

University of Colombo School of Computing

SCS4123 - Final Year Project in Software Engineering

Academic Year 2017 – 2018

Hitech Smart Factory
A generalized software solution for automated production line monitoring

Authors

V.D. Liyanage (Index No: 13000659)

H.M.P.M. Karunarathne (Index No: 13000561)

D.D. Mathangaweera (Index No: 13000764)

Supervisor

Dr. K.L. Jayarathne

Submitted in support of the degree of

Bachelor of Science (Hons) in Software Engineering

Submitted on 2nd of January 2018

i

Declaration

We certify that this dissertation does not incorporate, without acknowledgment, any

material previously submitted for a degree or diploma in any university and to the best

of our knowledge and belief, it does not contain any material previously published or

written by another person or ourselves except where due reference is made in the text.

We also hereby give consent for our dissertation, if accepted, be made available for

photocopying and for interlibrary loans, and for the title and abstract to be made

available to outside organizations.

Candidate Name Signature

V.D. Liyanage

H.M.P.M. Karunarathne

D.D. Mathangaweera

Date: 01/02/2018

This is to certify that this dissertation is based on the work of Mr. V.D. Liyanage, Ms.

H.M.P.M. Karunarathne and Ms. D.D. Mathangaweera under my supervision. The

thesis has been prepared according to the format stipulated and is of an acceptable

standard.

Supervisor Name: Dr. K.L. Jayarathne

…………………………………. ………………………...

Signature of Supervisor Date

ii

Abstract

Mass production of goods with automated production lines is a commonly used

approach today to fulfill the high demand. Automation reduces production time,

increases accuracy and eliminates human errors. However, controlling and obtaining

the highest throughput from these automated production lines require constant

monitoring. Lack of monitoring can result in business failures as well as huge profit

losses. Using a software solution for this monitoring process is way beneficial than

using human labor.

In this dissertation, a generalized software solution is proposed for monitoring

automated production lines, which can be integrated with existing production lines

without doing any hardware modifications. To achieve the generalization, a novel

approach to production line modeling is being introduced. As the initial step, the

proposed solution, Hitech Smart Factory provides a mechanism to model the existing

production lines, and that model is then used in further functionalities. Hitech Smart

Factory uses sensor data read through PLC units as inputs in order to facilitate the

integration of the system into an existing production line without doing hardware

modifications.

Users can view the status of the sensors in real time. A data processing platform is used

to process and store real-time data to match with various business requirements.

Reports can also be generated using these processed data.

Evaluations carried out for the proposed solutions shows that Hitech Smart Factory is

capable of meeting the identified requirements to an above satisfactory level. The

system is capable of presenting real-time data values in its graphical components

within a latency of two seconds. Non-functional requirements such as modularity,

Reusability and scalability are also achieved. Promising future study areas have also

identified which can be used for further tuning of the proposed solution.

iii

Acknowledgement

We would like to express our sincere gratitude to our project supervisor, Dr. K.L.

Jayarathne, senior lecturer of University of Colombo School of Computing for providing

us continuous guidance and supervision throughout the project.

We would also like to extend our sincere gratitude to Mr. Nuwan Pallewela, a senior

software engineer at Sysco Labs (Pvt) Ltd and Mr. Buddhika Marasinghe, Director /

Engineer of Hitech Solutions Pvt Ltd for the guidance and support provided throughout

the year. Furthermore, our sincere appreciation goes to DR. Mindika Premachandra,

lecturer of University of Colombo School of Computing and Mr. W.V. Welgama, senior

lecturer of University of Colombo School of Computing for providing valuable feedback

on our project to improve the outcome. We also take this opportunity to acknowledge

the assistance provided by Dr. Manjusri I.E. Wickramasinghe as the final year software

engineering project coordinator.

We appreciate the feedback and motivation provided by our friends to achieve our

project goals. This thesis is also dedicated to our loving families who has been an

immense support to us throughout this journey of life. It is a great pleasure for us to

acknowledge the assistance and contribution of all the people who helped us to

complete our project.

iv

Table of Contents

Declaration ... i

Abstract ... ii

Acknowledgement ... iii

Table of Contents ... iv

List of Figures ... viii

List of Acronyms .. x

Glossary .. xi

Chapter 1 ... 1

Introduction .. 1

1.1 Motivation... 1

1.2 Problem Definition .. 2

1.3 Project Goal and Objectives .. 3

1.4 Methodology ... 3

1.5 Scope ... 4

1.6 Outline of the Dissertation ... 5

1.7 Summary ... 5

Chapter 2 ... 6

Background Study ... 6

2.1 Introduction .. 6

2.2 Existing Solutions .. 6

2.2.1 WimFactory by UlalaLabs .. 6

2.2.2 WinTr by FulTek ... 7

2.2.3 Status Enterprise by B-SCADA .. 7

2.3 Related Research Areas .. 8

2.3.1 Big Data Handling ... 8

2.3.2 Big Data Processing Architectures ... 9

2.4 Summary ... 10

Chapter 3 ... 11

Analysis and Design... 11

3.1 introduction .. 11

3.2 Functional Requirements .. 11

3.2.1 Login/Logout .. 11

3.2.2 Production line modeling ... 11

v

3.2.3 View real-time status ... 12

3.2.4 User Management ... 12

3.2.5 Generate reports ... 12

3.3 Non- functional Requirements ... 13

3.3.1 Security .. 13

3.3.2 Modularity and Modifiability ... 13

3.3.3 Reusability .. 13

3.3.3 Scalability ... 14

3.3.5 Easy Integration ... 14

3.4 Technical Requirements ... 14

3.5 System Design ... 15

3.5.1 Data Publisher .. 16

3.5.2 Kafka Cluster .. 16

3.5.3 Long-Term Database .. 16

3.5.4 Report Generation Server .. 16

3.5.5 Report View User Interface ... 17

3.5.6 Time Series Database ... 17

3.5.7 Grafana User Interface Server ... 17

3.5.8 Client Database .. 17

3.5.9 System Administrator Backend.. 18

3.5.10 Admin Dashboard .. 20

3.5.11 User Manager User Interface .. 20

3.5.12 Production Line Editor ... 20

3.5.13 File Server .. 20

3.5.14 Production Line Server ... 21

3.5.15 User Authentication ... 21

3.5.16 User Dashboard ... 21

3.5.17 Production Line View ... 21

3.5.18 Real-Time Status View ... 22

3.6 summary ... 22

Chapter 4 ... 23

Implementation .. 23

4.1 Introduction .. 23

4.2 Implementation Details of Architectural Components 23

4.2.1 Data Publisher .. 23

vi

4.2.2 Kafka Cluster .. 24

4.2.3 Long-Term Database .. 25

4.2.4 Report Generation Server .. 25

4.2.5 Report View User Interface ... 26

4.2.6 Time Series Database ... 26

4.2.7 Grafana User Interface Server ... 27

4.2.8 Client Database .. 27

4.2.9 System Administrator Backend.. 28

4.2.10 Admin Dashboard .. 29

4.2.11 User Manager User Interface .. 31

4.2.12 Production Line Editor ... 32

4.2.13 File Server .. 35

4.2.14 Production Line Server ... 36

4.2.15 Mobile Application ... 36

4.2.16 User Authentication ... 38

4.2.17 User Dashboard ... 38

4.2.18 WSO2 DSS .. 41

4.2.19 Production Line View ... 42

4.2.20 Real-Time Status View ... 43

4.3 Application of the Proposed Solution ... 45

4.4 Summary ... 45

Chapter 5 ... 46

Evaluation ... 46

5.1 Introduction .. 46

5.2 Evaluation Model .. 46

5.3 Results ... 47

5.3.1 Responses given by Mr. Buddhika Marasinghe ... 48

5.3.2 Response given by Mr. Nuwan Pallewela .. 50

5.3.3 Response given by Mr. Samith Chathuranga Perera 52

5.4 Other Observations ... 54

5.5 Summary ... 55

Chapter 6 ... 56

Conclusion and Future Work .. 56

6.1 Introduction .. 56

6.2 Conclusions Gathered From User Evaluation ... 56

vii

6.3 Limitations... 60

6.4 Implications for Future Work .. 60

References .. 62

Appendix ... 65

A.1 Use Case Diagrams of the System .. 65

A.2 Code Snippet used to enforce user permissions .. 68

A.3 Individual Contribution ... 69

A.3.1 Contributions by V. D. Liyanage .. 69

A.3.2 Contributions by H. M. P. M. Karunarathne .. 70

A.3.3 Contributions by D D Mathangaweera .. 70

viii

List of Figures

Figure 1.1: A Commercial View of XC3-60RT-E PLC .. 5

Figure 3.1: System Architecture Diagram ... 16

Figure 3.2: Entity Relationship Diagram of Client Database ... 19

Figure 3.3: Class Diagram of System Administrator Backend 20

Figure 4.1: Report View User Interface .. 27

Figure 4.2: List of Factories in Admin Dashboard ... 30

Figure 4.3: Expanded view of Admin Dashboard .. 31

Figure 4.4: Edit and Delete Buttons of an item in Admin Dashboard 31

Figure 4.5: User Manager User Interface of System Admin ... 32

Figure 4.6: User Manager User Interface of Factory Admin ... 33

Figure 4.7: Example Access Permissions of a Section Level User 33

Figure 4.8: User interface of Production Line Editor .. 35

Figure 4.9: User Interface of Add New Toolbox Item ... 35

Figure 4.10: A Modeled Production Line in Production Line Editor 36

Figure 4.11: Properties of the Selected Sensor .. 37

Figure 4.12: The Initial Screen of the User Dashboard of Mobile Application 41

Figure 4.13: The initial screen of User Dashboard of Web Application 42

Figure 4.14: Navigation Menu of a Branch Level User of Web Application 42

Figure 4.15: Navigation Menu of a Production Line Level User of Web Application ... 43

