

Enhancing the Onion Name System for
Darknet

G. A. A. Maduranga

Enhancing the Onion Name System
for Darknet

G. A. A. Maduranga
Index No: 13000683

Supervisor: Dr T. N. K. De Zoysa

December 2017

Submitted in partial fulfilment of the requirements of the
B.Sc. in Computer Science Final Year Project (SCS4124)

i

Declaration

I certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the

best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, be made

available for photocopying and for interlibrary loans, and for the title and abstract to

be made available to outside organizations.

Candidate Name: G. A. A. Maduranga

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of

Mr G. A. A. Maduranga

under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Supervisor Name: Dr T. N. K. De Zoysa

………………………………………………

Signature of Supervisor Date:

Supervisor Name: Mr T. G. A. S. M. De Silva

………………………………………………

Signature of Supervisor Date:

ii

Abstract

The surface net as a whole does not provide the capabilities for an individual to share

all kinds of information without having to take responsibility for the content posted

by the individual. In a place where surface net fails, darknet prospers. Individuals with

the need to share information with plausible deniability use darknet to achieve this

end of the goal. However, the usability issues of the darknet act as a continuous

hindrance to the use and growth of darknet. Thus, there is a requirement for a

secure, decentralized name system for darknet, to overcome the above issue.

In this document, the Onion Name System (OnioNS) is considered as a possible

candidate to overcome the above-mentioned issues. Primarily the security concerns

OnioNS introduces to the Tor network is analysed. Special concern is given to the

possibility of time analyses attacks that could be carried out on the Tor network due

to restrictions imposed by the OnioNS. The concerns raised are addressed in this

dissertation and a method to overcome them is introduced. A novel hash tree data

structure is introduced as the core component of the proposed solution. The

proposed solution is analysed in order to guarantee that it is capable of implementing

all the features of the OnioNS while minimizing the security threats the existing

system imposes on Tor network.

Further analysis of the novel solution is discussed in order to identify if the solution

introduced has implemented any additional vulnerabilities to the Onion Name System

or the Tor network.

iii

Preface

The research idea originated from my interest to learn about and contribute to the

network and information security domain. The contents that are taken from works

other than of my own are referenced and acknowledged accordingly. The code

snippets provided in the section five as well as appendix A, are works of myself. The

implementation of the solution, result analysis and was carried out under the

supervision of my supervisor.

iv

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Dr T. N. K. De

Zoysa, senior lecturer at University of Colombo School of Computing and my co-

supervisor, Mr T. G. A. S. M. De Silva, assistant lecturer at University of Colombo

School of Computing, for providing immense support and guidance throughout the

research.

I would like to extend my thanks to Mr P. Wijesekara, Research Scholar at the

University of California, Berkley, and Mr. Jesse Victors, a contributor to the Tor

Project, for providing me with content and suggestions, through the period to

continuously improve the research carried out. Special thanks must be given out Mr

P. N. Pieris, Mr T. Ranathunga, Mr V. D. Liyanage, Mr S. S. K. Malkakulage and Mr T.

Deshan for helping out with various aspects of the research. I also would like to

express my gratitude to Dr J. S. Goonatilake and Dr C. K. Keppitiyagama for the

feedback and evaluation provided from the start of the research. Special thanks to Dr

H. E. M. H. B. Ekanayake for the assistance provided as the computer science project

coordinator of the final year.

Further, I would also like to acknowledge all the support provided by friends and

family members to complete this research as it is. As a final note, I would like to thank

and recognize the contribution of all the people that helped me in any regard, to

complete this research.

v

Table of Contents

Declaration ... i

Abstract ... ii

Preface .. iii

Acknowledgement .. iv

Table of Contents ... v

List of Figures .. vii

List of Tables .. viii

List of Acronyms .. ix

Chapter 1 - Introduction... 1

1.1 Background to the Research ... 2

1.2 Research Problem and Research Questions ... 4

1.3 Justification for the research .. 4

1.4 Methodology ... 6

1.5 Outline of the Dissertation ... 7

1.6 Delimitations of Scope .. 7

1.7 Summary ... 8

Chapter 2 - Literature Review .. 9

2.1 Introduction .. 9

2.2 Approaches for Darknet Naming Systems .. 9

Chapter 3 - Design ... 15

3.1 Introduction .. 15

3.2 Research Design .. 15

3.3 Time Window Limitation Analysis ... 16

vi

3.4 Hash-able data structures ... 18

3.5 Authenticated Skip List ... 18

3.6 B+ Hash Tree ... 19

3.7 Summary ... 23

Chapter 4 - Implementation ... 24

4.1 Introduction .. 24

4.2 Software Tools .. 24

4.3 Implementation Details .. 24

4.4 Summary ... 27

Chapter 5 - Results and Evaluation ... 28

5.1 Introduction .. 28

5.2 Results ... 28

5.3 Summary ... 32

Chapter 6 - Conclusions .. 33

6.1 Introduction .. 33

6.2 Conclusions about research questions ... 33

6.3 Conclusions about research problem ... 35

6.4 Limitations ... 35

6.5 Implications for further research .. 36

References ... 37

Appendix A: Code Listings ... 39

vii

List of Figures

Figure 1.1: Zooko's triangle ... 3

Figure 1.2: Proposed research methodology.. 7

Figure 2.1: High-level data flow diagram in OnioNS [4] ... 13

Figure 3.1: High-level design diagram ... 16

Figure 3.2: Authenticated skip list [21] ... 19

Figure 3.3: B+ hash tree design ... 20

Figure 3.4: Insertion Algorithm ... 21

Figure 3.5: Split_Interior Function .. 22

Figure 3.6: Verification Algorithm ... 22

Figure 5.1: Initialization time analysis... 30

Figure 5.2: Insertion time analysis .. 31

Figure 6.1: Build errors.. 36

file:///C:/Users/REBEL/Documents/Hard%20Bind/Enhancing%20the%20Onion%20Name%20System%20for%20Darknet.docx%23_Toc514814561
file:///C:/Users/REBEL/Documents/Hard%20Bind/Enhancing%20the%20Onion%20Name%20System%20for%20Darknet.docx%23_Toc514814562

viii

List of Tables

Table 5.1: Tree initialization time comparison ... 29

Table 5.2: Node insertion time comparison ... 30

ix

List of Acronyms

UTC – Universal Time Coordinated

ISP – Internet Service Provider

OnioNS – Onion Name System

OnionDNS – Onion Domain Name System

GNS – GNU Name System

GNU – GNU’s Not Unix

1

Chapter 1 - Introduction

With the growth of the Internet and other means of communication, the

online privacy and security of an average person are continuously put to the test.

Therefore, with the increasing risks, the development of privacy-enhancing

technologies has also increased. Though there have been various attempts, on the

surface web, the anonymity guarantees are not given to the user. As the underlying

UDP, TCP or IP protocols cannot hide their headers, the routing information between

two parties on the traditional Internet, is visible to other parties.

Following the growing concerns about privacy and anonymity, the users have

been increasingly turning towards privacy enhancing technologies, in recent years. As

an out of the box solutions, users tend to use proxies and VPNs primarily to enhance

their privacy. As these tools, itself keeps track of users; they cannot be taken as

better tools to enhance privacy [1].

