

Software Test Management Tool

A dissertation submitted for the Degree of Master of

Information Technology

J.B.A Gemunu Priyadarshana

University of Colombo School of Computing

2017

i

Declaration

The thesis is my original work and has not been submitted previously for a degree at this or

any other university/institute.

To the best of my knowledge it does not contain any material published or written by another

person, except as acknowledged in the text.

Student Name: J B A Gemunu Priyadarshana

Registration Number: 2013/MIT/064

Index Number: 13550643

Signature: Date: 19/06/2017

This is to certify that this thesis is based on the work of

Mr./Ms.

under my supervision. The thesis has been prepared according to the format stipulated and is

of acceptable standard.

Certified by:

Supervisor Name:

Signature: Date:

ii

Abstract

When it comes to test management support tools, there are a large variety of options to choose

from. Some are open source and some are commercial. No doubt all these products offer some

benefit, but why is the functionality so fragmented? For example, one of the commercial

application QAComplete needs TestComplete to run automated tests. Is it simply badly

organized product strategies brought on by a series of separate tool acquisitions? Perhaps each

tool is designed for slightly different needs, but should we really be required to buy them all

and then frequently jump between different tools? – No. Software support tools are supposed

to make testing easier.

Testing activities need to be recorded in a single application despite it is manual or automated

tests, and should have a track of activities performed by QA personals. Even though there is

high number of open-source solutions out there for this mater, not single open-source solution

would enable to run both manual and automated tests via single GUI. The very first

consideration is therefore, is to look for a single solution that offers a wide variety of test

support capability and secondly it should be able to share its data across other third-party

applications like JIRA via API.

This Test Management Tool will serve as a web application that can be access over the

internet to ease all QA activities. PHP is used as the programming language with CodeIgniter

Web Framework. Also, MySQL is used as the database. The outcome of this Test

Management Tool is to centralize all QA activities, starting from daily statuses to test case

execution.

iii

Table of Contents

Abstract ... ii

List of Figures ... v

List of Tables .. v

List of Acronyms ... vi

Chapter 1: Introduction ... 1

1.1 Problem Statement .. 1

1.2 Motivation ... 1

1.3 Objectives ... 2

1.4 Scope ... 2

1.5 Outline of the Dissertation .. 4

Chapter 2: Background ... 5

2.1 Introduction ... 5

2.2 Existing Solutions ... 5

2.3 Feature Comparison .. 7

Chapter 3: Analysis and Design ... 8

3.1 Analysis .. 8

3.1.1 Fact Gathering Techniques... 8

3.1.2 Requirements Analysis ... 8

3.1.3 Requirements for the proposed solution... 11

3.2 Design ... 13

3.2.1 Architectural Design .. 13

3.2.2 Component Level Design ... 14

3.2.3 User Interface Design ... 15

3.2.4 Database Design ... 18

3.2.5 Constraints and Assumption... 18

Chapter 4: Implementation ... 20

4.1 Development Environment ... 20

iv

4.3 Code Artifacts ... 21

4.4 Implementation of Non Functional Requirements .. 23

4.4.1 Performance ... 23

4.4.2 Availability ... 23

4.4.3 Security... 23

4.3.4 Maintainability ... 23

4.3.5 Portability ... 23

4.4 Deployment Options ... 23

Chapter 5: Evaluation and Testing ... 24

5.1 Test Plan ... 24

5.1.1 Test Execution .. 24

5.1.2 Defect Management ... 26

Chapter 6: Conclusion and Future Work .. 27

6.1 Results and Review ... 27

6.2 Challenges Faced During the Project .. 27

6.3 Lessons Learnt During the Project .. 27

6.4 Future Work .. 27

References .. 29

Appendix A: Detailed Use Cases ... 31

Appendix B: Detailed Test Results .. 39

User Login Related Test Cases ... 39

User Management Test Cases ... 40

Project management Test Cases .. 41

Hosts Test Cases.. 42

Test Cases for Test Suites ... 42

Test Cases for test case section ... 43

Test Cases for Daily status .. 44

Test Cases for Dashboard .. 44

v

List of Figures

Figure 3.1 Use Case Diagram ... 10

Figure 3.2 Client Server Architecture ... 2

Figure 3.3 Component diagram .. 2

Figure 3.4 Database diagram ... 6

Figure 4.1 View .. 9

Figure 4.2 Controller .. 20

Figure 5.1 Test execution approach .. 23

Figure 5.2 Defect life cycle .. 25

List of Tables

Table 2.1 Feature comparison of existing solutions .. 7

Table 3.2 Use Case Index ... 10

vi

List of Acronyms

BDT Behavior Driven Testing

CDN Content Delivery Networks

CSS Cascading Style Sheets

IDE Integrated Development Environment

IE Internet Explorer

NA Not Applicable

PHP PHP: Hypertext Preprocessor

QA Quality Assurance

1

Chapter 1: Introduction

This chapter describes the problem which this project tries to address, motivation to come up

with a solution, objectives and the scope of the proposed solution. This solution can be used

by any client who is in to Software Quality Assurance.

