
Modeling Situated Cogniton in

Reactive Robotic Architecture

Nisal Nadeera Padukka 13000845

University of Colombo

School of Computing

2018

Modeling Situated Cogniton in
Reactive Robotic Architecture

N. N. Padukka

Modeling Situated Cogniton in
Reactive Robotic Architecture

N. N. Padukka

Index No. : 13000845

Supervised by

Dr. H.E.M.H.B. Ekanayake

Submitted in partial fulfillment of the requirements of the

B.Sc. in Computer Science Final Year Project (SCS4124)

University of Colombo School of Computing

Sri Lanka

May 24, 2018

Declaration

I certify that this dissertation does not incorporate, without acknowledgement,

any material previously submitted for a degree or diploma in any university and to

the best of my knowledge and belief, it does not contain any material previously

published or written by another person or myself except where due reference is

made in the text. I also hereby give consent for my dissertation, if accepted, be

made available for photocopying and for interlibrary loans, and for the title and

abstract to be made available to outside organizations.

Candidate Name: N. N. Padukka

.....................................

Signature of Candidate

May 24, 2018

This is to certify that this dissertation is based on the work of Mr.N. N. Padukka

under my supervision. The thesis has been prepared according to the format stip-

ulated and is of acceptable standard.

Supervisor Name: Dr. H.E.M.H.B. Ekanayake

.....................................

Signature of Supervisor

May 24, 2018

i

Abstract

Robots based on conventional AI architectures often failed to act in environ-

ments where the location of the objects in the environment is unknown. This is due

to the unpredictability of interactions that are made by the robots within the en-

vironment. As an alternative to this approach, situated robotic architectures were

introduced. Situated robotic architectures are used in the process of implementing

robots in complex and dynamically changing environments.

Subsumption architecture, a kind of situated robotic architectures introduced

by Rodney A. Brook succeeded in such environments and was well-received by the

situated AI research community. This research focuses on enhancing the situated-

ness of ‘subsumption architecture’. Situatedness refers to the fact that to which

extent agent’s cognitive process is affected by its environment. In this research,

enhancement is based on how the robot’s behavior is affected by its internal and

external environmental condition.

Fuzzy controller based approach was used to interface selected internal and

external environmental variables with the existing subsumption architecture. As

a further enhancement, behaviours of subsumption architecture was implemented

using neural dynamics.

Results of the experiments conclude that fuzzy controller based approach can

be used to interface the internal and external environmental parameters to the

subsumption architecture. Furthermore, there is significant improvement of the

reactiveness of robot when behaviours of the robot are implemented using neural

dynamics.

Keywords: Situatedness, Subsumption Architecture, Neural Dynamics, Fuzzy

Controller

ii

Preface

This research is based on the work done by Rodney A. Brook. The aim of the

research is to enhance the situatedness of Brook’s Subsumption architecture. As

the initial step, performance of the Brook’s subsumption architecture was evaluated

compared to the conventional robotic architecture. The results are mentioned in

the Chapter 5.

Proposed robotic architectures and evaluation criteria were designed in conjunc-

tion with my supervisor. In modeling the proposed architectures existing literature

was referred. Implementing and evaluating the performance of the robots based on

the existing and proposed architectures were my own work.

iii

Acknowledgement

First and foremost, I would like to express my utmost gratitude to my super-

visor, Dr. Hiran Ekanayake for his continuous support, encouragement, and care.

Without his assistance and dedicated involvement in every step throughout the

year, this study would have never been accomplished. Getting through this study

required more than academic support, and I have many people to thank for listen-

ing to me at any time and being with me in much needed time. I would like to

thank all the authors of those publications and articles which helped me in a lot

of ways. Most importantly, none of this could have happened without my family.

My loving mother, father and sisters, without your guidance and help this study

would not have been possible.

iv

Contents

Declaration i

Abstract ii

Preface iii

Acknowledgement iv

Contents ix

List of Figures xi

List of Tables xii

Acronyms xiii

1 Introduction 1

1.1 Background to the Research . 1

1.2 Research Problem . 2

1.3 Research Questions . 2

1.4 Justification for the research . 3

1.5 Methodology . 3

v

1.6 Outline of the Dissertation . 5

1.7 Definitions . 5

1.7.1 Agent . 5

1.7.2 Situatedness . 6

1.7.3 Embodiment . 6

1.7.4 Situated Cognition . 6

1.8 Delimitations of Scope . 6

1.9 Conclusion . 6

2 Literature Survey 7

2.1 Robotic Paradigms . 7

2.1.1 Hierarchical Paradigm . 7

2.1.2 Reactive robotic paradigm 8

2.2 Subsumption architecture . 9

2.3 Interfacing Internal and External Environmental Parameters into

the Decision-making Process of a Robot 11

2.4 Fuzzy controller based subsumption behavior architecture for au-

tonomous robotic wheelchair . 12

2.5 Neural Dynamics . 13

2.5.1 Attractor and Repellor Dynamics 13

2.5.2 On-line Imitative Interaction with a Humanoid Robot Using

a Dynamic Neural Network Model of a Mirror System 13

2.5.3 Dynamic and interactive generation of object handling be-

haviors . 14

2.5.4 A neural-dynamic architecture for behavioral organization of

an embodied agent . 15

vi

2.6 Cognitive affective architecture . 15

3 Design 17

3.1 Introduction . 17

3.2 Design of the Robot I . 17

3.2.1 Introduction . 17

3.2.2 Functionality of the Robot 18

3.2.3 High-level Architecture . 18

3.3 Design of the Robot II - Obstacle avoidance using Subsumption ar-

chitecture . 19

3.3.1 Introduction . 19

3.3.2 Functionality of the Robot 20

3.3.3 High-level Architecture . 20

3.4 Design of the Robot III - Robot using Subsumption architecture . . 21

3.4.1 Introduction . 21

3.4.2 High-level Architecture . 23

3.4.3 Functionality of the Robot 23

3.5 Design of the Robot IV - Enhanced situated robot using fuzzy inte-

grations to Subsumption architecture 24

3.5.1 Introduction . 24

3.5.2 High-level Architecture . 24

3.5.3 Design of the Fuzzy Controller 24

3.6 Design of the Robot V - Enhanced situated robot using fuzzy inte-

grations and attractor dynamics approach 25

3.6.1 Introduction . 25

vii

3.7 Design Assumptions . 25

4 Implementation 26

4.1 Implementation of the Robot I . 26

4.1.1 Hardware Implementation 27

4.1.2 Software Implementation . 27

4.2 Implementation of the Robot II . 28

4.2.1 Software Implementation . 28

4.3 Implementation of the Robot-III . 29

4.3.1 Hardware Implementation 30

4.3.2 Software Implementation . 31

4.4 Implementation of the Robot-IV . 33

4.4.1 Software Implementation . 34

4.5 Implementation of the Robot-V . 35

5 Results and Evaluation 38

5.1 Conventional Architecture Vs. Subsumption Architecture 38

5.2 Subsumption Architecture Vs. Fuzzy Integrated Subsumption Ar-

chitecture . 39

5.3 Fuzzy Integrated Subsumption Architecture Vs. Neural Dynamic

based Fuzzy Integrated Subsumption Architecture 42

6 Conclusion 44

6.1 Introduction . 44

6.2 Conclusions about research questions 44

6.3 Conclusions about research problem 45

viii

6.4 Limitations . 45

6.5 Future Work . 45

References 47

Appendices 50

A Code Listings 51

A.1 Python implementation of the fuzzy controller 51

A.2 Implementation of the Obstacle Avoidance Behaviour 56

A.3 Path Following behavior using sine attractor dynamics 61

A.4 Motor driver implementation . 62

A.5 Arduino Code . 65

ix

List of Figures

1.1 Research Methodology . 5

2.1 Convolutional AI Robotic Architecture 7

2.2 Battenberg’s Vehicle . 8

2.3 Reactive Paradigm . 9

2.4 Subsumption Architecture . 10

2.5 Microbial fuel cell . 12

2.6 Control of the heading direction for approaching a target 13

2.7 Robotic architecture using RNNPB 15

2.8 Cognitive affective architecture of brain 16

3.1 Design of the Robot I . 18

3.2 Arena for the Robot I . 18

3.3 High Level Architecture of the Robot I 19

3.4 High-Level Architecture of the Robot II 20

3.5 Design of the Robot III - Bottom Layer 22

3.6 Design of the Robot III - Upper Layer 22

3.7 High-Level Architecture of the Robot III 23

3.8 Arena for the Robot III . 23

x

3.9 High-Level Architecture of the Robot IV 24

4.1 Implemented Robot I . 26

4.2 Raspberry PI 2 B+ . 27

4.3 Implemented Robot III . 30

4.4 Wheel encoders . 31

4.5 User interface . 34

4.6 IR sensor panel orientation . 36

4.7 Sine attractor dynamic . 36

5.1 Avoiding an Obstacle . 39

5.2 Fuzzification of variables . 40

5.3 Rule application to input variables 41

5.4 Defuzzification of output variable 41

5.5 Arena used to evaluate Robot III, IV and V 42

5.6 Evaluating the attractor dynamic based path following behavior . . 43

xi

List of Tables

4.1 Fuzzy Rules . 34

5.1 Strength altering factor(k) changes with Engergy Level, Tempera-

ture and Distance . 41

xii

Acronyms

AI Artificial Intelligence

EB Elementary Behavior

ICEA Integrating Cognition, Emotion and Autonomy

AFSM Augmented Finite State Machine

IR Infrared

CoS Center of Satisfaction

RNNPB Recurrent Neural Network with Pragmatic Biased

xiii

Chapter 1

Introduction

1.1 Background to the Research

One of the most challenging problems faced by roboticists is having artificial agents

to interact with the real-world environment. Using conventional AI approaches,

researchers have attempted to find a solution for this by endowing the robots

with exact representation of objects existing in its environment [1]. Due to the

unpredictability of interactions that robots made with the environment at the time

of implementation, conventional AI approaches started facing intractable issues in

real-world environments.

