

A Framework for Secure Software

Engineering:

A Knowledge Modeling based Approach for inferring Association

between Source Code and Software Design Artifacts

K.A.I. Abeyrathna

13000022

B.N. Dahanayake

13000187

C.S. Samarage

13001078

Supervisor: Dr. Prasad Wimalaratne

Co-Supervisor: Mr. Chaman Wijesiriwardana

Submitted in partial fulfillment of the requirements of the

B.Sc (Hons) in Software Engineering 4th year Project

(SCS 4123)

January 2, 2018

i

Declaration

We certify that this dissertation does not incorporate, without acknowledgment, any material

previously submitted for a degree or diploma in any university and to the best of my knowledge

and belief, it does not contain any material previously published or written by another person or

myself except where due reference is made in the text. We also hereby give consent for my

dissertation, if accepted, be made available for photocopying and for interlibrary loans, and for the

title and abstract to be made available to outside organizations.

Candidate Name:

………………………………………………

Signature of Candidate Date:

Candidate Name:

………………………………………………

Signature of Candidate Date:

Candidate Name:

………………………………………………

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Ms. K.A.I. Abeyrathna, Mr. B.N.

Dahanayake, and Mr. C.S. Samarage under my supervision. The dissertation has been prepared

according to the format stipulated and is of the acceptable standard.

Supervisor Name: Dr. Prasad Wimalaratne

………………………………………………

Signature of Supervisor Date:

This is to certify that this dissertation is based on the work of Ms. K.A.I. Abeyrathna, Mr. B.N.

Dahanayake, and Mr. C.S. Samarage under my supervision. The dissertation has been prepared

according to the format stipulated and is of the acceptable standard.

Co-Supervisor Name: Mr. Chaman Wijesiriwardana

………………………………………………

Signature of Co-Supervisor Date:

ii

Abstract

The popular approaches in securing software systems are operating system security, anti-virus,

and firewalls. These approaches build security around the software system instead of integrating

within the software system. However, it is not adequate since the root cause of software

vulnerabilities reside within the software system. As a result, current approaches for Software

Development have given a major focus on the integration of Security with the development process

to develop secure and reliable software systems. Secure Software Engineering process integrates

security in each phase of the software development lifecycle. A disconnected set of security-

specific practices and tools are available to be used in each phase. Architecture-level security flaws

arise in the design phase while security specific bugs are caused in the implementation level.

Whenever a security issue in one phase is not resolved, it can be propagated to security

ramifications in another phase. The unresolved architecture-level security flaws will create

security bugs at the implementation level. A connectivity between the security bugs and

architecture-level security flaws needs to be identified to solve the root cause of the security bug

arise as a ramification.

This dissertation proposes a semi-automated approach to infer the association between security

bugs and architecture-level security flaws by implementing a framework named Conexus as a

proof of concept. The proposing approach uses static code analysis to identify the security bugs

with respect to OWASP Top 10 vulnerability types and threat modeling to identify the

architecture-level security flaws with respect to STRIDE threat categorization model. The

identified security bugs and architecture-level security flaws are used as the input to the Conexus

framework and the association between the two categories is derived using a Knowledge modeling

based mechanism. The security controls violated by each STRIDE threat category and OWASP

Top 10 vulnerability type are used in the Knowledge Base to identify the association between

threat categories and bug categories through a semantic similarity matching model. Depending on

the results generated from the Conexus framework, a software developer can revise the design to

make a secure design followed by a secure code to eliminate and reduce security vulnerabilities in

a software application.

iii

Acknowledgments

This thesis is the result of nearly one year of devoted work by which we being fortunate to have

the unconditional assistance of several people who have been extremely supportive in various

ways. First and foremost we would like to offer my humble gratitude to Dr. Prasad Wimalartne,

our supervisor, for been extremely supportive and for the guidance he had given us. He had been

a great listener, a great advisor, and a great teacher.

We are also grateful to Mr. Chaman Wijesiriwardana, the co-supervisor, a lecturer at the University

of Moratuwa and Mr. Lahiru Wijesekara, Software Engineer at Pearson Lanka for the tremendous

encouragement, support and the guidance given throughout this project.

We would also like to acknowledge members of UMBC Ebiquity group for being generous to

answer the project matters regarding UMBC Semantic Similarity Service we raised.

Our deepest gratitude goes to our beloved parents for their unconditional support, love and

encouragement extended towards us throughout all the ups and downs of our life. Finally, we

would like to thank all the people who had helped us throughout this project.

iv

List of Acronyms

ASF - Application Security Frame

DFD - Data Flow Diagram

MS TMT - Microsoft Threat Modeling Tool

NVD - National Vulnerability Database

SDL - Security Development Lifecycle

OWASP - Open Web Application Security Project

v

Table of Contents

Declaration ... i

Abstract ... ii

Acknowledgements .. iii

List of Acronyms .. iv

List of Figures .. viii

List of Tables .. ix

Chapter 1 : Introduction ... 1

1.1 Motivation .. 2

1.2 Problem Definition ... 3

1.3 Aims and Objectives ... 4

1.3.1 Goal of the Project ... 4

1.3.2 Objectives .. 4

1.4 Scope ... 4

1.5 Structure of the Dissertation ... 5

Chapter 2 : Background Study ... 6

2.1 Introduction ... 6

2.2 Secure Software Development Processes ... 6

2.3 Architectural Risk Analysis .. 9

2.3.1 Threat Modeling .. 10

2.3.2 Conceptual Analysis .. 11

2.3.3 Threat Modeling Tools .. 12

2.4 Code Review ... 13

2.4.1 Static Code Analysis ... 13

2.4.2 Conceptual Analysis .. 16

2.4.3 Static Code Analysis Tools ... 16

vi

2.5 Summary ... 19

Chapter 3 : Design .. 20

3.1 Introduction ... 20

3.2 Problem Analysis .. 20

3.3 Design Constraints and Assumptions ... 21

3.4 Conexus Framework Approach .. 22

3.4.1 Method 1: Direct mapping between OWASP T10 and STRIDE 22

3.4.2 Method 2: A mapping between OWASP T10 and STRIDE via Security Controls .. 22

3.5 Conexus Framework Architecture .. 24

3.5.1 Threat-based Processing Module .. 26

3.5.2 Security Bug-based Processing Module .. 26

3.5.3 Association Inference Module ... 26

3.5.4 Knowledge Base .. 26

3.5.5 Output Builder ... 32

3.6 Summary ... 32

Chapter 4 : Implementation .. 33

4.1 Introduction ... 33

4.2 Tools and Technologies .. 33

4.2.1 Threat Modeling Tool: MS TMT 2016 ... 35

4.2.2 Static Code Analysis: SonarQube ... 35

4.2.3 Threat Pre-processor .. 35

4.2.4 STRIDE Transformer .. 35

4.2.5 Security Bug Pre-processor ... 36

4.2.6 OWASP T10 Transformer ... 36

4.2.7 Association Loader .. 36

4.2.8 Knowledge Base .. 36

4.2.9 Association Linker .. 37

vii

4.2.10 Output Builder ... 37

4.3 Summary ... 37

Chapter 5 : Testing and Evaluation .. 38

5.1 Introduction ... 38

5.2 Test Procedure .. 38

5.3 Evaluation Procedure .. 38

5.4 Evaluation Results .. 40

5.4.1 Case Study 1: User Authentication component of a Web-Based Application 40

5.4.2 Case Study 2: Large-scale Web-Based Application .. 42

5.5 Discussion on the Evaluation Results ... 43

Chapter 6 : Conclusion ... 47

6.1 Conexus Framework Applications .. 48

6.2 Future Work .. 48

References ... 50

Appendices .. 54

Appendix A: Individual Contribution ... 54

Appendix B: Terminology ... 55

Appendix C: Rules in the implemented Knowledge Base .. 56

Appendix D: ASF Countermeasures ... 60

Appendix E: DFD of the Large-scale Analysis Project .. 62

Appendix F: Derived Association for Case Study 1 ... 63

viii

List of Figures

Figure 2.1: Mapping of software security knowledge catalogs to various software artifacts and

software security best practices [2] ... 7

Figure 2.2: Touchpoints numbered according to effectiveness and importance [2] 8

Figure 2.3: Microsoft Security Development Lifecycle [1, 10] .. 9

Figure 3.1: High-level view of the method used to identify the association between STRIDE and

OWASP T10 .. 24

Figure 3.2: Conexus Framework Architecture .. 25

Figure 3.3: Frame Structure for STRIDE – I ... 27

Figure 3.4: Frame Structure for STRIDE - II .. 27

Figure 3.5: Frame Structure for OWASP T10 – I ... 28

Figure 3.6: Frame Structure for OWASP T10 – II .. 28

Figure 3.7: Frame Structure for Similarity Matching .. 28

Figure 4.1: High-level view of the Conexus Framework .. 34

Figure 5.1: DFD of the User Authentication Component of the Web-Based Application 40

Figure 5.2: Part I - Association derived for the User authentication component using the Conexus

Framework ... 41

Figure 5.3: Part II - Association derived for the User authentication component using the Conexus

Framework ... 42

ix

List of Tables

Table 2-1: STRIDE Threat Categories and the affected security controls [15] 11

Table 2-2: OWASP T10 2013 mapping with Proactive Controls 2016 [27] 15

Table 2-3: A comparison of static code analysis tools (Find-Sec-Bugs and SonarQube) [32] 18

Table 2-4: No. of Vulnerability Types identified and supported OWASP T10 categories for each

supported languages from SonarQube [31] ... 18

Table 3-1: Mapping between STRIDE and ASF [33] ... 23

Table 3-2: Enhanced Mapping between ASF and STRIDE [33, 34] .. 23

Table 3-3: Semantic Text Similarity scores between an ASF security control and a Proactive

control .. 29

Table 5-1: Summary of threats identified in the User Authentication Component of the Web-Based

Application .. 41

Table 5-2: Summary of the Security-bugs identified in the User Authentication Component of the

Web-Based Application .. 41

Table 5-3: Summary of the threats identified in the Large-scale Application 43

Table 5-4: Summary of the Derived Association Results from the Conexus Framework and the

Relevant Association results to remove the Security Bugs ... 45

1

Chapter 1 : Introduction

The exponential growth of software consumption has raised many new challenges in the domain

of security. The main reason behind securing software systems is it comprises of confidential and

sensitive information [1]. In securing the software systems, popular approaches to security are

operating system security, anti-virus and firewalls [1, 2]. By contrast, these approaches treat

software as a black box ignoring the source code [1]. However, the source code is an important

component of the software which needs to be secured [1, 2]. Application Security is another aspect

of securing software systems which is based primarily on finding and fixing known security

problems after they have been exploited in the fielded systems [2]. Since, Application Security

follows naturally from a network-centric approach to security by embracing standard approaches,

such as penetrate and patch and input filtering, it is not adequate to secure software [2]. Hence,

Software Security which is a kind of computer security aims to address the aforementioned

weaknesses directly by focusing on a secure design and implementation of software [2].

Security breaches begin by exploiting a vulnerability. A vulnerability is a weakness in a system,

application, or network that is subject to exploitation or misuse [3]. In the context of software

security, security vulnerabilities are security-relevant software defects that can be exploited to

cause an undesired behavior [2]. Software defects occur in the software’s design and its

implementation where it can be categorized as design flaws and implementation bugs [1, 2, 4]. A

bug is a defect in the implementation-level [1, 2, 4] and a flaw is a design-level or architecture-

level software defect [1, 2, 4]. Despite the fact that defects categorized into two, there is an overlap

between the two categories [5]. Further, 50% of the security problems found in software are

architectural in nature [2, 4, 6]. An architecture-level security flaw may be instantiated in the

source code as a security bug, though it is a defect in the architecture [4]. Thus, finding a solution

for a security bug created due to an architecture-level security flaw requires identifying the

association between the two categories. Hence, to ensure security, both security bugs and

architecture-level security flaws must be eliminated and/or make them harder to exploit [2].

