
Framework for Linguistic
Applications Development(FLAD)

Group Members

C.M. Liyanage 13000632

P.A.D. Chandana 13000162

D.A.B.P. Dodangoda 13000349

G.D.D. Kanchana 13000535

Supervised by

Prof. K. P. Hewagamage

Dr. A. R. Weerasinghe

Mr. Viraj Welgama

Submitted in partial fulfillment of the requirements of the

B.Sc(Hons) in Software Engineering 4th Year Project (SCS4123)

University of Colombo School of Computing

Sri Lanka

May 22, 2018

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,

any material previously submitted for a degree or diploma in any university and to

the best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, be

made available for photocopying and for interlibrary loans, and for the title and

abstract to be made available to outside organizations.

Candidate Name:

......................................

Signature of Candidate Date:

Candidate Name:

......................................

Signature of Candidate Date:

Candidate Name:

......................................

Signature of Candidate Date:

Candidate Name:

......................................

Signature of Candidate Date:

This is to certify that this dissertation is based on the work of Mr. C.M.

Liyanage, Mr. P.A.D. Chandana, Mr. D.A.B.P. Dodangoda, and Mr. G.D.D.

Kanchana under my supervision. The thesis has been prepared according to the

format stipulated and is of acceptable standard.

Supervisor Name:

......................................

Signature of Supervisor Date:

i

Abstract

Natural Language Processing (NLP) is a main area emerged with the Artifi-

cial Intelligence. Text to Speech (TTS), Speech to Text (STT), Optical Character

Recognition (OCR) and Language Translation are four main components of Natu-

ral Language Processing software applications which are also known as Linguistic

components. There are many service providers currently available providing the

services of the previously mentioned four linguistic components. Each linguistic

component also has different vendors providing the service. These services can be

online or offline. For an example, Google services such as Google Cloud Speech

API, Google Cloud Vision API are online services. Offline services can be libraries

such as Tesseract or stand-alone servers like MaryTTS which should be installed in

machines. Therefore, these service providers maintain different interfaces to pro-

vide their services which makes a burden to the linguistic application developers.

Developers who want to use different linguistic components in one application will

have to face a lot of difficulties in many ways such as installing services, config-

uring services, etc. Developers who want to add more advanced functionalities to

their applications by combining two or more linguistic components will have to face

many major problems in integrating these components in the same application as

these components are not in the same platform to be integrated. Considering all

these problems we propose a framework which brings all the above mentioned lin-

guistic components to a common platform and exposes the services as web services

through REST APIs. Further, this framework addresses the issue of combining the

services of linguistic components by exposing REST APIs for the complex services

which are made up of services of two or more linguistic components. Therefore,

developers only have to send requests to the REST APIs and handle the JSON

responses sent by the system. Developers can create projects to access the services

provided by the framework through the FLAD Console of the system. Developers

can select the linguistic components and vendors of the selected linguistic compo-

nents they need in their applications. When considering this framework from the

technical aspect, expandable nature of this framework is an important achievement.

This framework is designed in a such a way that a new linguistic component or a

new instance of a linguistic component can be integrated to the framework with

less overhead. However, when considering the overall nature of this framework it is

clear that this will fill the gap between linguistic applications development and the

linguistic application components which addresses the goal of this project that is to

reduce the application development overhead through implementing a framework

for linguistic application development.

ii

Acknowledgement

First, we would like to be grateful to University of Colombo School of Comput-

ing for providing the opportunity to conduct a product based software engineering

project under software engineering stream.

A very special gratitude goes to Prof. K.P. Hewagamage for giving us the seed

idea of the project and supporting us as the main supervisor of the project. Advice

and support given throughout the year were very helpful and important to make

this project a success. We appreciate his valuable and constructive suggestions

during the planning and development of this research work. His willingness to give

his time so generously should be appreciated very much.

We would like to offer our gratitude to Dr. A.R. Weerasinghe and Mr. Viraj

Welgama for supporting us throughout the project by giving advice and guidance

to make this project a success.

Our special thanks are extended to the staff of language center at University

of Colombo School of Computing for giving us the knowledge of natural language

components and available Sinhala and Tamil linguistic applications.

We also appreciate the commitment and support given by MaryTTS GitHub

community in solving the technical difficulties. The great support given by the

active Google Developer community when solving technical difficulties related to

Google Vision API and Google Speech API should be highly appreciated. We also

appreciate the community support of StackOverflow when solving the programming

difficulties.

We wish to acknowledge the great support of the highly committed team mem-

bers who believed in team spirit and teamwork in achieving the final outcome of

the project. The great collaboration and cooperation among the team members

was the key to the success of the project.

Finally, we would like to offer our greatest appreciation to our parents in sup-

porting us to beat unexpected difficulties in life and helping us to achieve our goal

in the academic career in all sorts of ways.

iii

Table of Contents

Declaration i

Abstract ii

Acknowledgement iii

Table of Contents viii

List of Figures x

List of Tables xi

Acronyms xii

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

1.3 Goal and Objectives . 4

1.3.1 Goal . 4

1.3.2 Objectives . 4

1.4 Scope of the Project . 5

1.5 Justification as Product based Project 6

2 Background Study 8

2.1 Introduction . 8

2.2 Software Framework . 8

2.3 MaryTTS . 9

2.4 Kaldi Automatic Speech Recognition (ASR) 9

2.5 HTK Speech Recognition Toolkit. 10

2.6 CMU Sphinx Speech to Text . 10

2.7 Google Cloud Speech API . 10

2.8 Tesseract OCR . 11

2.9 Google Cloud Vision API . 11

iv

2.10 Google Translation API . 12

2.11 WSO2 ESB . 12

2.12 Google Cloud Console . 12

2.13 REpresentational State Transfer (REST) 13

2.13.1 Uniform Interface . 13

2.13.2 Stateless . 14

2.13.3 Cacheable . 14

2.13.4 Client-Server . 14

2.13.5 Layered System . 14

2.13.6 Code on Demand . 14

2.14 REST API Design approaches . 15

2.14.1 HTTP verbs . 15

2.14.2 Safe Methods . 16

2.14.3 Semantic Versioning . 16

2.15 Authentication . 16

2.16 JavaScript Object Notation(JSON) 17

2.17 React . 17

2.17.1 Notable features . 18

2.18 Redux . 18

2.18.1 Single source of truth . 19

2.18.2 State is read-only . 19

2.18.3 Changes are made with pure functions 19

2.19 Summary . 19

3 Functional and Non-functional Requirements 20

3.1 Functional requirements . 20

3.1.1 Main users of the product 20

3.1.2 End user’s functional requirements 20

3.1.3 Admin’s functional requirements 21

3.2 Non-Functional requirements . 21

3.2.1 Performance . 21

3.2.2 Scalability . 21

3.2.3 Availability . 22

3.2.4 Reliability . 22

3.2.5 Maintainability . 22

3.2.6 Security . 22

3.2.7 Data Integrity . 22

3.2.8 Usability . 23

3.2.9 Interoperability . 23

v

4 Design Consideration 24

4.1 Introduction . 24

4.2 System design and architecture of the FLAD back end core framework 25

4.2.1 Communication architecture 26

4.2.2 Component architecture . 26

4.2.3 Deployment architecture . 29

4.2.4 The multi-layered architecture of FLAD 30

4.2.5 Core Component architecture of FLAD 31

4.3 System design and architecture of the FLAD front end Application 35

4.3.1 Component Composition . 36

4.3.2 Higher-order components . 37

4.3.3 Dependency Injection . 37

4.3.4 File Hierarchy . 38

4.3.5 Unidirectional data flow . 39

4.3.6 Usage of ESLint . 40

4.4 Summary . 40

5 Implementation 41

5.1 Introduction . 41

5.2 Overall process . 41

5.3 The back end development . 43

5.3.1 Message builder and formatter implementation 44

5.3.2 Quality of Service component implementation 46

5.3.3 JSON web token generation process in FLAD 47

5.3.4 TTS component implementation 50

5.3.5 OCR component implementation 52

5.3.6 Translation component implementation 54

5.3.7 STT component implementation. 55

5.3.8 The sequence implementation 56

5.3.9 Log mediator component . 60

5.3.10 Error handling . 60

5.4 The front end development . 61

5.4.1 How front end communicates with the back end 63

5.4.2 How Redux is used . 63

5.4.3 How the application is structured 64

5.4.4 How authorization is handled 65

5.4.5 Authentication Component 66

5.4.6 Project Component . 66

5.4.7 SummaryBox Component 66

vi

5.4.8 EnhancedTable Component 67

5.4.9 UsageChart Component . 68

5.4.10 Breadcrumbs Component . 68

5.5 Summary . 68

6 Evaluation 69

6.1 Introduction . 69

6.2 Software wise evaluation . 69

6.2.1 FLAD console loading time 69

6.2.2 Completeness of the scope and objectives 71

6.3 Architecture wise evaluation . 75

6.3.1 Effort of adding new service instances to the existing services 75

6.3.2 Effort of unplugging a existing component 75

6.3.3 Effect of adding new services to the FLAD system (overhead

of modification of the code) 76

6.4 Server wise evaluation . 76

6.4.1 Evaluation of plugged services 76

6.4.2 Latency of the requests . 77

6.4.3 Requests per period of time which can handle by the FLAD

(How many concurrent requests can handle) 78

6.5 Proof of Concept . 82

6.6 Testing Process . 83

6.7 Summary . 85

7 Conclusion 86

7.1 Limitations . 87

7.2 Future Work . 88

7.2.1 Support for stream API . 88

7.2.2 Bulk OCR processing . 88

7.2.3 Load balancing . 88

7.2.4 Use of external environment files 88

7.2.5 Enhancing plug and play . 89

7.2.6 Server replication . 89

7.2.7 Introducing a revenue model 89

References 90

Appendices 93

A 94

vii

B 95

C 96

D 99

E 101

F 102

G 103

H 106

I 107

J 113

K 114

L 115

M 119

N 122

O 127

viii

List of Figures

1.1 Abstract view of the system . 3

4.1 System architecture of FLAD . 25

4.2 Component architecture of FLAD 27

4.3 Distributed deployment of FLAD 30

4.4 Multi-layered architecture of FLAD 31

4.5 Class diagram of FLAD core . 32

4.6 Service locator pattern of FLAD core 34

4.7 Basic component separation of FLAD Console 36

4.8 FLAD front end file hierarchy . 38

4.9 The data flow structure of FLAD 39

5.1 Function of Message Builder and Formatter 44

5.2 MaryTTS message conversion . 46

5.3 Token generation process in FLAD 47

5.4 FLAD validation for simple service 49

5.5 Implementation approach of the TTS services 51

5.6 Implementation approach of the OCR services 53

5.7 Implementation approach of the STT services 56

5.8 A part of Redux application state 63

6.1 The rendering time of normal DOM vs React 70

6.2 The memory consumption of normal DOM vs React 71

6.3 The graphical view of sequence evaluation 74

6.4 MongoDB performance evaluation of read operation 78

6.5 MongoDB performance evaluation of write operation 79

6.6 Jetty waiting time . 80

6.7 Jetty handling time . 81

6.8 Jetty throughput . 81

6.9 Analysis of front end evaluation . 85

G.1 User Dashboard . 103

ix

G.2 Create Project Form . 103

G.3 View Project Details . 104

G.4 Summary Box . 104

G.5 Enhanced Table . 104

G.6 Enhanced Table (Item selected state) 105

G.7 Usage Chart . 105

G.8 Breadcrumbs . 105

I.1 Home Screen (Main Dashboard) . 107

I.2 Single Services Dashboard . 108

I.3 Complex Services Dashboard . 109

I.4 OCR Screen after performing a OCR operation 110

I.5 Translate Screen after performing a English to French Translation . 111

I.6 OCR to Translate page after performing a OCR + Translate com-

bined operation . 112

x

List of Tables

6.1 Efficiency of sequences . 74

6.2 Latency of simple services . 77

6.3 Latency of Complex services (Sequences) 77

6.4 Jetty performance evaluation . 80

6.5 Test Plan . 83

6.6 Test Plan . 84

A.1 Comparison of Speech To Text libraries 94

B.1 Google speech API pricing . 95

B.2 Google OCR pricing . 95

E.1 FLAD error codes . 101

F.1 Comparison of JavaScript front end development frameworks. . . . 102

H.1 Front end evaluation form . 106

J.1 Requests limits of Google STT . 113

K.1 Requests limits of Google Translate 114

xi

Acronyms

API Application Programming Interface

DOM Document Object Model

ESB Enterprise Service Bus

FLAD Framework for Linguistic Application Development

HMR Hot Module Replacement

HTTP Hypertext Transfer Protocol

JSON Javascript Object Notation

MPA Multiple Page Applications

NLP Natural Language Processing

NPM Node Package Manager

OCR Optical Character Recognition

POM Project Object Model

REST Representational State Transfer

SPA Single Page Applications

STT Speech To Text

TTS Text To Speech

UTF-8 Unicode Transformation Format-8

xii

Chapter 1

Introduction

The current trend in computer science is to implement Artificial intelligence to

mimic the human mind. Machines should be able to understand natural languages

to achieve this goal. Natural language processing (NLP) is the ability of a computer

program to understand human language as it is spoken.

Text To Speech (TTS), Speech To Text (STT), Optical Character Recognition

(OCR) and Language Translation are the main application areas of NLP. Research

groups in various universities and institutions have introduced various solution-

s/implementations in these fields.

With the rise of NLP field, people started using STT, TTS, OCR, and transla-

tions to increase human interaction in the computing applications. The majority of

current applications are mobile-based hence acquiring audio utterances and images

is an easy task. This has increased the usage of NLP in mobile applications. IBM

Watson1, Apple’s Siri2, Microsoft Cortana3 and Google Assistant4 are some of the

leading smart assistants that uses NLP based applications.

The software applications which occupy NLP are called Linguistic applications.

Continuously increasing mobile application industry handles a comparatively large

part of linguistic applications. Mobile devices are not powerful enough to handle

the processing of above linguistic components within itself. In order to achieve the

best outcome of these applications, these services should be provided as third party

services.

There are many software solutions currently available as services under each of

these linguistic components with the different set of features and accuracy levels.

Each of these services maintains their own application programming interfaces in

order to provide their services. Due to this reason, there may be different appli-

1https://www.ibm.com/watson/
2https://www.apple.com/ios/siri/
3https://www.microsoft.com/en-us/windows/cortana
4https://assistant.google.com/

1

cation programming interfaces required to use when using linguistic components

together. This complexity can be resolved by introducing a wrapper for these dif-

ferent application programming interfaces as a common application programming

interface which is capable of communicating back and forth with child application

programming interfaces in a flexible manner.

Framework based linguistic application development can be used to reduce the

overall application development time and to improve the efficiency of applications.

A framework for linguistic application development is a solution to handle the

low-level configuration and integration of linguistic components and expose the

functionality over well-defined application programming interface.

1.1 Motivation

The application development around linguistic components has become a necessity

in current application development processes. The gap between the application

development and integration, configuration of linguistic components has been a

setback in the development of linguistic applications around the innovative ideas.

The unavailability of a standard method to utilize the services of linguistic com-

ponents leads application developers to rewrite the code for integrating and config-

uring the linguistic components. This violates basic software engineering principles

like code reuse. Further, the integration patterns used may not be optimal which

leads to poor performance of applications. Lack of an architecture that provides

the modularity, flexibility, and efficiency for linguistic application development is

a dearth in the software engineering domain.

A framework which comprises an architecture that integrates all the linguistic

components is a major requirement in this context. A framework enables developers

to devote their time to meet software requirements rather than dealing with the

more standard low-level details of providing a working system, thereby reducing

overall development time.

For an example, a mobile application which helps the blind people to hear the

content in a newspaper or a book can be simply developed using a framework. The

developer does not need to do background study on the linguistic components or the

methods of configuring and integrating them as the framework handles the low-level

details related to linguistic components. Availability of a framework provides the

best architecture to integrate linguistic components. It improves the performance

and code reusability. It also simplifies the application code complexity. Further,

the framework based development enforces the developer to follow best software

engineering practices like low-coupling and high-cohesion through the use of well-

2

defined application programming interfaces.

The gap between the linguistic application development and the best integra-

tion of linguistic components can be filled by providing a framework for linguistic

application development. The solution framework,

• enables rapid application development as the framework handles the low-level

details of components.

• increases the application performance due to code reusability and internal

architecture of the framework.

• reduces the complexity of application code because of application program-

ming interfaces and low dependency between the application code and the

code of the linguistic component.

• decreases the application size as the third party linguistic components li-

braries are implemented on framework side.

The design of a framework for linguistic application development supports the

software engineering domain by addressing a commonly occurring issue in appli-

cation development and support linguistic application developers all around the

world.

1.2 Background

The key idea about the project is to integrate all the linguistic components Text To

Speech (TTS), Optical Character Recognition (OCR), Speech To Text (STT) and

language translation in a framework and expose their functionalities as a RESTful

web service. Figure 1.1 shows the abstract view of the system. The framework

facilitates to utilize the services simply using the REST API for linguistic applica-

tion developers, without considering about the configuration, integration and other

low-level details of linguistic components.

Figure 1.1: Abstract view of the system

3

The core of the framework is implemented using Java programming language

and Jersey which is a RESTful web services framework used to implement the

RESTful web services. The back end consists all the third party libraries and

servers related to linguistic components which are configured and integrated into

the core of the framework. The architecture of the framework is designed in a way

to support the plug and play architectural model. The plug and play model enables

the addition of new linguistic components to the framework easily without affecting

initial architecture. The framework architecture was the main research area of the

project as there were no prior linguistic application frameworks or similar systems

that motivate the design of the architecture.

The plug and play model solves the issue of integrating heterogeneous technol-

ogy into the framework. Available linguistic components are developed by many

vendors using different programming languages and different technologies. For an

example, the Google Speech API is a RESTful web service which exposes the STT

service while the CMU Sphinx is an STT service which provides a standalone li-

brary. The framework should be able to integrate both the services irrespective

of the vendor or technology used. Further, the framework should support the

functionality of plugging a new STT component with minimal effort.

The framework is designed following software engineering best practices and

different combinations of design patterns to achieve the ideal architecture for the

framework. The detail description of the framework is explained in chapter 4.

1.3 Goal and Objectives

1.3.1 Goal

• Improve the development process of linguistic applications by reducing the

overhead and overall development time by introducing a framework to sup-

port linguistic application developers.

1.3.2 Objectives

• Build a framework to expose TTS, STT, OCR, and language translation

functionalities as web services which provides a uniform access point to all

linguistic services.

• Provide a developer friendly application programming interface to ease off

the integration of web services provided by FLAD.

4

• The architecture of the system should allow plugging new functionalities eas-

ily to the framework in order to address the future requirements.

• Provide friendly User Interfaces(UIs) for the easiness of end users.

1.4 Scope of the Project

The framework adheres to Representational State Transfer(REST) architectural

constraints. The project consists of developing a RESTful web service which will

provide four main web services such as,

• Text To Speech Service - When text is provided as input, the utterance

of that text will be provided as output.

• Speech To Text Service - When an audio file of an utterance is provided

as input, the text of that utterance will be provided as output.

• Optical Character Recognition Service - When an image file of a text

is provided as input, the text of that image will be provided as output.

• Translations Service - When a word or a set of words is provided as input,

it will be translated into specific language.

In addition to that, the system will provide five combined services. These

services are combinations of main services. The combined functionality will act as

a single web service.