In order to address these issues in conventional AI, situated AI approach was

proposed. The goal of situated AI approach is to model entities that are au-

tonomous in their environment. This requires designing robotic architectures from

the bottom-up by focusing on the basic perceptual and motor skills required to

survive. Rodney Brook’s subsumption architecture is an extremely popular situ-

ated robotic architecture which allows the successful creation of real-time dynamic

systems to perform in complex environments.

In furtherance, this research is focusing on enhancing the situatedness of sub-

sumption architecture. Situatedness refers to the fact that to which extent the

behavior of an agent is affected by its environment [2]. Situatedness also depends

on the internal and external environmental conditions such as energy level, tem-

perature, light condition etc [3]. In this research, enhancing the situatedness of

reactive robotic architecture by integrating internal and external environment con-

ditions into cognitive process is considered. A fuzzy controller based approach is

1

used to interface these variables into the cognitive process.

As a further enhancement to this situated architecture, naturalizing the sub-

sumption architecture using a neural dynamic based approach is done.

It’s not an easy task to completely replicate the situated cognition into machines

[4]. Over the years, many researches have been conducted towards modeling situ-

ated cognition into artificial agents [5]. This research is a step forward in modeling

situated robotic architectures which will contribute to the whole process.

1.2 Research Problem

In existing situated architectures interfacing the internal and external environment

parameters to the decision-making process of the agent have not been substantially

taken into consideration. In order to fill this research gap, an attempt is made in

this research to enhance the situatedness of robots by incorporating both internal

and external features of its environment.

The problem of existing robotic architectures in situated AI deviating from bio-

inspired implementations has also been identified [6]. Implementation of a situated

architecture using biologically inspired computationally tractable approach has to

be undertaken to sort out this problem.

1.3 Research Questions

Now, two questions will arise in the process of filling this research gap;

RQ1 : How to enhance the situatedness of robots by incorporating both

internal and external features of its situated environment using fuzzy

integrations?

Internal features are features that are directly related to the situated task

like energy level. External features are features that are indirectly and ubiqui-

tously related to the situated task like temperature, social presence, light, air, and

sound conditions. According to the internal and external environment conditions,

strength of the behavior should be changed. In this research, above question will

be addressed.

2

RQ2: How to naturalize the reactive robotic architecture with neuro-

logically plausible computational approach?

Reactive robotic architectures were designed based on the studies of biological

behaviors of animals like insects. Though these architectures were inspired based

on biological creatures, implementation is different from the bio-inspired aspects.

Since natural intelligence is based on a neuron system, implementation of robotic

architecture should be addressed using a neurology based approach.

1.4 Justification for the research

Enhancing the situatedness in reactive robotic architecture is a trivial area in sit-

uated AI research. This is important in several theoretical and practical grounds

of robotics which are explained below.

Adaptive Robotics - Incorporating the environmental conditions into the decision-

making process will improve the adaptiveness of robots in its environment [7].

Robot Autonomy - Proposed architecture can be used to implement robots to

perform autonomously in changing environments.

Human-Robot relationship - Situatedness is an important feature in human

intelligence. Modeling the situated cognition for robots will contribute to build

human alike robots in future, increasing the human-robot relationship.

Cognitive replacements for human in future - In future, if researchers could

be able to build completely intelligent robots, it will help to reduce the work load

of human being.

1.5 Methodology

As the first step, by analyzing the existing literature, research gap explained in

section 1.3 was identified. In order to analyze the existing robotic architectures,

a robot based on conventional robotic architecture (Robot-I) and subsumption

architecture(Robot-II) was designed. The design and the functionality of the robot

3

are explained in section 3.2 and section 3.3 in Chapter 3. Same functionality was

implemented from both architectures and the performance difference between the

two architectures was analyzed.

As an enhancement to the subsumption architecture, external and internal envi-

ronment conditions of the robot were incorporated into the decision-making process

of the robot. Fuzzy controller based approach was used for this purpose. From this

approach it was possible to integrate these variables into the robot. In this re-

search, temperature is considered as an external environment condition parameter

and energy level of the robot is considered as an internal environment condition pa-

rameter. In order to evaluate the performance of the proposed architecture, a robot

based on the subsumption architecture (Robot-III) and robot based on enhanced

architecture(Robot-IV) were designed and implemented.

As a further enhancement to the proposed architecture, behaviours of subsump-

tion architecture were implemented using neural dynamics. In order to evaluate the

affect of implementing behaviours using neural dynamics, perfomance of Robot-IV

and Robot-V will be evaluated and compared. The below section explains the re-

search approach in a more structured manner and figure 1.1 illustrates the research

mythology as a block diagram.

Step 1 : Identify the research gaps in situated AI robotics

Step 2 : Hardware implementation of the first robot (Robot-II and Robot-II)

Step 3 : Software Implementation of the Robot-I and Robot-II

Step 4 : Evaluate the performance of the Robot-I and Robot-II

Step 5 : Hardware implementation of the second robot (Robot-III, Robot-IV,

Robot-V)

Step 6 : Integrate fuzzy controllers with parameters; energy level, temperature

Step 7 : Software Implementation of the Robot-III, Robot-IV and Robot V

Step 8 : Evaluate the performance of the Robot-III, Robot-IV and Robot V

4

Figure 1.1: Research Methodology

1.6 Outline of the Dissertation

• Chapter 2 deals with the background of the thesis and the literature review

of the study.

• In Chapter 3, a detailed description of the research design is provided. In

this section, design of each experiment is discussed.

• Chapter 4 contains all the details related to the implementation.

• Chapter 5 contains results of each experiment done in this research. After-

wards, the results will be discussed.

• The final chapter contains the conclusion and future work.

1.7 Definitions

Situated cognition, situatedness, embodiment are concepts that are initially iden-

tified in the field of cognitive science and latterly adapted into other research do-

mains. There are no universal definitions interpreted across all research domains.

Therefore, these concepts are defined in this section.

1.7.1 Agent

In artificial intelligence, an agent is an autonomous entity which observes through

sensors and acts upon an environment using actuators and directs its activity to-

wards achieving goals [8].

5

1.7.2 Situatedness

Situatedness refers to the fact that to which extent the behaviour of an agent is

affected by its environment [2].

1.7.3 Embodiment

Embodiment is the degree to which a robot can affect its environment [9][10].

1.7.4 Situated Cognition

Situated cognition is the ability of an agent to make decisons and act on the fly to

the changes in environement [2].

1.8 Delimitations of Scope

In this research, when evaluating the proposed architecture our scope is limited

to consider energy level as the internal environment parameter and temperature

as the external environment parameter. When implementing the Robot-V using

neural dynamic approach, only plausible behaviours were implemented using neural

dynamic. There are learning methods like reinforcement learning, instar leaning,

available in neural dynamic architectures [11][12]. In our scope learning methods

will not be considered.

1.9 Conclusion

This chapter laid the foundations for the dissertation. It introduced the research

problem and research questions. Then the research was justified, definitions were

presented, the methodology was described and justified, the dissertation was out-

lined, and the limitations were given. On these foundations, the dissertation can

proceed with a detailed description of the research.

6

Chapter 2

Literature Survey

2.1 Robotic Paradigms

A paradigm is a philosophy or set of assumptions and techniques which character-

izes an approach to a class of problems [13]. Robotic paradigm can be described by

the relationship between sense, plan and act. Currently there are three paradigms

for organizing intelligence in robots - Hierarchical, Reactive, and Hybrid Delibera-

tive/Reactive.

2.1.1 Hierarchical Paradigm

The Hierarchical Paradigm is the oldest paradigm used in robotic design and it

works in three stages. In Hierarchical Paradigm, the robot senses the world, plans

the next action, and then acts as shown in the 2.1. At each step, the robot explicitly

plans the next move. This works similarly to a traditional computer program that

models isolated input, output systems. When using this model roboticists face

following two problems.

Figure 2.1: Convolutional AI Robotic Architecture

7

• Frame Problem

The problem of representing a real-world situation in a way that was computation-

ally tractable became known as the frame problem [13].

• Closed World Problem

Roboticists claim that robot must function in the open world. It means robot

should be able to function in an unknown environment [13].

2.1.2 Reactive robotic paradigm

To address the Frame Problem and Closed world problem roboticists proposed a

new paradigm based on animal behaviors. Animals living in open world and simple

animals such as insects, fish and frogs who exhibit intelligent behaviors without a

brain were the motivation for considering animal behaviors [14].

Figure 2.2 shows Battenberg’s vehicle, consists of a sensory system, motor sys-

tems, a nervous system and a body. These vehicles have two light sensors mounted

in front and these sensors are directly coupled with motors. As figure illustrates,

vehicle 2a moves away from light source and robot 2b moves towards the light

source. This Battenberg’s vehicle can be considered as the first steps towards

reactive paradigm [15].

Figure 2.2: Battenberg’s Vehicle

Reactive paradigm is a sense-act type of organization. The robot has multiple

instances of sense-act couplings. These couplings are concurrent processes, called

8

behaviors. Figure 2.3 shows how multiple behaviors work concurrently in reactive

paradigm [13].

Figure 2.3: Reactive Paradigm

2.2 Subsumption architecture

Brook had a different approach in building intelligent agents from the conventional

AI approach. He claims that human level of intelligence is too complex, and difficult

to understand human level of intelligence. Therefore, his approach is to start from

simpler level of intelligence and incrementally buildup complete intelligent agents.