This dissertation proposes a semi-automated approach (Conexus Framework) to infer the

association between security bugs and architecture-level security flaws of a particular software

application. To achieve the goal, security bugs should be identified in the source code using a static

code analysis tool and architecture-level security flaws using a threat modeling tool manually. The

output generated from the static code analysis and threat modeling are used as an input to the

Conexus Framework to derive the association. The association is limited to the security bug

categories and architecture-level security flaw categories. Depending on the association, a software

2

developer can revise the design to make a secure design followed by a secure code to eliminate

and reduce security vulnerabilities.

1.1 Motivation

Security vulnerabilities are not restricted to a few products but affect vendors and products

available on the market [2]. A significant amount of software defects arise due to implementation

bugs and architectural flaws [2, 4, 6]. The consequences of a software malfunction or a security

breach might lead to a recall, millions in lost revenue or a loss of sensitive customer data [7]. The

current challenge that software companies come across is to maintain the software quality with

security while accelerating innovation [7]. Due to the necessity of security in a software

application, security factor has been added as a characteristic rather than a sub-characteristic in

ISO/IEC 25010:2011 Software Quality characteristic’s [8].

In the traditional approach to software development lifecycle (SDLC), security is concerned in the

final phases. Therefore, the effort and the cost needs to resolve a security vulnerability found in

the final phases or after the release is relatively high [1, 2]. The current approach provided by

vendors in solving security vulnerabilities is releasing security patches for the encountered issues.

However, it is challenging to discover security vulnerabilities and release the security patches,

before an attacker discover or exploit them and cause any harm [1, 2].

A research on Cyber Security Engineering from Carnegie Mellon University [9] have identified

organizations that have focused on security in the early stages have seen major reductions in

operational vulnerabilities, resulting reductions in software patching. Another case study from the

aforementioned research [9] showed that the cost to fix requirement problems identified later in

the project cost close to $2.5 million while the cost to fix these problems early in the lifecycle was

$0.5 million. Thus, all these facts have driven to look for new ways in developing software over

standard software development processes to further reduce overall software risk.

Building Security In paradigm introduced by Gary McGraw in 2004 [2] and Microsoft Trustworthy

Initiative [10] started with Bill Gates Memo [11] in 2002 are the two main aspects which lead to a

paradigm shift in the SDLC. This paradigm and the initiative introduce a Secure Software

Development Lifecycle (Secure SDLC) which implies that security should be built in along with

the development of the software by integrating into all phases of the SDLC [2, 10].

The general focus of all the aforementioned practices is to establish a set of practices in order to

move developers into a Secure SDLC. This aimed at reducing the number and severity of security

3

vulnerabilities in software and hence identify and manage the security issues throughout the

development instead of at maintenance.

1.2 Problem Definition

The Building Security In paradigm introduces seven touchpoints including code review,

architectural risk analysis, penetration testing, risk-based security tests, abuse cases, security

requirements and security operations to be used by integrating with the SDLC [2]. Touchpoints

are process-agnostic software security best practices applied on a software artifact including

requirements, use cases, design documents, architecture documents, code, test plans, and test

results [2] which are aimed at identifying security issues in different phases of the SDLC. Security-

specific built-in tools are available to be used with each touchpoint. However, there is a lack of

connectivity between touchpoints and hence, tools are isolated to each phase of the lifecycle.

Whenever a security issue in one phase is not resolved, it can be propagated to security

ramifications in a succeeding phase. In order to solve the security ramification, the real causes of

the issue need to be solved. Hence, a connectivity between these touchpoints needs to be identified.

Current tools are incapable of identifying the association between the software issues encountered

at different phases of the life cycle due to the separation between the tools. A manual process has

to be followed by the software developer to identify the association whenever in identifying the

real causes of a security issue.

Considering the order of effectiveness, code review and architectural risk analysis are the two main

touchpoints to be considered in Secure SDLC [2]. Security bugs are identified in the code review

while architecture-level security flaws are identified in the architectural risk analysis [1, 2].

Whenever a security bug is encountered, the solution needs to be identified. The solution for the

security bug can be a code-level or architecture-level remedy [1]. In case that, the solution is an

architecture-level remedy, the software developer needs to identify the corresponding security

flaw(s) for the relevant security bug manually. The process of identifying the relevant architecture-

level security flaw(s) is challenging.

Hence, this dissertation proposes an approach (Conexus Framework) that targets in inferring the

association between security bugs and architecture-level security flaws that are difficult to find

manually. Conexus Framework is thus can be used in an iterative development environment or in

a re-engineering process, or when a legacy code is used in a new software development

environment, to reduce or remove software defects that are prone to security vulnerabilities.

4

1.3 Aims and Objectives

1.3.1 Goal of the Project

Build a framework for secure software engineering to aid the developers in finding the potential

root-cause(s) for a security bug identified in the source code. The considered root-causes are the

architecture-level security flaw(s) identified as threats.

1.3.2 Objectives

 Background study on Software Security and Secure SDLC.

 Finding the most appropriate threat modeling approach/tool by comparing the existing

approaches/tools to be used in the architectural risk analysis to identify architecture-level

security flaws.

 Finding the most appropriate static code analysis technique/tool by comparing the existing

techniques/tools to be used in the code review to identify security bugs.

 Inferring the relationship between architecture-level security flaws and the security bugs

using STRIDE Threat categorization [12] and OWASP Top 10 2013 [13] respectively.

 Determine the potential architecture-level security flaw(s) as the root cause(s) for the

security bugs using the derived association.

 Evaluate the framework for the concept of secure design will lead to a secure software

system by using sample project(s).

1.4 Scope

The proposed framework in this dissertation is only focused on analyzing associations of Java

web-based projects. The Level-0 or Level-1 data flow diagram is the only design diagram required

for the analysis process and the type of the architecture is not concerned. It is only focused on

software security and not on any other approaches to computer security. The security bugs

categorized irrespective of OWASP T10 will not be processed form the framework.

Correspondingly, architecture-level security flaws categorized irrespective of STRIDE threat

categorization model will not be processed.

5

1.5 Structure of the Dissertation

The rest of this document is as follows. Chapter 2 reviews the background and the existing

literature related to the project. Chapter 3 describes the design architecture of the project in detailed

and Chapter 4 presents the implementation of the project. The Chapter 5 illustrates the evaluation

results and Chapter 6 concludes the dissertation with a conclusion and a discussion about the future

work.

6

Chapter 2 : Background Study

2.1 Introduction

This section discusses the current research approaches and techniques that have been conducted

related to the particular area of the study proposing in this dissertation. An analyzing of the relevant

concepts and major tools used for architectural risk analysis and code review which considered as

the two important practices in seven touchpoints in Secure SDLC are discussed in detail.

The specific aims of this background study are;

 To study security specific approaches and practices introduced to the general SDLC

processes.

 To identify different types of analysis tools available for both code review and architectural

risk analysis.

 To explore available tools and methodologies for aforementioned analysis with their

advantages and disadvantages.

 To analyze the applicability of such tools for the proposed framework in this dissertation.

 To present the proposed framework which will be an aid for software developers in

implementing security in a software application and evaluate the applicability of the

framework during a Secure SDLC process.

2.2 Secure Software Development Processes

A growing body of research has been conducted in identifying how to integrate security within

software development due to the increase in the number of software security problems. As

aforementioned in Chapter 1, the pioneer approaches to solving security problems by applying a

set of activities through SDLC are Seven Touchpoints introduced in Building Security In paradigm

[2] and Security Development Lifecycle (SDL) introduced by Microsoft Trustworthy Initiative [1,

10].

Building Security In [2] is a collaborative effort that provides practices, tools, guidelines, rules,

principles, and other resources that software developers, architects, and security practitioners can

use to build security into software in every phase of its development. The Building Security In

paradigm introduces seven touchpoints as aforementioned in Chapter 1. The touchpoints have been

7

integrated with Software Security knowledge organized into seven knowledge catalogs including

Principles, Guidelines, Rules, Attack Patterns, Historical Risks, Vulnerabilities and Exploits as

illustrated in Figure 2.1: Mapping of software security knowledge catalogs to various software

artifacts and software security best practices [2].

Figure 2.1: Mapping of software security knowledge catalogs to various software artifacts and software

security best practices [2]

According to Gary McGraw, software security requires a careful balance by unifying the two sides

of attack and defense, exploiting and designing and breaking and building into a coherent whole

[2]. In order to make it easier for companies that follow best practices, different touchpoints are in

ranking as illustrated in Figure 2.2: Touchpoints numbered according to effectiveness and

importance [2].

8

Figure 2.2: Touchpoints numbered according to effectiveness and importance [2]

Despite that Secure SDLC process introduced by Gary McGraw [2] conveys that it follows a

traditional waterfall model, the current software development methodologies followed by most of

the companies are iterative approaches. This process can be used in iterative approaches where

security specific activities can be cycled through more than once as the software evolves. Thus,

software security knowledge catalogs can be successfully applied to the SDLC by integrating with

touchpoints regardless of the base software development model [2].

Correspondingly Microsoft has carried out a noteworthy effort under its Trustworthy Computing

Initiative which focused on people, process, and technology to tackle the software security problem

[1, 10]. On the people front, Microsoft trains every developer, tester, and program manager in

basic techniques of building secure products. Microsoft's development process has been enhanced

to make security a critical factor in design, coding, and testing of every product.

A key part of Microsoft’s Trustworthy Computing is the Security Development Lifecycle (SDL)

[1, 10] which focuses on software development and introduces security and privacy throughout all

phases of the software development process as illustrated in Figure 2.3: Microsoft Security

Development Lifecycle . The Microsoft SDL combines a holistic and practical approach to reduce

the number and severity of vulnerabilities in Microsoft products [1, 10].

9

Figure 2.3: Microsoft Security Development Lifecycle [1, 10]

Conforming to the aforementioned approaches introduced to the SDLC, it conveys that

Architectural risk analysis and Code review are two significant steps which should be conducted

in a security specific SDLC process. The following sections 2.3 and 2.4 include a detailed

description of the methodologies followed and tools used in architectural risk analysis and code

review respectively.

2.3 Architectural Risk Analysis

Architecture-level security flaws account for 50% of security issues in software application [2, 4,

6, 10]. In accordance, Architectural risk analysis plays an important role in the software security

process by explicitly identifying security risks in the architecture/design [1, 2]. The analysis can

be started with the creation of a one-page overview of the system as the first step [14].

Consequently, apply a three-step process which includes Attack resistance, Ambiguity analysis,

and Weakness analysis.

In the aforementioned first step of the creation of an overview of the system, a forest-level view

of the application is created which allows global reasoning about security from the attacker

perspective by checking security constraints and by assigning security properties to component

instances [5]. Thenceforth, in the Attack resistance step of the three-step process is carried out to

build an attack checklist to understand known attacks. The controls which are needed to prevent

common attacks are considered in this step and STRIDE threat category model [12] for

categorizing the attacks. STRIDE threat category model is a model introduced by Microsoft SDL

which has been described in the succeeding section 2.3.1.1.

Ambiguity analysis is conducted to help in exposing an application’s area of potential

vulnerabilities. Trust modeling, Data Sensitivity modeling and Threat modeling are multiple

modeling techniques considered for ambiguity analysis. Trust modeling is carried out to identify

10

the boundaries for security policy for function and data. Data Sensitivity modeling is used to

identify privacy and trust issues for application data. Threat Modeling is conducted to identify the

attacker’s perspective and areas of weakness.

2.3.1 Threat Modeling

Threat modeling which is an architectural risk analysis method is a structured approach that

enables to identify, quantify, and address the security risks associated with an application [1, 2,

15]. The inclusion of threat modeling in the Secure SDLC helps in ensuring that applications are

developed with security-built-in from the beginning.

A DFD needs to be produced for the threat modeling process. There are different levels of DFD as

Level-0, Level-1, and Level-2 etc. A paper published by Abi-Antoun, et al [16] states that drawing

Level-0 or Level-1 DFD is sufficient to identify the architecture-level security flaws in the design.

The Level-2 and higher DFD diagrams require looking at the internals of the application binaries

which is difficult to achieve in the design phase. Hence, Level-0 or Level-1 DFD is acceptable for

threat modeling process.