1.1 Problem Statement

Let’s look at following two test management tools – QA Complete and TestRail. Both these

commercial tools have very good features. But the main down side is that this tool does not

provide test automation facility out of the box.

For example in order to execute automated tests using QA complete, client needs to buy

TestComplete which is also made by the same company. So the customer has to pay if they

want to continue with the same setup.

On the other hand TestRail does not have such mechanism to run automated test, but they

have a rich API which allows updating TestRail. E.g. One could use the tear down step to

update corresponding test case status (Pass, Fail, Blocked etc..) using the TestRail API. The

API supports many languages E.g. Java, Python etc.

The proposed project tries to address above mentioned problems in the existing systems and

further try to enhance and introduce new functionalities via web application.

1.2 Motivation

People involved in a software project wants to know when testing is completed and the testing

progress. To be able to answer that question, it is important that test execution be tracked

effectively. So, this is accomplished by collecting test data, or metrics, showing the progress

of testing. The metrics helps to identify when corrections must be made to assure success.

Additionally, using these metrics the testing team can predict a release date for the

application.

QA engineers must document the details of a defect and the steps necessary to recreate it, or

reference a test procedure if its steps expose the problem, to help the development team

pursue its defect-correction activities. To achieve this, an adequate defect-tracking tool for the

system environment is required. In most cases these issues are tracked in different types of

issue tracking products. These products are not just focus on bug tracking – provides bug

2

tracking, issue tracking, and project management functions as well. One such example is

JIRA. Even though this is a good proprietary solution for defect tracking and project

management, it does not have the built in capability of test management. There are third-party

plug-ins like Zephyr for JIRA; but the cost and lack of support for automation is a key

concern. For example to automate using Zephyr – JIRA, once need to purchase 2 licenses; one

for Zephyr for JIRA and one for ZAPI the api for automation. Though this is a very costly

approach, still there is no GUI to manage automated tests.

1.3 Objectives

The main aim of the project is to develop a user friendly web application to facilitate test

management solution as well as to provide management information for effective decision

making. Further:

• Increase productivity by 10% by removing manual excel maintains by introducing

a GUI to Create, maintain and execute manual test cases.

• Simplify test execution providing a GUI to execute automated tests via web

interface.

• Live monitor project health via test results dashboard to display both manual and

automated test results.

• Centralize QA activities to measure productivity by displaying both manual and

automated test results in a single web application.

• Reduce time to switching application by allowing to work in different projects at

the same time.

• Improve User Experience by making both mobile and desktop friendly test

management solution.

• Export data in to csv format for further needs.

• Export data in to pdf format.

• Make the testers life easier by providing a central place for all day to day

activities.

• Daily stats to measure the productivity of the tester.

• Accurate estimates based on project and user daily stats.

• Communicate with third-party tools using an API.

1.4 Scope

The project is concerned with implementing a software solution to facilitate software test

management solution with test automation features. Implementation will be web based

software. Primary function of the software will be create, manage and execute test cases using

a web application. Primary stakeholders are test automation team and management of the

organization.

The application is not restricted to a single project and can be used across multiple projects

within the organization.

3

Users of the software will be grouped as follows with different authorization levels:

Administrator, Tester and Registered User.

Registered user can be any user who may browse the dashboard. Registered user can only

view dashboards in their respective project. These are typically development people/

managers who are interested in project dashboards.

Testers can login to the system and create test suites and add test cases for those test suites.

Once test case is approved/ reviewed by peers they will be executed in test cycles. Testers can

add can export test data in to csv.

User creation will consist of images of the user and other user details. Not only users can

create manual test cases but also they could execute automated test cases using the web

application. Admin user can make a user active / inactive from the user management page.

A single test case is divided in to three sections – Organize, Design and Execute. Test details

will be saved as per the execution cycle, such that historical data will be available with time

and these data can be used for test estimations in future projects.

The daily status section is designed with five sections by identifying tasks that QA will do on

daily basis. Summary section, Test Design, Automated, Executed and Issues Identified are the

four sections. Summary section includes daily tasks they carried out and tomorrows plan and

their blocking issues. The other three sections contain number of test cases based on the test

severity – High, Medium, and Low. The last section contain number of issues identified

divided in to Showstopper, High, Medium, Low.

The Dashboard section displays the number of test cases with the execution statuses in

Graphical manner. Further the individual activity/productivity will be displayed based on the

daily status stats.

4

1.5 Outline of the Dissertation

Chapter 1 describes the problem which the Software Test Management Tool project

addresses. Chapter describes the problem statement, motivation, objectives and scope.

Chapter 2 describes the domain of the business problem, which is Software Quality

Assurance. Chapter describes the study of business background, existing solutions and their

feature comparison.

Chapter 3 describes the analysis and design of the implementation of the project. Chapter

describes fact gathering techniques, use cases, functional/ nonfunctional features, design for

the solution.

