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Abstract 

The surface net as a whole does not provide the capabilities for an individual to share 

all kinds of information without having to take responsibility for the content posted 

by the individual. In a place where surface net fails, darknet prospers. Individuals with 

the need to share information with plausible deniability use darknet to achieve this 

end of the goal. However, the usability issues of the darknet act as a continuous 

hindrance to the use and growth of darknet. Thus, there is a requirement for a 

secure, decentralized name system for darknet, to overcome the above issue. 

 

In this document, the Onion Name System (OnioNS) is considered as a possible 

candidate to overcome the above-mentioned issues. Primarily the security concerns 

OnioNS introduces to the Tor network is analysed. Special concern is given to the 

possibility of time analyses attacks that could be carried out on the Tor network due 

to restrictions imposed by the OnioNS. The concerns raised are addressed in this 

dissertation and a method to overcome them is introduced. A novel hash tree data 

structure is introduced as the core component of the proposed solution. The 

proposed solution is analysed in order to guarantee that it is capable of implementing 

all the features of the OnioNS while minimizing the security threats the existing 

system imposes on Tor network.  

 

Further analysis of the novel solution is discussed in order to identify if the solution 

introduced has implemented any additional vulnerabilities to the Onion Name System 

or the Tor network. 

  



iii 

Preface 

The research idea originated from my interest to learn about and contribute to the 

network and information security domain. The contents that are taken from works 

other than of my own are referenced and acknowledged accordingly. The code 

snippets provided in the section five as well as appendix A, are works of myself. The 

implementation of the solution, result analysis and was carried out under the 

supervision of my supervisor. 

 

  



iv 

Acknowledgement  

I would like to express my sincere gratitude to my research supervisor, Dr T. N. K. De 

Zoysa, senior lecturer at University of Colombo School of Computing and my co-

supervisor, Mr T. G. A. S. M. De Silva, assistant lecturer at University of Colombo 

School of Computing, for providing immense support and guidance throughout the 

research. 

 

I would like to extend my thanks to Mr P. Wijesekara, Research Scholar at the 

University of California, Berkley, and Mr. Jesse Victors, a contributor to the Tor 

Project, for providing me with content and suggestions, through the period to 

continuously improve the research carried out. Special thanks must be given out Mr 

P. N. Pieris, Mr T. Ranathunga, Mr V. D. Liyanage, Mr S. S. K. Malkakulage and Mr T. 

Deshan for helping out with various aspects of the research. I also would like to 

express my gratitude to Dr J. S. Goonatilake and Dr C. K. Keppitiyagama for the 

feedback and evaluation provided from the start of the research. Special thanks to Dr 

H. E. M. H. B. Ekanayake for the assistance provided as the computer science project 

coordinator of the final year. 

 

Further, I would also like to acknowledge all the support provided by friends and 

family members to complete this research as it is. As a final note, I would like to thank 

and recognize the contribution of all the people that helped me in any regard, to 

complete this research. 

  



v 

Table of Contents 

Declaration ............................................................................................................. i 

Abstract ................................................................................................................. ii 

Preface .................................................................................................................. iii 

Acknowledgement ................................................................................................ iv 

Table of Contents ................................................................................................... v 

List of Figures ........................................................................................................ vii 

List of Tables ........................................................................................................ viii 

List of Acronyms .................................................................................................... ix 

Chapter 1 - Introduction....................................................................................... 1 

1.1 Background to the Research ................................................................................. 2 

1.2 Research Problem and Research Questions ......................................................... 4 

1.3 Justification for the research ................................................................................ 4 

1.4 Methodology ......................................................................................................... 6 

1.5 Outline of the Dissertation ................................................................................... 7 

1.6 Delimitations of Scope .......................................................................................... 7 

1.7 Summary ............................................................................................................... 8 

Chapter 2 - Literature Review .............................................................................. 9 

2.1 Introduction .......................................................................................................... 9 

2.2 Approaches for Darknet Naming Systems ............................................................ 9 

Chapter 3 - Design ............................................................................................. 15 

3.1 Introduction ........................................................................................................ 15 

3.2 Research Design .................................................................................................. 15 

3.3 Time Window Limitation Analysis ....................................................................... 16 



vi 

3.4 Hash-able data structures ................................................................................... 18 

3.5 Authenticated Skip List ....................................................................................... 18 

3.6 B+ Hash Tree ....................................................................................................... 19 

3.7 Summary ............................................................................................................. 23 

Chapter 4 - Implementation ............................................................................... 24 

4.1 Introduction ........................................................................................................ 24 

4.2 Software Tools .................................................................................................... 24 

4.3 Implementation Details ...................................................................................... 24 

4.4 Summary ............................................................................................................. 27 

Chapter 5 - Results and Evaluation ..................................................................... 28 

5.1 Introduction ........................................................................................................ 28 

5.2 Results ................................................................................................................. 28 

5.3 Summary ............................................................................................................. 32 

Chapter 6 - Conclusions ...................................................................................... 33 

6.1 Introduction ........................................................................................................ 33 

6.2 Conclusions about research questions ............................................................... 33 

6.3 Conclusions about research problem ................................................................. 35 

6.4 Limitations ........................................................................................................... 35 

6.5 Implications for further research ........................................................................ 36 

References ........................................................................................................... 37 

Appendix A: Code Listings ..................................................................................... 39 

 

  



vii 

List of Figures 

Figure 1.1: Zooko's triangle ............................................................................................. 3 

Figure 1.2: Proposed research methodology.................................................................. 7 

Figure 2.1: High-level data flow diagram in OnioNS [4] ............................................... 13 

Figure 3.1: High-level design diagram ........................................................................... 16 

Figure 3.2: Authenticated skip list [21] ......................................................................... 19 

Figure 3.3: B+ hash tree design ..................................................................................... 20 

Figure 3.4: Insertion Algorithm ..................................................................................... 21 

Figure 3.5: Split_Interior Function ................................................................................ 22 

Figure 3.6: Verification Algorithm ................................................................................. 22 

Figure 5.1: Initialization time analysis........................................................................... 30 

Figure 5.2: Insertion time analysis ................................................................................ 31 

Figure 6.1: Build errors.................................................................................................. 36 

 

  

file:///C:/Users/REBEL/Documents/Hard%20Bind/Enhancing%20the%20Onion%20Name%20System%20for%20Darknet.docx%23_Toc514814561
file:///C:/Users/REBEL/Documents/Hard%20Bind/Enhancing%20the%20Onion%20Name%20System%20for%20Darknet.docx%23_Toc514814562


viii 

List of Tables 

Table 5.1: Tree initialization time comparison ............................................................. 29 

Table 5.2: Node insertion time comparison ................................................................. 30 

 

 

  



ix 

List of Acronyms 

 

UTC    –  Universal Time Coordinated 

ISP   –  Internet Service Provider 

OnioNS   – Onion Name System 

OnionDNS  –  Onion Domain Name System 

GNS   –  GNU Name System 

GNU    –  GNU’s Not Unix 

 



1 

Chapter 1 -  Introduction 

With the growth of the Internet and other means of communication, the 

online privacy and security of an average person are continuously put to the test. 

