management Module

Figure B.2 below depicts the activity diagram for order management module for

Gimanhala.

 Figure B-2: sequence diagram for order management module

61

Appendix C - User Documentation

Getting Started

Enter the given URL in web browser and following login page will be shown

Figure C-1: login page

As the user name entered, system will validate the user. When entered after typing the

password, the system will validate the credentials and login to the system if successful

Figure C-2: Home Page

 Menu is placed in left side, which has mainly 5 areas.

System configuration area has links to setup user groups, users, access rights, company

location types and location structure. These locations are used in stores management

module to manage separate stocks.

62

Figure C-4: User Management Grid

There are few main components that can be seen in this interface

 Add New Button

By clicking on this, a form to create new record will be opened and there is a

save button at the bottom of each form for saving the records. For view button

as well this functionality is same and additionally the relevant data will be

loaded to form

 Search Boxes at the top of each column

These boxes can be seen in all data tables used in this system. These are

optimized to search a record by typing any part of the text

 Action Buttons at the last column

Different actions that can be done to records, are listed in last column which

named as action column

Figure C-3: System Configuration Menu

63

Figure C-5: New User Form

User Configuration can be done by clicking on padlock icon at the left side

Figure C-6: User Configuration Page

When a user is created, user will receive an email with the generated password. Users

are advised to change the password immediately.

Figure C-7: User Email

64

Stock Locations can be managed using following screen

Figure C-8: Location Structure Screen

Structure Types can be defined by using following screen

Figure C-9: Location Structure Types

 Figure C-10: Location Structure Context Menu

65

There is a context menu in the location structure tree, it can be obtained by right

clicking on it. This Tree Structure Supports Copy/Paste and Drag & Drop.

It is very easy to move or copy a location inside to another location.

By master files, users can define the Units used to measure the items, list of items and

the suppliers.

Transactions

 Item Batch

Each purchasing of an item is considered as a new batch. Batches can be

created manually as well. This screen is used for managing batches

Figure C-12: Item Batch Form

Figure C-11: Stores Menu

66

 Purchase Order

Purchase Orders are placed to the suppliers to request goods. These purchase

orders are usually settled with one or more goods receive notes

Figure C-13: Purchase Order Form

 Goods Receive Note

GRN can be used to receive the goods requested in Purchase Order. When

goods entered in this note, batches are created for each item.

Figure C-14: Good Receive Note Form

67

Figure C-15: Form to Add Item to GRN

 Direct Purchase Order.

This is a fusion of above two notes to allow user to quickly enter the PO and

GRN at the same time. This is suitable for ad-hoc purchasing done from

various vendors

Figure C-16: Direct Purchase Order Screens

68

 Manual Stock Adjustments

This feature was given to allow superior users to manually reconcile the stock

in any justifiable situation

Both increments and deductions are allowed in this

Figure C-17: Manual Stock Adjustment Form

 Stock Transfer

This interface can be used to move the stock between the stock locations.

