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Abstract 

Multi-objective particle swarm optimization is an extension/generalization of the particle 

swarm optimization for optimizing more than one objective simultaneously. Since particle swarm 

optimization is inspired by animal behavior, mainly bird flocking and fish schooling, and also the 

competitive nature among objectives which can be observed in multi-objective optimization, it 

is intuitive to look into this problem from a game theoretic point of view. 

In this thesis we have introduced a novel method called Personality changing multi-

objective particle swarm optimization (PC-MOPSO) which is based on game theory and is an 

enhancement to standard-MOPSO [1]. We apply PC-MOPSO to the specific problems of two-

objective optimization.    In PC-MOPSO each particle has two personalities and each personality 

is trying to maximize its payoff by making a rational decision/choice. As a result of this iterative 

process the final optimal solutions are achieved.  

Four standard test functions used for evaluation and simulation of results show that the 

proposed method is capable of handling ZDT1 problem with 2.79% higher accuracy than the 

standard-MOPSO and also performed competitively in other problems. One interesting 

observation which is unique to the new method is, unlike in other MOPSO methods which have 

utilized an external repository to find final solutions, in this method solutions are achieved in a 

distributed manner. This can be seen as similar to most evolutionary algorithms. 
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Preface 

As a basis and the starting point of this research Coello Coello’s “handling multi-objectives 

with particle swarm optimization” is considered. And for the implementation purposes Yarpiz’s 

Matlab implementation of above method is used as the basis and modified according to 

requirements. Further for the evaluation purposes Johann’s implementation of hypervolume 

indicator metric is used. All new concepts implementation and analysis carried out were original 

work. 
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Chapter 1 -  Introduction 

Optimization is a branch of mathematics and numerical analysis. Almost all problems in 

other fields can be formulated as optimization problems or search problems. Some of these 

problems (simple problems) can be solved by traditional methods based on mathematical 

analysis, but most of the problems are too hard to solve by traditional methods due to complexity 

and need new approaches to solve. 

Nature is a system of vast complexity and natural computing is the way of using those 

nature inspired methods for our advantage to solve those hard problems. Evolutionary 

computing, neural computing, cellular automata, swarm intelligence, quantum computing are 

some of the well-known examples for natural computing. 

In this project, we are only concerned with very specific area on particle swarm 

optimization on solving multi-objective optimization problems in cooperating with game 

theoretic ideas. There are various heuristic methods, which can be found on solving multi-

objective optimization problems which are mainly based on evolutionary algorithms and genetic 

algorithms but almost all of them are very complex and have their own weaknesses such as low 

efficiency and low speed. But recently, due to the popularity, simplicity and efficiency of the 

Particle Swarm Optimization (PSO) method, researchers have proposed extending single 

objective PSO to multi-objective optimization which is called MOPSO to overcome those 

weaknesses and also as a novel approach which is capable of solving MO problems. Several 

studies can be found on this area and they showed its superiority compared to existing methods. 

Although this looks promising, as same as other heuristic methods MOPSO has several problems 

such as premature convergence, robustness, speed, accuracy etc. 

1.1 Background to the Research 

Particle swarm optimization (PSO), invented by Kennedy and Eberhart in 1995 [2], is a 

very popular nature-inspired meta-heuristic algorithm for solving optimization problems which 

is inspired from studies of synchronous bird flocking and fish schooling. It basically reflects social 

interaction of individuals living together in groups. for that it uses notion of employing many 
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autonomous particles that can act together in simple ways to produce complex behaviors. It 

abstracted each member/bird as a particle and they work under social behavior in swarm and try 

to find global best solution by adjusting attributes of each particle according to its personal best 

and global best of entire swarm at each iteration. 

There are several types of advancements can be found on PSO and they can be mainly 

categorized in to, 

 

1. Modification of PSO – Quantum behavior based PSO [3], chaotic PSO [4], fuzzy PSO 

    [5] 

2. Hybridization of PSO – Cellular PSO [6], artificial immune system (AIS) [7], Tabu- 

     search [8] 

3. Extension of PSO – multi objective, discrete, binary optimization 

4. Theoretical analysis of PSO – convergence analysis 

5. Parallel implementation of PSO 

 

In this project, we are focusing on domain, Extension of PSO for multi-objective 

optimization problems. Several approaches have already been proposed in this category. Our 

approach is to looking at MOPSO in a game theoretic perspective  

and also, to add possible enhancements. 

1.2 Research Problem / Hypothesis 

 PSO as a swarm based evolutionary heuristics has been successfully used in single 

objective optimization. For multi-objective optimization, work carried out shows the usefulness 

of Multi-Objective PSO concept. We hypothesize that game theoretically interacting particles in 

a PSO are better for multi-objective optimization and has interesting effects. 

1.3 Justification for the research 

Multi Objective Optimization is a very important area in terms of both theoretical and 

practical aspects. Most of the real-world problems have this conflicting multi-objective nature 
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inherently, in that cases there is no single solution exist and we have to go for approximate 

solutions which typically have qualities like robustness, accuracy, diversity etc. Evolutionary 

algorithms and genetic algorithms are considered as traditional methods for tackling MOO 

problems. But the burst of popularity of the Particle Swarm Optimization algorithm for single 

objective optimization attract many researchers to extending PSO methods for solving MOO 

problems and number of publications have proved its worthiness. Most of these researches were 

focused on small tweaking of original MOPSO which can ultimately improve effectiveness of the 

algorithm.  

Since PSO is a social behavior inspired method which involves interactions of particles and 

the conflicting nature of each objectives in MOO, it is rational and logical to look at this whole 

picture from more behavioral point of view, more formally game theoretic view which may 

involves concepts like competition and cooperation (more natural way) or other game theory 

mechanics. There are several researches can be found based on these facts and they also shows 

that their methods can be superior to other methods.  

So, in this research our focus is to investigate possible game theoretic models, additions 

for the traditional MOPSO algorithm which may leads to improvement over traditional methods. 

 

1.4 Methodology 

Since this research is about utilizing the behavior of particles of swarm for solving multi-

objective optimization, simulation methodology was used as the main methodology. In order to 

evaluate purposed MOPSO method’s performance, computational experiments were performed 

over new purposed method and standard general MOPSO. And compared them using several 

standard performance indicators. MATLAB programming environment was used for 

implementing both algorithms and for all the evaluation and comparisons. 

1.5 Outline of the Dissertation 

 In the second chapter, basic concepts behind the topic are layed out. Definitions of single 

objective optimization problem, general multi-objective optimization problem, pareto 
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dominance, pareto optimality given too. Then conventional particle swarm optimization 

algorithm and multi-objective optimization algorithm are discussed. Then existing approaches to 

MOPSO is introduced and Game theory based MOPSO and other hybrid MOPSO methods 

discussed and conclusions are provided. 

 In chapter three, new MOPSO method named Personality changing MOPSO is presented 

and algorithm is given and discussed. 

 In chapter four detailed implementation of the algorithm is provided with MatLab codes.  

 In chapter five simulation results are given and discussed. And in finally in chapter six 

conclusions of the thesis, limitations and possible future research areas are given. 

