
Automatic Accompaniment Music
Generation and Singing Skill

Evaluation for Vocal Melodies

K.A.K.Indrachapa
Index No : 13000454

D.H.U.Perera
Index No : 13000901

R.W.M.N.H.Wanigasekera
Index No : 13001264

W.K.P.Wanniachchi
Index No : 13001272

Supervised by

Dr. K. L. Jayaratne

Submitted in partial fulfillment of the requirements of the

B.Sc. in Software Engineering (Hons) Final Year Project in Software Engineering

(SCS4123)

University of Colombo School of Computing

Sri Lanka

2017

Declaration

We certify that this dissertation does not incorporate, without acknowledgement, any

material previously submitted for a degree or diploma in any university and to the best of

our knowledge and belief, it does not contain any material previously published or written

by another person or ourselves except where due reference is made in the text. We also

hereby give consent for our dissertation, if accepted, be made available for photocopying

and for interlibrary loans, and for the title and abstract to be made available to outside

organizations.

Candidate Name : Ms. K.A.K. Indrachapa

Signature of Candidate : Date :

Candidate Name : Mr. D.H.U. Perera

Signature of Candidate : Date :

Candidate Name : Mr. R.W.M.N.H. Wanigasekera

Signature of Candidate : Date :

Candidate Name : Mr. W.K.P. Wanniachchi

Signature of Candidate : Date :

This is to certify that this dissertation is based on the work of

Ms. K.A.K. Indrachapa, Mr. D.H.U. Perera, Mr. R.W.M.N.H. Wanigasekera, Mr. W.K.P.

Wanniachchi under my supervision. The thesis has been prepared according to the format

stipulated and is of acceptable standard.

Supervisor: Dr. K.L. Jayaratna

Signature of Supervisor : Date :

i

Abstract

Music composition may be one of the most difficult tasks for non-musicians. To allow non-

musicians to get a taste of music creation, we propose a system for generating accompaniment

music for vocal melodies.

In the system that we propose, a pitch detection module first extracts the pitch classes

from the vocal melody using a time domain auto-correlation method. According to these

pitch classes, a singing skill evaluation module classifies the skill of the vocal melody as good

or poor based on the pitch and the tempo. The pitch based singing skill classifier uses two

features of pitch interval accuracy and classifies the singing skill using a trained Support

Vector Machine. The tempo based singing skill classifier uses a vibrato suppression based

onset detection technique to estimate the tempo of the vocal melody and classifies the singing

skill. A Hidden Markov Model with learned probabilities then construct the best acceptable

chord progression for the vocal melody by applying the Viterbi algorithm. The system then

generates the accompaniment music using the constructed chord progression and combines

it with the vocal melody to obtain the final outcome.

Finally, we present the results from the first and the second study demonstrating that

the performance of singing skill classifiers is fairly good with an accuracy of 81.8% and 87.5%

respectively. We present results from the third study showing that our system is able to con-

struct acceptable chord progressions for vocal melodies at a rate of 89.381% accuracy. The

results from the final study shows that the users are enthusiastic about the final outcome of

our system with above 3.76 mean score for all the Likert-scale questions.

ii

Acknowledgement

We would like to express our sincere gratitude to our supervisor, Dr. K.L. Jayaratne,

senior lecturer of University of Colombo School of Computing for providing us continuous

guidance and supervision throughout the research.

We would also like to extend our sincere gratitude to Dr. A.R. Weerasinghe, senior

lecturer of University of Colombo School of Computing and Mr. G.K.A. Dias, senior lecturer

of University of Colombo School of Computing for providing feedback on our project proposal

and interim evaluation to improve our study. We also take the opportunity to acknowledge

the assistance provided by Dr. M.I.E. Wickramasinghe as the coordinator of the final year

software engineering project.

We would also like to acknowledge Mr Suresh Maliyadde, outstanding music director

and one of the most experienced musicians in the current Srilankan field of music, for the

volunteered service by allocating his valuable time to advice and feedback us in designing

our project. We would also like to thank all the musicians for being generous to support

expert evaluation processes.

Our deepest gratitude goes to our loving families for their unconditional support, love

and encouragement extended towards us throughout this journey of life. Finally, it is a great

pleasure for us to acknowledge the assistance and contribution of all the people who helped

us to successfully complete our project.

iii

Contents

Declaration i

Abstract ii

Acknowledgement iii

Contents vii

List of Figures viii

List of Tables ix

Acronyms x

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Project Aim and Objectives . 2

1.4 Delimitation of Scope . 3

1.5 Dissertation Outline . 3

2 Background Study 4

2.1 Related Work . 4

2.1.1 Microsoft SongSmith (MySong) . 5

2.2 Automatic Harmonization of Vocal Melodies 5

2.3 Singing Skill Evaluation . 5

2.3.1 Pitch Based Singing Skill Evaluation 6

2.3.2 Tempo Based Singing Skill Evaluation 7

2.4 Summary . 8

3 Requirements 9

3.1 Functional Requirements . 9

3.1.1 Recording a Vocal Melody . 9

3.1.2 Singing Skill Evaluation . 9

iv

3.1.3 Generate Accompaniment Music for a Vocal Melody 10

3.2 Non-functional Requirements . 11

3.2.1 Reliability . 11

3.2.2 Availability . 11

3.2.3 Security . 11

3.2.4 Maintainability . 11

3.2.5 Portability . 11

3.2.6 Efficiency . 12

3.3 Summary . 12

4 Design 13

4.1 Overall Design . 13

4.1.1 Vocal Melody Recording . 14

4.1.2 Pitch Detection . 14

4.1.3 Singing Skill Evaluation . 14

4.1.4 Chord Generation . 15

4.1.5 Accompaniment Music Generation 15

4.1.6 Combination . 15

4.2 Architectural Design . 15

4.2.1 Hybrid Mobile Application Architecture 15

4.2.2 Overview of Mobile Application Architecture 16

4.2.3 Overview of Web Server Architecture 18

4.3 Software Development Life Cycle . 20

4.4 Summary . 20

5 Singing Skill Evaluation 21

5.1 Pitch Based Singing Skill Evaluation . 21

5.1.1 Fundamental Frequency (F0) Estimation 22

5.1.2 Pitch Interval Accuracy Estimation 22

5.1.3 Feature Extraction . 26

5.1.4 Classification . 26

5.2 Tempo Based Singing Skill Evaluation . 27

5.2.1 Onset Detection . 27

5.2.2 Periodicity Estimation . 29

5.2.3 Disagreement Fixing . 30

5.3 Summary . 31

6 Harmonization of Vocal Melodies using HMM 32

6.1 Design Overview . 32

6.1.1 Hidden Markov Model . 33

v

6.1.2 Assumptions . 34

6.2 Training . 34

6.2.1 Preprocessing . 34

6.2.2 Learning Transition Probabilities . 35

6.2.3 Learning Melody Assignment Probabilities 35

6.3 Decoding . 36

6.3.1 Pitch Detection . 36

6.3.2 Computing Chord/Melody Probabilities at Each Measure 36

6.3.3 Choosing the Best Chord Sequence 36

6.3.4 Key Determination . 37

6.3.5 Happy Factor . 38

6.4 Summary . 38

7 Implementation 39

7.1 Tools and Technologies . 39

7.1.1 Python . 39

7.1.2 Node.JS . 39

7.1.3 Android . 40

7.1.4 Praat . 40

7.1.5 Python Librosa . 40

7.1.6 Python NumPy . 40

7.1.7 MMA . 40

7.1.8 Timidity++ . 41

7.1.9 Lame . 41

7.1.10 Python PyDub . 41

7.1.11 Sox . 41

7.1.12 Python scikit-learn . 41

7.2 Implementation of the Server . 42

7.2.1 Service Layer . 42

7.2.2 Business Layer . 42

7.3 Implementation of the Mobile Application 49

7.3.1 Presentation Layer . 50

7.3.2 Business Layer . 51

7.3.3 Data Layer . 51

7.3.4 Cross Cutting . 51

7.4 Summary . 52

8 Testing and Evaluation 53

8.1 Test 01 - Pitch Based Singing Skill . 53

vi

8.1.1 Test Methodology . 53

8.1.2 Test Results . 54

8.2 Test 02 - Tempo Based Singing Skill . 54

8.2.1 Test Methodology . 55

8.2.2 Test Results . 56

8.3 Test 03 - Chord Generation . 57

8.3.1 Test Methodology . 57

8.3.2 Test Results . 58

8.4 Test 04 - Usability Test . 59

8.4.1 Test Methodology . 59

8.4.2 Test Results . 59

8.5 Discussion . 59

8.6 Summary . 60

9 Conclusion 61

9.1 Conclusion on Project Aim and Objectives 61

9.2 Limitations . 62

9.3 Implications for Further Research . 62

References 63

Appendices 65

A Contribution 66

A.1 Individual Contribution for the Project . 66

B Tables and Diagrams 68

B.1 Result of the Chord Generation Test . 68

B.2 Tempo Based Singing Skill Evaluator Test Data 69

B.3 Usability Test Statistical Data . 70

B.4 Usecase Diagram of the System . 71

B.5 Activity diagram of a user creating a new song 72

C Code Listings 73

C.1 Python Implementation of Viterbi Algorithm 73

C.2 Praat Script for Pitch Detection . 74

C.3 Function for M value computation . 75

C.4 slope value computation . 75

vii

List of Figures

1.1 Basic structure of a song . 1

4.1 High level design of the system . 13

4.2 System architecture . 16

4.3 Abstract view of business layer . 19

5.1 High level design of pitch based singing skill evaluator 22

5.2 Gaussian comb filter for F = 1, 10 and 75 . 23

5.3 Frame generation of a song . 24

5.4 Semitone stability of frames . 24

5.5 Semitone stability and the grid frequency of a frame 25

5.6 Long term average of selected melodies . 25

5.7 Ideal and actual long term average of selected melodies 26

5.8 Spectrogram view of human singing and guitar recordings 27

5.9 High level view of tempo estimation process 28

5.10 Onset strengths and selected onsets of an audio signal 29

5.11 Onset autocorrelation curve and tempo estimation of the audio signal 30

6.1 Overall design of the chord generation phase 33

6.2 Hidden Markov Model representation of the chord generation process 34

7.1 Interaction of components within accompaniment music generator 43

7.2 Interaction between pitch detector and Praat program 44

7.3 Behavior of target classes with M value and slope value 45

7.4 Time domain and STFT view of signal . 46

7.5 STFT spectrogram view of signal before and after applying the mel filter . . 47

7.6 Autocorrelated curve of an audio signal and shifted curve of same audio signal 48

7.7 The composition of Accompaniment Music Generator 49

7.8 Screen shots of recording activity . 50

B.1 Usecase diagram of the system . 71

B.2 Activity diagram of a user creating a new song 72

viii

List of Tables

3.1 User Stories . 10

8.1 Sample data with the extracted features and the labels given by the expert . 54

8.2 Performance of the SVM classifier without cross-validation 54

8.3 Performance of the SVM classifier with 5-fold cross-validation 54

8.4 Sample data with the estimated tempo values and the labels given by the expert 55

8.5 Evaluation result of the tempo estimation algorithm 56

8.6 Performance of the tempo based singing skill classifier 56

8.7 WER when compared with “Original Reference” for different “Happy Factor”

values . 58

8.8 WER when “Happy Factor” is 0.55 and compared with ”Refined Reference” 58

8.9 Summary of the Likert-scale questionnaire 59

B.1 Chord generation test results according to happy factor values 68

B.2 Sample data with the estimated tempo values and the labels given by the expert 69

B.3 Results of usability test . 70

ix

Acronyms

AIFF Audio Interchange File Format

API Application Program Interface

DFT Discrete Fourier Transformation

FLAC Free Lossless Audio Codec

HMM Hidden Markov Model

HTTP Hypertext Transfer Protocol

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

MAIE Mean Absolute Interval Error

MAPE Mean Absolute Pitch Error

MFCC Mel Frequency Cepstral Coefficient

MIDI Musical Instrument Digital Interface

MMA Music Midi Accompaniment

MT Machine Translation

REST Representational State Transfer

SOAP Simple Object Access Protocol

STFT Short Term Fourier Transform

SVM Support Vector Machine

UI User Interface

WER Word Error Rate

XML Extensible Markup Language

x

Chapter 1

Introduction

1.1 Background

A song is usually defined as a combination of vocal melody and instrumental accompani-

ment. In the process of professional singing, a musically satisfying arrangement of notes is

performed by a singer with rhythmic and harmonic support provided using musical instru-

ments. The musically satisfying arrangement of notes is referred to as the melody whereas

the support provided by the musical instruments is generally referred to as the accompani-

ment music. Figure 1.1 illustrates the basic structure of a song.

Figure 1.1: Basic structure of a song

1

A melody is a sequence of notes arranged in a musically satisfying manner while a note

is a sound which consists of a particular pitch and a duration. When there is more than

one pitch sounding at the same time in music it results a harmony. A chord is a different

kind of harmony which have three or more notes sounding simultaneously. An arrangement

of chords is referred to as a chord progression and there can be one or more acceptable

chord progressions for a single melody. Chord progressions are usually played using musical

instruments such as piano, guitar etc. to accompany a melody. The final element of a song

is the rhythm which defines the repetitive pulse of the music. The speed of the rhythm is

referred to as tempo and it is usually measured using beats per second.

1.2 Problem Definition

Knowledge of music is often required for composition of songs since the normal procedure

to follow is to begin with an idea for the melody and then developing chords and accom-

paniment patterns to turn that melody into a song. However, individuals who lack musical

knowledge would have to struggle when developing and experimenting their musical ideas.

This solution will cater their problem by taking the burden of generating the chords and the

accompaniment.

1.3 Project Aim and Objectives

The ultimate aim of this project is to allow non-musicians to get a taste of music compo-

sition using a mobile application. This application is capable of generating accompaniment

music when a user sings a song. Furthermore, providing such a service would create an

entertainment value.

There are two key objectives in order to achieve the project aim. The first objective is

identifying the singing skill of the user. The acceptability of generated accompaniment

music depends on the singing skill of the user. Encouraging the user to improve their

singing skill would increase the acceptability of generated accompaniment music. The second

objective is selecting an acceptable chord sequence for a vocal melody. A core

requirement of an accompaniment music is the chords progression.

Even though this project is aimed at delivering a feature-rich accompaniment music gen-

eration application for entertainment purposes, it will have the capability of delivering basic

functionalities for advanced users who compose music commercially in the future enhance-

ments of the product.