 Figure C-18: Stock Transfer Form

69

Appendix D - Management Reports

Figure D-1: List of Suppliers Report

Figure D-2: Item List with Total Available Stock

70

Figure D-3: Daily Income Report

71

Figure D-4: Customer Order Analysis Report

Figure D-5: Invoice Print

72

Figure D-6: Purchase Order Print

Figure D-7: Goods Receive Note Print

Figure D-8: Customer Order Analysis Report –Day of the month

73

Figure D-9: Customer Order Analysis Report - Total

74

Appendix E – Test Results

Condition Pass

User Groups

Can User Group List Be Viewed Yes

Can User Group Grid be filtered Yes

Is the list blocked for un authorized users Yes

Can a new user group be created Yes

Is the uniqueness of group name is validated No

Can a record be viewed Yes

Can a Record be amended Yes

Can a user group be deleted Yes

Can the Rights be viewed Yes

Can the Rights be Granted Yes

Can the Rights be Revoked Yes

Can the user group be deactivated Yes

Can the user group be activated Yes

Users

Can User List be viewed Yes

Can user grid be filtered Yes

Can a user information be viewed Yes

Can a new user be created Yes

Is the welcome email generated Yes

Is the uniqueness of the username validated Yes

Can a user be activated Yes

Can a user be deactivated Yes

Can a user be deleted Yes

Can the user information be amended Yes

Can the password be reset Yes

Can the password be sent to email Yes

Can the password be reset with auto generated password Yes

Can the user be assigned to multiple user group No

Are the user activities are Audited Yes

Does the system restrict login for wrong credentials Yes

Does the system allow to login with right credentials Yes

Does the system recognize the user after entering the username Yes

Does the login form validated for blank fields Yes

Is the menu filtered according to the rights Yes

75

Location Type

Can Location Type List be viewed Yes

Can a location Type be viewed/ amended / deleted Yes/Yes/Yes

Is it possible to upload an icon Yes

Location Type

Can the Location Structure be viewed as a tree structure Yes

Can the Structure be re arranged by dragging and dropping Yes

Can the Structure be Copied and Pasted by using the context menu Yes

Can a Node Be Renamed using the context menu Yes

Can a Node be viewed in form Yes

Does the Icon picked from location type Yes

Does the system restrict saving two nodes in same name under same

parent No

Units

Can Unit List be viewed Yes

Can a Unit be viewed/ amended / deleted Yes/Yes/Yes

Suppliers

Can Supplier List be viewed Yes

Can a be viewed/ amended / deleted Yes/Yes/Yes

Items

Can Item List be viewed Yes

Can the Item grid be filtered Yes

Can Item be viewed/ amended / deleted Yes/Yes/Yes

Can the current stock of item be viewed Yes

Can the Current batches of an item be viewed Yes

Can the re-order level and expiry notification level be set Yes

Is the auto generated messages received No

Can Image be uploaded for Item Yes

Can multiple units and conversion ratio be configured for items Yes

Item Batch

Can Item Batch List be viewed Yes

Can Item Batch be deleted Yes

Is the stock adjusted when a batch deleted Yes

Can a new Item Batch be created Yes

Is the stock updated with new batch Yes

Can the location of batch be changed Yes

Is the stock moved when location changed Yes

76

Purchase Order

Can view the previous PO list Yes

Can view single PO Yes

Can view item details of PO Yes

Can PO be edited before goods received Yes

Can PO Items be added/ removed/ amended Yes/Yes/Yes

Does the system restrict the PO be edited after goods received Yes

Can a PO be printed Yes

Goods Receive Note

Can view the previous GRNs Yes

Can view the pending PO Yes

Are the received PO hidden Yes

Can Amounts be given for Receiving Items Yes

Can Manufacture and Expiry Dates Be Setup Yes

Are the batches created when placed a GRN Yes

Can a GRN be Edited Yes

Can a GRN be Deleted Yes

Does the system revert the created batches when GRN amended or

deleted Yes

Can items be added to existing batches No

Can the GRN be printed Yes

77

Appendix F - Code Listing

Stores Manager Service is the Core of this system. It manages the most of the stores

related functionalities.

package com.gimanhala.services;

import java.text.Normalizer.Form;

import com.gimanhala.dto.DPO;

import com.gimanhala.dto.DPOItem;

import com.gimanhala.dto.GRN;
import com.gimanhala.dto.GRNItem;

import com.gimanhala.dto.ItemBatch;

import com.gimanhala.dto.POItem;

import com.gimanhala.dto.PurchaseOrder;

import com.gimanhala.dto.ServiceResponse;

import com.gimanhala.util.Format;
import com.gimanhala.util.HTMLUtils;

import com.gimanhala.util.NewId;

import com.gimanhala.util.Settings;
import com.gimnhala.dao.company_location_type;

import com.gimnhala.dao.item_batch;

import com.gimnhala.dao.item_stock;
import com.gimnhala.dao.stores_dpo;

import com.gimnhala.dao.stores_dpo_details;

import com.gimnhala.dao.stores_grn;
import com.gimnhala.dao.stores_grn_details;

import com.gimnhala.dao.stores_po;
import com.gimnhala.dao.stores_po_details;

public class StockTransactionService {

 // ////////////////////// PURCHASE ORDER

 // //////////////////////////////////////
 public static ServiceResponse getPOList() {