   

 

 

1.6 Delimitations of Scope 

In this research, we are only focusing on two-objective unconstrained optimization 

problems. Convex optimization problems are omitted and focusing only on non-convex 

optimization. And also, we are using measurement tools which used in previous researches for 

comparison purposes. Theoretical analysis of the purposed method is also not discussed. And for 

the evaluation we use popular algebraic two-objective problems which was used in previous 

researches on this domain. 

1.7 Conclusion 

This chapter laid the foundations for the dissertation. It introduced the research problem, 

research questions and the hypotheses. Then the research was justified, definitions were 

presented, the methodology was briefly described, the dissertation was outlined, and the 

limitations were given. On these foundations, the rest of the dissertation proceed with more 

detailed description of the research. 
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Chapter 2 -  Literature Review 

2.1 Introduction 

Multi – Objective Optimization is an area of multiple criteria decision making, which 

involves with optimizing multiple objective functions simultaneously. We can see practical 

applications of multi – objective optimization in various fields including engineering, economics 

and logistics where optimal decision needs to be taken in the presence of trade-offs between 

two or more conflicting objectives. Minimizing the cost while maximizing comfort when buying 

car, minimizing energy consumption while maximizing performance when building machine are 

some examples of multi objective optimization usage in the practical scenarios.  

Apart from the trivial problems which there exist single solution which simultaneously 

satisfy all objective functions optimally, for the most of the problems there is no single solution 

exists. In such cases we said that their objective functions are conflicting and there exists number 

of pareto optimal solutions. 

Pareto optimality is a concept which is used in game theory which was introduced by 

Italian economist, mathematician Vilfredo Pareto as a measure of efficiency. Outcome of a game 

is pareto optimal if there is no other outcome that makes every player at least as well-off and at 

least one player strictly better-off. In other words, outcome cannot be improved without hurting 

at least one player. This concept is borrowed in various fields such as economics and applied 

mathematics / computational mathematics for handling those conflicting issues. 

In multi – objective optimization domain, a solution is called pareto optimal if it is 

nondominated, if none of objective functions can be improved in some value without degrading 

some other objective values. And other important fact is those pareto optimal solutions are said 

to be equally good in mathematical sense without considering any additional subjective 

preference information which can be used to choose most suitable solution from all pareto 

optimal solution set. 

Goal of the multi – objective optimization can be vary depending on different 

philosophical viewpoint but in general goal or the objective is to find all pareto optimal solutions. 

If we look further on these areas we can categorize multi – objective optimization in to two 

different categories 
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1. Non – preference methods 

2. Preference methods 

Here, non – preference methods are focusing on finding all pareto optimal solutions and 

Preference methods are further improving this by using preference info to find optimal solution 

which is most suitable for the relevant requirement. 

  Evolutionary algorithms are considered as the standard approach to solving MOO 

problems and it was well established due to their ability of finding pareto optimal sets. 

Although they were successful on that there are some disadvantages. The main disadvantage is 

its computational cost and time, this is a common problem in evolutionary methods due to 

inherent nature. So, researchers started to look for alternative methods which are quick and 

efficient. 

With the introduction of Particle Swarm Optimization algorithm in 1995 by Kennedy and 

Eberhart [2] which was inspired by bird flocking behavior and their series of algorithmic variances 

and extensions showed that simple but efficient methods can be utilized to solve single 

optimization problem, effectively with less computational cost. It also provided some interesting 

insight to formalize animal and intelligent behavior in the field of artificial intelligence and 

sociology. PSO soon became very famous among researchers and lot of studies conducted to 

further development and theoretical analysis. 

As a result of these development and extensions, Multi – Objective Particle Optimization 

was first introduced by Coello Coello, 2002 [9] as a generalization of PSO for multi-objective 

optimization. The idea is to utilize the advantages they got in single objective optimization for 

solving multi – objective optimization problems. Approaches which were taken for MOPSO can 

be divide in to two main categories depending on how they handle their objective functions that 

are needed to be optimized. 

1. The first category consists of unification or reduction of all of the objective functions 

which are needed to be optimized in to single objective function with multiple variables 

and then using modified single objective PSO for finding pareto optimal solution set. 

2. Second category consists of approaches that consider each objective function 

separately  

By looking at the swarm behavior in real world we can see much complex decision making is 

happening between individuals and as well as between groups. They exhibit competitive and 

cooperative behavior depending on the context and also selfish, and generous behaviors, to 
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maximize their gains to achieve some goal as a group and also what they trying to achieve also 

can be vary. In other words, we can say that they have multiple objective goals. By considering 

those facts it is intuitive to think that there must be some involvement of multi – objective 

optimization as well as game theory in here. More accurately it is logical and intuitive to model 

swarm metaphor using game theory to achieve multi – objective optimization using PSO.  

In the rest of the chapter we are going to focus on reviewing existing literature on multi 

– objective optimization and their modified versions that are involving game theory or similar 

behavior mechanism as an extension to general MOPSO methods. 

 

2.2 Definitions 

Definition 1 (Single Objective Optimization Problem): 

“A single objective optimization problem is defined as minimizing or maximizing of objective f(x), 

subject to gi(x) ≤ 0, i = 1,2,3, …, m and ℎj(x) = 0, j = 1,2,3, …, p; where x ∈ S ⊂ ℝn and S is the 

solution space (decision variable). A solution minimizes or maximizes the scalar f(x), where n-

dimensional decision variable vector x = (x1, x2, x3, …, xn)”. 

 

Definition 2 (A General MOOP): 

Multi-Objective Optimization problem is defined as minimizing/maximizing F(x) = (f1(x), f2(x), 

f3(x), …, fn(x), subject to gi(x), ≤ 0, i = 1,2,3, …, m and hk(x), = 0, k = 1,2,3, …, p; x ∈ S. An MOOP 

solution minimizes/maximizes the components of a vector F(x) where x = (x1, x2, x3, …, xn) is n-

dimensional decision variable from some universe S. It is denoted that gi(x) ≤ 0 and ℎk(x) = 0 

represents the constraints that must be fulfilled while minimizing/maximizing F(x), and S contains 

all possible x that can be used to satisfy an evaluation of F(x). 

 

Definition 3 (Pareto dominance): The vector u is said to dominate vector v, if and only if it holds 

that: 

ui ≤ vi, for all i = 1, 2, …, k, and, ui < vi, for at least one component i. 
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Definition 4 (Pareto optimality): A solution, x ∈ A, of the MO problem is said to be Pareto 

optimal, if and only if there is no other solution, y ∈ A, such that f(y) dominates f(x). Alternatively, 

we can say that x is nondominated with respect to A. The set of all Pareto optimal solutions is 

called Pareto optimal set and will be henceforth denoted as P*. 

 

 

2.3 Particle Swarm Optimization (PSO) 

This method was first introduced by Kennedy and Eberhart in 1995 [2] as result 

of a mathematical investigation on animal behavior mostly based on bird folks and fish schools. 

The main ideas were nearest neighbor velocity matching and acceleration by distance. These 

ideas were formulated into equations and converted in to PSO algorithm. In PSO manipulation 

of a swarm is different from evolutionary algorithms, because it promotes cooperative behavior 

rather than competitive model. 