2

1.4 Delimitation of Scope

It is beyond the scope of this study to examine the internals of accompaniment generation

software. This study aims to contribute on automatic harmonization of vocal melodies so that

the produced chord progression can be used as an input to the accompaniment generation

software to get the final accompaniment music.

1.5 Dissertation Outline

This dissertation has been organized in the following way. Chapter 2 lays out the background

study, related work and similar systems whereas the Chapter 3 describes functional and non-

functional requirements of the project. Chapter 4 begins with the overall design and further

explains the architectural design and the software development life cycle of the project. The

design of singing skill evaluation under pitch based and tempo based evaluation is described

in Chapter 5. Chapter 6 presents the design of harmonization of vocal melodies using an

HMM. Chapter 7 begins by laying out the tools and technologies used and looks at the

implementation of the server and the mobile application. Chapter 8 presents the results and

evaluation of the project and finally, Chapter 9 concludes with a summarization of the work

carried out and suggested future work.

3

Chapter 2

Background Study

This chapter discusses approaches and systems related to this project. Section 2.1 elaborates

more on related work and similar systems. Section 2.2 reviews recent research approaches

on automatic harmonization of vocal melodies and Section 2.3 presents research conducted

on singing skill evaluation under pitch based and tempo based singing skill.

2.1 Related Work

A typical approach to allow users to get a taste of music creation has been to use music

production software that has pre-programmed musical structures such as rhythm patterns,

music clips etc. The users would record, experiment and combine the musical structures in

order to come up with a final music creation. However, musically untrained users might find

it difficult to use this approach due to lack of domain knowledge in music.

A more suitable approach would be to provide users with an accompaniment music track

to sing along with it. The accompaniment music track can be a pre-produced track based on

a popular song. This approach is identified as Karaoke1 and Sing!Karaoke by Smule2 is an

implementation of Karaoke through a mobile application. Despite its quality and rich music

tracks, Karaoke suffers from several major drawbacks. A musically untrained user may only

be able to engage with a limited variety of songs and that user would not be able to create

new music.

A solution for the aforementioned drawback would be to generate the accompaniment

music track automatically according to the vocal melody which the user sings. A system

which follows this approach is Microsoft SongSmith.

1A form of interactive entertainment or video game developed in Japan in which an amateur singer

sings along with recorded music using a microphone. The music is typically an instrumental version of a

well-known popular song.
2https://www.smule.com

4

2.1.1 Microsoft SongSmith (MySong)

Microsoft SongSmith (previously known as MySong) is a standalone system which gener-

ates accompaniment music automatically for a given vocal melody. The core of automatic

accompaniment generation is based on the extraction of chords from a vocal melody. Song-

Smith software application uses a Hidden Markov Model which was trained using a lead

sheet database to select chords for vocal melodies[1]. The model parameters are intuitively

exposed to the user so that the user can experiment with the generated chord sequence[2]. A

major drawback of ‘SongSmith’ is that the system tends to generate accompaniment which

is out of tune with the melody input if the user does not sing in a standard musical chromatic

key. As a solution to this problem, a singing skill evaluation method was introduced in this

project.

2.2 Automatic Harmonization of Vocal Melodies

A chord progression is an important component in an accompaniment music generation sys-

tem. Given a chord progression according to a melody, an accompaniment music generation

software can produce music using various rhythm patterns according to a predefined tempo.

To generate accompaniment for any given melody, the problem of automatic harmonization

should be addressed.

Several studies investigating automatic harmonization used pitch class profile to come up

with chord progressions. Fujishima has suggested a realtime software system which recognize

chords from a polyphonic audio signal [3]. The pitch class profile of the audio signal was

derived from the Discrete Fourier Transformation(DFT) spectrum of the audio and a pattern

matching technique was applied to obtain the chord type. However, one major limitation

of pitch class profile based chord recognition is that they require a polyphonic audio signal.

Chuan and Chew presented a hybrid system for generation of style-specific accompaniment

[4]. Neo-Riemannian transforms was used to construct the chord progression list from MIDI

melodies and the final chord progression was generated using a Markov chain with learnt

probabilities for the transforms. But one major limitation of this kind of systems is that

they require users to input the melody in formal musical formats like MIDI or score. The

most promising method of automatic accompaniment for vocal melodies was suggested by

SongSmith [1].

2.3 Singing Skill Evaluation

Several attempts have been made to evaluate the singing skill using various approaches.

Previous research findings show that pitch (drift, intonation, vibrato) and tempo (onset

detection) can be used as factors to measure singing skill evaluation[5].

5

Different approaches of singing skill evaluation based on pitch related measures (vibrato,

pitch interval accuracy, drift, intonation) are described below.

2.3.1 Pitch Based Singing Skill Evaluation

Mauch et al. present a way to measure intonation (accuracy of pitch in playing or singing) in

unaccompanied singing[6]. Definition of intonation brings ‘reference pitch’ into play which

can be either external or internal. They have introduced two metrics to measure accuracy

and drift which are interval error and pitch error.

An interval is known as the distance between two pitches in music and given by equation

2.1.

∆pi = pi − pi−1 (2.1)

Where pi is the ith pitch and pi−1 is the pitch of the preceding note. ∆p gives the signed

distance between the ith and (i−1)th pitch. Therefore interval error of an observed interval is

denoted by [6, eq. (2)]. Second measure is introduced as pitch error. However since there’s no

external reference pitch in unaccompanied singing pitch error has not been defined directly.

Therefore an estimate for the tonic3 pitch is defined in [6, eq. (3)] Using those metrics

singing accuracy and precision metrics are explained as mean absolute pitch error (MAPE)

and mean absolute interval error (MAIE) in [6, eq. (5)]and [6, eq. (6)] respectively.

Major concern of this approach is that it requires the score information of the song

to compute the nominal interval and pitches. Since we are evaluating the singing skill of

unknown melodies score information is not available.

ZWAN presented an artificial neural network based method for automatic recognition

of quality of singing[7]. According to the study they have defined the quality factor as a

subjective measure of whether the voice belongs to an amateur or to a professional singer.

They have used 331 parameters which consists of glottal source, vibrato and intonation

parameters. Glottal source parameters are defined in the time domain and computationally

expensive. A person who maintains a stable vibrato can be identified as a professional singer.

Therefore vibrato was used as another parameter. Vibrato parameters were extracted using

pitch contours. They have used a feed forward neural network for the singing voice quality

recognition and the results obtained were compared with the expert judgments. The aim

of this study [7] is to distinguish the performance between an amateur and a professional

singer whereas our requirement is to evaluate the singing skill of musically untrained users

as good or poor. But we considered the overall approach where classification was done using

a neural network and kept looking for more relevant features.

3Tonic-also known as the keynote. Tonic is the first note of any scale.

Ex: if key is C major then tonic is C.

6

Another approach was suggested for singing skill evaluation of unknown melodies by

Nakano and Goto [8]. Classification using an SVM (support vector machine), pitch interval

accuracy and vibrato features were suggested. Pitch interval accuracy and vibrato are known

to be independent from singer and the melody. Therefore these features were used to evaluate

the singing skill where score information is unavailable. Pitch interval accuracy is defined by

how well a fundamental frequency F0 trajectory fits in to a 100 cents width grid. Semitone

stability Pg(f, t) was then defined using pitch interval accuracy as given in [8, eq. (3)] and

shows the semitone stability in good and poor singing respectively [8, Fig.2]. Vibrato is the

other feature they have considered. It is known as the periodic fluctuation of F0. The study

has proposed a method to estimate vibrato sections using Short Term Fourier Transform

(STFT). Vibrato likeliness was used as a metric to decide whether an estimated section is

an actual vibrato section [8, Fig.4]. As the next step of the study they trained an SVM

using the features extracted from semitone stability (related to pitch interval accuracy) and

vibrato sections.

We used this approach suggested by Nakano and Goto because it is compatible with our

requirements but we only considered the pitch interval accuracy related features as vibrato

is an advanced technique in singing. Vibrato is mostly used by musically trained users and

professional singers4, but our requirement focuses more in evaluating the singing skill of

musically untrained users. Therefore vibrato was not taken into consideration.

2.3.2 Tempo Based Singing Skill Evaluation

Much of the current literature on tempo detection of songs pays particular attention to

onset detection methods. Alonso et. al present an onset detection based tempo extraction

algorithm using a concept of spectral energy flux[9]. It involves three stages. They are as

extraction of onset by front-end analysis, periodicity detection block and temporal estimation

of beat locations.

Most of the studies use these three stages to tempo detection with different kind of onset

detection mechanisms and periodicity detection techniques. According to this study, onset

detection function is based on the spectral energy flux of the input audio signal.

But the generalizability of much published research on this onset detection is problematic

for extracting tempo in vocal melodies because the singing voice can be seen as a pitched

non-percussive instrument which does not have rhythm information[10].

Spectral onset detection can be of two types as energy based spectral onset detection

methods and phase based onset detection methods. Energy based methods are useful for

strong onsets, such as percussive instruments, whereas the phase based methods are good

for soft onsets. Most of the voice signal contains soft onset features.

Toh et al. stated that Gaussian Mixture Models indicators have a positive impact on

4http://www.scielo.br/scielo.php

7

classifying audio features of vocal melody[11].This study aimed to introduce new onset de-

tector based on supervised machine learning in order to capture the intricacies of singing

note onsets. According to this study, the Gaussian probability distribution of the feature

vector is extracted from a probability of onset and probability of non onsets. Although ex-

tensive research has been carried out on onset detection, it gives poor results for pitch based

methods of unstable vocal melodies.

Bock et al. show that onset detection with vibrato suppression enhances spectral flux

based onset detection[12]. According to this study, they have invented super flux algorithm

by adding spectral trajectory tracking stages to common spectral flux. They have presented

a detection function to pick the peaks by filtering out non onsets using median values of

spectral flux.Vibrato suppression based super flux approach is chosen as a basis for onset

detection because of variation of vocal melodies.

Alonso et al. stated that there is a very common problem when human taps along with

music to identify tempo and automatic tempo estimation methods also make this doubling or

halving of the true tempo[9]. According to this study, tempo estimation which is provided by

the algorithm is labeled as correct if there is a less than 5% disagreement from the manually

annotated tempo. This approach is chosen because of the disagreement adjusting method is

one of the more practical ways of fixing this doubling or halving issue.

2.4 Summary

This chapter provided a detailed description of the background study of this project. It

first laid out an overview of the similar systems, Microsoft SongSmith is one of the similar

systems which generates accompaniment music for a vocal melody but it does not evaluate

the singing skill. Furthermore, this chapter looked at several research approaches undertaken

in automatic harmonization of vocal melodies and singing skill evaluation. A number of

attempts have been made to investigate automatic harmonization of vocal melodies. Even

though a considerable amount of literature has been published on automatic singing skill

evaluation, most of them are based on the assumption that score information of the melody

is available.

8

Chapter 3

Requirements

This chapter provides an overall description of key requirements. Section 2.1 and Sections

2.2 describe functional requirements and nonfunctional requirements respectively and focus

particularly upon areas of challenge and difficulty.

3.1 Functional Requirements

Functional requirements address the core functionalities of this project. Requirement gather-

ing and specification phases are addressed under this section. The user story based approach

was chosen to gather requirements because it is one of the main approaches that help to find

out requirements by explanation and the need of the feature. Table 3.1 describes the com-

plete set of user stories of the system.

According to these user stories, there are three main functionalities in this system: Record

a vocal melody, evaluate singing skill and generate an accompaniment music for a recorded

vocal melody. There are some other sub-functionalities that requires to proceed these main

functionalities. But only the key functionalities are described in this section.

3.1.1 Recording a Vocal Melody

A recorded vocal melody is required to generate an accompaniment music and to perform

a singing skill evaluation. Therefore vocal melody recording can be identified as one of the

major requirements of the system. A clear, less noisy, lossless vocal melody recording would

give out good results. These conditions are the challenging areas which are needed to be

addressed while designing and implementing this required feature. Only the audio recording

is considered here, since video recording requires more processing power than audio recording.

3.1.2 Singing Skill Evaluation

The singing skill evaluation process is one of the main objectives in this project. The main

purpose of singing skill evaluation is to improve the chord generation process in order to

9

Table 3.1: User Stories

ID As a I want to So that I can

1
Mobile

application user
Register in the system Use system services

2
Mobile

application user
Record voice melody

Record my voice melody

into the system

3
Mobile

application user
Select rhythm for song

Select appropriate rhythm

for song

4
Mobile

application user
Select tempo for song

Select appropriate tempo

for song

5
Mobile

application user

Request accompaniment

music

Get accompaniment music

for recorded voice melody

6
Mobile

application user
Check singing skill

Get evaluation about my

singing skill

7
Mobile

application user
Listen to the full song Play output song

8
Mobile

application user
Edit chord progression

Change accompaniment music

according to my choice

9
Mobile

application user
Apply voice effects

Edit recorded voice melody

with audio effects

10
Mobile

application user
Share the song

Share my song with friends

through social networks

provide an enhanced output. There are several kinds of singing evaluation measures in the

music industry. But pitch based and tempo based evaluation are only considered in this

project. Because the pitch is one of the major attributes of musical tone and tempo is

the number of beats per minute which required to maintain synchronization between an

accompaniment music and a recorded vocal melody. This evaluation result provides a proof

of the quality of output result along with musical information. Pitch extraction of unstable

notes and tempo extraction of vocal melody are challenges that need to be addressed.

3.1.3 Generate Accompaniment Music for a Vocal Melody

An accompaniment music generation process is the other objective in this project. Using

the result of this component, a chord sequence for a particular recorded vocal melody can

be extracted. An accompaniment music will be generated according to chord sequence

using Music MIDI Accompaniment (MMA). Only the chord extraction process is considered

here. There are some preprocessing steps that require extracting a chords sequence from

10

vocal melody. Some of them are rhythm selection, tempo selection, removal of noises from

vocal melody etc. Extracting the chords from out of rhythm songs and tracking the quickly

changing chords are some challenging areas of this accompaniment music generation process.

3.2 Non-functional Requirements

3.2.1 Reliability

An Internet connection is an essential factor for this application and if there is a network

failure while using this app, there can be data loss and synchronization problems. To avoid

these problems all current processes will be terminated until the Internet connection is

rebuilt.

3.2.2 Availability

The system will be available 24 hours. It will be unavailable when there are system upgrades

and maintenance. The system will also be unavailable on network failures as the system is

a web based one.