• OCR −→ TTS - OCR and TTS services are combined. The output text

coming from the OCR service is fed as an input to TTS service. The output

of TTS is sent as the response.

• Translate −→ TTS - Translation and TTS services are combined. The

output text coming from the Translations service is fed as an input to TTS

service. The output of TTS is sent as the response.

• STT −→ Translate - STT and Translation services are combined. The

output text coming from the STT service is fed as an input to Translation

service. The output of STT is sent as the response.

• OCR −→ Translate −→ TTS - OCR, Translation and TTS services are

combined. The output text coming from the OCR service is fed as an input

to Translation service. Then the output text coming from the translation

service is fed to the TTS service. The output of TTS is sent as the response.

5

• STT −→ Translate −→ TTS - STT, Translation and TTS services are

combined.The output text coming from the STT service is fed as an input

to Translation service. Then the output text coming from the translation

service is fed to the TTS service. The output of TTS is sent as the response.

The accuracy of the outputs depends on the used back end libraries. The

overall performance of the framework relies on the input size, performance of used

libraries, and speed of the internet connection. The framework handles the internal

configurations to provide a web service from standalone libraries. Clients must

have a user account so as to utilize the system. The framework will not have offline

support.

The main deliverables of the project are,

1. A RESTful web service which exposes STT, TTS, OCR, translations and

combined services as web services.

2. Client user interfaces to create and manage the projects to obtain the services

from the framework.

3. Admin user interfaces to view the usage of the system and individual projects,

manage the users and projects.

4. A User guide on how to use the framework.

1.5 Justification as Product based Project

The ultimate goal of this project is to build a framework of component-based plug

and play architecture to which the four linguistic components (TTS, STT, OCR

and Language Translation) can be plugged easily and expose their services to the

application developers.

Application of software engineering techniques in this project begins from ana-

lyzing the project idea followed by writing the specification, design, and develop-

ment. When analyzing the project idea it is important to find similar systems and

analyze their pros and cons. However, there are no similar systems which facili-

tate the integration of above mentioned four linguistic components and reduce the

overhead of configuring those components. It implies that this concept is a totally

new one. Writing specification included laying out functional and nonfunctional

requirements. To identify key users and user interactions that the system should

provide, it was important to draw the use case diagram as a software engineering

technique. Main users of this system are application developers and the FLAD ad-

ministrators. Both application developers and FLAD administrators have different

6

use cases. Functional and non-functional requirements including the tasks of each

user type of this system are mentioned and described in Chapter 3. Use of several

design patterns when designing the system resulted arising a new design pattern

to adapt the component based plug and play architecture. Class diagram of the

system and further information about the design patterns used and details about

the component based plug and play architecture are discussed in Chapter 4.

When developing the system, SCRUM of agile methodology is used as it was the

most suitable development methodology for this project because of the iterative and

incremental nature of the project. Further for the success of this project software

engineering guidelines and principles were followed. More details on tools and

technologies and development models used are discussed in Chapter 5.

Building a framework which supports component reusability and reduces appli-

cation development overhead contributes to solve a commonly occurring problem

in software engineering domain. The final product of the project is delivered as

a fully functional framework for linguistic application development.Considering all

these factors, this could be concluded as a product based software project.

7

Chapter 2

Background Study

2.1 Introduction

This chapter discusses current methods and techniques of linguistic application

development mentioned in literature, technologies followed during the development

of the project, architectural styles and design patterns which were used in the core

of the framework. The background was studied to inherit the latest knowledge

from the systems related to the context of this project.

Background study was mainly conducted related to framework development

fundamentals, linguistic components, best software engineering principles and lat-

est stable technologies which assist in framework development.

2.2 Software Framework

The software framework is an abstraction in which software providing generic func-

tionality for a specific task and supports for the future requirements without chang-

ing existing architecture. A software framework provides a standard way to build

and deploy applications on top of the robust architecture.It is a universal, reusable

software environment that provides particular functionality as part of a larger soft-

ware platform to facilitate the development of software applications, products, and

solutions. Software frameworks may include support programs, compilers, code li-

braries, toolsets, and well-defined Application Programming Interfaces (APIs) that

bring together all the different components to enable development of a project or

a system.

The main purpose of the software framework is to improve the efficiency of

creating new software. The software framework allows developers to concentrate on

functional and non-functional requirements of their solution rather than considering

the low-level configurations.

8

Frameworks have key distinguishing features.[1]

• Inversion of control - In a framework, unlike in libraries or in standard user

applications, the overall program’s flow of control is not dictated by the caller,

but by the framework.

• Extensibility - A user can extend the framework - usually by selective over-

riding, or programmers can add specialized user code to provide specific func-

tionality.

• Non-modifiable framework code - The framework code, in general, is not

supposed to be modified, while accepting user-implemented extensions. In

other words, users can extend the framework, but should not modify its

code.

2.3 MaryTTS

Modular Architecture for Research on speech sYnthesis (Mary) TTS [2] is a java

based multilingual Text-to-Speech Synthesis platform developed by German re-

search center for artificial intelligence. Mary TTS is available as a standalone

server which has to be downloaded to the local machine in order to get the service.

The service is accessed through the interfaces defined by MaryTTS. MaryTTS is

the widely used TTS service due to its support for different voices and extendability

provided to include own locale. However, MaryTTS does not provide a simple web

service which exposes the functionality. The Mary server is resource extensive and

has a capacity of 60 megabytes. Mary implementation does not support JSON for

data exchange. MaryTTS integration to FLAD provides a REST API endpoint to

utilize TTS service using JSON support.

2.4 Kaldi Automatic Speech Recognition (ASR)

Kaldi is a toolkit for speech recognition written in C++ and licensed under the

Apache License v2.0. Kaldi is intended for use by speech recognition researchers[3].

Kaldi provides a library, command line program and scripts for acoustic modeling.

The API of Kaldi is command line interface. Kaldi has a high accuracy and an

active community with rich documentation support. However, The CPU and RAM

consumption of Kaldi ASR is high. It has a deep learning curve and needs a prior

knowledge of natural language processing. The configuration overhead is relatively

high with Kaldi ASR.

9

2.5 HTK Speech Recognition Toolkit.

HTK (Hidden Markov Model Toolkit)[4] is a portable toolkit primarily used for

speech recognition researchers. HTK was originally developed at the Machine Intel-

ligence Laboratory (formerly known as the Speech Vision and Robotics Group) of

the Cambridge University Engineering Department (CUED). This toolkit is writ-

ten using C programming language. The API of HTK is command line interface.

HTK toolkit has a great documentation and a simple configuration task. However,

the accuracy level is low due to slow training and processing. There is no up to

date development over this toolkit and development has been deprecated.

2.6 CMU Sphinx Speech to Text

CMU Sphinx is a group of speech recognition systems developed at Carnegie Mellon

University [5]. These include a series of speech recognizers (Sphinx 2 - 4) and an

acoustic model trainer (SphinxTrain). Sphinx 4 is the current version of Sphinx. It

is developed using the Java programming language. Sphinx 4 can be downloaded

as a JAR file. The resource consumption is average in CMU Sphinx and can be

embedded as a dependency in a Java Maven project. The accuracy of the output

is average for a given input.

Flad should handle concurrent requests for endpoint services, therefore, the

most efficient and cost-effective library should be used. So that we have used CMU

Sphinx in FLAD. (see Appendix A for the comparison of STT libraries.)

The users of FLAD can obtain the STT service provided by CMU Sphinx as a

web service. Therefore the users don’t have to bear any configuration cost. The

storage is saved as there is no need for the users to download the Sphinx library to

their devices.

2.7 Google Cloud Speech API

Google Cloud Speech API is a powerful a speech recognition tool that enables

developers to convert audio to text. This API recognizes over 110 languages and

variants. Google Speech service uses deep learning neural network algorithms and

accuracy improves over time. Google Cloud Speech API has 3 references [6].

1. Google Cloud Speech API Client Libraries

2. Cloud Speech REST API

3. Cloud Speech RPC API

10

In FLAD, the system uses the Cloud Speech REST API which performs only

synchronous speech recognition. Synchronous Speech Recognition returns the rec-

ognized text for short audio (less than 1 minute) in the response as soon as it is

processed. Audio content can be sent directly to the Cloud Speech API through

a JSON request, or the Cloud Speech API can process audio content that already

resides in Google Cloud Storage. If the audio content is sent directly to the Cloud

Speech API through a JSON request it has to be sent as a Base64-encoded audio

content in the JSON body.

However, Google Speech API is a paid service and priced monthly based on the

amount of audio successfully processed by the service. (see Appendix B.1 for pricing

details). Synchronous scheme only supports audio streams with one channel. There

is a limitation of an audio file to be less than one minute in synchronous processing.

The framework uses Google Speech API integration and exposes a simple REST

API endpoint. The users have no configuration overhead since the framework

internally handles authentication and configuration of Google services.

2.8 Tesseract OCR

Tesseract is an OCR engine for various operating systems. It is free software re-

leased under the Apache License, Version 2, and development has been sponsored

by Google since 2006. Tesseract is considered as the most accurate open-source

OCR engines available. Tesseract has the ability to recognize more than 100 lan-

guages out of the box and it can be trained to recognize other languages [7].

Tesseract library which is available on GitHub facilitates the different set of

features of OCR to support the development of OCR based applications. Tesseract

library which is known as Libtesseract is written in C/C++. However Tesseract

uses wrappers to wrap that library to be used in other languages like Java, .NET.

Tesseract does not have any REST API to expose its services as web services.

Due to this reason, it is necessary to download and build the source when developing

a mobile application which has the OCR functionality with Tesseract engine. The

size and the performance overhead of the Tesseract library will be added to the

application if it is included in the application. In the point of mobile application

development, the size of the mobile application is a vital factor.

2.9 Google Cloud Vision API

Google OCR is under the Google Cloud Vision API which can detect and extract

textual content from images. Text detection and Document text detection are

11

the main annotation features that support OCR [8]. Google OCR is able to do

automatic language detection and has a REST API to support the services. The

accuracy of Google OCR is high and it supports a wide variety of image formats

like JPEG, PNG8, PNG24, GIF, RAW, ICO, and BMP.

However, it is a paid service (see Appendix B.2 for the detailed price list) and

no direct image upload is possible. The image has to be encoded in the Base64

encoding scheme and has a limitation of file size to be less than four megabytes. The

configuration overhead is high and requires image pre-processing before sending in

RAW image files.

2.10 Google Translation API

Google Cloud Translation API translates text between thousands of language pairs

[9]. Translation API enables programmers to get the translation service via a REST

API. It supports more than hundred languages and capable of detecting the source

language automatically. However, it is a paid service and input text has to be

UTF-8 encoded for better accuracy.

After doing the initial background study on different linguistic components then

we focused on designing an architecture for the core of the framework which should

support the integration of any linguistic component along with the plug and play

model.

2.11 WSO2 ESB

The component architecture of the WSO2 ESB [10] is built on the Apache Synapse

project, which is built using the Apache Axis2 project. The initial foundation

for the framework was inspired by the WS02 ESB architecture. ESB supports

web services and support for XML. Message transformation feature leads to the

introduction of Message Builder and Formatter component of FLAD. Logging and

monitoring features in the ESB and integration patterns in WSO2 ESB leads to

the foundation of the architecture in the FLAD framework.

2.12 Google Cloud Console

Google Cloud Console has a vast range of design thinking methods and approaches

as one of the best cloud consoles which are available on the internet. It handles a

comparatively large set of APIs, application users, and applications. It has user-

friendly data arrangement methods and user interface approaches to facilitates the

12

most enhanced usability experience in order to handle a large number of users.

Front end of the Console is built following the Google’s Material design and it’s

concepts. This increased the front end usability of the system since the Google’s

Material design is designed to enhance the experience of end users by considering

different aspects of the human-computer interactions.

2.13 REpresentational State Transfer (REST)

The term representational state transfer was presented and characterized in the

year 2000 by Roy Fielding in his doctoral paper [11]. REST is the current trend

in web services architecture. A web service that is based on REST technology is

called a RESTful web service/API.

REST is an architectural style. It is lightweight than SOAP (Simple Object

Access Protocol) style [12]. As REST uses less bandwidth it is preferred to use

over the internet. The REST architectural style describes six constraints [13].

2.13.1 Uniform Interface

This defines the interface between clients and servers. It decouples the architecture

which enables each part to evolve independently. The four guiding principles of

the uniform interface are:

Resource-Based

Individual resources are identified in requests using URIs (Uniform Resource Identi-

fiers) as resource identifiers. The resources and their representations are separated.

For example the server does not send its pure database records rather a well for-

matted JSON response.

Manipulation of Resources Through Representations

When a client holds a representation of a resource, including any metadata at-

tached, it has enough information to modify or delete the resource on the server,

provided it has permission to do so.

Self-descriptive Messages

Each message includes enough information to describe how to process the message.

13

Hypermedia as the Engine of Application State (HATEOAS)

The hypermedia (or hyperlinks within hypertext) is body content, response codes,

and response headers. In REST the application state is delivered via hypermedia

to clients and from clients.

2.13.2 Stateless

The necessary state to handle the request is contained within the request itself,

whether as part of the URI, query-string parameters, body, or headers. In web

programming, the sessions are used to maintain the state across multiple HTTP

requests. But in REST, the client’s request must contain all information required

for the server to process the request. For example, in each request, the client’s

unique identification key is sent to the server rather storing the key in session.

The stateless property enables greater scalability since the server does not have to

maintain, update or communicate that session state.

2.13.3 Cacheable

The responses can be defined as cacheable so that the clients can cache them.

Well-managed caching policy can improve scalability and performance.

2.13.4 Client-Server

The clients are separated from servers. Their communication happens by means

of the uniform interface. Clients are not concerned with internal data storage of

the server and servers are not concerned with the user interface or user state. This

separation improves portability of client code and scalability of the server. Server

code and client code can be developed and replaced independently as long as the

interface is not altered.

2.13.5 Layered System

The system can have layers. Intermediary servers can be placed along the way

to improve system scalability by enabling load-balancing and by providing shared

caches. The layered system may enforce security policies.

2.13.6 Code on Demand

This is an optional constraint. Servers can transfer logic to the clients to execute.

For example, the compiled components such as Java applets and client-side scripts

14

such as JavaScript can be transferred to a client to customize the functionality

of a client. If a service violates any other constraint, rather than the optional

constraint, it cannot strictly be referred to as RESTful.

2.14 REST API Design approaches

The design of an Application Programming Interface (API) has different phases and

decisions to consider in order to make the usability and robustness of the API. API

has to be maintained over the time to improve the efficiency of consuming. An API

is a collection of routines, protocols, and tools for building software applications.

It includes inputs, outputs, operations, and types as characteristics of an API.

One must consider modularity to be the most important factor when starting to

construct the architecture of the API so that the functionality is separated from

the implementation.

APIs have a number of decisions during the architectural design process, and

these decisions explain the semantics of the API [14]. These decisions include

REST, requests and responses, resources, URL’s, endpoints, HTTP verbs.

2.14.1 HTTP verbs

GET

The GET request is used to retrieve a representation of a resource. This can be a

collection of a resource or a single item.

POST

The POST request is a new request that the web server accepts with the entity that

is enclosed and identified by the URI. It is used to create subordinate resources,

which explains it is a subordinate to some other resource. This method is not

considered to be a safe method as making identical requests will likely result in two

resources containing the same information.

PUT

The PUT request is used to create subordinate resources, which in essence means

it is a subordinate to some other resource. This method is not considered to be a

safe method as it modifies (or creates) state on the server, but it is idempotent. In

other words, calling the same PUT request two times to create or update a resource

will not create a new resource and the system still has the same state as it did with

the first call.

15

DELETE

The DELETE request is fairly straightforward. It is used to delete a resource that

is identified by a URI. The request will delete a resource, and repeatedly calling

DELETE on that resource will always end up the same.

There are other HTTP verbs such as CONNECT, PATCH, OPTIONS, TRACE.

In this background study, the main focus is given for the above four main verbs.[15]

2.14.2 Safe Methods

Methods that are considered to be safe are those that have no side effects and do

not change the state of the server. When being considered not to have side effects,

this explains that there is not much harm that can be done other than the likes of

logging, caching, and other small harmless effects.

2.14.3 Semantic Versioning

Versioning is an important decision-making process that must take into considera-

tion what state the API will be in when changes occur.

MAJOR version when making incompatible API changes,

MINOR version when adding functionality in a backward-compatible manner, and

PATCH version when making backward-compatible bug fixes [16].

2.15 Authentication

Authentication handling can make a considerable difference in the design of the

API. One of the most known and used authentication frameworks used these days

is OAuth 2.0 1. This framework enables a third-party application to obtain limited

access to an HTTP service.

Using OAuth 2.0 to access google API

Google Sign-In manages the OAuth 2.0 flow and token lifecycle, simplifying the

integration with Google APIs. Google supports common OAuth 2.0 scenarios such

as those for web server installed and client-side applications.

1https://oauth.net/2/

16

2.16 JavaScript Object Notation(JSON)

JSON is a lightweight data interchange format. It is a language-independent col-

lection of key-value pairs [17]. It has become the state of art data interchange

format. It is self-descriptive and human-readable than XML messages. Different

languages treat JSON message as an object, record, struct, dictionary, hash table,

keyed list, or associative array [18].

JSON has become a popular alternative to XML for various reasons.

• JSON is less verbose than XML.

• JSON data model’s structure matches the real data. Hence it is easier to

interpret and is predictable.

• JSON can be encoded to objects and decoded from objects. Most of the

popular languages have JSON parsers.

In the FLAD framework, JSON has been used as the data interchange format

in the requests and responses. Requests handling and response generating became

easy because of the flexibility of JSON format.

Listing 2.1: Sample JSON message to obtain the TTS service from FLAD

{

"inputText ":"We have a clear sky",

"inputType ": "TEXT",

"outputType ": "AUDIO",

"outputFormat ": "WAVE_FILE",

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm",

"features ": {}

}

2.17 React

React is a JavaScript library for building Interactive user interfaces. It is main-

tained by Facebook and it has a large community backup. Web applications devel-

oped using React does not reload the whole web page when the state changes. It

re-renders only the modified area of the webpage. This mechanism improves speed,

simplicity, and scalability.

17

2.17.1 Notable features

One-way data flow

React uses immutable values in its components. These values are called Properties

(or props). Props are stored in a global store. React component does not modify

the props that are passed to React components directly, Instead, it uses callback

functions to modify the props in global store. The most used global store with

React is Redux.

Virtual DOM

Virtual DOM is an in-memory representation of Real DOM. It is lightweight and

detached from the browser-specific implementation details. This is the reason for

achieving the faster loading time in React. In addition to that React uses below

mentioned properties in order to update the virtual DOM.

• Efficient diff algorithm

• Batched update operations

• Efficient update of subtree only

• Uses observable instead of dirty checking to detect change

JSX

JSX is a preprocessor step that adds XML syntax to JavaScript. React can be

used without JSX but JSX makes React a lot more elegant. Just like XML, JSX

tags have a tag name, attributes, and children. If an attribute value is enclosed in

quotes, the value is a string. Otherwise, wrap the value in braces and the value is

the enclosed JavaScript expression. [19] [20]

2.18 Redux

Redux is a predictable state container for JavaScript apps. As the requirements

for JavaScript single-page applications have become increasingly complicated, Re-

dux provides more flexible and manageable way of handling data by reducing the

complexities with states. This state can include server responses and cached data,

as well as locally created data that has not yet been persisted to the server. Redux

can be explained using three fundamental concepts.