Most of the anonymity tools that are in use today, are descendants of the

early mixnets [2], that were invented in the early 1980s. In a mixnet, the user traffic is

scrambled, delayed, retransmitted and partially decrypted, before being received at

the final destination. This heavily obscures the correlation between the source and

the destination of the traffic. Therefore, it adds anonymity and privacy, to a certain

level, when exchanging network traffic. Tor is a descendant of early mixnets, which

uses a three-hop circuit between a server and a client, to provide privacy and

anonymity, to both the client and server. However, Tor suffers from a particular flaw

since its inception. That is, any hidden service that is in Tor is given a hash value for a

domain, instead of a memorable human name. Though this has not limited the

popularity of Tor, it could be seen that, if a more DNS like human memorable naming

system could make Tor much user-friendlier. There have been more than a few

approaches to make this a reality, such as OnionDNS [3] and OnioNS [4], which are

described in detail, in the literature review.

2

1.1 Background to the Research

The Onion Router – Tor [5] is currently the most popular low-latency onion

routing system which provides privacy and anonymity for the users. The services

provided by Tor are mainly of two folds. One being, providing mechanisms for a

regular user to browse the surface net with anonymity guarantees. Second being, Tor

providing access to a unique set of websites in the Darknet known as Hidden Services

or Onion Services. Recent studies show that Tor provides the users access to over

45,000 hidden services on average [6].

Hidden services are provided in such a way to mask the service’s IP address

from the users. To access an onion service, the service should be referenced by the

first 16 characters of the SHA-1 hash of the service’s public RSA key. This reference is

then appended with a ‘.onion’ pseudo-top level domain to complete the onion

address of the service. The constructed onion address is equivalent to a URL that is

used in the surface net. Therefore, an address constructed through the above

mechanism could be used to access the service. The usage of the service’s public key

makes it possible to confirm the one-to-one relationship between the service and the

provided address of the service. ‘32rfckwuorlf4dlv.onion’ is a hidden service address

which points to Onion URL Repository. This is an example for the 16-character hash

address generated for hidden service reference. It is abundantly clear that such an

address is not memorable.

Even though such an address is not human-meaningful, by providing such an

address, Tor achieves the ability to provide security and decentralization. In this

context, security refers to having an abundantly large collision free address space,

which in turn guarantees that each address is unique in the tor network.

Decentralization allows the tor network to be resistant to various security risks and

censorship attempts against the network.

In 2001, Zooko Wilcox-O’Hearn proposed a conjecture which came to know as

Zooko’s triangle [7]. Figure 1.1 shows the Zooko’s triangle. It stated that a persistent

3

naming system could only achieve two at a time of three properties, namely, Human-

meaningfulness, Decentralization, and Security. This model provides a general

explanation of why Tor addresses are not capable of achieving human-meaningful

names, since its inception in 2002. However, this is not the case since, in the recent

years, several models that exhibit all three desirable features of a naming system has

been modelled [8] [4].

Figure 1.1: Zooko's triangle

Due to the recent actions that were taken by governments to censor DNS,

various attacks [9] and following recent security revelations by Edward Snowden, the

demand for anonymous access to uncensored information has been growing rapidly

each passing day. According to stats taken in 2015, Tor serves a user base averaging

two million per day [6]. This growing userbase presses the need for a human-

meaningful, decentralized and secure addresses for the onion services.

As described in detail in the literature review, the Onion Name System

appears to be at the forefront of creating a proper usable naming system for Tor

hidden services. However, the naming system itself possesses the capability to

introduce a new attack surface to the onion router. If a naming system is to be

implemented to the darknet, extra care has to be taken to make sure that the

addition would not impact the secure decentralized nature of the Tor network.

4

1.2 Research Problem and Research Questions

The research problem is stated as follows.

“What are the mechanisms that could be implemented to enhance the Onion Name

System and to enforce better security to the entire system?”

A set of research questions as follows can be generated from this research problem.

 What are the existing vulnerabilities in the Onion Name System?

 What methods could be proposed to overcome these vulnerabilities?

 Does the proposed method perform better than the existing approach in the

system?

 Does the proposed method introduce new vulnerabilities to the system?

1.3 Justification for the research

Darknet and hidden services, from the inception, have failed to achieve the

widespread success internet achieved. Among several other factors, one of the main

reasons for the above, is the usability issues of the darknet. Due to these as well as

the added latency, users find it difficult to access hidden services and the surface net

alike, using the onion router. The major reason for the usability issues is, as explained

above, the lack of human meaningfulness in an onion address used to access a hidden

service. As a result, only a limited number of onion services gets frequently accessed,

whereas a majority of the onion services, which averages around 45,000 per day,

does not get visited. Due to lack of traffic and other issues, a lot of hidden services

gets shut down as fast as they pop up. Therefore, it is evident that a proper naming

system must be added to the onion router to mitigate the closing down of hidden

services, that happens due to the lack of traffic. It can also be speculated that, if the

above-mentioned usability issues of darknet get removed, the growth rate of hidden

services along with the userbase, will increase.

5

However, while improving the usability issues of the darknet, it also has to be

kept in mind to not to break the existing security and the decentralized nature of the

darknet and the onion router. Therefore, any naming system that is to be introduced

should be closely monitored to make sure that it does not introduce additional attack

surface or give an additional motive for an attacker to attack the network. It also has

to be kept in mind that, an adversary can actively or passively monitor network traffic

to deanonymize Tor users.

To date, there has never been a reported global adversary attack on Tor, but it

has also does not rule out the probability of there ever being one. This statement is

made with regard to several observations of the Tor architecture as well as geo-

political agreements which are currently prevailing in the world. Tor as a low latency

router, was not designed to be secure against a global passive adversary [5]. A global

passive adversary, if such an entity could exist, is capable of monitoring the incoming

traffic to Tor and outgoing traffic from Tor, without necessarily having the capabilities

of decrypting the traffic. Such an entity could easily use traffic correlation techniques

to statistically deanonymize users as well as hidden services.

It has to be clearly noted that the threat of a global passive adversary is not as

farfetched as it sounds. A country could easily be a global adversary for a user within

the country who communicates with a hidden service that is hosted in that country

itself. The government generally have the authorization to monitor the traffic and

hence the communication between the user and the service could be easily

monitored. Due to various geo-political agreements, it also has to be noted that a

country may very well be capable of monitoring the network traffics of other

countries. As an example, agreements among nations such as the Five Eyes

agreement [10] allows powerful countries to share intelligence, which often is signal

intelligence. Therefore, it is evident that a powerful player is very much capable of

monitoring a significant amount of internet traffic in the world.

However, due to economic reasons, it could be shown that the amount of

internet service providers or ISPs that has to be monitored is drastically reduced. This

6

is because, the number of places where big Tor relays could be hosted is limited. The

statement is based on two factors. First factor is that, in order to host a Tor exit node,

an ISP with fast connections and cheap bandwidth along with hosting has to be

selected. Therefore, it is evident that there is no pressing need to monitor majority of

the non-economical ISPs for their traffic in order to deanonymize Tor. In addition to

that, a considerable number of ISPs consider the traffic that goes in and out of a Tor

relay as a violation of terms of services. Therefore, in order to host a Tor relay an ISP

which does not consider a Tor relay, a violation of services has to be picked. These

limitations drastically reduced the number of ISPs that has to be monitored in order

to truly become a global adversary.