Therefore, with the increasing risks, the development of privacy-enhancing 

technologies has also increased. Though there have been various attempts, on the 

surface web, the anonymity guarantees are not given to the user. As the underlying 

UDP, TCP or IP protocols cannot hide their headers, the routing information between 

two parties on the traditional Internet, is visible to other parties. 

 

Following the growing concerns about privacy and anonymity, the users have 

been increasingly turning towards privacy enhancing technologies, in recent years. As 

an out of the box solutions, users tend to use proxies and VPNs primarily to enhance 

their privacy. As these tools, itself keeps track of users; they cannot be taken as 

better tools to enhance privacy [1]. 

 

Most of the anonymity tools that are in use today, are descendants of the 

early mixnets [2], that were invented in the early 1980s. In a mixnet, the user traffic is 

scrambled, delayed, retransmitted and partially decrypted, before being received at 

the final destination. This heavily obscures the correlation between the source and 

the destination of the traffic. Therefore, it adds anonymity and privacy, to a certain 

level, when exchanging network traffic. Tor is a descendant of early mixnets, which 

uses a three-hop circuit between a server and a client, to provide privacy and 

anonymity, to both the client and server. However, Tor suffers from a particular flaw 

since its inception. That is, any hidden service that is in Tor is given a hash value for a 

domain, instead of a memorable human name. Though this has not limited the 

popularity of Tor, it could be seen that, if a more DNS like human memorable naming 

system could make Tor much user-friendlier. There have been more than a few 

approaches to make this a reality, such as OnionDNS [3] and OnioNS [4], which are 

described in detail, in the literature review. 
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1.1 Background to the Research 

The Onion Router – Tor [5] is currently the most popular low-latency onion 

routing system which provides privacy and anonymity for the users. The services 

provided by Tor are mainly of two folds. One being, providing mechanisms for a 

regular user to browse the surface net with anonymity guarantees. Second being, Tor 

providing access to a unique set of websites in the Darknet known as Hidden Services 

or Onion Services. Recent studies show that Tor provides the users access to over 

45,000 hidden services on average [6]. 

 

Hidden services are provided in such a way to mask the service’s IP address 

from the users. To access an onion service, the service should be referenced by the 

first 16 characters of the SHA-1 hash of the service’s public RSA key. This reference is 

then appended with a ‘.onion’ pseudo-top level domain to complete the onion 

address of the service. The constructed onion address is equivalent to a URL that is 

used in the surface net. Therefore, an address constructed through the above 

mechanism could be used to access the service. The usage of the service’s public key 

makes it possible to confirm the one-to-one relationship between the service and the 

provided address of the service. ‘32rfckwuorlf4dlv.onion’ is a hidden service address 

which points to Onion URL Repository. This is an example for the 16-character hash 

address generated for hidden service reference. It is abundantly clear that such an 

address is not memorable. 

 

Even though such an address is not human-meaningful, by providing such an 

address, Tor achieves the ability to provide security and decentralization. In this 

context, security refers to having an abundantly large collision free address space, 

which in turn guarantees that each address is unique in the tor network. 

Decentralization allows the tor network to be resistant to various security risks and 

censorship attempts against the network. 

 

In 2001, Zooko Wilcox-O’Hearn proposed a conjecture which came to know as 

Zooko’s triangle [7]. Figure 1.1 shows the Zooko’s triangle. It stated that a persistent 
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naming system could only achieve two at a time of three properties, namely, Human-

meaningfulness, Decentralization, and Security. This model provides a general 

explanation of why Tor addresses are not capable of achieving human-meaningful 

names, since its inception in 2002. However, this is not the case since, in the recent 

years, several models that exhibit all three desirable features of a naming system has 

been modelled [8] [4]. 

 

 

Figure 1.1: Zooko's triangle 

 

Due to the recent actions that were taken by governments to censor DNS, 

various attacks [9] and following recent security revelations by Edward Snowden, the 

demand for anonymous access to uncensored information has been growing rapidly 

each passing day. According to stats taken in 2015, Tor serves a user base averaging 

two million per day [6]. This growing userbase presses the need for a human-

meaningful, decentralized and secure addresses for the onion services. 

 

As described in detail in the literature review, the Onion Name System 

appears to be at the forefront of creating a proper usable naming system for Tor 

hidden services. However, the naming system itself possesses the capability to 

introduce a new attack surface to the onion router. If a naming system is to be 

implemented to the darknet, extra care has to be taken to make sure that the 

addition would not impact the secure decentralized nature of the Tor network. 
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1.2 Research Problem and Research Questions 

The research problem is stated as follows.  

“What are the mechanisms that could be implemented to enhance the Onion Name 

System and to enforce better security to the entire system?”  

 

A set of research questions as follows can be generated from this research problem.  

 What are the existing vulnerabilities in the Onion Name System?  

 What methods could be proposed to overcome these vulnerabilities?  

 Does the proposed method perform better than the existing approach in the 

system?  

 Does the proposed method introduce new vulnerabilities to the system?  

1.3 Justification for the research 

Darknet and hidden services, from the inception, have failed to achieve the 

widespread success internet achieved. Among several other factors, one of the main 

reasons for the above, is the usability issues of the darknet. Due to these as well as 

the added latency, users find it difficult to access hidden services and the surface net 

alike, using the onion router. The major reason for the usability issues is, as explained 

above, the lack of human meaningfulness in an onion address used to access a hidden 

service. As a result, only a limited number of onion services gets frequently accessed, 

whereas a majority of the onion services, which averages around 45,000 per day, 

does not get visited. Due to lack of traffic and other issues, a lot of hidden services 

gets shut down as fast as they pop up. Therefore, it is evident that a proper naming 

system must be added to the onion router to mitigate the closing down of hidden 

services, that happens due to the lack of traffic. It can also be speculated that, if the 

above-mentioned usability issues of darknet get removed, the growth rate of hidden 

services along with the userbase, will increase. 
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However, while improving the usability issues of the darknet, it also has to be 

kept in mind to not to break the existing security and the decentralized nature of the 

darknet and the onion router. Therefore, any naming system that is to be introduced 

should be closely monitored to make sure that it does not introduce additional attack 

surface or give an additional motive for an attacker to attack the network. It also has 

to be kept in mind that, an adversary can actively or passively monitor network traffic 

to deanonymize Tor users.  

 

To date, there has never been a reported global adversary attack on Tor, but it 

has also does not rule out the probability of there ever being one. This statement is 

made with regard to several observations of the Tor architecture as well as geo-

political agreements which are currently prevailing in the world. Tor as a low latency 

router, was not designed to be secure against a global passive adversary [5]. A global 

passive adversary, if such an entity could exist, is capable of monitoring the incoming 

traffic to Tor and outgoing traffic from Tor, without necessarily having the capabilities 

of decrypting the traffic. Such an entity could easily use traffic correlation techniques 

to statistically deanonymize users as well as hidden services.  