18

2.18.1 Single source of truth

The state of the whole application is stored in an object tree within a single store.

This makes it easy to create universal apps, as the state from the server can be

serialized and hydrated into the client with no extra coding effort. A single state

tree also makes it easier to debug or inspect an application.

2.18.2 State is read-only

The State is read-only explains the only way to change the state is to emit an

action, an object describing what happened. This ensures that neither the views

nor the network callbacks will ever write directly to the state. Instead, this should

express an intent to transform the state. Because all the changes are centralized

and happen one by one in a strict order, there are no subtle race conditions to

watch out for.

2.18.3 Changes are made with pure functions

Redux uses Reducers which are just pure functions that take the previous state

and an action, and return the next state. In addition to that, it returns new state

objects, instead of mutating the previous state. [21]

2.19 Summary

This chapter discussed important facts found in literature which are related to

the problem that is addressed and the solution that is proposed, including infor-

mation on linguistic components that are currently available, REST API design

approaches, etc. Further, important details on React and Redux which is used in

front end of the system is discussed in this chapter.

19

Chapter 3

Functional and Non-functional

Requirements

3.1 Functional requirements

3.1.1 Main users of the product

• End-user: Linguistic application developer

The intended users of the product are software engineers who develop linguis-

tic applications. The end users should have experiences in using RESTful web

services.

• Admin: The person who manages the framework

Admin can use the Management UI to manage the functionality of the frame-

work.

3.1.2 End user’s functional requirements

• Register with the system.

• Login to the system.

• Create, View, Edit, Delete projects.

• Select the services to use such as text to speech, speech to text, optical

character recognition and translations.

• Select which libraries want to use as the back end of the service, for example

if client selects to use speech to text service then he/she can decide whether

to use a library such as Sphinx or to use Google speech to text cloud service.

• Get a private token. This token is used by the system to validate the user.

20

• Get TTS/STT/OCR/Translation services.

• Combine the TTS/STT/OCR/Translation services to get complex web ser-

vice.

• View statistics of their own projects.

3.1.3 Admin’s functional requirements

• Login to the system.

• Logout from the system.

• View all the projects.

• Block projects.

• View statistics of the usage of the system.

• Connect, remove endpoints to the framework. (endpoints are instances of

TTS, OCR, STT and Translation services)

• Define sequences (sequence is a logical arrangement of mediators, more details

about sequences are explained under the system design)

• View logs.

3.2 Non-Functional requirements

3.2.1 Performance

The system should provide a fast response time to the end user. The system should

be able to produce high throughput utilizing fewer computer resources. The per-

formance of API calls depends on the available bandwidth and on the performance

of third-party linguistic services. However, the system provides optimization tech-

niques like sequences and caching to improve the performance.

3.2.2 Scalability

Scalability is the ability to accommodate the growth of the requests. The system

should support horizontal scalability and the system design is modeled to support

horizontal scalability. (Multilayered architecture and component architecture of the

system is discussed in Chapter 4 considering scalability). Functional scalability is

the ability to enhance the system by adding new functionality at minimal effort.

21

(The plug and play model discussed in Chapter 4 facilitates functional scalability).

Scalability is a key concern in the system as the framework should operate even in

high request growth.

3.2.3 Availability

The degree to which the system or subsystems are operable. The system runs

on server environments which is available 24/7. The availability is crucial in this

system as the framework exposes the functionality as a web service.

3.2.4 Reliability

Reliability is the ability of the system to function at a specified moment provid-

ing intended results. The framework should provide a reliable service via service

endpoints.

3.2.5 Maintainability

The framework should maximize efficiency, reliability, and security which are al-

ways improved by maintaining the system. New requirements can be introduced

to the system because of maintainability. Maintainability helps to prevent unex-

pected working conditions. The framework should be designed and implemented

considering maintainability.

3.2.6 Security

Since the framework provides services on a user basis, the system should validate

the requests and ensure security. The users should only have access to the services

purchased by them which brings security as a key concern of the system.

3.2.7 Data Integrity

Data integrity and consistency is considered to solve the heterogeneity service prob-

lem in the framework. The application developer should be provided with a con-

sistent data format for requests and responses. (The implementation details in

Chapter 5 explains the JSON structures which enforce the data integrity of the

system)

22

3.2.8 Usability

Usability is the degree to which the system can be used by specified users to

achieve qualified objectives with efficiency and satisfaction. The system consists

of two parts main as FLAD console and FLAD core. The usability is taken as a

key concern in designing the FLAD console which is discussed in Chapter 4 under

design considerations.

3.2.9 Interoperability

The framework functionality is provided as a web service which can be accessed

using any device and any platform. The system should work on both Linux or

Windows server environments.

The exact achievement of the non-functional requirements are discussed in

Chapter 6 under evaluation of the system.

23

Chapter 4

Design Consideration

4.1 Introduction

This chapter explains how the framework‘s design is implemented using latest tech-

nologies, following best software engineering principles. The entire system is mainly

divided into two subsystems as front end FLAD Console and back end FLAD core.

Different architectural designs are applied to the subsystems as the functional and

nonfunctional requirements are different in two subsystems.

The front end FLAD console is of two parts, one part is where the end user

application developer creates a service API application in our framework specifying

all the services expected to obtain from the system. The second part is designed

for framework administrators to manage, monitor the FLAD system.

The front end system is deployed on a separate server and independent of the

back end core framework. The front end system runs on a node server and designed

using React framework and Redux data flow architecture.

The back end system is the core of the framework which is a Java EE project

that runs on a Jetty server. The core framework integrates all the linguistic com-

ponents together and exposes a REST API which is implemented using Jersey

according to JAX RS specifications. In addition to that back end core supports

for plugging different linguistic services into the framework without changing the

initial system design. The front end system of FLAD interacts with the back end

framework via web service calls and the back end interacts with the data layer

which consists of a MongoDB database management system.

24

4.2 System design and architecture of the FLAD

back end core framework

The main architecture of FLAD core is divided into three sub architectures consid-

ering different functionalities of the system. Different architectures are required to

cater different core functionalities supplied by the back end and thus divided into

three sub architectures as,

1. Communication architecture

2. Structure architecture

3. Deployment architecture

The segregation of main system architecture into sub architectures reduces the

complexity of analyzing the problem according to the functional and nonfunctional

requirements. It is necessary to introduce different architectures to the different

sections to achieve the desired outcomes. Figure 4.1 shows the main architecture

segregation and the specific architectural styles used in each category.

The main research area of the project was to introduce best architectural styles

into the framework. The background study guided into selecting the Service Ori-

ented Architecture (SOA) as the communication architecture, Component Archi-

tecture for the structure architecture and Client-Server Architecture as the deploy-

ment architecture.

Figure 4.1: System architecture of FLAD

25

4.2.1 Communication architecture

The communication architecture is implemented using Service Oriented Architec-

ture (SOA). SOA enables the communication of services of different application

components through a communication protocol. According to SOA definition, a

exposed service should contain four properties [22]. These properties are followed

in the implementation of FLAD.

1. The service should logically represents a business activity with a

specified outcome

FLAD endpoints serve their specific services and it directly represents the

business value of the service. For an example /tts endpoint directly represents

the TTS service entity and results the intended outcome.

2. The service is self-contained

FLAD provides simple services which are self-contained and independent.

Everything that is required by the service is separated from other services

and exposed via the REST API.

3. Service is a black box for its customers

The service provided to the customers just gives the intended response to the

customer without exposing the interior logic. The logic is handled inside the

framework and the user simply gets the service according to the preferences

selected in the creation of service API project using FLAD Console.

4. It may consist of other underlying services

The FLAD complex services which are sequences, validations, message builder

and formatter use other underlying services internally when executing.

FLAD implements services in a loosely coupled manner and modular approach

which lean towards the SOA architectural pattern. REST architectural style re-

flects the SOA in the framework.This enables exposing functional building blocks

accessible over HTTP providing the solution to represent new components or stan-

dalone systems. SOA based systems allow the utilization of services independently

of development technologies and platforms such as Java, C++ and etc. Also by

embracing SOA style motivates the use of well-defined interfaces and supports

the component-based architecture which is the selected structural architecture of

FLAD.

4.2.2 Component architecture

The main structure of the project is laid on top of the component architecture which

is highly compatible with SOA. The definition of the different components in the

26

system and binding of them was part of the major research area of the project. The

component-based architecture should be able to support the plug and play model

of the system where any linguistic component can be added or removed from the

system with minimal effect to the back end framework and this should support

the extendability of the framework.Figure 4.2 shows the components defined in our

framework which provide the fundamental functionalities by communicating via

well-defined interfaces.

Figure 4.2: Component architecture of FLAD

The component architecture of FLAD is described using an example, Assume

an application developer wants to use the STT service from the framework.

• First, the user makes a request to /stt endpoint in the REST API with the

specified JSON payload.

• Then the user’s request has to be parsed with a JSON parser and convert to

the internal data representation using the Message builder and formatter.

• After parsing the payload, it is sent to the QOS components for validation

and optimizations before sending to the real endpoint service. In an STT

request, the mono stream of the audio file is checked and if the audio is

on stereo it is converted to a mono stream and then encoded using Base64

encoding scheme.

• After preprocessing the request payload, it is sent to the internal FLAD API

written in Java. The STT request is validated first and the STT instance

is invoked dynamically with the help of factory and abstract factory design

patterns. If the user has selected Google STT service in project creation

phase then it has to invoke the Google STT instance and if the user has

selected any other STT service it is dynamically detected with the help of

data layer and then the initiation takes place.

27

• The FLAD internal API decides which endpoint to invoke and endpoints

shown in Figure 4.2 are instances of STT, TTS, Trans or OCR. For example,

an endpoint in the framework related to this example is Google speech API.

• Another important component is the Sequence component which is a com-

bination of different send and receive calls of endpoints. For example /seq2

in our framework invokes the sequence of (OCR −→ Translation −→ TTS).

This sequence is capable of reading the content of an image and output the

speech in a specified translation. The content of a German signboard can be

heard in English using the above sequence.

• Mediators are the basic functional units in the framework. Currently, there

are three mediators in the framework as Send, Receive and Logging. Send

mediator is responsible for sending messages between different components

of the framework and the Receive mediators are responsible for dealing with

the return values of the components. The Log mediator logs every action in

the framework to support monitoring.

REST API

Rest API exposes the resources and functionalities of the framework and enables

basic HTTP protocols to utilize the framework services.

Message builders and formatters

Message builder is used to process incoming and outgoing payload data to XML

or JSON. There are two basic functional units as message parsers and formatters.

The message formatter is used to build the outgoing response from the message

back into its original format. Message parsers and builders convert the payload

data to required data formats of endpoints.

QoS component

The Quality of Service (QoS) component implements security, load balancing, and

optimization. Basic message preprocessing is done with this component.

Endpoints

An endpoint defines an external destination for a message. An endpoint can connect

to any external service after configuring it with any attributes or semantics needed

for communicating with that service. TTS endpoint, OCR endpoint, STT endpoint

and Translation endpoint are the basic endpoint types of the framework.

28

Mediators

Mediators are individual processing units that perform a specific function, such as

sending, transforming, logging or filtering messages.

Sequences

A sequence is a set of mediators organized into a logical flow. The concept of

sequence is an optimization technique used to reduce the successive incoming and

outgoing calls to the framework and improve performance.

Registry

A registry is a content store and metadata repository. The framework cache re-

quired data in primary memory for fast retrieval. For example, the database con-

nections are pooled after the first request so any request made after gets the ad-

vantage of fast retrieval of data and factory objects are cached in the Registry

component after first initialization using the Service Locator design pattern.

Management UI and FLAD Console

The Management console provides a Graphical User Interface (GUI) that allows

the framework administrator to monitor and manage the framework functionalities.

The FLAD Console is the management UI which is implemented in React and

deployed in a NodeJS server. FLAD Console enables users to specify required

services through a project creation.

4.2.3 Deployment architecture

Figure 4.3 shows the distributed client-server architecture which is the deployment

architecture of FLAD system. Distributed application structure, support the future

scalability and load balancing in presence of high request growth. The framework’s

functionality exposed in a way to be utilized by any client globally and server

can be replicated with the future expansion according to this model. The use

of distributed client-server architecture enables four services of the framework to

be distributed. The front end FLAD console service, back end framework core,

MongoDB database and each endpoint service can be distributed using this model

with the help of well-defined interfaces.

The front end FLAD console is deployed in a separate Node JS server and can

be deployed in a different server. It communicates with back end server through

REST API calls in a loosely coupled manner. The back end is deployed in a java

based Jetty server and is independent to the front end server. Both the front end

29

server and back end server communicate over well-defined interfaces. The database

server can be deployed on several servers and currently, the MongoDB server is on

the same server machine where the back end framework server is deployed. The

deployment of each linguistic components in separate servers is possible according

to this model. For example, MaryTTS server is running on a different server and

can be scaled up with the huge growth of requests.

Figure 4.3: Distributed deployment of FLAD

4.2.4 The multi-layered architecture of FLAD

The layered architecture enables to understand the system in a concise way where

all the core functional layers of the system are identified. Figure 4.4 shows the

multi-layered architecture of the FLAD system. This representation allows easy

understanding of the idea behind the scalability and extensibility of the system.

30

Figure 4.4: Multi-layered architecture of FLAD

The multi-layered architecture was designed from scratch according to the needs

of the system. The application layer, service layer, logic layer, data layer and re-

source layer can be replicated and distributed. The modularity among the compo-

nents within a layer was the key concern when developing the layered architecture.

The modularity was achieved by the use of component-based architecture in each

layer. The well-defined interfaces allow the independent layers to communicate

using message parsing.

4.2.5 Core Component architecture of FLAD

This section describes the design patterns used in the core component architecture

and the decision points which lead to use them. The design patterns are applied

in both the front end FLAD console and the back end framework. Applied design

patterns are integrated in order to overcome the commonly occurring issues in the

system.

31

Figure 4.5: Class diagram of FLAD core

Figure 4.5 shows the class diagram architecture of the system. The structure of

FLAD system design is based on Component Architecture. This diagram consists

of service components and factories that generate above components and relation

of their particular instances. Abstract Factory Pattern, Builder Pattern, and Com-

mand Pattern integrated in order to achieve the plug and play architecture.

Abstract Factory Pattern involves installing and instantiating each component

in the environment. Factory Producer provides interface for the Abstract Factory

to communicate with front view, In this context, it will be the REST API which

accesses by users.

Builder Pattern uses when the components or subcomponents in the architec-

ture dependant on each other. When adding a new service such as MaryTTS,

Google or IBM, system will create an object of the given service and inject it to

their parent objects. As shown in figure 4.5, the parent objects are the service

initiators named TTS, STT, OCR, and Trans. Each of this service objects depend

on these service initiators.

Command Pattern gives components a consistent entry point, allowing them

32

to be readily swapped in and out. Each of service initiators feeds service objects

assigned to them through execute method.

This also follows dependency injection when passing of a dependency to a de-

pendent service object that would use it. All the service objects located at the

bottom of the diagram designed as a dependant to the service initiator objects.

These plugged service objects will execute as single services on their own, but

on the inside of the structure, they are coupled with service objects which are

generated using the particular factory. When new service introduces, it is required

to link that service to the relevant service initiators.

The Factory and Abstract Factory design patterns are combined in the core

of the system to achieve the plug and play model. This abstract factory design

pattern further facilitates the dynamic initiation of services at runtime in a flexible

manner.

The Abstract factory class delegates the responsibility of object instantiation

to TTSFactory, STTFactory, OCRFactory, and TransFactory. Those Factories use

inheritance for the object instantiation of real service dynamically. These factories

are the key components of achieving the plug and play model for the framework.

Figure 4.5 shows how inheritance and encapsulation are used in the class diagram.

The component class is the base class of each integrated service component. It

defines all the common features and behaviors that expected to retrieve from par-

ticular instances which are yet to plug into the architecture. The execute method

which is defined as public describes the internal logic of each instance. These com-

ponent instances are the actual integrated service classes which interact directly

with parent service components in order to provide their services to the upper level.

Figure 4.5 contains MaryTTS and PicoTTS, as TTS subclasses. These instances

may have their own additional features. Basically, each instance supposed to pro-

vide minimum required features defined in parent components. All the internal

logic of each instance describes in the execute method which is designed to invoke

dynamically.

These steps should be followed to add a new component to the system,

• Define a class with the name of the new component.

• Inherit the superclass which the new component belongs to.

• Override the execute method and write the interior logic specific to the com-

ponent.

• Add the entry name in the related Factory class.

The exact implementation details and logical flow is discussed in detail in chap-

ter 5. This approach leads the minimal change to the framework functionality and

33

this can be further simplified using XML to define the name of the new component

at runtime using Management UI. However, writing of the implementation logic

in the execute method of the component is unavoidable as different linguistic ser-

vices provide different APIs. For an example, MaryTTS and Tesseract OCR are

standalone apps and the logic needs to be manually coded in the execute method.

Service Locator Pattern

Service locator pattern caches the objects in creation in order to achieve perfor-

mance enhancement. The use of this pattern enabled to cache the object references

after it’s first creation into separate HashMaps in Java. The caching is done at the

Cache class as shown in Figure 4.6. The service locator first looks at the cache

and if there is no reference in the hash maps then creates the objects and cache

it before sending. This improves the performance of the object creation time via

caching the references in the Registry component of the framework by avoiding

object creation at each request.

Figure 4.6: Service locator pattern of FLAD core

34

Singleton design pattern

The singleton design pattern is introduced for single object creation in database

connection class. MongoDB database connection pool is handled inside the Mon-

goDB database server. The connection pool size is a variable and it can be set a

maximum number of connections according to the requirements. Inside the imple-

mentation of database connection class, the database connection is defined to be

a singleton object to decrease the resource consumption and increase application

performance.

Apart from the major design considerations explained above, every minor design

aspects are also considered in implementing the framework. Java collections which

are natively thread safe has been used in the implementation processes. For ex-

ample, Vectors has been used instead of ArrayLists in implementations. HashMap

which is not thread safe were synchronized using programming implementations in

some situations. This system architecture deals with high concurrency and design

considerations introduced to support concurrency issues as well.

4.3 System design and architecture of the FLAD

front end Application

FLAD front end consists of FLAD Console and FLAD Admin Panel. Both of these

main components are designed using several front end engineering concepts.

ReactJS and Redux are used in the development process of FLAD front end.

FLAD front end design based on the components which are identified as the basic

building block of React application. Every React component is like a small system

that operates on its own. It has its own state, input, and output.

React components pass data between components as props. Prop is defined

as a property of React component’s element which can fetch and use inside the

component logic. The whole React tree may have a store object which is accessible

by every component.

React has two main concepts when considering the component design perspec-

tive. The first is Presentational components and the second is Container compo-

nents. Both of these components are designed for specific tasks. FLAD front end

contains several presentational and container components which will be discussed

in chapter 5. These components define part of the application and available to use

anywhere inside the application. This improves the reusability of the application.

Presentational components concern about how things look. These components

do not have dependencies on the rest of the application, such as Redux actions or

stores, they just handle the data displaying aspect.

35

Container components concern about how things work. These components may

contain both presentational and container components inside but usually, do not

have any DOM markup of their own except for some wrapping divs, and never

have any styles. Container components have the ability to provide the data and

behaviour to presentational or other container components. This type of compo-

nents often considered as stateful, as they tend to serve as data sources [23].

This above design consideration provides better separation of concerns. It

makes easy to understand the application and UI by writing components in this

approach. This design techniques also provide better reusability. It is designed

to use the same presentational component with completely different state sources,

and turn those into separate container components that can be further reused.