With the above-mentioned limitations and possibilities, if an adversary can

even monitor a limited set of ISPs, it has the capability of becoming a global passive

adversary. Therefore, special care has to be taken to make sure that introduction of a

naming system such as the Onion Name System, does not improve the probabilities

of an attack on the Tor network, even in case of a global adversary.

1.4 Methodology

The proposed methodology is of four folds as shown on Figure 1.2. The first

step is to analyse the probable attack surfaces on the Onion Name System, to which

no heed is paid to typically, such as the possibility of a global adversary. Next step is

to evaluate the Onion Name System to find out the alternative mechanisms that

could be considered, to change the vulnerable time window of ticket submission in

the Onion Name System. The third step of the proposed approach is the replacement

of the identified vulnerable components in the OnioNS, through the analysis. The

fourth step is to analyse the introduced mechanism to see if it solves the issues

mentioned above, as well as to see if it has introduced any new flaws to the onion

name system.

7

Figure 1.2: Proposed research methodology

1.5 Outline of the Dissertation

The dissertation is structured as follows. The chapter two covers possible and

tested approaches to introduce a naming system for darknet and the Onion Name

System in detail. Chapter three explores in detail the design of the proposed solution

and the implantation details are mentioned in chapter four. The evaluation criteria of

the research and the evaluation of results obtained are discussed in detail, in chapter

five. Chapter six concludes the dissertation with a discussion about the possible

future works for the proposed solution.

1.6 Delimitations of Scope

As a part of the research, suitable modifications would be done to the internal

data structures of the Onion Name System in order to evaluate the impact of changes

on the system. The content provided by hidden services that requests for names from

the Onion Name System will not be considered within the scope of the research.

Analyse the Onion Name
System

Propose a solution to overcome
vulnerabilities discovered

Implement the solution

Analyse the solution

8

1.7 Summary

In a summary, this chapter laid the foundation for the dissertation. It

introduced the background of the research which led to the research problem,

concerned with the security and performance enhancement of the Onion Name

System. Additional research questions that arises were then discussed and the need

for a research on the topic was justified. The methodology for the research was

outlined and the delimitations to the scope were also described.

9

Chapter 2 - Literature Review

2.1 Introduction

The chapter explores the current approaches and related work on developing

a naming system for darknet hidden services. Both the practical approaches that are

currently being used as well as more theoretical yet applicable solutions in other

domains are discussed in detail in section 2.2. Section 2.3 covers the Onion Name

System in detail. In section 2.4, concerns about traffic correlation attacks on Tor and

section 2.4 provides a conclusion to the chapter.

2.2 Approaches for Darknet Naming Systems

Multiple attempts and research have taken place to provide memorable

addresses to Tor hidden services with the growth of Tor. The most notable of these is

the use of Vanity key generators such as Shallot [11]. This brute-force approach is

used to find an RSA key which in turn generates a partially-memorable hash value for

the address of the onion service. ‘facebookcorewwwi.onion’ is a hash address of

Facebook hidden service, that was generated using similar methods. One major

shortcoming of this approach is that it is not capable of computing a full human-

readable name across the entire character space within any reasonable timeframe.

Also, if the entire character space could be brute forced, the naming system would

fail to remain collision-free. To make the case worse for these brute force

approaches, Tor plans to increase the size of the character space to be used to

identify a hidden service [12]. Therefore, a conclusion could be drawn that, Shallot

and other vanity key generators are not capable of providing hidden services with a

proper naming system.

10

A different approach for address manipulation was suggested by Nicolussi

[13]. It was proposed to use a dictionary, pre-known to all the parties, to be used to

change the encoding of the address from base32 to a delimited series of words. While

this solution increases readability of an address, it provides another difficulty. The

user still would have to manually enter the address into the browser, making it an

impractical solution.

The DNS used in the Clearnet could be considered as an approach to providing

human-meaningful domain names to the hidden services. However, the typical

architecture of DNS does not give priority to security and therefore, vulnerable to

many security threats such as Man-In-The-Middle attacks and DNS cache poisoning.

DNSSEC, an alternative that addresses these issues was introduced, but currently, is

not widely adopted. One severe flaw in both the DNS and DNSSEC is the hierarchically

distributed, yet centralized architecture of the approach. This makes the system

vulnerable to government level censorship as discussed in the above section.

GNU Name System [14] also provided a zone-based alternative for DNS. GNS

uses a hierarchical zone-based approach which assures the uniqueness of a name

within each zone. However, this does not mean the names are globally unique.

Therefore, adopting GNS to provide names for Tor hidden services, is doubtful.

Another notable research that was done by creating a system that provides

seizure resistant domain names is OnionDNS [3]. This particular research creates a

single root server in the Tor network to provide the name service. The service uses,

the anonymity guarantees provided by Tor to ensure that the approach is seizure

resistant. The method also provides revocation methodologies, if the root server

becomes compromised. A major flaw that is seen in the method is that, even if it is

difficult, the system could be compromised due to its fundamental centralized

approach of having a single root server. In case of a compromised root server or a

malicious root server, the recovery process may take time, which makes the system

unstable, even for a period.

11

Namecoin [8] was the first of its kind to achieve all the desirable traits of a

naming system while being fully decentralized. It is based on an initial fork of Bitcoin

[15] in 2011 and uses blockchains to create an append-only public ledger to hold

information about transactions and names. The concept of “miners” that provides a

proof-of-work to every transaction that was used provides a mechanism to make sure

that the blockchain is irreversible. Although this is a good security measure, the size

of an append-only data structure continues to grow with time, creating practical

issues of usability of the system. Further, Harry Kalodner et al. [16] analysed the

decentralized namespace provided by namecoin and found out that due to

fundamental flaws in the algorithm incorporated in distributing domains, the

namecoin system was exposed to land rush attacks from its inception. Thus currently,

the majority of the namespaces are held by domain squatters, making namecoin

essentially a dysfunctional system. Further, the authors have mentioned another flaw

in the system is that it does not provide a mechanism to map the one-to-one

relationship between the address and the place it points to. However, this particular

issue could be addressed by the method proposed by C. Allen et al. in the whitepaper

that addresses the creation of a Decentralized Public Key Infrastructure [17].

However, even with the integration of this methodology to namecoin system, it still

suffers from usability issues that were mentioned above.

The most promising approach that was proposed for providing human-

meaningful domain names for hidden services is the Onion Name System [15]. A

detailed description about the OnioNS is given in the following chapter.