 

It has to be clearly noted that the threat of a global passive adversary is not as 

farfetched as it sounds. A country could easily be a global adversary for a user within 

the country who communicates with a hidden service that is hosted in that country 

itself. The government generally have the authorization to monitor the traffic and 

hence the communication between the user and the service could be easily 

monitored. Due to various geo-political agreements, it also has to be noted that a 

country may very well be capable of monitoring the network traffics of other 

countries. As an example, agreements among nations such as the Five Eyes 

agreement [10] allows powerful countries to share intelligence, which often is signal 

intelligence. Therefore, it is evident that a powerful player is very much capable of 

monitoring a significant amount of internet traffic in the world.  

 

However, due to economic reasons, it could be shown that the amount of 

internet service providers or ISPs that has to be monitored is drastically reduced. This 
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is because, the number of places where big Tor relays could be hosted is limited. The 

statement is based on two factors. First factor is that, in order to host a Tor exit node, 

an ISP with fast connections and cheap bandwidth along with hosting has to be 

selected. Therefore, it is evident that there is no pressing need to monitor majority of 

the non-economical ISPs for their traffic in order to deanonymize Tor. In addition to 

that, a considerable number of ISPs consider the traffic that goes in and out of a Tor 

relay as a violation of terms of services. Therefore, in order to host a Tor relay an ISP 

which does not consider a Tor relay, a violation of services has to be picked. These 

limitations drastically reduced the number of ISPs that has to be monitored in order 

to truly become a global adversary.  

 

With the above-mentioned limitations and possibilities, if an adversary can 

even monitor a limited set of ISPs, it has the capability of becoming a global passive 

adversary. Therefore, special care has to be taken to make sure that introduction of a 

naming system such as the Onion Name System, does not improve the probabilities 

of an attack on the Tor network, even in case of a global adversary.  

1.4 Methodology 

The proposed methodology is of four folds as shown on Figure 1.2. The first 

step is to analyse the probable attack surfaces on the Onion Name System, to which 

no heed is paid to typically, such as the possibility of a global adversary. Next step is 

to evaluate the Onion Name System to find out the alternative mechanisms that 

could be considered, to change the vulnerable time window of ticket submission in 

the Onion Name System. The third step of the proposed approach is the replacement 

of the identified vulnerable components in the OnioNS, through the analysis. The 

fourth step is to analyse the introduced mechanism to see if it solves the issues 

mentioned above, as well as to see if it has introduced any new flaws to the onion 

name system. 
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Figure 1.2: Proposed research methodology 

1.5 Outline of the Dissertation 

The dissertation is structured as follows. The chapter two covers possible and 

tested approaches to introduce a naming system for darknet and the Onion Name 

System in detail. Chapter three explores in detail the design of the proposed solution 

and the implantation details are mentioned in chapter four. The evaluation criteria of 

the research and the evaluation of results obtained are discussed in detail, in chapter 

five. Chapter six concludes the dissertation with a discussion about the possible 

future works for the proposed solution. 

1.6 Delimitations of Scope 

As a part of the research, suitable modifications would be done to the internal 

data structures of the Onion Name System in order to evaluate the impact of changes 

on the system. The content provided by hidden services that requests for names from 

the Onion Name System will not be considered within the scope of the research. 

Analyse the Onion Name 
System  

Propose a solution to overcome 
vulnerabilities discovered 

Implement the solution 

Analyse the solution 
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1.7 Summary 

In a summary, this chapter laid the foundation for the dissertation. It 

introduced the background of the research which led to the research problem, 

concerned with the security and performance enhancement of the Onion Name 

System. Additional research questions that arises were then discussed and the need 

for a research on the topic was justified. The methodology for the research was 

outlined and the delimitations to the scope were also described.  
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Chapter 2 -  Literature Review 

2.1 Introduction 

The chapter explores the current approaches and related work on developing 

a naming system for darknet hidden services. Both the practical approaches that are 

currently being used as well as more theoretical yet applicable solutions in other 

domains are discussed in detail in section 2.2. Section 2.3 covers the Onion Name 

System in detail. In section 2.4, concerns about traffic correlation attacks on Tor and 

section 2.4 provides a conclusion to the chapter. 

2.2 Approaches for Darknet Naming Systems 

Multiple attempts and research have taken place to provide memorable 

addresses to Tor hidden services with the growth of Tor. The most notable of these is 

the use of Vanity key generators such as Shallot [11]. This brute-force approach is 

used to find an RSA key which in turn generates a partially-memorable hash value for 

the address of the onion service. ‘facebookcorewwwi.onion’ is a hash address of 

Facebook hidden service, that was generated using similar methods. One major 

shortcoming of this approach is that it is not capable of computing a full human-

readable name across the entire character space within any reasonable timeframe. 

Also, if the entire character space could be brute forced, the naming system would 

fail to remain collision-free. To make the case worse for these brute force 

approaches, Tor plans to increase the size of the character space to be used to 

identify a hidden service [12]. Therefore, a conclusion could be drawn that, Shallot 

and other vanity key generators are not capable of providing hidden services with a 

proper naming system. 
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A different approach for address manipulation was suggested by Nicolussi 

[13]. It was proposed to use a dictionary, pre-known to all the parties, to be used to 

change the encoding of the address from base32 to a delimited series of words. While 

this solution increases readability of an address, it provides another difficulty. The 

user still would have to manually enter the address into the browser, making it an 

impractical solution.  

 

The DNS used in the Clearnet could be considered as an approach to providing 

human-meaningful domain names to the hidden services. However, the typical 

architecture of DNS does not give priority to security and therefore, vulnerable to 

many security threats such as Man-In-The-Middle attacks and DNS cache poisoning. 

DNSSEC, an alternative that addresses these issues was introduced, but currently, is 

not widely adopted. One severe flaw in both the DNS and DNSSEC is the hierarchically 

distributed, yet centralized architecture of the approach. This makes the system 

vulnerable to government level censorship as discussed in the above section.  

 

GNU Name System [14] also provided a zone-based alternative for DNS. GNS 

uses a hierarchical zone-based approach which assures the uniqueness of a name 

within each zone. However, this does not mean the names are globally unique. 

Therefore, adopting GNS to provide names for Tor hidden services, is doubtful. 

 

Another notable research that was done by creating a system that provides 

seizure resistant domain names is OnionDNS [3]. This particular research creates a 

single root server in the Tor network to provide the name service. The service uses, 

the anonymity guarantees provided by Tor to ensure that the approach is seizure 

resistant. The method also provides revocation methodologies, if the root server 

becomes compromised. A major flaw that is seen in the method is that, even if it is 

difficult, the system could be compromised due to its fundamental centralized 

approach of having a single root server. In case of a compromised root server or a 

malicious root server, the recovery process may take time, which makes the system 

unstable, even for a period.  
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Namecoin [8] was the first of its kind to achieve all the desirable traits of a 

naming system while being fully decentralized. It is based on an initial fork of Bitcoin 

[15] in 2011 and uses blockchains to create an append-only public ledger to hold 

information about transactions and names. The concept of “miners” that provides a 

proof-of-work to every transaction that was used provides a mechanism to make sure 

that the blockchain is irreversible. Although this is a good security measure, the size 

of an append-only data structure continues to grow with time, creating practical 

issues of usability of the system. Further, Harry Kalodner et al. [16] analysed the 

decentralized namespace provided by namecoin and found out that due to 

fundamental flaws in the algorithm incorporated in distributing domains, the 

namecoin system was exposed to land rush attacks from its inception. Thus currently, 

the majority of the namespaces are held by domain squatters, making namecoin 

essentially a dysfunctional system. Further, the authors have mentioned another flaw 

in the system is that it does not provide a mechanism to map the one-to-one 

relationship between the address and the place it points to. However, this particular 

issue could be addressed by the method proposed by C. Allen et al. in the whitepaper 

that addresses the creation of a Decentralized Public Key Infrastructure [17]. 