4.3.1 Component Composition

The design of the front end is built using React components. These components can

contain other presentational components or container components. This takes the

design process of the front end application into a completely simplified architecture

by providing the combined components structure. The initial step of designing the

component hierarchy of FLAD is deviding the UI into a set of components. The

basic component separation of FLAD Console is displayed in Figure 4.7.

Figure 4.7: Basic component separation of FLAD Console

App component is created on top of the above components. Other child com-

ponents will be pushed into React component tree based on the routes assigned by

the React Router. The simplified React element structure can also be displayed as

below.

36

Listing 4.1: React element structure of FLAD

<App >

<HeaderComponent >

<BreadcrumbsComponent >...</ BreadcrumbsComponent >

<BodyComponent >...</ BodyComponent >

</Header >

</App >

4.3.2 Higher-order components

High-order components are similar to decorator design pattern. It is wrapping a

component and attaching some new functionalities or props to it [24].These com-

ponents add functionality to another object dynamically while they are at the

rendering state. It can be used to enhance the behaviour of the component with-

out requiring the author to reopen its class. The higher-order component allows

achieving the control on the input and the data which is required to send as props.

4.3.3 Dependency Injection

The components involved in front end design have dependencies. A proper man-

agement of these dependencies is critical for the success of the project. React has

reusable and testable UI components. This type of components do not require the

dependency injection directly.

High-order components handle the activity of passing data into the child com-

ponents representing the behaviour of dependency injection. FLAD passes from

simple strings to action methods to the child components from high-order compo-

nents in order to keep the modularized and organized structure of the front end

design.

37

4.3.4 File Hierarchy

Figure 4.8: FLAD front end file hierarchy

FLAD front end file hierarchy follows the above structure in Figure 4.8. This

structure supports the modularity of React components defined in the components

and the containers folders. The purpose of actions, components containers and

reducers is discussed in chapter 5. The API is the additional area which is included

in this structure. It defines the functions which are capable of fetching the data

from the FLAD back end REST API. These functions are triggered in actions and

dispatch the fetched data into the reducers.

There is another file hierarchy available for the React application development.

This second structure is based on components. It consists action, reducer and

component design in a separate folder in order to improve the code visibility and

efficient component rendering. This is more suitable for the simple application

which uses few number of components. The front end component designing of

FLAD uses several child components at once in each container due to the com-

plexity of the component structure. FLAD suits the selected file structure shown

above than this component based file structure due to the complexity of component

structure.

38

4.3.5 Unidirectional data flow

FLAD’s data flow is designed based on the Redux data flow structure which is

strictly unidirectional data flow. This means that all data in an application follows

the same lifecycle pattern, making the logic of FLAD more predictable and easier

to understand. It also encourages data normalization and does not allow to end up

with independent and multiple copies of same data that are unaware of each other.

The data flow structure of FLAD is displayed on Figure 4.9.

Figure 4.9: The data flow structure of FLAD

React components contains several actions which are capable of dispatching the

behaviour of intended action to the reducers. This binding is based on the action

types defined in the application. The action types of creating a new project action

are below.

export const ADD_PROJECT_START = ’ADD_PROJECT_START’

export const ADD_PROJECT_ERROR = ’ADD_PROJECT_ERROR’

export const ADD_PROJECT_SUCCESS = ’ADD_PROJECT_SUCCESS’

Each action has a start, error, and success as its main states. These states

define the state of the application while rendering occurs. This also supports the

front end view manipulation process. Once an action is triggered the state of

action is transformed into the start state. This state user waits until the response

is received. This state of the response can be either success or error. The view will

be re-rendered depending on this state. This method also improves the debugging

process of the FLAD.

39

4.3.6 Usage of ESLint

JavaScript is an interpreted language and it does not provide details about the er-

rors yet to occur until the time of running the program and it hits the error-prone

code. This behaviour leads wastage of time and hampers productivity. ESLint

introduces the solution to reduce this problem to some extent by providing var-

ious error tracking methods. In addition to that ESLint fetches the mistakes by

enforcing consistent standards and best practices [25].

The ESLint rule set used in the FLAD can be found in the appendix.

4.4 Summary

This chapter discussed how the front end which is the FLAD Console and the

Admin Panel and the back end which is the core of the system is designed. It

is mentioned here how back end is divided in to Communication, Structure and

Deployment architectures considering different functionalities of the system. Fur-

ther, the system design and architecture of front end of the system that consists of

FLAD Console and Admin Panel is discussed in this chapter.

40

Chapter 5

Implementation

5.1 Introduction

This chapter discusses how the solution is provided, development approaches, tools,

technologies, and decisions taken in implementing the FLAD system. The technol-

ogy stack and tools used throughout the entire development process is discussed.

This chapter is mainly divided into two sections. The first section describes the

overall process to show the approach for our solution and the next section describes

back end and front end development details.

5.2 Overall process

FLAD console provides the entry point to the application developers to utilize

the services provided by the framework. Developers who are interested in the

development of the linguistic applications required to grant the authentication via

Google Sign-In to access the features of FLAD Console. After being authenticated,

users will be able to create a new service API project and configure it by specifying

the linguistic services they require in the project or view existing service API

projects created previously. The successful service API project submissions will

redirect to the view page of the newly created application. Here, users will be

provided with application secret key and application Id of service API project.

Application secret key and its implementation on FLAD is discussed in Section

5.3.3. In addition to that, users will be provided with a generated documentation

for the selected service API project.

Users are given the Access Token which is made using the combination of Ap-

plication Id and Application Secret Key. This Access Token is required to access

the created project using REST API calls. A POST request with the following

format should be sent to obtain an Access Token.

41

Listing 5.1: A POST request to obtain the Access Token

Request URL : /api/v1/token

Request body:

{

"appId" : "sample -tts -app -ljxxxxswx -xxx -sxbnz",

"appSecret ": "hxxxoisxxxxpdf34ds"

}

The system will provide an access token in a JSON response as follows with the

status code of 200 for a successful request.

Listing 5.2: Response with the Access Token

Response body:

{

"access_token" : "eXXeXAiOXXXXXiLCJhbGciOiJIXXXXJ1",

"expiresIn" : 20,

"appSecret" : "7 fd1593XXXXX78019XXXXXf142f94XXXXXX"

}

Applications which are created only with basic functionalities without adding

sequences will be provided with at most four main endpoints. Only the endpoints

for the selected services will be activated for each service API project.

All the service requests are required to provide the Access token of the user in

the header of the HTTP request. Exact request, response JSON formats are shown

in Appendix C under linguistic service names.

The obtained Access Token will get expired after completing the defined number

of requests at the obtaining of the Access Token. The response will be provided after

the expiration of Access Token as follows with the status code of 401 Unauthorized.

Listing 5.3: Response for expired Access Token

Response body:

{

"status" : "false",

"msg" :" access token expired",

}

The client application should capture the response and request again to obtain

the renewed Access Token when the Access Token is expired.

42

5.3 The back end development

The back end framework is implemented in Java EE and Maven as the software

project management and comprehension tool. Java EE is considered to be robust

and secure for building enterprise applications. Java supports pure object-oriented

concepts and Java EE provide great support for web services. The complete web

service support and flexibility was a key point for selection java for the back end

development. Java gives the freedom to use a wide variety of servers like Apache

Tomcat, WildFly, Jetty server, Glassfish server and etc. Jetty web server is the

main web server the system and it is a Java Servlet container developed by Eclipse

foundation.

The back end server machine currently running three main servers which are

resource extensive. In the development phase, the requirement of a full-featured

lightweight server that can be embedded and handles many concurrent requests was

a key concern. Jetty server consumes raw resources from the server machine and

can be embedded in Maven Project Object Model (POM). Jetty is more developer

friendly and supports many developer options and commands. It can be deployed,

launched and restarted quickly than other servers like Apache Tomcat or Wildfly

server.

The main reasons for using Jetty over a well-known Tomcat server are,

• Jetty is lightweight than Tomcat and consumes fewer resources.

• Jetty is Embeddable which means we can add jetty as a regular dependency to

the project. But in Tomcat, we put our application into the server container.

• Jetty can be very quickly launched and restarted. So that it is suitable for a

development environment where the server needs to be restarted frequently.

• Jetty has very low maintenance cost over Tomcat which requires more con-

figuration.

The Java EE web API supports JAX-WS to develop SOAP-based web service

and JAX-RS API supports RESTful web service. FLAD uses the JAX-RS specifi-

cation for the REST API implementation. Jersey framework which follows JAX-RS

specifications has been used to implement the REST API in our framework. Jer-

sey framework has great documentation, community support and it is developer

friendly than other frameworks like Restlet or Apache CXF and it supports a wide

range of annotations needed to handle the HTTP requests and responses.

Maven project management tool was used mainly for the dependency manage-

ment and as the build tool of the project. Maven helps the inclusion of necessary

libraries needed for the framework and building and compilation of the project.

43

Many libraries and frameworks are used in the project to ensure the best perfor-

mance and robustness of the system and the individual tasks of those libraries are

discussed in relevant sections later in this chapter.

5.3.1 Message builder and formatter implementation

Message builder and formatter is one of the main components in the component

architecture of the framework as shown in Figure 4.2. The message builder and

formatter is a message parser to and from the REST API of the framework.

The framework supports endpoint for the services developed by many vendors

which accept different inputs to process and return different outputs. For example,

Tesseract OCR needs a Java data object containing the image details while Google

Vision API expects a JSON object. In this example Message Builder and Formatter

enables a common input format for all the OCR services and defines a common

format for all the responses output by the OCR components. This heterogeneity

of inputs and outputs of all the linguistic components are handled by the message

builder and formatter component.

Figure 5.1: Function of Message Builder and Formatter

The requests made to the REST API of the framework is sent to the Message

builder and formatter for parsing and formatting. According to Figure 5.1 the

JSON body of the request is sent to the Message builder and Formatter component

when a TTS request comes to the REST API. The key functionalities of Message

builder and Formatter include building data model for all the endpoint services

and building a common data model for the responses, creating FLAD custom error

messages and JSON parsing.

44

This component is implemented with the help of GSON1 library which is an

open source Java library to serialize and deserialize Java objects to (and from)

JSON.

GSON library is developed by Google and it allows easy conversion of Java

objects into their JSON representation and JSON representation to an equivalent

Java object. There are other JSON parsers available but they don’t fully support

Java generics. The framework needed some basic functionalities that are supported

by GSON where other similar libraries do not support. FLAD framework is im-

plemented with many custom Java classes with Java collections which needed to

be parsed to JSON in one go. For an example, the conversion of a HashMap rep-

resentation to a JSON object representation is complex with other JSON parsing

libraries, but GSON offers some simple parsing techniques which made implemen-

tation easy. Further, some of the GSON features which helped in the development

of the framework are,

• Provide simple toJson() and fromJson() methods to convert Java objects to

JSON and vice-versa

• Allow pre-existing unmodifiable objects to be converted to and from JSON

• Extensive support of Java Generics

• Allow custom representations for objects

• Support arbitrarily complex objects (with deep inheritance hierarchies and

extensive use of generic types)

The Message builder is designed to convert the request JSON body into a

predefined Java data representation with help of GSON library. The request JSON

for the TTS request is different from the request for Translation request. (see

Appendix C for JSON request body representations). The mapping of each request

JSON to it exact endpoint service is done in this component. An example is shown

is Figure 5.2 where MaryTTS server is expecting a query string having all the

attributes in the URL string. This component converts the JSON body structure

to the required query string and builds the response sent by MaryTTS server to a

JSON response before sending to the application user.

1https://github.com/google/gson

45

Figure 5.2: MaryTTS message conversion

Mary TTS query string contains UTF-8 encoded strings which are created by

the Quality of Service (QoS) layer before sending to the Mary server. The exact

functionalities of QoS layer are discussed later in this chapter.

Another main function of this component is to manipulate JSON objects which

are the external data representation of the system. FLAD back end contains imple-

mented wrappers around the GSON API and customizes the JSON manipulation

to meet the framework’s need for this component.

5.3.2 Quality of Service component implementation

QoS component is responsible to add security and optimizations to the framework’s

functionalities. Any incoming request should go through the validation process first

for security reasons and reliability of services.

Basic functionalities of QoS component are,

• Validation (token generation and validation)

• Optimization

• Base64 encoding (for OCR and STT components)

• UTF-8 encoding (for translation and TTS components)

Validator class is implemented inside the QoS component to validate the user

requests. This validator class uses a Java library implementation of JSON Web

Tokens (JWT)2. JWT is used to generate tokens which are used in the validation

process of requests in the framework. JWT implementation uses several algorithms

to generate a secure web token. RSA512, HMAC512, and ECDSA512 are most

commonly available algorithms for use and JWT allows the easy selection of an

algorithm in the process. The framework implementation, JWT uses HMAC512

(Hash-based Message Authentication Code) as the algorithm which is faster than

2https://github.com/auth0/java-jwt

46

RSA512. JWT is the commonly used web token generating tool used currently and

provides a robust service.

5.3.3 JSON web token generation process in FLAD

FLAD end user; the application developer has two Ids after creating a service API

project in the FLAD console.

• Google Id - The identification number given by Google when Google authen-

tication is done.

• Project Id - Automatically generated project Id when a user creates a project

in the FLAD console.

The token request is processed in the Validator class and generates a token

using the provided two keys and return the token to the user. The user has to keep

the web token securely and can use it as the validation key in the future requests.

Figure 5.3 shows the token generation process in the framework.

Figure 5.3: Token generation process in FLAD

47

Second functionality of the validation process is to validate the user request

by examining the submitted token. The request validation happens on several

levels. Figure 5.4 shows how the request validation happens for simple services.

The implementation logic is different when validating complex services such as

sequences.

According to the Figure 5.4,

1. The Google Id is used to recognize the validity of the user using a database

lookup. User details are stored in a collection of MongoDB. (see Appendix

D for database document structures)

2. If the user is a registered user, next the project of the user is identified using

the project Id decrypted by the JWT decrypt method. The user can create

many projects in the FLAD system and the relevant project is located from

the project collection of the user.

3. The specified project contains all the endpoints related to the services selected

by the application user in project creation phase using the front end FLAD

console. The exact project creation process is discussed later in this chapter.

The project of the user is checked for the purchased endpoints. If the user has

made a request to an endpoint which has not been purchased the validation

fails by returning 403 error code with status forbidden.

4. If all validation steps succeed, the service instance specified in the user project

is invoked.

48

Figure 5.4: FLAD validation for simple service

The other functionality of QoS component is to do optimization in the frame-

work workflow. The use of Service Locator design pattern to provide more efficient

service is done at QoS component. The exact explanation of Service Locator de-

sign pattern is described in section 4.2.5. The Service Locator design pattern is

used to cache the objects in HashMaps in the first creation of the objects and the

subsequent requests utilize already initiated objects without creating them which

is a time-consuming task in java. The object reuse and caching are done using QoS

component.

Meta-data required for the functionality of the framework is stored in the

database. The meta-data is fetched from the database when the back end server

starts and after the first fetch, the values are cached in Java collections like HashMaps,

Vectors for future use. This prevents costly database lookups on subsequent

calls.The reason of using HashMaps over other collection is the fast lookup pro-

vided by the collection. This avoids number of iterations which is time-consuming

and improve the performance drastically.

49

As in some instances, concurrency issue related to the HashMaps are handled

externally using synchronization blocks in Java to avoid unexpected behavior. This

adds reliability to the system.

5.3.4 TTS component implementation

TTS implementation of the framework is done using MaryTTS which is an open

source java based multilingual Text-to-Speech Synthesis platform. MaryTTS is

the widely used TTS component which has a huge community support on Github.

MaryTTS has no REST API and it includes a standalone server which needs to be

run separately on the server machine and access via service interfaces.

The solution provided by the framework is to expose a simple REST API to the

application user while handling the complex configuration and interface calls in the

back end. The MaryTTS server is deployed on port 59125 in the server machine

and the incoming requests are redirected to the process method of MaryTTS API

with required parameters.

Listing 5.4: Input TTS JSON request body

{

"inputText ":"We have a clear sky",

"inputType ": "TEXT",

"outputType ": "AUDIO",

"outputFormat ": "WAVE_FILE",

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm",

"features ": { }

}

Listing 5.4 shows the JSON request which is expected in a tts request. This

approach simplifies the complex query string expected by MaryTTS server and

provides the end user a more programmer friendly JSON structure. These struc-

tures are discussed in the FLAD endpoints documentation which is given after a

project creation for the developer use. The response is created by the Message

builder component as shown in Listing 5.5.

Listing 5.5 shows the response of a tts request. The “response” contains the

public URL to the audio file. In the response “executionTime” is the overall time

taken to process the request which is 2957 milliseconds.The execution time is highly

depended on the bandwidth of the connection.

MaryTTS execution time = MaryTTS local process time + upload time to the

cloud

50

Listing 5.5: TTS JSON response body

{

"other ": [

{

"executionTime ": "3711" ,

"locale ": "en_US"

}

],

"response ":" https :// www.googleapis.com/download/

storage/v1/b/samplebookstorebucket/o/maryTTSAudio.

wav?generation =1514361245171530& alt=media",

"processedAT ": "2017 -12 -27_13 -24 -05"

}

Figure 5.5 shows the implementation approach of the TTS services. Only the

relevant components are shown in this for the simplicity of the diagram.

Figure 5.5: Implementation approach of the TTS services

• The factory design pattern is used to find the relevant TTS service and the

TTS worker builds the data model relevant to the back end service.

• MaryTTS server returns an audio stream with a successful request.

• TTS worker uploads the audio stream to the preconfigured Google cloud

purchased by FLAD framework.

• After a successful upload, the framework requests a publicly accessible URL

for the uploaded audio file and returns it to the application user.

51

• The application user can use the public URL to access the processed audio

file.

There are two approaches available when dealing with TTS responses. TTS

components return an audio stream to the calling root. One approach is to create

an audio file (MP3 or WAV) using the audio stream and store in a public storage.

Then send the publicly accessible URL to the user. The second approach is to

stream the audio directly to the user where the user can take direct actions over

the stream.

5.3.5 OCR component implementation

The framework provides two OCR services to the application user. The follow-

ing section discusses the tesseract OCR implementation and Google Vision API

implementation separately.

Tesseract-OCR Implementation

Tesseract OCR is a package that contains an OCR engine called libtesseract.

Tesseract has unicode (UTF-8) support, and can recognize more than 100 lan-

guages. Tesseract supports various output formats including plain-text, hocr(html),

pdf, etc. Developers can use libtesseract C or C++ API to build applications.

Though the libtesseract is written in C/C++ there are wrappers for the libtesser-

act library for other languages.

FLAD is developed using Java as the programming language and tess4J java

wrapper of tesseract has been used to implement the Tesseract component.

Execution time = Tesseract OCR processing time + upload time.

Google Cloud Vision API implementation

Google OCR or Google Cloud Vision API is the second OCR implementation of

the framework. It is not a free service and the service has been purchased under

the FLAD account.

Listing 5.6: JSON structure of the OCR request

{

"imageFileName ":" german.png"

}

The OCR endpoint of FLAD is expecting a POST request and Listing 5.6 shows

the JSON structure of the POST request. “imageFileName” field contains to the

name of the image which is to be subjected to optical character recognition.

52

The request is sent to the Tesseract engine or Google Cloud Vision API de-

pending on the user preferences. The JSON response of a ocr request is shown in

Listing 5.7.