2.3 The Onion Name System

Proposed by J. Victors et al. the Onion Name System provides an optional,

backward-compatible, decentralized, meaningful and a globally unique, verifiable

domain name system for darknet. In order to achieve this, it was proposed to create a

decentralized set of Quorum nodes that replicate the set of records associated with

domain names for hidden services in a Merkel tree structure. Quorum nodes are a

12

subset of onion routers in the Tor network, with a predefined set of capabilities. In

order to acquire a domain name by a hidden service, a ‘ticket’ has to be generated by

the hidden service owner and submitted to the Quorum. From the submitted set of

tickets to the Quorum, in order to select a winning set of tickets, a lottery based

approach was proposed by the authors. The approach makes the hidden service

provide a proof-of-work to generate a request for a particular domain. When

generating the proof of work, the RSA private key of the hidden service was required

in each CPU iteration, to sign the calculated proof-of-work. This discourages the

hidden service owners from outsourcing of the calculation to external parties with

higher computational powers. However, the cases where a hidden service owner is

willing to share the private key with trusted parties, to generate the proof-of-work is

not addressed in this research.

When storing the records or tickets in the Quorum nodes and mirror nodes,

two main data structures are used. An AVL tree to store the records which supports

efficient retrieval of records for a client query and a Merkle Tree which supports

verifiability for a retrieved record. In order to insert new records to the system, as

Merkle Tree data structure does not support insertions, the entire data structure has

to be regenerated, which takes time. Since it is an expensive operation,

the tree is regenerated only once, for every 24-hour time period, which happens after

00:00UTC. However, the ticket submission process in the OnioNS imposes some

restrictions to the hidden services. The hash commitment of a generated ticket has to

be submitted to the Quorum within a limited time window or in a delta amount of

time, which is less than ten minutes. This time window also takes place, at a specific

static time frame, which is at 00:00UTC. Therefore, to summarise this, the hash

commitment of the ticket has to be submitted to the Quorum from 23:55 –

00:00UTC. High-level data flow of the OnioNS is shown in figure 2.1.

Restricting the time interval where a hidden service has to communicate with

the Quorum to a specific timeframe which could potentially be targeted by an

adversary, raises some questions. A potential adversary can monitor a network during

these static time frames, which consumes relatively low amount of resources and

13

time compared to a 24-hour monitoring station and yield good results as the

probability of hidden services communicating at that time interval is very high. Thus,

it can be safely assumed that, in case of a global passive adversary or an

approximation of such an entity, would be able to deanonymize hidden services,

based on this limitation of OnioNS. Therefore, a mechanism to achieve the same set

of goals without compromising the secure nature of the Tor network and the

anonymity of the users has to be implemented, prior to a widespread

implementation of OnioNS.

Figure 2.1: High-level data flow diagram in OnioNS [4]

2.4 Traffic Correlation Attacks on Tor

Traffic analysis, confirmation attacks are a special set of attacks conducted by

observing the communication patterns between two or more entities in a network.

The analysis could be done using several mechanisms, such as by observing the traffic

volumes as well as the times the time of communication. Due to the wide variety of

ways the messages can be observed, the attacks could be commenced even on

encrypted traffic [18].

14

In a low-latency anonymity network such as Tor, the protection against traffic

correlation attacks that could be done by a significant adversary is minimal [5]. In the

past few years, there has been a considerable amount of research on the domain. In a

research done in 2013, the author states that given enough time, which is roughly

three to six months into analyzing the traffic of the Tor network, with a probability of

50% to 80%, a user can be deanonymized [19]. The author K. Müller, in his thesis, also

points out, based on the current size of the Tor network, end-to-end traffic

confirmation attacks could be successfully carried out.

Therefore, it’s abundantly clear that Tor itself is vulnerable, even without a

global passive adversary.

2.5 Summary

The chapter discussed the possible naming approaches that could be taken, to

provide names for hidden services, along with their advantages and disadvantages. It

is evident from the above that the Onion Name System is the most suitable candidate

to provide the most practical solution to naming hidden services, based on the

current research. However, as mentioned, there are limitations in OnioNS, and these

could be vulnerabilities based on the possibilities of traffic correlation attacks as

discussed in section 2.4. Therefore, it is abundantly clear that necessary precautions

against such limitations has to be taken, in order to mitigate any such risks.

15

Chapter 3 - Design

3.1 Introduction

This chapter details about the design approach proposed in this research.

Section 3.2 covers the high-level research design of the research project and in

section 3.3 solutions for limitations of the OnioNS is discussed. The following sections

discuss in detail about hash-able data structures, authenticated skip lists and B+ hash

trees.

3.2 Research Design

The high-level research design is of five folds. Analysing the current Onion

Name System is the first step. This was covered in detail in the literature review.

Through the above, the conclusion that OnioNS is prone to traffic correlation attacks

were drawn. Secondly, the reasons for introducing the above-mentioned time

window, within the OnioNS had to be identified. This identification and analysis of

solutions is discussed in detail in the next section. As the third step possible

architectural decisions that could be taken in order to mitigate the issue at hand is

considered. If the solution is capable of addressing the issues, it has to be

implemented as the fourth step. The implementation details of the solution are

discussed in detail in chapter four. The fifth step is to analyse the implemented

solution. The steps three, four and five is a recursive process, which is to be done

over and over again, until a best fit solution to the problem at hand is found.

16

Figure 3.1: High-level design diagram

3.3 Time Window Limitation Analysis

When implementing the Onion Name System, due to design and architectural

decisions that were taken, the authors have limited the ticket hash submission

window time to a limited static time period, as discussed above. As a way to mitigate

the limited time window that appears once every 24-hours, an alternative suggestion

would be to replicate the same time window, more often during the same 24-hour

period. An example would be to create a five-minute time window for ticket hash

submission, every hour. By doing so, an adversary would have to monitor the

network 24 more times, to arrive at the same level of results as previously given by

the Onion Name System. This implies that the adversary has to expend nearly 24

times resources and time to arrive at the same set of results.

To truly yield the advantage of opening an hourly window, the newly

submitted records would also have to be added to the Onion Name System Quorums,

in order to make the records readily accessible to a seeker, within a very short

amount of time. The current system takes roughly 24-hours for a new name to

register a name. Even though the content provided by the hidden services is out of

17

scope for this research, it has to be noted that these services share extremely

sensitive information. When looking at the statistics it can be seen that darknet

hidden services often does not last a day or few days at a time, continuously. The

reasons for the non-continuity can only be speculated. But it is clear that, due to the

above non-continuity, significant amount of information in the darknet gets taken

down, prior to be seen by a considerable number of users. On the other hand, if a

domain name could be requested and received by a service within a short amount of

time, the contents of the service has the chance to be associated by a considerable

number of users, prior to being taken down by the service administrator or some

other entity that has the physical access to the server.

At the core of the Onion Name System, a Merkle Tree data structure is used in

order to provide record verification functionality and to provide proof for the non-

availability of a record at the Quorum. Therefore, it is mandatory that each newly

accepted record be updated in the Merkle Tree. Since Merkle Trees do not support

dynamic updates, for each update, the Tree has to be rebuilt. Rebuilding the Merkle

Tree is an expensive operation that takes time. In the current version of

the OnioNS, this trade-off is rather fine, considering that the tree only gets

recompiled once, every 24-hours. If it had to be recomputed every hour, the cost of

the re-computation may very well be out of the affordable range for the system.