Threat modeling process can be decomposed into 03 steps as follows [15].

Step 1: Decompose the Application

This step concerned with gaining an understanding of the application and how it interacts

with external entities which result in identifying entry points to see where a potential

attacker could interact with the application, identifying trust levels which represent the

access rights that the application will grant to external entities and identify assets that the

attacker would be interested in. Thus, this information is used to produce data flow

diagrams (DFDs) for the application.

Step 2: Determine and rank threats.

In this step, threats are determined and categorized according to a threat categorization

methodology. The goal of threat categorization is to identify threats from both attacker’s

perspective and defensive perspective. DFDs produced in step 1 is used to identify potential

threat targets from the attacker’s perspective since Threat Modeling examines the system

from a potential attacker’s perspective. The identified threats are ranked using a risk model.

Step 3: Determine countermeasures and mitigation.

In this step, mitigations and countermeasures are identified for the ranked threats.

11

All the details gained by the aforementioned steps are documented and the resulting document is

the threat model for the application.

2.3.1.1 STRIDE Threat Categorization

STRIDE [12] is a threat categorization model introduced by Microsoft. STRIDE helps to identify

threats from the attacker’s perspective by classifying attacker’s goals into 06 threat categories. The

set of STRIDE threat categories and the affected security controls due to each of the threat category

is illustrated in Table 2-1: STRIDE Threat Categories and the affected security controls [15].

Table 2-1: STRIDE Threat Categories and the affected security controls [15]

 STRIDE Threat Type Security Control

S Spoofing Authentication

T Tampering Integrity

R Repudiation Non-Repudiation

I Information Disclosure Confidentiality

D Denial of Service Availability

E Elevation of Privilege Authorization

2.3.1.2 ASF Threat Categorization

Application Security Frame (ASF) [15] is a threat categorization model which helps to identify the

threats from the defensive perspective. It helps to identify the threats as weaknesses of security

controls. In addition, ASF is known as a security control categorization model to identify threats.

Security Control types included in the ASF [15] are Authentication, Authorization, Configuration

Management, Data Protection in Storage and Transit, Data Validation / Parameter Validation,

Error Handling and Exception Management, User and Session Management and Auditing and

Logging.

2.3.2 Conceptual Analysis

A research article published by M. Frydman, et al [17] introduces an automated approach for

Threat modeling by producing two data structures, Identification trees, and Mitigation trees, to

identify threats in software designs and advise mitigation techniques while concerning

specification requirements and cost concerns. Identification trees are used to identify threats in the

software design and Mitigation trees describe countermeasures of threats and classify the set of

software specifications that are required to mitigate a specific threat. The two data structures and

ranking information of threats have been combined in a knowledge base called Attack Patterns.

12

The automated model is based on the Microsoft Threat modeling methodology and relies on the

information contained in the attack patterns. It uses the Identification trees to find the potential

threats of a given software model and uses the mitigation trees to compute the software

specifications of least effort needed to mitigate the detected threats during the development

lifecycle.

A research conference paper published by X. Yuan, et al [18] describes an effort being conducted

to develop a tool to retrieve relevant Common Attack Pattern Enumeration and Classification

(CAPEC) type attack patterns for software development. CAPEC attack patterns are valuable

resources that can help software developers to think like an attacker and have the potential to be

used in each phase of the secure software development lifecycle. The tool is capable of retrieving

attack patterns most relevant to a particular STRIDE [12] type and can be used in conjunction with

Microsoft Threat modeling tool (MS TMT). It has the capability to search for CAPEC attack

patterns using keywords. A metric has been defined in this tool to measure the degree of usefulness

of an attack pattern and the degree of its relevance to a particular STRIDE category.

The paper published by Bernhard J. Berger, et al [19] proposes a practical approach to

Architectural risk analysis that leverages Microsoft Threat modeling approach. This proposed

approach uses extended DFDs and a security knowledge base to be used as an aid for software

developers in detecting vulnerabilities in software architectures. The knowledge base contains

information on architectural weaknesses and possible mitigations. The extended DFDs are a

refinement of DFDs which are a representation of the system architecture. The analysis resulted

from the tool leads to a list of tackled problems and a list of not handled security flaws.

2.3.3 Threat Modeling Tools

Microsoft Threat Modeling Tool (MS TMT) [20] is a tool that helps in finding threats in the design

phase of software projects. It is based on the STRIDE threat categorization model [12] and enables

any developer or software architect to;

 Communicate about the security design of their systems.

 Analyze those designs for potential security issues using a proven methodology.

 Suggest and managing mitigations for security issues.

The tool graphically identifies processes and data flows (using DFDs) that comprise an application

or a service. Despite the fact that the identified threats are categorized to STRIDE, the tool lacks

in providing any prevention technique for them.

13

ThreatModeler [21] which is a web-based Threat Modeling tool can be used with agile

development methodologies to create and utilize application threat models across the SDLC

process. It automates the identification, enumeration, and prioritization of potential threats based

on real-world intelligence and the organization’s risk mitigation policies. The tool reform the

traditional approach by automatically building threat models from the functional information user

provide about their applications and systems. Integrated with an Intelligent Threat Engine (ITE)

which is capable of automatically analyzing threat models and predict where the potential threat

exists. The identified threats are ranked by risk and generate abuse cases from the ITE. The tool

lacks in categorizing the identified threats into STRIDE or any other accepted threat categorization

model and generating output reports which can be saved after the analyzing process.

A paper published by I. Williams, et al [22] has evaluated the effectiveness MS TMT using two

parts. One is Threat modeling using a manual process and the other part is using the MS TMT for

Threat Modeling. The evaluation has been conducted with the help of a set of university students

and using a mock online shopping web application. The study of the evaluation shows that the

students as a whole have improved their work on threat modeling with the use of tool compared

with not using the tool. The evaluation shows that selecting different DFD elements in the Threat

modeling tool will generate different threats and the abstraction level of the DFD affects the

number of potential threats identified.

2.4 Code Review

Security Bugs which can be found in the implementation phase of a software project are identified

in the code review process. Two approaches to code review have been defined as Dynamic Code

analysis and Static Code analysis and this dissertation is only focused on security-specific

approaches in static code analysis.

2.4.1 Static Code Analysis

Static Code analysis is a software testing method that can be performed in the different stages of

the software development to ensure software is free of vulnerabilities introduced to the code due

to programming errors [23]. In the context of security review perspective, Static Application

Security Testing (SAST) is a well-known method for discovering vulnerabilities and it is classified

into a white-box test [24].

The development processes and practices in developing secure software are primarily focused on

the use of best practice recommendations which are aimed at addressing common mistakes within

14

a current development process [25]. These include perspective practices such as OWASP Top 10

[13] and Building Security In Meta-Model [2]. A paper published by N. Kaur, et al [26] describes

that the efforts in the implementation of secure software have focused on studying implementation

vulnerabilities like SQL Injections and Cross-Site-Scripting as listed in OWASP T10.

2.4.1.1 OWASP Top 10 and OWASP Proactive Controls

OWASP Top 10 [13] (hereafter OWASP T10) is the ten most critical web application security

risks which provide a powerful awareness document for web application security. The different

versions of OWASP T10 are focused on identifying the most common vulnerabilities which have

always been organized around risks. It depicts how an attacker can potentially use many different

paths through an application to do harm to an organization where each of the paths represents a

risk.

OWASP Proactive Controls (hereafter, Proactive controls) [27] is the ten most important control

and control categories. This is a developer-centric list of security techniques which can be included

in every software project. Each proactive control helps in preventing one or more of the OWASP

Top Ten web application security vulnerabilities.

The mapping between OWASP T10 2013 and Proactive Controls 2016 is illustrated in Table 2-2:

OWASP T10 2013 mapping with Proactive Controls 2016 .

15

Table 2-2: OWASP T10 2013 mapping with Proactive Controls 2016 [27]

A
1

:
In

je
ct

io
n

A
2

:
B

ro
k
en

 A
u

th
en

ti
ca

ti
o

n
 a

n
d

S
es

si
o

n
 M

an
ag

em
en

t

A
3

:
C

ro
ss

-S
it

e
S

cr
ip

ti
n
g

 (
X

S
S

)

A
4

:
In

se
cu

re
 D

ir
ec

t
O

b
je

ct

R
ef

er
en

ce

A
5

:
S

ec
u
ri

ty
 M

is
co

n
fi

g
u
ra

ti
o

n

A
6

:
S

en
si

ti
v

e
D

at
a

E
x

p
o

su
re

A
7

:
M

is
si

n
g

 F
u
n

ct
io

n
 L

ev
el

A
cc

es
s

C
o
n

tr
o

l

A
8

:
C

ro
ss

-S
it

e
R

eq
u

es
t

F
o

rg
er

y

(C
S

R
F

)

A
9

:
U

si
n
g

 C
o

m
p

o
n

en
ts

 w
it

h

K
n

o
w

n
 V

u
ln

er
ab

il
it

ie
s

A
1

0
:

U
n

v
al

id
at

ed
 R

ed
ir

ec
ts

 a
n

d

F
o

rw
ar

d
s

C1: Verify for

Security Early

and Often

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

C2:

Parameterize

Queries

✔

C3: Encode

Data

✔

✔

C4: Validate All

Inputs

✔

✔

✔

C5: Implement

Identity and

Authentication

Controls

✔

C6: Implement

Appropriate

Access Controls

✔

✔

C7: Protect Data ✔

C8: Implement

Logging and

Intrusion

Detection

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

C9: Leverage

Security

Frameworks and

Libraries

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

C10: Error and

Exception

Handling

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

16

2.4.2 Conceptual Analysis

The white paper published by Coverity [28] outlines a practical approach for implementing secure

practices into the software development lifecycle. It has introduced a development testing platform

which allows the development organizations to coherently integrate code testing into the software

development process. Coverity development testing solutions train developers to address both

security and quality when testing the code which leads to secure software development practices.

The commonly found potentially critical security defects in the source code are identified from

this platform and will be provided an aid for the developers to fix them. The major weakness of

this platform is the lack of linking the root-cause with the design phase by limiting it to the

implementation phase.

The paper published by Sultan S. Alqahtani, et al [29] have proposed, while known vulnerabilities

and security concerns are reported in specialized vulnerability databases, these repositories often

remain information silos. In this research, a modeling approach is introduced, which eliminates

these silos by linking security knowledge with other software artifacts to improve traceability and

trust in software products. A Security Vulnerabilities Analysis Framework (SV-AF) is introduced

in this approach to support evidence-based vulnerability detection. Two case studies are presented

to illustrate the applicability of the presented approach. In these case studies, the National

Vulnerability Database (NVD) and the Maven build repository are linked to trace vulnerabilities

across repository and project boundaries. In the analysis, 750 Maven project releases are identified

as directly affected by known security vulnerabilities and by considering transitive dependencies,

an additional 415604 Maven projects can be identified as potentially affected by these

vulnerabilities. This approach for ensuring security in a software is limited to the code level and

connecting the design phase with the identified bugs is not supported in the framework.

2.4.3 Static Code Analysis Tools

The Coverity Development Testing Platform [28] introduced by Coverity, provides development

teams the ability to test code for defects in a non-intrusive manner. It integrates with IDEs like

Eclipse or Visual Studio, and developers can identify quality and security defects from within their

IDE, without disrupting the development workflow. The identified defects are automatically

notified to the developers within the existing workflow, prioritized by risk and impact. Developers

have one-click access to a rich defect knowledge base which takes the guesswork out researching

unfamiliar defects and helps developers to find the root-cause of a defect in an efficient manner.

Considering the fact that many organizations leverage shared code across projects and services,

17

Coverity Static Analysis will also show the development team all of the places across the shared

code where that defect exists, so a fix can be applied in all these places. However, this is a

commercial tool.