However, even with the integration of this methodology to namecoin system, it still 

suffers from usability issues that were mentioned above. 

 

The most promising approach that was proposed for providing human-

meaningful domain names for hidden services is the Onion Name System [15]. A 

detailed description about the OnioNS is given in the following chapter. 

2.3 The Onion Name System 

Proposed by J. Victors et al. the Onion Name System provides an optional, 

backward-compatible, decentralized, meaningful and a globally unique, verifiable 

domain name system for darknet. In order to achieve this, it was proposed to create a 

decentralized set of Quorum nodes that replicate the set of records associated with 

domain names for hidden services in a Merkel tree structure. Quorum nodes are a 
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subset of onion routers in the Tor network, with a predefined set of capabilities. In 

order to acquire a domain name by a hidden service, a ‘ticket’ has to be generated by 

the hidden service owner and submitted to the Quorum. From the submitted set of 

tickets to the Quorum, in order to select a winning set of tickets, a lottery based 

approach was proposed by the authors. The approach makes the hidden service 

provide a proof-of-work to generate a request for a particular domain. When 

generating the proof of work, the RSA private key of the hidden service was required 

in each CPU iteration, to sign the calculated proof-of-work. This discourages the 

hidden service owners from outsourcing of the calculation to external parties with 

higher computational powers. However, the cases where a hidden service owner is 

willing to share the private key with trusted parties, to generate the proof-of-work is 

not addressed in this research.  

 

When storing the records or tickets in the Quorum nodes and mirror nodes, 

two main data structures are used. An AVL tree to store the records which supports 

efficient retrieval of records for a client query and a Merkle Tree which supports 

verifiability for a retrieved record. In order to insert new records to the system, as 

Merkle Tree data structure does not support insertions, the entire data structure has 

to be regenerated, which takes  time. Since it is an expensive operation, 

the tree is regenerated only once, for every 24-hour time period, which happens after 

00:00UTC. However, the ticket submission process in the OnioNS imposes some 

restrictions to the hidden services. The hash commitment of a generated ticket has to 

be submitted to the Quorum within a limited time window or in a delta amount of 

time, which is less than ten minutes. This time window also takes place, at a specific 

static time frame, which is at 00:00UTC. Therefore, to summarise this, the hash 

commitment of the ticket has to be submitted to the Quorum from 23:55 – 

00:00UTC.  High-level data flow of the OnioNS is shown in figure 2.1. 

 

Restricting the time interval where a hidden service has to communicate with 

the Quorum to a specific timeframe which could potentially be targeted by an 

adversary, raises some questions. A potential adversary can monitor a network during 

these static time frames, which consumes relatively low amount of resources and 
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time compared to a 24-hour monitoring station and yield good results as the 

probability of hidden services communicating at that time interval is very high. Thus, 

it can be safely assumed that, in case of a global passive adversary or an 

approximation of such an entity, would be able to deanonymize hidden services, 

based on this limitation of OnioNS. Therefore, a mechanism to achieve the same set 

of goals without compromising the secure nature of the Tor network and the 

anonymity of the users has to be implemented, prior to a widespread 

implementation of OnioNS. 

 

 

Figure 2.1: High-level data flow diagram in OnioNS [4] 

2.4 Traffic Correlation Attacks on Tor 

Traffic analysis, confirmation attacks are a special set of attacks conducted by 

observing the communication patterns between two or more entities in a network. 

The analysis could be done using several mechanisms, such as by observing the traffic 

volumes as well as the times the time of communication. Due to the wide variety of 

ways the messages can be observed, the attacks could be commenced even on 

encrypted traffic [18].  
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In a low-latency anonymity network such as Tor, the protection against traffic 

correlation attacks that could be done by a significant adversary is minimal [5]. In the 

past few years, there has been a considerable amount of research on the domain. In a 

research done in 2013, the author states that given enough time, which is roughly 

three to six months into analyzing the traffic of the Tor network, with a probability of 

50% to 80%, a user can be deanonymized [19]. The author K. Müller, in his thesis, also 

points out, based on the current size of the Tor network, end-to-end traffic 

confirmation attacks could be successfully carried out.  

 

Therefore, it’s abundantly clear that Tor itself is vulnerable, even without a 

global passive adversary.  

2.5 Summary 

The chapter discussed the possible naming approaches that could be taken, to 

provide names for hidden services, along with their advantages and disadvantages. It 

is evident from the above that the Onion Name System is the most suitable candidate 

to provide the most practical solution to naming hidden services, based on the 

current research. However, as mentioned, there are limitations in OnioNS, and these 

could be vulnerabilities based on the possibilities of traffic correlation attacks as 

discussed in section 2.4. Therefore, it is abundantly clear that necessary precautions 

against such limitations has to be taken, in order to mitigate any such risks. 
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Chapter 3 -  Design 

3.1 Introduction 

This chapter details about the design approach proposed in this research. 

Section 3.2 covers the high-level research design of the research project and in 

section 3.3 solutions for limitations of the OnioNS is discussed. The following sections 

discuss in detail about hash-able data structures, authenticated skip lists and B+ hash 

trees.  

3.2 Research Design 

The high-level research design is of five folds. Analysing the current Onion 

Name System is the first step. This was covered in detail in the literature review. 

Through the above, the conclusion that OnioNS is prone to traffic correlation attacks 

were drawn. Secondly, the reasons for introducing the above-mentioned time 

window, within the OnioNS had to be identified. This identification and analysis of 

solutions is discussed in detail in the next section. As the third step possible 

architectural decisions that could be taken in order to mitigate the issue at hand is 

considered. If the solution is capable of addressing the issues, it has to be 

implemented as the fourth step. The implementation details of the solution are 

discussed in detail in chapter four. The fifth step is to analyse the implemented 

solution. The steps three, four and five is a recursive process, which is to be done 

over and over again, until a best fit solution to the problem at hand is found. 
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Figure 3.1: High-level design diagram 

 

3.3 Time Window Limitation Analysis 

When implementing the Onion Name System, due to design and architectural 

decisions that were taken, the authors have limited the ticket hash submission 

window time to a limited static time period, as discussed above. As a way to mitigate 

the limited time window that appears once every 24-hours, an alternative suggestion 

would be to replicate the same time window, more often during the same 24-hour 

period. An example would be to create a five-minute time window for ticket hash 

submission, every hour. By doing so, an adversary would have to monitor the 

network 24 more times, to arrive at the same level of results as previously given by 

the Onion Name System. This implies that the adversary has to expend nearly 24 

times resources and time to arrive at the same set of results. 