 Let f: S → ℝ be objective function, S is d-dimension search space, n is number of particles 

where S = {x1, x2, x3, …, xn } . ith particle of the swarm can be represented as Xi = (xi1, xi2, xi3, …, xid) ∈ 

S and personal best position pbesti= (pbesti1, pbesti2, pbesti3, …, pbestid) ∈ S. And the velocity of 

the ith article is Vi=(vi1, vi2, vi3, …, vid). The particle movement for (t+1)th iteration updated as follows. 

   

Xi(t+1) = Xi(t) + Vi(t+1)                           (1) 

Vi(t+1) = Vi(t) + c1ri,1(t) (pbesti(t) – Xi(t)) + c2ri,2(t) (gbest(t) – Xi(t))   (2) 

Where i = 1,2,3, …, n, 

  

Xi(t), = position of the ith particle at tth iteration,  

Vi(t), = velocity of the ith particle at tth iteration.  

gbest(t) = best position founded by entire swarm so far. 

pbest(t) = best position founded by each particle. 

 

1. The component (Vi) models the tendency to continue in the same direction. 
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2. The component (pbesti) is a linear attraction toward the personal best  

position ever found, which is scaled by random weight c1ri,1. 

3. The third component (gbesti) is a linear attraction towards the global best position 

found by any particle of the swarm, which is scaled by another random weight c2ri,2. 

Original PSO model was tend to be trapped in local minima due to heavy dependent nature of 

the one global best so to avoid that later neighborhood topologies introduced. The following are 

the most common adapted topologies: 

1. Fully Connected Graph: In this topology, all members of the given swarm are 

connected to one another.  

2. Star Network: In this topology, one particle, called the focal particle, is connected to 

all the remaining particles in the swarm, but each is connected to that one only. It is 

also known as wheel topology 

3. Tree Network: All the particles are arranged in a tree structure in which each node 

has exactly one particle [61]. It is also known as hierarchical topology 
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Overall procedure of PSO can be shown in following algorithm 

 

 

 

2.4 MOPSO (Multi – Objective PSO) 

The first MOPSO concept was introduced by Carlos A. Coello Coello in 2002 [9] as a 

proposal for multi objective optimization using particle swarm method. In his paper, he proposed 

a method based on weighted inertia PSO variance [10] which is a standard PSO model for 

optimizing single optimization problems. The main idea was to maintain a repository or an 

external archive for storing pareto optimal solutions in each iteration. And also, there was a 

mechanism implemented for updating / maintaining archive. Also in the archive, they used 

mathematical structures such as hypercube to sort and store solutions. And the data stored in 

1: begin 

2:  for each particle of the swarm 

3:   Initialize particles position and velocity randomly 

4:  end for 

5:  do 

6:  for each particle of the swarm 

7:   Evaluate the fitness function 

8: if the objective fitness value is better than the personal best 

objective fitness value (pbest) in history Current fitness value set as 

the new personal best (pbest) 

9:   end if 

10:  end for 

11: From all the particles or neighborhood, choose the particle with best fitness 

value as the gbest or lbest 

12:  for each particle of the swarm 

13:   Update the particle velocity according to Eq. 2 

14:   Update the particle position according to Eq. 1 

15:  end for 

16: until stopping criteria is not satisfied 

17: end begin 
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the archive was used as historical data for updating current equation and make decisions. They 

tested results of their proposed algorithm with evolutionary multi objective algorithms such as 

Pareto Achieved Evolution Strategy (PAES) [11] and Non-Dominated Sorting Generic Algorithm II 

[7] (NSGA II) [12] and showed that MOPSO method is efficient and capable of handling MO 

problems. In 2004 same authors published a more detailed paper [1] on same topic, further 

improved by adding mutation operator to the MOPSO and further showed its capabilities by 

comparing it to existing methods. 

By borrowing concept of neighborhood from single PSO variance, MOPSO was also 

proposed, and in these kind of MOPSO’s swarm is divided into groups and some neighborhood 

topology (figure .1 & figure .2) is established (ring is the most popular method). Instead of 

depending on every particle here leaders for each group was introduced and decisions were 

made with considering those values of the leaders [13]. In this approach, the main problem was 

the method of selecting leaders. And there are several leaders’ selection techniques were 

proposed by using quality measures. Such as 

 1. Nearest neighbor density estimator [12] 

The nearest neighbor density estimator gives an idea of how crowded the closest 

neighbors of a are given particle, in objective function space. This measure estimates the 

perimeter of the cuboid formed by using the nearest neighbors as the vertices. 

2. Kernel density estimator [14] [15] 

When a particle is sharing resources with others, its fitness is degraded in proportion to 

the number and closeness to particles that surround it within a certain perimeter. A 

neighborhood of a particle is defined in terms of a parameter called σ share that indicates 

the radius of the neighborhood. A neighborhood of a particle is defined in terms of a 

parameter called σ share that indicates the radius of the neighborhood. Such 

neighborhoods are called niches. 

 

MOPSO methods can be mainly categorized in to five groups. 

1. Aggregating approaches [16] [17] 

In this approach, all the objectives of the problem transform into single one. 

2. Lexicographic ordering [18] 

In this approach, they rank objectives in order of importance. 

3. Sub-Population approaches [19] [20]  
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These approaches are involving with several sub populations as single optimizers 

4. Pareto-based approaches [21] [22] [9] [1] 

These approaches use leader selection techniques based on Pareto dominance. 

5. Combined approaches. [23] [24]  

Combination of above mentioned methods 

 

 

2.5 Pareto archive management (General algorithm) 

This mechanism is based on pareto dominance concept which originally used in area of 

game theory. Idea is to find non- dominated solution set. After stopping criteria met the stored 

non-dominated solutions in the archive is considered as the possible solutions for the original 

problem. And also, researchers have been using several techniques such as fitness sharing, 

crowding distance to get a more distributed and diverse solutions which is preferred in MOO. 

Following algorithm illustrate the simple and general version of such pareto achieve 

maintenance procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1: function UPDATEARCHIVE (archive, candidate) 

2:  for solution ∈ archive do 

3:   if dominates (solution, candidate) then 

4:    return False 

5:   end if 

6:   if dominates (candidate, solution) then 

7:    remove (archive, solution) 

8:   end if 

9:  end for 

10:  append (archive, solution) 

11:  return True 

12: end function 
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By going through previous researches, we can see that there are lot of researches focused 

on application of MOPSO for solving practical and other specialized problems. 

Dhafar Al-Ani (2012) [25] used MOPSO algorithm to solve optimization problem of 

optimal pump operation for water distribution system using EPANET toolkit. Here they worked 

on bi-objective pump scheduling problem where objectives are: minimize the electrical energy 

cost and minimize the maintenance costs in terms of the total number of pump switches. In 

additional to the bi-objective pump-operational problem, pressure and tank levels (i.e., initial, 

minimum, and maximum) are considered as constraints in that paper for computing the most 

cost-effective solutions. The results showed that MOPSO produced most economical solutions. 

Elizabeth F. G. Goldbarg (2006) [26] successfully used MOPSO for solving bi – objective 

degree constrained minimum spanning tree. They used operators for particle’s velocity based on 

local search and path-relinking procedures. And also, they showed the effectiveness of their 

solution by comparing it with evolutionary algorithms for the same problem. 