Brook starts his claim with a radical hypothesis - “Representation is the wrong

unit for abstraction”. Based on this hypothesis, he has successfully argued that

an intelligent agent should see the world as an abstract model. To explain the

difference between the representation and abstraction, Brook brings a very clear

example - representing a chair. A chair can be represented using its exact character-

istics like color, material, size etc. Rather than representing a chair with its exact

characteristics, it is possible to represent a chair by using its two major characteris-

tics: (CAN (SIT-ON PERSON CHAIR)), (CAN (STAND-ON PERSON CHAIR).

Likewise, a chair can be represented using an abstract model. Using this method,

the world can be described as an abstract model. The key idea of representing

the world in an abstraction form is that agent should be able to perform when the

representation of the world changes.

Brook proposed a new architecture for implement intelligent agent with an

abstract model of the world. He rejected the central control in intelligent agents and

proposed a new layer based reactive architecture called ‘Subsumption architecture’

for implement intelligent agents. Rejecting the concept of central control system

significantly deviates his approach from ‘Conventional AI’ and ‘New AI’.

9

‘Subsumption architecture’ can be considered as the first situated robotic ar-

chitecture. This is a layer based architecture and each layer represent a certain

level of intelligence. Figure 2.4 illustrates a higher level representation of Subump-

tion Architecture. These layers are working concurrently to perform a certain goal.

Bottom layers represent the functionalities like survival behaviors and higher layers

represent more cognitive functionalities. Each layer is built up using augmented

finite state machines which are called modules. Modules in higher layers can sup-

press or inhibit modules in lower layers. Suppression is that a module at a higher

level can suppress the input of a module at a lower level thereby preventing the

module from seeing a value at its input. A module can also inhibit the output of

a module at a lower level thereby preventing that output from being propagated

to other modules. Using this method robot gets the ability to exhibit the right

behavior from a combination of behaviors.

Figure 2.4: Subsumption Architecture

Subsumption architecture is promising and gives better results in real-world

scenarios. Using this architecture, Brook was able to build first robot which can

walk, avoid collisions and climb over obstacle in a dynamic environment.

Brook implemented the Subsumption architecture using logic devices and his

implementation is completely based on software. There are software based imple-

mentations made by the researchers recently [16][17]. LEJOS – a robotics company,

has implemented a JAVA thread based open-source software package for Subsump-

tion architecture [18]. Greg Butler has proposed an Object-Oriented Design of the

Subsumption architecture in his research work [19].

Recent work suggests that when increment the number of layers, it deviates

from the reactive nature and becomes a priority based architecture [20]. Prelim-

inary requirement of intelligent is learning and it is not described in the Brook’s

10

architecture. Another issue with ‘Subsumption architecture’ is that robot cannot

perform multiple behaviors at a time.

2.3 Interfacing Internal and External Environ-

mental Parameters into the Decision-making

Process of a Robot

In literature, there are previous attempts to interface internal and external environ-

mental parameters into the decision-making process of the robot. In 1995, Randall

D. Beer has presented a dynamical system approach for autonomous agents which

interact with the environment. In this framework, an agent and its environment

are modeled as two coupled dynamical systems whose mutual interaction in general

jointly responsible for agent’s behavior [21]. He considered that embodied agent

must not be purely reactive, reflexively responding only to its immediate situation

and he claimed that embodied agent should have long-term goals. In this research,

Randall has considered implementing an autonomous agent which is capable of sat-

isfying internal or external goals by its own actions while in continuous long-term

interaction with the environment in which it is situated [21]. In this paper, he has

presented an approach to model situated autonomous agents using coupled second

order dynamical systems. One dynamical system represents the agent and other

dynamical system represent the environment where the agent is situated.

Energy is considered as the most powerful constraint of autonomous mobile

robotics [22]. Alberto et al have conducted several researches in implement energy

autonomy for robotics. Novel approach of modeling autonomous agents using bio-

mechatronic hybrid system is presented in their research. In this, bio-mechatronic

hybrid model, energy cells represent as microbial fuel cells like in a living animal.

The living component of the system, embedded within microbial fuel cells, relies on

the availability of ‘food’ and ‘water’ in order to produce electrical energy [23]. It is

essential to agent to find and collect ‘food’ and ‘water’ to survive. Based on these

survival requirements robot exhibits a sequence of cognitive behaviors. Figure 2.5

illustrates a microbial fuel cell which requires substrate and water.

11

Figure 2.5: Microbial fuel cell

Alberto has represented another approach to implement energy autonomy for

robotics. In this work, a robot architecture based on sensor-motor morphology is

presented [24]. As in the previous case, water and fuel substrate were considered as

the primary resource requirements. Robots made based on this architecture were

conscious on motivation and energy level.

2.4 Fuzzy controller based subsumption behavior

architecture for autonomous robotic wheelchair

The work of Zahmi et al presents the design and implementation of fuzzy controller

based subsumption behavior architecture for controlling an autonomous robotic

wheelchair. This wheelchair was developed with one or more basic behaviors such

as goal seeking, wall following, obstacle avoidance and finding target based on

different environmental conditions [25].

12

2.5 Neural Dynamics

In this section, attractor and repellor dynamic approach is discussed. Attractor dy-

namics are used to implement robots which attract towards the target and repeller

dynamics are used implement robots which move away from the target.

2.5.1 Attractor and Repellor Dynamics

To control a robot using a neural dynamical system, it is required to construct a

differential equation that produces the desired behavior, for instance turning the

robot towards a target. For the dynamical systems approach, this means con-

structing a dynamics that has attractors at target states that pull the system’s

state towards them and repellors that push the system’s state away from undesired

states [26]. Figure2.6 illustrates the control of the heading direction for approach-

ing a target. ψ represent the direction of the target and φ represent the current

heading direction. To turn a robot toward a target that lies in the direction ψ, a

dynamical system that controls the robot’s heading direction φ can be implemented

using the below equation.

Figure 2.6: Control of the heading direction for approaching a target

φ̇ = −λ(φ̇− ψ̇), λ > 0

2.5.2 On-line Imitative Interaction with a Humanoid Robot

Using a Dynamic Neural Network Model of a Mirror

System

The work of Masato Ito has conducted an experiment on the initiative interactions

between a small humanoid robot and user. In this research, as in the previous

13

research RNNPB model was used to implement the robot [27]. This experiment

showed that after the robot learns multiple cyclic movement patterns as embedded

in the RNNPB, it can regenerate each pattern synchronously with the movements

of a human who is demonstrating the corresponding movement pattern in the robot

[27].

2.5.3 Dynamic and interactive generation of object han-

dling behaviors

This study presents experiments on the learning of object handling behaviors by a

small humanoid robot using a dynamic neural network model, the recurrent neural

network with parametric biased (RNNPB) [28]. From this model, robot was able to

generate adequate ball handling motor sequences situated to the relative position

between the robot’s hands and the ball. The same scheme was applied to a block

handling learning task where it was shown that the robot can switch among learned

different block handling sequences, situated to the ways of interaction by human

supporters.

The basic mechanic of this architecture is, sensory-motor patterns of guided

behaviors are embedded in the RNNPB in the form of attractor dynamics[28]. The

attractor represents the essential spatio-temporal structure of the target behavior.

Learning multiple behavior pattern is realized by switching different attractor dy-

namics [28]. The Figure 2.7 illustrates the RNNPB architecture which was used in

this research.

14

Figure 2.7: Robotic architecture using RNNPB

2.5.4 A neural-dynamic architecture for behavioral organi-

zation of an embodied agent

In this work, researchers have presented a neural-dynamic behavior based robot

using NOA experimental robot which can grasp a cup using robot arm. This

architecture is very specific to task and has following behaviors; find color : find

the blue color cup, move-end effecter : move the robot arm to the location, open

gripper and close gripper. They have used Dynamic Field Theory (DFT) for the

neural dynamic implementation [29].

2.6 Cognitive affective architecture

Figure 2.8 shows the work of the larger European cognitive robotics group called

ICEA. This is an abstract model of the hypothalamus and brainstem which deal

with ‘low-level mechanisms’ of human body such as drives and bio-regulations.

The primary aim of this research is to computationally model, at different level of

abstraction, different brain structures and their interactions [30].

15

Figure 2.8: Cognitive affective architecture of brain

16

Chapter 3

Design

3.1 Introduction

This chapter provides a detailed description of the research design of the project.

It describes the design of the research including the design of reactive robotic

architectures implemented and tested in this research, evaluation criteria and design

assumptions.

3.2 Design of the Robot I

3.2.1 Introduction

As the initial step, an obstacle avoidance robot was implemented using the con-

volution robotic architecture. This robot was used to evaluate the performance of

existing convolution robotic architecture. Figure 3.1 shows the design of the robot

which was implemented. It has an arm with an Ultra Sonic sensor. From the Ultra

Sonic sensor, it can detect distance to objects in front of the robot. Movement

direction was decided using these sensor readings. Raspberry Pi 2 B+ model was

used as the cental processing unit.

17

Figure 3.1: Design of the Robot I

3.2.2 Functionality of the Robot

The functionality of the robot was to avoid obstacles and move forward in arena

as shown in the figure 3.2.

Figure 3.2: Arena for the Robot I

3.2.3 High-level Architecture

Figure 3.3 illustrates the high level architecture design of the implemented robot.

Central processing unit continuously looking for an obstacle and if there are no

obstacles infront of the robot, robot moves forward. When an obstacle is met, it

turns away from the obstacle by 900 to right or left. If there are obstacles in right

and left side of the robot, it turns back by 1800.