 

To truly yield the advantage of opening an hourly window, the newly 

submitted records would also have to be added to the Onion Name System Quorums, 

in order to make the records readily accessible to a seeker, within a very short 

amount of time. The current system takes roughly 24-hours for a new name to 

register a name. Even though the content provided by the hidden services is out of 
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scope for this research, it has to be noted that these services share extremely 

sensitive information. When looking at the statistics it can be seen that darknet 

hidden services often does not last a day or few days at a time, continuously. The 

reasons for the non-continuity can only be speculated. But it is clear that, due to the 

above non-continuity, significant amount of information in the darknet gets taken 

down, prior to be seen by a considerable number of users. On the other hand, if a 

domain name could be requested and received by a service within a short amount of 

time, the contents of the service has the chance to be associated by a considerable 

number of users, prior to being taken down by the service administrator or some 

other entity that has the physical access to the server. 

 

At the core of the Onion Name System, a Merkle Tree data structure is used in 

order to provide record verification functionality and to provide proof for the non-

availability of a record at the Quorum. Therefore, it is mandatory that each newly 

accepted record be updated in the Merkle Tree. Since Merkle Trees do not support 

dynamic updates, for each update, the Tree has to be rebuilt. Rebuilding the Merkle 

Tree is an expensive operation that takes  time. In the current version of 

the OnioNS, this trade-off is rather fine, considering that the tree only gets 

recompiled once, every 24-hours. If it had to be recomputed every hour, the cost of 

the re-computation may very well be out of the affordable range for the system. 

Therefore, it could be seen that a verifiable data structure that is capable of 

addressing all these concerns, that also provides dynamic updating capabilities would 

be the better choice in a such a situation. In the following three sections such 

verifiable data structures are discussed. An alternative data structure must possess 

the capabilities of verifiability and authenticated denial of existence. Authenticated 

denial of existence is the ability of the data structure to prove the non-existence of a 

node within the data structure. 
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3.4 Hash-able data structures 

Any data structure that is capable of being hashed entirely, is a candidate for 

this solution. After each dynamic update operation on the data structure, the entire 

data structure can be hashed and the hash value can be stored in a separate location. 

Verifying the integrity of the data structure is straight forward. A user has to cross 

reference the hash value to see if the data structure has undergone any changes. If 

the hash value does not agree with the pre-possessed hash value of the data 

structure the user can arrive at the conclusion that the data structure has been 

changed from the last time the user accessed it. However, in order to do this, a tight 

coupling between the data structure and the hashed value has to be enforced during 

the implementation of the data structure. Another flaw of the above approach is that 

even though verification is straight forward, providing the authenticated denial of 

existence in a data structure with the usage of a single hash value is not feasible. 

Therefore, the above method is not considered for an implementation within this 

research. 

3.5 Authenticated Skip List 

An authenticated skip list is a verifiable data structure based on the skip list 

data structure. A successful implementation of an authenticated skip list was done by 

Goodrich et al. [20] and was able to arrive at  time complexity for 

insertion, deletion, update and retrieval of values for the list, in the average case. 

However, the skip list is a probabilistic data structure which suffers from a worst-case 

time complexity. In the worst case all the above-mentioned operations take  

time complexity to perform. The data structure’s capability to land at the worst case 

with a probability may provide an adversary to exploit the data structure in a way to 

mitigate the efficiency of the overall OnioNS in the future. Therefore, the above data 

structure is not considered for implementation in this research. 
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Figure 3.2: Authenticated skip list [21] 

3.6 B+ Hash Tree 

Since there were no suitable verifiable data structures that were capable of 

providing all the features provided by a Merkle Tree data structure was not readily 

available at hand, it was decided to implement a novel verifiable data structure using 

a B+ Tree. A B+ Tree was chosen as it fulfilled the following design considerations. 

1.  time complexity at both the average and worst case running times. 

2.  storage complexity. 

3. Non-leaf nodes only store keys leading to values. 

4. Leaf nodes store the entirety of values. 

5. Self-balancing. 

 

The importance of a consistent time complexity throughout is self-evident. The 

importance of all the values being present at the leaf node level is advantageous to 

provide authenticated denial of existence. Also, the non-existence of a value could be 

showcased by providing the right sibling and the left sibling of the searched value, 

and their paths leading up to the root node. In order to do that, all the actual records 

must be in the same level within the tree, which is, in this case the leaf level, in an 

ordered manner. The B+ Hash Tree is capable of achieving this property, as it by 

design pushes all the intermediate values to the leaf nodes. 

 

Figure 3.3 shows the design of the proposed B+ Hash Tree.  
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Figure 3.3: B+ hash tree design 

 

The B+ Hash Tree follows the same architecture as that of a regular B+ tree. 

However, the pointers that are used in the regular B+ tree in order to interconnect 

the leaf nodes, is not implemented as part of the design as for the current context a 

single leaf node is capable of storing the entirety of the record within it. Thus, no 

requirement to further traverse through the leaf nodes is not needed.  

 

In addition to the regular setup of a B+ tree, each leaf node L has an additional 

attribute named Hash, to store the SHA256 hash of the node itself. Each non-leaf 

node also possesses the same attribute, where the value stored at the Hash changes 

to the hash of the aggregated hash values off all its children nodes. Therefore, the 

hash value is propagated up to the root node of the file, where the root node hash 

reflects the entire tree. For each operation performed on the data structure, the hash 

value of the changed leaf node, and any other node that were affected by the self-

balancing of the tree, has to be recalculated, leading up to the root node. Hence, 
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every operation performed upon the tree is reflected through the root node hash 

value.  

The B+ Hash Tree algorithm mainly comprises of two parts, namely Insertion 

and Verification. The algorithmic design of the B+ Hash Tree is given below. 

 

Figure 3.4: Insertion Algorithm 

 The above algorithm utilizes ‘split_interior’ function which is used to facilitate 

the insertion of interior nodes. The algorithmic implementation of the function is 

given below. 
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By utilizing the above algorithm design, the B+ Hash Tree can be implemented. 

However, to perform an effective and verifiable search within the data structure for a 

particular node, further verification algorithm has to be designed. The below 

algorithm provides a verification mechanism for searched nodes, with the use of 

hashing. 

 

Figure 3.5: Split_Interior Function 

Figure 3.6: Verification Algorithm 
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3.7 Summary 

A high-level description of the research design and considerations is given in 

this chapter. The need for a new data structure to replace Merkle Trees was 

discussed in detail and the preferable features of such a data structure was discussed. 

Detailed descriptions of various possible data structures were given in the chapter 

and the novel B+ hash tree data structure was proposed, considering the merits the 

proposed data structure has over other similar verifiable data structures. 



24 

Chapter 4 -  Implementation 

4.1 Introduction 

Software implementation of B+ hash tree is discussed in detail in this chapter. 

The section 4.2 contains details of the software tools and libraries used for the 

implementation. Section 4.3 highlights the implementation details of the B+ hash tree 

on a code level. 

4.2 Software Tools 

The implementation of the solution was done using Python 3.6. The ‘hashlib’ 

python library was used to gain sha256 hashing capabilities for the implemented 

solution as could be seen in the code level implementation.  