Figure 4.16: Production Line View of Mobile Application .. 44

Figure 4.17: A rendered Production Line .. 45

Figure 4.18: A Real-Time Status View Graph of Mobile Application 46

Figure 4.19: A Real-Time Status View Graph of Web Application 46

Figure 6.1: Summary of User Feedbacks on Factory Management Functionality 58

Figure 6.2: Summary of User Feedbacks on User Management Functionality 59

Figure 6.3: Summary of User Feedbacks on Production Line Editor 60

Figure 6.4: Summary of User Feedbacks on Real Time Status View Functionality 60

Figure 6.5: Summary of User Feedbacks on Report Generation Tool 61

ix

Figure 6.6: Summary of User Feedbacks on the Overall Product 62

Figure A.1.1: Use case Diagram of Manager... 66

Figure A.1.2: Use case Diagram of Engineer and Machine Operator……………………......67

Figure A.1.3: Use case Diagram of System Admin and Factory Admin68

x

List of Acronyms

CRUD Create, Retrieve, Update, Delete

RDBMS Relational Database Management System

WSO2 DSS WSO2 Data Services Server

WSO2 IS WSO2 Identity Server

XML Extensible Markup Language

xi

Glossary

Lambda Architecture - Lambda architecture is a generic, scalable and fault-tolerant

data processing architecture designed for big data handling. It supports both batch and

stream (real-time) data processing and works as a cost-effective solution for handling

massive quantities of data. Lambda architecture is divided into three processing layers

as the batch layer, serving layer, and speed layer. The speed layer uses most recent

data for real-time (stream) processing and the batch layer maintains the master dataset

for non-real-time processing. Views get created separately on batch as well as real-

time data and the serving layer is responsible for merging the views created on batch

and real-time layers. [25]

Modbus protocol - Modbus or Modbus RTU is a serial communication protocol

published by Modicon (now Schneider Electric) in 1979. Initially, they developed this

protocol to use with their programmable logic controllers. In abstract, Modbus is a

communication protocol designed to transmit information over serial lines. Modbus

architecture contains two main components as Modbus Master, which is the device

requesting information and the Modbus Slave who supplies the information. In a

typical network, there is only one Modbus Master Node present and up to 247 Slaves

can be connected. [26]

PLC - A programmable logic controller is an industrial digital computer which has been

adapted for the control of manufacturing processes, in a rugged environment. These

are used to control the machinery in automated production lines. They are pre-

programmed to make decisions based on the inputs, mostly the sensors. [16]

POST - A request method supported by the HTTP protocol of the World Wide Web. By

design, the POST request method expects that a web server accepts the data enclosed

in the body of the request message. These data can be an arbitrary amount of any type.

A header field in a POST request usually indicates the Internet media type of the

message body. [15]

RESTful web service - REpresentational State Transfer (REST), is an architectural

pattern which provides interoperability between computer systems on the Internet.

xii

Roy Fielding defined REST in his dissertation "Architectural Styles and the Design of

Network-based Software Architectures" written for his Ph.D. in 2000. RESTful web

service is a web service which follows REST architecture. They are lightweight, highly

scalable and maintainable and also very commonly used to create APIs for web-based

applications. [17]

SCADA - A system of software and hardware elements that allows industrial

organizations to maintain efficiency, process data for smarter decisions, and

communicate system issues to help mitigate downtime. The basic SCADA architecture

begins with programmable logic controllers (PLCs) or remote terminal units (RTUs).

PLCs and RTUs are microcomputers that communicate with an array of objects such as

factory machines, HMIs, sensors, and end devices, and then route the information from

those objects to computers with SCADA software. The SCADA software processes,

distributes and displays the data, helping operators and other employees analyze the

data and make important decisions. [20]

1

Chapter 1

Introduction

In correspondence with the present economic system of the world, most goods are

manufactured in mass quantities. Factories are the establishments where this mass

production happens. Most of the time, manufacturing goods only with human labor is

not sufficient due to the high demand. Therefore, most of the production companies

lean towards introducing machinery equipment to replace human workers to speed up

the production processes. Introduction of these machinery is known as automation.

However, replacing humans with machinery does not necessarily solve all problems, it

instead emerges new issues to the surface. Designing of the equipment is not

straightforward since every detail of the target process has to be understood

beforehand. Besides these new systems run at high speeds and volumes making them

quite tricky to control. According to Dr. Don Norman, the director of The Design Lab at

University of California, San Diego, “automation is at an intermediate level of

intelligence, powerful enough to take over control that used to be done by people, but

not powerful enough to handle all abnormalities” [7]. To tackle these new issues

properly, careful monitoring of that machinery is necessary.

1.1 Motivation

The world may face the problem of rapidly weakening population growth in coming

years due to low birth rate and low life expectancy. Hence, the proportion of people of

working age is decreasing while the relative number of those retired is expanding. In

order to face this population dispute, most of the jobs will be automated in the future.

This will result in an era of new automated production companies emerging more often

as well as existing companies getting larger by the day.

When considering a large-scale production company which has several automated

production lines, it is necessary to monitor the status of each production line from a

centralized viewpoint. Most primary reason for the argument is the fact that without

knowing the present status, it is impossible to improve. As a company, it is crucial to

2

know what is happening in each part of the production process in order to make better

decisions.

However, most companies tend to neglect this fact due to various reasons such as high

cost of implementing a customized solution, need of modifying or replacing the existing

machinery, need of installing new machinery, etc. Not having a methodology to view

and monitor real-time data leads to massive amount of profit losses and business

failures every day.

As a leading company in automation industry of Sri Lanka, Hitech Solutions (Pvt) Ltd

grasp a vast and up to date knowledge on the essential requirements of the domain.

While working with over one hundred clients in Sri Lanka, they have identified the

tremendous need for a monitoring solution for automated production companies. Even

though there are several automation monitoring solutions exist, they have found out

that those solutions are hard to apply in Sri Lankan context due to various practical

issues. The Director of Hitech Solutions (Pvt) Ltd, Mr. Buddhika Marasinghe emphasized

that it will be a huge benefit to have a low-cost automation monitoring solution as a

large number of small and medium scale production companies tend to automate their

productions day by day.

As Mr. Nuwan Pallewela, Senior Software Engineer and Sysco Labs, said, this project

has a promising future in the Sri Lankan automation industry, simply because the

existing solutions do not suit for the Sri Lankan context.

1.2 Problem Definition

In an era where automation is applied to produce almost everything consumed by the

world, controlling such processes and improving is not straightforward. Monitoring

those machinery carefully can be seen as a confident approach towards the issue. This

will aid in understanding the inner workings of the automated production lines in

question and results in better planning and throughput. However, monitoring such

automated production lines are as complex as designing those machinery themselves.

3

1.3 Project Goal and Objectives

The primary goal of this project is to provide a cost-effective and generalized

monitoring solution which can be applied to any automated production line instantly

without doing hardware modifications to the existing system.

The objectives of this research project can be identified as follows.

● Developing of a graphical tool for modeling and representing production lines.

● Developing a web-based tool for production line monitoring.

● Developing a mobile application for production line monitoring.

● Developing a web application to view analyzed data on the system.

1.4 Methodology

The Initial step was to study existing similar systems and related research areas to get

an overall idea of the domain. Points gathered from this study will be discussed in

Chapter 2 in detail. As the next step, a solution is designed considering the ideas

acquired from the background study and the requirements gathered.

When considering an automated production line, it has several machinery components

which are controlled by one or more PLC units. PLC units use sensors to collect data

which represent the statuses of the machines and change the behavior of those

machines accordingly. Hence ideally sensors are the minimal units of status

representatives, a production line can have. Therefore, Hitech Smart Factory uses the

sensor data read by PLC units to represent the status of the machines in a production

line.

These data are used to fulfill two purposes. They are directly used to show the real-

time status of the sensors to the users, meanwhile streaming through a processing

engine which processes these real-time data and stores them in meaningful ways for

long-term uses including report generation and maintenance.

4

The primary challenge was to develop a generalized solution which can be applied to

any production line without doing any hardware modification. Accordingly, a novel

approach is being introduced where users can model existing production lines using a

toolset provided by the system as the first step and then use that model for further

activities such as pushing data to databases, showing real-time status and report

generation. Design and implementation consideration taken into account will be

discussed in detail in Chapter 3 and Chapter 4 respectively.

1.5 Scope

As mentioned in Section 1.4, Hitech Smart Factory uses the sensor data read through

PLC units. The software component used for this purpose is called Data Publisher

module, which will be further elaborated in Subsection 3.5.1. Since the project is aimed

at any automated production line in the industry, there can be different brands and

makes of PLC units involved in reading sensor data with different communication

protocols.

Concern arose in first project defenses about the feasibility of implementing support

for all PLC units available in the market as mentioned above. Hence it is decided to

build the product focusing a single PLC unit in this context, yet preserve the capability

of supporting various units in the future.

Accordingly, a XINJE branded XC3 series PLC was used with the model number of XC3-

60RT-E1, considering the availability of the hardware. A commercial view of this PLC is

shown in Figure 1.1. XC is a general PLC series that has features such as Support two

kinds of program languages, Rich essential functions, Offset function (Indirect

addressing), Single phase or AB high-speed counter, etc. XC3 is the standard type

variation of the XC series that is capable of fulfilling most industry requirements

identified in the present [25]. According to Mr. Buddhika Marasinghe, Director /

Engineer of Hitech Solutions (Pvt) Ltd., XC3 series PLCs are used with high popularity

within the Sri Lankan automation industry.

1 http://www.xinje.com/en/ProductView.asp?ID=114&SortID=143

5

Figure 1.1: A Commercial View of XC3-60RT-E PLC

1.6 Outline of the Dissertation

The dissertation is structured as follows. Chapter 2 explores similar systems and related

research areas to automated production line monitoring. Chapter 3 describes the

design of the proposed solution, Hitech Smart Factory. Chapter 4 demonstrates the

implementation details of the design elaborated in Chapter 3. Chapter 5 presents the

evaluation model and the evaluation results of Hitech Smart Factory. Last chapter,

Chapter 6, presents the summary of the dissertation and the project along with

possible future extensions.

1.7 Summary

This chapter laid the foundations for the dissertation. It introduced the project,

motivation behind the project, problem definition and the goals and the objectives.

Then, the methodology was briefly described, project scope is specified and the

dissertation was outlined. On these foundations, the dissertation will proceed with a

detailed description of the project. The next chapter will discuss the background study.

6

Chapter 2

Background Study

2.1 Introduction

In this chapter, a review of related work on automated production line monitoring is

provided. There are some products available that have tried to address the issue in

various manners. The first part of the chapter describes those products, their strengths

and weaknesses. Then points taken into consideration by studying those similar

systems are discussed. Next part of the chapter reviews research areas that were

proved to be useful in developing a monitoring system, especially in handling a vast

amount of data.

2.2 Existing Solutions

2.2.1 WimFactory by UlalaLabs

 WimFactory, an IoT smart factory platform, using smart sensors called ‘WICON’ which

can apply to production facilities under any environment with a smooth and efficient

application [22] [9]. The new sensor module introduced with WimFactory, which are

called WICON is capable of measuring various data in a factory such as coolant input

and temperature, volume of mold, temperature of emissions, and humidity. According

to customer needs, UlalaLabs are willing to provide other sensors such as magnetism

force, vibration, light, acceleration, distance, pressure, etc. as well. Once installed in a

factory, WICON sensors measure data in real-time and send them to the cloud server

for big data analysis. According to UlalaLabs, WimFactory can be installed in a facility

within 15 to 25 days.