Listing 5.7: JSON structure of the OCR response

{

"other ": [

{

"executionTime ": "3481" ,

"locale ": "de"

}

],

"response ": "Hast du das Brechern meines Herzens

gehrt?",

"processedAT ": "2017 -12 -27_13 -18 -48"

}

In Listing 5.7 “locale” is the language detected in the image content and the “re-

sponse” contains the content of the image.

Figure 5.6: Implementation approach of the OCR services

Figure 5.6 shows the flow of the OCR process. First, the image file is uploaded

to the server using the /upload endpoint that provided by the FLAD. The request

is made to a standard format by the Message builder and Formatter. The request

is sent to the OCR worker through the factory method. OCR worker reads the

image from the FLAD server space and executes the OCR service. If the user is

using Tesseract OCR, then the image is converted to a pix image and it processed

using the Tesseract engine. If the user is using the Google Vision API’s service

then the image is converted Base64-encoded format and it is processed using the

Google OCR which also contains the Tesseract engine. The response which is

either generated from Google Vision API or Tesseract is sent to the OCR worker

53

followed by factory method and Message builder and formatter. Message builder

and formatter create a JSON response as shown in the Figure 5.6.

Execution time = Google vision API access time + OCR processing time + upload

time.

5.3.6 Translation component implementation

Google Translation is used as the translation endpoint of the framework. The

Google Translation is a paid service and the service is purchased under FLAD

account for testing purposes. The translation endpoint is simplified to expect a

POST request with a simple JSON body as shown in Listing 5.8.

Listing 5.8: JSON structure of the Translation request

{

"inputText ": "Hello How are you?",

"target ": "sp"

}

The phrase to be translated is denoted by “inputText” and the target language

which the text should be translated to is specified by “target”. Here the request is

to translate “Hello how are you?” to Spanish.

The request is sent to the REST API of Google Translation and the response

is created by the Message builder component as shown in Listing 5.9.

Listing 5.9: JSON structure of the Translation response

{

"other ": [

{

"executionTime ": "185" ,

"locale ": "en"

}

],

"response ": "Hola como estas"

"processedAT ": "2017 -12 -27_13 -27 -00"

}

The locale shown in Listing 5.9 is “en” since the detected input language which

is English and “executionTime” is how much time taken to process the request

which is 687 milliseconds.

Execution time = Google Translate access time + Translation processing time.

54

5.3.7 STT component implementation.

Two speech to text endpoints are initially provided by the FLAD system. One is

using CMU Sphinx library and the other one is using Google Cloud Speech API.

Users can select the preferred STT endpoint in the service API project creation

phase.

CMU Sphinx implementation

CMU Sphinx has been selected as the STT service because it consumes fewer

resources than other free STT libraries and it is easy to use. CMU Sphinx library

can be added as a dependency to the project using Maven. As it is developed

using Java, we can communicate with the library using Java functions. The audio

file expected by CMU service has to be preprocessed by the QoS component. QoS

component converts the uploaded audio file to a WAV file with Mono channel

having a sample rate of 16000 Hz.

Google Cloud Speech API

Google Cloud Speech API provides a web service to convert speech to text. FLAD

gets the Google Speech API’s service through their exposed web service. Google

accepts Base64-encoded audio files.

The framework exposes STT service as a REST API so that the user does

not have to do complex configuration and installation task. The user can select

the preferred STT endpoint for their application. They can change the used STT

endpoint to another in the future easily because FLAD handles the configuration

part internally and exposed a friendly and consistent API.

FLAD’s STT endpoint accepts a POST request from users which contains a

simple JSON body as shown in Listing 5.10.

Listing 5.10: JSON structure of the STT request

{

"audioFileName ":" test3.wav"

}

When FLAD receives the request it uploads the specified audio file to the server.

The uploaded file is passed to CMU Sphinx library or Google Speech API according

to the user preference. The response that is sent by CMU Sphinx library or Google

Speech API is formatted using Message builder and Formatter is shown in Listing

5.11.

55

Listing 5.11: JSON structure of the STT response

{

"other ": [

{

"executionTime ": "5099" ,

"confidence ": "0.986863"

}

],

"response ": "hello how are you",

"processedAT ": "2017 -12 -27_13 -29 -04"

}

The response contains “confidence” which the STT returns as the confidence

value and the “response” is the output text of the content of the audio file.

Execution time = STT processing time + Audio upload time

Figure 5.7: Implementation approach of the STT services

Only the most relevant components are shown in Figure 5.7 for the simplicity of

the diagram. As the first step, the audio file is uploaded to the server. The name of

the audio file is sent back to FLAD core system. Using the factory design pattern

the relevant STT service is dynamically invoked and the STT worker builds the

data model relevant to the back end service. STT endpoint returns the response

text after completion of processing the audio file. The response text is obtained by

Message builder and Formatter. It adds the necessary fields and headers and builds

the HTTP response. The REST API sends the response to the relevant client.

5.3.8 The sequence implementation

Sequences are a serial combination of several simple linguistic endpoint services.

Sequences are introduced to reduce the overhead of sequential web service calls

56

needed to perform a complex linguistic application need.

For an example, Assume a user wants to read the content of a German signboard

and get the English translation. Then the application developer does not need to

send two separate calls to the framework as one for OCR and one for Translation,

Instead, he can perform the request using the sequence number which can be

obtained after adding relevant sequence to the service API project to perform that

task in a single web service call.

There are six possible sequences defined in the framework which can be made

using the four linguistic components STT, TTS, OCR, and Translation. In FLAD,

there are six pre-defined different JSON requests to make the sequence execution

easy.

The user can select which sequences he needs for the application in the ap-

plication creation process in FLAD console. The user can send a POST request

with the required JSON input to http://localhost:8080/api/v1/seq/[seqNo] with

the relevant sequence number.

Sequence 0 (OCR −→ TTS)

This sequence takes an image as the input and produce content of the image as a

speech.

Listing 5.12: JSON structure of the Sequence 0 request

{

"ocr":{

"imageFileName ":" german.png"

},

"tts":{

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm"

}

}

As shown in Listing 5.12 it gives the audio output in English voice of the input

image file.

Sequence 1 (OCR −→ Trans)

This sequence converts the content of an image to a given language.

57

Listing 5.13: JSON structure of the Sequence 1 request

{

"ocr":{

"imageFileName ":" german.png"

},

"trans ":{

"target ": "en"

}

}

This request converts the content in the german image file to English and output

the English content.

Sequence 2 (OCR −→ Trans −→ TTS)

This sequence converts the content of an image and output the speech in that

translated language.

Listing 5.14: JSON structure of the Sequence 2 request

{

"ocr":{

"imageFileName ":" german.png"

},

"trans ":{

"target ": "en"

},

"tts":{

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm"

}

}

Sequence 3 (Trans −→ TTS)

This sequence translates a given string to a specified language and gives its speech

in the translated language.

58

Listing 5.15: JSON structure of the Sequence 3 request

{

"trans ":{

"q": "Hej det har ar kul och gldje. Livet ar

inte bra",

"target ": "en"

},

"tts":{

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm"

}

}

Sequence 4 (STT −→ Trans)

This translate the speech to a given language and output the translated text.

Listing 5.16: JSON structure of the Sequence 4 request

{

"stt": {

"audioFileName ": "test3.wav"

},

"trans ": {

"target ": "si"

}

}

Sequence 5 (STT −→ Trans −→ TTS)

This translate the speech to a given language and output the translated text back

as speech in translated language.

59

Listing 5.17: JSON structure of the Sequence 5 request

{

"stt": {

"audioFileName ": "test3.wav"

},

"trans ": {

"target ": "de"

},

"tts": {

"locale ": "en_US",

"voice ": "cmu -slt -hsmm en_US female hmm"

}

}

5.3.9 Log mediator component

Log mediator is implemented to perform all the logging of the transactions in

the framework. Apache Log4j23 has been used to implement the logging mediator.

Apache Log4j is a Java-based logging utility. The reasons for using Log4j over some

other frameworks like Logback are, Improved performance, Automatic Reloading

of Configurations, and Advanced Filtering facility provided by Log4j [26].

5.3.10 Error handling

Clients use REST API to communicate with the web service via HTTP requests

and responses. Hence the information delivered to and from the server should

be self-descriptive. For example, the access token must be included in all the

requests send to FLAD. If the access token is missing in the request header the

system should provide an error message informing the access token is required in

the request. When the client gets this descriptive error message he can identify the

mistake and quickly resolve. The error message should be self-descriptive so that

the client will be able to resolve the issues related to the requests.

In addition, a REST API should use standard HTTP error codes in the re-

sponses. These error codes are helpful for the client to identify the server errors

and client errors. The exact error codes used by FLAD is shown in the Appendix

E.

The FLAD system implementation uses custom exception handling mechanisms

to define exceptions in the workflow. These custom exception handlers provide

3https://logging.apache.org/log4j/2.x/

60

descriptive error messages customized to the nature of the exception. Exception-

Mapper of Jersey library has been used to define custom exceptions in the REST

API. All the exceptions are defined in a one Java package with self-descriptive mes-

sages about the error. The exception handler generates the error message and the

relevant HTTP error code. This data is passed to Message Builder and Formatter

and it creates the JSON response by adding the error message in the response body

and error code in the response header. Then the HTTP response is passed to the

client.

Listing 5.18 shows an error response related to an invalid request. The user has

issued a request to /stt endpoint with correct request structure but, the user has

not picked the STT service from FLAD system.

Listing 5.18: An error response related to an invalid request

{

"message ": "Not eligible for the service",

"status ": "Forbidden",

"errorCode ": "403"

}

5.4 The front end development

The current trend in web development industry is developing Single Page Ap-

plications(SPA) over Multiple Page Applications(MPA). Single-Page Applications

(SPAs) are Web apps that load a single HTML page and dynamically update that

page as the user interacts with the app.

SPA advantages over MPA [27],

• Faster page loading times.

• Improved user experience because the data is loading in the background from

server.

• No need to write the code to render pages on the server.

• Decoupling of front end and back end development.

• Simplified mobile development; you can reuse the same back end for web

application and native mobile application.

By considering the advantages of SPA, the front end is designed as a single

page application. The front end was developed separately from the back end. The

communication between front end and back end happens via REST API calls.

61

In the field of front end development, many JavaScript frameworks emerge day

by day. Angular JS, React JS, and Vue JS are the mostly used front end frame-

works. The most suitable framework for our project was selected by considering

the advantages and disadvantages of each framework. (See Appendix Ffor the

comparison.

By considering the advantages of SPA, the front end is designed as a single

page application. The front end was developed separately from the back end. The

communication between front end and back end happens via REST API calls.

In the field of front end development, many JavaScript frameworks emerge

day by day. Angular JS, React JS, and Vue JS are the mostly used front end

frameworks. The most suitable framework was selected by considering the advan-

tages and disadvantages of each framework. See appendix for the comparison.By

considering the performance, developer friendliness, and group members’ previous

experience we decided to use React as the front end framework.

React JS is a front end development framework developed and maintained by

Facebook. More details about React is discussed in Chapter 2 under background

study. React runs on NodeJs server. Node Package Manager(NPM) is used to in-

stall and maintain the packages. Webpack, Babel, React hot loader, and Nodemon

are some necessary tools used for React development.

Webpack takes modules with dependencies and generates static assets repre-

senting those modules. This technique keeps initial loading time to a minimum.

Different modules can be independently implemented as Webpack combines them

into static files automatically [28]. Babel is a JavaScript compiler. It compiles

React JSX into browser-compatible JavaScript [29]. React Hot Loader is a plugin

that allows React components to be live reloaded without the loss of state. It

works with Webpack and other bundlers that support both Hot Module Replace-

ment (HMR) and Babel plugins [28]. Nodemon is a utility that will monitor for

any changes in your source and automatically restart your server and it is perfect

for development environments [30].

Google Material-UI is used to implement the user interface and its components.

It provides React components that implement Google’s Material Design [31]. Ma-

terial UI is one of the first UI kits for React. It provides a grid system to develop

mobile-friendly user interfaces.

Maintaining the application state is difficult in a single page application. Redux

JS is used to maintain state in SPA. Redux is a predictable state container for

JavaScript apps [21]. The state is stored in Redux Store.

A minimal React template project available on Github is used to initialize the

front end implementation. React has many dependencies need to be installed, using

a pre-configured template reduces the configuration cost.

62

The front end was developed in two phases. In the first phase, the client func-

tionalities were developed. In the second phase, the administrator functionalities

were developed. Next section briefly discusses how the client’s functionalities were

implemented and the tools that were used.

5.4.1 How front end communicates with the back end

The front end of FLAD runs on Node JS which is based on an event-driven non-

blocking I/O model. It means the operations do not wait for I/O to complete. So

that when front end sends a request to the back end to get data or put data, the

thread in execution does not wait until it gets the response. Instead the thread in

execution handovers the request to a worker thread and execute the next instruc-

tion. To handle this situation Redux Async Actions 4 is used with Redux Thunk

middelware5.

5.4.2 How Redux is used

The application state is stored in a JavaScript plain object. This object cannot be

modified directly. This limitation helps to avoid bugs as different parts of the code

cannot change the state directly from different places.

An action is used to modify the state.The action is also a JavaScript object

which describes what happened. JavaScript functions are used to connect the

actions with the state. In Redux these functions are called Reducers. A part of

the application state is shown in Figure 5.8. The image shows project details of

the project named “test”.

Figure 5.8: A part of Redux application state

Assume this project needs to be edited. Then,

1. The User enters the data to “Edit Project” form and clicks Submit.

4https://redux.js.org/docs/advanced/AsyncActions.html
5https://github.com/gaearon/redux-thunk

63

2. When Submit is clicked, edit project function is called with the project data

as parameters.

3. Edit project function dispatches three Redux actions.

4. First “EDIT PROJECT START” action is dispatched. This action modifies

Redux state by setting the fetching attribute to True. The fetching attribute

is used to identify that a back end API call is going to start. We use this

attribute to show the user that the system is processing the submitted data.

5. front end sends a POST request to back end API with project data that

needs to be edited using a JavaScript promise.

6. back end gets the data and updates the relevant project in the database.

Then it sends a response to the front end with the new project data.

7. When the front end receives the success response with the data, ”EDIT

PROJECT SUCCESS” action is called. This action modifies Redux state

by setting ”fetching” attribute to False and ”fetched” attribute to ”True”. It

also updates project data in the Redux store to the latest data received from

the back end. This action also sets ”notifications” attribute in the state to

”Project Successfully Edited”. It triggers a pop up in the user interface to

indicate the user the project has successfully edited.

8. If the project’s edit request failed, the promise catches that error and dis-

patches the ”PROJECT EDIT FAILED” action. This action sets the ”error”

attribute to the error message received from the back end. This action also

sets ”notifications” attribute in the state to ”Project Editing failed”. It trig-

gers a pop up in the user interface to indicate the user the project edit request

has failed.

The user experience and performance of the front end is improved with the help

of Redux. It has also eased the development as it acts as the single source of truth.

5.4.3 How the application is structured

The application is structured and refactored to make the maintenance easy. The

accepted React-Redux application directory structure is used in the front end. It

has helped to write clean code. The directory structure is as follows,

• actions/ - All the Redux actions are defined in this directory.

• api/ - The functions used to call back end api are defined in this directory.

64

• components/ - All the UI components are implemented in this directory.

These components act as Views. We have split different UI components

into different files such as NotificationsComponent, AppBarComponent, and

EditProjectFormComponent. These components have their own local state

and functions to manipulate the local state.

• containers/ - The files in containers directory have the business logic. It

renders the relevant UI components according to the business logic. The

objects in Redux state is used in containers and the functions to call Redux

actions are also defined in containers.

• reducers/ - The reducers which binds Redux actions with Redux state are

defined in this directory.

• styles/ - scss style files are stored here.

• index.js - This file served as the entry point to the application.

• /routes.js - All the routes/paths and the containers should be rendered in

each route is defined in this file. This file is also used to check authorization.

5.4.4 How authorization is handled

The user should have permission to access the different routes/paths of the ap-

plications. React Higher-Order Components (HOC) have been used to implement

authorization. Briefly, a higher-order component is a function that takes a com-

ponent and returns a new component based on the logic defined in the function

[32].

The attributes “isLoggedin” and “isAdmin” in Redux state are used to imple-

ment authorization. When the user successfully logged in ”isLoggedIn” flag is set

to True. The authorization component checks this flag when the user attempts

to access the routes/paths of front end UI. The authentication HOC renders the

relevant UI component if the ”isLoggedIn” flag is True otherwise it renders the

welcome page. When the user logs out, ”isLoggedIn” flag is set to False then the

authentication HOC redirects the user to welcome page.

When admin user logs in “isLoggedIn” and “isAdmin” flag is set to True and

admin can access the admin routes.The authorization is handled within the topmost

component (in routes.js) to ensure the security of the application.

65

5.4.5 Authentication Component

The overhead of authentication functionality was avoided by using Google Sign-

In. Google Sign-In is a secure authentication system that reduces the overhead of

login for users, by enabling them to sign in with their Google account with same

account they already used with Gmail, Play, Google+, and other Google services

[33]. It has increased the ease of use as the users can register with the system by

signing in to their Google account. Users do not have to provide their personal

details to our system. It will increase the usability of FLAD. It provides a one click

authentication for the user which make the system more user-friendly.

When a user login to the system for the first time, his email address, user image

url and Google Id is saved in the MongoDB database. This Google Id is used to

uniquely identify the user.

A ”LoggedIn” flag is used to identify whether a user has logged in or not. If

a user successfully logs in to the systems, his authentication details are saved in

Redux application state and ”LoggedIn” flag is set to True.

The application state is stored on web browser’s local storage to make the

system more available. So that even if a user accidentally closes the browser he/she

can resume to the same state when he/she opens the browser again. The system

deletes browser’s local storage when the user logs out and set the ”LoggedIn” tag

to false. This redirects the user to the Welcome page.

5.4.6 Project Component

Different UI components have been used for Project View, Create, Edit and Delete

functionalities. Their operations are handled in relevant containers. See Appendix

G for UIs.

5.4.7 SummaryBox Component

SummaryBox is a reusable dynamic React component implemented for Admin-

Container of the FLAD front end. This component supports for dynamic icons,

text, colors and functions which is passing through props. In addition to that this

an is atomic react component in FLAD which does not use another custom react

components inside this component. SummaryBox uses the higher-order compo-

nent created by withStyles to inject an array of styles into the DOM as CSS.(see

Appendix G.4)

66

5.4.8 EnhancedTable Component

Enhanced Table Component is the primary large data display method in FLAD

Admin container. This dynamic component has been used in several places such

as users, projects, requests in FLAD Admin panel. This component consists of

EnhancedToolbar component and TableBody component. These above compo-

nents render separately in order to provide the completeness of the EnhancedTable

component and its actions.

EnhancedToolbar component behaves under two states, search state and actions

state. The list of the data in the TableBoby component changes according to the

change of the searchString in the search state as shown in the Appendix G.5. Next,

action state contains the actions which can be performed under each table item.

Appendix G.6 shows the view change of this state. These actions are sent from

the Parent container of each Table according to the type of the data that is being

used. System actions for users data and project data are below.

Actions for users data

• View user profile

• View projects

• Ban users

Actions for project data

• View project

• View user

• Pause project

The above actions are dynamic and all actions should be passed in the format

below.

Listing 5.19: Actions format

{

’id ’: ’action -1’,

’text ’: ’View Project ’,

’icon ’: ’eye ’,

’action ’: this.handleViewUser.bind(this)

}

The attributes of this format are,

• id : for the handling process of iterative elements.