3.2.3 Security

Google authentication will be used to authenticate the user and the web services will be

protected using API keys. Through this application, user’s voice tracks are recorded and

stored in a server. These recorded vocal melodies must be secured. Therefore, security is

one of the most important factors in this application.

3.2.4 Maintainability

Maintainability is considered as one of the main non-functional requirements that can be

used to judge the system. The system will be well modularized for ease of maintenance. All

the codes will be well commented so maintenance teams can do their jobs easily.

3.2.5 Portability

The proposed system is a web based android solution. Therefore any mobile device with

an Android operating system will run this application without any technical issues. The

independent nature of the client and server applications enhances the deployment of this

solution to other operating systems.

11

3.2.6 Efficiency

The proposed solution would acquire more processing power. A high processing power

would be needed since there are many processes in the application which need to be run

concurrently. A processor of a mobile phone will not have the capabilities for concurrent

processing of these application components. As a solution to that, the components which

need heavy processing power are kept in the server side and they are being accessed by the

mobile application using HTTP requests.

3.3 Summary

This chapter presented a detailed description of the key requirements of the project. It first

laid out the functional requirements of the project: Recording a vocal melody, singing skill

evaluation and generating accompaniment music for a vocal melody and looked at the non-

functional requirements: reliability, availability, security, maintainability, portability, and

efficiency.

12

Chapter 4

Design

This Chapter indicates the design of possible solutions in accordance with the requirements

specified in Chapter 3. Section 4.1 describes the main design considerations for the specified

requirements and Section 4.2 elaborates more on architectural design considerations of the

system.

4.1 Overall Design

As described in Chapter 1, the main objective of this system is to encourage people to

compose their own songs without having the ability to play musical instruments. The key

functional requirements to achieve this goal were recording a vocal melody, obtaining the

singing skill evaluation and generating accompaniment music automatically to the recorded

vocal melody.

The following overall design to cater the key requirements is comprised of six main

steps: vocal melody recording, pitch detection, singing skill evaluation, chord generation,

accompaniment music generation and combination. Figure 4.1 depicts the high-level design

of the system.

Figure 4.1: High level design of the system

13

4.1.1 Vocal Melody Recording

The vocal melody is one of the main inputs to the system and usage of a proper audio format

was needed as all the following steps depend on the quality of the recorded audio. There

are two different kinds of audio formats as lossless and lossy. Lossless audio formats such as

WAV, FLAC, AIFF etc. preserve the original data and are larger in file size whereas lossy

audio formats such as MP3, OGG etc. omit some data from the original file and are smaller

in file size. Despite the large file size, lossless audio format at 44100 Hz sampling rate is

used to record the vocal melody with all the relevant information that needs to detect the

pitch of the recorded melody accurately.

Furthermore, the proper synchronization of the vocal melody and the generated accom-

paniment music requires the vocal melody to be recorded on a constant tempo since the

accompaniment music is generated on a fixed tempo as specified by the user. A decision has

been made to provide a rhythm track to the user while recording the melody so that the

user can maintain a constant tempo throughout the recording.

4.1.2 Pitch Detection

Pitch detection or pitch tracking is the process of extracting the fundamental frequency from

an audio signal. Time domain pitch detection and frequency domain pitch detection are the

two main approaches to pitch detection. We compute the fundamental frequency using the

method of Boersma [13] to compute the fundemental frequency which is a time domain pitch

detection algorithm. The algorithm performs well for monophonic melodies because of its

flexible, accurate and robust nature and works equally well for low pitches, middle pitches,

and high pitches. The fundamental frequency of the recorded vocal melody is computed

using the above mentioned algorithm at 100 sample points per second of audio and the list

of generated fundamental frequency values at each point will later become an input to the

pitch based singing skill evaluation and chord generation steps.

4.1.3 Singing Skill Evaluation

Obtaining the singing skill evaluation of the recorded vocal melody is one of the key require-

ments described in Chapter 3. In this study we only considered about the accuracy of the

pitch and the tempo of the recorded vocal melody because of the quality of the corresponding

accompaniment music will be dependent on the accuracy of the pitch and the tempo of the

vocal melody. Chapter 5 elaborates more on this area and presents the overall methodology

of singing skill evaluation of unknown vocal melodies. The final outcome of singing skill

evaluation would be the feedback of the singing skill and the user can decide whether he/she

wants to continue through the process or rerecord the vocal melody in case of a negative

feedback.

14

4.1.4 Chord Generation

The core requirement of this system is to generate accompaniment music when a user sings

a melody. The generation of accompaniment music depends on the chords sequence for the

recorded melody. A vocal melody lack music information since it only has a monophonic

audio signal. The pitch class based chord generation methods have less effect when there

is monophonic audio signals. This system follows the same methodology from SongSmith

which trains a Hidden Markov Model to predict the chords sequence for a given melody[1].

A detailed description of chord generation methodology is presented in Chapter 6. The

output of the chord generation phase is a sequence of chords which will be an input to the

accompaniment music generation phase.

4.1.5 Accompaniment Music Generation

Accompaniment music generation software are freely available and when provided with a

chord sequence, tempo and a rhythm style, the accompaniment music can be generated.

Designing for an accompaniment music generation software is out of the scope of this project.

4.1.6 Combination

The concluding step of the overall project design is the combination phase. The recorded

vocal melody and the generated accompaniment track are combined together to generate the

final outcome as a WAV file. One should not mix up the combination with a concatenation of

two audio files. One on one overlap of the audio files is generally defined as the combination

of two audio files. The format of the two combined files should be the same to obtain a

better synchronized output.

4.2 Architectural Design

4.2.1 Hybrid Mobile Application Architecture

The current trend is using mobile devices frequently rather than using Personal Desktop

computers. User interaction through a mobile device platform increases the usage of the

system and encourages people to use the system more. Considering the popularity and

the usability, the need of a mobile application was encountered and there were two main

approaches to design a mobile application. Those were rich client mobile applications and

thin client mobile applications. A rich client mobile application consists the business and

the data services layers on the device itself whereas a thin client mobile application only

consists the presentation and presentation logic layers on the device itself and the business

and the data layers are located on a separate server.

15

However, the key requirement of recording a vocal melody enforced more process compo-

nents such as a drum machine to play a drum sequence which has the ability to adjust the

tempo live and a component to synchronize the vocal melody and the generated accompa-

niment music inside the mobile device. Since there were some business logic in the mobile

device itself and further resource intensive business logic was available, the hybrid client

mobile application architecture was followed where business and data layers resides in both

device itself and a separate server. Figure 4.2 illustrates the overall system architecture.

4.2.2 Overview of Mobile Application Architecture

This section includes an extensive introduction to the typical layered architecture for mobile

applications.

Figure 4.2: System architecture

16

Presentation Layer

This layer consists of two components. UI components are the view elements for the users.

UI Process components implement the user interface logic and delegates control to business

logic components.

Difficulties that happens while creating an adequate mental model for the given user

interfaces causes misunderstanding of using a particular mobile application. Self-explanatory

and self-evident user interfaces based mechanism is identified as an effective solution for

it [14]. These kinds of interfaces are introduced as inductive interfaces. There are few

fundamental premises that includes to enhance these inductive interfaces: separate interfaces

for separate tasks, make content to describe task and offer clear link for a task. The concept

of the inductive interfaces is used in this mobile application.

To provide a build up interaction in designing the mobile application presentation layer,

few aspects were considered: caching, exception management, user inputs, layouts, naviga-

tions, request processing, UI components, UI process components, and validations.

Cache only the essential data that is insensitive and non-expiring due to security and

privacy manners. Design to handle all the possible exceptions and presentation of the mean-

ingful warnings and errors were catered by the exception management unit.

Relevant input types and formats are used according to device type and information

formats. Appropriate layouts are used for particular pages by user researching to achieve

better effectiveness and accuracy. Manage application back stack and keep the application

states for consistent navigation through pages.

Long-running requests are designed to proceed without blocking UI and appropriate pro-

cessing and rendering mechanisms are used according to the requirement. Customizable UI

components are created for reuse and extension purposes. Proper orchestration and synchro-

nization mechanisms are used to design UI process component to increase the consistency

and reliability of the mobile application. Critical front-end validation and constraints are

added to provide a more secure mobile application.

Business Layer

Business layer consists of the business entities which are usually known as classes. They

perform the main functionalities of the application such as vocal melody recording, synchro-

nization of vocal melody with generated accompaniment track, playing the created songs

and sharing the logic of finished songs.

In the first phase of the development process, the business layer of the mobile device is

considered. There, the singing skill evaluation and drum sequence generation are carried

out. Due to the lack of processing power in the mobile device and to improve the efficiency

of the processes the aforementioned tasks were handled in the server. In addition to above

mentioned functionalities, the only task done in the mobile device is handling the requests

17

and responses that are made by the user and present the processed results to the user in an

attractive manner.

There were few main areas that were considered in providing a better business layer while

designing mobile application: business components, business entities, cohesion and coupling,

concurrency and transaction control, data access, logging and instrumentation.

Business components are designed as highly cohesive components and represents a clear

separation between data access and business logic. To provide programmatic access within

business data, business entities are designed with relevant attributes and formats.

High cohesion and loose coupling between layers are used to improve scalability and

maintainability in a mobile application. Optimistic concurrency control technique is used

as concurrency and transaction control mechanisms because it provides timestamps based

techniques to control concurrency without locking resources.

Appropriate data access technique formats are used in the business layer to increase the

maintainability and re-usability of the mobile applications. Effective logging mechanisms

are used to track and monitor system and instrumentation process is used to enhance the

reliability and security aspects of mobile applications through the detection of vulnerabilities.

Data Layer

The data layer consists of three main components: data access logic components, data

helpers, and service agents. Data access logic components provide logic to access data from

a database. Data helpers provide transformation, access and manipulation activities within

this layer. Service agents manage connections between exposing services with this layer.

In this mobile application, data layer consists of data access components which are used

to save and retrieve mp3 formatted files from the file system and to cache the current state

of the application if needed.

Cross Cutting

Cross cutting contains common functionalities that spans on layers and tiers. Security com-

ponent of the cross cutting is responsible for authenticating the users. The communication

component is responsible for establishing inter-component communication and the protocols

for web server communications.

4.2.3 Overview of Web Server Architecture

This system can be thought of a collection of services which collaboratively work to achieve

a common goal. So that Service Oriented Architecture or micro-services architecture can be

used because of the separation of the tasks into services such as chord generation service,

accompaniment generation service etc. However, with regard to the complexity of those

18

architectures and the time constraints, the layered architecture was adopted for this project

because of its simplicity.

Service Layer

Service layer works as a communicator between the server and the mobile device and all the

service requests and responses from mobile device pass through the service layer. This is

indeed the implementation of a RESTful API. A RESTful API is an application program

interface (API) that uses HTTP requests GET, PUT, POST and DELETE to communicate

with the server. In web development lot of developers generally prefer REST technologies

than Simple Object Access Protocol (SOAP) for communication between client and server

because REST technology is more robust and leverages less bandwidth making it more

suitable for internet usage. And also in future, we hope to develop a website including these

mobile application functionalities. REST facilitates the use of server functionalities in the

website more easily than SOAP.

Business Layer

All the business logic is handled in this layer. For the ease of maintenance, this layer

implements all the five main functionalities as completely separate five modules. Singing

skill evaluator, chord generator, accompaniment music generator, pitch detector and audio

workstation are the main components. Figure 4.3 illustrates the abstract view of the business

layer.

Figure 4.3: Abstract view of business layer

This application consists of five software components (subsystems). Facade design pat-

tern enables a unified interface to a set of interfaces in a subsystem. Facade defines a

higher-level interface that makes the subsystems easier to use. Therefore, facade design

pattern is employed in building the business layer.

19

Data Layer and Cross Cutting Layer

Data layer communicates with the file system to store and retrieve mp3 files and also to

access the trained Hidden Markov Model. Cross cutting layer is responsible for the API

security which uses API keys for authorization.

4.3 Software Development Life Cycle

Software Engineering is defined as “the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software” in the ISO/IEC/IEEE

Systems and Software Engineering vocabulary [15].

Agile methodology was followed as the systematic approach to this project while following

best practices and standards, turning to a more disciplined way. Version controlling and

quality assurance methods were carried throughout the project to ensure it was inclined to a

quantifiable approach. GitLab1 was used for repository management and version controlling.

Trello2 was used to facilitate project management and issue tracking inclined to SCRUM

which is an ‘Agile Framework’. These methodologies were used in development, operation,

and maintenance of the system which follows the definition of software engineering.

4.4 Summary

This chapter presented the overall design of the project. It began by laying out the main

phases: vocal melody recording, pitch detection, singing skill evaluation, chord generation,

accompaniment music generation and the combination of the recorded vocal melody and

generated accompaniment track. Next, the chapter looked at the architectural design of

the system which used a hybrid mobile application architecture where business and data

layers reside in both the mobile device and the server. The chapter concluded describing the

software development life cycle under agile methodology.

1https://about.gitlab.com/
2https://trello.com/

20

Chapter 5

Singing Skill Evaluation

Chapter 4 presented the overall design of the study. This Chapter describes the design of

the singing skill evaluation under two categories. Section 5.1 lays out the design of the pitch

based singing skill evaluation and Section 5.2 describes the design of the tempo based singing

skill evaluation.

5.1 Pitch Based Singing Skill Evaluation

As mentioned in Chapter 2, most of the singing skill evaluation based research was carried

out assuming the score information is available but this research focuses on the evaluation of

the singing skill of unknown melodies. Therefore a classification method based approach was

used. Pitch interval accuracy based features were extracted since pitch interval is known as a

feature independent of a particular singer or a melody. The basic idea behind this approach is

to measure the deviation within a semitone. Singing can be classified as good if the deviation

seems to be stable and poor otherwise. Figure 5.1 illustrates the overview of the suggested

approach. As the first step, the fundamental frequency F0 is estimated. Then smoothing

and silent section removal is performed. Pitch interval accuracy estimation is carried out

next and the term ‘Semitone Stability’ is defined using pitch interval accuracy. Once the

semitone stability is computed, features are extracted. Finally, binary classification using

two classes is performed.

21

Figure 5.1: High level design of pitch based singing skill evaluator

5.1.1 Fundamental Frequency (F0) Estimation

The fundamental frequency is the lowest frequency component or partial which relates most

to other partials[16]. Even though fundamental frequency and pitch are not the same, they

are highly related since pitch values are calculated from log of F0 values. Therefore F0

estimation is essential in pitch based singing evaluation.