The main issue that was identified in WimFactory is the need of purchasing and

installing third-party sensor modules to an existing system.

7

2.2.2 WinTr by FulTek

By definition, WinTr is an advanced SCADA software framework developed for

monitoring and saving data of manufacturing processes [10]. By applying WinTr,

devices managed from a single station can be connected with several PLCs using several

protocols the software supports such as Profinet (S7 1200), Modbus RTU, Modbus

TCP/IP, etc. Historical data related to processes are saved into the databases and report

generation is also included in the package. WinTr is developed using .NET, C# and

VBScript and uses SQL server 2005 as the database. [6]

One of the main issues that were identified was the complexity. WinTr is not a complete

solution but a framework for developing monitoring systems. Everything has to be

designed and setup using the tools provided by a person who has an excellent

knowledge of the software. Another issue was the difficulty of getting support and

maintenance since the company is located in Turkey.

2.2.3 Status Enterprise by B-SCADA

B-Scada's Status Enterprise is a modern, information model based SCADA system

designed to connect plant floor processes with the rest of the enterprise. It aggregates

and organizes data from local or geographically dispersed assets and systems into a

consolidated, well-organized information model for alarming, archiving, analytics and

real-time visualization [5].

Functionalities provided:

● Real-time and Historical Data

● Logging

● Calculations

● Reporting

● Form Design

● User Roles and Workspaces

● Web and Mobile Access

One of the main issues identified with this system was the intricate architecture of the

system. It acts as a counter element in applying modifications and maintaining the

8

software. Another issue is the difficulty of obtaining support and maintenance since

the company is located in the USA.

After studying existing attempts to address the issue, several ideas were taken into

consideration for the design of the proposed solution. It is noticed that instead of

developing a standalone solution similar to WinTr by Fultek, a cloud-based product

similar to WimFactory would result in high availability, ease of access and ease of

maintenance. Although reading sensor data using existing components such as PLC

units were identified as a better solution rather than introducing new equipment that

needs to be installed, similar to the work done by WimFactory with their WICON

sensors.

When considering the automation industry of Sri Lanka, a fully developed system that

is capable of plugging into a factory would serve the clients better than a framework

which needs further modifications or adjustments. Hence the idea of such framework

similar to the WinTr system is disregarded. Providing a mobile application to view the

statuses of production lines on the go, similar to the Status Enterprise by B-SCADA, was

seen as a viable option considering the availability of smartphones in the present.

Other points that were taken into consideration from Status Enterprise were to store

both real-time and historical data in system databases and to have user roles for ease

of user management.

2.3 Related Research Areas

2.3.1 Big Data Handling

Hitech Smart Factory can be considered as a system belongs to SCADA architecture and

it is required to handle a vast amount of real-time and historical data. Therefore, a

study was conducted to determine the optimal approach to handle big data.

The research paper “Algorithm and Approaches to Handle Big Data” by Shafaque,

Uzma, and Parag D. Thakare[23] reviews various algorithms and approaches such as

clustering and Apriori algorithm, decision tree algorithm, random forest algorithm and

K-means algorithm necessary for handling big data and describes methods of different

9

approaches used to handle such large datasets [23]. Moreover, it gives an overview of

architectures and algorithms used in large data sets.

The research paper “Big data analysis using Hadoop cluster” by A. Saldhi, D. Yadav, D.

Saksena, A. Goel, A. Saldhi and S. Indu describes techniques and technologies to store,

distribute, manage and analyze large-sized data sets with high-velocity [4]. Big data can

be structured, unstructured or semi-structured, resulting in incapabilities of

conventional data management methods. Data are generated from various sources

and can arrive in the system at various rates. In order to process these large amounts

of data in an inexpensive and efficient way, parallelism is used. Hadoop is the core

platform for structuring Big Data and solves the problem of making it useful for

analytical purposes. Hadoop is an open source software project that enables the

distributed processing of large datasets with a very high degree of fault tolerance.

2.3.2 Big Data Processing Architectures

The data generated by Hitech Smart Factory belongs to the category of big data. Several

data processing architectures are used today by the professionals to process big data,

such as Lambda architecture, Kappa architecture and Zeta architecture. Therefore,

another study was conducted on these architectures to determine the optimal big data

processing architecture for SCADA systems.

The research paper “Lambda Architecture for Cost-effective Batch and Speed Big Data

processing” by M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S. Baveja is about Lambda

Architecture for cost-effective batch and speed big data processing [14]. This paper

presents Lambda Architecture as a software design pattern which unifies online and

batch processing within a single framework. The pattern is suited for applications

where there are time delays in data collection and availability through dashboards,

requiring data validity for online processing as it arrives. The pattern also allows for

batch processing for old data sets to find behavioral patterns as per user needs.

The research paper “Real-time stream processing for Big Data” by Wolfram Wingerath,

Felix Gessert, Steffen Friedrich, and Norbert Ritter describes that Kappa Architecture

employs a powerful stream processor capable of coping with data at a far higher rate

than it is incoming and a scalable streaming system for data retention [24]. An example

10

of such streaming system is Apache Kafka [3] which has been specially designed to work

with the stream processor Samza1. Kappa is a simplification of Lambda Architecture

with the batch processing system removed [12]. Although Kappa architecture does not

offer both batch and real-time processing it can handle real-time data processing very

efficiently with a single stream processing engine. Accordingly, the Kappa architecture

is used in Hitech Smart Factory in order to process massive quantities of real-time

sensor data.

2.4 Summary

This chapter mainly focused on providing a review of the existing similar systems and

the related research areas. The main functionalities provided by the existing solutions

were discussed along with the issues which make it difficult to adapt those solutions

into the Sri Lankan context. The ideas inferred from those solutions and from the

research papers which were published on the related research areas are also discussed.

The next chapter will elaborate the design of Hitech Smart factory.

1 http://samza.apache.org/

11

Chapter 3

Analysis and Design

3.1 introduction

This chapter explicates the proposed solution to production line monitoring, Hitech

Smart Factory. At the beginning of the chapter, identified functional and non-

functional requirements are described. After comes the technical requirements in

Section 3.4 and the proposed system design in Section 3.5. Design of the system is

described by discussing each separate architectural component one by one.

3.2 Functional Requirements

3.2.1 Login/Logout

In Hitech Smart Factory all the activities should only be performed by authorized users.

Hence all the users are required to log in to the system providing their usernames and

passwords.

3.2.2 Production line modeling

The automated production lines differ from factory to factory. They can have different

brands and makes of machinery and sensors. Since Hitech Smart Factory is a

generalized solution, it requires a mechanism of representing those production lines.

Although a production line consists of a large number of sensors, all of those sensors

are not required to view the status of the production line. Hence the production line

should be represented using only the sensors which are preferred by the engineering

and managerial staff of the factory.

Above process of modeling the production line, is an essential task in Hitech Smart

factory. Therefore it can be performed by a system administrator (system admin) or a

factory administrator (factory admin) only. This process consists of following subtasks.

12

● Create/ Update/ View/ Delete factory

● Create/ Update/ View/ Delete branch

● Create/ Update/ View/ Delete section

● Create/ Update/ View/ Delete production line

● Model production line

3.2.3 View real-time status

Machine operators and engineers of a factory need to view the real-time status of the

sensors and components to make sure that the machines are functioning as expected.

This functionality is provided in both web application and the mobile application.

3.2.4 User Management

A software system typically comprises with various users who can access various parts

of the system. Apart from the administrative users of Hitech Smart Factory, all other

users are divided into 4 levels.

● A factory level user can view all the branches, sections and the production lines

of the factory he/she is given access to.

● A branch level user can view all the sections and the production lines of the

branches he/she is given access to.

● A section level user can view all the production lines of the sections he/she is

given access to.

● A production line level user can view all the production lines he/she is given

access to.

Managing these user levels are done by factory admin. This includes adding, deleting,

updating and viewing users.

3.2.5 Generate reports

Reports are required by managerial staff in order to take managerial decisions such as

formulate future production plans, identifying production bottlenecks etc. Engineers

require reports for maintenance purposes. These reports can be generated by using

the data in Hitech Smart Factory databases.

13

The use case diagrams of the system are available in Appendix A.1.

3.3 Non- functional Requirements

3.3.1 Security

In Hitech Smart Factory user authentication will be done through WSO2 Identity Server

(WSO2 IS) instance. It includes multi-layer security functionalities as well as features

such as Role Based Access Control, which are used in Hitech Smart Factory to ensure

the security. Login is required to perform any task within the system for every user.

Furthermore, Role Based Access Control is used to manage the different privileges and

functionalities of different users within the system.

3.3.2 Modularity and Modifiability

Hitech Smart Factory is developed following a modular architecture. Every single

component of the system is independent of each other and message passing

techniques are used to glue together these loosely coupled units. The main advantage

of this architecture is the ability to modify any component at any given time without

breaking down the whole system.

As discussed in Section 1.5, the current system has been developed to support XINJE

XC3-60RT-E PLC unit. However, with the aid of the modular architecture of Hitech

Smart Factory, supporting for another PLC unit is quite simple. Only the Data Publisher

module needs to be modified in order to support the requirements of the new PLC.

Data Publisher module and its unique implementation details regard to the XC3-60RT-

E PLC will be further elaborated in Subsection 4.2.1.

3.3.3 Reusability

Modules developed in Hitech Smart Factory are designed to be reused in applicable

instances. For example, Data Publisher module is designed to take properties of PLC

unit which is used to read the sensor data, as inputs by property files. The particular

Data Publisher developed for this context is capable of reusing for all PLC units that

14

support Modbus RTU protocol. More details about the implementation of Data

Publisher module are discussed in Subsection 4.2.1.

3.3.3 Scalability

Scaling of a deployed product instance from monitoring small-scale production lines to

large-scale production lines have been made easier with the modular architecture of

Hitech Smart Factory. Since each component is loosely coupled, each of them can be

scaled by adding more resources (typically hardware) separately, depending on the

load. With high standard technologies used in each critical component of the system

such as influxDB and Kafka, even with its default configurations, Hitech Smart Factory

is capable of handling a noticeable load.

3.3.5 Easy Integration

As mentioned in Section 1.4, Hitech Smart Factory uses PLC units to get sensor data.

Since most of the production lines in the industry already use PLC units, no hardware

modifications are needed to integrate Hitech Smart Factory into production lines of a

factory.

3.4 Technical Requirements

This section summarizes the technologies used to develop Hitech Smart Factory.