67

• text: the text to display when mouse over on action icon as tool tip text.

• icon: the icon which should be displayed as icon in the action bar. These

icons are imported from the material-ui icons package.

• Action: the action should be performed when user click on the action.

5.4.9 UsageChart Component

This chart is designed to display the requests handled by the FLAD system within

a timeframe. (see Appendix G.7). UsageChart component contains material UI

build-in elements for the container usage and recharts6.

5.4.10 Breadcrumbs Component

Breadcrumbs component provides the information about the current location of

the user within the FLAD Console. This component is designed using chips which

is a Material UI component. The data which should be converted into breadcrumbs

representation should be passed as prop named data as in the format below. This

array will be used in the rendering of breadcrumbs component.(see Appendix G.8).

Listing 5.20: Data array passed to Breadcrumb

[

[1, ’Home ’, ’/admin ’],

[2, ’Users ’, ’/admin/users ’]

];

5.5 Summary

This chapter described the solution provided along with the development ap-

proaches, tools, technologies and decisions taken in implementing the system. This

chapter also discussed the overall process of the system which describes how a user

should use the system. Further, this chapter discussed how the linguistic compo-

nents are integrated in this system and how the system provides its services to

the users. In addition to that, some other important components such as Message

Builder and Formatter Component and Quality of Service Component are discussed

in this chapter. This chapter also discussed the front end implementation including

how front end communicates with the back end of the system.

6https://github.com/recharts/recharts

68

Chapter 6

Evaluation

6.1 Introduction

This chapter explains the achieved goal and objective using qualitative and quan-

titative measurements. The latter part of the chapter contains the testing process

and the limitations of the project. The FLAD system evaluation was conducted

under three main section. Architecture wise evaluation, Service wise evaluation,

and Software wise evaluation.

6.2 Software wise evaluation

6.2.1 FLAD console loading time

FLAD console is designed using REACT framework and the evaluation is done

considering the rendering time of components and the memory consumption.

Testing environment,

• The internet download bandwidth = 8Mbps

• The upload bandwidth = 5Mbps

• Average Ping = 70ms

• Firefox Quantum web browser

Figure 6.1 shows the rendering time in milliseconds with the increase of number

of components.

69

Figure 6.1: The rendering time of normal DOM vs React

The evaluation was carried out using normal DOM (Document Object Model)

and React JS. It is clear that when number of components are higher than 1000,

React JS has to perform twice the work than DOM version. The reason is that

React JS has to deal with both the virtual DOM and the actual DOM to render

components.

Figure 6.2 shows the memory consumption of React JS with the increase of

number of components.

70

Figure 6.2: The memory consumption of normal DOM vs React

React JS consumes more memory because of the virtual DOM manipulation.

6.2.2 Completeness of the scope and objectives

The goal of the project was to improve the development process of linguistic applica-

tions by reducing the overhead and overall development time through introducing

a framework to support linguistic application developers. The FLAD system is

the final output of the project which contains the framework and some additional

features like FLAD console. The FLAD approach has decreased the development

time of application developers due to easy project creation logic provided by FLAD

console and more programmer friendly REST API of the framework services. The

summary of evaluation form given to application developers about FLAD console

is given in Appendix H.

All the objectives mentioned in Section 1.3.2 have been achieved by the FLAD

system. FLAD has achieved the functional requirements and non-functional re-

quirements with the design and implementation approaches.

• Performance

The performance of the framework is improved with many design and im-

plementation approaches. The use of service locator design pattern enables

fast retrieval of objects from cache rather than initiating them in each re-

quest. The concept of sequences has improved the overall response time of

71

complex services. Table 6.1 shows the exact quantitative measurements of

complex services of FLAD and the efficiency gained using sequences. The

use of efficient Java collections like HashMaps over ConcurrentHashMaps

and SynchornizedHashMaps makes fast retrieval of values without overhead

of object locking.

• Scalability

The design of the FLAD supports scalability of the system. The layered ar-

chitecture and component-based architecture (described in Chapter 4) allows

the replication of servers in presence of high concurrent users. The FLAD

system supports horizontal scalability and functional scalability due to the

plug and play model. System supports horizontal scalability in database layer

by using sharding technique in MongoDB. In the current stage sharding is

not used in the project.

• Availability

The FLAD system runs on a server which is available at all times. The server

replication can make the system highly available without any downtime. If

the system needs a full restart, Jetty server takes approximately 20 seconds

to reboot. Thus availability can be computed considering both uptime and

downtime of the system using the following equation.

Availability =
FLAD[uptime]

(FLAD[uptime] + FLAD[downtime])

Server replication can reduce the downtime and increase the availability.

However, server replication is considered to be a future development. (all

the future developments are discussed in Chapter 7).

• Reliability

System reliability is considered as the combination of framework reliability

and the reliability of third party linguistic components. The framework REST

API and endpoint services are tested for the reliability (the testing process

is discussed in Section 6.6). The reliability test showed that the intended

outcome is always produced in service API calls. The FLAD system is not

responsible for the reliability of the third party linguistic components.

• Maintainability

A framework is always built considering the extendability and maintainabil-

ity. The design and the implementation of the framework allow future devel-

opments easy. New features can be easily added to the functionality of the

72

framework because of the loose coupling of components. The well-defined

interfaces facilitate the easy maintainability of the system.

• Security

Security is ensured in many ways. The token generation is done at the back

end to ensure the security and the token is always enforced to send in the

HTTP header. Each request is validated using the Validator component

in the framework to prevent unauthorized activities. The user cannot send

requests to endpoint services which he/she has not purchased by the FLAD

system and user cannot make requests to admin routes or developer routes

which are only accessible for FLAD administrators.

• Data Integrity

The framework provides a uniform data format across API calls. The request

JSON structure is self descriptive and programmer friendly. The response

JSONs for all service calls are in the same format which makes data consistent.

• Usability

The FLAD console has made project creation easy and efficient which allows

programmers to reduce the development overhead and provide the service

APIs quickly. The evaluation done for FLAD console is shown in Appendix

H. The uniform JSON formats made the programmers to develop applications

faster.

• Interoperability

The framework functionality is provided as a web service which can be ac-

cessed using any device and any platform. This makes the system interop-

erable. FLAD is built using Java which is platform independent and can be

easily deployed in Linux or Windows servers.

Best combination of service instances which provides efficient responding

time for sequences

The sequences have proved the optimization of the service workflow. They are

created to improve the efficiency by reducing the number of stateless HTTP calls.

Table 6.1 shows the quantitative results of the instances with sequence enabled

and disabled. The quantitative evaluation of the request, response times are highly

depended on the back end service instance and the internet bandwidth. All the

endpoint service are implemented to interact with JSON and this approach im-

proves message conversion overheads and improves the efficiency of sequences. The

evaluation was done using the following services.

73

• OCR-Google Vision API, STT-Google Speech API, Translation-Google trans-

lation and TTS-MaryTTS.

• The internet download bandwidth = 8Mbps.

• The upload bandwidth = 5Mbps.

• Average Ping = 70ms.

Efficiency =

(
1− time with sequence

time without sequence

)
∗ 100

Table 6.1: Efficiency of sequences

Sequence With sequence(ms) Without sequence(ms) Efficiency

Sequence 0 6853.86 7266.58 5.6797%

Sequence 1 2446.44 4088.34 40.1606%

Sequence 2 5996.73 8254.23 27.3496%

Sequence 3 5010.23 5153.54 2.7808%

Sequence 4 5186.37 5312.19 2.3685%

Sequence 5 7969.16 9378.08 15.0235%

Figure 6.3: The graphical view of sequence evaluation

74

The graphical view of sequence evaluation is shown in Figure 6.3, the lower is

better. According to this graph it is clear that sequences respond faster than inde-

pendant simple services.This evaluation concludes that the expected optimization

was achieved using sequence implementation.

6.3 Architecture wise evaluation

We have designed and implemented the architecture of FLAD to easily plug new

services and new endpoints to the existing services with the least code modifica-

tions.

6.3.1 Effort of adding new service instances to the existing

services

The objective was to design an architecture that facilitates adding new services to

the framework with minimal changes. According to the architecture when adding

a new service instance for an existing service there are only four changes done to

the system. These changes do not need a manual server restart. This prevents the

interruption of services exposed by the FLAD system.

• Add a class inheriting the service class with the new instance name inside

the relevant service package.

• Override the execute method and implement the logic.

• Add an entry in the Service factory class with the new instance name for

dynamic invocation.

• Add a label name in Endpoint Operation class for FLAD console display.

6.3.2 Effort of unplugging a existing component

Plug and Play architectural model facilitates removal of an existing component

with minimal changes to the system. When unplugging a component there are

only two minor changes done to the code structure. These changes do not need a

manual server restart. This prevents the interruption of services exposed by the

FLAD system.

• Remove the entry in the Service factory class with the instance name that

needs removal.

• Delete the label name in Endpoint Operation class.

75

6.3.3 Effect of adding new services to the FLAD system

(overhead of modification of the code)

The architecture supports the addition of new linguistic services other than STT,

OCR, TTS, and Translation to the system. This needs only five changes to the

framework. The addition of a new linguistic service triggers a manual server restart

and on average takes 10 seconds to reboot the FLAD system in a Linux server

environment.

• Implement the new service class by inheriting the Service base class provided

by the framework.

• Add a getService method in the Abstract Factory class.

• Implement a new Factory class for the new service.

• Add an entry in the Service Initializer class to expose the new service.

• Create a new REST API endpoint in the ServiceRouterController class.

6.4 Server wise evaluation

6.4.1 Evaluation of plugged services

The pluggable components are used for the testing of the framework in the de-

velopment phase. The plugged services impose restrictions which are discussed

in Chapter 7 under the limitations of the project. The plugged services are not

evaluated under restrictive environment. For the development of the framework,

the services which are standalone is preferred as they processed outputs relatively

faster than the services which provided a REST API. The extra HTTP request

redirection causes some delay in the result and the internet bandwidth becomes a

bottleneck in the performance.

The services which provide JSON support performs better than the services

which expect a different data format as the const for JSON parsing takes time.

Any service developed in any language other than Java can be plugged into the

framework unless they provide a Java wrapper or a web service. We did not find

any issue with the services which are not compatible with the framework as all

most all the services support either a web service or a Java wrapper because of the

popularity of Java.

76

6.4.2 Latency of the requests

The latency is highly dependent on the bandwidth of the internet connection. The

evaluation was done using the following services and conditions.

Latency = T1 + processing time + [upload time] + T2.

T1 - Time taken by request to reach framework

T2 - Time taken by response to reach the client

Note: upload time is not relevant to some services.

• Sequences were evaluated using OCR-Google Vision API, STT-Google Speech

API, Translation-Google translation and TTS-MaryTTS.

• The internet download bandwidth = 8Mbps

• The upload bandwidth = 5Mbps

• Average Ping = 70ms

Table 6.2: Latency of simple services

Service Latency (ms)

Google OCR 3100.69

Mary TTS 2446.44

Google Translate 0987.65

Google Speech API 4224.54

Tesseract OCR 3211.21

CMU Sphinx STT 6945.51

Table 6.3: Latency of Complex services (Sequences)

Sequence Name Latency (ms)

Seq0 6853.86

Seq1 2446.44

Seq2 5996.73

Seq3 6710.23

Seq4 5186.37

Seq5 7969.16

77

6.4.3 Requests per period of time which can handle by the

FLAD (How many concurrent requests can handle)

MongoDB

Testing environment,

• Linux Ubuntu 16.04 (64bit)

• MongoDB 3.6

• 8 GB RAM

• Intel core i5 2.5 GHz

MongoDB performance is evaluated under default configuration settings and

through a connection pool of size 100. In order to test the performance in concur-

rent requests several threads were created and each thread executes a sequential

series of operations by making calls to the database interface layer to load the

database (the loading phase) and to execute the workload (the transaction phase).

Read, Write operations were issued in two separate loops and measured the latency

against the number of operations per second.

Figure 6.4: MongoDB performance evaluation of read operation

Figure 6.4 shows how the latency increases with the increase of unit operations.

Under default settings maximum of 3000 concurrent users are recommended.

78

Figure 6.5: MongoDB performance evaluation of write operation

Figure 6.5 shows how the latency increases with the increase of write unit opera-

tions. Under default settings maximum of 2000 concurrent users are recommended

in write operations.

Jetty server

Testing environment,

• Linux Ubuntu 16.04 (64bit)

• MongoDB 3.6

• 8 GB RAM

• Intel core i5 2.5 GHz

Evaluation of Jetty server was done by sending simple requests to process a

JSON request. The evaluation criteria was done on 3 aspects request waiting time,

request handling time and throughput. Figure 6.6 shows the request waiting time

against concurrent requests. The request handling time of Jetty is shown in Figure

6.7. Throughput of the server with the increase of concurrent requests is shown in

Figure 6.8.

79

Table 6.4: Jetty performance evaluation

Concurrent Re-

quests

Requests Wait-

ing Time

Requests Han-

dling Time

Throughput

1 6.391 6.391 156.48

5 11.484 2.297 435.37

10 19.063 1.906 524.59

20 25.625 1.281 780.49

40 0.797 31.875 1254.9

60 6.578 394.688 152.02

80 5.563 445 179.78

100 1.781 178.125 561.4

200 6.984 1396.875 143.18

300 3.109 932.813 321.61

400 6.531 2612.813 153.11

Figure 6.6: Jetty waiting time

80

Figure 6.7: Jetty handling time

Figure 6.8: Jetty throughput

81

6.5 Proof of Concept

A mobile application was developed along with the framework by the development

team as a proof of concept. FLAD is a new concept where services of both single

linguistic components and combined linguistic components are taken to a common

platform. Details about the mobile application development are not included in

the previous chapters of this thesis, as it is not directly related with the frame-

work development, but it is about using the services provided by the framework.

In the Evaluation chapter, it is better to mention about the mobile application

development as the development team experienced a true convenience in building

an application using the REST APIs provided by the framework.

This mobile application is used in the testing process of the framework as well.

Test types such as performance testing and stress testing (mentioned in Table 6.5)

of the framework are done by providing this mobile application to some user groups

and allowing them to use functionalities of the application. Some user interfaces

of the mobile application are shown in Appendix I.

82

6.6 Testing Process

Table 6.5: Test Plan
Test

type

Reason for using Method of usage Tools

Compat-

ibility

Testing

The framework should run

on Windows servers or

Linux servers.

The system is compiled and

built on both Linux and

Windows operating sys-

tems.

Native

OS plat-

forms

Functi-

onal

Testing

Need to check all the func-

tionalities of the framework

are running as intended

Running tests using a test

automation tool to test all

the endpoints in all router

controllers Black box test-

ing

TestNG

Integrat-

ion Test-

ing

To check inter module com-

patibility. To see how

different pluggable compo-

nents work each other.

Testing all the sequences

which integrates all the ser-

vices. Testing all differ-

ent endpoint services with

dynamic behaviour change.

Black box testing

TestNG

Perform-

ance

Testing

How the framework per-

form in different condi-

tions. To see how use of

sequences improve the per-

formance.

Check how system perform

at normal, peak, and ex-

ceptional load conditions.

Black

box

testing

Stress

Testing

How system handles when

there are large number of

concurrent requests.

Testing how multiple con-

current requests are han-

dled by the FLAD server,

MongoDB server and indi-

vidual linguistic services.

Jmeter,

The

Grinder

System

Testing

To see how the whole

framework behaves alto-

gether.

Use a mobile application as

a proof of concept and test

all the service endpoints.

Manually

calling

the

REST

API

of the

frame-

work

83

Table 6.6: Test Plan
Test

type

Reason for using Method of usage Tools

Unit

Testing

Each function and module

is tested with JUnit.

Use maven like build tools

and create a test plan for

each code module.

JUnit 5

Web

Service

Testing

Test the REST API calls

and response codes

Check all available ser-

vices under DevRouter

Controller, Admin Router

Controller and Service

Router Controller

Soapui,

SOAtest

Usability

Testing

To test if the FLAD sys-

tem has minimized the ap-

plication development over-

head through FLAD con-

sole project creation logics

and service API calls

Developing some applica-

tions as a proof of con-

cept and allow users to cre-

ate FLAD service APIs in

FLAD console to test the

usability of the system.

Xamarin

based

mobile

appli-

cation,

FLAD

console

Recovery

Testing

To check if the different

modules can perform inde-

pendently. What happens

when a particular compo-

nent crash and how the sys-

tem will manage.

Crash components manu-

ally and test if the system

can recover automatically.

Manually

The FLAD system consists three main subsystems as FLAD console, FLAD back

end and independant linguistic services. Initial testing was done separately on the

subsystems and the whole system was tested under system testing. Above Table

6.5 shows the test plan performed on the FLAD system.

Front end FLAD console evaluation was done using a feedback form given to

a selected computer science students (see Appendix H.1 for the evaluation form)

and the results are depicted in the bar graph in Figure 6.9.

84

Figure 6.9: Analysis of front end evaluation

M1 - Colors, M2 - Font, M3 - Font size, M4 - Font color, M5 - Placement of

components (structure of the UI), M6 - Interactiveness, M7 - Meaningfulness of

terms used, M8 - Self-descriptiveness of icons, M9 - Overall design, M10 - Ease of

use, M11 - Documentation

6.7 Summary

This chapter discussed how this system is evaluated under three main sections as

software wise, architectural wise and service wise. The evaluation is done using

qualitative and quantitative measures. System’s response times for all the services

in milliseconds and efficiency of those services are also included in this chapter. This

chapter also mentioned how user-friendliness of the system’s front end is evaluated

using an evaluation form. In addition to these things, the testing process done

using several test types such as unit testing, stress testing, etc. is discussed in this

chapter.

85

Chapter 7

Conclusion

In this study, it is identified that there is a considerable gap between linguistic

applications development and the linguistic components. There is an actual over-

head in integrating the linguistic components within a linguistic application. It

becomes more complicated when developers try to combine two or more linguistic

components together to get a complex service.

This study includes a well-focused background study covering several linguistic

components including their pros and cons, configuring overheads, etc. Background

study also includes REST API design approaches that are studied to use in this

system and component architecture of the WSO2 Enterprise Service Bus. Further,

it includes the study of React and Redux which is used in front end development

of the system.

System design is facilitated with three architectures that serve three main com-

ponents of the system. Service Oriented Architecture serves the communication

components while Component architecture and Client-Server architecture serves

structure component and deployment component respectively.

System implementation is done in two main streams as back end development

and front end development. Back end development holds implementation of REST

APIs to provide services of the framework. Further, the back end development

includes integration and combination of linguistic components to the framework.

Front end development includes implementation of the FLAD Console which pro-

vides the users to create projects with the services they need from this system and

the Admin Panel that provides admins to manage the system.

Both back end and front end of the system are evaluated using quantitative

and qualitative measures. This system is evaluated as software-wise, architectural-

wise and service-wise. Front end is evaluated by considering user-friendliness of

the FLAD Console as the parameter and getting the feedback from a sample set of

users.

86

7.1 Limitations

Limitations of the project fall under the limitation of linguistic components and

limitation of server environments.

Limitations of server environments

• In windows server environments UTF-8 encoding scheme is not supported for

the incoming requests handled by Jetty server.

• In windows server environment all the server has to be manually run without

a script. Linux environment supports script loading of server starts.

Limitations of linguistic components

The framework is not responsible for the limitation of the services provided by

third party linguistic components. These limitations are applied only when the

specified linguistic components are selected as the endpoint service.