Low pass filtering is applied with an FIR low pass filter with 20 Hz cutoff frequency[8].

low pass filters are capable of creating a smoothing effect and filters out high-frequency

components of the recording while removing the fluctuations such as vibrato and overshoot.

Silent sections in the F0 trajectory were then removed.

5.1.2 Pitch Interval Accuracy Estimation

Pitch interval accuracy is known as an acoustic feature which is independent of a partic-

ular singer or a melody. It makes pitch interval accuracy an ideal feature for singing skill

evaluation of unknown melodies.

According to the study of Nakano and Goto [8] pitch interval accuracy is measured by

the fitting of the fundamental frequency trajectory to a 100 cent (semitone 1) width grid. A

particular pitch x can be mapped to a semitone width grid border(x is a multiple of 100)

or between two borders(x is not a multiple of 100). In the first case where x is a multiple

of 100, offset F is 0 and when x is not a multiple of 100 offset F is (0 < F < 100) from its

nearest lower border. Conversion of Hz values to cents was done using equation 5.1.

fcent = 1200 log2

fHz

440× 2
3
2
−5

(5.1)

1semitone is chosen based on the western music twelve-tone equal temperament. It divides an octave into

twelve similar parts on a logarithmic scale which is known as a semitone. a semitone consists of 100 cents.

22

Next step is to compute semitone stability. Semitone stability is defined based on pitch

interval accuracy and measures the deviation within a semitone.

Semitone stability Pg(F, t) of time t and width Tg is computed as given in equation 5.2.

Pg(F, t) =

∫ t

t−Tg
p(FF0(τ);F)PF0(τ)dτ (5.2)

(PF0(t))is the (F0) possibility at time t and(p(FF0(t);F)) is the gaussian comb filter for

fundamental frequency F0 and offset F at time t. gaussian comb filter for pitch x and offset

F is defined in equation 5.3.

p(x;F) =
∞∑
i=0

ωi√
2πσi

exp

{
−(x− F − 100i)2

2σ2
i

}
(5.3)

Given below in Figure 5.2 are the graphs of p(x, F) where x = 4000,6000 and F =

1, 10, 75 respectively.

Figure 5.2: Gaussian comb filter for F = 1, 10 and 75

The process of semitone stability computation is described here. F0 trajectory was

sampled into frames and semitone stability was computed for each frame. A frame must

consists of 200 points of 10 millisecond samples. Each frame is shifted by 10 samples to get

a new frame. Frame generation process is shown in Figure 5.3. For each frame, gaussian

comb filter for offset F = 0, 1, 2,99 was applied and semitone stability of each frame

was calculated.

23

Figure 5.3: Frame generation of a song

Some frames obtained from semitone stability computation are shown below in Figure

5.4.

Figure 5.4: Semitone stability of frames

Fg (grid frequency) is the frequency value which gives the maximum Pg(F, t)as given in

Figure 5.4. In the Figure 5.5 given below,Fg = 8. (which means this frame fits best to a

semitone grid where offset is equal to the grid Frequency.)

24

Figure 5.5: Semitone stability and the grid frequency of a frame

Fg = argmax
F

Pg(F, t) (5.4)

Once the semitone stability of all the graphs were computed, long term average g(F) of

those frames were taken. Since good singing should have a stable deviation within a semitone

throughout the song a single sharp peak can be expected. Long term average of both good

and poor singing are shown below in Figure 5.6.

Figure 5.6: Long term average of selected melodies

Figure 5.6 first graph shows the long term average of a song played by an organ which

has the sharpest peak among all three graphs. Figure 5.6 second graph shows the long

term average of a good singing which has a single sharp peak but slightly less than the first

graph.Finally Figure 5.6 third graph shows the long term average of a poor singing which

has the least sharp peak compared against the other 2 graphs. Long term average graphs

25

can be explained further using grid frequency as given below. Grid frequency can be defined

for the long term average g(F) as given in equation 5.5.

Fg = argmax
F

g(F) (5.5)

If singing is good, there should be a stable deviation throughout the song. This devia-

tion(offset) is given by the Fg (grid frequency). Therefore an ideal graph can be presented

where each and every frame has the same Fg hence a single sharp peak at the grid frequency

Fg. This ideal graph can be used to compare the actual singing with the ideal one. Figure

5.7 shows ideal and actual long term average of three different melodies.

Figure 5.7: Ideal and actual long term average of selected melodies

5.1.3 Feature Extraction

As discussed in latter Section 5.1.2, followed by the computation of long term average

g(F), two features related to sharpness namely M value and slope value were obtained.

M value(second moment) is the variance of the long term average of long term average curve

as defined in equation 5.6.

M =

∫ Fg+50

Fg−50
(Fg − F)2g(F)dF (5.6)

In order to compute the second feature(slope value), G(F) is defined as given in equation

5.7.

G(F) =
g(Fg + F) + g(Fg − F)

2
(5.7)

Then slope of the linear regression line of the G(F) function was taken

5.1.4 Classification

Above suggested features were extracted from sample melodies and they were labeled as

either good or poor with the aid of a domain expert and given as an input to a SVM

for a binary classification classified as good or poor. SVM s perform better when binary

classification is to be performed and the amount of data is not high (around 100 data

samples were used)[17].

26

5.2 Tempo Based Singing Skill Evaluation

The sense of timing is essential for musical related activities. Tempo is the speed of mu-

sic that is measured using a number of beats per minute. Better timing provides better

synchronization between accompaniment music and vocal melody. Because of that, tempo

evaluation process is conducted to show, how a recorded vocal melody aligns with accom-

paniment music. As mentioned in Chapter 2, tempo evaluation of human voice is a hard

task for typical tempo detection algorithms due to the variations and instability of voice.

Vibrato suppression based super flux approach is chosen as the basis for onset detection

due to this reason and Figure 5.8 brings out instability and variation of human voice over

a guitar recording. Peaks were picked from the extracted onsets and tempo was calculated

using the median value of peaks.

Figure 5.8: Spectrogram view of human singing and guitar recordings

Tempo detection algorithm involves three main stages: a front-end analysis for an efficient

extraction of onsets from an audio signal, identify periodicity detection blocks and peaks to

extract tempo, tempo tracking and disagreement fixing of manually annotated tempo with

identified tempo. Figure 5.9 shows an overall architecture of tempo estimation process.

5.2.1 Onset Detection

Onset indicates the salient features of an audio signal. Onset detection method depends on

the features of the audio signal. As mentioned in Chapter 2, Bock et al. presents vibrato

suppression based onset detection method that enhances spectral energy flux based onset

detection[12]. According to that study, energy-based methods are not the best choice for the

onset detection of a vocal melody that contains soft onsets which has slow rise energy with

long attacking time.

27

Figure 5.9: High level view of tempo estimation process

As the first step of vibrato suppression based onset detection algorithm, an audio signal

is divided into overlapping chunks with Hann window function. Then the divided audio

signal is converted into a decimated version of the Discrete Fourier Transformation (DFT).

According to the range of window, the DFT is computed for points X0, ...Xn − 1 (n size

window). Then again the DFT is computed for points X1, ...Xn. The process continues

until it covers the whole signal[18].

According to that aforementioned study, they showed a Short Time Fourier Transforma-

tion(STFT) function to compute this STFT matrix directly. Because of that, STFT is used

as a conversion mechanism of an audio signal with Hann window function in this project.

There is a special trajectory tracking stage in this algorithm. Some preprocessing steps

are needed to facilitate this tracking stage. In preprocessing phase, a standard frame rate is

doubled to increase the reporting accuracy and it quantizes magnitude features into much

smoother trajectories. A vocal signal shows short time power spectrum and Mel Frequency

Cepstral Coefficient based technique can accurately represent this envelope[19]. Because of

that MFCC based mel scaled measures are used to produce smoother trajectories at this

stage.

Common spectral flux calculation is modified by finding the difference between frames

that are further apart (according to defined offset) instead of finding the difference between

consecutive frames. Maximum filters were applied to widen the trajectory. As the final step,

the difference of bins were calculated with respect to the maximum filtered spectrogram.

A peak picking phase has been employed in the separation of onsets and non onsets from

maximum filtered spectrogram. According to that vibrato suppression onset detection study,

if any point fulfills the following three conditions (5.8,5.9,5.10) then that point is selected as

an onset of this signal.

28

SF ∗ (n) = max(SF ∗ (n− preMax : n+ postMax)) (5.8)

SF ∗ (n) > mean(SF ∗ (n− preAvg : n+ postAvg)) + δ (5.9)

n− npreviousOnset > combinationWidth (5.10)

δ - is a tunable threshold. preMax, postMax, preAvg, postAvg, comibinationWidth are

depend on the frame rate of the audio signal. Figure 5.10 shows example of a picked set of

onset of vocal melody after processing super flux algorithm.

Figure 5.10: Onset strengths and selected onsets of an audio signal

5.2.2 Periodicity Estimation

As mentioned in Chapter 2, Alonso et al. proposed an approach for onset detection based

tempo extraction using the concept of spectral energy flux[9]. But energy based onset de-

tection methods are not well suited for vocal melody because of human voice like soft onsets

shows instability and soft variation of the audio signal. Therefore onset detection process

of this application is conducted through previously explained vibrato based super flux al-

gorithm. But periodicity estimation of this spectral flux algorithm can be used to estimate

periodicity of extracted onsets.

According to that mentioned study, there are two traditional methods that estimate

periodicity of onsets: Spectral product and autocorrelation function. Spectral product based

29

technique assumed that the spectrum of the signal is formed from strong harmonic locations.

Because of that, Spectral product based technique is not well suited for periodicity estimation

of extracted soft onsets.

Autocorrelation function provides a correlation of the signal with a delayed copy of that

signal itself. It is good for periodicity estimation of soft onset because it reveals regular

periodic structure based on patterns. Tempo is estimated by analyzing lag of the larger

peaks in autocorrelation and using the multiplicity of the relationship among them. If there

is no relation among peaks, the tempo is estimated using only a lag of the largest peak.

Figure 5.11 shows an example curve which is created by mapping autocorrelation points of

an audio signal.

Figure 5.11: Onset autocorrelation curve and tempo estimation of the audio signal

5.2.3 Disagreement Fixing

As the final step of tempo detection process, the disagreement of manually annotated tempo

with identified tempo should be fixed. There is a very common problem when human taps

along with music to identify tempo and automatic tempo estimation methods also make

this doubling or halving of the true tempo. Alonso et al. introduced the 5.11 mathematical

equation to address this disagreement issue[9].

0.95αT < Tr < 1.05αT with α ∈ {0.5, 1, 2} (5.11)

Tempo estimation T provided by the algorithm is labeled as correct if there is a less than

5% disagreement from the manually annotated tempo used as reference Tr according the

above expression.

30

5.3 Summary

This chapter described the design of the singing skill evaluation under two categories: pitch

based singing skill evaluation and tempo based singing skill evaluation. Deviation within a

semitone is measured in pitch based singing skill evaluation. First, the fundamental frequency

is extracted from the vocal melody and pitch interval accuracy, judged by the fitting of

fundamental frequency trajectory to a semitone width grid, is estimated, features related to

pitch interval accuracy are extracted and classified as good/poor by an SVM classifier. The

alignment of recorded voice melody with the generated accompaniment music is evaluated

in tempo based singing skill evaluation. As the first step, an onset of the vocal melody is

detected using Vibrato suppression based super flux approach. Then periodicity of onsets

is estimated with autocorrelation function and disagreement of manually annotated tempo

with identified tempo is fixed as the final step of the tempo evaluation process.

31

Chapter 6

Harmonization of Vocal Melodies

using HMM

In Chapter 5 we presented the overall design of this study and in Chapter 6 we elaborate more

on singing skill evaluation method. This Chapter describes the process of harmonization of

vocal melodies using a Hidden Markov Model in detail. Section 6.1 outlines the integration

of HMM to music to generate chord sequences and the design assumptions. Section 6.2

presents the training and the building phase of the HMM and Section 6.3 describes the

method of generating chords for a new vocal melody. The design of the harmonization of

vocal melodies is solely based on the methodology which is used by MySong (Currently

known as SongSmith)[1, 2].

6.1 Design Overview

It is important to note that a single melody can have different chord sequences. The variance

of these chord selections is dependent on the musician and the genre of the melody. Therefore

the goal of automatic harmonization of vocal melodies is not to obtain the correct chord

sequence but to extract more appropriate chord sequence from the melody. Figure 6.1

represents the overall design of the chord generation phase.

A vocal melody can be represented as a sequence of musical notes and they can be in

different octaves. However, in this model, an assumption has been made to simplify the

process of harmonization stating that the octave informations was not relevant for selecting

chords for a melody. A vocal melody in this study is thus a sequence of notes in which

each element corresponds to a specific “pitch class”: a set of all pitches corresponding to

one of the standard 12 tones in the chromatic musical scale which is independent of octave

displacement (e.g. C, C#, D, Eb, etc.). In the training phase, this sequence is obtained

from published musical scores (see Section 6.2) whereas in the decoding phase this sequence

is obtained by sampling the user’s recorded vocal melody (see Section 6.3).

32

Figure 6.1: Overall design of the chord generation phase

6.1.1 Hidden Markov Model

This Section explains the adaptation of Hidden Markov Model to music concepts. HMMs

are typically used to model statistical machine translations. Chord generation for a vocal

melody can be thought of a model of natural language translation. Language translation

models translate sequence of words of one language to sequence of words of another language.

These models are also known as sequence to sequence models and HMMs are one of the

basic techniques to model them. Sequence to sequence models can specially model the

dependencies between states. The words of natural language sentences are dependent of the

previous words. We can see the same characteristic in chord progressions of melodies. The

equivalent form for words in natural languages in our model is measures which contain a

sequence of pitch classes. Translation of these measures to chords is the key idea to use an

HMM. We assume the reader is familiar with Hidden Markov Models. Readers unfamiliar

with HMMs are referred to Rabniers’s tutorial[20] for an overview.

Figure 6.2 depicts the Hidden Markov Model representation of our model. Each mea-

sure corresponds to a single node and the state (the chord selected to be played during the

measure) is initially unknown. The observations are the vectors of probabilities which are

constructed using the sampled melody which is described in Section 6.3.1 Transition proba-

bilities among states are estimated from training data (see Section 6.2.2). The hidden states

are the chords and the best sequence of chords are derived from applying Viterbi algorithm

described in Section 6.3.3.