● Programming Languages - J2EE, Javascript, Python

● Frameworks - React Native, Spring, Kafka

● Databases - MySQL, InfluxDB

● Servers - Tomcat

● Package Managers - npm, maven

● Platforms - Docker, rancher

● Libraries - JQuery, mxGraph

15

3.5 System Design

The system design will be explained using the system architecture diagram, which is

shown in Figure 3.1. Descriptions of the components in the diagram will be provided in

this section with the intention of serving a high-level idea about each of them. These

components will be further elaborated in detail in Section 4.2 below with

implementation details. Blue colored lines in the diagram indicate how the user

interactions flow and black colored dashed lines indicate data flows. Yellow colored

components represent user interfaces while green colored components represent

backend servers.

Figure 3.1: System Architecture Diagram

16

3.5.1 Data Publisher

The data flow of the system begins with the Data Publisher module. PLC units in

production lines are connected to these modules and these are responsible for reading

sensor data from the PLCs. Ideally, each PLC will have a single Data Publisher module.

However, it is possible to connect several PLCs to the same Data Publisher module

using various communication methods. Data Publisher module has two separate

components as Kafka Data Publisher and InfluxDB Data Publisher, which are

respectively responsible for pushing real-time data into Kafka Cluster and InfluxDB

Time Series Database.

3.5.2 Kafka Cluster

In Hitech Smart Factory, Data Publishers push vast amounts of sensor data from

different sensors into the system and these data should be processed in meaningful

ways in order to make more accurate managerial decisions about the factory. So that,

a stream processing platform is needed to process these real-time sensor data. Massive

quantities of real-time sensor data pushed by Data Publishers are processed within this

stream processing platform which keeps sensor data under different topics and these

topics are maintained with a unique tag name. Processed sensor data are pushed into

a Long-Term Database for report generation purpose.

3.5.3 Long-Term Database

This database consists of data which were processed by the Kafka Cluster. This may

contain information of production lines for several weeks or months, depending on the

requirements of the factory. These data are used to generate reports for managerial

staff and engineers.

3.5.4 Report Generation Server

This server consists of several services that can be used to generate reports using the

data in Long-Term Database with predefined formats. Whenever the Report View User

Interface (will be discussed in Subsection 3.5.5) requests for a particular report, this

server query the Long-Term Database generates the report and send it to the user

interface as the response.

17

3.5.5 Report View User Interface

Users can view and get printouts of reports about the production lines through this

user interface. When a user required to view a particular report, this UI is used to

request that from the Report Generation Server discussed in Subsection 3.5.4.

3.5.6 Time Series Database

This is the component used to store all the sensor data values in Hitech Smart Factory

in real time. Since a sensor produces new data values by the seconds or milliseconds,

it is not practical to store them in a traditional Relational Database Management

System (RDBMS). Given the fact that one production line can accommodate hundreds

of sensors and a factory can have hundreds of production lines, file-based data storing

mechanisms are also ruled out. The best solution is to use a Time Series Database. Time

series databases are software systems that are specially optimized for data indexed by

timestamps. They can handle large amounts of data efficiently as well as executing

queries that involve timely conditions. [21]

3.5.7 Grafana User Interface Server

Grafana UI server is the component used in Hitech Smart Factory to present sensor

statuses to the users in a graphical manner. Once a production line is modeled through

Production Line Editor (will be discussed in Subsection 3.5.12), required graphical

components such as graphs and gauges can be configured using grafana UI server. The

Time Series Database is connected with these graphical components and using that

connection, users can view sensor data values as a point in a graph or as a reading in a

gauge. When a user requests to view the status of a selected sensor, Real-Time Status

View (will be discussed in Subsection 3.5.18) sends a request to Grafana UI server to

acquire the graphical component.

3.5.8 Client Database

This is used to store the information about the clients of Hitech Smart Factory. These

information consist of factories, branches, sections, production lines, the users as well

as the details of which users are assigned to which factory, branches, sections or

production lines. Data in this database are used to generate the user dashboards in

18

mobile application or the web application. The ER diagram of this database is shown in

the Figure 3.2.

Figure 3.2: Entity Relationship Diagram of Client Database

3.5.9 System Administrator Backend

The primary responsibility of this component is to maintain the communication

between Admin Dashboard and the Client Database. The class diagram of this

component is shown in Figure 3.3. All Create, Retrieve, Update, Delete (CRUD)

operations done to factories, branches sections, production lines and users are handled

through this component.

19

Figure 3.3: Class Diagram of System Administrator Backend

20

3.5.10 Admin Dashboard

System admins of Hitech Smart Factory can access the system using this interface.

There are two kinds of admins in the system as system admins and factory admins.

System admins are able to create, update and delete factories, branches, sections and

production lines using this particular interface. Factory admins are able to create,

update and delete branches, sections and production lines within his respective

factory. Once a new client requests the services of Hitech Smart Factory, the system

admin can create a new factory instance with respective branches, sections and

production lines along with a factory admin user account. After the credentials are

sent, factory admin can take control of that factory.

3.5.11 User Manager User Interface

System admins are able to manage users of Hitech Smart Factory using this interface.

As mentioned in above Subsection 3.5.10, system admins can manage all factory

admins and factory admins can manage other users in his respective factory. As

mentioned in Subsection 3.3.4, four levels of access management is enforced via this

component. Factory admins are able to grant access to several branches, sections or

production lines to a user based on the business requirements of the factory.

3.5.12 Production Line Editor

Once an admin creates a factory, a branch, a section and a production line, modeling

of that production line can be done using the Production Line Editor. It has a toolbar

and a canvas area where the user can drag and drop production line components and

sensors which can be then connected according to the requirement. The editor

generates an Extensible Markup Language (XML) based configuration file for each

production line and these files are saved on the File Server.

3.5.13 File Server

Production lines which are modeled through the Production Line Editor are stored as

XML based configuration files. These files are needed by the production line server,

hence a file server is used to serve them upon requests.

21

3.5.14 Production Line Server

When a user requested to view a particular production line, that request comes to the

Production Line Server. This component gets the particular production line

configuration XML by communicating with the file server and generates a response to

send to the user device depending on how the user needs to view it, either in the web

UI or in the mobile application.

3.5.15 User Authentication

This is where the users of Hitech Smart Factory access the system via mobile application

or the web application. Users are asked to provide their username and password which

are then authenticated by a third party identity server. Once the user is authenticated

successfully, the user is redirected to the user dashboard. In web application, logged in

user object is maintained in browser sessions which will be used to identify access

privileges of the user in user dashboard.

3.5.16 User Dashboard

This component is comprised of a dynamic dashboard generated according to the

access privileges of the logged in user. It shows the factory details such as branches,

sections, and production lines, where the user can browse through and select one

production line to move forward to the Production Line View (will be discussed in

Subsection 3.5.17). Factory details are requested through a third party Data Services

Server, which sends data by querying the Client Database. The Users who access user

dashboard via web UI is also able to redirect to the Report View User Interface as well.

3.5.17 Production Line View

Once the user selects a production line from user dashboard, via the mobile application

or the web application, the user is redirected to Production Line View. This UI

component communicates with the Production Line Server to preview the required

production line. The user can select each sensor module in the selected production line

to view the real-time status.

22

3.5.18 Real-Time Status View

After the user selects a sensor from the Production Line View, the particular graphical

component is loaded with real-time data. To load these components, Real-Time Status

View communicates with the Grafana UI Server. Both web application and mobile

application is capable of displaying real-time statuses.

3.6 summary

This chapter demonstrated the design considerations of the Hitech Smart Factory

based on the components of the system architecture. The next chapter will discuss the

implementation details of the above-mentioned design considerations mainly focusing

on their technical aspects.

23

Chapter 4

Implementation

4.1 Introduction

This chapter elaborates the implementation details of each architectural component

discussed in Section 3.5 above. Each subtopic describes how each component

developed, what technologies used, problems faced during the implementation and

essential code snippets if applicable. The chapter ends with a description of a scenario

where Hitech Smart Factory can be applied, giving a clear understanding of the overall

functioning of the system.

4.2 Implementation Details of Architectural Components

4.2.1 Data Publisher

As discussed in the Subsection 3.5.1, there are two components in the Data Publisher

module as InfluxDB Data Publisher and Kafka Data Publisher. The primary responsibility

of the Data Publisher is to read sensor data from PLC units. PLCs store values of each

sensor in a given time, in its in-build registers. Since we are using XINJE XC-3 60RT-E

PLC in this context, Data Publisher module has to follow the requirements of that PLC.

This particular PLC uses Modbus-RTU protocol for communication. Accordingly for the

Data Publisher module to support Modbus protocol, Jlibmodbus library1 written by

Vladislav Y. Kochedykov has been used. The small learning curve, user support and the

reputation it holds among the community against other Modbus libraries has been

considered when choosing this particular library.

After reading the sensor data from the PLC, data has to be pushed into InfluxDB

instance and the Kafka Cluster. To separate various sensor values from each other, a

special tag value is used when pushing data. This tag value can represent a sensor

uniquely among all other sensors in an entire factory. This is generated when modeling

1 https://github.com/kochedykov/jlibmodbus

24

a production line (will be discussed in Subsection 4.2.12) and a mapping of PLC register

to the tag value needs to be provided for the Data Publisher to work. Currently, a

property file is used which feed in above-mentioned mapping as follows.

register_name tag_value

1-fd8 1_1_1_19_4_10

1-d3 3_2_1_3_8_3

1-d2 1_2_2_7_5_9

1-d1 3_8_6_8_6_13

Internally to make a tag value unique, sensors path from factory to machinery

component is used. The numbers separated by underscores are correspondent to

factory id, branch id, section id, production line id, machinery id and sensor id

respectively.

In order to push data into InfluxDB instance, influxdb-java1 client is used. This is the

official library provided by influxDB for java programming language and there were no

alternatives available. Information such as hostname, port, username and password of

the influxDB instance is provided for this client to connect and push data. To push data

into the Kafka Cluster, Maven Kafka plugin2 is used. Maven build tool has been selected

to develop Kafka publisher over other build tools considering the facts such as support

for JUnit testing and superior dependency management of Maven.

4.2.2 Kafka Cluster

Apache Kafka is an open-source stream processing platform developed by the Apache

Software Foundation written in Scala and Java [13]. It is a very efficient stream

processing system for processing large chunks of data. Hence Kafka is chosen as the

better solution for sensor data processing in Hitech Smart Factory rather than

traditional message servers namely RabbitMQ3 and Apache ActiveMQ4.

The data pushed by the Kafka publisher is processed in meaningful ways within Kafka

Cluster. Kafka Cluster consists of multiple brokers to maintain load balancing. A broker

1 https://github.com/influxdata/influxdb-java
2 https://github.com/charithe/kafka-maven-plugin
3 https://www.rabbitmq.com/
4 http://activemq.apache.org/

25

is a Kafka server that runs in a Kafka Cluster. Furthermore, each Kafka broker can

handle massive quantities of reads and writes per second without any performance

impact. Accordingly, massive quantities of sensor data pushed by different sensors can

be processed parallelly and very efficiently within the Kafka Cluster.