Find-Sec-Bugs [30] is a static analysis tool used to find security audits of java web applications. It

can detect 113 different vulnerability types with over 689 unique API signatures. The plugin covers

popular frameworks including Spring-MVC, Struts, and Tapestry etc. and available for Eclipse,

IntelliJ, Android Studio and NetBeans. Command line integration is available with Ant and

Maven. The plugin can be used with systems such as Jenkins and SonarQube and extensive

references are given for each bug patterns with reference to OWASP T10 and Common Weakness

Enumeration (CWE). A detailed report of the results of the analyzing process is provided from the

plugin which can be saved in XML format. A set of predefined bug patterns are available in this

tool which has been categorized in accordance with OWASP T10. Despite that, the output reports

generated from the tool do not contain the detected bugs as a categorization of OWASP T10.

SonarQube [31] is another static code analysis tool used to collect and analyze source code,

measuring quality and providing reports for the project. It combines static and dynamic analysis

tools and enables quality to be measured continuously over time. Everything that affects the code

base, from minor styling details to critical design errors, is inspected and evaluated by SonarQube,

thereby enabling developers to access and track code analysis data ranging from styling errors,

potential bugs, and code defects to design inefficiencies, code duplication, lack of test coverage,

and excess complexity. The Sonar platform analyzes source code from different aspects and hence

it drills down to the source code layer by layer, moving from the module level down to the class

level. At each level, SonarQube produces metric values and statistics, revealing problematic areas

in the source that require inspection or improvement.

A paper submitted by Harneet Kaur [32] has included a comparison conducted between Find-Sec-

Bugs and SonarQube as listed in Table 2-3: A comparison of static code analysis tools (Find-Sec-

Bugs and SonarQube) .

The automated categorization of security bugs into the OWASP T10 categorization is an advantage

of the SonarQube [31] tool compared to Find-Sec-Bugs plugin [30]. Despite that fact, the OWASP

T10 categorization of the SonarQube is limited to A1, A2, A5, A6, A7, and A9. The inability of

generating a final report that can be saved after the analysis is a major drawback of the SonarQube

tool. The number of vulnerability types identified for the supported languages by SonarQube tool

and the supported OWASP T10 categories is illustrated in the following Table 2-4: No. of

18

Vulnerability Types identified and supported OWASP T10 categories for each supported

languages from SonarQube .

Table 2-3: A comparison of static code analysis tools (Find-Sec-Bugs and SonarQube) [32]

 Find-Sec-Bugs [30] SonarQube [31]

Purpose Finding potential bugs Managing overall quality assurance

Types of

Verification

Code-level design flaws, bad practice,

multi-threaded correctness

Bugs, duplications, vulnerabilities, code

smell, technical debt, overall quality

statistics, and metrics

Plugins and

Integration with

Jenkins

Plugin available within Jenkins Plugin once integrated with Jenkins has

an option to further integrate Find-Sec-

Bugs as sub-plugin on SonarQube

server

Custom Rules 132 rules written in Java and analyze

Java code only

Customizable 1000+ rules supporting

more than 20 languages

Analysis Results Displayed on Jenkins server with no

flexibility of customization for false

positives

Displayed on SonarQube server with

the flexibility to eliminate false

positives, assign severity levels, close

issues and check compliant code

examples

Authorization

and Accessibility

Non-private accessibility of results on

Jenkins server

Only authorized users can access results

by logging into SonarQube server

Table 2-4: No. of Vulnerability Types identified and supported OWASP T10 categories for each

supported languages from SonarQube [31]

Language No. of Vulnerability Types
Supported OWASP T10

categories

Java 33 A1, A2, A5, A6, A7, A9

PHP 10 A1, A2, A3, A5

JavaScript 9 A3, A6, A9

C# 6 A6

Flex 6 -

Python 1 -

The Table 2-4 depicts that identification of security bugs by SonarQube is comparatively high for

the Java language.

If static code analysis is used at the right stage during the development of a project, it has the

capability of identifying critical security vulnerabilities or security bugs which may not appear to

19

the surface during or after the project release [32]. In addition to that, with a tool like SonarQube,

the generated false positives in an analysis can be eliminated more efficiently [32]. SonarQube is

not only useful for maintaining and assuring the security of one project but the configuration can

be used in many projects without the restriction of the language used to develop the project.

2.5 Summary

The aforementioned approaches for software security depict that Threat modeling is a well-known

and accepted method used in architectural risk analysis. Static code analysis which is conducted

in the code review process is a methodology for software testing used with the aid of static analysis

tools focused on identifying security bugs.

The research experiments conducted in the domain of architectural risk analysis and Threat

modeling has identified MS TMT as a well-established and industry accepted tool and it has been

used in this proposed framework. The facts included in this section depicts that SonarQube is a

code quality measuring tool which has been widely used in the software security domain. The

proposed framework from this dissertation has used SonarQube for identifying software bugs and

OWASP T10 categorization given for the identified software bugs is a major advantage of the tool

for the proposed approach for the framework.

Architectural-level security flaws of a software project can be identified using the MS TMT as

threats and correspondingly security bugs can be identified from SonarQube as vulnerabilities.

There is a high possibility for a software project to be exposed to security attacks if the identified

threats are not fixed during the implementation of the software. The main reason for this fact is

that the root causes of the security bugs in a software are lie in the design phase. Despite the fact

that security flaws and security bugs are identified for a particular software project, there is a lack

of connecting these two results. The framework proposed in this dissertation is preliminarily

focused on finding a connection between the identified security flaws and security bugs.

20

Chapter 3 : Design

3.1 Introduction

This chapter describes the proposed design approach to the aforementioned problem in this study

with the methodologies used and considerations on designing the solution. Based on the critical

review done in the background study, several design concerns were identified. Based on these

design concerns and the identified requirements the system architecture was developed. The

system architecture consists of five modules as Threat-based Processing Module, Security Bug-

based Processing Module, Association Inference Module, Knowledge Base, and Output Builder.

The detailed descriptions of problem analysis, design constraints, solution approach, and system

architecture are explained under respective sections.

3.2 Problem Analysis

The primary aim of this project was to develop a framework to infer the association between source

code and software design artifacts. To achieve this goal, an exploratory type of research was

carried out by exploring relevant documents, dissertations, and tools. The main approach that was

used to identify the requirements, functional details and system architecture was by analyzing the

information gathered through the background study. The limitations that were identified in the

current approaches, ideas and information gathered through concept papers, were incorporated in

designing the system architecture.

Considering the fact that security bugs and architecture-level security flaws are the major causes

for security issues as aforementioned in Chapter 1, code review and the architectural risk analysis

were taken into account in inferring the association. The additional reason for selecting the

preceding touchpoints was the order of effectiveness of seven touchpoints in the Secure SDLC [2].

Static code analysis tools [30, 31] were explored in order to elect a tool to identify the relevant

code-level security bugs and Threat modeling tools [20, 21] were examined in order to elect a tool

to identify the relevant architecture-level security flaws vulnerable to security issues as

aforementioned in Chapter 2. Using the literature survey conducted, MS TMT [20] and SonarQube

[31] were selected as the Threat modeling tool and Static code analysis tool respectively.

However, the inadequacy of a direct approach in inferring the association for the aforementioned

problem definition in Chapter 1, the research component was based on discovering an approach to

infer the association between security bugs and architecture-level security flaws.

21

3.3 Design Constraints and Assumptions

The analyzing software project from the Conexus Framework can be a complete software

application or a component of a software application. According to the background study

conducted in Chapter 2, the number of vulnerability types identified by SonarQube is maximum

for the Java Web Application projects compared with the other supported languages. Hence, the

analyzing project should be a Java Web Application which is compatible with the supported

version of the Java language from SonarQube.

The intended users of the Conexus Framework are software developers who should have a basic

knowledge on software security up to some extent in order to use the tool. The user should draw

the Level-0 or Level-1 data flow diagram of the relevant analyzing software project or project

component using the MS TMT. According to the background study conducted in Chapter 2, it is

sufficient to draw the Level-0 or Level-1 DFD to identify the architecture-level security flaws. The

Threat Model saved in TMT7 format should be used as the input to the Threat-based Processing

Module of the Conexus Framework assuming that threats are categorized with respect to STRIDE

threat categorization model [12].

Subsequently, the user should analyze the source code of the relevant analyzing software project

or project component using SonarQube and identify the security bugs categorized with respect to

OWASP T10 [13]. In SonarQube, security bugs are represented as Vulnerabilities. Thereafter, the

identified vulnerabilities should be input into the Security Bug-based Processing Module of the

Conexus Framework. In the case of SonarQube does not encounter any security bugs with respect

to OWASP T10, the framework will not be able to generate the association report.

SonarQube has the capability of identifying different types of vulnerabilities. However, the rest of

vulnerabilities which are not categorized into OWASP T10 are out of the scope of this framework.

The generated association report can be exported into CNX (supported by the Conexus

Framework), XML and JSON format. The mapping between security bugs to architecture-level

security flaws is limited to the level of security bug categorization model to threat categorization

model due to the limited resources and the time.

22

3.4 Conexus Framework Approach

The main approach used to infer the association between security bugs and architecture-level

security flaws was based on STRIDE threat categorization model [12] and OWASP T10 [13]

respectively. The architecture-level security flaws of a specific software application are identified

using MS TMT as threats with respect to STRIDE threat categorization model. The security bugs

are identified using SonarQube as vulnerabilities with respect to OWASP T10. Subsequently, a

method was discovered to identify a mapping between OWASP T10 and STRIDE in order to infer

the association between security bugs and architecture-level security flaws.

The first method was based on identifying a direct mapping between OWASP T10 and STRIDE.

The approach used for the aforementioned mapping was failed due to the inability of identifying a

connection directly. The succeeding method used security controls violated by each STRIDE threat

types and OWASP T10 vulnerabilities in identifying the relationship. The detailed description of

the two methods as described in the following sub-modules.

3.4.1 Method 1: Direct mapping between OWASP T10 and STRIDE

The descriptions given for each vulnerability in OWASP T10 were mapped with the descriptions

given for each threat category in STRIDE using a semantic similarity matching model. Despite

that, the high-level description provided by the STRIDE was not adequate to attain a descriptive

meaning to be used in the semantic similarity matching. Consequently, the details included in the

descriptions of the OWASP T10 vulnerabilities were not supportive enough to get a semantic

similarity. The aforementioned two facts made this method not applicable to finding the

association between security bugs and architecture-level security flaws. Thus, a new method was

identified.

3.4.2 Method 2: A mapping between OWASP T10 and STRIDE via Security

Controls

An attacker can exploit a security breach of a software system due to a weakness of a security

control. The security controls violated by each OWASP T10 vulnerabilities are represented by

Proactive controls as illustrated in Table 2-2. Correspondingly, each threat type identified by

STRIDE threat categorization is violating a specific security control as represented in Table 2-1.

ASF is a security control categorization mechanism which supports in identifying threats as

weaknesses in security controls [15]. For an in-depth analysis of the threats affecting the software

application data and functional assets, both the STRIDE attacker view and the ASF defensive view

23

for the enumeration of threats are considered as essential [15]. A relationship between STRIDE

and ASF has been identified as illustrated in following Table 3-1: Mapping between STRIDE and

ASF .

Table 3-1: Mapping between STRIDE and ASF [33]

ASF Type STRIDE Attack Type

Auditing and Logging Repudiation

Authentication Spoofing

Authorization Elevation of privileges

Configuration Management Elevation of privileges

Data Protection in Storage and Transit Tampering

The relationship depicts from the aforementioned Table 3-1 is not a complete association between

ASF and STRIDE due to each category of STRIDE lacks an association to ASF type. Hence, this

association was further improved by using the details given in the book Threat Modeling [34] as

illustrated in following Table 3-2: Enhanced Mapping between ASF and STRIDE .

Table 3-2: Enhanced Mapping between ASF and STRIDE [33, 34]

ASF Type STRIDE Attack Type

Authentication Spoofing

Authorization
Tampering, Information Disclosure, Elevation of

privileges

Configuration Management Repudiation, Elevation of privileges

Data Protection in Storage and Transit Tampering, Information Disclosure

Data Validation / Parameter Validation Tampering

Error Handling and Exception Management Information Disclosure

User and Session Management Spoofing

Auditing and Logging Repudiation

The security controls violated from both aspects of STRIDE and OWASP T10 was used to derive

the association using a semantic text similarity matching model. The set of countermeasures of

ASF and summarized Proactive control descriptions are used to get the semantic similarity

between ASF and Proactive controls. The summarized view of this approach is illustrated by the

Figure 3.1: High-level view of the method used to identify the association between STRIDE and

OWASP T10.