4.3 Implementation Details 

 In order to construct a B+ hash tree as described in detail in chapter three, B+ 

tree creation approach is taken. The interior and leaf nodes in B+ Hash Tree is 

constructed with the use of the following ‘Node’ class. To identify if the node created 

is a leaf node or an interior node, ‘isLeaf’ attribute within the class is utilized. The 

node further has a ‘hashValue’ attribute, which is populated when the node is added 

to the Hash Tree. The hash value of the node is calculated at the insertion time. Two 

other methods, ‘before’ and ‘after’ are also defined with the class, which is needed to 

effectively carry out the search function within the B+ Hash Tree. 

 

1. class Node:   
2.    
3.     def __init__(self):   
4.         self.isLeaf = False;   
5.         self.parent = None;   
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6.         self.values = []   
7.         self.keys = []   
8.         self.hashValue = ""   
9.    
10.     def before(self, key):   
11.         for i in range(0, len(self.keys)):   
12.             if key == self.keys[i]:   
13.                 return self.values[i]   
14.    
15.     def after(self, key):   
16.         for i in range(0, len(self.keys)):   
17.             if key == self.keys[i]:   
18.                 return self.values[i+1]   

 

At the initialization of the B+ Hash Tree, the root node is given and is set as a 

leaf node initially.  

1. class BPlusHashTree:   
2.    
3.     def __init__(self, root, bucket_size, fill_factor):   
4.         root.isLeaf = True   
5.         self.root = root   
6.         self.bucketSize = bucket_size   
7.         assert bucket_size>fill_factor   
8.         self.fillFactor = fill_factor   

 

Insertions in to B+ hash tree should follow the same algorithm as that of B+ 

tree. That is, it has to have the logic to handle the three situations of the insertion. 

The three cases are as follows. 

1. Insertion of a new element, when the leaf node has free space.  

2. Insertion of a new element, when the leaf node is full, but the immediate 

parent of the leaf node has free space. 

3. Insertion of a new element, when the leaf node is full and the immediate 

parent node is out of space. 

 

The implementation of the insertion of nodes based on the above three cases 

is provided in the Appendix A code listings.  

 

During the insertion process, the nodes change its existing leaf nodes, as well 

as the key values of the interior nodes get changed, and the change has to be 

propagated up to the root node. Therefore, with each new insertion of a node or a 

split of an existing node, each node leading up from that point to the root node has to 
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be rehashed. The changes in the leaf node level must also propagate upwards, by 

rehashing the node and the entire path up to the root node. This hashing 

functionality is achieved through the following function. 

1. def hasher(self, node):   
2.         if node is not None:   
3.             while node.parent is not None:   
4.                 hashes = ""   
5.                 if node.isLeaf:   
6.                     node.hashValue = hashlib.sha256(str(node.values).encode('

utf-8')).hexdigest()   
7.                 else:   
8.                     for child in node.values:   
9.                         hashes += child.hashValue   
10.                     node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()   
11.                 node = node.parent   
12.             if not node.isLeaf:   
13.                 hashes = ""   
14.                 for child in node.values:   
15.                     hashes += child.hashValue   
16.                 node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()   

 

Following searching functionality is also implemented within the B+ Hash Tree 

to traverse the tree and return the matching results for a given key value.  

1. def search(self, node, key):   
2.         if node.isLeaf:   
3.             return node   
4.         elif key < node.keys[0]:   
5.             return self.search(node.before(node.keys[0]), key)   
6.         elif key > node.keys[-1]:   
7.             return self.search(node.after(node.keys[-1]), key)   
8.         else:   
9.             for i in range(0, len(node.keys)):   
10.                 if key < node.keys[i+1]:   
11.                     return self.search(node.after(node.keys[i]), key)   

 

In order for the B+ hash tree to become a verifiable data structure, a function or a 

mechanism has to be introduced to check the extracted value against the root hash 

value of the tree. In order to achieve this, firstly a function must be generated to 

retrieve all the nodes within the path from a leaf to the root and on top of the results, 

the verification has to be carried out. 

 

The verification part of the code is implemented in the following manner. The 

function traces back the entire set of nodes, which are on the path leading up to the 
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root node as calculated from the above function. At each of these node, the function 

gathers all the sibling nodes of a given node, at that level. After extracting all the 

siblings at different levels of the tree for each node, the function calculates the hash 

values from the leaf node level and checks if it is able to regenerate the parent hash 

value, each time, traversing upwards in the tree. At the termination point, the 

function checks if the calculated hash value is equivalent to the root hash value of the 

tree. If it is, ‘True’ is returned or else, ‘False’ is returned. If ‘True’ is returned, it shows 

the integrity of the data structure.  

4.4 Summary 

In this section the details regarding the implementation of the proposed 

solution was discussed in detail. The important code snippets that are crucial for the 

successful implementation of the solution was explained. The code snippets that are 

of relatively high importance and yet could not be inserted in the above section due 

to space complexities are appended to the appendix A section. 
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Chapter 5 -  Results and Evaluation 

5.1 Introduction 

This chapter is comprised of the results of the evaluation of the proposed 

approach against the standard Merkle tree data structure implemented in the python 

libraries. The results are given out in section 5.2. 

5.2 Results 

The comparison was carried out between the Merkle Tree data structure 

implemented in the ‘hippiehug’ python library [22] against the proposed data 

structure in the research. In order to do the time analysis for each operation carried 

out on the data structure, python ‘timeit’ library is used. 

 

The comparison is done however with the pure Merkle Tree implementation 

which supports holding python objects at the root level, rather than the actual C++11 

implementation that is implemented at the core of the OnioNS. The reasons for the 

abstract comparison is given in the section 6.4, under limitations.  

 

Both the testing for the running time evaluation was carried out using python 

3.5 test environment. The testing was carried out on a computer with an Intel core I7-

4710HQ processor running at 2.5GHz using 16GB of RAM, running Microsoft 

Windows 10 Enterprise edition. 

 

The following table summarizes the time taken by each tree data structure on 

initialization with different number of starting nodes. Time is given in seconds (s). 
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Table 5.1: Tree initialization time comparison 

Number of Insertions Merkle Tree (s) B+ Hash Tree (s) 

1 0.00014492 0.00003038 

50 0.00647391 0.00745306 

100 0.00490972 0.01413841 

200 0.02622285 0.03064444 

500 0.03025442 0.05555395 

1000 0.07740859 0.08454677 

2000 0.18905474 0.16220005 

5000 0.43887861 0.3834162 

10000 0.97731729 0.81921654 

20000 1.99026839 1.68534791 

50000 5.35020872 4.511024 

100000 11.9428005 9.37703631 

500000 - 52.7447996 

 

From the accumulated data, it could be seen that the B+ Hash Tree has 

performed better than the Merkle Tree when the tree initialization times are 

compared. 

 

The initialization time analysis is clearly illustrated in the following graph with 

varying number of starting nodes. The Y axis is given in seconds and X axis represents 

the number of starting nodes at the initialization time.  
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Figure 5.1: Initialization time analysis 

In the graph it shows that both data structure implementations draw 

exponential graphs with respect to the number of nodes to be created at the 

initialization step. However, it is evident that B+ Hash Tree performs better than the 

Merkle Tree implementation, when the two graphs are compared. 