4.2.3 Long-Term Database

Data generated by Kafka Cluster are stored in a MySQL database. The reason behind

selecting MySQL for the Long-Term Database is that after the processing is done, sensor

data are organized in a structured manner and MySQL is a stable, reliable and robust

solution to store structured data.

Kafka consumer is developed with Java and it pushes sensor data which has been

processed within Kafka Cluster into Long-Term Database. In this database, for each

sensor, there is a table to store processed information. These data are maintained for

several weeks or months, depending on the requirements of the client.

4.2.4 Report Generation Server

Long-Term Database of Hitech Smart Factory maintains a massive amount of historical

information of sensor data for report generation purpose. Reportico1 open source PHP

report designer tool has been selected in order to develop Report Generation Server

of Hitech Smart Factory out of other report designing tools such as JasperReports2 and

OracleReports3. Reportico is an inclusion of custom PHP code to allow sophisticated

manipulation of data prior to reporting and it runs against MySQL [18]. Those factors

were taken into account before choosing Reportico for the Report Generation Server

in Hitech Smart Factory. Furthermore, Reportico is designed to run reports either as a

standalone report designer or for embedded in a web application. Reports can be

invoked directly via web links and outputs are produced in HTML, PDF, and CSV

formats.

1 http://www.reportico.org/site/index.php
2 https://community.jaspersoft.com/documentation?version=46991
3 http://www.oracle.com/technetwork/middleware/reports/documentation/index.html

26

4.2.5 Report View User Interface

Report view user interfaces have also been designed with Reportico report designer

tool since interfaces can be efficiently designed with the default interface structure

provided by this tool. This default structure can be changed by changing the overall

styling of Reportico. Moreover, Reportico allows designing user-friendly and easy to

use interfaces.

The particular report output will be displayed in HTML, PDF, or CSV format when a user

selects the date, company, branch, section, production line, machine and the sensor

details in the user interface. Users also have the capability to select output format of

the report through the interface as shown in Figure 4.1. More report formats can be

added according to the client requirements.

Figure 4.1: Report View User Interface

4.2.6 Time Series Database

InfluxDB1 is a Time Series Database built from the ground up to handle high write and

query loads [14]. It is a custom high-performance data store explicitly written for time-

stamped data including DevOps monitoring, application metrics, IoT sensor data, &

real-time analytics. InfluxDB can be easily connected with Grafana and it uses an SQL

style query language which is easy to use [19]. Moreover, InfluxDB is not just a

database; it is a reliable and efficient platform which facilitates storage, monitoring,

visualization and alerting of time series data. Therefore InfluxDB is selected as the time-

1 https://www.influxdata.com/time-series-platform/influxdb/

27

series database solution to store sensor data produced by sensors in Hitech Smart

Factory out of other time series databases such as OpenTSDB1, KairosDB2 and Heroic3.

4.2.7 Grafana User Interface Server

Grafana4 has been selected as the time series monitoring solution in Hitech Smart

Factory out of other modern time series monitoring solutions such as Graphite5 and

Prometheus6 because Grafana is the best of all solutions in terms of dashboard

creation, visualization and customization. It is flexible, feature-rich and effortless to use

visualization tool in the industry. Furthermore, core functionalities of Grafana can be

extended by plugins due to its support for a vast set of plugins rather than Graphite,

and Prometheus [1]. Accordingly, it is most commonly used for visualizing time series

data for infrastructure and application analytics.

Grafana dashboards are composed of panels. Different graphical components such as

graphs and gauges are configured on these panels and they are interacting with

influxDB data source in order to represent the real-time statuses of sensors in Hitech

Smart Factory. Real-time graphical representations of sensors can be requested by the

web application or the mobile application using the particular tag of the sensor.

4.2.8 Client Database

As discussed in Subsection 3.5.8, Client Database consists of the client details of Hitech

Smart Factory. An analysis was conducted on the existing database types in order to

figure out the optimal database solution for Client Database and it derived that

RDBMSs and NoSQL databases contain the capabilities that are suitable for the

requirements. The above two types were compared and contrasted and concluded that

RDBMS are more suitable for the requirements more than NoSQL databases

considering following facts [8].

1 http://opentsdb.net/
2 https://kairosdb.github.io/
3 https://spotify.github.io/heroic/#!/index
4 https://grafana.com/
5 https://graphiteapp.org/
6 https://github.com/prometheus

28

● Data structure

Since all the entities and attributes of the data set that are needed to be stored

are already known, the schema structures can be easily defined.

● Privileges

In Hitech Smart Factory, different user roles have different access privileges

based on the factory, branch, section and production line each user belongs to.

Since those privileges can be managed in an RDBMS database itself, this is a

massive benefit in security concerns.

○ Ex: If a user has access to a particular branch of a factory, he/she should

be able to access all following sections and the production lines of that

branch as well. This can be easily arranged through relations of an

RDBMS.

● Data types

Each column of each table in RDBMS has a predefined data type. This ensures

that the data are well formed. Also, data validations can be done using “CHECK”

constraints.

● Volume of the data set

As mentioned earlier the client details are stored in this database. This dataset

is not very large hence can be easily handled by an RDBMS.

● Support

Excellent support is available for RDBMSs than NoSQL databases. Also, there

are a lot of individual professional consultants who possess a greater

knowledge of RDBMSs. Since RDBMSs are in use for many years in the industry,

the reliability of community support is higher than NoSQL.

4.2.9 System Administrator Backend

This component is responsible for the communication between admin functions and

Client Database. It is developed using Java and factors such as security, support for

object orientation and ease of scaling are considered beforehand. Java scores more

compared to other solutions such as PHP and ASP.Net. System administrator backend

comprises of five sets of classes that separately operate on factories, branches,

sections, production lines and users. Accordingly, there are five servlet classes and the

29

two UI components connected to this backend, Admin Dashboard and User manager,

send POST requests to these servlets. These requests are processed and necessary data

operations are done by relevant Data Access Object (DAO) classes using the relevant

model classes.

4.2.10 Admin Dashboard

Admin Dashboard is the first entry point to the system an admin of Hitech Smart

Factory can have. As described in Subsection 3.5.10, two types of admins are allowed

to use Admin Dashboard. The difference is that a factory admin can only view the items

regards to his/her factory while system admin can view all the factories. As shown in

Figure 4.2, factories are listed along with a ‘plus’ button to add new factories in the

beginning.

Figure 4.2: List of Factories in Admin Dashboard

Once the admin clicks on a factory, all branches are listed in the same manner.

Accordingly, sections and production lines are listed along the way. A completely

expanded instance of the interface is shown in Figure 4.3.

30

Figure 4.3: Expanded view of Admin Dashboard

Each row has a plus button to add new components to the system and in each

component, an edit button and a delete button appears when hovering each box with

the mouse pointer. This is shown in Figure 4.4. By clicking these small icons, admin can

edit or delete any component. When deleting a component, all child elements are

deleted as well. For example, if the admin is to delete a branch, all sections under that

branch and all production lines under those sections have to be deleted. Therefore a

confirmation message is prompted when deleting an item.

Figure 4.4: Edit and Delete Buttons of an item in Admin Dashboard

In the upper right corner of the UI, two buttons are provided respectively to switch to

the User Manager user interface or to sign out. Browser sessions are used to

communicate the identity of the logged in user and these session objects are deleted

31

upon sign out. Admin user can also move into Production Line Editor (will be discussed

in Subsection 4.2.12) by clicking on any production line box appear in the interface.

4.2.11 User Manager User Interface

System admins of Hitech Smart Factory are able to manage user accounts via this

interface. There are two separate views of user manager interfaces available for the

two types of administratives. As discussed in Subsection 3.5.11, the system admin can

use this particular interface to manage factory administrative accounts assigned to

each factory. A screenshot of the UI accessible by a system admin is shown in Figure

4.5. All factory admin accounts are listed in a table along with edit and delete actions.

A button is available on the page with ‘Add New User’ label which can be used to add

new factory admin by providing few details and selecting the relevant factory.

Figure 4.5: User Manager User Interface of System Admin

User manager interface provided for factory admins are a bit different than the above.

This interface is shown in Figure 4.6. Apart from a list of all users belonged to the

factory of the admin, a special structure is provided on the right side of the interface

to grant access privileges to the users.

This structure list down all items in a factory and once the admin selects any user from

the table, access permissions are shown by checking relevant checkboxes. An example

of this is shown in Figure 4.7. The selected user belongs to the category of section level

user as described in Subsection 3.3.4.

32

Figure 4.6: User Manager User Interface of Factory Admin

Figure 4.7: Example Access Permissions of a Section Level User

Accordingly, notice that all production line checkboxes are disabled. This is to help the

factory admin to assign access permissions correctly. Section level users cannot have

separate access to a production line without having permissions to the section it

belongs to. Following the same logic, branch level users cannot have separate access

to sections or production lines without having access to the branch. To enforce this

logic, JavaScript event is used and the code snippet is available in Appendix A.2.

4.2.12 Production Line Editor

As mentioned in the Subsection 4.2.10 above, the admin user can model production

lines using the Production Line Editor by clicking on any production line box appear in

33

the Admin Dashboard. The initial requirement of this component is to provide an

interface in which the user is able to draw a representation of an actual production

line. Accordingly, it is identified that a drag and drop environment where the user can

connect predefined components and sensors, is suitable. To implement this kind of a

system, various Javascript libraries were considered such as mxGraph1, vis.js2, D3.js3

and sigmajs4. Among these considered libraries, mxGraph library is chosen since it is

the closest package that offered the exact requirements mentioned above. mxGraph

is the library used in draw.io tool5 provided by Google, which is also a similar drag and

drop graph drawing tool. Therefore it has the highest industry reputation and support

compared to other libraries as well.

The editor interface of a newly created production line is shown in Figure 4.8. Toolbox

is in the left side of the window and the large white colored area is the canvas. To

construct this toolbox, mxGraph library uses a special XML configuration file named

‘diagrameditor.xml’.This file defines all toolbox icon image paths, canvas area

icon image paths, icon styles, connection styles, etc.

Figure 4.8: User interface of Production Line Editor

1 https://github.com/jgraph/mxgraph
2 http://visjs.org/
3 https://d3js.org/
4 http://sigmajs.org/
5 https://www.draw.io/

34

A button is given in the left upper corner of the toolbox to add new toolbox items and

admin users can add new sensors or components to the system using this functionality.