24

Figure 3.1: High-level view of the method used to identify the association between STRIDE and

OWASP T10

3.5 Conexus Framework Architecture

This is a semi-automated software application developed as a proof-of-concept to represent the

proposed solution given in this dissertation. The architecture proposed for the Conexus Framework

consists of five main modules as Threat-based Processing Module, Security Bug-based Processing

Module, Association Inference Module, Knowledge Base and Output Builder as illustrated in the

following Figure 3.2: Conexus Framework Architecture.

25

Figure 3.2: Conexus Framework Architecture

26

3.5.1 Threat-based Processing Module

This module is used to transform the threats contained in the Threat Model (generated from MS

TMT) into Threat and Threat Category representations which are used as input to the Association

Linker in the Association Inference Module.

3.5.2 Security Bug-based Processing Module

This module is used to transform the security bugs (identified using SonarQube) into Bug and Bug

Category representation. This representation is used as input to the Association Loader in the

Association Inference Module.

3.5.3 Association Inference Module

The Association Inference Module is used to infer the association between the Bug Category and

Threat Category representations. Bug Categories are used to query the knowledge base and get the

associated Threat Categories. Consequently, the associations and the Bug Category representations

are linked with the Threat Categories. The Association representations are used to create the output

using Output Builder.

3.5.4 Knowledge Base

A core part of the Conexus Framework architecture is the Knowledge Base. It contains the facts

and rules related to the STRIDE, ASF, OWASP T10, Proactive Controls and Semantic Similarity

Scores between ASF and Proactive controls. A Frame-based approach is used for knowledge

representation of facts [35, 36]. The structure of the frames for the facts STRIDE, OWASP T10,

and Similarity Matching are illustrated by the Figure 3.3: Frame Structure for STRIDE - I, Figure

3.4: Frame Structure for STRIDE - II, Figure 3.5: Frame Structure for OWASP T10 - I, Figure 3.6:

Frame Structure for OWASP T10 - II and Figure 3.7: Frame Structure for Similarity Matching.

Four additional frames structures were used for the ASF and Proactive controls.

27

Figure 3.3: Frame Structure for STRIDE - I

Figure 3.4: Frame Structure for STRIDE - II

28

Figure 3.5: Frame Structure for OWASP T10 - I

Figure 3.6: Frame Structure for OWASP T10 - II

 Figure 3.7: Frame Structure for Similarity Matching

29

In inferring the association between ASF and Proactive controls, the approach was based on

computing semantic text similarity between the descriptions of each security control. A security

specific semantic text similarity approach [37] was identified in order to be used in this process.

The approach was unsuccessful due to the unavailability of a developed application. Hence, the

approach was shifted towards a general semantic text similarity service [38].

The semantic text similarity was calculated for every single security control in ASF with every

single Proactive Control. The descriptions of ASF security controls and Proactive Controls are not

limited to a single phrase. Considering the above fact, the semantic text similarity of each phrase

of the description of a particular ASF security control was calculated with respect to each phrase

of the description of Proactive Control. Consequently, the average semantic similarity score

between a particular ASF security control and Proactive control is calculated as follows.

S1 description of ASF has n phrases as (s1phr1, s1phr2, …., s1phrn)

C1 description of Proactive Control has m phrases as (c1phr1, c2phr2, …, c3phrm)

Table 3-3: Semantic Text Similarity scores between an ASF security control and a Proactive control

Semantic Text Similarity
Description of S1

s1phr1 s1phr2 s1phrn

D
es

cr
ip

ti
o
n
 o

f
C

1

c1phr1 v1 vm+1

c1phr2 v2

c1phrm vm vnm

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑇𝑒𝑥𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆1 𝑎𝑛𝑑 𝐶1 = [(∑ 𝑉𝑖

𝑛𝑚

𝑖=0

) ÷ 𝑛𝑚]

The aforementioned approach in calculating semantic similarity score is an automated approach.

The calculated semantic text similarity score values are stored as facts in the knowledge base using

Frames data structure. In order to infer the association between STRIDE and OWASP T10, Prolog

rules were designed according to the aforementioned approach in section 3.4.2 as illustrated below.

.

.

.

.

.

30

Rule 1:

isCausedByThreatCategories(BugCategory , TList_Unique) :-

 findall(T , isCausedByThreatCategory(BugCategory , T) , TList) ,

 sort(TList, TList_Unique) .

Explanation:

Rule 1 is used to query the knowledge base. The list of unique threat categories can be discovered

by querying the knowledge base using a bug category. Each threat category associated with bug

category is revealed by the Rule 2. The Prolog built-in function findall(Object, Goal, List) is used

to collect the threat categories which are identified using Rule 2. The list produced by findall/3 is

filtered to get the unique list by the built-in function sort(List, SortedList).

Rule 2:

isCausedByThreatCategory(BugCategory , T) :-

 lacksProactive(BugCategory , P) ,

 mapsToSecurityControl(P , S) ,

 isWeakendByThreatCategory(S , T) .

Explanation:

Rule 2 is used to discover the associated threat category using the bug category. The threat category

is revealed using the subsequent rules on the right-hand side of Rule 2. The

lacksProactive(BugCateogry, ProactiveControl) is used to discover the proactive controls violated

due to the given bug category.

The proactive control identified using the Rule 3, lacksProactive/2 is used in Rule 5,

mapsToSecurityControl(ProactiveControl, SecurityControl) to determine the security control

through the semantic similarity score.

The security control revealed using the Rule 5, mapsToSecurityControl/2 is used to identify the

mapping threat category through the Rule 12, isWeakendByThreatCategory(AsfSecurityControl,

ThreatCategory).

Rule 3:

 lacksProactive(BugCategory , C) :-

 isProactiveListOf(CList , BugCategory) ,

member(C , CList) .

31

Rule 4:

isProactiveListOf(CList , BugCategory) :-

 owasp_top10(BugCategory , _ , CList) .

Explanation:

Rule 3 is used to identify the proactive controls of the relevant bug categories in succession. The

Rule 4, isProactiveListOf(ProactiveControlList, BugCategory) used to identify the proactive list

of the given bug category using the owasp_top10 frame.

Rule 5:

 mapsToSecurityControl(Proactive , S) :-

 isMappingSecurityControlListOf(SList , Proactive) ,

member(S , SList) .

Explanation:

Rule 5 is used to identify the mapping ASF security controls in succession by using the semantic

text similarity score between ASF security controls and proactive controls. An ASF security

control is mapping with a proactive control if it belongs to the top 03 semantic text similarity

scores of the relevant proactive control. The rules Rule 6, Rule 7, Rule 8, Rule 9, Rule 10 and Rule

11 (see Appendix C) are used to identify the mapping security controls using the semantic text

similarity scores.

Rule 12:

 isWeakendByThreatCategory(SecurityControl , T) :-

 stride(_ , T , _ , SecContList) ,

 member(SecurityControl , SecContList) .

Explanation:

The ASF security controls discovered using the Rule 5 is used to identify the mapping threat

category in succession. The stride facts stored in the knowledge base using the Frames data

structure is used in Rule 12, isWeakendByThreatCategory(SecurityControl, ThreatCateogry) with

the built-in member/2 function in Prolog.

The knowledge base contains all the aforementioned facts and rules to infer the association

between OWASP T10 and STRIDE. The component Association Loader in the Association

32

Inference module use the goal, isCausedByThreatCategories(bugCategory, ?) to query the

Knowledge Base and results are sent back from the Knowledge Base to the Association Loader.

The facts regarding STRIDE and ASF security controls are static facts while OWASP T10 and

Proactive Controls are dynamic facts. The reason for OWASP T10 and Proactive Controls to be

dynamic is the revising of OWASP T10 and Proactive controls in a period of years. Hence, the

knowledge base has the capability of renewing.

Considering the fact that OWASP T10 or Proactive controls are changed, the Conexus framework

has the capability of updating the knowledge base in accordance with the new values. A particular

user interface is given in the framework to input the new OWASP T10 details, new Proactive

controls details and the updated mapping with respect to the changed data.

3.5.5 Output Builder

The output builder is used to create the association result output. The association results given by

the Knowledge Base are used to create the Association representation of Bugs and the Threats

representations. In designing the output builder, the Builder Design pattern was applied in order

to create different types of report structures.

3.6 Summary

In this chapter, the facts related to the design of the entire framework is described under the major

design modules. The design architecture presented in Figure 3.2 explained the design approach

used to design the core functionality which is inferring the relationship between threats and

security bugs. The identified threats using MS TMT are processed using the Threat-based

processing module and security bugs determined though SonarQube is processed using the

Security Bug-based processing module. The association is derived using the Association Inference

module and the Knowledge Base. The Knowledge Base has the capability of revising according to

the OWASP T10 and Proactive Controls. The Output Builder module is used to generate the

association report and to export into to CNX, XML and JSON formats.

33

Chapter 4 : Implementation

4.1 Introduction

This section explains the development approaches taken in the implementation of the proposed

framework described in Chapter 3 with the tools and technologies used for the development. A

detailed description of the implementation of each component in the Conexus Framework

architecture is described under sub-modules with the issues and challenges occurred and the

decisions taken during the development process. The reasons for the selection of technologies and

tools used in each component is also described in this section.

4.2 Tools and Technologies

The framework was developed as a standalone application using Object oriented concepts. It

consists of a Knowledge Base which represents the data model of the application. The Knowledge

Base is built using Prolog programming language. The framework was built using Java 8

programming language with Java FX1 and Maven technology. The main reason behind selecting

Java for the development of framework is a rich set of libraries which can be used to communicate

with Prolog2 is available in Java programming language. The additional reasons for selecting Java

programming language is, it is a popular object-oriented, robust, secure, and high-performance

language used in the industry.

The developed software application Conexus is not a follow-on member of a product family, it

depends on outputs from the MS TMT [19] and SonarQube [30]. The interaction of the

aforementioned tools with the Conexus Framework to fulfill the core functionality is illustrated by

the following Figure 4.1: High-level view of the Conexus Framework.

1 https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
2 http://www.swi-prolog.org/

34

Figure 4.1: High-level view of the Conexus Framework

35

4.2.1 Threat Modeling Tool: MS TMT 2016

The Conexus Framework user needs to draw the Level-0 or Level-1 DFD of a particular software

application to generate the Threat Model. MS TMT 2016 is used for this purpose and it will

generate a Threat Model which include Threats categorized with respect to STRIDE [12] threat

categorization model. The generated Threat Model of the given application must be input to the

system.

The reason for selecting this tool is, it is a well-established and industry accepted tool as depicted

in the background study performed in Chapter 2.

4.2.2 Static Code Analysis: SonarQube

In order to identify the Security bugs of a particular software application, the Conexus Framework

user needs to analyze the source code using SonarQube. The vulnerabilities identified as security

bugs are categorized with respect to OWASP T10 [13] by this tool. Thereafter, the user needs to

input the identified security bugs and the relevant OWASP T10 categories into the system.

SonarQube is a static code analysis tool as well as a code quality measuring tool which has been

widely used in the software security domain. Categorization of software bugs into OWASP T10 is

the additional reason for selecting this tool for the proposed approach of the framework as

identified in Chapter 2.

4.2.3 Threat Pre-processor

The Threat Model which is generated from MS TMT is an XML file. This XML file is processed

using the dom4j3 library to extract threats. The reason for using the dom4j library is its powerful

navigation with XPath which allows complex navigation throughout the document with a single

line of code. Thereafter, the extracted threats are converted into Threat Objects which contain the

relevant details of threats sent out from this component.

4.2.4 STRIDE Transformer

The threat objects output from the Threat Pre-processor is transformed into Threat category

objects. Six Threat category objects are created with respect to STRIDE threat categories which

contains details of each Threat object belongs to a particular category.