Therefore, it could be seen that a verifiable data structure that is capable of

addressing all these concerns, that also provides dynamic updating capabilities would

be the better choice in a such a situation. In the following three sections such

verifiable data structures are discussed. An alternative data structure must possess

the capabilities of verifiability and authenticated denial of existence. Authenticated

denial of existence is the ability of the data structure to prove the non-existence of a

node within the data structure.

18

3.4 Hash-able data structures

Any data structure that is capable of being hashed entirely, is a candidate for

this solution. After each dynamic update operation on the data structure, the entire

data structure can be hashed and the hash value can be stored in a separate location.

Verifying the integrity of the data structure is straight forward. A user has to cross

reference the hash value to see if the data structure has undergone any changes. If

the hash value does not agree with the pre-possessed hash value of the data

structure the user can arrive at the conclusion that the data structure has been

changed from the last time the user accessed it. However, in order to do this, a tight

coupling between the data structure and the hashed value has to be enforced during

the implementation of the data structure. Another flaw of the above approach is that

even though verification is straight forward, providing the authenticated denial of

existence in a data structure with the usage of a single hash value is not feasible.

Therefore, the above method is not considered for an implementation within this

research.

3.5 Authenticated Skip List

An authenticated skip list is a verifiable data structure based on the skip list

data structure. A successful implementation of an authenticated skip list was done by

Goodrich et al. [20] and was able to arrive at time complexity for

insertion, deletion, update and retrieval of values for the list, in the average case.

However, the skip list is a probabilistic data structure which suffers from a worst-case

time complexity. In the worst case all the above-mentioned operations take

time complexity to perform. The data structure’s capability to land at the worst case

with a probability may provide an adversary to exploit the data structure in a way to

mitigate the efficiency of the overall OnioNS in the future. Therefore, the above data

structure is not considered for implementation in this research.

19

Figure 3.2: Authenticated skip list [21]

3.6 B+ Hash Tree

Since there were no suitable verifiable data structures that were capable of

providing all the features provided by a Merkle Tree data structure was not readily

available at hand, it was decided to implement a novel verifiable data structure using

a B+ Tree. A B+ Tree was chosen as it fulfilled the following design considerations.

1. time complexity at both the average and worst case running times.

2. storage complexity.

3. Non-leaf nodes only store keys leading to values.

4. Leaf nodes store the entirety of values.

5. Self-balancing.

The importance of a consistent time complexity throughout is self-evident. The

importance of all the values being present at the leaf node level is advantageous to

provide authenticated denial of existence. Also, the non-existence of a value could be

showcased by providing the right sibling and the left sibling of the searched value,

and their paths leading up to the root node. In order to do that, all the actual records

must be in the same level within the tree, which is, in this case the leaf level, in an

ordered manner. The B+ Hash Tree is capable of achieving this property, as it by

design pushes all the intermediate values to the leaf nodes.

Figure 3.3 shows the design of the proposed B+ Hash Tree.

20

Figure 3.3: B+ hash tree design

The B+ Hash Tree follows the same architecture as that of a regular B+ tree.

However, the pointers that are used in the regular B+ tree in order to interconnect

the leaf nodes, is not implemented as part of the design as for the current context a

single leaf node is capable of storing the entirety of the record within it. Thus, no

requirement to further traverse through the leaf nodes is not needed.

In addition to the regular setup of a B+ tree, each leaf node L has an additional

attribute named Hash, to store the SHA256 hash of the node itself. Each non-leaf

node also possesses the same attribute, where the value stored at the Hash changes

to the hash of the aggregated hash values off all its children nodes. Therefore, the

hash value is propagated up to the root node of the file, where the root node hash

reflects the entire tree. For each operation performed on the data structure, the hash

value of the changed leaf node, and any other node that were affected by the self-

balancing of the tree, has to be recalculated, leading up to the root node. Hence,

21

every operation performed upon the tree is reflected through the root node hash

value.

The B+ Hash Tree algorithm mainly comprises of two parts, namely Insertion

and Verification. The algorithmic design of the B+ Hash Tree is given below.

Figure 3.4: Insertion Algorithm

 The above algorithm utilizes ‘split_interior’ function which is used to facilitate

the insertion of interior nodes. The algorithmic implementation of the function is

given below.

22

By utilizing the above algorithm design, the B+ Hash Tree can be implemented.

However, to perform an effective and verifiable search within the data structure for a

particular node, further verification algorithm has to be designed. The below

algorithm provides a verification mechanism for searched nodes, with the use of

hashing.

Figure 3.5: Split_Interior Function

Figure 3.6: Verification Algorithm

23

3.7 Summary

A high-level description of the research design and considerations is given in

this chapter. The need for a new data structure to replace Merkle Trees was

discussed in detail and the preferable features of such a data structure was discussed.

Detailed descriptions of various possible data structures were given in the chapter

and the novel B+ hash tree data structure was proposed, considering the merits the

proposed data structure has over other similar verifiable data structures.

24

Chapter 4 - Implementation

4.1 Introduction

Software implementation of B+ hash tree is discussed in detail in this chapter.

The section 4.2 contains details of the software tools and libraries used for the

implementation. Section 4.3 highlights the implementation details of the B+ hash tree

on a code level.

4.2 Software Tools

The implementation of the solution was done using Python 3.6. The ‘hashlib’

python library was used to gain sha256 hashing capabilities for the implemented

solution as could be seen in the code level implementation.

4.3 Implementation Details

 In order to construct a B+ hash tree as described in detail in chapter three, B+

tree creation approach is taken. The interior and leaf nodes in B+ Hash Tree is

constructed with the use of the following ‘Node’ class. To identify if the node created

is a leaf node or an interior node, ‘isLeaf’ attribute within the class is utilized. The

node further has a ‘hashValue’ attribute, which is populated when the node is added

to the Hash Tree. The hash value of the node is calculated at the insertion time. Two

other methods, ‘before’ and ‘after’ are also defined with the class, which is needed to

effectively carry out the search function within the B+ Hash Tree.

1. class Node:
2.
3. def __init__(self):
4. self.isLeaf = False;
5. self.parent = None;

25

6. self.values = []
7. self.keys = []
8. self.hashValue = ""
9.
10. def before(self, key):
11. for i in range(0, len(self.keys)):
12. if key == self.keys[i]:
13. return self.values[i]
14.
15. def after(self, key):
16. for i in range(0, len(self.keys)):
17. if key == self.keys[i]:
18. return self.values[i+1]

At the initialization of the B+ Hash Tree, the root node is given and is set as a

leaf node initially.

1. class BPlusHashTree:
2.
3. def __init__(self, root, bucket_size, fill_factor):
4. root.isLeaf = True
5. self.root = root
6. self.bucketSize = bucket_size
7. assert bucket_size>fill_factor
8. self.fillFactor = fill_factor

Insertions in to B+ hash tree should follow the same algorithm as that of B+

tree. That is, it has to have the logic to handle the three situations of the insertion.

The three cases are as follows.

1. Insertion of a new element, when the leaf node has free space.

2. Insertion of a new element, when the leaf node is full, but the immediate

parent of the leaf node has free space.