33

Figure 6.2: Hidden Markov Model representation of the chord generation process

6.1.2 Assumptions

The following assumptions have been made so that the output of the chord generation phase

is acceptable only if these assumptions are held.

1. One measure from the vocal melody can have only one chord per that measure. Here

we use the term “measure” to refer the smallest amount of time for which a chord will

be played.

2. A vocal melody can only have 12 possible pitch classes. All notes can be reduced to a

single octave without losing the information that is needed for chord generation.

3. A chord for a measure is only dependent on the fraction of the measure during which

each pitch class is heard and the chord of the previous measure.

4. The musical key of the melody does not change within melody.

5. The rhythm pattern and tempo of the melody does not change within the melody.

6.2 Training

The training of the Hidden Markov Model has been done using a database of 289 lead

sheets, each of which contains a melody and the corresponding chord sequence. The lead

sheets contain popular western songs ranging from pop, rock, R&B, jazz and country music.

In this study we did not implement the training phase and re-used the trained model from

SongSmith, hence we briefly describe the method of training only.

6.2.1 Preprocessing

The variety of chord kinds is extremely large and treating all of these chords independently

require a huge database of lead sheets. Major, minor, suspended, diminished and augmented

34

are the five basic triad chord kinds in music which contain three notes in each chord. All

the other chord kinds in the database were simplified to these five core triads and assumed

that appropriateness of the converted chords did not change for a particular measure.

Songs can be classified into one of 12 musical “keys”: a key represents a distribution of

frequently occurring notes and chords. Key information was available in each of the lead

sheets and all of the lead sheets were transposed to a single key (key of C).

6.2.2 Learning Transition Probabilities

The hidden states of the HMM are the chords in this model. Transition probabilities defines

the probability to which a states transit from another state or in our model it is the prob-

ability to which a chord transit from another chord and can be mathematically defined as

P (ci|ci−1). Since there are 12 musical keys and 5 core chords kinds there can be 60 possible

chords or hidden states. Additionally, SongSmith has considered two more virtual chords

as starting chord and ending chord. Including these, there are a total of 62 chord kinds in

the database and a 62× 62 matrix was constructed in which each cell represents the number

of times a transition occurred between the corresponding two chords in the database. This

matrix was referred to as the chord transition matrix. Each row of this matrix must be

normalized so that we can have the probability of each possible transition.

Generally, the 12 musical keys occurs in one of two distinct modes: major or minor. The

chord transitions and the emotional factor of the music change when the above mentioned

mode changes. Because of that, the lead sheet database was divided into two clusters as

major and minor and trained to obtain two transition matrices as major transition matrix

and minor transition matrix. Section 6.3 uses these matrices to come up with a chord

progression given the recorded vocal melody.

6.2.3 Learning Melody Assignment Probabilities

Melody assignment probabilities defines the statistics about which notes are associated with

each chord type. Each musical note has a specific time fraction and the melody assignment

probabilities were calculated by counting the total duration of each musical note occurring

in the measure against each individual chord. Using all of these probabilities a 60 × 12

matrix was constructed where each row index of this matrix represents a chord kind and

each column index of this matrix represents a pitch class. All the rows of the matrix was

normalized and each element of the matrix represents the probability of seeing a pitch class

given a chord kind. This matrix is referred to as the melody observation matrix and unlike

transitions matrices, this matrix does not have a corresponding major or minor mode since

the note fraction of a measure does not depend on the mode of the melody.

35

6.3 Decoding

Decoding phase is where the generation of chords for a new melody takes place. The vocal

melody being analyzed was recorded with a consistent tempo and the timing information

from the vocal track was not considered. The chords are generated at fixed intervals and

this fixed duration is referred to as a measure. Decoding phase consists of several steps

such as pitch detection, computing chord/melody probabilities and choosing the best chord

sequence using the Viterbi algorithm. Following sections describe the steps of the decoding

phase in detail.

6.3.1 Pitch Detection

The first task in harmonizing a vocal melody is to compute the pitch of the recorded vocal

melody. These pitch values are calculated as fundamental frequency values using the method

described in Section 4.1.2. Once these values (fmax) for the vocal melody have been extracted

the continuous pitch class p corresponding to fmax is calculated as p = 12 log2(fmax/523.2).

The offset(poffset) between p and the nearest known musical pitch class is computed for all

the sample points in each measure and the mean poffset is calculated. Then these mean

poffset values are added to the value p of each sample point so that the pitch sequence to

approximately align with the standard chromatic scale. Finally, each p value is rounded to

the nearest integer pint and the final pitch class values are computed as pint mod 12. The

histogram of these integer pitch classes at each measure is referred to as the observation

vector for that particular measure.

6.3.2 Computing Chord/Melody Probabilities at Each Measure

The observation vectors from pitch detection phase and the rows of the melody assignment

matrix are similar in nature. The likelihood of a chord for each measure is computed by

taking the dot product of the observation vector with the appropriate row of the melody

observation matrix. A list containing all these probabilities are stored and referred to as the

chord emission probability matrix.

6.3.3 Choosing the Best Chord Sequence

This Section depends on the assumption that the melody that is being examined is in the

key of C. However a melody can be in any key and later it will be shown how to generalize

chord selection procedure for a melody in any key. Given the observations for the Hidden

Markov Model, the most likely sequence of hidden states (chord kinds) can be generated

using the Viterbi Algorithm [21].

Viterbi algorithm generates a path X = (x1, x2, ..., xT) which is a sequence of states

xn ∈ S = {s1, s2, ..., sK}. This set S corresponds to the set of all chord kinds in our model.

36

Other inputs to the Viterbi algorithm are Π, Y, A and B and they are corresponding to initial

transition probabilities array, sequence of observation vectors,chord transition matrix and

chord emission matrix respectively. Viterbi algorithm is dynamic programming algorithm

and two 2-dimensional matrix of size K × T are constructed.The probability of the most

likely path is stored at each element of T1 and the most likely path is stored at each element

of T2. The procedure of the Viterbi algorithm is described in pseudo code in the following

Algorithm 1.

Algorithm 1 Viterbi Algorithm

procedure viterbi(S,Π, Y, A,B):X

for each state i ∈ {1, 2, .., K} do

T1[i, 1]← πi ·Biy1

T2[i, 1]← 0

end for

for each observation i ∈ {2, 3, .., T} do

for each state j ∈ {1, 2, .., K} do

T1[j, i]← max
k

(T1[k, i− 1] · Akj ·Bjyi)

T2[j, i]← argmax
k

(T1[k, i− 1] · Akj ·Bjyi)

end for

end for

zT ← argmax
k

(T1[k, T])

xT ← szT

for i← T, T − 1, .., 2 do

zi−1 ← T2[zi, i]

xi−1 ← szi−1

end for

Return X

end procedure

6.3.4 Key Determination

As described in the preprocessing phase all the songs in the database were transposed to

a single musical key before training the Hidden Markov Model. Based on the assumption

that the transitions matrices in each key are identical other than a simple circular shift of

the transition matrix, each integer pitch class in the vocal melody is transposed up by one

semi-tone each and the Viterbi algorithm is applied. Since there are 12 semi-tone steps in the

standard chromatic musical scale, the Viterbi algorithm has to be run 12 times. At k steps

the overall likelihood of the optimal chord sequence generated from the Viterbi algorithm

becomes the highest and the value k is chosen as the candidate. The vocal melody being

37

examined can be in any of the 12 keys. While the melody is being transposed up, it is in

the key of C when the number of steps is equal to k and at that time the output from the

Viterbi algorithm is taken. Finally, the generated chord sequence is transposed down by k

steps to get the original chords for the recorded melody.

6.3.5 Happy Factor

As described in the Section 6.2.2 two transition matrices were constructed based on the mode

of songs as major transition matrix(Pmaj) and minor transition matrix(Pmin). A parameter

0 ≤ β ≤ 1 referred to as the “Happy Factor” was used to control the contribution from each

transition matrix. The mixing of the two transition matrices is given by the equation 6.1

P (ci|ci−1) = Pmaj(ci|ci−1)β × Pmaj(ci|ci−1)β−1 (6.1)

The“Happy Factor” parameter was directly exposed to the user to gradually adjust the feel

of an accompaniment from “happy” to “sad”.

6.4 Summary

This chapter described the design of harmonization of vocal melodies and laid out the design

overview of the chord generation phase which consists of a training and a testing phase. The

key idea of chord generation for a vocal melody is to translate measures which contain a

sequence of pitch classes into chords. A Hidden Markov Model was used as the core of the

chord generation process. Each measure from the vocal melody is an observation for the

HMM and corresponding chords are the hidden states of the HMM. Transition and Emission

probability matrices were constructed from training data and the best sequence of chords

was derived from applying the Viterbi algorithm.

38

Chapter 7

Implementation

In Chapters 4, 5 and 6 system design and design considerations were described. This Chapter

contains the details of the implementation of components described in previous chapters.

Section 7.1 describes tools and technologies that were used in the implementation phase of

the project. Section 7.2 and Section 7.3 describe the implementation of the server and the

mobile application respectively.

7.1 Tools and Technologies

This section provides a brief understanding to the tools and technologies used in this project

with the relevant justifications for their selection.

7.1.1 Python

Python is a widely used high level and interpreted programming language which supports

multiple programming paradigms including object-oriented, imperative, functional and pro-

cedural. Python is chosen as the implementation language of the business layer of the server

side, because of the availability of comprehensive standard libraries and extensions of the

advanced audio processing libraries.

7.1.2 Node.JS

Node.JS is a free and open source server-side framework which is built on JavaScript environ-

ment. Node.JS version 6 is the currently active long term support version. Non-blocking I/O

calls is one of the main advantages of it. Node.JS is selected to implement the service layer

of the server considering this advantage since it allows a large number of concurrent users

to connect to the server and addresses the practicality aspects of the system by providing

better performance through load balancing.

39

7.1.3 Android

Android is one of the main mobile operating systems in the world. Google has developed

Android based on Linux kernel and is designed primarily for touchscreen mobile devices

such as smart phones and tablets. The Java based native android development method was

used to implement the mobile application because of the high availability of audio processing

libraries.

7.1.4 Praat

Praat is a free software for scientific analysis of speech in phonetics. This software was built

using C++ programming language and can be run on Unix, Linux, Mac and Microsoft Win-

dows environments. Praat provides a better approximation for fundamental frequencies(F0)

of the given audio signal by filtering out the noises effectively. Therefore, Praat is used as

the pitch detection component to extract fundamental frequencies(F0) from a recorded vocal

melody. A better approximation of fundamental frequency is needed for chord generation

and pitch based singing skill evaluation processes which can be satisfied with Praat.

7.1.5 Python Librosa

LibROSA is a free and open source Python-based music and audio analysis library. It pro-

vides customizable digital signal processing functions and music information retrial functions

for audio signal analyzing. Both of these digital signal processing libraries and music infor-

mation retrieving functions are needed for a tempo estimation process of vocal melodies.

LibROSA was used to implement tempo estimation because of direct information retrieval

process and ease of making a consistent flow between functions of the same library.

7.1.6 Python NumPy

NumPy is a powerful Python library introduced for scientific computing. Most of the python

packages like SciPy, libROSA use NumPy for internal mathematical calculation and scientific

computing purposes. There are lots of data manipulations and calculation processes in the

server-side business layer. NumPy provides powerful operations like array-based operations,

linear algebra and mathematical calculation. Because of the efficiency and simplicity, server-

side calculations and scientific computations were implemented using NumPy.

7.1.7 MMA

MMA stands for Music MIDI Accompaniment. It is a free music accompaniment generator

which is written in python. It provides a MIDI file as an output according to a given chord

sequences and MMA directives. MMA is used to generate a MIDI track in this project

40

because of compatibility, ease of use and free for use in any products under GNU 1 public

license.

7.1.8 Timidity++

Timidity++ is a free software that can be run under Unix, Microsoft Windows and Ami-

gaOS environments. This software supports many file types including MIDI, .kar(MIDI with

karaoke) and module files. Timidity++ is used to read MIDI files and convert them into

corresponding WAV files in this system because of the support and compatibility to apply

different kinds of sound fonts which is responsible for generating the actual sounds written

in the MIDI files.

7.1.9 Lame

LAME is a free software that converts an audio file to mp3. LAME is used to convert audio

files within server before mixing and transferring processes because of high-quality encoding

mechanisms and compatibility.

7.1.10 Python PyDub

PyDub is a free audio processing python package which facilitates segment wise audio pro-

cessing. PyDub is used for audio editing and mixing processes in this project, because of

compatibility concerns, effective mixing and editing processes without losing the quality of

audio.

7.1.11 Sox

Sound eXchange (SoX) is a cross-platform(Linux, Windows, Solaris, OS X) and free software

for audio editing. It is written in standard C language. In this project, Python wrapper

for SoX is used for audio filtering and effect adding processes to increase the quality of the

output song.

7.1.12 Python scikit-learn

scikit-learn provides many tools which facilitate classification, regression, clustering, model

selection and preprocessing. In this project, scikit-learn is used for classification using an

SVM, cross-validation under model selection and linear regression because of the simplicity

and effectiveness of data mining and analysis in python environment.

1GNU general public license is a free software license, which guarantees users to run, share, modify

software without restrictions.

41

7.2 Implementation of the Server

The server is composed with three layers separating the logic and each of these layers were

implemented using different technologies. The implementation of the business layer is elab-

orated more since it is composed with core components of this system.

7.2.1 Service Layer

All the HTTP requests from the mobile application are handled by the service layer and

this layer was implemented using Node.js (see Section 7.1.2). The express.js framework for

Node.js has been used to implement the RESTful nature of the application. Each REST

call is secured using JSON web tokens and Google authentication was used to authenticate

the users of this system. The application facade functions of the business layer are called

during a REST request from the mobile application and the output from the business layers

is again sent back to the mobile application through the service layer as the response to the

request.

7.2.2 Business Layer

Business Layer performs the core functionalities of this system. This layer was implemented

using Python 2.7 (see Section 7.1.1) with object oriented programming model. The layer was

composed of five components and those components were structured using python classes.

The component based model was used considering the abilities of re usability and main-

tainability. Figure 7.1 represents the interactions within the components to generate an

accompaniment music for a recorded vocal melody.