3 https://dom4j.github.io/

36

4.2.5 Security Bug Pre-processor

The Security bug inputs given into the system by the user are converted into Bug objects using

Java FX technology. Each Bug object which contains the relevant details of bugs are sent out as

an output from this component.

4.2.6 OWASP T10 Transformer

The Bug objects sent out by the Security Bug Pre-processor are transformed into Bug category

objects. Ten Bug category objects are created with respect to OWASP T10 which contains details

of each Bug object belongs to a particular category. Theses Bug category objects are sent to the

Association Loader component.

4.2.7 Association Loader

Association Loader is used for querying the Knowledge Base using the Bug category objects in

order to identify the associated Threat categories. A Prolog converter is built using JPL4 library in

SWI-Prolog to communicate Prolog with Java. The reason for selecting JPL is, it is a well-known

and mature interface between Java and Prolog [39].

Each bug category will be used to query the Knowledge Base and the associated threat type results

are held inside the Association Loader. The associated threat type results and the Bug Category

Objects are sent to the Association Linker.

4.2.8 Knowledge Base

The Knowledge Base is built using the SWI-Prolog. All the facts and rules aforementioned in

Chapter 3, are contained in the Knowledge Base. The reason behind the choice of SWI Prolog is

based on popularity in the community, freely available and ultimately it works fine with JPL

library.

The reason for selecting a knowledge base approach instead of a database approach is the

complexity of handling constraints in a database in a complete update. The Knowledge Base has

the capability of revising when the OWASP T10 or Proactive controls are revised. Hence, using a

database will be a complex approach rather than using a Knowledge Base. The additional reason

for selecting a Knowledge Base approach is the capability to expand the knowledge contained in

the Knowledge Base using the security expert knowledge.

4 http://www.swi-prolog.org/packages/jpl/java_api/index.html

37

4.2.9 Association Linker

Threat category objects from STRIDE Transformer and associated threat types and Bug objects

from Association Loader will be the input to this component. Thereafter, the Association objects

are generated. The Association objects are sent out from the Association Linker to the Output

Builder.

4.2.10 Output Builder

The output builder is responsible for creating the Association report. This has the capability to

export the report in CNX format (supported by the Conexus Framework), XML format and JSON

format with the use of Builder Design pattern. FasterXML/Jackson5 is used to create the report in

XML or JSON format since it supports annotation based serialization and deserialization

capability.

4.3 Summary

This chapter presented the implementation procedure of the entire system with the tools and

technologies used in each submodule. The implementation of the design modules in Conexus

Framework architecture explained in Chapter 3 were technically presented as an integration of

them with the reasons behind in selecting relevant tools and technologies. The system workflow

with respect to the core modules was also presented using the diagram in Figure 4.1.

Implementation of the Conexus Framework followed the Object Oriented principles and the

coding standards.

5 https://github.com/FasterXML/jackson

38

Chapter 5 : Testing and Evaluation

5.1 Introduction

The evaluation of the proposed approach to achieve the goal of this dissertation is a challenging

task. There are no standard evaluation measures for instance precision and recall (used in

information retrieval) or accuracy measures (used in machine learning). Hence, an appropriate

evaluation methodology was identified and a detailed description of the procedure is described in

the sub-section 5.3. The evaluation was conducted using two case studies and the discussion of the

evaluation results are further elaborated in section 5.4 and 5.5. In prior to the evaluation process,

testing was conducted to identify whether the framework behaves according to the intended

functionalities. The testing procedure followed is described in the sub-module 5.2.

5.2 Test Procedure

The testing procedure was conducted as a strategy to ensure that the product operates as intended

in the specification. It can be realized under two main categories namely, functional testing and

non-functional testing. Functional testing includes unit testing, integration testing, and system

testing to verify that the implemented framework functions correctly and provides the results in

accordance with the development constraints. Unit testing was performed using the TestNG6 tool.

Performance testing was conducted under non-functional testing and the framework was tested for

analysis of large-scale projects to check whether the system crashes or fails to produce expected

outputs. The industry project used for the evaluation purpose in the section 5.3 was selected for

this purpose. Due to the fact that the Conexus framework only processes the outputs generated

from MS TMT and SonarQube, it is independent of the Threat Modeling processing and the Static

Code Analysis. Hence, generating the association for large-scale projects can be conducted from

the framework irrespective of the size of the project.

5.3 Evaluation Procedure

Concerning the goal of this dissertation, the identified evaluation methodology is focused on

evaluating the framework for the concept of secure design will lead to a secure software system

and whether the potential root causes of an identified security bug lie in the design phase of the

software application as described in Chapter 1. A software application to be analyzed using the

6 http://testng.org/doc/

39

Conexus Framework should include a Level-0 or Level-1 DFD of the application along with the

source code. It was unable to find an open source project with a data flow diagram since most of

the development groups does not follow a Secure SDLC. Hence, open source projects were not

used for the evaluation purpose. In accordance with the aforementioned facts, a user authentication

component of a web-based application and an industry project were chosen for the evaluation

purpose as case studies 1 and 2 respectively. Mutation testing was carried out to the source code

of the case study 1 in prior to the evaluation where OWASP T10 related security bugs were

purposely introduced to the source code. The reason behind that fact was to identify whether the

intended evaluation objectives of this dissertation is fulfilled.

In the evaluation process, threat modeling is conducted to identify the architectural-level security

flaws of the selected case study as STRIDE categorized threats using MS TMT. The security bugs

in the source code of the selected case study are identified from static code analysis using

SonarQube as OWASP T10 related vulnerabilities. The identified threats and security bugs are

given as inputs to the framework to derive the association. The association derived between

security bugs and the threats is limited to the level of the security bug categories and threat

categories. An association was derived for each bug category identified using the static code

analysis process through the Conexus Framework. The association depicts that the derived threat

categories can be the root causes of the encountered security bugs. Using a manual process, the

highly relevant root causes (threat categories) of the security bug categories were identified and

the relevant countermeasures were applied in order to remove the security bugs in the source code.

The countermeasures for a particular threat category are identified from the ASF security controls

according to the aforementioned solution approach in section 3.4.2. The risks (identified as threats)

in the design phase can be mitigated by implementing the countermeasures in the implementation-

level of a case study (See Appendix D). The reason for this fact is the countermeasures derived by

the ASF security controls are given for the implementation level. Hence, the countermeasures

shown for the relevant threat categories are enforced in the source code. This fact leads to perform

only the static code analysis for the modified source code to identify whether the previously

encountered security bugs had been removed from the source code. The evaluation of the Conexus

Framework will be succeeded if the security bugs were removed by the application of

countermeasures for the relevant root causes.

40

5.4 Evaluation Results

5.4.1 Case Study 1: User Authentication component of a Web-Based

Application

The data flow diagram drawn for the developed user authentication component of the web-based

application is represented by the Figure 5.1: DFD of the User Authentication Component of the

Web-Based Application.

Figure 5.1: DFD of the User Authentication Component of the Web-Based Application

Threat modeling process was carried using MS TMT 2016 to identify the architecture-level

security flaws in the design. A summary of the threats identified for each STRIDE threat category

is described by the Table 5-1: Summary of threats identified in the User Authentication Component

of the Web-Based Application.

Static code analysis was performed using the SonarQube and the summary of the results obtained

is illustrated in Table 5-2: Summary of the Security-bugs identified in the User Authentication

Component of the Web-Based Application.

41

Table 5-1: Summary of threats identified in the User Authentication Component of the Web-Based

Application

STRIDE Threat Type No. of Threats

Spoofing 6

Tampering 4

Repudiation 4

Information Disclosure 2

Denial of service 9

Elevation of privileges 8

Table 5-2: Summary of the Security-bugs identified in the User Authentication Component of the Web-

Based Application

OWASP T10 related vulnerability

types caught by SonarQube

OWASP T10 related vulnerability

types uncaught by SonarQube

Count 4 2

Types A2, A5, A6 A1, A7

Thereafter, the results from the threat modeling process and the static code analysis were given as

input to the Conexus framework to find the association. The derived association is illustrated in

the following Figure 5.2, Figure 5.3 and rest of the association is included in Appendix F.

Figure 5.2: Part I - Association derived for the User authentication component using the Conexus

Framework

42

Figure 5.3: Part II - Association derived for the User authentication component using the Conexus

Framework

According to the association derived and the security bug types, it depicts that the identified

security bugs have a high relevancy towards the Spoofing and Tampering threat categories. The

relevant countermeasures given for the Spoofing and Tampering attacks were applied to the

implementation of the project and the static code analysis process was repeated. The previously

identified security bugs (belongs to A2, A5, A6 OWASP T10 categories) by the SonarQube have

been removed. In addition to that, SQL injection (belongs to A1 OWASP T10 category) which

was not identified by the SonarQube has also been removed. It has been identified that the security

bug related to access levels in this source code (A7) which has not been identified by the

SonarQube can be removed by enforcing the countermeasures given for Elevation of privileges.

5.4.2 Case Study 2: Large-scale Web-Based Application

This is a large scale case study taken from the industry. The data flow diagram related to this case

study is attached in the Appendix D. The summary of identified threats for this case study using

threat modeling process is illustrated in Table 5-3: Summary of the threats identified in the Large-

scale Application.

Static code analysis was performed on the case study and 26 security bugs related to OWASP T10

A2 and A6 categories were identified. However, the security bugs identified with respect to

OWASP T10 A2 category were not real security bugs. The reason lies behind this fact is further

explained in the section 5.5.

43

Table 5-3: Summary of the threats identified in the Large-scale Application

STRIDE Threat Type No. of Threats

Spoofing 12

Tampering 0

Repudiation 0

Information Disclosure 5

Denial of service 5

Elevation of privileges 5

The identified threats and the security bugs were given as input into the Conexus Framework and

the association was derived. According to the derived association, it depicts that there is high

relevance towards the Information Disclosure threat category. By applying the countermeasures

given for the Information Disclosure in the implementation, the security bugs (belongs to A6

OWASP T10 category) were removed.

5.5 Discussion on the Evaluation Results

The association results obtained from the Conexus framework depend on the analysis outputs

given from SonarQube and MS TMT and the Semantic similarity scores obtained through UMBC

Semantic Similarity Service. The accuracy of the results obtained from the Conexus Framework

relies on the aforementioned tools and services. During the evaluation process, following issued

were identified with respect to SonarQube.

SonarQube only supports 06 vulnerability types from OWASP T10 for the Java language as

illustrated in Table 2-4 in Chapter 2. In spite of the fact that SonarQube supports for A1

vulnerability type of OWASP T10, the purposely introduced A1 type security bug for the source

code in the Case Study 1 was unable to identify from the static code analysis. This is an issue in

the SonarQube tool. Another issue identified from SonarQube was the incorrect detection of hard-

coded passwords. During the analysis of the Case Study 2, a string variable name included the

word phrase “password” was identified as a variable to store a hardcoded password. This was

detected as an A2 type vulnerability of OWASP T10 by SonarQube.

Despite the fact that, if the source code of analyzing project contains OWASP T10 vulnerabilities,

it is unable to detect all vulnerability types by SonarQube. Hence, Conexus Framework is unable

to derive associations for each OWASP T10 vulnerability contained in the source code. Therefore

a manual code review conducted to identify the rest of the vulnerability types of OWASP T10 in

the Case Study 1. The manual process was succeeded since the vulnerabilities were introduced

44

purposely to the source code and the scale of this Case Study 1 was small. However, the manual

code review was not successful for the Case Study 2 due to the scale and the complexity of this

project.

The conducted analysis for the Case Study 2 resulted with a set of limitations in finding the

association for large-scale projects. The association is derived from the Conexus Framework is

used to find the possible root causes for a security bug. The possible root causes are the threats in

the design. Although the association is found for the project, it is difficult to pinpoint the exact

location of the source code even in manually to apply the countermeasures given for the possible

threat categories. This is due to the fact that the generated DFDs are Level-0 or Level-1 diagrams.