 

The next table summarizes the time taken for each new node insertion with 

for a tree with varying number of starting nodes. The time is given in seconds (s). 

 

Table 5.2: Node insertion time comparison 

Number of Nodes 

New node insertion time (s) 

Merkle Tree B+ Hash Tree 

1 0.00007307 0.00001847 

50 0.00937114 0.00008662 

100 0.01789203 0.00008334 

200 0.01572229 0.00009196 

500 0.06895379 0.00010017 

1000 0.10070835 0.00013712 

2000 0.16736268 0.00010879 
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5000 0.43392372 0.00011536 

10000 1.01578839 0.00013506 

20000 2.02357564 0.00012644 

50000 5.31526174 0.00012357 

100000 11.6849509 0.00014081 

500000 - 0.0001909 

 

As shown in the table, the two data structures takes drastically different 

amounts of times to add a new node to an already existing data structure, with a 

given size.  

The following graph illustrates the insertion times taken by each of the two 

data structures to add a new node to an existing set of nodes. The Y axis is given in 

seconds and X axis represents the number of existing nodes at the moment of 

insertion.  

 

Figure 5.2: Insertion time analysis 

 The graph shows that the Merkle Tree data structure shows an exponential 

growth in time taken to add a new node to the data structure. The time taken by the 

B+ Hash Tree remains linear throughout. The above can be observed because B+ Hash 

Tree supports dynamic insertions whereas Merkle Tree doesn’t. For each new 

insertion, Merkle Tree recomputes the entire tree, whereas the B+ Hash Tree is 
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capable of adding the new node to the existing tree, without recomputing the entire 

tree. 

 

As for the space complexity comparison, B+ Hash Tree uses  space. The 

Merkle Tree uses the similar amount of space complexity, which is . However, in 

order to provide efficient retrieval for Merkle Trees, it has to be adjoined with 

another data structure which supports efficient data retrieval. Within the scope of 

the OnioNS, an AVL tree is used for this purpose which also has the space complexity 

of . 

5.3 Summary 

This chapter elaborated the details of the test setup that was used to analyse 

both the proposed approach and a Merkle Tree approach to test the capabilities of 

both data structures holding the same amount of data, undergoing similar 

operations. 
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Chapter 6 -  Conclusions 

6.1 Introduction 

This chapter includes an overall review of the research questions, the main 

research problem, the limitations of the current work and implications for future 

research works. 

6.2 Conclusions about research questions  

The analysis carried out of the Onion Name System in fact revealed existing 

limitations as well as probable vulnerabilities of the system. As pointed out in the 

justification of the research as well as the literature review, introduction of the 

OnioNS to Tor network may leave the network increasingly vulnerable to a user or 

hidden service deanonymization attack done by an adversary. Therefore, it is evident 

that sufficient countermeasures should be taken in order to mitigate the risk of such 

an attack.  

 

As a solution to the vulnerabilities a submitting the OnioNS core components 

to architectural changes were suggested through this research.. After considering 

various data structures, a novel B+ Hash Tree data structure was proposed in order to 

provide the same properties as such of a Merkle Tree data structure, which is used at 

the core of the OnioNS design and implementation.  

 

In the evaluation phase, the novel data structure was compared against the 

abstract implementation of a Merkle Tree in Python, it was shown that B+ Hash Tree 

performs better than the Merkle Tree implementation with regard to initializations 

and efficient insertions. As Merkle Tree has no support for dynamic node insertions, 

every new insertion is taken up as a new tree initialization and takes a longer time to 
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accommodate than the B+ Hash Tree. B+ Hash Tree, with dynamical insertion 

capabilities, performs new node insertions effectively. It is also evident that the 

Merkle Tree implementation takes up more space as it needs at least two adjoined 

data structures in order to perform the same operations performed by the B+ Hash 

Tree. It also has to be stated that even if in the abstract comparison, the B+ Hash Tree 

performed better, without actually testing it in the OnioNS environment, it cannot be 

definitively said that B+ Hash Tree implementation performs better at all cases. The 

reasons for the inability to do the real-world comparison is given in section 6.4 of this 

chapter. 

 

It was pointed out in the design phase that by creating several limited time 

windows to submit the ticket hash, within each 24-hour period, the resources 

invested by an adversary to monitor the network has to be increased by several folds. 

It was also pointed out that, if it could be provided to submit the ticket hash within 

the last five minutes of every hour, the resource investment would have to be raised 

by an adversary to roughly 24 folds. However, by doing so, there is a probability to 

invent a different vulnerability to the system. The solution may let domain squatters 

to acquire more number of domains within a given day. At the best case, within a 

day, with the existing system, a domain squatter could only acquire one domain. On 

the average and worse case scenarios, depending on the proof of work threshold 

value, a domain squatter could acquire few more domains within a given day. 

However, with the new implementation, depending on the amount of limited time 

windows created within a day, the number of domains a squatter can acquire, in the 

best case, increases by the number of limited time windows. Therefore, it has to be 

stated that, even though changing the time window of submission may very well act 

as deterrent for a passive adversary, it may introduce new loop holes to the OnioNS 

system. Domain squatters may even be able to perform minimalistic land rush attacks 

and acquire enough domain names in such a degree, that may even leave the OnioNS 

partially dysfunctional similar to Namecoin. 
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6.3 Conclusions about research problem 

The Onion Name System certainly imposes security vulnerabilities to the Tor 

network, if implemented with the current settings. However, there is the capability to 

change the ticket hash submission interval to minimize some of the identified 

vulnerabilities within the system. The change could be carried out by implementing a 

B+ Hash Tree data structure in place of the Merkle Tree data structure, in Onion 

Name System. As B+ Hash Tree data structure supports dynamic updates, the 

additional strain that could happen to the system with the additional domain 

registrations that has to be added with the new submission window, can be handled 

gracefully. Therefore, based on the research findings, it could be said that B+ Hash 

Trees is suitable candidate to substitute Merkle Tree data structure within Onion 

Name System 

 

The research contributed to the domain of security and data structures alike 

by introducing a novel verifiable data structure. The B+ Hash Tree proposed, is 

capable of holding values at the leaf nodes and to provide a verification to show the 

integrity of the data structure through the root node, with a hash tree mechanism. 

The implemented data structure is also capable of providing an authenticated denial 

of existence proof to show the non-existence of a node within the data structure. 

Further, it has to be noted that the B+ Hash Tree may have a variety of use cases in 

other domains. 

6.4 Limitations 

The evaluation carried out in section five tested the B+ hash tree 

implementation against the Merkle Tree implementation of the python ‘hippiehug’ 

library. The ideal evaluation to be carried out would have been to test the B+ hash 

tree implementation against the Merkle Tree implementation in the OnioNS system. 

However, when building the OnioNS from the code repository at GitHub, it was 

evident that the current implementation of OnioNS is dysfunctional. As shown in the 
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figure 6.1, the code failed to build, due to a set of build errors. The code had 

unimplemented data types, as well as undefined constructor calls which made it 

evident that the available code was in no running condition. Therefore, the 

evaluation of the implementation was limited to a context free data structure level, 

which is not the most fitting evaluation, for the scope of this research. 