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 PurchaseOrder[] pos = stores_po

 .getPurchaseOrdersForQuery("where deleted=0");
 response.setObject(pos);

 DBManagerService.closeConnection();

 if (pos.length > 0) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.INFO);

 response.setMessageHeading("PO Retrieved");
 response.setMessage("!");

 } else {

 response.setSuccess(false);
 response.setMessageType(ServiceResponse.WARNING);

 response.setMessageHeading("No POs Defined");

 response.setMessage("Please add POs");
 }

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error in Loading Location Types!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getPO(String id) {
 PurchaseOrder po;

 ServiceResponse response = new ServiceResponse();

 try {

78

 DBManagerService.connect();

 po = stores_po.getPurchaseOrderById(id);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Retrieved");

 response.setMessage(po.getName());
 response.setObject(po);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;

 }

 public static ServiceResponse insertPO(PurchaseOrder po) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 po.setName(NewId.GetId("PO"));

 stores_po.insertRecord(po);

 ;
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("PO Saved!");

 response.setMessage(po.getName());

 response.setObject(po);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 public static ServiceResponse updatePO(PurchaseOrder po) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 stores_po.updateRecord(po);
 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Updated!");

 response.setMessage(po.getName());
 response.setObject(po);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse deletePO(String id) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_po.deleteRecord(id);

79

 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Deleted");
 response.setMessage("!");

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getPOByName(String refName) {

 PurchaseOrder po;

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 po = stores_po.getPurchaseOrderByName(refName);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Retrieved");
 response.setMessage(po.getName());

 response.setObject(po);

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 // ///////////////////////////////// POITEMS

 public static ServiceResponse insertPOItem(POItem item) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_po_details.insertRecord(item);

 ;

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("PO Item Saved!");

 response.setMessage("");

 response.setObject(item);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 public static ServiceResponse updatePOItem(POItem item) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 stores_po_details.updateRecord(item);
 DBManagerService.closeConnection();

80

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Item Updated!");

 response.setMessage("");
 response.setObject(item);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse deletePOItem(String poId, String itemId) {

 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_po_details.deleteRecord(poId, itemId);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Item Deleted");

 response.setMessage("!");
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 public static ServiceResponse getPOItemList(String poId) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 POItem[] pos = stores_po_details.getPoItems(poId);
 response.setObject(pos);

 DBManagerService.closeConnection();

 if (pos.length > 0) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.INFO);

 response.setMessageHeading("PO Items Retrieved");
 response.setMessage("!");

 } else {
 response.setSuccess(false);

 response.setMessageType(ServiceResponse.WARNING);

 response.setMessageHeading("No PO Items Defined");
 response.setMessage("Please add PO Items");

 }

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error in Loading PO Items!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse getPOItem(String poId, String itemId) {

 POItem poi;

 ServiceResponse response = new ServiceResponse();
 try {

81

 DBManagerService.connect();

 poi = stores_po_details.getPOItemById(poId, itemId);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Item Retrieved");

 response.setMessage("");
 response.setObject(poi);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;

 }

 // //////////////////////////////////// DIRECT PURCHASE ORDER
 // //////////////////////////////////////

 public static ServiceResponse getDPOList() {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 DPO[] pos = stores_dpo.getDPOsForQuery("where deleted=0");
 response.setObject(pos);

 DBManagerService.closeConnection();

 if (pos.length > 0) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.INFO);

 response.setMessageHeading("DPO Retrieved");
 response.setMessage("!");

 } else {

 response.setSuccess(false);
 response.setMessageType(ServiceResponse.WARNING);

 response.setMessageHeading("No DPOs Defined");

 response.setMessage("Please add DPOs");
 }

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error in Loading DPO!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getDPO(String id) {

 DPO dpo;

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 dpo = stores_dpo.getDPOById(id);
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("DPO Retrieved");

 response.setMessage(dpo.getName());

 response.setObject(dpo);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

82

 return response;