The information provided by these type of DFDs are not sufficient enough to find the relevant

implementation of the source code. It has been identified from this evaluation that these type of

issues can be prevented if the large-scale projects are divided into a set of small components and

perform the analysis process for each component. The DFDs can be drawn for each component of

the large-scale project. A component level analysis can be performed using the relevant

implementation and the DFD of the component. This kind of analysis narrows down the

identification of root causes to relevant data flow or process manually using the association

derived.

The OWASP T10 related security bugs identified in the 02 case studies were removed by the

application of countermeasures for the relevant root cause(s) (threat category) of the security bug

category. The summary of the derived association and the relevant association (correct

association) for the security bug categories in the 02 case studies is represented by the following

Table 5-4: Summary of the Derived Association Results from the Conexus Framework and the

Relevant Association results to remove the Security Bugs.

45

Table 5-4: Summary of the Derived Association Results from the Conexus Framework and the Relevant

Association results to remove the Security Bugs

Case Study Bug Category Derived association

from the Conexus

Framework

Relevant association to

remove the security bug

Case Study 1

 A1 T, R, I, E T

A2 S, T, R, I, E S, T

A5 T, R, I, E T

A6 S, T, R, I, E S, T

A7 T, R, I, E E

Case Study 2

 A6 S, T, R, I, E I

The probability of identifying correct association for a particular bug category is calculated as no.

of correctly identified associations over the total no. of associations derived.

If C represents the identifying correct association for a bug category,

𝑃(𝐶) =
𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑠

Accuracy measures the degree of the system to identify associations correctly. Hence, the overall

accuracy of the derived associations for the 02 case studies is calculated using the results in Table

5-4: Summary of the Derived Association Results from the Conexus Framework and the Relevant

Association results to remove the Security Bugs.

If C1, C2, … , Cn represents the identification of correct associations for each result in Table 5-4,

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ P(Cn)𝑛

𝑖=1

𝑛
 × 100

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (

1
4 +

2
5

+
1
4 +

2
5

+
1
4 +

1
5

6
) × 100 = 29.167

46

The overall accuracy is lower due to the noise included in deriving the association as shown in

Table 5-4. However, for the above case studies, the relevant root causes (threats) were able to

identify using the Conexus Framework. The derived association conveys that each threat category

(STRIDE) is not associated with each security bug category (OWASP T10).

47

Chapter 6 : Conclusion

The particular area of a study conducted in this dissertation is aimed at finding an association

between security bugs occur in the source code and architecture-level security flaws which can be

found from software design artifacts by proposing a knowledge modeling based approach. The

association is derived in accordance with finding the possible root causes (architecture-level

security flaws) for a given security bug. A framework is built as a proof of concept for the proposed

solution and it can be used in an SDLC as an aid for software developers. Static code analysis

which is an approach to find security bugs in a source code is considered for this study and the

results obtained from a static code analysis tool (SonarQube) are given as inputs to the framework.

Correspondingly, Threat modeling which is an architectural risk analysis methodology to find

security flaws in a software design is considered and the results obtained from a threat modeling

tool (MS TMT 2016) are given as inputs to the framework.

The proposed approach to identify the association between security bugs and architecture-level

security flaws is limited to the level of the security bug categories and threat categories. The results

generated from threat modeling and static code analysis approaches are security flaws categorized

into STRIDE and security bugs categorized into OWASP T10 respectively. STRIDE is identified

as an attacker’s view of the enumeration of threats and a specific security control is violated by

each threat type. ASF is a security control categorization mechanism which supports in identifying

threats as weaknesses in security controls by representing the defensive perspective of threats. A

mapping between STRIDE and ASF is used to identify the security controls violated by each

STRIDE threat type. Correspondingly, the security controls violated by each OWASP T10

vulnerabilities are represented by OWASP T10 Proactive Controls. The derivation of the

association between STRIDE and OWASP T10 is created using a semantic text similarity

matching model (UMBC Semantic Similarity Service). The semantic similarity has been generated

by using the set of countermeasures given in ASF and summarized OWASP T10 Proactive control

descriptions.

The results obtained by the evaluation process conveys that the derived association has an overall

accuracy of 29.167 percent. However, the accuracy is relatively low due to noise, the derived

association contained the relevant root cause(s) for a particular security bug. The given mapping

between OWASP T10 and Proactive controls, maps all the OWASP T10 vulnerability types with

proactive controls C8, C9 and C10. It has been identified from the evaluation that this mapping

has resulted in repetition of the same set of STRIDE categories linked to each OWASP T10

48

vulnerability type as noise. The identified security bugs related to OWASP T10 vulnerability types

were able to resolve by applying the countermeasures given for the relevant root cause of the

security bugs using the derived association. The conducted evaluation leads to the justification that

the framework evaluates the concept of secure design will lead to a secure software system. This

dissertation concludes that some of the security bugs in the code level were caused due to the

architecture-level security flaws.

6.1 Conexus Framework Applications

The framework consists of a knowledge base developed upon a set of Prolog rules and facts. In

spite of finding the association between security flaws and security bugs based on STRIDE and

OWASP T10 respectively, the framework provides countermeasures for the security flaws and

prevention techniques for the security bugs given as inputs to the system.

The framework can be used conjointly with the re-engineering process of a previously developed

software where the association between security flaws and security bugs can be identified and take

necessary actions to implement security in the software. Implementation of a software application

sometimes includes the use of legacy software components. Thus, the Conexus framework can be

used to ensure the security of the legacy components which are a lack of software security.

In a security-focused agile development environment, the framework can be used to ensure the

security of the working software in each product increment. The particular area of study proposed

in this dissertation is exposed to a broad research space. The framework can be used as an aid for

researchers in the security domain by enhancing and updating the knowledge base in consideration

with different security aspects.

6.2 Future Work

The current approach of finding the association between STRIDE and OWASP T10 which has

been proposed from this dissertation is based on semantic similarity values obtained from ASF

countermeasures and OWASP T10 Proactive controls. In consideration of that fact, a different

approach to obtain the association can be commenced as a future work. A suggested approach for

this work is to use a security specific semantic similarity matching model which will enhance the

accuracy of the similarity values obtained. Another approach is using attack trees to find the

association between STRIDE to OWASP T10 in place of obtaining semantic similarities.

The proposed approach for the finding the association in this dissertation is limited to the level of

security bug categories and threat categories. This approach can be further enhanced to map each

49

security bug to each threat as a future work. Use of a case-based reasoning model will be one

possible approach for that.

It has been identified from the derived association that some of the identified threats in the design

were not related to the implementation level problems. Hence, to ensure that each threat is

mitigated in the final software product, security-specific test cases can be generated from the

identified threats. This can be a further extension of this area of study.

50

References

[1] S. L. M. Howard, The Security Development Lifecycle, Redmond, WA: Microsoft Press,

2006.

[2] G. McGraw, Software Security: Building Security In, Upper Saddle River, NJ: Addison-

Wesley, 2006.

[3] R. Kissel, Glossary of Key Information Security Terms, United States: National Institute

of Standards and Technology (NIST), 2013.

[4] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern, T. Kohno, C.

Landwehr, G. McGraw, B. Schoenfield, M. Seltzer, D. Spinellis, I. Tarandach and J.

West, "Avoiding the top 10 software security design flaws," IEEE Computer Society

Center for Secure Design (CSD), 2014.

[5] L. R. Vanciu, "Static Extraction of Dataflow Communication for Security," Ph.D.

dissertation, Wayne State University, Michigan, 2014.

[6] R. Kazman, "A tool to address cybersecurity vulnerabilities through design," SEI Blog,

Software Engineering Institute, Carnegie Mellon University, 29 February 2016.

[Online]. Available: https://insights.sei.cmu.edu/sei_blog/2016/02/a-tool-to-address-

cybersecurity-vulnerabilities-through-design.html. [Accessed 12 December 2017].

[7] R. S. Mark Sherman, "From Secure Coding to Secure Software," SEI Webinar Series,

Software Engineering Institute, Carnegie Mellon University, 10 November 2016.

[Online]. Available:

https://www.sei.cmu.edu/webinars/view_webinar.cfm?webinarid=483646. [Accessed 12

December 2017].

[8] International Organization for Standardization, "ISO/IEC 25010:2011, Systems and

software engineering — Systems and software Quality Requirements and Evaluation

(SQuaRE) — System and software quality models".

[9] CERT.org, "Cybersecurity Engineering," [Online]. Available:

https://www.cert.org/cybersecurity-engineering/index.cfm#swamodel. [Accessed 12

December 2017].

[10] S. Lipner, "The trustworthy computing security development lifecycle," in Computer

Security Applications Conference, 20th Annual, 2004.

51

[11] Microsoft, "Memo from Bill Gates | Stories," 2012. [Online]. Available:

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/. [Accessed 12 December

2017].

[12] Microsoft, "The STRIDE Threat Model," [Online]. Available:

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx. [Accessed 12

December 2017].

[13] OWASP.org, "OWASP Top Ten Project," [Online]. Available:

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project. [Accessed 12

December 2017].

[14] G. McGraw, "Software security touchpoint: Architectural risk analysis," Technical

report, Cigital, 2009.

[15] OWASP.org, "Application Threat Modeling," [Online]. Available:

https://www.owasp.org/index.php/Application_Threat_Modeling. [Accessed 18

December 2017].

[16] M. Abi-Antoun, D. Wang and P. Torr, "Checking threat modeling data flow diagrams

for implementation conformance and security," in Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, ACM, 2007.

[17] M. Frydman, G. Ruiz, E. Heymann, E. César and B. Miller, "Automating risk analysis

of software design models.," The Scientific World Journal, 2014.

[18] X. Yuan, E. Nuakoh, J. Beal and H. Yu, "Retrieving relevant CAPEC attack patterns for

secure software development," in Proceedings of the 9th Annual Cyber and Information

Security Research Conference, 2014.

[19] B. Berger, K. Sohr and R. Koschke, "Automatically Extracting Threats from Extended

Data Flow Diagrams," in International Symposium on Engineering Secure Software and

Systems.

[20] Microsoft, "SDL Threat Modeling Tool," [Online]. Available:

https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx. [Accessed 12

December 2017].

[21] The ThreatModeler, "Threat Modeling Tool," [Online]. Available:

http://threatmodeler.com/threat-modeling-tool/. [Accessed 12 December 2017].

[22] I. Williams and X. Yuan, "Evaluating the effectiveness of Microsoft threat modeling

tool," in Proceedings of the 2015 Information Security Curriculum Development

Conference, 2015.

52

[23] H. Assal, "Collaborative security code review," in Proceedings of the 14th International

Conference on Mobile and Ubiquitous Multimedia, 2015.

[24] T. Ishikawa and K. Sakurai, "Parameter manipulation attack prevention and detection by

using web application deception proxy," in Proceedings of the 11th International

Conference on Ubiquitous Information Management and Communication, 2017.

[25] C. Heitzenrater, R. Böhme and A. Simpson, "The days before zero day: Investment

models for secure software engineering," in Proceedings of the 15th Workshop on the

Economics of Information Security (WEIS), 2016.

[26] N. Kaur and P. Kaur, "Mitigation of SQL injection attacks using threat modeling," ACM

SIGSOFT Software Engineering Notes, 39(6), pp. 1-6, 2014.

[27] OWASP.org, "OWASP Proactive Controls," [Online]. Available:

https://www.owasp.org/index.php/OWASP_Proactive_Controls. [Accessed 18

December 2017].

[28] Coverity, "Coverity White Paper: Building Security into Your Software Development

Lifecycle," 2012.

[29] S. Alqahtani, E. Eghan and J. Rilling, "SV-AF—A Security Vulnerability Analysis

Framework," in Software Reliability Engineering (ISSRE), 2016 IEEE 27th

International Symposium on, 2016.

[30] Find-sec-bugs.github.io, "Find Security Bugs," [Online]. Available: http://find-sec-

bugs.github.io/. [Accessed 12 December 2017].

[31] sonarqube.org, "SonarQube," [Online]. Available: https://www.sonarqube.org/.

[Accessed 12 December 2017].