Chapter 4 describes implantation of the solution. Chapter describes implementation decisions

and justifications, technologies and frameworks adopted.

Chapter 5 describes testing and evaluation of the solution. Chapter describes test plan, test

cases, performance testing and usability testing.

Chapter 6 concludes the project work. Chapter describes results, challenges faced; lessons

learnt and identified areas for improvement.

5

Chapter 2: Background

This chapter describes the background of software test management tools and their usages.

2.1 Introduction

There are many test management solutions available and each of them have their own

advantages and disadvantages.

Test Rail [1]: One of the key advantages is that TestRail makes it very easy for estimating QA

effort in sprints. It’s also very useful for organizing test efforts on the fly once test suites are

created and organized. The JIRA plugin for TestRail is working and the ability to create test

cases off of user stories is quite useful. Further UI: very intuitive and easy to digest and does

not have to watch tutorials how to use the tool. Ability to log bug right from the test rail

makes it easy since no need to open JIRA for that.

2.2 Existing Solutions

Following is an analysis of currently available test management solutions.

TestRail Test Management solution:

Test rail is a effective TCM (Test Case Management) tool, that helps to organize and manage

the work of the QA team. However, these built in tools weren’t always provide the solution

out of the box. One such example is the test automation. It comes with a HTTP-based API to

integrate with the automated test results. By making use of the TestRail API, users can report

test results in to test rail. Additionally, it integrates with many issue tracking tools that makes

requirements from external systems to be linked to test cases in TestRail; bugs can also be

created in the external systems and links can be established to the corresponding test case.

QAComplete Test Management Solution:

QAComplete is a powerful, flexible test management tool that helps users easily manage

requirements, tests and defects all in one place. The tool is easy to use, and provides a central

hub to manage and report on all of your tests – manual, Selenium, TestComplete, SoapUI. To

make automation work TestComplete needs to be purchased.

It is customizable enough to fit into any development process, from Waterfall to Agile, and

integrates tightly with the project management and workflow tools such as Jira, Bugzilla,

Visual Studio and more.

6

QAComplete is a QA testing software solution that provides a centralized zone for all testing

activity. After a test is completed, the program stores it inside a library and allows users to

pull it up later for future review and drill down into details at a granular level.

Users can then decide to implement further tests and suggest new testing activities. The

system additionally has tools specifically for testing mobile applications, such as time

budgeting, industry-specific guideline enforcements and support for native, hybrid and web

apps. Lastly, QAComplete can automatically create defect reports as users run into defects

during testing.

QAComplete Key Features

 SaaS or on-premise QA testing software solution

 Provides a centralized zone for all product testing

 Stores all tests in a library

 Users can drill down to a granular level within each test report

 Provides suggestions for further testing and new testing routines

 Has tools for mobile app testing

 Can create defect reports if users have problems during testing

7

2.3 Feature Comparison

Table 2.1 tabulates the feature comparison of discussed existing solutions.

Feature QAComplete TestRail This System

User Creation ✓ ✓ ✓

Project Allocation ✓ ✓ ✓

Test Automation - - ✓

API - ✓ ✓

JIRA Plug-in ✓ ✓ -

Daily Status - - ✓

SMS Notifications - - ✓

Mobile friendly UI - - ✓

Export to CSV ✓ ✓ ✓

Export to PDF ✓ ✓ ✓

Import from CSV ✓ ✓ -

Table 2.1 Feature comparison of existing solutions

Above feature comparison shows that each system facilitates users to perform basic tasks

from user creation to tests management. Each of them lacks process to execute automated

tests.

8

Chapter 3: Analysis and Design

This chapter describes the analysis of the problem domain; identified stakeholders, methods

used for requirements gathering, and identified functional requirements and non-functional

requirements.

3.1 Analysis

This sub chapter describes the analysis of the problem domain; identified stakeholders,

methods used for requirements gathering, and identified functional requirements and non-

functional requirements.

3.1.1 Fact Gathering Techniques

Requirements were gathered using multiple approaches for better understanding. Approaches

used were as follows.

• Discussions and Interviews

Interviews were arranged with individuals that are familiar with the context. Further

clarifications were made through discussions with QA personals. After the discussion with

different levels of QA people, discovered that their requirements are different based on the

designation.

• Studying similar systems

Studying similar systems such as Test Rail and QA Complete helped to identify requirements

which are not considered by existing systems. Also studying similar systems helped to

implement an operational prototype within a brief time period.

• Practicing the manual steps

Practicing the manual QA process helped to understand the possible improvements for

existing systems. From requirement gathering to maintains, QA activities were identified.

• Using web resources

Reading about similar test management applications helped to accelerate the requirements

capturing process. For example Test Rail API document helped to gather vital information

and how to structure the data base as wel.s

3.1.2 Requirements Analysis

During the requirement analysis process actors of the system was identified. Then the use

cases were identified and documented. There after the necessary diagrams were drawn and

functional and nonfunctional requirements are listed.