3. Insertion of a new element, when the leaf node is full and the immediate

parent node is out of space.

The implementation of the insertion of nodes based on the above three cases

is provided in the Appendix A code listings.

During the insertion process, the nodes change its existing leaf nodes, as well

as the key values of the interior nodes get changed, and the change has to be

propagated up to the root node. Therefore, with each new insertion of a node or a

split of an existing node, each node leading up from that point to the root node has to

26

be rehashed. The changes in the leaf node level must also propagate upwards, by

rehashing the node and the entire path up to the root node. This hashing

functionality is achieved through the following function.

1. def hasher(self, node):
2. if node is not None:
3. while node.parent is not None:
4. hashes = ""
5. if node.isLeaf:
6. node.hashValue = hashlib.sha256(str(node.values).encode('

utf-8')).hexdigest()
7. else:
8. for child in node.values:
9. hashes += child.hashValue
10. node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()
11. node = node.parent
12. if not node.isLeaf:
13. hashes = ""
14. for child in node.values:
15. hashes += child.hashValue
16. node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()

Following searching functionality is also implemented within the B+ Hash Tree

to traverse the tree and return the matching results for a given key value.

1. def search(self, node, key):
2. if node.isLeaf:
3. return node
4. elif key < node.keys[0]:
5. return self.search(node.before(node.keys[0]), key)
6. elif key > node.keys[-1]:
7. return self.search(node.after(node.keys[-1]), key)
8. else:
9. for i in range(0, len(node.keys)):
10. if key < node.keys[i+1]:
11. return self.search(node.after(node.keys[i]), key)

In order for the B+ hash tree to become a verifiable data structure, a function or a

mechanism has to be introduced to check the extracted value against the root hash

value of the tree. In order to achieve this, firstly a function must be generated to

retrieve all the nodes within the path from a leaf to the root and on top of the results,

the verification has to be carried out.

The verification part of the code is implemented in the following manner. The

function traces back the entire set of nodes, which are on the path leading up to the

27

root node as calculated from the above function. At each of these node, the function

gathers all the sibling nodes of a given node, at that level. After extracting all the

siblings at different levels of the tree for each node, the function calculates the hash

values from the leaf node level and checks if it is able to regenerate the parent hash

value, each time, traversing upwards in the tree. At the termination point, the

function checks if the calculated hash value is equivalent to the root hash value of the

tree. If it is, ‘True’ is returned or else, ‘False’ is returned. If ‘True’ is returned, it shows

the integrity of the data structure.

4.4 Summary

In this section the details regarding the implementation of the proposed

solution was discussed in detail. The important code snippets that are crucial for the

successful implementation of the solution was explained. The code snippets that are

of relatively high importance and yet could not be inserted in the above section due

to space complexities are appended to the appendix A section.

28

Chapter 5 - Results and Evaluation

5.1 Introduction

This chapter is comprised of the results of the evaluation of the proposed

approach against the standard Merkle tree data structure implemented in the python

libraries. The results are given out in section 5.2.

5.2 Results

The comparison was carried out between the Merkle Tree data structure

implemented in the ‘hippiehug’ python library [22] against the proposed data

structure in the research. In order to do the time analysis for each operation carried

out on the data structure, python ‘timeit’ library is used.

The comparison is done however with the pure Merkle Tree implementation

which supports holding python objects at the root level, rather than the actual C++11

implementation that is implemented at the core of the OnioNS. The reasons for the

abstract comparison is given in the section 6.4, under limitations.

Both the testing for the running time evaluation was carried out using python

3.5 test environment. The testing was carried out on a computer with an Intel core I7-

4710HQ processor running at 2.5GHz using 16GB of RAM, running Microsoft

Windows 10 Enterprise edition.

The following table summarizes the time taken by each tree data structure on

initialization with different number of starting nodes. Time is given in seconds (s).

29

Table 5.1: Tree initialization time comparison

Number of Insertions Merkle Tree (s) B+ Hash Tree (s)

1 0.00014492 0.00003038

50 0.00647391 0.00745306

100 0.00490972 0.01413841

200 0.02622285 0.03064444

500 0.03025442 0.05555395

1000 0.07740859 0.08454677

2000 0.18905474 0.16220005

5000 0.43887861 0.3834162

10000 0.97731729 0.81921654

20000 1.99026839 1.68534791

50000 5.35020872 4.511024

100000 11.9428005 9.37703631

500000 - 52.7447996

From the accumulated data, it could be seen that the B+ Hash Tree has

performed better than the Merkle Tree when the tree initialization times are

compared.

The initialization time analysis is clearly illustrated in the following graph with

varying number of starting nodes. The Y axis is given in seconds and X axis represents

the number of starting nodes at the initialization time.

30

Figure 5.1: Initialization time analysis

In the graph it shows that both data structure implementations draw

exponential graphs with respect to the number of nodes to be created at the

initialization step. However, it is evident that B+ Hash Tree performs better than the

Merkle Tree implementation, when the two graphs are compared.

The next table summarizes the time taken for each new node insertion with

for a tree with varying number of starting nodes. The time is given in seconds (s).

Table 5.2: Node insertion time comparison

Number of Nodes

New node insertion time (s)

Merkle Tree B+ Hash Tree

1 0.00007307 0.00001847

50 0.00937114 0.00008662

100 0.01789203 0.00008334

200 0.01572229 0.00009196

500 0.06895379 0.00010017

1000 0.10070835 0.00013712

2000 0.16736268 0.00010879

31

5000 0.43392372 0.00011536

10000 1.01578839 0.00013506

20000 2.02357564 0.00012644

50000 5.31526174 0.00012357

100000 11.6849509 0.00014081

500000 - 0.0001909

As shown in the table, the two data structures takes drastically different

amounts of times to add a new node to an already existing data structure, with a

given size.

The following graph illustrates the insertion times taken by each of the two

data structures to add a new node to an existing set of nodes. The Y axis is given in

seconds and X axis represents the number of existing nodes at the moment of

insertion.

Figure 5.2: Insertion time analysis

 The graph shows that the Merkle Tree data structure shows an exponential

growth in time taken to add a new node to the data structure. The time taken by the

B+ Hash Tree remains linear throughout. The above can be observed because B+ Hash

Tree supports dynamic insertions whereas Merkle Tree doesn’t. For each new

insertion, Merkle Tree recomputes the entire tree, whereas the B+ Hash Tree is

32

capable of adding the new node to the existing tree, without recomputing the entire

tree.

As for the space complexity comparison, B+ Hash Tree uses space. The

Merkle Tree uses the similar amount of space complexity, which is . However, in

order to provide efficient retrieval for Merkle Trees, it has to be adjoined with

another data structure which supports efficient data retrieval. Within the scope of

the OnioNS, an AVL tree is used for this purpose which also has the space complexity

of .

5.3 Summary

This chapter elaborated the details of the test setup that was used to analyse

both the proposed approach and a Merkle Tree approach to test the capabilities of

both data structures holding the same amount of data, undergoing similar

operations.

33

Chapter 6 - Conclusions

6.1 Introduction

This chapter includes an overall review of the research questions, the main

research problem, the limitations of the current work and implications for future

research works.