18

Figure 3.3: High Level Architecture of the Robot I

3.3 Design of the Robot II - Obstacle avoidance

using Subsumption architecture

3.3.1 Introduction

Using the same hardware of the Robot I, a subsumption architecture based robot

was implemented. This robot was used to evaluate the performance of subsumption

architecture compared to coventional architecture. As shown in the figure 3.1

same robot design was used to implement the robot. The difference is in the

architecture, which is a thread based subsumption architecture. This robot exhibits

two behaviours,

• Obstacle Avoidance Behaviour

Obstacle avoidance behavior gives the ability to the robot to avoid obstacles to

prevent collisions. Obstacle avoidance behaviour gets the control of the robot

when an obstacle is detected.

• Moving Forward Behaviour

In this behaviour, robot makes movemets from its current location.

19

3.3.2 Functionality of the Robot

The functionality of the robot was to avoid obstacles and move forward in arena

as shown in the figure 3.2.

3.3.3 High-level Architecture

Figure 3.4 illustrates the high level architecture of the implemented robot.

Figure 3.4: High-Level Architecture of the Robot II

20

3.4 Design of the Robot III - Robot using Sub-

sumption architecture

3.4.1 Introduction

This robot was designed to evaluate the performance of subsumption architecture.

It is equipped with two ultra sonic sensors mounted on two servo motors, camera,

IR Sensor panel, temperature Sensor, sensors to measure the energy consumption

and wheel encoders. This robot was designend to implement in two layers. Figure

3.5 illustates the design of the bottom layer of the robot. Figure 3.6 illustrates the

upper layer of the robot. The same robot is used to evaluate the performance of

the architectures. This robot exhibits four behaviours;

• Obstacle Avoidance Behaviour

Obstacle avoidance behavior gives the ability to the robot to avoid obstacles to

prevent collisions. Obstacle avoidance behaviour gets the control of the robot

when obstacle is detected.

• Path Following Behaviorr

In this behaviour, robot moves along the path using its IR sensors. It works by

adjusting the speed of the motors to remain in the path.

• Path Finding Behaviour

When a path discontinuity occurs, this behavior should get activated and robot

should move randomly across the arena to get back into the path.

• Finding the Target Behaviour

Finding the target behavior is used to find the target location. In this part, real-

time image processing is used to find the target. When the robot reaches to the

end location, robot should stop and give a notification.

21

Figure 3.5: Design of the Robot III - Bottom Layer

Figure 3.6: Design of the Robot III - Upper Layer

22

3.4.2 High-level Architecture

Figure 3.7 illustrates the high level architecture of the designed robot.

Figure 3.7: High-Level Architecture of the Robot III

3.4.3 Functionality of the Robot

The functionality of the robot is to follow the line, avoid obstacles and reach to the

destination in arena as shown in the figure 3.8.

Figure 3.8: Arena for the Robot III

23

3.5 Design of the Robot IV - Enhanced situated

robot using fuzzy integrations to Subsump-

tion architecture

3.5.1 Introduction

This robot is used to evaluate the performance of the proposed architectures com-

pared to the existing architecture. This robot has the same hardware as the Robot

III. Functionalities to measure energy-level, temperature and distance are imple-

mented in this robot. As mentioned in the previous chapter, energy-level is con-

sidered as the internal environmental factor and temperature is considered as the

external environmental factor.

3.5.2 High-level Architecture

Figure 3.9 illustrates the high level architecture of the designed robot.

Figure 3.9: High-Level Architecture of the Robot IV

3.5.3 Design of the Fuzzy Controller

As explained in the previous sections, energy level and temperature of the robot

will be considered to enhance the situatedness of the behavior based architecture.

In order to integrate these variables into decision making process, each behavior

24

will be interfaced with a fuzzy controller. Inputs to the fuzzy controller will be

energy level, temperature and remaining distance. Based on these parameters, the

strength of the currently active behavior will be altered to achieve the final goal.

3.6 Design of the Robot V - Enhanced situated

robot using fuzzy integrations and attractor

dynamics approach

3.6.1 Introduction

In this architecture, path following behaviour is designed to implement using at-

tracter dynamic approach. This architecture is compared with the architecture of

Robot V to evaluate the improvement of using neural dynamics in naturalizing the

reactive robotic architecture.

3.7 Design Assumptions

This section provides the design assumptions that have been identified as follows;

• As the internal environmental condition of the robot, only the energy level

of the robot will be considered.

• As the external environmental condition, only the temperature of the envi-

ronment will be considered.

• For the evaluating purposes, robot will be designed to react to slight varia-

tions of the temperature.

.

25

Chapter 4

Implementation

This chapter mainly focuses on the implementation of five robots which described

in chapter 3. In addition to the implementation, different tools used in the project

will be discussed.

4.1 Implementation of the Robot I

Figure 4.1 illustrates the implemented robot which was used to evaluate the designs

of Robot I and Robot II. This robot has a raspberry pi 2B+ model as the processing

unit and equipped with a rotatable ultrasonic sensor to detect obstacles around the

robot.

Figure 4.1: Implemented Robot I

26

4.1.1 Hardware Implementation

In this robot Raspberry PI 2 B+ model was used as the processing unit. This

processor has a 900MHz quad-core ARM Cortex-A7 processor and 1GB physical

memory. Raspbian was used as the operating system. These specifications are

essential for the multi-processing requirement of the implementation. SR04 ultra-

sonic sensor was used to detect obstacles.

Figure 4.2: Raspberry PI 2 B+

4.1.2 Software Implementation

In this architecture, robot was implemented using conventional robotic architec-

ture. Robot continuously scans for obstacles. If an obstacle is detected, robot

moves away from the obstacle and if no obstacles are present robot moves forward.

Algorithm 1 illustrates the pseudocode of the implementation.

Algorithm 1 Obstacle Avoidance Robot-I

1: while true do

2: if ObstacleDetected() then

3: TurnAway()

4: else

5: MoveForward()

6: end

27

4.2 Implementation of the Robot II

For this implementation same hardware as in the Robot-I was used. For this robot,

same functionality was implemented using subsumption architecture.

4.2.1 Software Implementation

The two behaviors described in the Section 3.3 were implemented using two Python

threads. Obstacle avoidance behavior is the survival behavior and when an obsta-

cle detected, robot suppresses the moving forward behavior and avoid the obstacle.

Algorithm 2 illustrates the implementation of the Obstacle Avoidance behavior

and Algorithm 3 illustrates the implementation the of Moving Forward behavior.

Algorithm 4 represents the thread based implementation of the Subsumption Ar-

chitecture.

Algorithm 2 Behaviour 1 : Obstacle Avoidance

1: procedure TakeControl

2: rotateSonar(00)

3: d1← readSonar

4: rotateSonar(−450)

5: d2← readSonar

6: rotateSonar(+450)

7: d3← readSonar

8: if distance < d1,d2,d3 then

9: return True

10: procedure Suppress

11: if suppressed! = true then

12: return true

13: procedure Action

14: rotateSonar(−900)

15: if distance < d1 then

16: TurnLeft()

17: rotateSonar(+900)

18: if distance < d2 then

19: TurnRight()

2

Algorithm 3 Behaviour 2 : Move Forward

1: procedure TakeControl

2: if suppressed! = true then

3: return true

4: procedure Suppress

5: suppressed← true

6: return true

7: procedure Action

8: MoveForward()

28

Algorithm 4 Subsumption Architecture

1: B1← new Obstacle Avoidance

2: B2← new MoveForward

3: procedure Behaviour 1

4: if B1.TakeControl() = true then

5: B2.Suppress()

6: B1.Action()

7: B1.Supress()

8:

9: procedure Behaviour 2

10: if B2.TakeControl() = true then

11: B1.Suppress()

12: B2.Action()

13: B2.Supress()

14:

15: thread.start(BEHAVIOUR 1)

16: thread.start(BEHAVIOUR 2)

4.3 Implementation of the Robot-III

Figure 4.3 illustrates the implemented robot which was used to evaluate the designs

of Robot III, Robot IV and Robot V. This robot has a raspberry pi as the processing

unit, two rotatable ultrasonic sensors to detect obstacles, five IR sensors to detect

the path, a temperature sensor, current sensor and a camera to identify the target

location.

29

Figure 4.3: Implemented Robot III

4.3.1 Hardware Implementation

In this robot Raspberry PI 2 B+ model was used as the processing unit. This

processor has a 900MHz quad-core ARM Cortex-A7 processor and 1GB physical

memory. Raspbian was used as the operating system. These specifications are

essential for the multi-processing requirement of the implementation. Two SR04

ultrasonic sensors were used to detect obstacles. Five IR sensor modules were used

to detect the path. An ACS712 Current Sensor is being used to measure the current

consumption. DH11 sensor module is being used to measure the temperature in

the environment. 4000mAh battery was used to power the robot. Raspberry PI

Rev 1.3 Camera was interfaced with the robot to detect the end location. Wheel

encoders were used to measure the distance travelled by the robot.

30

Figure 4.4: Wheel encoders

4.3.2 Software Implementation

The four behaviors described in the Section 3.4 were implemented using four Python

threads. Obstacle avoidance behavior is the survival behavior and when an obstacle

detected, robot suppresses the moving forward behavior and avoids the obstacle.

Algorithm 5 illustrates the implementation of the Obstacle Avoidance behavior and

Algorithm 6 illustrates the implementation of the path following behaviour. Algo-

rithm 7 illustrates the implementation of the finding target behavior. Algorithm

8 represents the thread based implementation of the Subsumption Architecture.

Thread based subsumption architecture was implemented considering the princi-

ples of LEJOS software based subsumption architecture [31].