3.1.2.1 Actors of the System

Following actors were identified during the analysis.

9

• Registered user – Users looking to view dashboards

• Tester - Users who create and manage tests

• Admin User – Create, Manage users and projects and assign them accordingly

3.1.2.2 Use Cases

Figure 3.1 illustrates the use case diagram for the system.

10

Figure 3.1 Use Case Diagram

Table 3.1 tabulates the use case with respective actor, scope, complexity, priority. Please refer

Appendix C for use case scenarios in detail.

11

Use

Case ID

Use Case Name Primary Actor Scope Complexity Priority

UC-1 Create new users Admin User In Medium 1

UC-2 Manage users Admin User In High 1

UC-3 Create projects Admin User In High 1

UC-4 Manage projects Admin User In Medium 1

UC-5 Assign users Admin User In Medium 1

UC-6 Change password Registered user In Medium 1

UC-7 Login Registered user In Medium 1

UC-8 View dashboard Registered user In Medium 2

UC-9 View tests Registered user In Medium 1

UC-10 Add tests Tester In High 1

UC-11 Search tests Tester In High 1

UC-12 Modify tests Tester In High 1

UC-13 Delete tests Tester In High 1

UC-14 Execute automated tests Tester In High 1

UC-15 Add daily status Tester In High 1

UC-16 Modify daily status Tester In High 1

Table 3.2 Use Case Index

3.1.3 Requirements for the proposed solution

3.1.3.1 Functional Requirements

Identified functional requirements are mentioned below.

• Login

User should be able to login to the system and later they should be able to change login

credentials. Each type of user should be granted with authority to access system functions

according to their privilege levels.

• Create test suites and test cases

Un-authorized users should not be able search browse and view test cases

• Test dashboards, test cases and daily statuses should not be visible to un-auth usres.

Authenticated users should be able to view the dashboard of assigned projects

• View dashboards

Authenticated users should be able change password

• Manage users

12

Tester (user) should be able to create test suites and add test cases.

• Search, browse and export to csv test cases

Administrators should be able to create users and projects. Administrators should be able to

add users to projects and modify allocations as well.

• Manage users

3.1.3.2 Nonfunctional Requirements

Nonfunctional requirements are discussed under following categories. These requirements

must be achieved at a system-wide level rather than at a unit level.

• Performance – System should be able to handle 50 users simultaneously.

• Availability – System should be available to access over the internet and should

operate properly on IE, Google Chrome, and Fire Fox browsers.

• Security – Unauthorized users should not be able to access system or the production

servers.

• Maintainability – System design should facilitate the implementation and deployment

of requirement changes without complete re-installation of the system.

• Legal – Terms and Condition, Policy page should be implemented.

13

3.2 Design

This sub chapter describes the design for the proposed solution. This chapter will provide aid

for software development with high level architecture of the system and details of its

components. Further constraints and assumptions will be discussed.

3.2.1 Architectural Design

In order to address functional and nonfunctional requirements system is developed following

client server architecture. System will be installed on central server and made accessible

through a web browser. This enables users to access the system using various kinds of

devices. And the application uses responsive bootstrap theme such that they could view the

site on different devices

Figure 3.2 Client Server Architecture

Software architecture concerns about separating system of interest into abstract sub systems.

This enables the development of the system to be organized and traceable. In case of the

proposed solution three-tier architecture is selected since it is suitable for internet driven web

applications. Figure 3.3 illustrates communication and order of the three-tier architecture.

Figure 3.2 Three-Tier Architecture

14

3.2.2 Component Level Design

Following figure shows high level decomposition of the system.

Figure 3.4 Component diagram

15

3.2.3 User Interface Design

Figure 3.5 Login Window

16

Dashboard

Figure 3.6 Dashboard Window

User management interface

Figure 3.7 User management Window

Project management interface

Figure 3.8 Project management Window

17

Figure 3.9 User Project Window

Test management interface

Figure 3.10 Test management Window

Daily status interface

Figure 3.11 Daily Status Window

18

3.2.4 Database Design

Following figure shows the relational database design for the system.

Figure 3.4 Database diagram

3.2.5 Constraints and Assumption

• Due to limitations in the tool use to automate testing, the HTML test results and logs

generated by the automated test scripts won’t be pushed back to the test management

application.

19

• The windows service used to trigger automated test script(s) needs to be in running

state.

• Automated test execution can only be done in windows environment as of now. To run

in other platform, need to implement separate services for that.

20

Chapter 4: Implementation

This chapter describes the implementation of the proposed system. This chapter will cover

development environment configuration, implementation decisions justification, module and

namespace decomposition, and acknowledgement of open source and community,

frameworks and software.

4.1 Development Environment

Development environment is described in perspective of software and hardware. Following

software stack was selected for the development if the proposed solution.