The vocal melody is first taken as an input to the pitch detector. The pitch detector

component outputs estimated fundamental frequency values for the recorded vocal melody.

These values are then used by the singing skill evaluator and the Chord Generator compo-

nents for further processing. Singing Skill Evaluator component sends the feedback about

the skill of the recorded vocal melody to the user while the Chord Generator component

performs the selecting of appropriate chord sequence using the trained HMM and outputs

the chord sequence. The chord sequence, rhythm style, and the predefined tempo are taken

as inputs to the Accompaniment Music Generator and the corresponding accompaniment

music for the recorded vocal melody is generated. Finally, the vocal melody and the gener-

ated accompaniment music is combined using Audio Workstation component to obtain the

complete song.

A detailed description is presented in the following sections regarding the implementation

of components in the business layer.

42

Figure 7.1: Interaction of components within accompaniment music generator

Pitch Detector

Pitch detector component was implemented as a wrapper class for the Praat (see Section

7.1.4) “To Pitch” method. The Praat program was called as a subprocess through a Praat

script since Praat does not provide a command line interface. The interaction between the

Pitch detector python class and the Praat program is represented in Figure 7.2.

The praat script can be executed from the Pitch detector class to extract the fundamental

frequency (F0) from an audio file with low pass filtering applied. Pass Hann Band filter was

used as the low pass filter with 5 Hz cutoff frequency.

F i l t e r (pass Hann band) . . . 0 1000 5

The following Praat script line shows the F0 extraction using ‘To Pitch’ command in praat

and it will return pitch list with the time. To Pitch (ac) method performs a pitch analysis

based on an autocorrelation method described in Section 4.1.2. The settings of the To Pitch

method is set to its standard values. The Time step is set to 0.0 so that the Praat will use

a time step of 0.75 / (pitch floor) hence calculates 100 pitch values per second. The Pitch

floor is set to 75 Hz and the candidates below this frequency will not be recruited and the

value 15 indicates the maximum number of candidates to be recruited. The Pitch ceiling is

set to 600.0 Hz and the candidates above this frequency will be ignored. The complete praat

script is shown in the Appendix(see appendix C.2)

ToPitch (ac) . . . 0 . 0 75 .0 15 o f f 0 .03 0 .45 0 .01 0 .35 0 .14 600 .0

43

Figure 7.2: Interaction between pitch detector and Praat program

Pitch Based Singing Skill Evaluator

Python 2.7 was used for the implementation of pitch based evaluator. Implementation

is described under fundamental frequency estimation, pitch interval accuracy estimation,

feature extraction and classification as good/poor. Numpy, sklearn, scikit libraries were

used for the implementation.

Fundamental Frequency F0 was extracted using pitch detector, described in Section 7.2.2.

Pass Hann Band filter was used as the low pass filter with 20 Hz cut off frequency.

Silent sections were removed from the frequency values obtained from the pitch detector.

As described in Section 5.1.2, pitch interval accuracy estimation consists of two main

steps, converting Hz values to cents and semitone stability estimation. Conversion of Hz

values to cent values were done using the equation 5.1 given in Section 5.1.2. Python numpy

arrays were used to store frequency values and math library was used to implement the

mathematical functions. Next step was computing semitone stability for each frame. There-

fore gaussian comb filters for offset(F = 0, 1, 2, .., 99) was applied for each and every frame

where a frame has pitch values between(3000,6000) In order to improve the performance

comb filter values were computed as required and stored in a two dimensional array so they

can be reused.

pxf = [[(−1) f o r y in range (1 0 0)] f o r x in range (3000 , 6000)]

Once the semitone stability for each frame is computed, long term average of all frames

can be computed. M value(variance) and the slope value were computed as shown in Section

5.1.4. For the integration, simps library was imported from scipy.integrate. Functions for

44

computing above features are presented in the appendix (C.3),(C.4). Visualization of the

behavior of the target classes with features M value and slope value is given below.

Figure 7.3: Behavior of target classes with M value and slope value

As shown in Figure 7.3 sample data we collected seemed to be linearly separable therefore

an SVC (support vector classifier) SVM with a linear kernel was used as the classifier.

svc = svm .SVC(ke rne l =’ l i n e a r ’ , C=1.0)

Python Sklearn was used to implement the SVM as a solution to overfitting problem k fold

cross validation was used. Sklearn model selection library provided KFold function.sklearn

metrics library was imported to compute the metrics, accuracy, precision and recall.

Tempo Based Singing Skill Evaluator

The proposed method for tempo-based evaluator was implemented using Python 2.7 (see

Section 7.1.1) with the use of Python Librosa library (see Section 7.1.5) for audio and music

signal analysis, Numpy (see Section 7.1.6) for linear algebra and Fourier transformations.

In this section, the implementation details of the tempo based evaluation is described ac-

cording to the sections discussed in Section 5.2: Onset detection, Periodicity estimation and

Disagreement fixing.

As mentioned in Section 5.2.1, STFT is performed with the input audio signal to change

the domain of signal. An audio signal is divided using overlapping chunk with Hann window

45

function while performing STFT.

An audio file is loaded using librosa.load function. Floating point time series and sample

rate of the audio file are returned as the output of this function.

t i m e s e r i e s , sample rate = l i b r o s a . load (’<a u d i o f i l e > ’)

STFT is done using librosa.core.stft function. Window function and window length can

be passed as parameters for that function. Then it reruns STFT matrix of a given time

series(signal).

s t f t m a t r i x = l i b r o s a . core . s t f t (t i m e s e r i e s ,

w in l ength=<n>, window=’ hann ’)

Figure 7.4 shows an example of time domain view of a signal before transform and short

time Fourier transform view of the signal.

(a) Time domain view of signal (b) STFT view of signal

Figure 7.4: Time domain and STFT view of signal

As mentioned in the design section, there is a trajectory tracking stage in this algorithm.

The standard frame rate is doubled to increase reporting accuracy. Mel Frequency Cepstral

Coefficients is used for this process. Few stages are needed to perform to get a mel scaled

measures from an audio signal using MFCC based technique.

As the first step, filterbank matrix is created according to given audio signal. Li-

brosa.filters.mel function is used to create filterbank matrix by giving sample rate, a number

of fft components and maximum frequency of an audio signal. It returns the filterbank

matrix(mel transform matrix).

f i l t e r b a n k m a t r i x = l i b r o s a . f i l t e r s . mel (<sample rate >,

<number fft comp>, <max freq>)

After that, mel filter is generated using Numpy.dot function. It returns dot product of

given two matrices. Filterbank matrix and STFT matrix are given as the inputs parameters

of this function and it returns a mel filter matrix of an audio signal.

m e l f i l t e r = numpy . dot (f i l t e r b a n k m a t r i x , s t f t)

46

Mel scaled matrix for given signal is generated by combining stft bins into mel frequency

bins using mel filter and calculate the difference of bins with respect to the filtered spectro-

gram. Figure 7.5 shows STFT spectrogram view of the signal before and after apply mel

filter.

(a) Before apply the mel filter (b) After apply the mel filter

Figure 7.5: STFT spectrogram view of signal before and after applying the mel filter

After that, the strength of onsets for each time period are extracted from a mel scaled

matrix. librosa.onset.onset strength function is used to extract strengths of onset for given

STFT matrix. Aggregation function should be needed to combine onsets in different fre-

quency bins while finding strengths. Therefore median value is used as an aggregation

function, because it provides a center value as an aggregated value from given points.

o n s e t s t r e n g t h = l i b r o s a . onset . o n s e t s t r e n g t h (

<mel sca l ed matr ix >, aggregat i on = <median>)

Peak picking can be identified as the final phase of the onset detection process. It sepa-

rates onsets and non-onsets from maximum filtered spectrogram. As mentioned in Section

5.2.1 all onsets which fulfil three equations (5.8,5.9,5.10) are selected as peaks of onset.

Selected onsets are passed to the periodicity estimation process to estimate the tempo.

As mentioned in Section 5.2.2, autocorrelation method is a good technique for periodicity

estimation of soft onsets. Librosa facilitates a direct function for the auto-correlation of a

signal.

a u t o c o r r e l a t i o n = l i b r o s a . a u t o c o r r e l a t e (<onset enve lope >)

This autocorrelation function provides a truncated data array of an autocorrelation of

given onsets. Then tempo estimation is done by analyzing the lag of the larger peaks and

using the multiplicity of the relationship among them. Figure 7.6 shows a relationship

between original autocorrelated data and shifted version. As mentioned in Section 5.2.2, if

there are no relations among peaks in the autocorrelation, tempo estimation only depends

on the largest peak.

Librosa possesses a direct function to estimate tempo in an audio signal. But librosa’s

onset detection function has been implemented using the common spectral flux algorithm.

47

Figure 7.6: Autocorrelated curve of an audio signal and shifted curve of same audio signal

Spectral flux is not a well suitable algorithm for a voice only audio signal. Therefore several

modifications were adapted to the librosa function by combining several other methods and

by changing the parameters.

Estimated tempo is passed to the next stage for fix the disagreement between estimated

tempo and selected tempo. Disagreement fixing process is implemented by using an expres-

sion that stated in Section 5.2.3. Although the implementation is light, it holds a large part

of this tempo evaluation process because this whole tempo evaluation process is depended

on the comparison between selected tempo and estimated tempo. As mentioned in Section

5.2.3, there is a very common problem when human select tempo by tapping along with the

music. It may be half of the true tempo or double of the true tempo value.

But this double or half of the tempo value is not an issue for music generating and syncing

processes. Therefore double value of the true tempo and half value of the true tempo are

also marked as a correct tempo value in the implementation process.

Chord Generator

Chord generator component is one of the key modules in this system and responsible for

decoding phase described in Section 6.3. The python NumPy module was heavily used as

there were many matrix operation to be done. The HMM was implemented from scratch

as a python class and the same trained data from MySong was used hence the training

phase of the HMM was not performed. The python implementation of the Viterbi algorithm

appendix C.1 was taken from Wikipedia and adapted it to cater the requirements of this

component. Chord Generator component interacts with Pitch Detector component to get

the fundamental frequency values of a particular vocal melody and generates an acceptable

chord sequence for that melody. The output will be used in accompaniment music generator

component to come up with the accompaniment track.

48

Accompaniment Music Generator

The Accompaniment Music Generator component provides the accompaniment track when

the chord sequence is presented. The core library to generate this accompaniment music is

MMA (see Section 7.1.7). This component is implemented as a python class and the MMA

library was integrated to run as a sub process. MMA comes as a command line utility and a

file is created with the sequence of chords and specifying rhythm and tempo. This file can be

run by the MMA utility to obtain a MIDI file. A MIDI file contains music data, such as what

notes are played, when they are played, how long each note is held, and the velocity of each

note and it does not contain any sound information. Once a MIDI file is generated, a MIDI

player is needed to obtain the actual sound of it. Timidity++ (see Section 7.1.8) was used

as the MIDI to WAV converter. Figure 7.7 depicts the composition of the Accompaniment

Music Generator

Figure 7.7: The composition of Accompaniment Music Generator

Audio Workstation

Audio Workstation component is responsible for carrying out the combination of vocal

melody with the generated accompaniment music. The python PyDub module (see Sec-

tion 7.1.10) was used to implement this combination step. Furthermore, several vocal effects

for the vocal melody can be applied using this component. The command line utility sox (see

Section 7.1.11) was used to generate these effects such as reverb, echo etc. The sox utility

was integrated to run as a sub process inside the Audio Workstation Component. Apart

from that there is a WAV to MP3 file conversion implemented using LAME (see Section

7.1.9) utility.

7.3 Implementation of the Mobile Application

An Android operating system based mobile application was implemented as a client ap-

plication of this project. Implementation of the mobile application is described using the

Android-based technologies under the component of the layered architecture.

49

7.3.1 Presentation Layer

As mentioned in Section 4.2.2, presentation layer was implemented using the inductive in-

terfaces design concepts. XML is used to implement interfaces in native Android application

development process. Inductive based implementation is described using record activity of

mobile application.

(a) Before the recording (b) During the recording (c) After the recording

Figure 7.8: Screen shots of recording activity

Figure 7.7 shows the screen shots of three states of recording activity. As the first step

of inductive concepts, one screen should be focused on one purpose and designer should be

introduced this mainly focused area concisely. According to screen shots, record the vocal

melody is focused here and it is shown as a title of this activity.

As another step of inductive implementation, there should be a direct instruction to show

primary action. According to this implementation process, the primary action of before

starting the record is “press the record button to start recording”. The primary action

during the recording state is “press the stop button to stop the recording”. The primary

action of after recording state is “press the next button to continue this process”. All of

these primary actions are stated and highlighted according to the particular state of the

activity.

As another step of inductive-based interface designing method, there should be an exit

or cancel button to terminate a current process. Termination criteria for each state of this

recording activity are also there. This kind of self-explanatory concepts based inductive user

interface methods are used to make a correct mental model about particular activities in the

mobile application.

50

7.3.2 Business Layer

As mentioned in design Section 4.2.2, high cohesive and loose coupling business logic com-

ponents are built using less external depended components. An optimistic concurrency

controlling mechanism is implemented by sending a time-stamp binded data for transactions

without locking resources.

A synchronization problem was identified while implementing the logic of mixing process

of recorded vocal melody. The mismatch between recorded audio track and accompaniment

music can be identified easily even there exists a 50 milliseconds delay between them. There

is an unhandled latency issue 1 of an android advanced audio processing system that caused

this problem.Because of that different devices provide different latency values according to

device type and current running threads.

Therefore a manual synchronization process is added to the mobile application by chang-

ing the logic of automatic music mixing process.

7.3.3 Data Layer

Internal audio track management is mainly focused on the implementation of this mobile

application data layer. Android default audio management techniques are used to access,

transform and manipulate the audio data from the system. By default, meta-data about

audio data are stored in SQLite tables.

Data access logic components are implemented by focusing the extraction of meta-data

of internal audio tracks. Data helper components are implemented to manipulate data from

SQLite tables and add meta-data tags to generated audio tracks.

7.3.4 Cross Cutting

Security concerns are implemented under the functionalities of the cross-cutting layer. Vul-

nerabilities of authentication and authorization strategies are provided security breaches

that allow attackers to access sensitive data easily. Therefore, implementation of strong

authentication and authorization strategies are mainly focused here. Google APIs based

authentication and authorization processes are used to implement the cross-cutting layer

functionalities, because of the Android compatible strong security mechanisms of Google

APIs and ease of social network integration without additional process overheads.