Algorithm 5 Behaviour 1 : Obstacle Avoidance

1: procedure TakeControl

2: rotateSonar1(00)

3: rotateSonar2(00)

4: d1← readSonar

5: d2← readSonar

6: rotateSonar1(−450)

7: rotateSonar2(−450)

8: d3← readSonar

9: d4← readSonar

10: rotateSonar1(+450)

11: rotateSonar2(+450)

12: d5← readSonar

13: d6← readSonar

14: if distance < d1,d2,d3,d4,d5,d6

then

15: return True

16: procedure Suppress

17: if suppressed! = true then

18: return true

19: procedure Action

20: TurnLeft()

21: MoveForward()

22: TurnRight()

23: MoveForward()

24: TurnRight()

25: MoveForward()

26: TurnLeft()

2

31

Algorithm 6 Behaviour 2 : Path Following

1: procedure TakeControl

2: if suppressed! = true then

3: return true

4: procedure Suppress

5: suppressed← true

6: return true

7: procedure Action

8: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,0,0) then

9: MoveForward()

10: if IR1, IR2, IR3, IR4, IR5 = (0,1,1,1,0) then

11: MoveForward()

12: if IR1, IR2, IR3, IR4, IR5 = (0,1,1,0,0) then

13: SlightTurnLeft()

14: if IR1, IR2, IR3, IR4, IR5 = (1,0,0,0,0) then

15: SharpTurnLeft()

16: if IR1, IR2, IR3, IR4, IR5 = (0,1,0,0,0) then

17: TurnLeft()

18: if IR1, IR2, IR3, IR4, IR5 = (1,1,0,0,0) then

19: SharpTurnLeft()

20: if IR1, IR2, IR3, IR4, IR5 = (1,1,1,0,0) then

21: SlightTurnLeft()

22: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,1,0) then

23: SlightTurnRight()

24: if IR1, IR2, IR3, IR4, IR5 = (0,0,0,0,1) then

25: SharpTurnRight()

26: if IR1, IR2, IR3, IR4, IR5 = (0,0,0,1,0) then

27: TurnRight()

28: if IR1, IR2, IR3, IR4, IR5 = (0,0,0,1,1) then

29: SharpTurnRight()

30: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,1,1) then

31: SlightTurnRight()

32

Algorithm 7 Behaviour 4 : Finding the Target

1: procedure TakeControl

2: if suppressed! = true and TargetFound() = true then

3: return true

4: procedure Suppress

5: suppressed← true

6: return true

7: procedure Action

8: halt

Algorithm 8 Subsumption Architecture

1: B1← new Obstacle Avoidance

2: B2← new Path Finding

3: B3← new Path Following

4: B4← new Finding the Target

5: procedure Behaviour 1

6: if B1.TakeControl() = true then

7: B2.Suppress()

8: B3.Suppress()

9: B4.Suppress()

10: B1.Action()

11: B1.Supress()

12: procedure Behaviour 2

13: if B2.TakeControl() = true then

14: B3.Suppress()

15: B4.Suppress()

16: B2.Action()

17: B2.Suppress()

18: procedure Behaviour 3

19: if B3.TakeControl() = true then

20: B4.Suppress()

21: B3.Action()

22: B3.Supress()

23: procedure Behaviour 4

24: if B2.TakeControl() = true then

25: B4.Action()

26: B2.Supress()

27: thread.start(BEHAVIOUR 1)

28: thread.start(BEHAVIOUR 2)

29: thread.start(BEHAVIOUR 3)

30: thread.start(BEHAVIOUR 4)

2

4.4 Implementation of the Robot-IV

This is the robot which was implemented to evaluate the performance of the fuzzy

controller based approach. This robot can measure environment temperature, en-

ergy consumption and travelling distance. Fuzzy rules mentioned in the Table 4.1

were implemented in this experiment.

33

Table 4.1: Fuzzy Rules

Rule Energy Level Distance to Travel Temperatue Speed

1 High High Low High

2 Medium Low High Low

3 Low Low Low Medium

A web based user interface was integrated with this robot to observe the out-

puts. Through this interface, environmental parameters can be simulated and view

results. Figure 4.5 illustrates the implemented user interface for this robot.

Figure 4.5: User interface

4.4.1 Software Implementation

The implementation of fuzzy controller system is illustrated by the Algorithm 9.

In this experiment, range of distance is taken as 0 to 300, range of temperature is

taken as 20 to 30 and range of energy is taken as 0 to 100.

34

Algorithm 9 Fuzzy System

1: procedure Membership Functions

2:

3: distance low← [0, 0, 150]

4: distance medium← [0, 150, 300]

5: distance high← [150, 300, 300]

6:

7: energy low← [0, 0, 50]

8: energy medium← [0, 50, 100]

9: energy high← [50, 100, 100]

10:

11: temperature low← [20, 20, 25]

12: temperature medium← [20, 25, 30]

13: temperature high← [25, 30, 30]

14:

15: speed low← [0, 0, 0.5]

16: speed medium← [0, 0.5, 1]

17: speed high← [0.5, 1, 1]

18:

19: procedure Rule Application

20: rule 1 ← max(energy high,distance high, speed high)

21: speed activation high ← min(rule1, speed high)

22: rule 2 ← max(energy medium, distance low, speed low)

23: speed activation high ← min(rule 2, speed high)

24: rule 3 ← max(energy low,distance low, speed low)

25: speed activation medium ← min(rule 3, speed medium)

26:

27: procedure Defuzzfication

28: aggregated← max(speed activation low,speed activation medium, speed activation high)

29: speed alteration factor← defuzz(aggregated)

4.5 Implementation of the Robot-V

As described in the Section 3.6, in this experiment, path following behavior was

implemented using attractor dynamic approach. Figure 4.6 illustrates the angle

difference, heading and target direction of robot with different position in the path.

It was required to implement a sine attractor dynamic in order to turns the robot

35

towards the desired direction over the different orientations of the robot.

Figure 4.6: IR sensor panel orientation

Instead of a linear system, it is more practical to use a sine curve(see figure

4.7) for the dynamical system because it is the periodic structure of the behavioral

variable and does not produce increasingly large values for larger angles. This

means that the robot will always turn toward the target using the shortest path.

To turn a robot towards a target that lies along the path, a dynamical sys-

tem that controls the robot’s heading direction was implemented. Line 20-24 in

algorithm 10 shows the implemented sine attractor dynamic.

Figure 4.7: Sine attractor dynamic

36

Algorithm 10 Behaviour 2 : Path Following

1: procedure Action(Speed)

2: lamda← 0.3

3: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,0,0) then

4: Angle Difference← 0

5: if IR1, IR2, IR3, IR4, IR5 = (0,1,1,1,0) then

6: Angle Difference← 0

7: if IR1, IR2, IR3, IR4, IR5 = (0,1,1,0,0) then

8: Angle Difference← -10

9: if IR1, IR2, IR3, IR4, IR5 = (1,1,1,0,0) then

10: Angle Difference← -15

11: if IR1, IR2, IR3, IR4, IR5 = (0,1,0,0,0) then

12: Angle Difference← -20

13: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,1,0) then

14: Angle Difference← +10

15: if IR1, IR2, IR3, IR4, IR5 = (0,0,1,1,1) then

16: Angle Difference← +15

17: if IR1, IR2, IR3, IR4, IR5 = (0,0,0,1,0) then

18: Angle Difference← +20

19: if IR1, IR2, IR3, IR4, IR5 = (0,0,0,0,1) then

20: Angle Difference← +30

21: diPhi← lamda× (−sin(π × (AngleDifference)/180))

22: vmmpersecond← diPhi/π × 53

23: vpulsespersecond← vmmpersecond/0.13

24: drive.SetSpeed(-vpulsespersecond + speed, vpulsespersecond + speed)

37

Chapter 5

Results and Evaluation

As explained in the research design section, to evaluate the performance of an

architecture it is required to compare the architecture with existing architectures.

Therefore, the evaluation of this research is organized into three parts.

5.1 Conventional Architecture Vs. Subsumption

Architecture

In the first part, research was focused on evaluating the performance of the sub-

sumption architecture compared to the conventional robotic architecture. For this

purpose, Robot I and Robot II were used. Robot I was implemented using con-

ventional architecture and Robot II was implemented using the Subsumption ar-

chitecture to perform the same task.

It is clear that when performing multiple behaviors, subsumption architec-

ture performs spontaneously while conventional architecture works in ‘move-think-

move-think’ approach. Robot I which was implemented using conventional architec-

ture first scans obstacles, then moves the distance, again scan obstacles and again

moves. Robot II which was implemented from subsumption architecture, scans

obstacles while moving which leads to suppress the moving forward behaviour and

activates the obstacle avoidance behaviour when an obstacle detected. Figure 5.1

illustrates avoiding a obstacle by the Robot II. A demonstration video is available

at this url 1 on youtube which gives a clear idea of how these two artichectures

work.

1https://www.youtube.com/watch?v=2sb3u9hGOMo

38

Figure 5.1: Avoiding an Obstacle

5.2 Subsumption Architecture Vs. Fuzzy Inte-

grated Subsumption Architecture

In this part, research is focused on evaluating the performance of proposed fuzzy

integrated subsumption architecture compared to the subsumption architecture.

For this purpose, architectures of Robot III and Robot IV were used. Figure 5.5

illustrates the arena which was used to evaluate the architectures.

Robot III functioned in the same speed while Robot IV exhibited different

speeds with respect to changes in internal and external environment variables;

energy level, distance to travel and temperature. Figure 5.2 illustrates the fuzzifi-

39

cation of input variables.

Figure 5.2: Fuzzification of variables

Figure 5.3 and figure 5.4 illustrate the rule application and de-fuzzification of

output variables after rule application.