Since the required components and sensors are tend to differ from one production

factory to another, Production Line Editor is equipped to handle new toolbox items as

well. A screenshot of using this feature to add a new item is shown in Figure 4.9.

Internally what this feature does is collecting required information from the user and

updating the above mentioned configuration file.

Figure 4.9: User Interface of Add New Toolbox Item

Admin users can drag and drop machinery components and sensors from the toolbox

to the canvas area and then they can be connected using connectors. A drawn

production line is presented in the Figure 4.10. Once the admin user finishes modeling

a production line, the button under the canvas area can be used to save it. The editor

generates a XML configuration file for each production line modeled in the editor. This

can be viewed by checking the view source checkbox under the canvas area. When the

user request to save a production line, editor sends the relevant XML configuration to

the file server (will be discussed in Subsection 4.2.13) where it is saved in a uniquely

named XML file.

When a component or a sensor is dropped into the canvas area, a unique tag value is

generated. As discussed in the Subsection 4.2.1, this tag value is used in the Data

Publisher Module to push data into the Time Series Database as well as the Kafka

Cluster. Admin user can view this tag value by clicking on the gear icon which appears

in each component as shown in the Figure 4.11. Moreover, this particular tag value is

35

also used to request graphical components from Grafana UI server by Real-Time Status

View.

Figure 4.10: A Modeled Production Line in Production Line Editor

Figure 4.11: Properties of the Selected Sensor

4.2.13 File Server

XML configurations generated by the Production Line Editor are saved as XML files, as

described above. These files are needed to be accessed by web or mobile Production

Line View components as well as by the editor itself in case of updating a previously

modeled production line. To easily communicate them across applications, a simple file

server is used. Nginx1, apache tomcat2 and apache httpd3 were possible options and

1 https://www.nginx.com/
2 http://tomcat.apache.org/
3 https://httpd.apache.org/

36

Apache httpd server was selected considering the small learning curve and the

simplicity of the workload. The main problem faced during the implementation of file

server was the cross-origin resource sharing (CORS) problem1. By default browsers do

not allow scripts in a domain to access resources in a different domain. To disable this

security measure, CORS allow header has to be set in all responses served by the file

server.

4.2.14 Production Line Server

The production line server is developed using PHP2. Apart from PHP, some other server-

side technologies such as J2EE3, NodeJS4, ASP.NET5 and python6 were taken into

consideration. All of those technologies require much more workload than PHP.

Considering the limited development time period and the moderate learning curve of

PHP, it is selected as the technology to develop production line server.

When a user requests to view a production line, a POST request is sent to the

Production Line Server including factory id, branch id, section id and the production

line id. Then the production line server communicates with the file server and gets the

relevant XML configuration file of the production line using the above-mentioned ids

along with several other files. These files are used to extract some other details of the

components and sensors of the production lines including the URLs of the image of the

components and sensors. As the last step Production Line Server generates a response

including all those information and sends it to the Production Line View, described in

Subsection 4.2.19. This task can be done inside the mobile application, but the

intensive processing of XML files can affect the performance.

4.2.15 Mobile Application

The mobile application of Hitech Smart Factory is designed for a selected set of users

such as engineers and machine operators. They can use the mobile application to view

the real-time status of sensors. The primary implementation consideration of the

1 https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
2 https://www.asp.net/
3 http://www.oracle.com/technetwork/java/javaee/overview/index.html
4 https://nodejs.org/en/
5 https://www.asp.net/
6 https://www.python.org/

37

mobile application is that it needs to be compatible with both Android and iOS

platforms. One solution would be developing two separate applications for each of the

two platforms. This approach requires writing the same code twice which is very time-

consuming. Hence using a cross-platform development technology is taken into

consideration. React Native1, Xamarin2 and Ionic3 were compared in order to select the

most suitable tool for the development. A comparison between these three

technologies is shown in Table 4.1: Comparison of features of selected technologies.

Table 4.1: Comparison of features of selected technologies

Feature Xamarin React Native Ionic

Learning curve High

 (since developer did
not have any
experience in C#)

Low

(Since developer is
familiar with
Javascript)

Low

(Since developer is
familiar with
Javascript)

Deployment Easy and free Easy and free Need to upgrade to
a paid subscription

Access to native
widgets

Yes Yes No

Hot reloading

(Ability to view the
changes in the code
without recompiling)

No Yes No

Considering the facts of the small learning period, free and easy deployment and hot

reloading feature, React Native was selected as the most suitable technology. React

Navigation4, an extensible yet easy-to-use navigation solution is used in order to handle

the screen navigations in the application. React native is based on Flux architecture5,

1 https://facebook.github.io/react-native/
2 https://www.xamarin.com/
3 https://ionicframework.com/
4 https://reactnavigation.org/
5 https://facebook.github.io/flux/

38

an architecture which supports unidirectional data flow. Redux library1 is used in the

application as the implementation of Flux architecture. NPM2 is used as the package

manager and Fetch API3 is used to manage the API requests.

4.2.16 User Authentication

In Hitech Smart Factory user authentication plays a significant role. Therefore it is

decided to use a well reputed, free and open source third-party identity server in order

to minimize the workload, adapt the development process to suit the limited time

period and to avoid possible errors if developed from scratch. After a comprehensive

study on existing identity servers, WSO2 IS4 was selected as the suitable tool based on

the facts that it reduces identity provisioning time, guarantees secure online

interactions, decreases the identity management and entitlement management

administration burden by including the role-based access control (RBAC) convention.

Whenever a user provides username and password to Hitech Smart Factory using the

web application or the mobile application, the user is authenticated through the WSO2

IS instance. If the login is successful, then only the user can proceed further.

4.2.17 User Dashboard

The mobile application and the web application both consist of separate user

dashboard components. As mentioned in Subsection 3.5.16, this is generated

dynamically with respect to the user who is logged in to the system. Hence it is

necessary to acquire the details of the factory, branches, sections and production lines

that are accessible to the logged in user. As mentioned in Subsection 4.2.8, Client

Database possesses these details and they need to be obtained from the database.

The mobile application requires an API service which can fulfill the above-mentioned

task of data retrieval from the Client Database. Considering that requirement along

with the facts of minimizing the workload, adapting the development process to match

the limited time period and to obviate the possible errors of coding from scratch, it is

decided to use a third party data service server. Accordingly, WSO2 Data Services

1 https://redux.js.org/
2 https://www.npmjs.com/
3 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
4 https://wso2.com/identity-and-access-management

39

server (WSO2 DSS)1 is chosen as it is a free and open source and well-reputed data

service server in the industry. Further details on this will be further elaborated in

Subsection 4.2.18.

The mobile and web-based user dashboard components request dashboard details of

the logged in user from the data services in WSO2 DSS. Then the dynamic dashboards

are generated by processing the responses received.

The dashboard of the mobile application shows branches in the initial screen. This

screen is illustrated in Figure 4.12. When a user selects a particular branch from the

available set of branches, sections of that particular branch appear. Similarly, by

selecting a section, the user can view available production lines as well. Then the user

can select a production line among them which triggers a POST request to the

Production Line Server to get the details of that production line. A detailed description

of Production Line Server is provided in Subsection 4.2.13. After that, the user is

redirected to the Production Line View. Further details of the Production Line View

component is discussed in Subsection 4.2.18.

Figure 4.12: The Initial Screen of the User Dashboard of Mobile Application

1 https://wso2.com/products/data-services-server/

40

User dashboard of the web application operates similarly to the mobile application

internally, yet differs in user interfaces. To implement the Web User Dashboard,

Node.js1 is used as the backend considering the ease of development and maintenance

as well as the ability to handle extensive amounts of requests compared to other

solutions. The initial screen of the web user dashboard is displayed in Figure 4.13. Left

side menu list down the branches of the production lines that are accessible to the

user. In this example, user Vihanga Liyanage is a branch level user who has access to

only the Main Branch of Bata Shoe Factory.

Figure 4.13: The initial screen of User Dashboard of Web Application

By clicking on a branch in the list, the user can discover a list of sections comes under

that branch, which is accessible to the user. Accordingly, by clicking on each section,

production lines are revealed. This feature is shown in Figure 4.14. Since the user

Vihanga Liyanage is a branch level user, he is entitled to access all sections and

production lines of Main Branch.

If another user, Poornima Karunarathna, is considered, who is a production line level

user with access to only the Sawing Line 1 of Sawing Section of Main Branch, The

dashboard she gets is presented in Figure 4.15.

1 https://nodejs.org/en/

41

Figure 4.14: Navigation Menu of a Branch Level User of Web Application

Figure 4.15: Navigation Menu of a Production Line Level User of Web Application

Clicking on any production line in the menu triggers a request to production line server

which responds with the XML configuration of that production line. This configuration

is used to render the production line.

4.2.18 WSO2 DSS

WSO2 DSS provides a variety of flexible features which can be adapted to

accommodate the user requirements. In WSO2 DSS, users are able to define data

services which facilitate automatic generation of CRUD operations, flexible mapping of

query responses to custom XML data formats and expose those data services as RESTful

web services. The WSO2 DSS instance used in Hitech Smart Factory is hosted on an

Ubuntu virtual machine created in Google Cloud Platform. Since the data services need

42

to be available whenever a user requests them, it is running as an Ubuntu service on

the virtual machine.

There are 5 data services defined in WSO2 DSS. Whenever a user is authenticated, a

POST request is sent to a data service containing the username of the user as a

parameter. This data service then returns a response including user id, user type and

the factory which the user is assigned to. According to the user type, another POST

request is sent to one of the four data services which returns details of the branches,

sections and production lines that particular user is given access to. All these data

services are exposed as RESTful web services and both mobile and web applications

use above-mentioned data services to generate the User Dashboard.

4.2.19 Production Line View

The Production Line View of the mobile application lists down the machinery

components of the production line selected by the user from the User Dashboard.

When a user selects a particular component from this view, a list of sensors which are

connected to that component is shown below. This screen is shown in Figure 4.16.

Figure 4.16: Production Line View of Mobile Application

43

The user can select a sensor to view the real-time status from this screen. Then a POST

request is sent to the Grafana UI Server requesting the graphical component which

shows the real-time status of the selected sensor. The user has redirected to the Real-

Time Status View afterward.

Web-based Production Line View is integrated into the web User Dashboard. As

mentioned in the Subsection 4.2.17, when the user clicks on a production line from the

left side menu, modeled production line is rendered using the XML configuration sent

by production line server. A rendered production line is illustrated in Figure 4.17.

mxGraph, which was the same library used to implement the Production Line Editor is

used to render the production lines in Web-based Production Line View. The user is

able to select any sensor from this view to move onto the Real-Time Status View.