• Operating system: Microsoft Windows 8.1

• Web server: Apache web server

• Web browsers: IE, Firefox, Chrome

• PHP Version 5.5.15

• xCRUD Data management system

• MySQL

21

4.3 Code Artifacts

View

Figure 4.3 View

22

Controller

Figure 4.2 Contoller

23

4.4 Implementation of Non Functional Requirements

Implementation of non-functional requirements is completed using Framework features which

were used in implementation. These features decreased the implementation effort drastically

by allowing developer to focus on implementing functional requirements.

4.4.1 Performance

Performance of the systems was improved by file compression, html caching, reducing

number of calls to the server and controlling the order of the script rendering.

4.4.2 Availability

Availability is considered in two perspectives, availability across different browsers/devices

and availability over time. Availability across different browsers/devices is implemented by

Bootstrap CSS framework. Bootstrap supports all the major browsers IE, Chrome, FireFox,

Safari and devices with different screen sizes.

4.4.3 Security

Code Igniter framework comes with XSS filtering security. This filter will prevent any

malicious JavaScript code or any other code that attempts to hijack cookie and do malicious

activities. This reduces security risks.

4.3.4 Maintainability

System is designed and implemented in a modular manner using MVC pattern. Coupling

between these modules are low. Communications between these modules are contracted with

interfaces. Therefore change to a certain module can be done without effecting rest of the

implementation. Use of comments, coding standards and unit tests may assist future changes

to the system.

4.3.5 Portability

Apache web server, MySQL and PHP is used to develop the application. The application is

currently deployed on XAMP server and this can easily be migrated to Linux environment

and hosted in LAMP server.

24

Chapter 5: Evaluation and Testing

This chapter describes the evaluation and testing of the proposed system. This chapter will

cover the scope of the testing, test plans, test cases, test execution and test results. Later the

performance testing and acceptance testing is discussed.

5.1 Test Plan

This sub chapter describes the project work related details from a QA perspective. Testing

approach for each test type, entry and exit criteria for each test type and defect life cycle is

discussed.

5.1.1 Test Execution

Figure 5.1 shows the test execution approach for the system.

Figure 5.1 Test execution approach

25

5.1.1.2 Smoke Testing

Smoke test is the process of examining the main components of the system, to ensure that

they function as expected. Typically, Smoke testing is conducted immediately after an

installation test. Successful completion of smoke testing indicates that the application is stable

enough for testing to commence. The smoke testing will validate the following:

The accuracy of the main functionality of the application

The next level of testing can be carried out without any major interruptions.

Entry Criteria

• Installation test is completed.

• Relevant data is available and databases are setup.

• Application is started successfully.

Exit Criteria

• Smoke test is successfully completed.

5.1.1.3 System Testing

System testing will verify the system’s functionality against the identified requirements

specified in the chapter 3.

Entry Criteria

• Code is unit tested. All high and critical unit testing defects are fixed. (If there are any

known defects in the release, these should be documented).

• Application is successfully installed.

• Smoke testing is successful.

Exit Criteria

• All the System test cases are executed.

• Any defects identified are recorded.

5.1.1.4 Regression Testing

The main focus of this testing is to ensure that the defect fixes have not impacted the

functionalities which was testing in the System Testing cycle.

Entry Criteria

• Application is successfully installed.

• Smoke testing is successful.

Exit Criteria

• All known issues are documented (with workarounds, if necessary).

26

5.1.2 Defect Management

Figure 5.2 illustrates the defect life cycle.

Figure 5.2 Defect life cycle

27

Chapter 6: Conclusion and Future Work

This chapter reviews the complete project work performed in an abstract level. Challenges

faced throughout the project, and lessons learnt are also discussed.

6.1 Results and Review

Web application was developed and deployed to the apache web server, such that users can

access the system via internet. Web application achieved all its objectives in the functional

level, by covering different user roles and responsibilities. Operational level success needs to

be measured after the application is opened for users and keeping live for a considerable

amount of period.

• Increase productivity by 10% by removing manual excel maintains.

• Centralized QA activities to measure productivity by displaying both manual and

automated test results in a single web application.

• Reduced time to switching application by allowing to work in different projects at

the same time.

• Improved User Experience by making both mobile and desktop friendly test

management solution.

6.2 Challenges Faced During the Project

Automated test execution using the GUI was challenging. As the project came to the

development of the test execution with a windows service, it proved to be time and effort

consuming than estimated. Finally, the feature was implanted enabling automated test

execution using GUI.

6.3 Lessons Learnt During the Project

The entire software development lifecycle helped to understand some of the software

engineering theory with clarity. Specially, how software design practices are helpful when

implementing software.

The intended application was intended to be used to test other software products. So the

accuracy should be high and zero defects are expected.

Complex use cases took more effort and time due to lack of IDE support and frameworks.

6.4 Future Work

The automated test execution through the web application is currently supported only for

windows platform only. The windows service enables this feature and for other platforms like

Linux and Mac OS the supporting service needs to be re implement.