6.2 Conclusions about research questions

The analysis carried out of the Onion Name System in fact revealed existing

limitations as well as probable vulnerabilities of the system. As pointed out in the

justification of the research as well as the literature review, introduction of the

OnioNS to Tor network may leave the network increasingly vulnerable to a user or

hidden service deanonymization attack done by an adversary. Therefore, it is evident

that sufficient countermeasures should be taken in order to mitigate the risk of such

an attack.

As a solution to the vulnerabilities a submitting the OnioNS core components

to architectural changes were suggested through this research.. After considering

various data structures, a novel B+ Hash Tree data structure was proposed in order to

provide the same properties as such of a Merkle Tree data structure, which is used at

the core of the OnioNS design and implementation.

In the evaluation phase, the novel data structure was compared against the

abstract implementation of a Merkle Tree in Python, it was shown that B+ Hash Tree

performs better than the Merkle Tree implementation with regard to initializations

and efficient insertions. As Merkle Tree has no support for dynamic node insertions,

every new insertion is taken up as a new tree initialization and takes a longer time to

34

accommodate than the B+ Hash Tree. B+ Hash Tree, with dynamical insertion

capabilities, performs new node insertions effectively. It is also evident that the

Merkle Tree implementation takes up more space as it needs at least two adjoined

data structures in order to perform the same operations performed by the B+ Hash

Tree. It also has to be stated that even if in the abstract comparison, the B+ Hash Tree

performed better, without actually testing it in the OnioNS environment, it cannot be

definitively said that B+ Hash Tree implementation performs better at all cases. The

reasons for the inability to do the real-world comparison is given in section 6.4 of this

chapter.

It was pointed out in the design phase that by creating several limited time

windows to submit the ticket hash, within each 24-hour period, the resources

invested by an adversary to monitor the network has to be increased by several folds.

It was also pointed out that, if it could be provided to submit the ticket hash within

the last five minutes of every hour, the resource investment would have to be raised

by an adversary to roughly 24 folds. However, by doing so, there is a probability to

invent a different vulnerability to the system. The solution may let domain squatters

to acquire more number of domains within a given day. At the best case, within a

day, with the existing system, a domain squatter could only acquire one domain. On

the average and worse case scenarios, depending on the proof of work threshold

value, a domain squatter could acquire few more domains within a given day.

However, with the new implementation, depending on the amount of limited time

windows created within a day, the number of domains a squatter can acquire, in the

best case, increases by the number of limited time windows. Therefore, it has to be

stated that, even though changing the time window of submission may very well act

as deterrent for a passive adversary, it may introduce new loop holes to the OnioNS

system. Domain squatters may even be able to perform minimalistic land rush attacks

and acquire enough domain names in such a degree, that may even leave the OnioNS

partially dysfunctional similar to Namecoin.

35

6.3 Conclusions about research problem

The Onion Name System certainly imposes security vulnerabilities to the Tor

network, if implemented with the current settings. However, there is the capability to

change the ticket hash submission interval to minimize some of the identified

vulnerabilities within the system. The change could be carried out by implementing a

B+ Hash Tree data structure in place of the Merkle Tree data structure, in Onion

Name System. As B+ Hash Tree data structure supports dynamic updates, the

additional strain that could happen to the system with the additional domain

registrations that has to be added with the new submission window, can be handled

gracefully. Therefore, based on the research findings, it could be said that B+ Hash

Trees is suitable candidate to substitute Merkle Tree data structure within Onion

Name System

The research contributed to the domain of security and data structures alike

by introducing a novel verifiable data structure. The B+ Hash Tree proposed, is

capable of holding values at the leaf nodes and to provide a verification to show the

integrity of the data structure through the root node, with a hash tree mechanism.

The implemented data structure is also capable of providing an authenticated denial

of existence proof to show the non-existence of a node within the data structure.

Further, it has to be noted that the B+ Hash Tree may have a variety of use cases in

other domains.

6.4 Limitations

The evaluation carried out in section five tested the B+ hash tree

implementation against the Merkle Tree implementation of the python ‘hippiehug’

library. The ideal evaluation to be carried out would have been to test the B+ hash

tree implementation against the Merkle Tree implementation in the OnioNS system.

However, when building the OnioNS from the code repository at GitHub, it was

evident that the current implementation of OnioNS is dysfunctional. As shown in the

36

figure 6.1, the code failed to build, due to a set of build errors. The code had

unimplemented data types, as well as undefined constructor calls which made it

evident that the available code was in no running condition. Therefore, the

evaluation of the implementation was limited to a context free data structure level,

which is not the most fitting evaluation, for the scope of this research.

Figure 6.1: Build errors

6.5 Implications for further research

As expressed in section 6.2, the ticket hash submission time window change

may very well introduce additional vulnerabilities to the OnioNS. Therefore, research

has to be carried out, in order to identify the proper number of limited time windows

that are to be allowed, and the proper time intervals to leave them open, in order to

make sure the domain squatters do not get an unnecessary advantage over the

system, while still discouraging the traffic monitoring adversaries.

37

References

[1] L. H. Newman, “How VPNs Work to Protect Privacy, and Which Ones to Use |

WIRED,” 2017. [Online]. Available: https://www.wired.com/2017/03/want-

use-vpn-protect-privacy-start/. [Accessed: 15-Dec-2017].

[2] D. L. Chaum and D. L., “Untraceable electronic mail, return addresses, and

digital pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, Feb. 1981.

[3] H. Carter and P. Traynor, “OnionDNS : A Seizure-Resistant Top-Level Domain,”

2010.

[4] J. Victors, M. Li, and X. Fu, “The Onion Name System,” Proc. Priv. Enhancing

Technol., vol. 2017, no. 1, pp. 21–41, 2017.

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Tor : The Second-Generation

Onion Router.”

[6] G. Owen and N. Savage, “The Tor Dark Net,” Glob. Comm. Internet Gov. Pap.

Ser., no. 20, p. 9, 2015.

[7] Z. Wilcox-O’Hearn, Names: Decentralized, Secure, Human-Meaningful: Choose

Two. .

[8] “Namecoin.” [Online]. Available: https://namecoin.org/. [Accessed: 16-Dec-

2017].

[9] Ionut Arghire, “Hackers Used Government Servers in DNSMessenger Attacks |

SecurityWeek.Com.” [Online]. Available:

http://www.securityweek.com/hackers-used-government-servers-

dnsmessenger-attacks. [Accessed: 16-Dec-2017].

[10] Five Eyes. United States Army Combined Arms Center.

[11] katmagic, “Shallot,” 2012. [Online]. Available:

https://github.com/katmagic/Shallot. [Accessed: 17-Dec-2017].

[12] “224-rend-spec-ng.txt\proposals - torspec - Tor’s protocol specifications.”

[Online]. Available:

https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt.

[Accessed: 17-Dec-2017].

38

[13] M. Gander and S. Nicolussi, “Human-readable Names for Tor Hidden Services,”

2011.

[14] M. Wachs, M. Schanzenbach, and C. Grothoff, “A Censorship-Resistant,

Privacy-Enhancing and Fully Decentralized Name System,” pp. 127–142, 2014.