40

Figure 5.3: Rule application to input variables

Figure 5.4: Defuzzification of output variable

From this experiment, it was found out that Robot IV reacts to its internal

and external environmental conditions. Table 5.1 represents the changes of speed

altering factor with respect to the environment variable changes.

Table 5.1: Strength altering factor(k) changes with Engergy Level, Temperature

and Distance

Experiment Energy Level(%) Distance (cm) Temperature (C0) Speed Altering factor

1 20 150 22 0.42

2 40 100 27 0.57

3 50 300 25 0.52

4 80 50 26 0.78

5 100 180 28 0.83

41

5.3 Fuzzy Integrated Subsumption Architecture

Vs. Neural Dynamic based Fuzzy Integrated

Subsumption Architecture

In this part, research is focused on evaluating the performance of proposed Neural

Dynamic based Fuzzy Integrated Subsumption compared to the Fuzzy Integrated

Subsumption Architecture which is addressed by the RQ2. For this purpose, as

explained in the implementation section, path following behavior was implemented

using attractor dynamic approach and improvement of the behavior is very im-

pressive. Robot V has the Neural Dynamic based Fuzzy Integrated Subsumption

Architecture and Robot IV has the Fuzzy Integrated Subsumption Architecture.

Robot V was able to smoothly move through the path and performs better than

Robot IV. Figure 5.5 illustrates the arena which was used to evaluate the architec-

tures.

Figure 5.5: Arena used to evaluate Robot III, IV and V

To evaluate the performance of attractor dynamic approach, the following arena

illustrated by figure 5.6 was used. In this case, only the path following behavior

was considered to eliminate the interferences such as CPU overhead from the re-

sults. From this experiment, it is clear that, attractor dynamic approach gives

a significant improvement over the conventional approach. Naturalizing the path

following behavior improves the performance of the path following behavior and it

increases the overall performance of the architecture.

42

Figure 5.6: Evaluating the attractor dynamic based path following behavior

43

Chapter 6

Conclusion

6.1 Introduction

In this research, our approach was to interface internal and external environment

parameters with the subsumption architecture using a fuzzy controller based ap-

proach. Results of the experiments conclude that fuzzy controller based approach

can be used to interface the internal and external environmental parameters with

the subsumption architecture. As a further step, behaviors of the subsumption

architecture were implemented using attractor dynamics. There is significant im-

provement of the reactiveness of robot when behaviors of the robot are implemented

using neural dynamics.

6.2 Conclusions about research questions

To answer the first research question RQ1, fuzzy controller based architecture was

designed, implemented and evaluated in this research. From the results, it can

be concluded that from fuzzy controller based approach which was used in this

research increases the reactiveness of the existing reactive robotic architecture.

As addressed in the RQ2, neural dynamic approach which was explained in

the Chapter 2 can be used as the biologically plausible computational approach to

naturalize the reactive architecture. Results of the experiments, clearly illustrate

a significant improvement of the reactive robotic architecture.

44

6.3 Conclusions about research problem

Interfacing internal and external environmental parameters with the decision-making

process of reactive architecture was the main problem which was addressed in this

research. From this research, it can be concluded that using fuzzy integration based

approach, it is possible to interface internal and external environmental parameters

with the decision-making process of the agent.

This research also focused on further naturalizing the reactive architecture from

a biologically inspired computational tractable approach. In this research, path fol-

lowing behaviour of Robot V was implemented using attractor dynamic approach.

There is a significant improvement in path following behaviour after implementing

it from attractor dynamic approach.

6.4 Limitations

When increasing the number of layers and complexity of the behaviours, overall

behaviour of the robot deviates from the reactive nature due to limitation of the

threading overhead.

6.5 Future Work

Following potential avenues of investigation can be suggested as future experiments;

• The two proposed architectures were evaluated for a single scenario. These

architectures should be tested in different scenarios to test the applicability

of these architectures in different scenarios.

• In this experiment, only the Path Finding behaviour was implemented us-

ing neural dynamic approach. As a further step, other behaviours also can

be implemented using neural dynamic approach. For an example, obstacle

avoidance behaviour can be implemented using repeller dynamic approach

which is the opposite of the attractor dynamic approach.

• In this study, temperature, energy level and distance were considered as in-

ternal and external environment conditions. When increasing the number of

45

parameters, results may deviate from the expected results. Therefore, it is

important to evaluate these architectures for different scenarios.

46

References

[1] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,

47(1-3):139–159, 1991. doi: 10.1016/0004-3702(91)90053-m.

[2] William Clancey. A boy scout, toto, and a bird: How situated cognition is dif-

ferent from situated robotics. In NATO workshop on Emergence, Situatedness,

Subsumption and Symbol Grounding, pages 227–236, 1995.

[3] Jessica Lindblom and Tom Ziemke. Social situatedness of natural and artificial

intelligence: Vygotsky and beyond. Adaptive Behavior, 11(2):79–96, 2003. doi:

10.1177/10597123030112002.

[4] Tim Menzies and William J. Clancey. Editorial: the challenge of situated

cognition for symbolic knowledge-based systems. International Journal of

Human-Computer Studies, 49(6):767–769, 1998. doi: 10.1006/ijhc.1998.0026.

[5] Maja J Matarić. Situated robotics. Encyclopedia of Cognitive Science, 2006.

doi: 10.1002/0470018860.s00074.

[6] Eric Bredo. Reconstructing educational psychology: Situated cognition and

deweyian pragmatism. Educational Psychologist, 29(1):23–35, 1994. doi: 10.

1207/s15326985ep2901 3.

[7] Jan Kazimierczak and Barbara Lysakowska. Intelligent adaptive control of a

mobile robot: The automaton with an internal and external parameter ap-

proach. Robotica, 6(04):319, 1988. doi: 10.1017/s0263574700004689.

[8] Russell and Ja Stuart. Artificial Intelligence: A Modern Approach. Prentice

Hall, Upper Saddle River, New Jersey, 2003.

[9] Rodney A. Brooks. Cambrian intelligence: the early history of the new AI.

MIT Press, 1999.

[10] Lucia Foglia and Robert A. Wilson. Embodied cognition. Wiley Interdisci-

plinary Reviews: Cognitive Science, 4(3):319–325, Aug 2013. doi: 10.1002/

wcs.1226.

47

[11] Matthew Luciw, Yulia Sandamirskaya, Sohrob Kazerounian, Jurgen Schmid-

huber, and Gregor Schoner. Reinforcement and shaping in learning action

sequences with neural dynamics. 4th International Conference on Develop-

ment and Learning and on Epigenetic Robotics, 2014. doi: 10.1109/devlrn.

2014.6982953.

[12] Sohrob Kazerounian, Matthew Luciw, Mathis Richter, and Yulia San-

damirskaya. Autonomous reinforcement of behavioral sequences in neural

dynamics. The 2013 International Joint Conference on Neural Networks

(IJCNN), 2013. doi: 10.1109/ijcnn.2013.6706877.

[13] Robin R. Murphy. Introduction to AI robotics. MIT Press, 2005.

[14] Rodney A. Brooks. Elephants dont play chess. Robotics and Autonomous

Systems, 6(1-2):3–15, 1990. doi: 10.1016/s0921-8890(05)80025-9.

[15] Gregor Schoner and John P. Spencer. Dynamic thinking: a primer on dynamic

field theory. Oxford University Press, 2016.

[16] Cbaumann. Subsumption architecture with robolab 2.5. URL http://www.

convict.lu/Jeunes/Subsumption.htm.

[17] Software engineering for experimental robotics. Springer Tracts in Advanced

Robotics, 2007. doi: 10.1007/978-3-540-68951-5.

[18] Wei Lu. Multithreading programming with java lejos. Beginning Robotics

Programming in Java with LEGO Mindstorms, page 219–229, 2016. doi: 10.

1007/978-1-4842-2005-4 13.

[19] Greg Butler, Andrea Gantchev, and Peter Grogono. Object-oriented design

of the subsumption architecture. Software: Practice and Experience, 31(9):

911–923, Feb 2001. doi: 10.1002/spe.396.

[20] Rosenblatt and Payton. A fine-grained alternative to the subsumption archi-

tecture for mobile robot control. International Joint Conference on Neural

Networks, 1989. doi: 10.1109/ijcnn.1989.118717.

[21] Randall D. Beer. A dynamical systems perspective on agent-environment

interaction. Artificial Intelligence, 72(1-2):173–215, 1995. doi: 10.1016/

0004-3702(94)00005-l.

[22] Alberto Montebelli. Modeling the role of energy management in embodied

cognition. 2012. URL http://www.diva-portal.org/smash/get/diva2:

528490/FULLTEXT01.pdf.

48

http://www.convict.lu/Jeunes/Subsumption.htm
http://www.convict.lu/Jeunes/Subsumption.htm
http://www.diva-portal.org/smash/get/diva2:528490/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:528490/FULLTEXT01.pdf

[23] Alberto Montebelli, Robert Lowe, and Tom Ziemke. Toward metabolic

robotics: Insights from modeling embodied cognition in a biomechatronic sym-

biont. Artificial Life, 19(3):299–315, 2013. doi: 10.1162.

[24] Tony Savage. The grounding of motivation in artificial animals: Indices of

motivational behavior. Cognitive Systems Research, 4(1):23–55, 2003. doi:

10.1016/s1389-0417(02)00070-0.

[25] Fahmi Zal, Ting-Shuo Chen, Shou-Wei Chi, and Chung-Hsien Kuo. Fuzzy

controller based subsumption behavior architecture for autonomous robotic

wheelchair. 2013 International Conference on Advanced Robotics and Intelli-

gent Systems, 2013. doi: 10.1109/aris.2013.6573552.