28

The html test results and logs generated by the automated test framework will not be push

back to the test management application. It would be ideal to see the failed tests with the

failed screen shots in a central place – in the test management application.

29

References

[1] Admin. (2017, January) Gurock. [Online].

http://www.gurock.com/testrail/

[2] Admin. (2017, January) http://php.net/. [Online].

http://php.net/manual/en/intro-whatis.php

[3] wikipedia.org. (2017, April) wikipedia.org. [Online].

https://en.wikipedia.org/wiki/Object-oriented_programming

[4] Microsoft MSDN. (2015, January) microsoft.com. [Online].

https://msdn.microsoft.com/en-us/library/x9afc042.aspx

http://php.net/manual/en/intro-whatis.php
https://en.wikipedia.org/wiki/Object-oriented_programming
https://msdn.microsoft.com/en-us/library/x9afc042.aspx

30

31

Appendix A: Detailed Use Cases

Use Case ID UC-1

Title Create new users

Description Admin user create new user(s)

Primary Actor Admin User

Preconditions User should be login to the System as Admin user

Post conditions A new user should be added to the system with the default password.

Main Scenario 1. Admin user navigates to the Users module

2. Admin user enters user details and decides the user role

3. Admin user Save user details by clicking on Save & Return

4. A new user should be created in the system

5. Newly created user should be able to login to the system, providing

correct user name and default password (which can be changed

later using change password section)

Alternative Scenario 1. Admin user does not enter mandatory fields at step 2 and try to save

2. Application should display Error message.

Complexity Medium

Priority 1

Use Case ID UC-2

Title Manage users

Description Admin user manage users

Primary Actor Admin User

Preconditions Admin user has successfully created a user.

Post conditions Changes made to the user profile should get persisted.

Main Scenario 1. Admin user navigates to the Users module

2. Clicks on edit user button for an already existing user

3. Un-tick the Active option and made user inactive and Save

changes.

4. Inactive user no longer can login and with correct credentials

Account is inactive message should be prompted.

Alternative Scenario 1. Admin user make changes to an existing user

2. Does not save the changes

3. Changes should not get saved

Complexity High

Priority 1

32

Use Case ID UC-3

Title Create projects

Description Admin creates projects

Primary Actor Admin user

Preconditions Admin user has logged in to the system and navigated to the Projects sub-

section

Post conditions New projects should be created

Main Scenario 1. Admin user Adds a new Project

2. Fill all mandatory fields and Saves

3. Newly created project should be visible under the projects section

Alternative Scenario 1. Admin users ads a new Project

2. User does not fill mandatory input parameters and saves

3. Application displays message when saving the Project.

Complexity High

Priority 1

Use Case ID UC-4

Title Manage projects

Description Admin user manage projects

Primary Actor Admin user

Preconditions Admin user has already created projects in the system

Post conditions Projects can be managed by the Admin user

Main Scenario 1. Admin user edits a project

2. User saves changes

3. Changes made to projects should get saved.

Alternative Scenario 1. User does not fill mandatory input parameters and save

2. Application displays message when saving the project

Complexity Medium

Priority 1

33

Use Case ID UC-5

Title Assign users

Description Admin user assign users to projects

Primary Actor Admin User

Preconditions Admin user has created users and projects in the system

Post conditions Users should get assigned to one or more projects.

Main Scenario 1. Admin user login to the system and navigates to the Users section

2. Admin user fills Assign users to project by selecting all mandatory

fields

3. Saves assign to user

Alternative Scenario 1. User does not fill mandatory input parameters and save

2. Application displays message when saving the project

Complexity Medium

Priority 1

Use Case ID UC-6

Title Change password

Description User changes the existing password after login to the system.

Primary Actor Registered User

Preconditions User should be login to the system

Post conditions User password is being changed

Main Scenario 1. User navigates to the password reset page

2. User enters the existing password

3. User enters the new password

4. User enters the same password to confirm and save changes

5. System changes the

Alternative Scenario 1. User enters two different passwords for new and confirm password

fields

2. Saves changes

3. System displays message to enter same password

Complexity Medium

Priority 1

34

Use Case ID UC-7

Title Login

Description Registered user login to the system providing correct credentials.

Primary Actor Registered user

Preconditions Admin user has created a user in the system

Post conditions User is logged in to the system

Main Scenario 1. User navigates to the login page

2. User enters user name and password

3. User clicks on Sign in button

4. User is authenticated and user will be redirected to the dashboard

Alternative Scenario 1. User enters incorrect credentials

2. Application displays message claiming incorrect credentials and

user stays in the login window.

Complexity Medium

Priority 1

Use Case ID UC-8

Title View dashboard

Description Registered user logging to the system and view the dashboard.

Primary Actor Registered user

Preconditions User has logged in to the system

Post conditions User views the dashboard

Main Scenario 1. User navigates to the Dashboard section.