1https://developer.android.com/ndk/guides/audio/audio-latency.html - android audio latency issue

51

7.4 Summary

This chapter presented a detailed description of the tools and technologies, implementation

of the server and the mobile application. Service layer of the server handles all the HTTP

requests from the mobile application and the language used is Node.js. Core functionalities

of the system lies in the business layer of the server and consists of pitch detector, audio

workstation, singing skill evaluator, chord generator and accompaniment music generator

which were implemented in python 2.7. The mobile application was developed using android

based technologies and contains presentation, business and data layers.

52

Chapter 8

Testing and Evaluation

This Chapter elaborates the success rate of the system. The system was evaluated based

on the components. Evaluation of pitch based singing skill evaluator and results obtained

are described in Section 8.1 and evaluation of the tempo based singing skill evaluator is

described in Section 8.2. The evaluation and results of the chord generator component is

described in Section 8.3. Finally the description of the usability study is contained in the

Section 8.4. The conclusions on the test results are described in the Section 8.5

8.1 Test 01 - Pitch Based Singing Skill

This Section outlines the testing methodology and the test result obtained for the key func-

tional requirement of measuring the singing skill mentioned under Section 3.1.2. Classifica-

tion of singing skill as good or poor based on the pitch of the recorded vocal melody will be

tested here.

8.1.1 Test Methodology

A sample of 101 vocal melodies was collected from participants including both male and

female. All the samples were already existing melodies and length of a sample recording

varies between 30 to 60 seconds. 48% of the vocal melodies were recorded from Audacity
1and the rest was taken from mobile recordings, under the assumption that the recording

medium does not affect in singing skill evaluation. As described in Section 5.1, two features

were extracted from the collected samples and they had been labeled by an domain expert as

good or poor. The Table 8.1 illustrates some of the sample data with the extracted features

and the labels given by the expert. Finally the labeled data were classified using an SVM.

The performance of the SVM was measured using accuracy, precision and recall values in

two steps where cross-validation was absent and the cross-validation was present. 70% of

1’https://www.audacityteam.org/’

53

the sample recordings were selected to construct the training set for the SVM and 30% of

the sample recordings were selected to construct the testing set.

Table 8.1: Sample data with the extracted features and the labels given by the expert

Song ID feature 1 feature 2 label

15092017020510.wav 564763.385 -0.0981 good

15092017021603.wav 616612.955 -0.0487 good

22122017123454.wav 655493.486 -0.011 poor

22122017124258.wav 658866.654 -0.008 poor

8.1.2 Test Results

Table 8.2 presents the results obtained for the performance of the SVM when the cross-

validation was absent and a value of 0.77 was obtained for each of the accuracy, precision

and recall value. It can be seen from the data in Table 8.3 that the values of accuracy,

precision, recall have obtained 0.818, 0.763 and 0.878 respectively when the k-fold cross

validation was present with 5 folds.

Table 8.2: Performance of the SVM classifier without cross-validation

Measure Value

accuracy 0.77

precision 0.77

recall 0.77

Table 8.3: Performance of the SVM classifier with 5-fold cross-validation

Measure Value

accuracy 0.818

precision 0.763

recall 0.878

8.2 Test 02 - Tempo Based Singing Skill

This Section presents testing methodology and result of tempo based singing skill evaluation

of audio recordings in order to assess the functional requirement which is stated under Section

3.1.2. The tempo estimation algorithm and the classification of singing skill as good or poor

based on the tempo of the recorded vocal melody will be tested here.

54

8.2.1 Test Methodology

Testing of this model is divided into two main parts. The test methodology of the tempo

estimation algorithm is presented at first and the test methodology of the tempo based

singing classifier is presented at second.

Tempo Estimation Algorithm

The database used to evaluate this tempo based singing skill evaluation module is constituted

of 60 short segments of musical audio signals (each of 30 seconds long). 42% of the audio

recordings were Acapella : A kind of instrumental music that generated using only percussion

instruments. 26% of the audio recordings were mobile recordings of only the vocal melodies

that were recorded using default recording application in mobile devices. 12% of the audio

recordings were complete songs where each song contains both the vocal melody and the

accompaniment music. 8% of the audio recordings were instrumental music where both

harmonic and percussive instruments were present. 7% of the audio recordings were harmonic

instrumental music whereas the rest of the audio recordings were percussion instrumental

music.

The accuracy of the tempo estimation algorithm is tested by comparing the outcome

of the algorithm against the actual tempo of the audio recordings manually annotated by

musicians.

Tempo Based Singing Skill Classifier

A sample of 24 vocal recordings was collected using an implemented mobile application. The

tempo of these samples has been manually estimated and the overall tempo based singing

skill was evaluated by an expert and they were labeled as good or poor. The Table 8.1 shows

some of the sample data (see appendix B.2 for complete table) with the intended tempo

by the user, the estimation of the tempo by the system, the labels given by the expert and

the classes selected by the system. Finally the performance of the tempo based singing skill

classifier was measured using accuracy, precision and recall values.

Table 8.4: Sample data with the estimated tempo values and the labels given by the expert

Song ID
User selected

tempo

System tempo

estimation

Expert’s tempo

evaluation

System tempo

evaluation

Song 1 110 112 Good Good

Song 2 90 92 Good Good

Song 3 94 103 Poor Poor

55

8.2.2 Test Results

Test results of tempo estimation algorithm and tempo based singing skill classifier are de-

scribed here.

Tempo Estimation Algorithm

As can be seen from the Table 8.5, 72% of all the audio recordings were estimated as equal

to the actual tempo of the songs, 18% were estimated as equal to a half of the actual tempo

of the songs, 8% were estimated as equal to a double of the actual tempo of the songs and

the rest were estimated incorrectly.

Table 8.5: Evaluation result of the tempo estimation algorithm

Song

categories

Number

of songs

Songs with

actual

tempo

Songs with

half of

actual

tempo

Songs with

double of

actual

tempo

Wrong

estimations

Acapella 25 21 0 4 0

Percussion

Instrumental
3 3 0 0 0

Harmonic

Instrumental
4 2 2 0 0

Instrumental 5 3 2 0 0

Complete

Songs
7 5 1 1 0

Mobile

Recordings
16 9 6 0 1

All 60 43(72%) 11(18%) 5(8%) 1(2%)

Tempo Based Singing Skill Classifier

It can be seen from the data in Table 8.6 that the values of accuracy, precision, recall have

obtained 0.875, 0.944 and 0.894 respectively as the performance for the tempo based singing

skill classifier.

Table 8.6: Performance of the tempo based singing skill classifier

Measure Value

accuracy 0.875

precision 0.944

recall 0.894

56

8.3 Test 03 - Chord Generation

As described in Section 3.1.3, generation of accompaniment music for a vocal melody is a

key requirement of this system. The accompaniment music is solely based on the selected

chords for a particular melody. Testing of the chord generation component is described in

detail in this section.

8.3.1 Test Methodology

Chord generator component is based on a Machine Translation (MT) model and MT metrics

can be applied to evaluate the chord generator component’s accuracy. One of the common

MT metric is the Word Error Rate (WER) which is used as a performance measure of

speech recognition or machine translation systems. The WER metric is a valuable tool for

comparing different systems and in this section the output of the chord generation com-

ponent is compared with an output from an domain expert. WER and the WAcc (Word

Accuracy) are defined using the terminology of this project in the equation 8.1 and equation

8.2 respectively.

WER =
number of incorrectly identified chords

number of all chords identified
(8.1)

WAcc = 1−WER (8.2)

A sample of 14 vocal melodies were recorded, all by the same vocalist ranging from

twenty to thirty seconds in length. All melodies were in a major key and they were from

independent artists. An original chord progressions for all the melodies were prepared by

a music expert and let this be referred to as ‘Original Reference’. The output from the

chord generator for all of these melodies were combined and let this be referred to as a

‘Candidate’. As described in the Section 6.3.5 “Happy Factor” defines mode of the song:

major or minor. The most suitable Happy Factor value was selected using a trial and

error approach by choosing the Happy Factor value for which the WER of the “Candidate”

compared to “Original Reference” was at its minimum. Let us name this candidate as the

“Optimal Candidate”. This Optimal Candidate was refined by the same expert and let this

be referred to as the “Refined Reference”. Finally, the WER for the “Optimal Candidate”

was calculated against the “Refined Reference” to get the overall Word Error Rate for the

chord generator component. The refinement from the “Optimal Candidate” to “Refined

Reference” was reasonable because of the goal of automatic harmonization of vocal melodies

is not to obtain the correct chord sequence but to extract more appropriate chord sequence

from the melody.

57

8.3.2 Test Results

Table 8.7 presents the relevant results obtained from the trial and error method (see appendix

B.1 for complete table) to find out the suitable happy factor value. It can be seen from the

data that the WER become minimum when Happy Factor value equals to 0.55. Table 8.8

provides the WER of each song when the “Happy Factor” equals to 0.55 and the overall

WER of 10.619% has been achieved by the chord generator.

Table 8.7: WER when compared with “Original Reference” for different “Happy Factor”

values

Happy Factor
Word Error Rate

(Original Reference)

0.0 77.434%

0.54 36.190%

0.55 35.841%

0.56 38.496%

1.0 57.965%

Table 8.8: WER when “Happy Factor” is 0.55 and compared with ”Refined Reference”

Song ID
Number of

Measures

Wrong

Chords

Word Error

Rate

Song 1 16 3 18.8%

Song 2 20 2 10.0%

Song 3 20 0 0.0%

Song 4 16 2 12.5%

Song 5 16 1 6.2%

Song 6 16 1 6.2%

Song 7 16 3 18.8%

Song 8 16 1 6.2%

Song 9 16 0 0%

Song 10 8 2 25%

Song 11 16 2 12.5%

Song 12 16 4 25%

Song 13 18 1 5.6%

Song 14 16 2 12.5%

Total 226 24 10.619%

58

8.4 Test 04 - Usability Test

The usability test was carried out to evaluate the achievement of our research aim by testing

the overall system on users.

8.4.1 Test Methodology

17 participants including both male and female were selected for the usability test. A

brief introduction about our system was given to each participant and asked to come up

with a reasonable accompaniment music for their recorded vocal melody. Each one of the

participants were given 10 minutes to complete this task. Once the task was completed, the

users were provided with 6 Likert-scale questions of five-levels to obtain the feedback about

the usability of our system. Each of the five-levels: strongly disagree, disagree, neutral, agree

and strongly agree were assigned a weight from 1 to 5 respectively in the increasing order.

A conclusion for the usability of our application can be derived based on the mean values

calculated using the assigned weights for all the responses provided to each question.

8.4.2 Test Results

Table 8.9 presents the six questions and the mean values obtained for them(see appendix

B.3 for complete set of responses). The overall responses for each questions were positive.

Table 8.9: Summary of the Likert-scale questionnaire

Questions Mean Value

I enjoyed using this system 4.53

I Gained a good understanding about this system 4.53

I felt I was able to create reasonable music using this system 3.76

Singing skill evaluation encouraged me to sing better 4.00

Synchronization of tracks was easy 3.76

I would use this system for entertainment if I had this software 4.58

8.5 Discussion

The results of the Test 01 indicate that the pitch based singing skill evaluator component

can classify the singing skill of a user based on pitch reasonably well with 77% of accuracy

when the cross-validation was absent in the training process. The classifier accuracy has

increased to 81.8% when the 5-fold cross-validation was present in the training process. The

reasons for the slight error may be because of the background noise, vibrato and sudden

variations of some vocal melodies.

59

The results of the Test 02 shows that the tempo estimation algorithm can perform really

well and one unanticipated result was that there was an incorrect tempo estimation from a

mobile recording. A possible explanation for this might be the extreme and sudden variations

in pitch of that vocal recording which generates larger peaks of random onsets. Another

important result from Test 02 was that the tempo based singing skill evaluator was able to

classify the singing skill based on the tempo really well at the accuracy of 87.5%.

The results of test 03 was successful as the chord generator component was able to select

appropriate chords for the vocal melody with a WER (Chord Error Rate) of 10.619%. In

other terms, the WAcc (Chord Accuracy) of the chord generator was 89.381%. We hope

that the minor mode songs would generate similar results for the same testing procedure.

Another important finding from Test 03 is that the chord generator was able to identify the

original key of each of the 14 vocal melodies successfully.

We are particularly enthusiastic about the results of the Test 04 as the mean response

for all the questions were above 3.76. The majority of the respondents felt that our system

can be used for entertainment and they were interested in continued use of our system.

8.6 Summary

This chapter described the testing and evaluation of main components and the usability

of the system. Pitch based singing skill evaluation component used an SVM as the binary

classifier to classify vocal melodies as good/poor, and the model performed well with a higher

accuracy, precision and recall. Tempo based singing skill evaluation component was tested

under two categories: testing of tempo estimation algorithm and testing of tempo based

singing classifier. Accuracy of tempo estimation algorithm was evaluated by comparing the

outcome of the algorithm against the actual tempo of the audio recordings. Tempo based

singing classifier was tested by comparing the system generated tempo classification against

a domain expert’s tempo classification as good/poor. The classifier performed really well

with a higher accuracy. WER (Word Error Rate), an MT metric was used to evaluate chord

generation component. The output of the chord generation component is compared with the

output from a domain expert and reasonable results were obtained.

60

Chapter 9

Conclusion

This chapter discusses the conclusions about the project. Section 9.1, Section 9.2 and Section

9.3 present the conclusions which can be arrived at the project aim and objectives, limita-

tions that can be seen in the current project and the implications for the further research

respectively.

9.1 Conclusion on Project Aim and Objectives

This project was undertaken to design and develop a mobile application which can generate

accompaniment music when a user sings a song. The main aim of this project is to allow

non-musicians to get a taste of music composition. Classifying the singing skill of the user

based on pitch and tempo was the first objective to achieve the specified aim. The purpose of

this objective was to encourage the user to improve their singing skill to obtain more pleasing

accompaniment music from the system. The second objective was to select an acceptable

chord sequence for a vocal melody to generate the accompaniment music.

The proposed approach for the singing skill evaluation consisted of two steps. As the

first step, a binary classifier for singing skill of the user was implemented based on the pitch

interval accuracy of the vocal melody and the classifier performed reasonably well with an

accuracy of 81.8%. As the second step, a binary classifier for singing skill of the user was

implemented based on the tempo of the vocal melody. A vibrato suppression based onset

detection technique was used in the tempo estimation algorithm and the classifier was able

to perform really well with an accuracy of 87.5%. The minor error in the accuracies of the

classifiers may be because of the noise, vibrato and sudden variations in the vocal melodies.