Google STT limitations,

• No direct audio file is upload possible need to convert to Base64 encoding

scheme.

• Only mono audio files are supported under the synchronous scheme.

• Synchronous speech recognition returns text for only short audio (less than

1 min)

• Asynchronous requests limits the audio requests to less than 180 minutes

• Streaming requests have a limit of audio clips less than 1 minute.

• Phrases per requests are limited to 500.

• Requests per 100 seconds are limited to only 500. (refer Appendix J.1)

Mary TTS limitations,

• Mary TTS supports only limited number of voices and dialects. For an ex-

ample, Sinhala voices are not supported. As a result, if the user inputs a

Sinhala text to MaryTTS the result will not be output.

• Text inputs higher than 500 characters takes more than 3 minutes to render

as audio. The limitation lies with MaryTTS processing and not with the

framework.

87

Google OCR limitations,

• Google has a limit of the image size of 4MB for OCR service.

• 8MB limit size for a request.

• Requests per minute is limited to 600.

• Images per month is limited to 20,000,000.

Google Translation limitation,

• Characters per day is limited to 2,000,000 characters.(see Appendix K.1)

• Some language translation does not provide correct translations.

7.2 Future Work

7.2.1 Support for stream API

Currently, the framework does not handle streaming of audio files in the API.

Audio streaming can be provided as a future update in TTS and STT requests.

Limitations in Jersey framework lead to the postponement of streaming feature in

the framework.

7.2.2 Bulk OCR processing

The framework only allows single image upload per a request in OCR endpoint.

Bulk OCR processing functionality can be implemented in future updates so that

the OCR for large PDF documents can be done through the framework.

7.2.3 Load balancing

Manual load balancing is a complex task in the framework as framework support

distribution of several components. The framework can be moved to a Nginx server

and can achieve load balancing in the future,

7.2.4 Use of external environment files

The configuration of the framework is handled in the internal code segments and the

external env files make it easy to manipulate the servers easily. All the metadata

related to server configuration can be embedded in an external file and can be used

for easy code modifications.

88

7.2.5 Enhancing plug and play

The idea of representing the state of a component using XML can be used to make

plugging new components easily into the framework. FLAD console admin panel

can be used to dynamically add and remove components to the framework.

7.2.6 Server replication

Currently, the development process was carried out using single server environment.

But the architecture of the system is design in a way to support the distribution

of servers through replication which is considered as a future development.

7.2.7 Introducing a revenue model

The framework is developed using some proprietary linguistic services like Google

translation, Google Speech API, and Google Vision API. The application develop-

ers need to purchase these service from FLAD in order to use these services. The

revenue generation model is not currently introduced in the system and planned

to include in the FLAD console in project creation phase.

The project’s goal and objectives were achieved with the great commitment

of the four team members from the start of the project and the individual con-

tributions are specified in Appendix L, Appendix M, Appendix N and Appendix

O.

89

References

[1] D. Riehle, “Framework design: A role modeling approach.” Ph.D. Thesis,

2000.

[2] Marytts, “marytts/marytts.” [Online]. Available: https://github.com/

marytts/marytts/wiki/MaryInterface

[3] “What is kaldi?” [Online]. Available: http://kaldi-asr.org/doc/about.html

[4] “Htk speech recognition toolkit.” [Online]. Available: http://htk.eng.cam.ac.

uk/

[5] N. Shmyrev, “Cmusphinx open source speech recognition.” [Online].

Available: https://cmusphinx.github.io/

[6] “Speech api - speech recognition — google cloud platform.” [Online].

Available: https://cloud.google.com/speech/

[7] tesseract ocr, “tesseract-ocr/tesseract,” Dec 2017. [Online]. Available:

https://github.com/tesseract-ocr/tesseract.git

[8] “Vision api - image content analysis — google cloud platform.” [Online].

Available: https://cloud.google.com/vision/

[9] “google cloud translation api documentation — translation api — google cloud

platform.” [Online]. Available: https://cloud.google.com/translate/docs/

[10] “Wso2 documentation.” [Online]. Available: https://docs.wso2.com/display/

ESB490/Architecture

[11] R. T. Fielding, “Architectural styles and the design of network-based software

architectures,” Doctoral dissertation, University of California, Irvine, 2000.

[12] “What is rest (representational state transfer)? - definition from whatis.com.”

[Online]. Available: http://searchmicroservices.techtarget.com/definition/

REST-representational-state-transfer

90

[13] T. F. P. eCollege, “What is rest?” [Online]. Available: http:

//www.restapitutorial.com/lessons/whatisrest.html

[14] Codementor, “Rest api tutorial: How to design a sustainable

web api.” [Online]. Available: https://www.codementor.io/rest/tutorial/

rest-api-design-best-practices-strategy

[15] T. F. P. eCollege, “Using http methods for restful services.” [Online].

Available: http://www.restapitutorial.com/lessons/httpmethods.html

[16] T. Preston-Werner, “Semantic versioning 2.0.0.” [Online]. Available:

https://semver.org/

[17] “Json,” Dec 2017. [Online]. Available: https://en.wikipedia.org/wiki/JSON

[18] “Introducing json.” [Online]. Available: https://www.json.org/

[19] “React (javascript library),” Dec 2017. [Online]. Available: https:

//en.wikipedia.org/wiki/React (JavaScript library)

[20] “React tutorial — build with react js.” [Online]. Available: http:

//buildwithreact.com/tutorial/jsx

[21] “Read me.” [Online]. Available: https://redux.js.org/

[22] “Service-oriented architecture standards.” [Online]. Available: http://www.

opengroup.org/standards/soa

[23] “Design principles.” [Online]. Available: https://reactjs.org/docs/

design-principles.html

[24] R. Dodson, “Javascript design patterns: Decorator,” Dec 2014. [Online].

Available: http://robdodson.me/javascript-design-patterns-decorator/

[25] Yannickcr, “yannickcr/eslint-plugin-react,” Dec 2017. [Online]. Available:

https://github.com/yannickcr/eslint-plugin-react

[26] “Apache log4j 2.” [Online]. Available: https://logging.apache.org/log4j/2.x/

[27] S. Shimanovsky, “Multi page web applications vs. single page web

applications.” [Online]. Available: http://www.eikospartners.com/blog/

multi-page-web-applications-vs.-single-page-web-applications

[28] [Online]. Available: https://webpack.github.io/docs/what-is-webpack.html

[29] “Babel · the compiler for writing next generation javascript.” [Online].

Available: https://babeljs.io/

91

[30] “nodemon reload, automatically.” [Online]. Available: https://nodemon.io/

[31] “Material-ui.” [Online]. Available: http://www.material-ui.com/

[32] “Higher-order components.” [Online]. Available: https://reactjs.org/docs/

higher-order-components.html

[33] [Online]. Available: https://developers.google.com/identity/

92

Appendices

93

Appendix A

Table A.1: Comparison of Speech To Text libraries

Kaldi CMU

Sphinx

HTK

toolkit

Google

STT cloud

service

Accuracy high medium low high

Speed medium medium low high

Computati-

ional cost

Very high medium medium -

Configurat-

ion cost

Very high low low low

Ease of use low high low high

Freely avail-

able

yes yes yes no

94

Appendix B

Table B.1: Google speech API pricing

Monthly usage Price per 15 seconds*

0 - 60 minutes free

61 - 1,000,000 minutes** $0.006

Table B.2: Google OCR pricing

Feature First 1000 unit-

s/month

Units 1001 -

5,000,000 /

month

Units 5,000,001

- 20,000,000 /

month

Label Detection Free $1.50 $1.00

Text Detection Free $1.50 $0.60

Safe Search (ex-

plicit content) De-

tection

Free Free with Label

Detection, or

$1.50

Free with Label

Detection, or

$0.60

Facial Detection Free $1.50 $0.60

Landmark Detec-

tion

Free $1.50 $0.60

Logo Detection Free $1.50 $0.60

Image Properties Free $1.50 $0.60

Crop Hints Free Free with Image

Properties, or

$1.50

Free with Image

Properties, or

$0.60

Web Detection Free $3.50 Contact Google

for more informa-

tion

Document Text

Detection

Free $3.50 Contact Google

for more informa-

tion

95

Appendix C

Listing C.1: Request and Response to obtain TTS service

Request URL : GET /api/v1/tts

Request body:

{

"inputText ":"We have a clear sky",

"inputType ": "TEXT",

"outputType ": "AUDIO",

"outputFormat ": "WAVE_FILE",

"locale ":" en_US",

"voice ": "cmu -slt -hsmm en_US female hmm",

"features ": {}

}

Response body:

{

"other ": [

{

"executionTime ": "3711" ,

"locale ": "en_US"

}

],

"response ":" https :// www.googleapis.com/download/

storage/v1/b/fladbuc ket/o/maryTTSAudio.wav?

generation =1514361245171530& alt=media",

"processedAT ": "2017 -12 -27_13 -24 -05"

}

96

Listing C.2: Request and Response to obtain STT service

Request URL : POST /api/v1/stt

Request body:

{

"audioFileName ":" german.wav"

}

Response body:

{

"other ": [

{

"executionTime ": "5099" ,

"confidence ": "0.986863"

}

],

"response ": "hello how are you",

"processedAT ": "2017 -12 -27_13 -29 -04"

}

Listing C.3: Request and Response to obtain Translation service

Request URL : POST /api/v1/trans

Request body:

{

"inputText ": "Hello how are you"

"target ": "sp"

}

Response body:

{

"other ": [

{

"executionTime ": "185" ,

"locale ": "en"

}

],

"response ": "Hola como estas",

"processedAT ": "2017 -12 -27_13 -27 -00"

}

97

Listing C.4: Request and Response to obtain OCR service

Request URL : POST /api/v1/ocr

Request body:

{

"imageFileName ":" german.png"

}

Response body:

{

"other ": [

{

"executionTime ": "3481" ,

"locale ": "de"

}

],

"response ": "Hast du das Brechern meines Herzens

gehort? ",

"processedAT ": "2017 -12 -27_13 -18 -48"

}

98

Appendix D

Listing D.1: MongoDB User document

{

"_id" : ObjectId ("59 b90237b717d531c0d15cc3 "),

"googleId" : "112 XXXXX1857XXXXX",

"imageUrl" : "https :// lh5.googleusercontent.com/-

UuOGBRIMdM/c2W_SBvPE2Y/s96 -c/photo.jpg",

"email" : "dhanushka787@gmail.com",

"name" : "Dhanushka Chandana",

"givenName" : "Dhanushka",

"familyName" : "Chandana",

"status" : "1",

"creationDate" : NumberLong (1510425000000) ,

"updatedDate" : NumberLong (1513017000000)

}

99

Listing D.2: MongoDB Project document

{

"_id" : ObjectId ("5998558341 bad2f809098799 "),

"projectName" : "test -web1",

"projectId" : "PROJ1",

"googleId" : "112 XXXXX1857XXXXX",

"clientSecret" : "443 ffdvbXXXXXXX",

"creationDate" : NumberLong (1510252200000) ,

"updatedDate" : NumberLong (1512844200000) ,

"services" : {

"tts" : "mary -tts",

"stt" : "cmu"

},

"sequences" : {

"seq1" : [

"OCR",

"TTS"

],

"seq2" : [

"STT",

"Trans",

"TTS"

]

},

"status" : "0"

}

Listing D.3: MongoDB Project document

{

"_id" : ObjectId ("5 a2971add877e324b0793f15 "),

"requestId" : "123 tt456",

"type" : "stt",

"startTimestamp" : NumberLong (1507349700000) ,

"endTimestamp" : NumberLong (1507349715000) ,

"projectId" : "sample -tts -app -bouwoxcsp3r",

"status" : "success"

}

100

Appendix E

Table E.1: FLAD error codes
Error code Status Reason

200 OK For successful transactions

230 Non-Authoritative Infor-

mation

Try to access sensitive information

307 Temporary Redirect Incase if the request is redirected

401 Unauthorized Accessing non authorized route points

400 Bad Request Request body is not in specified for-

mat

403 Forbidden Accessing non purchased services or

admin services

404 Not Found Requested service is unavailable

408 Request Timeout 3rd party services hangs

413 Request Entity Too

Large

Image size or Audio size exceeds lim-

its

429 Too Many Requests Processing request limit reached

500 Internal Server Error 3rd party service crash or server crash

503 Service Unavailable 3rd party service is unavailable or try

to access a deprecated service

101

Appendix F

Table F.1: Comparison of JavaScript front end development frameworks.

Angular JS Vue JS React JS

Github stars 33,300 77,000 84,000

Developer Satis-

faction

65% 89% 92%

Learning cost Medium Low High

Flexibility Low High High

Library size 143K 23K 43K

Speed Low High Medium

Memory alloca-

tion

High Low Medium

Member experi-

ence

Some No Good

102

Appendix G

Figure G.1: User Dashboard

Figure G.2: Create Project Form

103

Figure G.3: View Project Details

Figure G.4: Summary Box

Figure G.5: Enhanced Table

104

Figure G.6: Enhanced Table (Item selected state)

Figure G.7: Usage Chart

Figure G.8: Breadcrumbs

105

Appendix H

Table H.1: Front end evaluation form
Excellent Good Fair Poor

M1 - Colors

M2 - Font

M3 - Font size

M4 - Font

color

M5 - Place-

ment of com-

ponents

M6 - Interac-

tivity

M7 - Mean-

ingfulness of

terms used

M8 - Self-

descriptiveness

of icons

M9 - Overall

design

M10 - Ease of

use

M11 - Docu-

mentation

106

Appendix I

Figure I.1: Home Screen (Main Dashboard)

107

Figure I.2: Single Services Dashboard

108

Figure I.3: Complex Services Dashboard

109

Figure I.4: OCR Screen after performing a OCR operation

110

Figure I.5: Translate Screen after performing a English to French Translation

111

Figure I.6: OCR to Translate page after performing a OCR + Translate combined

operation

112

Appendix J

Table J.1: Requests limits of Google STT

Type of Limit Usage Limit

Requests per 100 seconds* 500

Processing per 100 seconds 10,800 seconds of audio

Processing per day 480 hours of audio

Phrases per request 500

Total characters per request 10,000

Characters per phrase 100

113

Appendix K

Table K.1: Requests limits of Google Translate

Content

Quota

Default Maximum Duration Applies To

Characters

per day

2,000,000

characters

unlimited day project

Characters

per 100

seconds per

project

500,000 char-

acters

500,000 char-

acters

100 seconds project

Characters

per 100

seconds per

project per

user

100,000 char-

acters

100,000 char-

acters

100 seconds user and

project

Supported

Languages

Requests

per 100

seconds

1000 requests 1000 requests 100 seconds project

114

Appendix L

Contribution of C.M Liyanage

The main research area of the project was to find the best architecture for the

framework which facilitates easy plug and play model. All the members did the

background study on architecture and my part was to find the architecture for the

core of the framework. After doing some background study I found that in order

to provide an easy plug and play the functionalities of the framework should be

considered as different components and designed the component architecture of

the system. The component architecture is designed to meet the core function-

alities of the framework with a solid foundation to the framework. I defined the

components of the core of the system as explained in Chapter 4 under compo-

nent architecture. The key functionalities of the framework were understood by

analyzing the functional and non-functional requirements of the project. The fun-

damental components I defined were given a specific task in the framework. The

component architecture emphasizes the separation of concerns with respect to the

wide-ranging functionality in the framework. It can be considered as a reuse-based

approach and helps in composing loosely coupled independent components into

the system. The idea of expanding the framework was concerned when giving this

approach. Components play a crucial role in the framework REST API compo-

nent. The REST API can easily link all the necessary functionalities due to this

approach.

I further improved the design of the framework by designing the multi-layered

architecture to support scalability of the project considering the future require-

ments. The multilayered architecture is explained in Chapter 4. Each layer in

the multi-layered architecture can be horizontally scaled with the introduction of

well-defined interfaces.

After doing the part of the architectural design I was involved with the imple-

mentation of the back end core framework. When doing the implementations I

integrated the Service Locator Design pattern to the framework with some addi-

tional custom features to make the system faster by caching object references. The

115

design pattern was implemented in the QoS layer of the framework. The frame-

work is service oriented and the object initialization logic was handled through the

Service Locator Design pattern which improved the performance of the back end

services of the framework significantly. The design pattern application is explained

under Chapter 4.

I implemented the Message builder and formatter component of the system.

The implementation details are in Chapter 5. This component needed some JSON

parsing libraries and the message conversion of the back end endpoint services. I

defined some common data formats across the framework to give the solution to

message heterogeneity of linguistic components through this components. The mes-

sage builder is a key component in the component architecture which was custom

built to meet the specific message passing pipeline efficient.

MaryTTS implementation was done by me in the back end framework. MaryTTS

was selected as the test TTS service in the framework. This task needed the back-

ground knowledge gathered in MaryTTS library when doing some configurational

changes. The Mary server was hosted in a separate port and plugged into the

framework via the internal plugging mechanism. Two server versions of MaryTTS

was requested from the MaryTTS Developers for Windows environment and Linux

environment. MaryTTS had no service API exposed for public use. So, it was

difficult to integrate to the framework. Finally, managed to invoke the necessary

interfaces by studying the MaryTTS project at code level. The MaryTTS client

code was analysed to find the exact query string of MaryTTS service. The Mes-

sage builder and formatter component was used to parse Mary data as well. All

the details are discussed in section 5.3.1.

The initial database integration was done by me and I integrated MongoDB

database with the latest MongoDB driver and made the MongoDB connection

singleton by considering the resource consumption. The MongoDB integration

needed some background study on the configuration of MongoDB. I defined the

initial UserOperations and Project Operations of the project. UserOperations and

ProjectOperations are database handerls which handle user and project data re-

spectively. Document structure for database Collection was defined initially to

meet the requirements of the project.

Google translation was integrated into the framework as the testing translation

component. I created the Google cloud console account under the FLAD project

account name and purchased the API keys needed for the integration. By reading

the documentation of Google Translation integration techniques I chose the REST

API integration over SDK implementation. The exact implementation details are

explained in section 5.3.6. The JSON structure expected by Google translation

API was changed according to the JSON structure defined in the framework and

116

parsing was done using the Message builder and formatter methods.

When doing the development in the framework the front end FLAD console

needs access to the back end framework. The Dev Router controller methods were

introduced to provide the needed services to the front end console. getEndpi-

oints, getSequences endpoints were implemented and exposed under Dev Router

controller. The above mentioned endpoints are frequently accessed by the front

end FLAD console so, I used in memory data structures like HashMaps to cache

endpoint names and sequence metadata and prevented costly database lookups in

subsequent requests. These kind of minor optimizations were done in code level

implementations to provide an efficient service to the front end.

Sequence implementation (complex service) implementation was done in the

back end. The implementation details are discussed in section 5.3.10. JSON mes-

sage parsing was implemented as the main standard of message passing inside the

framework. This enabled the easy communication needed among different linguis-

tic components. The message conversion overhead was cutdown in the Sequence

implementation.

The validator sub-component under QoS component was implemented for com-

plex and simple service validations. The validation process is discussed in 5.3.2.

The QoS methods such as Base64 encoding needed for audios and images were

provided using this component.

Integration of Google Cloud Storage to the FLAD system was done in order

to upload audio files generated with TTS components. For this integration, i had

to use the SDK approach provided by Google over the REST API approach. The

SDK approach needs extra configuration in server machine and I have installed the

Cloud SDK and used the Google SDK Shell to configure the cloud storage bucket

which acts as the repository for the FLAD project. An internal timer was defined

to measure the exact execution time elapsed for endpoint services. Every JSON

response output by the framework contains a field called execution time which is

calculated by this timer.