2. User views the dashboard

Alternative Scenario 1. User is not logged in to the system

2. User cannot access the dashboard

Complexity Medium

Priority 2

35

Use Case ID UC-9

Title View tests

Description Registered user views test cases

Primary Actor Registered user

Preconditions User has allocated to a project with tests

Post conditions User views test cases

Main Scenario 1. User navigates to the test library

2. User clicks on test cases

3. User can views test cases for the selected project

Alternative Scenario 1. User is not assign to a project

2. User is not allow to view test cases

Complexity Medium

Priority 1

Use Case ID UC-10

Title Add tests

Description Registered user adds test cases

Primary Actor Tester

Preconditions User has allocated to a project with tests

Post conditions User adds test cases

Main Scenario 1. User navigates to the test library

2. User navigates to the test cases section

3. User adds test cases

Alternative Scenario 1. User is not assign to a project

2. User is not allow to add test cases

Complexity High

Priority 1

36

Use Case ID UC-11

Title Search tests

Description User searches specific test

Primary Actor Tester

Preconditions Test cases available in test library

Post conditions User search tests

Main Scenario 1. User navigates to the test cases section

2. User searches for test case

3. User gets search result(s) depending on the search phrase

Alternative Scenario 1. User is not assigned to a project

2. User receives no search results

Complexity High

Priority 1

Use Case ID UC-12

Title Modify tests

Description User edits test cases

Primary Actor Tester

Preconditions Test cases available in test library for the tester

Post conditions Modifications made to the tests get save.

Main Scenario 1. Tester selects a test and edits

2. Tester made changes to the test case

3. Tester saves changes

4. Changes made to the test are saved.

Alternative Scenario 1. Tester selects a test and edits

2. Tester made changes to the test case

3. Tester returns without saves changes

4. Changes made to the test are not saved.

Complexity High

Priority 1

37

Use Case ID UC-13

Title Delete tests

Description User deletes test cases

Primary Actor Tester

Preconditions Test cases available in test library for the tester

Post conditions Deleted test cases no longer available in the system

Main Scenario 1. Tester selects a test and deletes

2. Tester accepts the confirmation message

3. Deleted test case no longer available in the system

Alternative Scenario 1. Tester selects a test and deletes

2. Tester cancel the confirmation message

3. Test case is not deleted

Complexity High

Priority 1

Use Case ID UC-14

Title Execute automated tests

Description User execute an automated test using GUI

Primary Actor Tester

Preconditions Windows service runs in the host machine

Post conditions Automated test get executed

Main Scenario 1. User select an automated tests

2. Runs the test

3. Automated test runs on the host machine

Alternative Scenario 1. Windows service is not running on the host machine

2. Automated test is not executed

Complexity High

Priority 1

38

Use Case ID UC-15

Title Add daily status

Description User adds daily status

Primary Actor Tester

Preconditions User is logged in to the system

Post conditions Daily status get saved in the system

Main Scenario 1. User navigates to the daily status section

2. User fill daily statuses

3. User saves daily statuses

4. Daily status get saved in to the system

Alternative Scenario 1. User fill daily status

2. Returns without saving

3. Daily status is not saved

Complexity High

Priority 1

Use Case ID UC-16

Title Modify daily status

Description User modifies daily status

Primary Actor Tester

Preconditions Daily status is available in the system

Post conditions Daily status get modified

Main Scenario 1. User navigates to the daily status section

2. User edits a daily status

3. User saves changes

4. Modified daily status get saved in to the system

Alternative Scenario 1. User modifies daily status

2. Returns without saving the changes

3. Daily status is not modified

Complexity High

Priority 1

39

Appendix B: Detailed Test Results

User Login Related Test Cases

Test Case Id Test Description Steps Expected Result Status

TC001 Existing user login to

the system

1. Navigate to the login page

2. Enter correct user name to

the username field

3. Enter correct password to

the password field

4. Click sign-in button

User should be

login to the

system and

should display

the dashboard.

Pass

TC002 Non-existing user login

to the system

1. Navigate to the login page

2. Enter invalid credentials

3. Click sign-in button

User should not

be able to login

to the system

Pass

TC003 Disabled user login to

the system

1. Login to the system as

Admin

2. Navigate to the Users

section

3. Select a user and click edit

button

4. Un-tick the Active check

box

5. Save changes

6. Now logout from the system

7. Try to login as the disabled

user

Disabled user

should not be

able to log in to

the system.

Message should

be prompted

stating that user

is inactive.

Pass

TC004 Deleted user login to

the system

1. Login to the system as

Admin

2. Navigate to the Users

section

3. Select a user and click on

delete button

4. Accept the confirmation

dialog

5. Logout from the application

6. Now on the login page, enter

credentials for the deleted

user and click Sign-in button

Deleted user

should not be

able to login to

the system

Pass

40

User Management Test Cases

Test Case Id Test Description Steps Expected Result Status

TC001 Adding a new user 1. Login to the system as the

admin user

2. Navigate to the Users section

3. Click Add button

4. Fill user details

5. Save details

User details

should be

displayed in the

User grid

section.