[26] Gregor Schoner, Mathis Richter, and Raul Grieben. Autonomous robotics

background material. 2017. URL https://www.ini.rub.de/upload/file/

1472216762_eb63d6086f7690a711d7/background_material.pdf.

[27] Masato Ito and Jun Tani. On-line imitative interaction with a humanoid robot

using a dynamic neural network model of a mirror system. Adaptive Behavior,

12(2):93–115, 2004. doi: 10.1177/105971230401200202.

[28] Masato Ito, Kuniaki Noda, Yukiko Hoshino, and Jun Tani. Dynamic and

interactive generation of object handling behaviors by a small humanoid robot

using a dynamic neural network model. Neural Networks, 19(3):323–337, 2006.

doi: 10.1016/j.neunet.2006.02.007.

[29] Yulia Sandamirskaya, Mathis Richter, and Gregor Schoner. A neural-dynamic

architecture for behavioral organization of an embodied agent. 2011 IEEE

International Conference on Development and Learning (ICDL), 2011. doi:

10.1109/devlrn.2011.6037353.

[30] Tom Ziemke and Robert Lowe. On the role of emotion in embodied cogni-

tive architectures: From organisms to robots. Cognitive Computation, 1(1):

104–117, Jun 2009. doi: 10.1007/s12559-009-9012-0.

[31] Lejos nxt api documentation. URL https://lejos.sourceforge.io/p_

technologies/nxt/nxj/api/lejos/subsumption/package-summary.html.

49

https://www.ini.rub.de/upload/file/1472216762_eb63d6086f7690a711d7/background_material.pdf
https://www.ini.rub.de/upload/file/1472216762_eb63d6086f7690a711d7/background_material.pdf
https://lejos.sourceforge.io/p_technologies/nxt/nxj/api/lejos/subsumption/package-summary.html
https://lejos.sourceforge.io/p_technologies/nxt/nxj/api/lejos/subsumption/package-summary.html

Appendices

50

Appendix A

Code Listings

A.1 Python implementation of the fuzzy controller

import numpy as np

import skfuzzy as fuzz

import matplotlib.pyplot as plt

x distance = np.arange(0, 300, 1)

x energy = np.arange(0, 100, 1)

x temperature=np.arange(20,30,1)

x speed = np.arange(0, 1, 0.1)

Generate fuzzy membership functions for distance

distance lo = fuzz.trimf(x distance , [0, 0, 150])

distance md = fuzz.trimf(x distance, [0, 150, 300])

distance hi = fuzz.trimf(x distance , [150, 300, 300])

energy lo = fuzz.trimf(x energy, [0, 0, 50])

energy md = fuzz.trimf(x energy, [0,50, 100])

energy hi = fuzz.trimf(x energy, [50, 100, 100])

temperature lo = fuzz.trimf(x temperature, [20, 20, 25])

temperature md = fuzz.trimf(x temperature, [20, 25, 30])

temperature hi = fuzz.trimf(x temperature, [25, 30, 30])

51

speed lo = fuzz.trimf(x speed, [0, 0, 0.5])

speed md = fuzz.trimf(x speed, [0, 0.5, 1])

speed hi = fuzz.trimf(x speed, [0.5, 1, 1])

Visualize these universes and membership functions

fig , (ax0, ax1, ax2,ax3) = plt.subplots(nrows=4, figsize=(8, 9))

ax0.plot(x distance , distance lo , ’b’ , linewidth=1.5, label=’Long’)

ax0.plot(x distance , distance md, ’g’ , linewidth=1.5, label=’Mid’)

ax0.plot(x distance , distance hi , ’ r ’ , linewidth=1.5, label=’Short’)

ax0. set title (’Distance to Travel’)

ax0.legend()

ax1.plot(x energy, energy lo , ’b’ , linewidth=1.5, label=’Low’)

ax1.plot(x energy, energy md, ’g’ , linewidth=1.5, label=’Medium’)

ax1.plot(x energy, energy hi, ’ r ’ , linewidth=1.5, label=’High’)

ax1. set title (’Energy’)

ax1.legend()

ax2.plot(x temperature, temperature lo, ’b’ , linewidth=1.5, label=’Low’)

ax2.plot(x temperature, temperature md, ’g’, linewidth=1.5, label=’Medium’)

ax2.plot(x temperature, temperature hi, ’r ’ , linewidth=1.5, label=’High’)

ax2. set title (’Temperature’)

ax2.legend()

ax3.plot(x speed, speed lo, ’b’ , linewidth=1.5, label=’Low’)

ax3.plot(x speed, speed md, ’g’, linewidth=1.5, label=’Medium’)

ax3.plot(x speed, speed hi, ’ r ’ , linewidth=1.5, label=’High’)

ax3. set title (’Speed Altering Factor’)

ax3.legend()

#Rule Application

#distance

distance level lo = fuzz.interp membership(x distance, distance lo , distance)

distance level md = fuzz.interp membership(x distance, distance md, distance)

distance level hi = fuzz.interp membership(x distance, distance hi, distance)

#energy

52

energy level lo = fuzz.interp membership(x energy, energy lo, energy)

energy level md = fuzz.interp membership(x energy, energy md, energy)

energy level hi = fuzz.interp membership(x energy, energy hi, energy)

#temperature

temperature level lo = fuzz.interp membership(x temperature, temperature lo,

temperature)

temperature level md = fuzz.interp membership(x temperature, temperature md,

temperature)

temperature level hi = fuzz.interp membership(x temperature, temperature hi,

temperature)

#if energy level is medium and distance is high and temperature is medium

speed medium

active rule1 = max(distance level hi,energy level md,temperature level md)

speed activation md = np.fmin(active rule1, speed md)

#if energy level is medium and distance is low and temperature is medium

speed high

active rule2 = max(distance level lo,energy level md,temperature level md)

speed activation hi = np.fmin(active rule2, speed hi)

#if energy level is medium and distance is high and temperature is medium

speed medium

active rule3 = max(distance level hi, energy level lo ,temperature level md)

speed activation lo = np.fmin(active rule3, speed lo)

speed0 = np.zeros like(x speed)

Visualize this

fig , ax0 = plt.subplots(figsize =(8, 3))

ax0. fill between (x speed, speed0, speed activation lo , facecolor=’b’, alpha

=0.7)

ax0.plot(x speed, speed lo, ’b’ , linewidth=0.5, linestyle =’−−’,)

ax0. fill between (x speed, speed0, speed activation md, facecolor=’g’, alpha

=0.7)

ax0.plot(x speed, speed md, ’g’, linewidth=0.5, linestyle =’−−’)

53

ax0. fill between (x speed, speed0, speed activation hi , facecolor=’r’ , alpha

=0.7)

ax0.plot(x speed, speed hi, ’ r ’ , linewidth=0.5, linestyle =’−−’)

ax0. set title (’Output membership activity’)

Turn off top/right axes

for ax in (ax0,) :

ax.spines [’top’]. set visible (False)

ax.spines [’ right ’]. set visible (False)

ax.get xaxis () .tick bottom()

ax.get yaxis () . tick left ()

plt . tight layout ()

#defuzzufication

Aggregate all three output membership functions together

aggregated = np.fmax(speed activation lo,np.fmax(speed activation md,

speed activation hi))

Calculate defuzzified result

speed = fuzz.defuzz(x speed, aggregated, ’ centroid ’)

speed activation = fuzz.interp membership(x speed, aggregated, speed) # for

plot

Visualize this

fig , ax0 = plt.subplots(figsize =(8, 3))

ax0.plot(x speed, speed lo, ’b’ , linewidth=0.5, linestyle =’−−’,)

ax0.plot(x speed, speed md, ’g’, linewidth=0.5, linestyle =’−−’)

ax0.plot(x speed, speed hi, ’ r ’ , linewidth=0.5, linestyle =’−−’)

ax0. fill between (x speed, speed0, aggregated, facecolor=’Orange’, alpha=0.7)

ax0.plot ([speed, speed], [0, speed activation], ’k’ , linewidth=1.5, alpha=0.9)

ax0. set title (’Aggregated membership and result (line)’)

Turn off top/right axes

for ax in (ax0,) :

ax.spines [’top’]. set visible (False)

ax.spines [’ right ’]. set visible (False)

54

ax.get xaxis () .tick bottom()

ax.get yaxis () . tick left ()

plt . tight layout ()

plt .show()

55

A.2 Implementation of the Obstacle Avoidance

Behaviour

class obstacle avoidance:

#initial distance

distance m30=100

distance 0=100

distance 30=100

distance m45=100

distance 45=100

def suppress():

return True

def sonar(self) :

GPIO.output(TRIG, True)

time.sleep (0.1)

GPIO.output(TRIG, False)

while GPIO.input(ECHO)==0:

pulse start = time.time()

while GPIO.input(ECHO)==1:

pulse end = time.time()

pulse duration = pulse end − pulse start

distance = pulse duration ∗ 17150

distance = round(distance,2)

return distance

def readsonar(self) :

p.ChangeDutyCycle(4.5)

self .distance m30=self.sonar()

print ”Distance at −30 ”+str(self.distance m30)+”cm”

time.sleep (0.05) # sleep 1 second

56

p.ChangeDutyCycle(2.5) # turn towards 0 degree

self .distance 0=self .sonar()

print ”Distance at 0 ”+str(self .distance 0)+”cm”

time.sleep (0.05) # sleep 1 second

p.ChangeDutyCycle(6.5) # turn towards 30 degree − right

self .distance 30=self .sonar()

print ”Distance at 30 ”+str(self.distance 30)+”cm”

time.sleep (0.05) # sleep 1 second

def takeControl(self) :

self .readsonar()

if (self .distance m30<30 or self.distance 0<30 or self.

distance 30<30):

print ”Obstacle Ovoidance Taking Control”

return True

def action(self) :

print ”Obstacle avoidance processing”