 

 

Figure 6.1: Build errors 

6.5 Implications for further research 

As expressed in section 6.2, the ticket hash submission time window change 

may very well introduce additional vulnerabilities to the OnioNS. Therefore, research 

has to be carried out, in order to identify the proper number of limited time windows 

that are to be allowed, and the proper time intervals to leave them open, in order to 

make sure the domain squatters do not get an unnecessary advantage over the 

system, while still discouraging the traffic monitoring adversaries. 
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Appendix A: Code Listings 

A detailed implementation of the B+ Hash Tree, complete with the 

initialization, node insertion, hashing and searching/verification.  

1. class BPlusTree:   
2.    
3.     def __init__(self, root, bucket_size, fill_factor):   
4.         root.isLeaf = True   
5.         self.root = root   
6.         self.bucketSize = bucket_size   
7.         assert bucket_size>fill_factor   
8.         self.fillFactor = fill_factor   
9.    
10.     def search(self, node, key):   
11.         if node.isLeaf:   
12.             return node   
13.         elif key < node.keys[0]:   
14.             return self.search(node.before(node.keys[0]), key)   
15.         elif key > node.keys[-1]:   
16.             return self.search(node.after(node.keys[-1]), key)   
17.         else:   
18.             for i in range(0, len(node.keys)):   
19.                 if key < node.keys[i+1]:   
20.                     return self.search(node.after(node.keys[i]), key)   
21.    
22.     def insert_into_list (self, node, key, value):   
23.         for i in range(0, len(node.keys)):   
24.             if key < node.keys[i]:   
25.                 if node.isLeaf:   
26.                     node.keys.insert(i, key)   
27.                     node.values.insert(i, value)   
28.                 else:   
29.                     node.keys.insert(i, key)   
30.                     node.values.insert(i + 1, value)   
31.                 break   
32.             elif i == len(node.keys) - 1:   
33.                 if node.isLeaf:   
34.                     node.keys.insert(i + 1, key)   
35.                     node.values.insert(i + 1, value)   
36.                 else:   
37.                     node.keys.insert(i + 1, key)   
38.                     node.values.insert(i + 2, value)   
39.                 break   
40.    
41.     def hasher(self, node):   
42.         if node is not None:   
43.             while node.parent is not None:   
44.                 hashes = ""   
45.                 if node.isLeaf:   
46.                     node.hashValue = hashlib.sha256(str(node.values).encode('

utf-8')).hexdigest()   
47.                 else:   
48.                     for child in node.values:   
49.                         hashes += child.hashValue   
50.                     node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()   
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51.                 node = node.parent   
52.             if not node.isLeaf:   
53.                 hashes = ""   
54.                 for child in node.values:   
55.                     hashes += child.hashValue   
56.                 node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()   
57.    
58.     def insert(self, key, value):   
59.         insertion_node = self.search(self.root, key)   
60.         node, new_node = self.insert_into_node(insertion_node, key, value)   
61.         self.hasher(node)   
62.         self.hasher(new_node)   
63.    
64.     def set_parent(self, node):   
65.         for child in node.values:   
66.             child.parent = node   
67.    
68.     def separate_nodes(self, node, new_node, case=0):   
69.    
70.         temp = node.keys   
71.         temp_vals = node.values   
72.         if node.isLeaf:   
73.             node.keys = temp[0:self.fillFactor]   
74.             node.values = temp_vals[0:self.fillFactor]   
75.             new_node.keys = temp[self.fillFactor:len(temp)]   
76.             new_node.values = temp_vals[self.fillFactor:len(temp_vals)]   
77.             new_node.isLeaf = True   
78.             if case == 2:   
79.                 self.insert_into_list(node.parent, new_node.keys[0], new_node

)   
80.    
81.         else:   
82.             node.keys = temp[0:self.fillFactor]   
83.             node.values = temp_vals[0:self.fillFactor + 1]   
84.             new_node.keys = temp[self.fillFactor+1:len(temp)]   
85.             new_node.values = temp_vals[self.fillFactor + 1:len(temp_vals)]   
86.             self.set_parent(node)   
87.             self.set_parent(new_node)   
88.             if case == 2:   
89.                 self.insert_into_list(node.parent, temp[self.fillFactor], new

_node)   
90.    
91.     def insert_into_node(self, node, key, value):   
92.         if len(node.keys) < self.bucketSize :   
93.             if len(node.keys) != 0:   
94.                 self.insert_into_list(node, key, value)   
95.             else:   
96.                 node.keys.insert(0, key)   
97.                 node.values.insert(0, value)   
98.    
99.             return node, None   
100.    
101.         elif len(node.keys) >= self.bucketSize and node.parent is not 

None and len(node.parent.keys) < self.bucketSize:   
102.             self.insert_into_list(node, key, value)   
103.             new_node = Node()   
104.             self.separate_nodes(node, new_node, 2)   
105.             new_node.parent = node.parent   
106.    
107.             return node, new_node   
108.    
109.         elif len(node.keys) >= self.bucketSize and (node.parent is Non

e or len(node.parent.keys) >= self.bucketSize):   
110.             self.insert_into_list(node, key, value)   
111.             new_node = Node()   
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112.             temp_key = node.keys[self.fillFactor]   
113.             self.separate_nodes(node, new_node)   
114.             if node.parent is None:   
115.                 new_root = Node()   
116.                 new_root.values.append(node)   
117.                 if node.isLeaf:   
118.                     new_root.keys.append(new_node.keys[0])   
119.                 else:   
120.                     new_root.keys.append(temp_key)   
121.                 new_root.values.append(new_node)   
122.                 self.root = new_root   
123.                 node.parent = new_root   
124.                 new_node.parent = new_root   
125.    
126.             else:   
127.                 if node.isLeaf:   
128.                     self.insert_into_list(node.parent, new_node.keys[0

], new_node)   
129.                 else:   
130.                     self.insert_into_list(node.parent, temp_key, new_n

ode)   
131.                 new_parent = Node()   
132.                 temp_keys = node.parent.keys   
133.                 temp_values = node.parent.values   
134.                 node.parent.keys = temp_keys[0:self.fillFactor]   
135.                 node.parent.values = temp_values[0:self.fillFactor + 1

]   
136.                 new_parent.keys = temp_keys[self.fillFactor + 1:len(te

mp_keys)]   
137.                 new_parent.values = temp_values[self.fillFactor + 1:le

n(temp_values)]   
138.                 if node.parent.parent is None:   
139.                     new_root = Node()   
140.                     new_root.values.append(node.parent)   
141.                     new_root.keys.append(temp_keys[self.fillFactor])   
142.                     new_root.values.append(new_parent)   
143.                     self.root = new_root   
144.                     node.parent.parent = new_root   
145.                     new_parent.parent = new_root   
146.                     self.set_parent(node.parent)   
147.                     self.set_parent(new_parent)   
148.                 else:   
149.                     new_parent.parent = node.parent.parent   
150.                     old_grand_parent = node.parent.parent   
151.                     self.set_parent(node.parent)   
152.                     self.set_parent(new_parent)   
153.                     self.insert_into_node(old_grand_parent, temp_keys[

self.fillFactor], new_parent)   
154.    
155.             return node, new_node   

 