Newly added

user should be

able to login to

the system

providing the

default

password

Pass

TC002 Deactivating an

existing user

1. Login to the system as admin

user

2. Navigate to the User section

3. Select an existing user and

un-tick the Active checkbox

4. Save changes

Disabled user

cannot login to

the system and

message should

be prompted

stating user is

disabled.

Pass

TC003 Deleting an existing

user

1. Login to the system as admin

user

2. Navigate to the User section

3. Select an existing user and

click on Delete button

4. Accept the confirmation

message

User should get

deleted from the

system and

should be

remove from

the users grid

Pass

TC004 Search and Existing

user

1. Login to the system as admin

user

2. Navigate to the User section

3. Click on Search button

4. Now in the search text box,

search a phrase and click

“Go” button.

Filtered results

should be

displayed in the

grid area.

Pass

41

Project management Test Cases

Test Case Id Test Description Steps Expected Result Status

TC001 Add Projects 1. On Projects page

2. Click Add button

3. Fill project name and

description

4. Save project

Project should

get saved and

listed under

projects grid.

Pass

TC002 Edit Projects 1. On Projects page

2. Select a project and click edit

button

3. Make changes to the project

details

4. Save project

Changes made

to the project

section should

get saved and

displayed on the

project grid

area.

Pass

TC003 Delete Projects 1. On projects page

2. Select a project and click

delete button

3. Accept the confirmation alert

Project should

no longer

displayed under

the project grid

area

Pass

TC004 Assign users to Project 1. Click Add button under

Assign user to project section

2. Select user ID and Project ID

3. Click Save button

User should get

assign to the

project and

should get

displayed in the

grid area

Pass

42

Hosts Test Cases

Test Case Id Test Description Steps Expected Result Status

TC001 Add new hosts 1. On Hosts section

2. Click on Add new hosts

button

3. Fill mandatory fields

4. Save hosts

Newly added

host should get

saved under the

host grid

Pass

TC002 Edit hosts 1. On hosts section

2. Select a host and click on Edit

button

3. Make changes and Save

Changes should

get saved

Pass

TC003 Delete hosts 1. On hosts section

2. Select a host and click on

delete button

3. Accept the confirmation alert

Host record

should get

removed from

the hosts section

Pass

Test Cases for Test Suites

Test Case Id Test Description Steps Expected Result Status

TC001 Add test suites 1. On Test suites page

2. Click on Add button

3. Fill test suites section

4. Click Save button

New test suite

should get

added to the

Test suite

section

Pass

TC002 Edit test suite 1. On test suite page

2. Click on Edit button

3. Make changes to the test suite

4. Click Save button

Changes made

to the test suite

should get

saved and

reflected on the

Test suite

section

Pass

TC003 Delete test suite 1. On test suite page

2. Click on Delete button

3. Accept the confirmation alert

Test suite

should get

deleted

Pass

43

Test Cases for test case section

Test Case Id Test Description Steps Expected Result Status

TC001 Add test cases 1. On test case page

2. Click on Add button

3. Fill test cases section

4. Save test case

Newly added

test case should

be listed under

test case grid

Pass

TC002 Edit test case 1. On test case page

2. Click on Edit button

3. Do some changes to the test

case

4. Save changes

Changes made

to the test case

should get

reflected on the

grid area

Pass

TC003 Delete test case 1. On test case page

2. Click on delete button

3. Accept the confirmation alert

Test case should

get deleted from

the grid area

Pass

TC004 Add test case to a test

suite

1. On test case page

2. Click on edit test case

3. Select test suite from the test

suite dropdown

4. Save changes

Changes should

get saved and

test case should

be now under

the selected test

suite

Pass

TC004 Execute test case 1. On test case page

2. Select a test case and click on

edit button

3. Navigate to Execute section

4. Change the status

5. Click on Save button

Test case status

should get

changed and

grid area should

display

corresponding

color against the

test case status

Pass

44

Test Cases for Daily status

Test Case Id Test Description Steps Expected Result Status

TC001 Add daily status 1. On daily status page

2. Click on Add button

3. Fill daily status

4. Save daily status

Daily status

should get

saved

Pass

TC002 Edit daily status 1. On daily status page

2. Click on Edit button for a

daily status

3. Make some changes and Save

Changes should

get saved

Pass

TC003 Delete daily status 1. On daily status page

2. Click on delete button for a

daily status

3. Accept the confirmation alert

Selected test

case should get

deleted from the

test case section

Pass

Test Cases for Dashboard

Test Case Id Test Description Steps Expected Result Status

TC001 Test Execution Stats 1. On Dashboard page

2. Validate Test execution stats

display correct values

Test case count

should be

correct and

status count also

should tally

with the Test

case section

count

Pass

TC002 Test Execution

Overview

1. On Dashboard page

2. Validate test execution

overview colors and count

Pie chart should

display the

correct values

as per the test

execution stats

section

Pass