[32] H. Kaur, "Automating Static Code Analysis for Risk Assessment and Quality Assurance

of Medical Record Software," M.Sc. dissertation, University of Victoria, 2017.

[33] T. UcedaVelez and M. Morana, Risk Centric Threat Modeling: Process for Attack

Simulation and Threat Analysis, John Wiley & Sons, 2015.

[34] A. Shostack, Threat Modeling: Designing for Security, Indianapolis, Indiana: John

Wiley & Sons, 2014.

[35] D. Merritt, Building expert systems in Prolog, Springer Science & Business Media,

2012.

[36] P. Rashid, "Semantic Network and Frame Knowledge Representation Formalisms in

Artificial Intelligence," M.Sc. dissertation, Eastern Mediterranean University (EMU)-

Doğu Akdeniz Üniversitesi (DAÜ), 2015.

53

[37] M. Chavan, "Developing a Cybersecurity Text Corpus and its Application for

Augmenting Semantic Text Similarity," M.Sc. dissertation, University of Maryland,

Baltimore County, 2014.

[38] L. Han, A. Kashyap, T. Finin, J. Mayfield and J. Weese, "UMBC_EBIQUITY-CORE:

Semantic Textual Similarity Systems," * SEM@ NAACL-HLT, 2013.

[39] L. Ostermayer, F. Flederer and D. Seipel, "CAPJA-A Connector Architecture for Prolog

and Java," in 10th Workshop on Knowledge Engineering and Software Engineering

(KESE), 2014.

54

Appendices

Appendix A : Individual Contribution

In accordance to the problem definition in this dissertation, all the three team members were equally

contributed in finding an approach to achieve the proposed goal. Following the identification of an

approach, a knowledge base has to be created using a set of Prolog rules to store the relevant information

to be used with the implemented framework. Creation of this set of rules included the contribution of all

the members.

Contribution 1: K. A. I. Abeyrathna

A comparison of the existing threat modeling tools was conducted in order to identify the appropriate threat

modeling tool to be used with the identified approach. The work related to generating the output reports

from the selected threat modeling tool was carried out. The implementation of the Conexus framework

related to processing the generated output from the threat modeling tool and output builder implementation

was conducted.

Contribution 2: C. S. Samarage

A comparison of the existing static code analysis tools was conducted to select the appropriate static code

analysis tool to be used with the identified approach. The work related to generating the output reports from

the selected static code analysis tool was carried out. The implementation of the Conexus framework related

to processing the generated output from the static code analysis tool and settings implementation was

conducted.

Contribution 3: B. N. Dahanayake

A compatible prolog implementation and relevant libraries to be used with the Conexus framework was

identified. The most appropriate data structure to store the information in the knowledge base was

identified. The implementation of the Conexus framework related in Java to Prolog conversions with

respect to the information retrieving and storing and association inference implementation were conducted.

55

Appendix B : Terminology

Bug - An unexpected and relatively small defect, fault, flaw, or imperfection in

an information system or device.

Build Security In - A set of principles, practices, and tools to design, develop, and evolve

information systems and software that enhance resistance to vulnerabilities, flaws,

and attacks.

Defect - A problem that may lie dormant in software for years only to surface in a

fielded system with major consequences.

Exploit - A script or plan that executes against a vulnerability, leading to a security

compromise.

Risk - The potential for an unwanted or adverse outcome resulting from an

incident, event, or occurrence, as determined by the likelihood that a particular

threat will exploit a particular vulnerability, with the associated consequences.

Flaw - A design-level or architecture-level software defect.

Software Security - The idea of engineering software so that it continues to function correctly

under malicious attacks.

Threat - A circumstance or event that has or indicates the potential to exploit

vulnerabilities and to adversely impact organizational operations, organizational

assets, individuals, other organizations, or society.

Touchpoint - A characteristic or specific weakness that renders an organization or asset

open to exploitation by a given threat or susceptible to a given hazard.

Vulnerability - A characteristic or specific weakness that renders an organization or asset

(such as information or an information system) open to exploitation by a given

threat or susceptible to a given hazard.

56

Appendix C : Rules in the implemented Knowledge Base

The 12 rules in the implemented knowledge base are explained here.

Rule 1:

isCausedByThreatCategories(BugCategory , TList_Unique) :-

 findall(T , isCausedByThreatCategory(BugCategory , T) , TList) ,

 sort(TList, TList_Unique) .

Explanation:

Rule 1 is used to query the knowledge base. The list of unique threat categories can be discovered by

querying the knowledge base using a bug category. Each threat category associated with bug category is

revealed by the Rule 2. The Prolog built-in function findall(Object, Goal, List) is used to collect the threat

categories which are identified using Rule 2. The list produced by findall/3 is filtered to get the unique list

by the built-in function sort(List, SortedList).

Rule 2:

isCausedByThreatCategory(BugCategory , T) :-

 lacksProactive(BugCategory , P) ,

 mapsToSecurityControl(P , S) ,

 isWeakendByThreatCategory(S , T) .

Explanation:

Rule 2 is used to discover the associated threat category using the bug category. The threat category is

revealed using the subsequent rules on the right-hand side of Rule 2. The lacksProactive(BugCateogry,

ProactiveControl) is used to discover the proactive controls violated due to the given bug category.

The proactive control identified using the Rule 3, lacksProactive/2 is used in Rule 5,

mapsToSecurityControl(ProactiveControl, SecurityControl) to determine the security control through the

semantic similarity score.

The security control revealed using the Rule 5, mapsToSecurityControl/2 is used to identify the mapping

threat category through the Rule 12, isWeakendByThreatCategory(AsfSecurityControl, ThreatCategory).

57

Rule 3:

 lacksProactive(BugCategory , C) :-

 isProactiveListOf(CList , BugCategory) ,

member(C , CList) .

Rule 4:

isProactiveListOf(CList , BugCategory) :-

 owasp_top10(BugCategory , _ , CList) .

Explanation:

Rule 3 is used to identify the proactive controls of the relevant bug categories in succession. The Rule 4,

isProactiveListOf(ProactiveControlList, BugCategory) used to identify the proactive list of the given bug

category using the owasp_top10 frame.

Rule 5:

 mapsToSecurityControl(Proactive , S) :-

 isMappingSecurityControlListOf(SList , Proactive) ,

member(S , SList) .

Explanation:

The mapsToSecurityControl/2 is used to identify the ASF security controls maps to the given proactive

control in succession. In order to identify the list of mapping ASF security controls Rule 6,

isMappingSecurityControlListOf(ASFSecurityControlList , ProactiveControl) is used. The built-in

function member/2 of Prolog is used to iterate through the ASF security control list.

Rule 6:

 isMappingSecurityControlListOf(SList , Proactive) :-

 isMappingSimilarityValuesFor(SimList , Proactive) ,

 isSecurityControlListOf(SList , Proactive , SimList) .

Rule 7:

 isMappingSimilarityValuesFor(SimList , Proactive) :-

 isMaxThreeOf(SimList , AllSimilarities) ,

 isAllSimilarityValuesFor(AllSimilarities , Proactive) .

58

Explanation:

The Rule 7, isMappingSimilarityValuesFor(SimilarityScoreList, ProactiveControl) used in RHS of Rule 6

is used to get the list of maximum three semantic text similarity scores for a given proactive control from

the full list of semantic scores.

Rule 8:

 isMaxThreeOf([X , Y , Z] , [X , Y , Z | _]) .

Explanation:

The Rule 8, isMaxThreeOf(MaxThreeList, SortedList) is used to filter the maximum three values from a

given sorted list in descending order.

Rule 9:

 isAllSimilarityValuesFor(AllSimList_DESC, Proactive) :-

findall(Similarity ,

semanticAssociation(Proactive , _ , Similarity) , AllSimList) ,

sort(AllSimList , AllSimList_ASC) ,

reverse(AllSimList_ASC , AllSimList_DESC) .

Explanation:

Rule 9 is used to get the list of semantic text similarity scores for a given proactive control in descending

order using the semanticAssociation frame. The findAll/3, sort/2, and reverse/2 are Prolog built-in functions

used to collect all the semantic scores relevant to the given proactive control, sort the list of semantic scores

in ascending order and reverse the order of semantic scores respectively.

Rule 10:

 isSecurityControlListOf(SList, Proactive, SimList) :-

 findall(S ,

isASecurityControlOf(S , Proactive , SimList) ,

SList) .

Rule 11:

 isASecurityControlOf(S , Proactive , SimList) :-

 semanticAssociation(Proactive , S , Similarity) ,

member(Similarity , SimList) .

59

Explanation:

In order to identify the relevant ASF security controls mapping for a given proactive control and list of top

three semantic similarity scores, the Rule 10, isSecurityControlListOf(SecurityControlList,

ProactiveControl, TopThreeSimilarityScoreList) is used.

Each mapping security control for the relevant proactive control is collected by Rule 11,

isASecurityControlOf(SecurityControl, ProactiveControl, TopThreeSimilarityScoreList) using the

semanticAssociation frame.

Rule 12:

 isWeakendByThreatCategory(SecurityControl , T) :-

 stride(_ , T , _ , SecContList) ,

 member(SecurityControl , SecContList) .

Explanation:

The ASF security controls discovered using the Rule 5 is used to identify the mapping threat category in

succession. The stride facts stored in the knowledge base using the Frames data structure is used in Rule

12, isWeakendByThreatCategory(SecurityControl, ThreatCateogry) with the built-in member/2 function in

Prolog.

60

Appendix D : ASF Countermeasures

ASF Security Controls & Countermeasures List

ASF Security Control Type Countermeasures

Authentication

1. Credentials and authentication tokens are protected with

encryption in storage and transit

2. Protocols are resistant to brute force, dictionary, and

replay attacks

3. Strong password policies are enforced

4. Trusted server authentication is used instead of SQL

authentication

5. Passwords are stored with salted hashes

6. Password resets do not reveal password hints and valid

usernames

7. Account lockouts do not result in a denial of service

attack

Authorization

1. Strong ACLs are used for enforcing authorized access to

resources

2. Role-based access controls are used to restrict access to

specific operations

3. The system follows the principle of least privilege for

user and service accounts

4. Privilege separation is correctly configured within the

presentation, business and data access layers

Configuration Management

1. Least privileged processes are used and service accounts

with no administration capability

2. Auditing and logging of all administration activities is

enabled

3. Access to configuration files and administrator interfaces

is restricted to administrators

Data Protection in Storage and

Transit

1. Standard encryption algorithms and correct key sizes are

being used

2. Hashed message authentication codes (HMACs) are used

to protect data integrity

3. Secrets (e.g. keys, confidential data) are

cryptographically protected both in transport and in

storage

4. Built-in secure storage is used for protecting keys

5. No credentials and sensitive data are sent in clear text

over the wire

Data Validation / Parameter

Validation

1. Data type, format, length, and range checks are enforced

2. All data sent from the client is validated

3. No security decision is based upon parameters (e.g. URL

parameters) that can be manipulated

4. Input filtering via whitelist validation is used

5. Output encoding is used

Error Handling and Exception

Management

1. All exceptions are handled in a structured manner

2. Privileges are restored to the appropriate level in case of

errors and exceptions

61

3. Error messages are scrubbed so that no sensitive

information is revealed to the attacker

User and Session Management

1. No sensitive information is stored in clear text in the

cookie

2. The contents of the authentication cookies are encrypted

3. Cookies are configured to expire

4. Sessions are resistant to replay attacks

5. Secure communication channels are used to protect

authentication cookies

6. The user is forced to re-authenticate when performing

critical functions

7. Sessions are expired at logout

Auditing and Logging

1. Sensitive information (e.g. passwords, PII) is not logged

2. Access controls (e.g. ACLs) are enforced on log files to

prevent unauthorized access

3. Integrity controls (e.g. signatures) are enforced on log

files to provide non-repudiation

4. Log files provide for an audit trail for sensitive operations

and logging of key events

5. Auditing and logging is enabled across the tiers on

multiple servers

62

Appendix E : DFD of the Large-scale Analysis Project

63

Appendix F : Derived Association for Case Study 1

64

65