 }

 public static ServiceResponse insertDPO(DPO dpo) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 dpo.setName(NewId.GetId("DPO"));

 stores_dpo.insertRecord(dpo);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Saved!");
 response.setMessage(dpo.getName());

 response.setObject(dpo);

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse updateDPO(DPO dpo) {

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 stores_dpo.updateRecord(dpo);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Updated!");
 response.setMessage(dpo.getName());

 response.setObject(dpo);

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse deleteDPO(String id) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 stores_po.deleteRecord(id);
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("PO Deleted");

 response.setMessage("!");

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse getDPOByName(String refName) {

83

 DPO dpo;

 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 dpo = stores_dpo.getDPOByName(refName);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Retrieved");

 response.setMessage(dpo.getName());
 response.setObject(dpo);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");

 }

 }

 return response;
 }

 // ///////////////////////////////// POITEMS

 public static ServiceResponse insertDPOItem(DPOItem item) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 String bthId = NewId.GetId("BTH");
 item.setId(bthId);

 stores_dpo_details.insertRecord(item);

 item_batch.insertRecord(item);
 item_stock.setStock(bthId, item.getLocationId(), item.getUnitId(),

 item.getQuantity(), "" + item.getDpoId(),

 "Direct Purchase Order", "3");
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("DPO Item Saved!");

 response.setMessage("");

 response.setObject(item);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;
 }

 public static ServiceResponse updateDPOItem(DPOItem item) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_dpo_details.updateRecord(item);

 Format.jsonOutput(item);

 item_batch.updateRecord(item);

 item_stock.setStock(item.getId(), item.getLocationId(),
 item.getUnitId(), item.getQuantity(), "" + item.getDpoId(),

 "Direct Purchase Order Update", "4");

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Item Updated!");
 response.setMessage("");

 response.setObject(item);

 } catch (Exception e) {
 response.setSuccess(true);

84

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 public static ServiceResponse deleteDPOItem(String dpoId, String itemId) {

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 stores_dpo_details.deleteRecord(dpoId, itemId);
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Item Deleted");

 response.setMessage("!");

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse getDPOItemList(String dpoId) {

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 DPOItem[] dpos = stores_dpo_details.getPoItems(dpoId);

 response.setObject(dpos);
 DBManagerService.closeConnection();

 if (dpos.length > 0) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.INFO);

 response.setMessageHeading("DPO Items Retrieved");

 response.setMessage("!");
 } else {

 response.setSuccess(false);

 response.setMessageType(ServiceResponse.WARNING);
 response.setMessageHeading("No DPO Items Defined");

 response.setMessage("Please add DPO Items");

 }
 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error in Loading DPO Items!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getDPOItem(String dpoId, String itemId) {
 DPOItem dpoi;

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 dpoi = stores_dpo_details.getDPOItemById(dpoId, itemId);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Item Retrieved");
 response.setMessage("");

85

 response.setObject(dpoi);

 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 // //////////////////////////////////// GOOD RECEIVE NOTE

 // //////////////////////////////////////
 public static ServiceResponse getGRNList() {

 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();

 GRN[] pos = stores_grn.getGRNsForQuery("where deleted=0");

 response.setObject(pos);
 DBManagerService.closeConnection();

 if (pos.length > 0) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.INFO);

 response.setMessageHeading("GRN Retrieved");

 response.setMessage("!");
 } else {

 response.setSuccess(false);

 response.setMessageType(ServiceResponse.WARNING);
 response.setMessageHeading("No GRNs Defined");

 response.setMessage("Please add GRNs");

 }
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error in Loading GRN!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 public static ServiceResponse getGRN(String id) {

 GRN GRN;
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 GRN = stores_grn.getGRNById(id);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Retrieved");
 response.setMessage(GRN.getName());

 response.setObject(GRN);

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }

 }
 return response;

 }

 public static ServiceResponse insertGRN(GRN GRN) {

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

86

 GRN.setName(NewId.GetId("GRN"));

 stores_grn.insertRecord(GRN);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Saved!");

 response.setMessage(GRN.getName());
 response.setObject(GRN);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;