Figure 4.17: A rendered Production Line

4.2.20 Real-Time Status View

The Real-Time Status View of mobile application consists of graphical components

which are sent by the Grafana UI Server. These graphical components can be graphs or

a gauge where the user can see the changes in the sensor value in real time. Here the

web view1, a unique feature provided in React Native, is used to achieve this feature in

the mobile application. This screen is presented in Figure 4.18.

1 https://facebook.github.io/react-native/docs/webview.html

44

Figure 4.18: A Real-Time Status View Graph of Mobile Application

In the web-based user interface, the user can just click on any sensor presented in the

production line model and the graphical component that is attached with that sensor

is opened in a new tab with real-time data. Web application takes the tag value of the

clicked sensor as an input and uses that to request the graphical component from the

Grafana UI Server. An example graph with data is displayed in Figure 4.19.

Figure 4.19: A Real-Time Status View Graph of Web Application

45

4.3 Application of the Proposed Solution

The overall process of Hitech Smart Factory is somewhat complicated. Therefore,

overall setting up process will be described here, starting from the point which a new

production company requests the services of Hitech Smart Factory.

Once the request comes through, the system admin logs into the system and creates a

new factory instance. Then, a new factory admin account is created and the newly

created factory is assigned to that account. After that, either the system admin or the

factory admin can add the branches, sections and the production lines of the factory

to the system and model the production line. Since it is not beneficial to monitor and

view the real-time statuses of all the sensors in a production line, the admin may

discuss with the engineering and managerial staff to select the most preferred set of

sensors to add to the model.

After the modeling is done, data publisher modules and graphical components have to

be configured to push and view data in the system respectively. Tag values generated

for each sensor by the Production Line Editor are used to feed the PLC register mapping

as discussed in Subsection 4.2.1. Once all the configurations are done, factory admin

creates the user accounts and assign the branches, sections and production lines to the

users according to the business requirements of the factory. At this point, setting up of

the system concludes. Users can log in to the system and view the real-time status of

the sensors in the production lines which they are assigned to, using either web

application or the mobile application. Besides that, they are capable of generating and

viewing reports according to the user privileges that have been given.

4.4 Summary

In this Chapter, implementations of all the individual architectural components in the

Hitech Smart Factory are described with the technologies used, along with the reasons

behind selecting each of those technologies. In addition to that, the connections

between those individual components and the way they communicate with each other.

A scenario where Hitech Smart Factory can be applied is described in order to provide

a better understanding of the overall functioning of the system. In the next chapter,

the evaluation process of Hitech Smart Factory is discussed.

46

Chapter 5

Evaluation

5.1 Introduction

This chapter is focused on presenting the conducted evaluation process on the

proposed solution. Section 5.2, Evaluation Model describes how the system has been

evaluated and Section 5.3 elaborates on the results obtained. In Section 5.4, some

observations are discussed regarding the performance of the system.

5.2 Evaluation Model

Hitech Smart Factory is a product based project which is focussed on the immense need

for cost-effective and easily integrate production line monitoring system in the

automation industry. In order to visualize the exact outcome of the project, it had to

be deployed into a real-world production factory and monitored carefully for a

considerable period of time. This was not possible at the time of composing this

dissertation given the limited time availability and the lack of resources. Hence a demo

setup was created and a user evaluation was conducted in order to determine the

progress made and usability of the system.

The demo setup used is as follows.

● PLC unit - XINJE XC3-60RT-E, connected via a serial cable and a serial to USB

adapter RS-2321

● Data Publisher Module - Run on a laptop with Intel Core i7 processor and 8GB

RAM, connected to the internet using the ethernet connection. (100 Mbps)

● Time Series Database, Long Term Database, Report Generation Server and

Grafana UI Server - Installed on a virtual machine with 1 vCPU processor and

3.75 GB RAM, in Google Cloud Platform.

1 http://www.serialgear.com/1-Port-Serial-USB-CHEAP-SERIAL.html

47

● File Server, Production Line Server and Web User Dashboard - Installed on a

t2.micro1 virtual machine instance, in Amazon Elastic Cloud.

● Admin Dashboard, User Manager, Client Database, WSO2 DSS - Installed on a

virtual machine with 1 vCPU processor and 4GB RAM, in Google Cloud Platform.

A questionnaire was created for the user evaluation of all the functionalities provided

by Hitech Smart Factory as well as the overall product. The system was handover to

selected users to explore and they were asked to answer the questionnaire describing

their experience. The group of selected users consisted of Mr. Buddhika Marasinghe,

Director of Hitech Solutions (Pvt) Ltd, Mr. Nuwan Pallewela, Senior Software Engineer

at Sysco Labs and Mr. Samith Chathuranga Perera, Assistant Electronic Engineer at

Hitech Solutions (Pvt) Ltd.

5.3 Results

The responses given by the users for the user evaluation questionnaire are shown in

SubSections 5.3.1, SubSections 5.3.2. And SubSections 5.3.3.

1 https://aws.amazon.com/ec2/instance-types/

48

5.3.1 Responses given by Mr. Buddhika Marasinghe

49

50

5.3.2 Response given by Mr. Nuwan Pallewela

51

52

5.3.3 Response given by Mr. Samith Chathuranga Perera

53

54

5.4 Other Observations

The main functionality of Hitech Smart Factory is the Real Time Status View. Even

though the intention was to actually see the changes of sensor data values in real time,

latency could occur given the distance a single data point has to travel from PLC unit to

a graphical component in order to appear in Real Time Status View. Therefore, these

time gaps are also observed to obtain a judgment on the matter. Following are the

results gathered.

● Time to send data from PLC to Data Publisher Module.

○ About 1 second

55

○ Tested using XINJE XC3-60RT-E PLC, connected to a laptop (Intel Core i5

processor with 8GB RAM) running the Data Publisher Module, using a

USB to Serial Adapter RS-232.

● Time to send data from Data Publisher Module to a graphical component.

○ Less than 1 second

○ Tested using random values without connecting a PLC.

● Time to send data from PLC to a graphical component.

○ About 1 to 2 seconds

○ Tested using XINJE XC3-60RT-E PLC, connected to a laptop (Intel Core i5

processor with 8GB RAM) running the Data Publisher Module, using a

USB to Serial Adapter RS-232.

5.5 Summary

This chapter described the evaluation model that is used to evaluate the proposed

solution and the results obtained. Some observations regarding the system

performance are also discussed in the chapter. The next chapter will conclude the

project giving a review of the results obtained, limitations and an implication of future

work.

56

Chapter 6

Conclusion and Future Work

6.1 Introduction

This chapter includes conclusions gathered from the user evaluations, limitations of

the proposed solution and implications for future studies.

6.2 Conclusions Gathered From User Evaluation

As mentioned in Section 5.2, a questionnaire was presented to the key people of the

project and the results obtained are summarized to make conclusions about the

proposed solution. The user feedback on the factory management functionality is

shown in Figure 6.1. All of the users have agreed that add, view, update and remove

functionalities of factories, branches, sections and production lines are above the

satisfactory level.

Figure 6.1: Summary of User Feedbacks on Factory Management Functionality

57

User evaluation of the user management functionality is shown in Figure 6.2. All the

users have found that add, remove, view and update features of users are made easy

with the provided user interfaces. Assign access permissions of users functionality is

also up to the satisfactory level.

Figure 6.2: Summary of User Feedbacks on User Management Functionality

A summary of the user evaluation on production line modeling functionality is shown

in Figure 6.3. All the users have agreed that the Production Line Editor facilitates

modeling a new production line with dragging and dropping components, updating a

modeled production line and adding custom components, beyond the satisfactory

level. This is an important point which shows that the users have understood and

accepted the novel approach of production line modeling suggested with Hitech Smart

Factory.

58

Figure 6.3: Summary of User Feedbacks on Production Line Editor

The summary of the user feedbacks on viewing real-time status functionality is shown

in Figure 6.4. It reflects that users have accepted that this functionality is up to the

satisfactory level. However, this component could use further refinements to be

evaluated as above the satisfactory level. More usability tests are needed to determine

exact points to be changed.

Figure 6.4: Summary of User Feedbacks on Real Time Status View Functionality

59

The summary of user evaluation on the report generation tool is displayed in Figure

6.5. The functionality is marked as it is up to the satisfactory level. A user has also

commented that the reports can be further extended in order to match the business

requirements of the client. This component is also identified as a modifiable item in

order to receive more user satisfaction.

Figure 6.5: Summary of User Feedbacks on Report Generation Tool

Figure 6.6 shows the summarized version of user feedback on the overall product.

Users have agreed that user-friendliness of user interfaces and the understandability

of the overall process is beyond the satisfactory level. Also, they have found that the

usability of the system in a real-life scenario is also up to the satisfactory level.

Furthermore, some of them have commented that user interfaces should be improved

in order to provide a better look and feel to the users.

60

Figure 6.6: Summary of User Feedbacks on the Overall Product

6.3 Limitations

The proposed solution collects data from PLC units using the Data Publisher Modules,

which needs to be run in a processing environment that is physically connected to

those PLCs. In the initial setup, a computer is used for this purpose. This can be seen as

a limitation to benefit from the full capacity of Hitech Smart Factory.

After the modeling of production lines is completed using the Production Line Editor,

graphical components have to be configured manually providing the tag values

produced, to the Grafana UI Server. This can also be identified as a limitation.

6.4 Implications for Future Work

As a remedy to the limitation mentioned above in Section 6.3 about using a physical

device to run Data Publisher Module, a small, sophisticated device that is optimized to

run java programs can be used instead of a computer. Furthermore, there are PLC units

that are capable of directly connecting to the internet using WiFi network connections

and using those PLC units can be seen as another solution. However, further studies

need to be carried out in these areas to find an optimal solution.

61

As for the limitation of configuring Grafana UI Components manually, Grafana

comprises of a JavaScript Object Notation (JSON) based configuration mechanism

which is capable of representing all graphical components. However, further studies

are needed to clarify the feasibility of using these configurations to the requirement of

Hitech Smart Factory.

62

References

[1] Lichtigstein, "Prometheus vs. Grafana vs. Graphite - A Feature Comparison," Loom

Systems, 2017. [Online]. Available: https://www.loomsystems.com/blog/single-

post/2017/06/07/prometheus-vs-grafana-vs-graphite-a-feature-comparison.

[Accessed: 31- Jul- 2017].

[2] Amazon Web Services, Inc., “Lambda Architecture for Batch and Real- Time

Processing on AWS with Spark Streaming and Spark SQL,” Amazon Web Services, Inc.,

May 2015, [online] Available: https://d0.awsstatic.com/whitepapers/lambda-

architecure-on-for-batch-aws.pdf. [Accessed: 31- Jul- 2017].