M. Janga Reddy and D. Nagesh Kumar (2007) [27] used MOPSO based on pareto 

dominance for generating optimal trade-offs in reservoir operation. Additionally, they 

introduced variable size external repository and efficient elitist-mutation(EM) operator as 

modifications. And this variance is called EM-MOPSO due to additional mutation operator. They 

even showed that this approach is simple and effective enough to consider as viable alternative 

to solve multi-objective water resource and hydrology problems. 

 

2.6 MOPSO -GT (Multi – Objective PSO with GT) 

Zhiyoun Li et al., 2009 published a paper titled [28] “Multi-Objective Particle Swarm 

Optimization Algorithm Based on Game Strategies” which was combining MOPSO with concepts 

of game theory in order to solve multi- objective problems. This approach was inspired by Game 

Strategies, where objectives are considered as independent agent which is trying to optimize its 

own function. So multi – player game model was adopted into multi – objective PSO. So, 

performance was depended on appropriate game strategies. Here they used a bargain strategy 

for that purpose. Further they tested this algorithm with several benchmark functions and 

showed that its validity.  
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Pareto based quantum PSO method was used for this algorithm as MOPSO and external 

archive for storing solutions also used and weighted inertia equation was used as velocity update 

mechanism.  

C.K. Goh (2010) et.al [29] CCPSO used some of the game theory ideas although they did 

not specially highlight it for solving multi – objective optimization problems using Game Theory. 

The main idea was to add competitive and cooperative co-evolutionary ideas to MOPSO. 

Canonical co-evolutionary paradigm can be broadly classified into two main categories 

1. competitive co-evolution - the various subpopulations will always fight to 

gain an advantage over the others. 

2. cooperative co-evolution - subpopulations will exchange information 

within each other during the evolutionary process 

In their approach, they decomposed the problem in the search space and decision 

variables were evolved by different species, or subswarms. And assignment of decision variables 

to different subswarm was adapted by the competitive mechanism. Instead of ideal scenario 

where all particles from the subswarm compete with all other particles from other subswarm 

here they assigned a probability for each swarm for representing particular variable and only two 

subswarms, the current and competitor swarm was able to compete for right to represent any 

variable at a given time. And also, they utilized weighted inertia PSO based MOPSO method which 

had archiving technique as their base model. Based on their results they showed that this 

approach’s effectiveness and validity 

Kiran K. Annamdas (2009) [30] took an approach to solve multi – objective problem by 

combining modified game theory (MGT) with MOPSO and utilized closet discrete approach for 

solving problems with discrete design variables. And also, they illustrated its capabilities by 

applying it for solving several engineering problems and comparing its results with existing 

methods. In the proposed modified (cooperative) game theory approach, all the players are 

assumed to agree to find a compromise solution according to a mutually agreeable bargaining 

model or super-criterion. Modified Game Theory approach was presented by Rao and Freiheit 

(1991). 
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2.7 Hybrid MOPSO methods  

Here we are focusing on some of the other methods which we are not discussed above 

but has an interesting insight in to MOO. 

V Jančauskas - 2016 [31] introduced two new MOPSO methods based on notion of 

heterogeneous PSO - having several different types of particle in the same swarm. They all share 

information via same external pareto archive. The main idea is to use different particles to 

achieve different performance aspects of the MOPSO so performance will result them counter-

acting each weakness. For example, one particle might focus on getting close to pareto front and 

other is trying to covering pareto front uniformly as possible so as a result they end up achieving 

both goals. 

They proposed two algorithms first one HMOPSO-1 has two different particle types called 

“sigma-particle” and “spread-particle”, here sigma particles are focused on achieving pareto 

front and spread-particles used to unsure uniform distribution among pareto front. For the 

second method HMOPSO-2 they used three particle types “sigma-particle”, “spread-particle” 

and “closest-particle” here closest-particle works the same way as sigma-particle with exception 

which it considers closet in terms of Euclidean distance in objective space. Using those method, 

they showed the superiority of their method by test and comparing them against other several 

existing methods. 

W.R.M.U.K. Wickramasinghe and X. Li - 2008 [32] 

In this research they have incorporate differential-evolution method in to MOPSO. 

Differential-evolution itself is a method used in evolutionary computing for optimization. It 

optimizes a problem by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. It does not use gradient of the problem being optimized which means it does 

not want problem to be differentiable as is required by classic optimization methods and also 

can optimize problems which are not continuous or noisy. In this research authors proposed a 

new leader selection mechanism which is based on Differential-evolution which can successfully 

guide other particles towards pareto optimal front. And also, they have shown that considering 

three particle using DE is better experimentally and this combined MOPSO method is better 

model for optimization by testing it against several test functions and comparing it with other 

optimization methods.  
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2.8 A taxonomy of existing MOPSO approaches 

It can be categorized into the following three branches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOPSO

Game Theoretic 
MOPSOGeneric MOPSO Hybrid MOPSO

• Handling MO with PSO  

- Carlos A. Coello Coello et al. [1] 

 

• Particle Swarm Optimizers for 

Pareto Optimization with 

Enhanced Archiving Techniques  

- Thomas Bartz Beielstein et al. 

[35] 

 

• Particle Swarm Optimization for 

the Bi-objective Degree 

Constrained Minimum Spanning 

Tree - Elizabeth F. G. Goldberg et 

al., 2006 [26] 

 

• Multi-objective optimization 

using dynamic neighborhood 

PSO               - Xiaohui Hu I, & 

Russell Eberhart, 2002 [18] 

 

• Multi-objective particle swarm 

optimization for generating 

optimal trade-offs in reservoir 

operation        - M. Janga Reddy 

& D. Nagesh Kumar,2007 [27] 

 

• A Modified PSO Algorithm for 

Constrained Multi-Objective 

Optimization  

- Lily D Li et al., 2009 [36] 

   

• Evaluating the Performance of 

Multi-Objective Particle Swarm 

Optimization Algorithms 

-V Jančauskas - 2016 [31] 

• Choosing Leaders for Multi-

objective PSO Algorithms Using 

Differential Evolution 

-W.R.M.U.K. Wickramasinghe 

and X. Li - 2008 [32] 

• Multi-objective optimization 

of engineering systems using 

game theory and particle 

swarm optimization                   

- Kiran K. Annamdas a & 

Singiresu S. Rao, 2013 [30] 

 

• Multi-Objective Particle 

Swarm Optimization 

Algorithm Based on Game 

Strategies 

- Zhiyoun Li et al., 2009 [28] 

 

• Handling multi-objective 

optimization problems with a 

multi-swarm cooperative 

particle swarm optimizer 

- Yong Zhang et al., 2011 [29] 

Figure 1. Taxonomy of MPSO approaches 
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2.9 Conclusions 

 In this chapter, starting from formal introduction of standard PSO we have discussed its 

extensions for solving MO problems as well as their various application researches conducted 

based on this MOPSO method. Then next we presented several successful attempts which some 

researchers had come up with combining game theory as well as evolutionary game theory in to 

MOO. And last section we further presented some interesting ideas which defining different 

particle behavior and types in to MOPSO concept. Based on those, it is clear that approaching 

MOO problems by considering particle behavior is an interesting area. For that we can use game 

theory as well as add the idea of competition which is not used in standard method, into 

cooperate behavior based MOPSO method and explore the possibilities.  
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Chapter 3 -  Proposed method 

In this chapter, new game theory based MOPSO method is purposed, namely “personality 

changing MOPSO”. This method is also based on pareto dominance concept and utilize an 

external archiving mechanism to leader selection process. 