There were many challenges I faced especially during the design and imple-

mentation phases of this project. As there were no prior similar systems like our

framework all of the team members had to design the architectures from ground

level. The component architecture and multi-layered architecture was designed

with the help of team members and the knowledge gathered in background study.

The architecture design phase needed great effort due to the lack of pre-existed

solutions. When integrating MaryTTS server in our framework I faced a lot of

technical difficulties. There was no documentation guideline provided for the in-

tegration and I had to contact the Mary Github community to get some technical

knowledge. When implementing the Message builder component the parsing tech-

117

niques sometimes showed poor performance due to use of some libraries and meth-

ods. Changing some libraries and implementation logic with the help of other team

members slow parsing issues which eventually made the component efficient. In

Sequence implementation, there was spaghetti code structure due to its complexity

which was resolved with the help of team members. Finally, Sequence component

was refactored to provide a clean code implementation. All of us followed some

specific design rules in code base level when designing the framework, especially

when designing the API. Most of the challenges were overcome with the help of

the team members’ knowledge and expertise in different aspects. The scope of

the project was achieved fully by providing all the functional and non-functional

requirements of the project. The great commitment of the team members from the

beginning of the project lead to the success of the project.

118

Appendix M

Contribution of G.D.D Kanchana

Initially, we identified the requirement of a framework for linguistic applications

development. Then we studied the background of linguistic components, frame-

works, architectural patterns, design patterns and etc. I did a background study

on speech to text libraries mainly Kaldi, CMU Sphinx, and HTK. I configured

all three libraries on my computer and tested them by considering about perfor-

mance, accuracy, integration cost and resource utilization. Then I decided to use

CMU Sphinx as the Speech To Text endpoint of FLAD. Finding the text corpus

for Kaldi was a challenge so I used a freely available text corpus to train it. I used

VLC Player to convert audio files to required format and frequency to use as inputs

for STT libraries.

Then I studied the plugging architecture. How it is used in different systems

and how to implement it. The selection of most suitable Java web server for a

RESTful web service was a difficult task. I read server documentations, numerous

blog posts, Quora questions and Stack Overflow questions to find the relevant

server for our task. I configured Tomcat1 and Jetty2 to get an experience about

each server. By considering configuration cost, ease of use, community support,

resource consumption, suitability for project development phrase and portability I

decided to use Jetty server for our system.

To develop a REST API we have to use Java JAX-RS3. Using JAX-RS without

any supporting wrapper library was difficult and time-consuming. So I researched

different libraries and frameworks which are the implementations of JAX-RS. I

tested DropWizard 4, Play framework 5, and Jersey6 to select the most suitable

framework for our system. I decided to use Jersey as it is more flexible than the

1tomcat.apache.org
2https://www.eclipse.org/jetty/
3https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
4www.dropwizard.io/
5https://www.playframework.com/
6https://jersey.github.io/

119

other two frameworks.

Handling dependencies in a Java-based group project is challenging as group

members add different libraries and plugins to the project. As a solution, I added

Maven which is a dependency management tool to manage dependencies of the

project. Conflicts between Java versions in different member’s computers were

resolved using Maven. In the development environment, the server should be

restarted when the source code changed. So I added automatic restart functionality

to the server using Maven.

I implemented a generic file uploading functionality using Java multipart forms.

The files are categorized by examining the file format. JPG and PNG files are saved

in OCR directory and Wave files are stored in STT directory on the server. Other

file types are rejected by the server for security purposes. All the files uploaded to

the server renamed with a unique ID.

I configured CMU Sphinx as the STT endpoint. This component was the first

component plugged into the system. I faced the challenges of configuring a stan-

dalone library to a RESTful web service. I used Jackson library to generate JSON

messages from as STT responses.

I implemented the main route controller in the back end to expose the REST

API from one place. All the requests come into route controller and the annotations

like @GET, @POST, @PUT are used to implement the route.

Handling exceptions and providing meaningful error messages is a quality at-

tribute of a REST API. To handle exceptions I implemented the exception mapper

component using Jersey Exception Mapper.

Loggin all the activities of the back end is required for recovery purposes. I

researched about various Loggin libraries and decided to use Log4J7 in the system.

All the request to the back end is logged in a log file with the IP address, request

endpoint, request time and request type.

App secret key (token) generation function was implemented using JWT as

discussed in Chapter 5 under JSON web token generation process in FLAD. By

this time all the STT, TTS, OCR and translation endpoints were configured to

FLAD back end. So we started developing front end FLAD console.

I was assigned to develop all the functionalities of the clients. The initial chal-

lenge was connecting front end with back end because the back end system does

not allow cross-origin access. I added a script to back end server to allow the

cross-origin requests. As the front end is fully separated from the back end, the

front end development was a considerable task. In the front end FLAD console,

I implemented google login facility. Integrating Google login with our system was

7https://logging.apache.org/log4j/

120

achieved using an NPM package React Google login 8.

I found difficulties when using Redux JS initially because it has its own data

flow. I read the documentation several times to understand Redux JS. I also imple-

mented client registration functionality as discussed in Chapter 5. The implemen-

tation of authentication component was complex. I used higher order components

of React JS to implement it as discussed in Chapter 5 under Authentication com-

ponent.

The request and responses are handled using JavaScript promises. Persisting

Redux State in browser’s local storage and deleting it when the user logs out was a

challenging task. I implemented notification components using Material UI Snack

Bars. I used Redux State to show different notification popup messages using the

same notification component.

I implemented project creation, view, edit and delete functionalities in the front

end. All the components are developed separately to improve usability. All the

projects of the user is loaded to User Dashboard when user login to the system. He

can View all the details of that project by clicking on it. I have used Material UI

Card component to render projects of the user. Validation of input fields of create

and edit project forms was done using regular expressions. In the create project

form the project ID is auto generated in the front end when user types the project

name.

The project scope was fully covered with all the functional and non-functional

requirements and additionally, we could provide a Mobile Application as a proof

of concept. The great commitment of all the group members lead the project to a

success.

8https://www.npmjs.com/package/react-google-login

121

Appendix N

Contribution of P.A.D. Chandana

FLAD can be described simply as a framework. As explained on the Chapter 01

Background section, The key idea of this project integrates all the linguistic com-

ponents Text To Speech (TTS), Optical Character Recognition (OCR), Speech To

Text (STT) and language translation in a framework and expose their functionali-

ties as a RESTful web service. The process of integrating this component also has

a major functionality which is support for the plug and play architecture. A part

of this architectural functionality should be handled in a code-level.

The designing of this type of architecture was a new thing which combines

some design patterns together to achieve the pluggable structure and modularity

of the system. In designing of this architecture I have studies all 3 types of design

patterns creational, behavioural and structural to understand the functioning of

each design pattern in a deep level which can map the system flow and behaviours

in the most suitable manner.

The Structure phase of FLAD System Design designed based on Component

Architecture. In Figure 4.5 shows the class diagram architecture of core system.

This diagram consists of Abstract Factory Pattern, Builder Pattern, Command

Pattern. These patterns selected based on its behaviour as explained previously.

Each of these patterns acts a role of the chaining process of plugging components

and expose these components features to the upper layer.

After that this architecture translated into code level by adding several com-

ponents to test the intended behaviour of this model. The further details of this

architecture are described in chapter 04 design consideration under Core Compo-

nent architecture of the System section.

FLAD consists of front end console back end core system as explained in chapter

04. I have done a background study of front end implementation frameworks. At

the end of the study, ReactJS and Redux selected as the most suitable front end

framework for the FLAD. The behaviours of these technologies and features they

are providing described further in Chapter 02 background study under the sections

122

of ReactJS and Redux. These notable features mapped with our requirement and

learning curve.

The configuration of the React and Redux was the first challenge in the front end

implementation phase. Redux has provided a detailed tutorial of understanding

the behaviour of the code flow within React redux application.

The Front end implementation has a part of consuming REST API and take

the data to the front end UI components. Managing the data flow within the

application was a tough activity because these consumed data are required to

dispatch to the service request function of redux based on the action type. The

understanding of this flow made easier to develop the rest of the application.

In the front end designing phase, next challenge was the selection of UI frame-

work. I have studied several frameworks such as Bootstrap 1, Semantic UI2, Ant

Design3, Grommet4 and Matetial UI5. The study of the Google Cloud console;

which is described in Chapter 2 under Google Cloud Console showed the use of

material UI as the most suitable UI framework to go with a React Project.

The front end of the FLAD console is designed based on Google’s design docu-

ments. The usability of the application is based on the human computer interaction

principles. This detailed document provided the arrangement of UI component of

a system in the best way to achieve a higher user experience within the system. I

have designed the System UI theme of the FLAD based on the material UI theme

and I also have designed the several parts of the UI of the FLAD which is explained

later in this section.

A React application should have a component structure within the root con-

tainer. I have designed this component architecture for the front end application

by considering the usability and effectiveness of the system. FLAD consists of

several containers which contains react components in different formats. After the

studying of the components and containers of FLAD I was able to provide a simple

and manageable component structure for the FLAD console.

In FLAD we have used several built-in components such as Google Sign-In.

These components supposed to redesign the rendering view in order to align with

the composed theme of the FLAD front end console. This redesigning was a bit

harder activity since styles should be injected into the component separately. Ma-

terial UI uses a method named CSS in JS to create the style object to be injected.

This method provides object-oriented way of writing style objects. A sample code

of style object is below.

1https://github.com/react-bootstrap/react-bootstrap
2https://github.com/Semantic-Org/Semantic-UI-React
3https://github.com/ant-design/ant-design
4https://github.com/grommet/grommet
5https://github.com/mui-org/material-ui

123

const styles = {

authLogo: {

paddingRight: ’10px’,

fontSize: ’1.2em’,

},

authBtn: {

’&:hover’: {

backgroundColor: ’#0D47A1 !important’,

}

},

links: {

textDecoration: ’none’,

paddingLeft: ’15px’

}

};

The usage of CSS in JS has a small learning curve to understand the map-

ping of normal CSS into object way. After the learning, this method provided a

considerable speed to the front end implementation process.

As explained in Chapter 04 Design consideration under the section of Front

end design consideration, FLAD uses ESLint coding style to improve the code

base. This method helped to keep the code base clean and easy to understand

manner. It took some time to get in touch with this approach during the front end

development phase.

FLAD provides REST API to the end users in order to consume the services

they are expected use as explained in Chapter 01 under Introduction section. I have

studied the process of designing API and best practices. In Chapter X Overall pro-

cess describes the usage of REST API and Chapter X describes the API design

approach I have followed during the designing of the API. There were several ap-

proaches available on the internet. After that by considering these approaches,

features of these approaches used to design the API of FLAD. During the design-

ing stability, usability, versioning, robustness and developer-friendliness were the

main concerned areas in order to achieve the effective API design for the FLAD.

Next activity related to the API designing was designing of JSON objects which

consumes and provides by FLAD. This also provided the considerable amount of

easiness of understanding the API.

FLAD consists of Admin panel for the FLAD administrators to manage the sys-

tem as explained in Chapter 5. I have designed this admin panel and implemented

both front end and back end services. Admin panel home includes summaryBox

124

components and usageTable component. These components behaviour is described

in the later of Chapter 05 under front end implementation. The implementation

of summaryBox component was a bit harder activity. It should behave as a fully

dynamic component because this component repeats four times within the same

page in order to reduce the complexity of the page rendering. SummaryBox uses

the higher-order component created by withStyles to inject an array of styles into

the DOM as CSS.

FLAD Admin panel home page contains the usageChart component which de-

scribes the requests handled by the server within a selected time frame in each

category named TTS, STT, OCR and Translation. In designing this component I

have used recharts which is free and open source react chart design tool. I have

studied the documentation provided by recharts developers to enhance the chart

functionalities and view of the chart to map with the FLAD functionalities.

FLAD Admin panel contains container for users, projects, earnings and re-

quests. Each of these containers contains breadcrumbs component and EnhancedTable

component. Both of these components are designed from the scratch. The be-

haviour and implementation of these components explained in Chapter 05 under

front end implementation.

When Implementing breadcrumbs component, It is required to write custom

CSS for the component to get the look and feel of the final design as shown in

Chapter 05 under front end implementation. Breadcrumb component designed

using Chip component from Material UI and right arrow component from Material

icons.

The enhancedtable component was the most time consumed UI component I

have implemented in FLAD. This table consists of a set of features. As described

in Chapter 05 under front end implementation, parent component state changes

depending on the user action on the child component. This issue overcome with

the passing function as a component prop. This table actions depend on the data

set it is representing. Due to this reason actions has to be passed with descriptive

JSON array to the component for the dynamic rendering purpose.

The next part I have worked in this project is Admin panel back end services

implementation. Admin panel requires endpoints for users, projects and requests

components. These APIs contains different features for each component such as

get user details, get all users, get projects authored by given user. The response

JSON for each endpoint is constructed using org.json.JSONObject package. This

package provides a large set of features to construct JSON object using Java objects.

In addition to that, Additional endpoint added for the data displayed in FLAD

admin panel such as daily counts of registered users, created projects and handled

requests. Chart data is also passed in this above response in the required format

125

in the usageChart component.

126

Appendix O

Contribution of D.A.B.P. Dodangoda

My part of the project includes two main sections of the project. I contributed

to the core framework of the project. I also built a mobile application as a proof

of concept to the framework we built. Our framework is focused on linguistic

application developers. Most of the linguistic application developers are mobile

application developers. Therefore building a mobile application as the proof of

concept is more suitable than building a web application. In the following context,

first I have mentioned how I contributed to the core framework. Then I have

discussed about mobile application which is the proof of concept.

From the work I have done in core framework I can mention three main con-

tributions. They are, integrating Tesseract-OCR with the framework, integrat-

ing Google Cloud Vision API (Google OCR) with the framework and integrating

Google Cloud Speech API (Google STT) with the framework. Our framework is

composed of services of four linguistic components - Text to Speech (TTS), Speech

to Text (STT), Optical Character Recognition (OCR) and Language Translation.

From these four components I contributed to 2 components - OCR component and

STT component.

Integrating Tesseract-OCR to the framework was my first task. Tesseract li-

brary which is know as ‘libtesseract’ is originally written in C/C++. 1. As our

framework is built using Java this ‘libtesseract’ library cannot be used. But there

are bindings to ‘libtesseract’ for other languages like Java, .NET. Therefore I used

the Java binding, which is a JNA wrapper known as Tess4J. 2. Tess4J is released

and distributed under the Apache License, v2.0. Tess4J is available from Maven

Central Repository. 3. As we have used Maven as the build tool in our project, I

could integrate Tess4J with the help of Maven. Then I used the services of Tess4J

library in the application by calling its methods.

1https://github.com/tesseract-ocr/tesseract
2http://tess4j.sourceforge.net/
3http://mvnrepository.com/artifact/net.sourceforge.tess4j/tess4j

127

Integrating Google Cloud Vision API was my next task. Providing services

of different vendors of same linguistic component is a main functionality of our

system. So we decided to use Tesseract-OCR and Google Cloud Vision API as

two vendors for the OCR linguistic component. To use the service Google Cloud

Vision API, I had to create a project in Google Cloud Platform which is accessed

using the FLAD’s Google account. Then I created an API key from the project in

order to authenticate requests. The service of Cloud Vision API is available as a

REST service that uses HTTP POST operation. The requests should be directed

to the REST API https://vision.googleapis.com/v1/images:annotate. The

request has to be authenticated by appending the API key to the end of the above

mentioned Google Cloud Vision API endpoint as https://vision.googleapis.

com/v1/images:annotate?key=API_KEY. I implemented a method to send request

to the Google Cloud Vision API with the JSON body containing image content in

base64-encoded format and handle the response sent by the Google Cloud Vision

API.

My next task was to integrate Google Cloud Speech API to the framework. We

can send an audio and receive a text transcription from the Google Cloud Speech

API service. Google Cloud Speech API provides two types speech recognition

techniques as synchronous and asynchronous. Synchronous technique returns the

recognized text for short audio (less than 1 minute) in the response as soon as it

processed. I used this synchronous speech recognition technique when integrating

Google Cloud Speech API to the framework. The service of Google Cloud Speech

API is available as a REST service from the https://speech.googleapis.com/

v1/speechendpoint. So I used this endpoint to get the speech recognition service

of Google Cloud platform. I had to authenticate the request by appending the API

key to the end of the above mentioned endpoint as https://speech.googleapis.

com/v1/speech:recognize?key=API_KEY. I implemented a method to send the

request to the Google Cloud Speech API with a JSON body containing the content

of the sound file as base64-encoded and handle the response sent by Google Cloud

Speech API.

When integrating the above mentioned components I had to face several chal-

lenges. Google Cloud Vision API requires image as a base64-encoded image string

in the request. Therefore I had to find a way to convert the image to a base64-

encoded image string using Java and implement it in the framework. The same

problem occurred when integrating Cloud Speech API to the framework. The au-

dio content supplied in the request body should be base64-encoded. Therefore I

had to find a mechanism to convert an audio content to a base64-encoded audio

content using Java and implement it in the framework.

After contributing to the framework core, I shifted to mobile application de-

128

velopment. This mobile application is built on top of the framework, using all

the services of the framework which are provided through the REST APIs. When

building the mobile application I had to play the role of a user of the framework.

The mobile application is built using Xamarin which is used to build mobile appli-

cations in C#. Mobile application has three main dashboards including the home

screen. In the home screen shown in I.1 users can select the type of service they

need. It can be either single services or complex services. Single services dashboard

shown in Figure I.2 offers the services of single linguistic components such as TTS,

STT. Complex services dashboard shown in Figure I.3 offers the services of com-

bined linguistic components. Before getting the OCR service and the STT service

I had to upload the file to the FLAD server using the /upload endpoint and get

the name of the file in the server. Then this name is used to get the OCR or STT

service. When getting the TTS service, I had to download the generated audio

file using the downloadable link provided by the server. After that file being saved

in the device I had to make it play automatically. When getting the Translation

service I didn’t have to do extra activities like in OCR, STT and TTS. I only had

to send the text and the language in to which the text should be translated and

handle the response received by the server. When requesting all services I had to

pass the API key with the header section of the POST request to get authenticated.

The API key is received when I created the project using the FLAD Console.

When building the mobile application I had to face lot of challenges. I used

Xamarin Forms to develop the application. Xamarin Forms is a cross-platform

natively backed UI toolkit abstraction that allows developers to easily create user

interfaces that can be shared across Android, iOS, Windows, and Windows Phone.

When building this application I only focused on Android. Xamarin Forms so-

lution comes with two or more projects. One project is a portable project to

write the shared code which is shared between the Android, iOS and Windows

platforms. Other projects are to write the native code for Android, iOS and Win-

dows platforms. So when building this mobile application, some functionalities

like downloading the audio file that is rendered in TTS service and playing that

file cannot be done from the portable project where the shared code is written.

Therefore I had to find solutions to perform those actions from the native android

project. In future if I’m going to expand this application to iOS and Windows

platforms I need to write native codes in iOS and Windows platforms to perform

those actions.

Finally the project Framework for Linguistic Applications Development ended

covering a very big scope with a back end (core framework) done in Java, front end

(FLAD Console and Admin Panel) done in React/Redux and Proof of Concept

(mobile application) done in Xamarin. As a team we were able to achieve such a

129

big milestone because of hard working nature and commitment of every member of

the team who worked at same capacity and sharing of knowledge with the team.

130