[3] "Apache Kafka - A distributed Streaming Platform," Kafka Apache, 2017. [Online].

Available: https://kafka.apache.org/. [Accessed: 31- Jul- 2017].

[4] A. Saldhi, D. Yadav, D. Saksena, A. Goel, A. Saldhi and S. Indu, "Big data analysis using

Hadoop cluster," 2014 IEEE International Conference on Computational Intelligence

and Computing Research, Coimbatore, 2014, pp. 1-6.

[5] B-Scada, Inc.,"Status Enterprise," B-Scada, Inc., 2017. [Online]. Available:

http://scada.com/Content/Brochures/Brochure_SE.pdf. [Accessed: 31- Jul- 2017].

[6] Iman,"The Advantages of WinTr System," program-plc, August 24, 2016. [Online].

Available: https://program-plc.blogspot.com/2016/08/the-advantages-of-wintr-

system.html. [Accessed: 30- Jul- 2017].

[7] A. Norman, “The ‘problem’ of automation: Inappropriate feedback and interaction,

not ‘over-automation’,” Philosophical Transactions of the Royal Society of London.

Series B, Biological Sciences, vol. 327, no. 1241, pp. 585-593, April 1990.

[8] Soltesz, "The Advantages of a Relational Database Management System," Techwalla,

2017. [Online]. Available: https://www.techwalla.com/articles/the-advantages-of-a-

relational-database-management-system. [Accessed: 31- Jul- 2017].

https://d0.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf
https://d0.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf

63

[9] E.yu,"Korea's UlalaLAB Equipped with IoT Technology Enters a MOU Agreement with

China's Government-Affiliated Organization," Aving.net, May 2016. [Online].

Available: http://us.aving.net/news/view.php?articleId=1369434. [Accessed: 25- Sep-

2017].

[10] Fultek Kontrol Sistemleri,"SCADA SOFTWARE – SCADA SYSTEMS," Fultek Kontrol

Sistemleri, 2017. [Online]. Available: https://www.fultek.com.tr/en/scada/.

[Accessed: 30- Jul- 2017].

[11] "InfluxDB," Influx Data, 2017. [Online]. Available: https://www.influxdata.com/time-

series-platform/influxdb/. [Accessed: 31- Jul- 2017].

[12] “Introduction to Real time Big Data processing architectures - Lambda, Kappa and

Zeta,” CA Technologies, Mar. 03, 2016. [Online]. Available:

https://communities.ca.com/community/ca-apm/blog/2016/03/03/real-time-big-

data-processing-architectures-lambda-kappa-and-zeta. [Accessed 22 Dec. 2017].

[13] J. Kreps, N. Narkhede and J. Rao, "Kafka: A Distributed Messaging System for Log

Processing,” in ACM SIGMOD/PODS Conference 2011, Athens, Greece, June 12-16,

2011.

[14] M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S. Baveja, "Lambda architecture for

cost-effective batch and speed big data processing," 2015 IEEE International

Conference on Big Data (Big Data), Santa Clara, CA, 2015, pp. 2785-2792.

[15] "POST (HTTP)," Wikipedia, 2017. [Online]. Available:

https://en.wikipedia.org/wiki/POST_ (HTTP). [Accessed: 31- Jul- 2017].

[16] "Programmable Logic Controller," Wikipedia, 2017. [Online]. Available:

https://en.wikipedia.org/wiki/POST_ (HTTP). [Accessed: 31- Jul- 2017].

[17] R.T.Fielding and R.N. Taylor, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

64

[18] "Reportico User Manual Dev Version," Repotico, 2016. [Online]. Available:

http://www.reportico.org/documentation/4.5/doku.php?id=reporticointro.

[Accessed: 31- Jul- 2017].

[19] S. Acreman, "Top 10 Time Series Databases," Outlyer, 2016. [Online]. Available:

https://blog.outlyer.com/top10-open-source-time-series-databases. [Accessed: 31-

Jul- 2017].

[20] "Scada explained," Inductive Automation, 2017. [Online]. Available:

https://inductiveautomation.com/what-is-scada. [Accessed: 31- Jul- 2017].

[21] T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer and H. P. Breivold, "Scalability

and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial

Processes," 2014 IEEE 7th International Conference on Cloud Computing, Anchorage,

AK, 2014, pp. 602-609.

[22] UlalaLAB,Inc.,"WimFactory," Wimfactory.com, 2016. [Online]. Available:

http://www.wimfactory.com/index_v2_en.html. [Accessed: 30- Jul- 2017].

[23] U.Shafaque and P. D. Thakare,”Algorithm and Approaches to Handle Big Data,” IJCA

Proceedings on National Level Technical Conference X-PLORE 2014, vol. XPLORE2014,

pp. 18-22, May 2014.

[24] W.Wingerath, F.Gessert and S. Friedrich,”Real-time stream processing for Big Data,”

it - Information Technology,vol 54, no 4, pp 186–194, August 2016.

[25] Xinje Electronic Co. Ltd. , “XC Series Programmable Controller-User's Manual,”

Imenista Andish Ltd, 2009, [Online]. Available: http:

//www.imenista.com/pdf/XCPLCV2.51.pdf. [Accessed: 31- Jul- 2017].

[26] Xylem Inc.,"AQUAFORCE – MODBUS COMMUNICATIONS PRIMER," Xylem Inc, 2012.

[Online]. Available: http://documentlibrary.xylemappliedwater.com/wp-

content/blogs.dir/22/files/2012/07/aqforwhite.pdf. [Accessed: 31- Jul- 2017].

65

Appendix

A.1 Use Case Diagrams of the System

Functional requirements of a manager are shown in Figure A.1.1. A manager can

generate, view and print reports using from the system.

Figure A.1.1 : Use case Diagram of Manager

The functional requirements of engineer and the machine operator are shown in Figure

A.1.2. They both can view the real time status using the web application and the mobile

application.

66

Figure A.1.2 : Use case Diagram of Engineer and Machine Operator

The functional requirements of System Admin and Factory Admin are shown in Figure

A.1.3. Both of them have same functionalities except for creating and deleting

factories. Only the System Admin is capable of performing those functionalities.

Factory admin can create, view, update and delete branches, sections, production lines

of the factory he is assigned to. User management can be done by both of them.

67

Figure A.1.3: Use case Diagram of System Admin and Factory Admin

68

A.2 Code Snippet used to enforce user permissions

$("input:checkbox").on('click', function () {

 var checkID = $(this)["0"].id;

 var checkDivID = checkID.substring(0, checkID.length - 5) + 'div';

 var type = checkID.split('-')[0];

 // update variables, disable checkboxes as necessary

 if ($(this).prop("checked")) {

 if (type == 'factory') {

 $('#' + checkDivID + ' :input').prop("disabled", true);

 $('#' + checkDivID).find('input[type=checkbox]').prop('checked', true);

 CHECKED_BRANCHES = [];

 CHECKED_SECTIONS = [];

 CHECKED_PRODLINES = [];

 } else if (type == 'branch') {

 $('.sections :input').prop("disabled", true);

 CHECKED_BRANCHES.push(checkDivID);

 CHECKED_SECTIONS = [];

 CHECKED_PRODLINES = [];

 checkChildren(CHECKED_BRANCHES);

 } else if (type == 'section') {

 $('.prodlines :input').prop("disabled", true);

 CHECKED_SECTIONS.push(checkDivID);

 CHECKED_PRODLINES = [];

 checkChildren(CHECKED_SECTIONS);

 } else if (type == 'prodline') {

 CHECKED_PRODLINES.push(checkDivID);

 }

 } else {

 if (type == 'factory') {

 $('#' + checkDivID + ' :input').prop("disabled", false);

 } else if (type == 'branch') {

 CHECKED_BRANCHES.splice(CHECKED_BRANCHES.indexOf(checkDivID), 1);

 if (CHECKED_BRANCHES.length == 0)

 $('.sections :input').prop("disabled", false);

 } else if (type == 'section') {

69

 CHECKED_SECTIONS.splice(CHECKED_SECTIONS.indexOf(checkDivID), 1);

 if (CHECKED_SECTIONS.length == 0)

 $('.prodlines :input').prop("disabled", false);

 } else if (type == 'prodline') {

 CHECKED_PRODLINES.splice(CHECKED_PRODLINES.indexOf(checkID), 1);

 }

 $('#' + checkDivID).find('input[type=checkbox]').prop('checked', false);

 }

});

A.3 Individual Contribution

In accordance to the methodology discussed in Section 1.4 in this dissertation, all the

three team members were equally contributed in the initial steps of studying existing

similar systems and related research areas in order to get an overall idea about the

domain. Developing the design of proposed solution also obtained by the equal

contributions of all group members. Then the implementation of the proposed design

is conducted by the members as described below in the topics, from Contribution 1 to

Contribution 3. The work carried out by each member is illustrated with respect to the

components in the System Architecture, discussed in Section 3.5.

A.3.1 Contributions by V. D. Liyanage

Following are the implementations carried out by V D Liyanage.

● Client Database discussed in Subsection 4.2.8

● System Administrator Backend discussed in Subsection 4.2.9

● Admin Dashboard discussed in Subsection 4.2.10

● User Manager User Interface discussed in Subsection 4.2.11

● Production Line Editor discussed in Subsection 4.2.12

● File Server discussed in Subsection 4.2.13

70

● Web application component of the User Authentication discussed in

Subsection 4.2.16

● Web User Dashboard discussed in Subsection 4.2.17

● Web application component of Production Line View described in Subsection

4.2.19

● Web application component of Real-Time Status View discussed in Subsection

4.2.20

A.3.2 Contributions by H. M. P. M. Karunarathne

Following are the implementations carried out by H. M. P. M. Karunarathne.

● Production Line Server discussed in Subsection 4.2.14

● Mobile application components of User Authentication with configuration and

development of WSO2 IS discussed in Subsection 4.2.16

● Mobile application components of User Dashboard discussed in Subsection

4.2.17

● Configuration and development of WSO2 DSS described in Subsection 4.2.18

● Mobile application components of Production Line View discussed in

Subsection 4.2.19

● Mobile application components of Real-Time Status View discussed in

Subsection 4.2.20

A.3.3 Contributions by D D Mathangaweera

Following are the implementations carried out by D D Mathangaweera.

● Data Publisher described in Subsection 4.2.1

● Kafka Cluster described in Subsection 4.2.2

● Long-Term Database described in Subsection 4.2.3

● Report Generation Server described in Subsection 4.2.4

● Report View User Interface described in Subsection 4.2.5

● Time Series Database described in Subsection 4.2.6

● Grafana User Interface Server described in Subsection 4.2.7