 

3.1 “Personality changing MOPSO” 

The essence of the proposed method is that there is only one particle type exist in the 

swarm and for each particle it has two personalities. One personality is trying to 

maximize/minimize its own outcome (one of the objective function) and other personality is 

trying to do the same for its own (other objective function). So, the notion of competition is 

modeled. Change of the personality is model in turn-based manner, initially randomly selected 

personality given the initial turn. For a given arbitrary moment (iteration) if one personality got 

its turn to decide, it tries to maximize its outcome but without degrading others. So previous 

information is available and used for this, if value suggested through position updating equation 

of the PSO is a better solution than previous one then it takes its chance to move to that position 

and if not, it gives its turn to other personality and so on. And the mean time if particle found 

non-dominated solution then it stores it in the archive or update it with later solution which 

dominates the existing one and these values were used to guide the flight of particles towards 

pareto optimal solutions. In this manner until the termination condition is met this process is 

repeated. After that particles themselves are moved towards pareto optimal solutions. Also, 

mutation operator is used to re-spawn weak solutions in to more promising area and this effect 

is decreased as iteration goes. So finally, we can get particles cost values as solutions for the MOO 

problem we considered. 

Here we used one of the main branch of the game theory called “Sequential Game 

Theory” for decision making. Basic idea is to use previous information to decide current situation. 

The standard and conventional MOPSO model starts with particles with randomly assigned 

positions and velocities and then with time they slowly guide their flight, but particles going 

through obviously bad solutions as well, but only the repository updating mechanism has taken 
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care of the collecting good solutions. But in our purposed method particles guide their flight in 

logical manner without going for obviously bad solutions. And the key idea behind this 

mechanism is the competition within personalities. So different from standard MOPSO which is 

based on cooperate behavior among particles in the swarm and our method additionally utilizes 

the competitive behavior as well.   

 

3.2 Main Algorithm 

Here personality 1 is trying to minimize first objective function and personality 2 is trying to 

minimize second objective and two-objective minimization is considered.  

Up to 7th step initialization phase is given and then enter the while loop with given number of 

iterations and inside the while loop game theoretic decision-making process is taken place.  

1. Initialize the population POP: 

a. For i=0 to MAX /* MAX = number of Particles */ 

b. Initialize POP[i] 

c. Assign random personality /* 1 or 2 */ 

2. Initialize the speed of each particle:  

a. For i=0 to MAX 

b. VEL[i] = 0 

3. Evaluate each of the particle in POP (Calculate & assign cost values for given two-objective 

functions). 

4. Store the positions of the particles that represent nondominated vectors in the repository 

REP (for leader selection process) 

5. Generate hypercubes of the search space explored so far, and locate the particles using 

these hypercubes as a coordinate system where each particle’s coordinates are defined 

according to the values of its objective functions. 

6. Initialize the memory of each particle 

a. For i=0 to MAX 

b. PBEST[i] = POP[i] 

7. WHILE maximum number of cycles has not been reached DO 

a. Compute the speed of each particle using the following equation: 
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VEL[i] = W*VEL[i] + R1*(PBEST[i] - POP[i]) + R2*(REP[h] - POP[i]) 

Where W is the inertia weight and R1, R2 are random numbers in the range [0...1]. 

PBEST[i] is the best position that the particle i has found REP[h] is a value taken 

from the repository. POP[i] is the current value of the particle i. 

b. Compute the new position of the particle. 

POP[i] = POP[i] + VEL[i] 

c. Maintain particles within the search space boundary 

d. Evaluate each particle in POP: 

Calculate new cost values for the particle i and compare it with old cost values, if 

personality is type 1 and if it is possible to minimize its cost value by taking new 

value without degrading other cost value, take new value and stay in same 

Personality. Else change personality and give others the chance. /* personality 

type 2 will also follows same reasoning */ 

e. Apply mutation for re-positioning bad values. 

f. Update the content of REP and eliminate dominated locations. 

/* This repository is use for leader selection and guiding the flight of the particles*/ 

g. Increment the loop counter 

8. END WHILE 
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Chapter 4 - Implementation 

4.1 Introduction 

In this chapter implantation of the PC-MOPSO is given and all Implementation was done 

using MATLAB 2015a version. 

 

4.1.1 Parameter definition 

The following set of parameters were set, and adjusted for different scenarios.  
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4.1.2 Particle Initialization 

Particle initial settings are given below. 

 

 

4.1.3 Calculate initial values for position, velocity and personality and Cost 

Evaluate each of the particle in POP /*Calculate & assign cost values for given two-objective 

functions and assign personality type*/. 
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4.1.4 Main Loop 

following is the main loop of the algorithm for PC-MOPSO, in each iteration leader selection, 

position and velocity updating, damping the velocity and positions and game theoretic decision-

making process is taken place. 

 

 

The GTDM function is defined as follow for Game theoretic decision-making process, this 

function takes old cost value, new cost value and particle as input and output the 

modified particle., if personality is type 1 and if it is possible to minimize its cost value by 

taking new value without degrading other cost value, take new value and stay in same 

Personality. Else change personality and give others the chance. Same reasoning is used 

by personality type 2. 
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4.1.5 Apply mutation 

The mutation operator used here is the same mutation operator used in standard -MOPSO. 
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4.1.6 Updating Repository 

The following code Update the content of repository and eliminate dominated locations and then 

update the grid. 
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4.1.7 Plot the results 

 Here in each iteration plotting the particle movement in the objective space is done. By using 

this we can visually see what is going on clearly.   
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Chapter 5 - Results and Evaluation 

5.1 Introduction 

To test and compare the proposed method, several standard test functions were used, it 

mainly compared with standard MOPSO (Coello Coello) [1] and available generated true pareto 

sets for the test functions. And well-established metric for MOO, hypervolume indicator is used 

to measure quality of the pareto fronts. And it measures the volume of the dominated portion 

of the objective space. We have used existing implementation of hypervolume indicator 

approximation for this purpose. 

Testing was done using intel core i3 with 4GB ram computer with Windows 10 operating 

system. And for the implementation MatLab 2015a version was used.  

 

5.2 Test function 1 (ZDT1) [33] 

This is a function of n variables given by following mathematical equations. And simultaneously 

minimizing of f1 and f2 functions are considered. 

 

 

 

We compare one standard MOPSO & proposed PC-MOPSO for different number of iterations. 
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 (a)  

(b) (c) 

Figure 2: Comparison of output graphs in objective space for (a) standard MOPSO for 

ZDT1 200 iterations, (b) PC-MOPSO for ZDT1 200 iterations, (c) PC-MOPSO for ZDT1 750 

iterations      
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5.3 Test function 2 (ZDT2) [33] 

This is a function of n variable given by following mathematical equations. And simultaneously 

minimizing of f1 and f2 functions are considered. 

 

 

We compare MOPSO with PC-MOPSO for 200 iterations. In red-color (*) solutions of MOPSO is 

presented. 

  

 

 

 

 

 

 

(b)  (a) 

Figure 3: Comparison of output graphs in objective space for (a) standard MOPSO for 

ZDT2 200 iterations, (b) PC-MOPSO for ZDT1 200 iterations  

 



31 

 

5.4 Test function 3 (ZDT3) [33] 

This function is given by following mathematical equations and multiple fronts of pareto 

solutions are expected. 