[15] S. Nakamoto, “Bitcoin : A Peer-to-Peer Electronic Cash System,” pp. 1–9.

[16] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan, “An

empirical study of Namecoin and lessons for decentralized namespace design.”

[17] C. Allen et al., “Decentralized Public Key Infrastructure,” 2015.

[18] “Traffic Analysis.” [Online]. Available: https://www.sans.edu/cyber-

research/security-laboratory/article/traffic-analysis. [Accessed: 17-Dec-2017].

[19] A. Johnson, R. Jansen, M. Sherr, P. Syverson, and W. Dc, “Users Get Routed :

Traffic Correlation on Tor by Realistic Adversaries.”

[20] M. T. Goodrich and R. Tamassia, “Implementation of an Authenticated

Dictionary with Skip Lists and Commutative Hashing.”

[21] “Efficient Authenticated Dictionaries with Skip Lists and Commutative Hashing

∗,” 2001.

[22] “The hippiehug Merkle Tree Library — hippiehug 0.0.1 documentation.”

[Online]. Available: http://hippiehug.readthedocs.io/en/latest/#installation.

[Accessed: 18-Dec-2017].

39

Appendix A: Code Listings

A detailed implementation of the B+ Hash Tree, complete with the

initialization, node insertion, hashing and searching/verification.

1. class BPlusTree:
2.
3. def __init__(self, root, bucket_size, fill_factor):
4. root.isLeaf = True
5. self.root = root
6. self.bucketSize = bucket_size
7. assert bucket_size>fill_factor
8. self.fillFactor = fill_factor
9.
10. def search(self, node, key):
11. if node.isLeaf:
12. return node
13. elif key < node.keys[0]:
14. return self.search(node.before(node.keys[0]), key)
15. elif key > node.keys[-1]:
16. return self.search(node.after(node.keys[-1]), key)
17. else:
18. for i in range(0, len(node.keys)):
19. if key < node.keys[i+1]:
20. return self.search(node.after(node.keys[i]), key)
21.
22. def insert_into_list (self, node, key, value):
23. for i in range(0, len(node.keys)):
24. if key < node.keys[i]:
25. if node.isLeaf:
26. node.keys.insert(i, key)
27. node.values.insert(i, value)
28. else:
29. node.keys.insert(i, key)
30. node.values.insert(i + 1, value)
31. break
32. elif i == len(node.keys) - 1:
33. if node.isLeaf:
34. node.keys.insert(i + 1, key)
35. node.values.insert(i + 1, value)
36. else:
37. node.keys.insert(i + 1, key)
38. node.values.insert(i + 2, value)
39. break
40.
41. def hasher(self, node):
42. if node is not None:
43. while node.parent is not None:
44. hashes = ""
45. if node.isLeaf:
46. node.hashValue = hashlib.sha256(str(node.values).encode('

utf-8')).hexdigest()
47. else:
48. for child in node.values:
49. hashes += child.hashValue
50. node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()

40

51. node = node.parent
52. if not node.isLeaf:
53. hashes = ""
54. for child in node.values:
55. hashes += child.hashValue
56. node.hashValue = hashlib.sha256(hashes.encode('utf-

8')).hexdigest()
57.
58. def insert(self, key, value):
59. insertion_node = self.search(self.root, key)
60. node, new_node = self.insert_into_node(insertion_node, key, value)
61. self.hasher(node)
62. self.hasher(new_node)
63.
64. def set_parent(self, node):
65. for child in node.values:
66. child.parent = node
67.
68. def separate_nodes(self, node, new_node, case=0):
69.
70. temp = node.keys
71. temp_vals = node.values
72. if node.isLeaf:
73. node.keys = temp[0:self.fillFactor]
74. node.values = temp_vals[0:self.fillFactor]
75. new_node.keys = temp[self.fillFactor:len(temp)]
76. new_node.values = temp_vals[self.fillFactor:len(temp_vals)]
77. new_node.isLeaf = True
78. if case == 2:
79. self.insert_into_list(node.parent, new_node.keys[0], new_node

)
80.
81. else:
82. node.keys = temp[0:self.fillFactor]
83. node.values = temp_vals[0:self.fillFactor + 1]
84. new_node.keys = temp[self.fillFactor+1:len(temp)]
85. new_node.values = temp_vals[self.fillFactor + 1:len(temp_vals)]
86. self.set_parent(node)
87. self.set_parent(new_node)
88. if case == 2:
89. self.insert_into_list(node.parent, temp[self.fillFactor], new

_node)
90.
91. def insert_into_node(self, node, key, value):
92. if len(node.keys) < self.bucketSize :
93. if len(node.keys) != 0:
94. self.insert_into_list(node, key, value)
95. else:
96. node.keys.insert(0, key)
97. node.values.insert(0, value)
98.
99. return node, None
100.
101. elif len(node.keys) >= self.bucketSize and node.parent is not

None and len(node.parent.keys) < self.bucketSize:
102. self.insert_into_list(node, key, value)
103. new_node = Node()
104. self.separate_nodes(node, new_node, 2)
105. new_node.parent = node.parent
106.
107. return node, new_node
108.
109. elif len(node.keys) >= self.bucketSize and (node.parent is Non

e or len(node.parent.keys) >= self.bucketSize):
110. self.insert_into_list(node, key, value)
111. new_node = Node()

41

112. temp_key = node.keys[self.fillFactor]
113. self.separate_nodes(node, new_node)
114. if node.parent is None:
115. new_root = Node()
116. new_root.values.append(node)
117. if node.isLeaf:
118. new_root.keys.append(new_node.keys[0])
119. else:
120. new_root.keys.append(temp_key)
121. new_root.values.append(new_node)
122. self.root = new_root
123. node.parent = new_root
124. new_node.parent = new_root
125.
126. else:
127. if node.isLeaf:
128. self.insert_into_list(node.parent, new_node.keys[0

], new_node)
129. else:
130. self.insert_into_list(node.parent, temp_key, new_n

ode)
131. new_parent = Node()
132. temp_keys = node.parent.keys
133. temp_values = node.parent.values
134. node.parent.keys = temp_keys[0:self.fillFactor]
135. node.parent.values = temp_values[0:self.fillFactor + 1

]
136. new_parent.keys = temp_keys[self.fillFactor + 1:len(te

mp_keys)]
137. new_parent.values = temp_values[self.fillFactor + 1:le

n(temp_values)]
138. if node.parent.parent is None:
139. new_root = Node()
140. new_root.values.append(node.parent)
141. new_root.keys.append(temp_keys[self.fillFactor])
142. new_root.values.append(new_parent)
143. self.root = new_root
144. node.parent.parent = new_root
145. new_parent.parent = new_root
146. self.set_parent(node.parent)
147. self.set_parent(new_parent)
148. else:
149. new_parent.parent = node.parent.parent
150. old_grand_parent = node.parent.parent
151. self.set_parent(node.parent)
152. self.set_parent(new_parent)
153. self.insert_into_node(old_grand_parent, temp_keys[

self.fillFactor], new_parent)
154.
155. return node, new_node