These findings suggest that the implemented system was able to identify the singing skill of

the user in general as good/poor based on pitch and tempo of the vocal melody as expected.

The generation of accompaniment music is solely based on the automatic harmonization

of vocal melodies. The automatic harmonization was achieved using a Hidden Markov Model

and the decoding step of the model was done using the Viterbi algorithm to come up with

the best possible sequence of chords for the vocal melody. The automatic harmonization

61

method was able to select chords at a rate of 89.381% accuracy.

Finally, we conclude that our system is capable of generating acceptable accompaniment

music for vocal melodies.

9.2 Limitations

Several limitations to this system need to be acknowledged. First, the pitch based singing

skill evaluator is only able to perform a binary classification because of the lack of training

data. The second limitation of the system is that the variation of chord kinds are very few as

only 5 chord kinds were selected when training the model. The third and the last limitation

is the exact determination of the “Happy Factor” value when generating chords for a melody.

9.3 Implications for Further Research

It is recommended that further research be undertaken in the following areas: increasing

the classes of the pitch based singing skill classifier, removing the “Happy Factor” and

improving the accuracy of the chord generation process. In a personal interview with Mr.

Suresh Maliyadda, he suggested that the ”Happy Factor” does not really define the feel of

the song correctly. We are thus excited to explore on classification of vocal melodies based

on the mode:major or minor. Furthermore, recent techniques of sequence to sequence models

such as Long Short Term Memory architectures can be used to improve the chord generation

process.

62

References

[1] I. Simon, D. Morris, and S. Basu, “MySong: automatic accompaniment generation

for vocal melodies,” Proceedings of ACM CHI 2008 Conference on Human Factors in

Computing Systems, vol. 1, pp. 725–734, 2008.

[2] D. Morris, I. Simon, and S. Basu, “Exposing parameters of a trained dynamic model

for interactive music creation,” Proc AAAI 2008, no. 2003, pp. 784–791, 2008.

[3] T. Fujishima, “Realtime Chord Recognition of Musical Sound: A System Using Com-

mon Lisp Music,” pp. 464–467, 1999.

[4] C.-H. Chuan and E. Chew, “A Hybrid System for Automatic Generation of Style-

Specific Accompaniment,” Proceedings of the 4th International Joint Workshop on Com-

putational Creativity, pp. 57–64, 2007.

[5] P.-p. Singing, “P -p s,” pp. 95–115, 2007.

[6] M. Mauch, K. Frieler, and S. Dixon, “Intonation in Unaccompanied Singing : Accuracy

, Drift and a Model of Reference Pitch Memory,” The Journal of the Acoustical Society

of America, vol. 136, no. 1, pp. 1–11, 2014.

[7] P. ŻWAN, “Automatic singing quality recognition employing artificial neural networks,”

Archives of Acoustics, vol. 33, no. 1, pp. 65–71, 2008.

[8] T. Nakano and M. Goto, “An Automatic Singing Skill Evaluation Method for Unknown

Melodies Using Pitch Interval Accuracy and Vibrato Features,” pp. 1706–1709, 2006.

[9] M. Alonso, B. David, and G. Richard, “Tempo and beat estimation of musical signals,”

Proc International Conference on Music Information Retrieval, vol. 04, pp. 158–163,

2004.

[10] T. R. Agus, C. Suied, S. J. Thorpe, D. Pressnitzer, T. R. Agus, S. J. Thorpe, and

D. Pressnitzer, “To cite this version : Characteristics of human voice processing,” no.

May 2010, pp. 509–512, 2011.

[11] C. C. Toh, B. Zhang, and Y. Wang, “Multiple-Feature Fusion based Onset Detection

for Solo Singing Voice,” Proceedings of the 9th International Conference on Music In-

formation Retrieval (ISMIR), pp. 515—-520, 2008.

63

[12] D. A. Effects, “MAXIMUM FILTER VIBRATO SUPPRESSION FOR ONSET DE-

TECTION Sebastian Böck and Gerhard Widmer Department of Computational Per-

ception Johannes Kepler University,” pp. 1–7, 2013.

[13] P. Boersma, “Accurate Short-Term Analysis of the Fundamental Frequency and the

Harmonics-To-Noise Ratio of a Sampled Sound,” Proceedings of the Institute of Phonetic

Sciences, vol. 17, pp. 97–110, 1993.

[14] Microsoft, “Mobile Application Architecture Guide,” p. 138, 2008.

[15] “Systems and software engineering – vocabulary,” ISO/IEC/IEEE 24765:2010(E), pp.

1–418, Dec 2010.

[16] D. Gerhard, “Pitch extraction and fundamental frequency: History and current tech-

niques,” Time, pp. 0–22, 2003.

[17] B. Jannsen, “Support Vector Machines for Binary Classification and its Applications,”

pp. 0–65, 2008.

[18] S. Okamura, “The Short Time Fourier Transform and Local Signals,” 2011.

[19] B. Logan, “Mel Frequency Cepstral Coefficients for Music Modeling,” International

Symposium on Music Information Retrieval, vol. 28, p. 11p., 2000.

[20] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb 1989.

[21] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp.

268–278, March 1973.

64

Appendices

65

Appendix A

Contribution

A.1 Individual Contribution for the Project

Each member contributed to the project work nearly equally in various ways.

Pitch based singing skill evaluator was developed by Ms.K.A.K.Indrachapa. A back-

ground study on the singing skill evaluation of unknowns melodies was carried out. A task

of noise filtering from the vocal melodies was also done. features related to pitch interval

accuracy were extracted and trained a classifier with the extracted features.The evaluation

of the singing skill classifier was conducted. Understanding the complex equations and im-

plementing them were a challenging tasks. Improving the efficiency and performance of the

skill evaluator is another difficult task.

The implementation of the pitch detector, service layer using node.js and server prototype

was carried out by Mr.D.H.U.Perera. Furthermore, the usability test was conducted. A

Praat Script was written to extract the fundamental frequency values from the vocal melody.

Understanding the function of Praat and adapt it to cater our requirement was challenging.

Node.js 6 was new and learning it was quite challenging. Additional to that the trained data

was adapted as required by the system to use in the Hidden Markov Model. Working with

these datasets with lack of music knowledge was another challenging task. Mr.D.H.U.Perera

was helped by the group to overcome these problems, specially the music barrier and also

relevant research papers was very useful as well.

Chord generation and accompaniment music generation components were developed by

Mr.R.W.M.N.H.Wanigasekera. A background study on automatic harmonization of vocal

melodies was done first and identified the techniques. Further analysis on LSTMs was

carried out to assess the suitability of it to our project. Domain knowledge for this project

was provided. The overall architecture for the web server was designed and the composition

of the software components was also done. The evaluation of chord generation process was

also carried out. Understanding the LSTMs and HMM was a difficult task. Furthermore,

adapting the Viterbi algorithm and understanding its process is also a challenging task.

Tempo-based singing skill evaluator and main functionalities of the mobile application

66

were developed by Mr.W.K.P.Wanniachchi. A background study on the tempo based singing

skill evaluation was performed priori to this research. Even though there were many tempo

evaluation methods exists, a directly applicable methods for the tempo evaluation of voice

only melodies were not there. According to the priori studies, it was clear that there were

many tempo estimation algorithms which used the percussion onsets for tempo estimation.

The dynamic behavior of voice impacted a lot for the less availability of the direct applicable

algorithms for tempo detection in human voice. A novel approach in detecting the tempo in

human voice had been developed. Advanced audio processing of Android mobile application

was difficult because of the Android audio latency. Manual synchronization process was

added to handle that latency issue. Interface design for various type of devices, android life

cycle handling and memory management were also done. Evaluation of the tempo based

singing skill classifier was also carried out.

Finally, 95% completion of the project was achieved.

67

Appendix B

Tables and Diagrams

B.1 Result of the Chord Generation Test

Table B.1: Chord generation test results according to happy factor values

Happy Factor
Word Error Rate

(Original Reference)

Word Error Rate

(Refined Reference)

0.0 77.434% 71.239%

0.30 51.770% 37.168%

0.40 46.903% 32.743%

0.50 40.265% 21.239%

0.53 37.168% 15.044%

0.54 36.190% 11.905%

0.55 35.841% 10.619%

0.56 38.496% 15.487%

0.57 39.381% 18.584%

0.60 43.363% 24.336%

0.70 48.230% 35.398%

1.0 57.965% 52.212%

68

B.2 Tempo Based Singing Skill Evaluator Test Data

Table B.2: Sample data with the estimated tempo values and the labels given by the expert

Song ID
User selected

tempo

System tempo

estimation

Expert’s tempo

evaluation

System tempo

evaluation

Song 4 102 103 Good Good

Song 5 100 129 Poor Poor

Song 6 106 107 Good Good

Song 7 100 103 Good Good

Song 8 95 117 Poor Poor

Song 9 102 103 Good Good

Song 10 110 112 Good Good

Song 11 100 103 Good Good

Song 12 108 117 Good Poor

Song 13 92 92 Good Poor

Song 14 102 107 Poor Good

Song 15 120 123 Good Good

Song 16 88 107 Good Poor

Song 17 132 129 Good Good

Song 18 60 58 Good Good

Song 19 95 95 Good Good

Song 20 125 129 Good Good

Song 21 110 107 Good Good

Song 22 95 95 Good Good

Song 23 100 107 Poor Poor

Song 24 100 99 Good Good

69

B.3 Usability Test Statistical Data

Table B.3: Results of usability test

Questions
Strongly

Disagree
Disagree Neutral Agree

Strongly

Agree

I enjoyed using this

system
0 0 1 6 10

I Gained a good

understanding about

this system

0 0 2 4 11

I felt I was able to

create reasonable

music using this system

0 0 5 11 1

Singing skill evaluation

encouraged

me to sing better

0 0 6 5 6

Synchronization of tracks

was easy
0 3 4 4 6

I would use this system

for entertainment if I had

this software

0 0 0 7 10

70

B.4 Usecase Diagram of the System

Figure B.1: Usecase diagram of the system

71

B.5 Activity diagram of a user creating a new song

Figure B.2: Activity diagram of a user creating a new song

72

Appendix C

Code Listings

C.1 Python Implementation of Viterbi Algorithm

1 def v i t e r b i (s e l f , obs , s t a t e s , s t a r t p ,

2 trans p , emit p , chord index) :

3 V = [{ }]

4 for s t in s t a t e s :

5 V [0] [s t] = {”prob” : s t a r t p [chord index . get (s t)]

6 ∗ emit p [chord index . get (s t)] [obs [0]] , ” prev ” : None}
7 # Run Vi t e r b i when t > 0

8 for t in range (1 , len (obs)) :

9 V. append ({})

10 for s t in s t a t e s :

11 max tr prob = max(

12 V[t − 1] [p r e v s t] [”prob”]

13 ∗ t rans p [chord index . get (p r e v s t)]

14 [chord index . get (s t)]

15 for p r e v s t in s t a t e s)

16 for p r e v s t in s t a t e s :

17 i f V[t − 1] [p r e v s t] [”prob”]

18 ∗ t rans p

19 [chord index . get (p r e v s t)]

20 [chord index . get (s t)]

21 == max tr prob :

22 max prob = max tr prob

23 ∗ emit p [chord index . get (s t)] [obs [t]]

24 V[t] [s t]

25 = {”prob” : max prob , ” prev ” : p r e v s t }

73

26 break

27 opt = []

28 # The h i g h e s t p r o b a b i l i t y

29 max prob = max(va lue [”prob”] for value in V[−1] . va lue s ())

30 prev ious = None

31 # Get most p robab l e s t a t e and i t s back t rack

32 for st , data in V[−1] . i tems () :

33 i f data [”prob”] == max prob :

34 opt . append (s t)

35 prev ious = s t

36 break

37 # Fol low the back t rack t i l l t he f i r s t o b s e r va t i on

38 for t in range (len (V) − 2 , −1, −1):

39 opt . i n s e r t (0 , V[t + 1] [p rev ious] [” prev ”])

40 prev ious = V[t + 1] [p rev ious] [” prev ”]

41

42 return max prob , opt

C.2 Praat Script for Pitch Detection

1 form Var iab l e s

2 sentence f i l ename

3 endform

4 Read from f i l e . . . ’ f i l ename$ ’

5 To Pitch (ac) . . . 0 . 0 75 .0 15 o f f 0 .03 0 .45 0 .01 0 .35 0 .14 600 .0

6 frames = Get number o f frames

7 output$ = ”Time”+tab$+”Pitch”+newl ine$

8 f o r f from 1 to frames

9 t = Get time from frame number . . . ’ f ’

10 t$ = f i x e d $ (t , 3)

11 v = Get value in frame . . . ’ f ’ Hertz

12 v$ = f i x e d $ (v , 2)

13 output$ = output$+t$+tab$+v$+newl ine$

14 endfor

15 echo ’ output$ ’

74

C.3 Function for M value computation

1 de f ca l cu la te M (gr id f r equency , output , ltm) :

2 mi = g r i d f r e q u e n c y − 50

3 ma = g r i d f r e q u e n c y+ 50

4 f o r F in range (mi , ma) :

5 F2=0

6 i f F < 0 :

7 F2 = 100 + F

8 i f F >= 100 :

9 F2 = F − 100

10 e l s e :

11 F2 = F

12 output . append ((g r i d f r e q u e n c y − F) ∗∗ 2 ∗ ltm [F2])

13 M=simps (output , range (mi ,ma))

14 re turn M

C.4 slope value computation

1 de f compute GF (gr id f r equency , ltm) :

2 GF val = [0 f o r i in range (5 0)]

3 f o r f in range (0 , 5 0) :

4

5 p lus = g r i d f r e q u e n c y + f

6 minus = g r i d f r e q u e n c y − f

7

8 i f (p lus >= 100) :

9 p lus = plus − 100

10 i f (minus < 0) :

11 minus = minus + 100

12 avg = (ltm [p lus] + ltm [minus]) / 2 .0

13 GF val [f] = avg

14 re turn GF val

15

16 y = compute GF (g r i d f r e q u e n c y=Fg , ltm=gf)

17 x = np . arange (0 , l en (y))

18 s lope , i n t e r c ep t , r va lue , p value , s t d e r r = s t a t s . l i n r e g r e s s (x , y)

75