 

 

Comparison of MOPSO with PC-MOPSO for 200 iterations are given by following graphs. 

 

  

 

 

 

 

 

 

 

 

 

(a) (b)  

Figure 4: Comparison of output graphs in objective space for (a) standard MOPSO for 

ZDT3 200 iterations, (b) PC-MOPSO for ZDT3 200 iterations  
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5.5 Test function 4 - Fonseca and Fleming function [34] 

In following mathematical equations, simultaneous minimization of f1 and f2 functions 

considered. 

 

 

Comparison of MOPSO with PC-MOPSO for 200 iterations are given by following graphs. 

 

  

 

 

 

 

 

 

(a) (b)  

Figure 5: Comparison of output graphs in objective space for (a) standard MOPSO 200 

iterations, (b) PC-MOPSO 200 iterations for Fonseca and Fleming function 
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Table 5-1: Parameter setting used for testing in PC-MOPSO 

 Population 

Size 

repository 

size  

C1(in velocity 

equation) 

C2(in velocity 

equation) 

Mutation rate 

ZDT1, ZDT3, 

FF 

100 50 1 2 0.1 

ZDT2 100 50 2 3 0.25 

  

Table 5-2: Approximaed hypervolume values for each test functions. 

 ZDT1 ZDT2 ZDT3 Fonseca and 

Fleming 

function 

Standard 

MOPSO 

0.6396(96.47%) 0.3198(97.17%) 0.8335(0.069% 

ovr) 

0.0867 

PC-MOPSO 0.6583(99.26%) 0.3162(96.08%) 0.7612(97.62%) 0.0748 

Available 

results 

0.6630 0.3291 0.7797  

 

Table 5-3: Change of hypervolume values with iterations in PC-MOPSO. 

 200 iterations 300 iterations 500 iterations 

ZDT1 0.6405 0.6491 0.6551 

ZDT2 0.3005 0.3082 0.3232 

ZDT3 0.9064 0.8342 0.8034 

 

 According to the approximated hypervolume values (higher is considered as better) it was 

shown that for ZDT1 type functions which has convex pareto optimal front, PC-MOPSO (Table 5-

2, first column) perform slightly better with increasing iterations. And for the ZDT2 which has 

non-convex pareto front it performs similar to other method (Table 5-2, second column). But we 

have to adjust parameters, it was shown that in other parameter setting it was not able to 
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converge to the solution front. But for the ZDT3 type functions which has multiple convex pareto 

front its performance is not very good (Table 5-2, third column). This can be understood since in 

this method each particle is trying reach pareto front and weak solutions were re-positioned 

using mutation operator so particles often confused on which front to reach this may leads to 

converging into few pareto fronts. And with increasing number of iterations it was shown that 

solution became better.    

 Overall, we can say that proposed method performs good at handing ZDT1 and ZDT2 type 

problems and with increasing number of iterations quality of the solutions increased but further 

research is needed on enhancing its results on ZDT3 type problems.  

 Other interesting thing which is unique to PC-MOPSO is unlike in other MOPSO methods 

which used repository to store solutions and used those final repository values as final solutions 

to the problem, PC-MOPSO particle itself try to reach pareto front. so, in other words it behaves 

similar to evolutionary algorithm/genetic algorithms by incorporating notion of competition and 

GT decision making.   
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Chapter 6 - Conclusions 

6.1 introduction 

In this research we primarily focused on behavioral aspect of the PSO method and effects 

on using game theory-based concepts such as competition which is not used in conventional 

methods to achieve MOO. For that we came up with new method which is based on each particle 

has two personalities and each personality act rationally to maximize its own benefit. In other 

words, we have embedded notion of competition using game theory in abstract manner. And in 

Experiments, it was shown that proposed method is competitive and capable of handling most 

of the problems which we considered, although further research may be needed for certain 

areas.  

Although general PSO method is based on natural phenomena o bird flocking or fish 

schooling, when come to MOPSO although it uses same mechanism to fly, it utilizes other 

mechanism which seemingly unnatural to achieve the final result. use of external archiving 

mechanism to store solutions is one of them. So, in a way we can say that in MOPSO final 

solutions are achieved through the side effects which has nothing to do with naturalist point of 

view. It is understandable since this is only “nature inspired “algorithms. 

But in our purposed method (PC-MOPSO) each particle/personality act in rational manner 

and take decision in order to maximize its own benefits. This is more approximate to natural 

behavior and the most interesting thing is, as a result of this, particle itself is moving toward the 

solution. This kind of behavior can be observed in evolutionary and genetic algorithms which 

have underlying mechanism is based on evolutionary game theory where evolutionary stable 

strategy survived. So, by introducing game theory and notion of competition we can see that 

interesting behavior are emerged. I think this may lead in to an interesting research area. 

 



36 

 

6.2 Conclusions about research problem/hypothesis 

As hypothesized in the research problem, by considering experiment results we can 

conclude that game theory based MOPSO method is appealing for multi-objective optimization 

(2.79% accuracy than MOPSO for ZDT1). And moreover, it leads to some interesting behavior. 

With further refinement and research this may open a door to very interesting branch of research 

in particle swarm metaphor.   

 

6.3 Limitations 

 In this research we only considered optimizing two objective functions. And also, we have 

omitted constrained optimization as well. This method did not perform very well for problems 

which has multiple pareto fronts. and also, value of the mutation rate had to be fine tuned in 

some problems to achieve best results. 

 

6.4 Implications for further research 

• Refinement of this method for handling multiple pareto front and achieving diversity 

• Investigating similarity between this method (PC-MOPSO) behavior with evolutionary 

algorithms. 

• Effects of using different mutation operators / leader selection mechanism 

• Use of this method for constrained and many objective optimizations.     
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Appendix C: Code Listings 

// main code - mopso.m 

 

clc; 
clear; 
close all; 

  
%% Problem Definition 

  
%CostFunction=@(x) ZDT3(x);      % Cost Function 

  
CostFunction=@(x) MOP2(x); 
%CostFunction=@(x) MOP5(x); 
%CostFunction=@(x) MOP4(x); 
%CostFunction=@(x) MOP_new4(x); 

  
%nVar=5;             % Number of Decision Variables 
nVar=30; 

  
VarSize=[1 nVar];   % Size of Decision Variables Matrix 

  
VarMin=0;          % Lower Bound of Variables 
VarMax=1;          % Upper Bound of Variables 

  

  
%% MOPSO Parameters 

  
MaxIt=200;           % Maximum Number of Iterations 
%MaxIt=750; 

  

  
nPop=100;            % Population Size 

  
nRep=50;            % Repository Size 

  
w=0.5;              % Inertia Weight 
wdamp=0.99;         % Intertia Weight Damping Rate 
c1=2;               % Personal Learning Coefficient 
c2=3;               % Global Learning Coefficient 

  
nGrid=7;            % Number of Grids per Dimension 
alpha=0.1;          % Inflation Rate 

  
beta=2;             % Leader Selection Pressure 
gamma=2;            % Deletion Selection Pressure 

  
mu=0.2;             % Mutation Rate 

  
%% Initialization 

  
empty_particle.Position=[]; 
empty_particle.Velocity=[]; 
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empty_particle.Cost=[]; 
empty_particle.Best.Position=[]; 
empty_particle.Best.Cost=[]; 
empty_particle.IsDominated=[]; 
empty_particle.GridIndex=[]; 
empty_particle.GridSubIndex=[]; 
empty_particle.CurrentPersonality=[]; 