 }

 public static ServiceResponse updateGRN(GRN GRN) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_grn.updateRecord(GRN);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Updated!");

 response.setMessage(GRN.getName());
 response.setObject(GRN);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse deleteGRN(String id) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 stores_po.deleteRecord(id);

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("PO Deleted");
 response.setMessage("!");

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getGRNByName(String refName) {
 GRN GRN;

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 GRN = stores_grn.getGRNByName(refName);

 DBManagerService.closeConnection();
 response.setSuccess(true);

87

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("DPO Retrieved");

 response.setMessage(GRN.getName());

 response.setObject(GRN);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

 response.setMessage("Server Error");

 }
 }

 return response;

 }

 // ///////////////////////////////// GRN ITEMS

//

 public static ServiceResponse insertGRNItem(GRNItem item) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 String bthId = NewId.GetId("BTH");

 item.setId(bthId);

 stores_grn_details.insertRecord(item);
 item_batch.insertRecord(item);

 item_stock.setStock(bthId, item.getLocationId(), item.getUnitId(),

 item.getQuantity(), "" + item.getGrnId(),
 "GRN INSERT", "5");

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Item Saved!");

 response.setMessage("");
 response.setObject(item);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

//

 public static ServiceResponse updateGRNItem(GRNItem item) {
 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 stores_grn_details.updateRecord(item);

 Format.jsonOutput(item);
 item_batch.updateRecord(item);

 item_stock.setStock(item.getId(), item.getLocationId(),

 item.getUnitId(), item.getQuantity(), "" + item.getGrnId(),
 "GRN Update", "6");

 DBManagerService.closeConnection();

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Item Updated!");

 response.setMessage("");
 response.setObject(item);

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {
 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

88

 }

 return response;

 }

 public static ServiceResponse deleteGRNItem(String GRNId, String itemId) {

 ServiceResponse response = new ServiceResponse();

 try {
 DBManagerService.connect();

 stores_GRN_details.deleteRecord(GRNId, itemId);

 DBManagerService.closeConnection();
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);

 response.setMessageHeading("GRN Item Deleted");
 response.setMessage("!");

 } catch (Exception e) {

 response.setSuccess(true);
 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {

 response.setMessage("Server Error");
 }

 }

 return response;
 }

 public static ServiceResponse getGRNItemList(String GRNId) {
 ServiceResponse response = new ServiceResponse();

 try {

 DBManagerService.connect();
 GRNItem[] GRNs = stores_GRN_details.getPoItems(GRNId);

 response.setObject(GRNs);

 DBManagerService.closeConnection();
 if (GRNs.length > 0) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.INFO);
 response.setMessageHeading("GRN Items Retrieved");

 response.setMessage("!");

 } else {
 response.setSuccess(false);

 response.setMessageType(ServiceResponse.WARNING);

 response.setMessageHeading("No GRN Items Defined");
 response.setMessage("Please add GRN Items");

 }

 } catch (Exception e) {
 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);

 response.setMessageHeading("Error in Loading GRN Items!");
 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());

 } else {
 response.setMessage("Server Error");

 }
 }

 return response;

 }
 public static ServiceResponse getGRNItem(String GRNId, String itemId) {

 GRNItem GRNi;

 ServiceResponse response = new ServiceResponse();
 try {

 DBManagerService.connect();

 GRNi = stores_GRN_details.getGRNItemById(GRNId, itemId);
 DBManagerService.closeConnection();

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.SUCCESS);
 response.setMessageHeading("GRN Item Retrieved");

 response.setMessage("");

 response.setObject(dpoi);
 } catch (Exception e) {

 response.setSuccess(true);

 response.setMessageType(ServiceResponse.FAILED);
 response.setMessageHeading("Error!");

 if (Settings.sqlErrosInUI) {

 response.setMessage(e.getMessage());
 } else {

89

 response.setMessage("Server Error");

 }

 }

 return response;
 }

}

90

Appendix G - Client Certificate