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(0)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, False)

pwm2.ChangeDutyCycle(0)

p.ChangeDutyCycle(7.5)

self .distance m45=self.sonar()

print ”Distance at −45 ”+str(self.distance m45)+”cm”

if (self .distance m45>50):

GPIO.output(in1 Lpin, False)

57

GPIO.output(in2 Lpin, True)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, True)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

#turn left

GPIO.output(in1 Lpin, True)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, True)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(0)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, False)

pwm2.ChangeDutyCycle(0)

else:

p.ChangeDutyCycle(12.5) # turn towards 45 degree − right

self .distance 45=self .sonar()

print ”Distance at 45 ”+str(self.distance 45)+”cm”

if (self .distance 45>50):

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, True)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, False)

58

GPIO.output(in2 Rpin, True)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

#turn right

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, True)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, True)

GPIO.output(in2 Rpin, False)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(0)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, False)

pwm2.ChangeDutyCycle(0)

else:

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, True)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, True)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

59

#turn backward

GPIO.output(in1 Lpin, True)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(50)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, True)

pwm2.ChangeDutyCycle(50)

time.sleep (0.5)

GPIO.output(in1 Lpin, False)

GPIO.output(in2 Lpin, False)

pwm1.ChangeDutyCycle(0)

GPIO.output(in1 Rpin, False)

GPIO.output(in2 Rpin, False)

pwm2.ChangeDutyCycle(0)

return True

60

A.3 Path Following behavior using sine attractor

dynamics

if (s1==0)and(s2==0)and(s3==0)and(s4==0)and(s5==0):

pass #line finding

elif (s1==0)and(s2==0)and(s3==1)and(s4==0)and(s5==0):

angle difference =0

elif (s1==0)and(s2==1)and(s3==1)and(s4==1)and(s5==0):

angle difference =0

elif (s1==0)and(s2==1)and(s3==1)and(s4==0)and(s5==0):

angle difference =−10

elif (s1==0)and(s2==0)and(s3==1)and(s4==1)and(s5==0):

angle difference =10

elif (s1==0)and(s2==0)and(s3==0)and(s4==1)and(s5==1):

angle difference =30

elif (s1==0)and(s2==0)and(s3==0)and(s4==1)and(s5==0):

angle difference =30

elif (s1==0)and(s2==0)and(s3==0)and(s4==0)and(s5==1):

angle difference =30

elif (s1==0)and(s2==0)and(s3==1)and(s4==1)and(s5==1):

angle difference =30

elif (s1==1)and(s2==0)and(s3==0)and(s4==0)and(s5==0):

angle difference =−30

elif (s1==0)and(s2==1)and(s3==0)and(s4==0)and(s5==0):

angle difference =−30

elif (s1==1)and(s2==1)and(s3==0)and(s4==0)and(s5==0):

angle difference =−30

elif (s1==1)and(s2==1)and(s3==1)and(s4==0)and(s5==0):

angle difference =−30

pi=math.pi

d phi = lamda ∗ (−math.sin(pi∗(angle difference)/180))

v mm per second = d phi/math.pi ∗ 53

v pulses per second = v mm per second / 0.13

drive .SetSpeed(−v pulses per second + speed, v pulses per second + speed)

61

A.4 Motor driver implementation

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BOARD)

#Left Motor

Enable Lpin =38

In1 Lpin = 33

In2 Lpin =31

#Right Motor

Enable Rpin =40

In1 Rpin = 37

In2 Rpin =35

#Setting Left Motor

GPIO.setup(Enable Lpin, GPIO.OUT)

GPIO.setup(In1 Lpin, GPIO.OUT)

GPIO.setup(In2 Lpin, GPIO.OUT)

pwmL = GPIO.PWM(Enable Lpin,500)

pwmL.start(0)

#Setting Right Motor

GPIO.setup(Enable Rpin, GPIO.OUT)

GPIO.setup(In1 Rpin, GPIO.OUT)

GPIO.setup(In2 Rpin, GPIO.OUT)

pwmR = GPIO.PWM(Enable Rpin,500)

pwmR.start(0)

def SetSpeed(SpeedL,SpeedR):

SpeedR=SpeedR−8

if SpeedR>=0 and SpeedL>=0:

GPIO.output(In1 Lpin, True)

GPIO.output(In2 Lpin, False)

pwmL.ChangeDutyCycle(SpeedL)

62

GPIO.output(In1 Rpin, True)

GPIO.output(In2 Rpin, False)

pwmR.ChangeDutyCycle(SpeedR)

elif SpeedR>=0 and SpeedL<=0:

GPIO.output(In1 Lpin, False)

GPIO.output(In2 Lpin, True)

pwmL.ChangeDutyCycle(−SpeedL)

GPIO.output(In1 Rpin, True)

GPIO.output(In2 Rpin, False)

pwmR.ChangeDutyCycle(SpeedR)

elif SpeedR<=0 and SpeedL<=0:

GPIO.output(In1 Lpin, False)

GPIO.output(In2 Lpin, True)

pwmL.ChangeDutyCycle(−SpeedL)

GPIO.output(In1 Rpin, False)

GPIO.output(In2 Rpin, True)

pwmR.ChangeDutyCycle(−SpeedR)

elif SpeedR<=0 and SpeedL>=0:

GPIO.output(In1 Lpin, True)

GPIO.output(In2 Lpin, False)

pwmL.ChangeDutyCycle(SpeedL)

GPIO.output(In1 Rpin, False)

GPIO.output(In2 Rpin, True)

pwmR.ChangeDutyCycle(−SpeedR)

def stop():

GPIO.output(In1 Lpin, False)

GPIO.output(In2 Lpin, False)

pwmL.ChangeDutyCycle(0)

GPIO.output(In1 Rpin, False)

63

GPIO.output(In2 Rpin, False)

pwmR.ChangeDutyCycle(0)

def gpioCleanUP():

GPIO.cleanup()

64

A.5 Arduino Code

const int analogIn0 = A0;

const int analogIn1 = A1;

int mVperAmp = 185; // use 100 for 20A Module and 66 for 30A Module

double RawValue= 0;

double RawValue2= 0;

float ACSoffset = 2500;

double Voltage = 0;

double Voltage2 = 0;

double Amps = 0;

int count=0;

double BatteryVoltage=0;

double Energy=2000;

void setup(){
Serial .begin(9600);

}

void loop(){
RawValue=0;

RawValue2=0;

for (int i=0;i<1000;i++){
RawValue +=analogRead(analogIn1);

RawValue2 +=analogRead(analogIn0);

delay(1) ;

}

RawValue/=1000;

RawValue2/=1000;

Voltage = (RawValue / 1024.0) ∗ 5000;

Voltage2 = (RawValue / 1024.0) ∗ 5000∗4;

65

Amps = ((Voltage − ACSoffset) / mVperAmp);

if (count==2){
ACSoffset=Voltage;

}

if (count>2 && −0.05<Amps && Amps<0.05){
ACSoffset=Voltage;

}

Serial . print(”Amps = ”);

Serial . print(Amps,3);

Serial . print(”\t Voltage = ”);

Serial . println(Voltage2,3); //

count++;

}

66

	Declaration
	Abstract
	Preface
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background to the Research
	Research Problem
	Research Questions
	Justification for the research
	Methodology
	Outline of the Dissertation
	Definitions
	Agent
	Situatedness
	Embodiment
	Situated Cognition

	Delimitations of Scope
	Conclusion

	Literature Survey
	Robotic Paradigms
	Hierarchical Paradigm
	Reactive robotic paradigm

	Subsumption architecture
	Interfacing Internal and External Environmental Parameters into the Decision-making Process of a Robot
	Fuzzy controller based subsumption behavior architecture for autonomous robotic wheelchair
	Neural Dynamics
	Attractor and Repellor Dynamics
	On-line Imitative Interaction with a Humanoid Robot Using a Dynamic Neural Network Model of a Mirror System
	Dynamic and interactive generation of object handling behaviors
	A neural-dynamic architecture for behavioral organization of an embodied agent

	Cognitive affective architecture

	Design
	Introduction
	Design of the Robot I
	Introduction
	Functionality of the Robot
	High-level Architecture

	Design of the Robot II - Obstacle avoidance using Subsumption architecture
	Introduction
	Functionality of the Robot
	High-level Architecture

	Design of the Robot III - Robot using Subsumption architecture
	Introduction
	High-level Architecture
	Functionality of the Robot

	Design of the Robot IV - Enhanced situated robot using fuzzy integrations to Subsumption architecture
	Introduction
	High-level Architecture
	Design of the Fuzzy Controller

	Design of the Robot V - Enhanced situated robot using fuzzy integrations and attractor dynamics approach
	Introduction

	Design Assumptions

	Implementation
	Implementation of the Robot I
	Hardware Implementation
	Software Implementation

	Implementation of the Robot II
	Software Implementation

	Implementation of the Robot-III
	Hardware Implementation
	Software Implementation

	Implementation of the Robot-IV
	Software Implementation

	Implementation of the Robot-V

	Results and Evaluation
	Conventional Architecture Vs. Subsumption Architecture
	Subsumption Architecture Vs. Fuzzy Integrated Subsumption Architecture
	Fuzzy Integrated Subsumption Architecture Vs. Neural Dynamic based Fuzzy Integrated Subsumption Architecture

	Conclusion
	Introduction
	Conclusions about research questions
	Conclusions about research problem
	Limitations
	Future Work

	References
	Appendices
	Code Listings
	Python implementation of the fuzzy controller
	Implementation of the Obstacle Avoidance Behaviour
	Path Following behavior using sine attractor dynamics
	Motor driver implementation
	Arduino Code