  
%% This MATLAB function returns an array containing n copies of A in the row 

and column dimensions 
pop=repmat(empty_particle,nPop,1); 

  
for i=1:nPop 

     
    pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 
    %%This MATLAB function returns an array R of random numbers generated  
    %%from the continuous uniform distributions with lower and upper 
    %%endpoints specified by A and B, respectively.  

     
    pop(i).Velocity=zeros(VarSize); 

     
    %pop(i).Cost=CostFunction(pop(i).Position); 
    pop(i).Cost=CostFunction(pop(i)); 

     

     
    % Update Personal Best 
    pop(i).Best.Position=pop(i).Position; 
    pop(i).Best.Cost=pop(i).Cost; 

     
    pop(i).Personality = rem(i,2)+ 1; 
    %disp(pop(i).CurrentPersonality); 
end 

  
%return; 

  
% Determine Domination 
pop=DetermineDomination(pop); 

  
rep=pop(~[pop.IsDominated]); 

  
Grid=CreateGrid(rep,nGrid,alpha); 

  
for i=1:numel(rep) 
    rep(i)=FindGridIndex(rep(i),Grid); 
end 

  

  
%% MOPSO Main Loop 

  
for it=1:MaxIt 

     
    for i=1:nPop 

         
        leader=SelectLeader(rep,beta); 

         
        pop(i).Velocity = w*pop(i).Velocity ... 
            +c1*rand(VarSize).*(pop(i).Best.Position-pop(i).Position) ... 
            +c2*rand(VarSize).*(leader.Position-pop(i).Position); 
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        pop(i).Position = pop(i).Position + pop(i).Velocity; 

         
        pop(i).Position = max(pop(i).Position, VarMin); 
        pop(i).Position = min(pop(i).Position, VarMax); 

         
        %pop(i).Cost = CostFunction(pop(i).Position); 

         
        newCalculatedCost=CostFunction(pop(i)); 
        oldCalculatedCost=pop(i).Cost; 

         
        pop(i) = GTDM(pop(i), oldCalculatedCost, newCalculatedCost); 

         
        %pop(i).Cost=CostFunction(pop(i)); 

         
        % Apply Mutation 
        pm=(1-(it-1)/(MaxIt-1))^(1/mu); 
        if rand<pm 
            NewSol.Position=Mutate(pop(i).Position,pm,VarMin,VarMax); 
            %NewSol.Cost=CostFunction(NewSol.Position); 
            NewSol.Cost=CostFunction(NewSol); 
            if Dominates(NewSol,pop(i)) 
                pop(i).Position=NewSol.Position; 
                pop(i).Cost=NewSol.Cost; 

  
            elseif Dominates(pop(i),NewSol) 
                % Do Nothing 

  
            else 
                if rand<0.5 
                    pop(i).Position=NewSol.Position; 
                    pop(i).Cost=NewSol.Cost; 
                end 
            end 
        end 

         
        if Dominates(pop(i),pop(i).Best) 
            pop(i).Best.Position=pop(i).Position; 
            pop(i).Best.Cost=pop(i).Cost; 

             
        elseif Dominates(pop(i).Best,pop(i)) 
            % Do Nothing 

             
        else 
            if rand<0.5 
                pop(i).Best.Position=pop(i).Position; 
                pop(i).Best.Cost=pop(i).Cost; 
            end 
        end 

         
    end 

     
    % Add Non-Dominated Particles to REPOSITORY 
    rep=[rep 
         pop(~[pop.IsDominated])]; %#ok 

     
    % Determine Domination of New Resository Members 
    rep=DetermineDomination(rep); 
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    % Keep only Non-Dminated Memebrs in the Repository 
    rep=rep(~[rep.IsDominated]); 

     
    % Update Grid 
    Grid=CreateGrid(rep,nGrid,alpha); 

  
    % Update Grid Indices 
    for i=1:numel(rep) 
        rep(i)=FindGridIndex(rep(i),Grid); 
    end 

     
    % Check if Repository is Full 
    if numel(rep)>nRep 

         
        Extra=numel(rep)-nRep; 
        for e=1:Extra 
            rep=DeleteOneRepMemebr(rep,gamma); 
        end 

         
    end 

     
    % Plot Costs 
    figure(1); 
    PlotCosts(pop,rep); 
    pause(0.01); 

     
    % Show Iteration Information 
    disp(['Iteration ' num2str(it) ': Number of Rep Members = ' 

num2str(numel(rep))]); 

     

    % Damping Inertia Weight 
    w=w*wdamp; 

     
end 

  
%% Resluts 

  

 

// GTDM.m 
 

 

  
%% return new cost values according to Game T decision making 
function paricle = GTDM(paricle, oldCost, newCost) 

     
    oldPersonality = paricle.Personality; 
    newPersonality = -1; 

  
    if     (newCost(1) == oldCost(1) && newCost(2) == oldCost(2)) 
            newPersonality = oldPersonality; 
    elseif(newCost(1) > oldCost(1) && newCost(2) == oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 2, 1);         
    elseif(newCost(1) < oldCost(1) && newCost(2) == oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 

oldPersonality, oldPersonality); 

             
    elseif(newCost(1) == oldCost(1) && newCost(2) > oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 2, 1); 
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    elseif(newCost(1) > oldCost(1) && newCost(2) > oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 2, 1); 
    elseif(newCost(1) < oldCost(1) && newCost(2) > oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 2, 1); 

             
    elseif(newCost(1) == oldCost(1) && newCost(2) < oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 

oldPersonality, oldPersonality); 
    elseif(newCost(1) > oldCost(1) && newCost(2) < oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 2, 1); 
    elseif(newCost(1) < oldCost(1) && newCost(2) < oldCost(2)) 
            newPersonality = ChangePersonality(oldPersonality, 

oldPersonality, oldPersonality); 
    end 
    paricle.Cost = ChangeCostValue(oldPersonality, newPersonality, oldCost, 

newCost); 
    paricle.Personality = newPersonality; 
end 
  

 

 

// ChangeCostValue.m 

 
function value = ChangeCostValue(oldPersonality, newPersonality, oldValue, 

newValue) 
    if(oldPersonality == newPersonality) 
        value = newValue; 
    else 
        value = oldValue; 
    end 
end 

 

 

// ChangePersonality.m 

 
function personality = ChangePersonality(current, trueValue, falseValue) 
    if(current == 1) 
        personality = trueValue; 
    else 
        personality = falseValue; 
    end 

 

 

// CreateGrid.m 

 
function Grid=CreateGrid(pop,nGrid,alpha) 

  
    c=[pop.Cost]; 

     
    cmin=min(c,[],2); 
    cmax=max(c,[],2); 

     
    dc=cmax-cmin; 
    cmin=cmin-alpha*dc; 
    cmax=cmax+alpha*dc; 

     
    nObj=size(c,1); 
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    empty_grid.LB=[]; 
    empty_grid.UB=[]; 
    Grid=repmat(empty_grid,nObj,1); 

     
    for j=1:nObj 

         
        cj=linspace(cmin(j),cmax(j),nGrid+1); 

         
        Grid(j).LB=[-inf cj]; 
        Grid(j).UB=[cj +inf]; 

         
    end 

  
end 

 

 

// DeleteOneRepMemebr.m 

 
function rep=DeleteOneRepMemebr(rep,gamma) 

  
    % Grid Index of All Repository Members 
    GI=[rep.GridIndex]; 

     
    % Occupied Cells 
    OC=unique(GI); 

     
    % Number of Particles in Occupied Cells 
    N=zeros(size(OC)); 
    for k=1:numel(OC) 
        N(k)=numel(find(GI==OC(k))); 
    end 

     
    % Selection Probabilities 
    P=exp(gamma*N); 
    P=P/sum(P); 

     
    % Selected Cell Index 
    sci=RouletteWheelSelection(P); 

     
    % Selected Cell 
    sc=OC(sci); 

     
    % Selected Cell Members 
    SCM=find(GI==sc); 

     
    % Selected Member Index 
    smi=randi([1 numel(SCM)]); 

     
    % Selected Member 
    sm=SCM(smi); 

     
    % Delete Selected Member 
    rep(sm)=[]; 

  
end 
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// DetermineDomination.m 

 
function pop=DetermineDomination(pop) 

  
    nPop=numel(pop); 

     
    for i=1:nPop 
        pop(i).IsDominated=false; 
    end 

     
    for i=1:nPop-1 
        for j=i+1:nPop 

             
            if Dominates(pop(i),pop(j)) 
               pop(j).IsDominated=true; 
            end 

             
            if Dominates(pop(j),pop(i)) 
               pop(i).IsDominated=true; 
            end 

             
        end 
    end 

  
end 

 

 

// Dominates.m 

 
function pop=DetermineDomination(pop) 

  
    nPop=numel(pop); 

     
    for i=1:nPop 
        pop(i).IsDominated=false; 
    end 

     
    for i=1:nPop-1 
        for j=i+1:nPop 

             
            if Dominates(pop(i),pop(j)) 
               pop(j).IsDominated=true; 
            end 

             
            if Dominates(pop(j),pop(i)) 
               pop(i).IsDominated=true; 
            end 

             
        end 
    end 

  
end 

 

 

// FindGridIndex.m 

 
function particle=FindGridIndex(particle,Grid) 
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    nObj=numel(particle.Cost); 

     
    nGrid=numel(Grid(1).LB); 

     
    particle.GridSubIndex=zeros(1,nObj); 

     
    for j=1:nObj 

         
        particle.GridSubIndex(j)=... 
            find(particle.Cost(j)<Grid(j).UB,1,'first'); 

         
    end 

  
    particle.GridIndex=particle.GridSubIndex(1); 
    for j=2:nObj 
        particle.GridIndex=particle.GridIndex-1; 
        particle.GridIndex=nGrid*particle.GridIndex; 
        particle.GridIndex=particle.GridIndex+particle.GridSubIndex(j); 
    end 

     
end 

 

 

// Mutate.m 

 
function xnew=Mutate(x,pm,VarMin,VarMax) 

  
    nVar=numel(x); 
    j=randi([1 nVar]); 

  
    dx=pm*(VarMax-VarMin); 

     
    lb=x(j)-dx; 
    if lb<VarMin 
        lb=VarMin; 
    end 

     
    ub=x(j)+dx; 
    if ub>VarMax 
        ub=VarMax; 
    end 

     
    xnew=x; 
    xnew(j)=unifrnd(lb,ub); 

  
end 

 

 

// RouletteWheelSelection.m 

 
function i=RouletteWheelSelection(P) 

  
    r=rand; 

     
    C=cumsum(P); 
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    i=find(r<=C,1,'first'); 

  
end 

 

 

// SelectLeader.m 

 
function leader=SelectLeader(rep,beta) 

  
    % Grid Index of All Repository Members 
    GI=[rep.GridIndex]; 

     
    % Occupied Cells 
    OC=unique(GI); 

     
    % Number of Particles in Occupied Cells 
    N=zeros(size(OC)); 
    for k=1:numel(OC) 
        N(k)=numel(find(GI==OC(k))); 
    end 

     
    % Selection Probabilities 
    P=exp(-beta*N); 
    P=P/sum(P); 

     
    % Selected Cell Index 
    sci=RouletteWheelSelection(P); 

     
    % Selected Cell 
    sc=OC(sci); 

     
    % Selected Cell Members 
    SCM=find(GI==sc); 

     
    % Selected Member Index 
    smi=randi([1 numel(SCM)]); 

     
    % Selected Member 
    sm=SCM(smi); 

     
    % Leader 
    leader=rep(sm); 

  
end 

 

 

// PlotCosts.m 

 
function PlotCosts(pop,rep) 

  
    pop_costs=[pop.Cost]; 
    plot(pop_costs(1,:),pop_costs(2,:),'ko'); 
    hold on; 

     
    %rep_costs=[rep.Cost]; 
    %plot(rep_costs(1,:),rep_costs(2,:),'r*'); 
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    xlabel('1^{st} Objective'); 
    ylabel('2^{nd} Objective'); 

     
    grid on; 

     
    hold off; 

  
end 

 

 

 

functions used  

 

// ZDT1.m 

 
function z=ZDT1(p) 

  
    x = p.Position; 

     
    n=numel(x); 

  
    f1=x(1); 

     
    g=1+9/(n-1)*sum(x(2:end)); 

     
    h=1-sqrt(f1/g); 

     
    f2=g*h; 

     
    z=[f1 
       f2]; 

  
end 

 

 

// ZDT2.m 

 
%% Zitzler-Deb-Thiele's test problem 2 (ZDT2) - (DEB, pag. 357) 
 % data ---available 
function z=ZDT2(p) 

  
    x = p.Position; 

  

  
    nx = 30;                         % 'n_x' states 
    z1=x(1); 
    z2=(1 + 9*sum(x(2:nx))/(nx-1))*(1 - (x(1)/(1 + 9*sum(x(2:nx))/(nx-

1))).^2); 
    z=[z1 z2]'; 

                

  
end 

 

 

// ZDT3.m 
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    %% Zitzler-Deb-Thiele's test problem 3 (ZDT3) - (DEB, pag. 357) 
    %data ----available discrete P F 
function z=ZDT3(p) 

  
    x = p.Position; 

  
    nx = 30;                         % 'n_x' states 
    z1=x(1); 
    z2=(1 + 9*sum(x(2:nx))/(nx-1))*(1 - sqrt(x(1)/(1 + 9*sum(x(2:nx))/(nx-

1))) - x(1)*sin(10*pi*x(1))/(1 + 9*sum(x(2:nx))/(nx-1))); 
    z=[z1 z2]'; 

     

   

     

                

  
end 

 

 

// Fonseca and Fleming function  MOP2.m 
 
function z=MOP2(p) 

  
    x = p.Position; 

  
    n=numel(x); 

     
    z1=1-exp(-sum((x-1/sqrt(n)).^2)); 

     
    z2=1-exp(-sum((x+1/sqrt(n)).^2)); 

     
    z=[z1 z2]'; 

  
end 

 

 

 

 


